* doc/as.texinfo: Document -mdsp and -mno-dsp options.
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
CommitLineData
342ee437
MS
1/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2
63a09be5
MS
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
342ee437
MS
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
342ee437
MS
23#include "defs.h"
24#include "arch-utils.h"
25#include "dis-asm.h"
26#include "gdbtypes.h"
27#include "regcache.h"
28#include "gdb_string.h"
29#include "gdb_assert.h"
30#include "gdbcore.h" /* for write_memory_unsigned_integer */
31#include "value.h"
32#include "gdbtypes.h"
33#include "frame.h"
34#include "frame-unwind.h"
35#include "frame-base.h"
36#include "trad-frame.h"
37#include "symtab.h"
38#include "dwarf2-frame.h"
697e3bc9 39#include "osabi.h"
342ee437
MS
40
41#include "mn10300-tdep.h"
42
9cacebf5
MS
43/* Forward decl. */
44extern struct trad_frame_cache *mn10300_frame_unwind_cache (struct frame_info*,
45 void **);
342ee437
MS
46
47/* Compute the alignment required by a type. */
48
49static int
50mn10300_type_align (struct type *type)
51{
52 int i, align = 1;
53
54 switch (TYPE_CODE (type))
55 {
56 case TYPE_CODE_INT:
57 case TYPE_CODE_ENUM:
58 case TYPE_CODE_SET:
59 case TYPE_CODE_RANGE:
60 case TYPE_CODE_CHAR:
61 case TYPE_CODE_BOOL:
62 case TYPE_CODE_FLT:
63 case TYPE_CODE_PTR:
64 case TYPE_CODE_REF:
65 return TYPE_LENGTH (type);
66
67 case TYPE_CODE_COMPLEX:
68 return TYPE_LENGTH (type) / 2;
69
70 case TYPE_CODE_STRUCT:
71 case TYPE_CODE_UNION:
72 for (i = 0; i < TYPE_NFIELDS (type); i++)
73 {
74 int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
75 while (align < falign)
76 align <<= 1;
77 }
78 return align;
79
80 case TYPE_CODE_ARRAY:
81 /* HACK! Structures containing arrays, even small ones, are not
82 elligible for returning in registers. */
83 return 256;
84
85 case TYPE_CODE_TYPEDEF:
86 return mn10300_type_align (check_typedef (type));
87
88 default:
89 internal_error (__FILE__, __LINE__, _("bad switch"));
90 }
91}
92
342ee437 93/* Should call_function allocate stack space for a struct return? */
342ee437 94static int
99fe5f9d 95mn10300_use_struct_convention (struct type *type)
342ee437
MS
96{
97 /* Structures bigger than a pair of words can't be returned in
98 registers. */
99 if (TYPE_LENGTH (type) > 8)
100 return 1;
101
102 switch (TYPE_CODE (type))
103 {
104 case TYPE_CODE_STRUCT:
105 case TYPE_CODE_UNION:
106 /* Structures with a single field are handled as the field
107 itself. */
108 if (TYPE_NFIELDS (type) == 1)
99fe5f9d 109 return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
342ee437
MS
110
111 /* Structures with word or double-word size are passed in memory, as
112 long as they require at least word alignment. */
113 if (mn10300_type_align (type) >= 4)
114 return 0;
115
116 return 1;
117
118 /* Arrays are addressable, so they're never returned in
119 registers. This condition can only hold when the array is
120 the only field of a struct or union. */
121 case TYPE_CODE_ARRAY:
122 return 1;
123
124 case TYPE_CODE_TYPEDEF:
99fe5f9d 125 return mn10300_use_struct_convention (check_typedef (type));
342ee437
MS
126
127 default:
128 return 0;
129 }
130}
131
342ee437 132static void
99fe5f9d 133mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
342ee437
MS
134 struct regcache *regcache, const void *valbuf)
135{
342ee437
MS
136 int len = TYPE_LENGTH (type);
137 int reg, regsz;
138
139 if (TYPE_CODE (type) == TYPE_CODE_PTR)
140 reg = 4;
141 else
142 reg = 0;
143
144 regsz = register_size (gdbarch, reg);
145
146 if (len <= regsz)
147 regcache_raw_write_part (regcache, reg, 0, len, valbuf);
148 else if (len <= 2 * regsz)
149 {
150 regcache_raw_write (regcache, reg, valbuf);
151 gdb_assert (regsz == register_size (gdbarch, reg + 1));
152 regcache_raw_write_part (regcache, reg+1, 0,
153 len - regsz, (char *) valbuf + regsz);
154 }
155 else
156 internal_error (__FILE__, __LINE__,
157 _("Cannot store return value %d bytes long."), len);
158}
159
342ee437 160static void
99fe5f9d 161mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
342ee437
MS
162 struct regcache *regcache, void *valbuf)
163{
342ee437
MS
164 char buf[MAX_REGISTER_SIZE];
165 int len = TYPE_LENGTH (type);
166 int reg, regsz;
167
168 if (TYPE_CODE (type) == TYPE_CODE_PTR)
169 reg = 4;
170 else
171 reg = 0;
172
173 regsz = register_size (gdbarch, reg);
174 if (len <= regsz)
175 {
176 regcache_raw_read (regcache, reg, buf);
177 memcpy (valbuf, buf, len);
178 }
179 else if (len <= 2 * regsz)
180 {
181 regcache_raw_read (regcache, reg, buf);
182 memcpy (valbuf, buf, regsz);
183 gdb_assert (regsz == register_size (gdbarch, reg + 1));
184 regcache_raw_read (regcache, reg + 1, buf);
185 memcpy ((char *) valbuf + regsz, buf, len - regsz);
186 }
187 else
188 internal_error (__FILE__, __LINE__,
189 _("Cannot extract return value %d bytes long."), len);
190}
191
99fe5f9d
KB
192/* Determine, for architecture GDBARCH, how a return value of TYPE
193 should be returned. If it is supposed to be returned in registers,
194 and READBUF is non-zero, read the appropriate value from REGCACHE,
195 and copy it into READBUF. If WRITEBUF is non-zero, write the value
196 from WRITEBUF into REGCACHE. */
197
198static enum return_value_convention
199mn10300_return_value (struct gdbarch *gdbarch, struct type *type,
200 struct regcache *regcache, gdb_byte *readbuf,
201 const gdb_byte *writebuf)
202{
203 if (mn10300_use_struct_convention (type))
204 return RETURN_VALUE_STRUCT_CONVENTION;
205
206 if (readbuf)
207 mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
208 if (writebuf)
209 mn10300_store_return_value (gdbarch, type, regcache, writebuf);
210
211 return RETURN_VALUE_REGISTER_CONVENTION;
212}
213
342ee437
MS
214static char *
215register_name (int reg, char **regs, long sizeof_regs)
216{
217 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
218 return NULL;
219 else
220 return regs[reg];
221}
222
223static const char *
224mn10300_generic_register_name (int reg)
225{
226 static char *regs[] =
227 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
228 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
229 "", "", "", "", "", "", "", "",
230 "", "", "", "", "", "", "", "fp"
231 };
232 return register_name (reg, regs, sizeof regs);
233}
234
235
236static const char *
237am33_register_name (int reg)
238{
239 static char *regs[] =
240 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
241 "sp", "pc", "mdr", "psw", "lir", "lar", "",
242 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
243 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
244 };
245 return register_name (reg, regs, sizeof regs);
246}
247
248
249static struct type *
250mn10300_register_type (struct gdbarch *gdbarch, int reg)
251{
252 return builtin_type_int;
253}
254
255static CORE_ADDR
256mn10300_read_pc (ptid_t ptid)
257{
258 return read_register_pid (E_PC_REGNUM, ptid);
259}
260
261static void
262mn10300_write_pc (CORE_ADDR val, ptid_t ptid)
263{
264 return write_register_pid (E_PC_REGNUM, val, ptid);
265}
266
267/* The breakpoint instruction must be the same size as the smallest
268 instruction in the instruction set.
269
270 The Matsushita mn10x00 processors have single byte instructions
271 so we need a single byte breakpoint. Matsushita hasn't defined
272 one, so we defined it ourselves. */
273
274const static unsigned char *
275mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
276{
277 static char breakpoint[] = {0xff};
278 *bp_size = 1;
279 return breakpoint;
280}
281
9cacebf5
MS
282/*
283 * Frame Extra Info:
284 *
285 * status -- actually frame type (SP, FP, or last frame)
286 * stack size -- offset to the next frame
287 *
288 * The former might ultimately be stored in the frame_base.
289 * Seems like there'd be a way to store the later too.
290 *
291 * Temporarily supply empty stub functions as place holders.
292 */
293
294static void
295my_frame_is_in_sp (struct frame_info *fi, void **this_cache)
296{
297 struct trad_frame_cache *cache = mn10300_frame_unwind_cache (fi, this_cache);
298 trad_frame_set_this_base (cache,
299 frame_unwind_register_unsigned (fi,
300 E_SP_REGNUM));
301}
302
303static void
304my_frame_is_in_fp (struct frame_info *fi, void **this_cache)
305{
306 struct trad_frame_cache *cache = mn10300_frame_unwind_cache (fi, this_cache);
307 trad_frame_set_this_base (cache,
308 frame_unwind_register_unsigned (fi,
309 E_A3_REGNUM));
310}
311
312static void
313my_frame_is_last (struct frame_info *fi)
314{
315}
316
9cacebf5
MS
317static void
318set_my_stack_size (struct frame_info *fi, CORE_ADDR size)
319{
320}
321
322
323/* Set offsets of registers saved by movm instruction.
324 This is a helper function for mn10300_analyze_prologue. */
325
326static void
327set_movm_offsets (struct frame_info *fi,
328 void **this_cache,
329 int movm_args)
330{
331 struct trad_frame_cache *cache;
332 int offset = 0;
333 CORE_ADDR base;
334
335 if (fi == NULL || this_cache == NULL)
336 return;
337
338 cache = mn10300_frame_unwind_cache (fi, this_cache);
339 if (cache == NULL)
340 return;
341
342 base = trad_frame_get_this_base (cache);
343 if (movm_args & movm_other_bit)
344 {
345 /* The `other' bit leaves a blank area of four bytes at the
346 beginning of its block of saved registers, making it 32 bytes
347 long in total. */
348 trad_frame_set_reg_addr (cache, E_LAR_REGNUM, base + offset + 4);
349 trad_frame_set_reg_addr (cache, E_LIR_REGNUM, base + offset + 8);
350 trad_frame_set_reg_addr (cache, E_MDR_REGNUM, base + offset + 12);
351 trad_frame_set_reg_addr (cache, E_A0_REGNUM + 1, base + offset + 16);
352 trad_frame_set_reg_addr (cache, E_A0_REGNUM, base + offset + 20);
353 trad_frame_set_reg_addr (cache, E_D0_REGNUM + 1, base + offset + 24);
354 trad_frame_set_reg_addr (cache, E_D0_REGNUM, base + offset + 28);
355 offset += 32;
356 }
357
358 if (movm_args & movm_a3_bit)
359 {
360 trad_frame_set_reg_addr (cache, E_A3_REGNUM, base + offset);
361 offset += 4;
362 }
363 if (movm_args & movm_a2_bit)
364 {
365 trad_frame_set_reg_addr (cache, E_A2_REGNUM, base + offset);
366 offset += 4;
367 }
368 if (movm_args & movm_d3_bit)
369 {
370 trad_frame_set_reg_addr (cache, E_D3_REGNUM, base + offset);
371 offset += 4;
372 }
373 if (movm_args & movm_d2_bit)
374 {
375 trad_frame_set_reg_addr (cache, E_D2_REGNUM, base + offset);
376 offset += 4;
377 }
378 if (AM33_MODE)
379 {
380 if (movm_args & movm_exother_bit)
381 {
382 trad_frame_set_reg_addr (cache, E_MCVF_REGNUM, base + offset);
383 trad_frame_set_reg_addr (cache, E_MCRL_REGNUM, base + offset + 4);
384 trad_frame_set_reg_addr (cache, E_MCRH_REGNUM, base + offset + 8);
385 trad_frame_set_reg_addr (cache, E_MDRQ_REGNUM, base + offset + 12);
386 trad_frame_set_reg_addr (cache, E_E1_REGNUM, base + offset + 16);
387 trad_frame_set_reg_addr (cache, E_E0_REGNUM, base + offset + 20);
388 offset += 24;
389 }
390 if (movm_args & movm_exreg1_bit)
391 {
392 trad_frame_set_reg_addr (cache, E_E7_REGNUM, base + offset);
393 trad_frame_set_reg_addr (cache, E_E6_REGNUM, base + offset + 4);
394 trad_frame_set_reg_addr (cache, E_E5_REGNUM, base + offset + 8);
395 trad_frame_set_reg_addr (cache, E_E4_REGNUM, base + offset + 12);
396 offset += 16;
397 }
398 if (movm_args & movm_exreg0_bit)
399 {
400 trad_frame_set_reg_addr (cache, E_E3_REGNUM, base + offset);
401 trad_frame_set_reg_addr (cache, E_E2_REGNUM, base + offset + 4);
402 offset += 8;
403 }
404 }
405 /* The last (or first) thing on the stack will be the PC. */
406 trad_frame_set_reg_addr (cache, E_PC_REGNUM, base + offset);
407 /* Save the SP in the 'traditional' way.
408 This will be the same location where the PC is saved. */
409 trad_frame_set_reg_value (cache, E_SP_REGNUM, base + offset);
410}
411
412/* The main purpose of this file is dealing with prologues to extract
413 information about stack frames and saved registers.
414
415 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
416 function is pretty readable, and has a nice explanation of how the
417 prologue is generated. The prologues generated by that code will
418 have the following form (NOTE: the current code doesn't handle all
419 this!):
420
421 + If this is an old-style varargs function, then its arguments
422 need to be flushed back to the stack:
423
424 mov d0,(4,sp)
425 mov d1,(4,sp)
426
427 + If we use any of the callee-saved registers, save them now.
428
429 movm [some callee-saved registers],(sp)
430
431 + If we have any floating-point registers to save:
432
433 - Decrement the stack pointer to reserve space for the registers.
434 If the function doesn't need a frame pointer, we may combine
435 this with the adjustment that reserves space for the frame.
436
437 add -SIZE, sp
438
439 - Save the floating-point registers. We have two possible
440 strategies:
441
442 . Save them at fixed offset from the SP:
443
444 fmov fsN,(OFFSETN,sp)
445 fmov fsM,(OFFSETM,sp)
446 ...
447
448 Note that, if OFFSETN happens to be zero, you'll get the
449 different opcode: fmov fsN,(sp)
450
451 . Or, set a0 to the start of the save area, and then use
452 post-increment addressing to save the FP registers.
453
454 mov sp, a0
455 add SIZE, a0
456 fmov fsN,(a0+)
457 fmov fsM,(a0+)
458 ...
459
460 + If the function needs a frame pointer, we set it here.
461
462 mov sp, a3
463
464 + Now we reserve space for the stack frame proper. This could be
465 merged into the `add -SIZE, sp' instruction for FP saves up
466 above, unless we needed to set the frame pointer in the previous
467 step, or the frame is so large that allocating the whole thing at
468 once would put the FP register save slots out of reach of the
469 addressing mode (128 bytes).
470
471 add -SIZE, sp
472
473 One day we might keep the stack pointer constant, that won't
474 change the code for prologues, but it will make the frame
475 pointerless case much more common. */
476
477/* Analyze the prologue to determine where registers are saved,
478 the end of the prologue, etc etc. Return the end of the prologue
479 scanned.
480
481 We store into FI (if non-null) several tidbits of information:
482
483 * stack_size -- size of this stack frame. Note that if we stop in
484 certain parts of the prologue/epilogue we may claim the size of the
485 current frame is zero. This happens when the current frame has
486 not been allocated yet or has already been deallocated.
487
488 * fsr -- Addresses of registers saved in the stack by this frame.
489
490 * status -- A (relatively) generic status indicator. It's a bitmask
491 with the following bits:
492
493 MY_FRAME_IN_SP: The base of the current frame is actually in
494 the stack pointer. This can happen for frame pointerless
495 functions, or cases where we're stopped in the prologue/epilogue
496 itself. For these cases mn10300_analyze_prologue will need up
497 update fi->frame before returning or analyzing the register
498 save instructions.
499
500 MY_FRAME_IN_FP: The base of the current frame is in the
501 frame pointer register ($a3).
502
503 NO_MORE_FRAMES: Set this if the current frame is "start" or
504 if the first instruction looks like mov <imm>,sp. This tells
505 frame chain to not bother trying to unwind past this frame. */
506
507static CORE_ADDR
508mn10300_analyze_prologue (struct frame_info *fi,
509 void **this_cache,
510 CORE_ADDR pc)
511{
512 CORE_ADDR func_addr, func_end, addr, stop;
513 long stack_size;
514 int imm_size;
515 unsigned char buf[4];
516 int status, movm_args = 0;
517 char *name;
518
519 /* Use the PC in the frame if it's provided to look up the
520 start of this function.
521
522 Note: kevinb/2003-07-16: We used to do the following here:
523 pc = (fi ? get_frame_pc (fi) : pc);
524 But this is (now) badly broken when called from analyze_dummy_frame().
525 */
526 if (fi)
527 {
528 pc = (pc ? pc : get_frame_pc (fi));
529 /* At the start of a function our frame is in the stack pointer. */
530 my_frame_is_in_sp (fi, this_cache);
531 }
532
533 /* Find the start of this function. */
534 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
535
536 /* Do nothing if we couldn't find the start of this function
537
538 MVS: comment went on to say "or if we're stopped at the first
539 instruction in the prologue" -- but code doesn't reflect that,
540 and I don't want to do that anyway. */
541 if (status == 0)
542 {
543 return pc;
544 }
545
546 /* If we're in start, then give up. */
547 if (strcmp (name, "start") == 0)
548 {
549 if (fi != NULL)
550 my_frame_is_last (fi);
551 return pc;
552 }
553
9cacebf5
MS
554 /* NOTE: from here on, we don't want to return without jumping to
555 finish_prologue. */
556
557
558 /* Figure out where to stop scanning. */
559 stop = fi ? pc : func_end;
560
561 /* Don't walk off the end of the function. */
562 stop = stop > func_end ? func_end : stop;
563
564 /* Start scanning on the first instruction of this function. */
565 addr = func_addr;
566
567 /* Suck in two bytes. */
f2c8bc43 568 if (addr + 2 >= stop || !safe_frame_unwind_memory (fi, addr, buf, 2))
9cacebf5
MS
569 goto finish_prologue;
570
571 /* First see if this insn sets the stack pointer from a register; if
572 so, it's probably the initialization of the stack pointer in _start,
573 so mark this as the bottom-most frame. */
574 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
575 {
576 if (fi)
577 my_frame_is_last (fi);
578 goto finish_prologue;
579 }
580
581 /* Now look for movm [regs],sp, which saves the callee saved registers.
582
583 At this time we don't know if fi->frame is valid, so we only note
584 that we encountered a movm instruction. Later, we'll set the entries
585 in fsr.regs as needed. */
586 if (buf[0] == 0xcf)
587 {
588 /* Extract the register list for the movm instruction. */
589 movm_args = buf[1];
590
591 addr += 2;
592
593 /* Quit now if we're beyond the stop point. */
594 if (addr >= stop)
595 goto finish_prologue;
596
597 /* Get the next two bytes so the prologue scan can continue. */
f2c8bc43 598 if (!safe_frame_unwind_memory (fi, addr, buf, 2))
9cacebf5
MS
599 goto finish_prologue;
600 }
601
602 /* Now see if we set up a frame pointer via "mov sp,a3" */
603 if (buf[0] == 0x3f)
604 {
605 addr += 1;
606
607 /* The frame pointer is now valid. */
608 if (fi)
609 {
610 my_frame_is_in_fp (fi, this_cache);
611 }
612
613 /* Quit now if we're beyond the stop point. */
614 if (addr >= stop)
615 goto finish_prologue;
616
617 /* Get two more bytes so scanning can continue. */
f2c8bc43 618 if (!safe_frame_unwind_memory (fi, addr, buf, 2))
9cacebf5
MS
619 goto finish_prologue;
620 }
621
622 /* Next we should allocate the local frame. No more prologue insns
623 are found after allocating the local frame.
624
625 Search for add imm8,sp (0xf8feXX)
626 or add imm16,sp (0xfafeXXXX)
627 or add imm32,sp (0xfcfeXXXXXXXX).
628
629 If none of the above was found, then this prologue has no
630 additional stack. */
631
632 imm_size = 0;
633 if (buf[0] == 0xf8 && buf[1] == 0xfe)
634 imm_size = 1;
635 else if (buf[0] == 0xfa && buf[1] == 0xfe)
636 imm_size = 2;
637 else if (buf[0] == 0xfc && buf[1] == 0xfe)
638 imm_size = 4;
639
640 if (imm_size != 0)
641 {
642 /* Suck in imm_size more bytes, they'll hold the size of the
643 current frame. */
f2c8bc43 644 if (!safe_frame_unwind_memory (fi, addr + 2, buf, imm_size))
9cacebf5
MS
645 goto finish_prologue;
646
647 /* Note the size of the stack in the frame info structure. */
648 stack_size = extract_signed_integer (buf, imm_size);
649 if (fi)
650 set_my_stack_size (fi, stack_size);
651
652 /* We just consumed 2 + imm_size bytes. */
653 addr += 2 + imm_size;
654
655 /* No more prologue insns follow, so begin preparation to return. */
656 goto finish_prologue;
657 }
658 /* Do the essentials and get out of here. */
659 finish_prologue:
660 /* Note if/where callee saved registers were saved. */
661 if (fi)
662 set_movm_offsets (fi, this_cache, movm_args);
663 return addr;
664}
665
342ee437
MS
666/* Function: skip_prologue
667 Return the address of the first inst past the prologue of the function. */
668
669static CORE_ADDR
670mn10300_skip_prologue (CORE_ADDR pc)
671{
9b3c083c 672 return mn10300_analyze_prologue (NULL, NULL, pc);
342ee437
MS
673}
674
675/* Simple frame_unwind_cache.
676 This finds the "extra info" for the frame. */
677struct trad_frame_cache *
678mn10300_frame_unwind_cache (struct frame_info *next_frame,
679 void **this_prologue_cache)
680{
681 struct trad_frame_cache *cache;
1fb1ca27 682 CORE_ADDR pc, start, end;
342ee437
MS
683
684 if (*this_prologue_cache)
685 return (*this_prologue_cache);
686
687 cache = trad_frame_cache_zalloc (next_frame);
688 pc = gdbarch_unwind_pc (current_gdbarch, next_frame);
689 mn10300_analyze_prologue (next_frame, (void **) &cache, pc);
1fb1ca27
MS
690 if (find_pc_partial_function (pc, NULL, &start, &end))
691 trad_frame_set_id (cache,
692 frame_id_build (trad_frame_get_this_base (cache),
693 start));
694 else
695 trad_frame_set_id (cache,
696 frame_id_build (trad_frame_get_this_base (cache),
697 frame_func_unwind (next_frame)));
342ee437
MS
698
699 (*this_prologue_cache) = cache;
700 return cache;
701}
702
703/* Here is a dummy implementation. */
704static struct frame_id
705mn10300_unwind_dummy_id (struct gdbarch *gdbarch,
706 struct frame_info *next_frame)
707{
708 return frame_id_build (frame_sp_unwind (next_frame),
709 frame_pc_unwind (next_frame));
710}
711
712/* Trad frame implementation. */
713static void
714mn10300_frame_this_id (struct frame_info *next_frame,
715 void **this_prologue_cache,
716 struct frame_id *this_id)
717{
718 struct trad_frame_cache *cache =
719 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
720
721 trad_frame_get_id (cache, this_id);
722}
723
724static void
725mn10300_frame_prev_register (struct frame_info *next_frame,
726 void **this_prologue_cache,
727 int regnum, int *optimizedp,
728 enum lval_type *lvalp, CORE_ADDR *addrp,
3e6b1689 729 int *realnump, gdb_byte *bufferp)
342ee437
MS
730{
731 struct trad_frame_cache *cache =
732 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
733
734 trad_frame_get_register (cache, next_frame, regnum, optimizedp,
735 lvalp, addrp, realnump, bufferp);
736 /* Or...
737 trad_frame_get_prev_register (next_frame, cache->prev_regs, regnum,
738 optimizedp, lvalp, addrp, realnump, bufferp);
739 */
740}
741
742static const struct frame_unwind mn10300_frame_unwind = {
743 NORMAL_FRAME,
744 mn10300_frame_this_id,
745 mn10300_frame_prev_register
746};
747
748static CORE_ADDR
749mn10300_frame_base_address (struct frame_info *next_frame,
750 void **this_prologue_cache)
751{
752 struct trad_frame_cache *cache =
753 mn10300_frame_unwind_cache (next_frame, this_prologue_cache);
754
755 return trad_frame_get_this_base (cache);
756}
757
758static const struct frame_unwind *
759mn10300_frame_sniffer (struct frame_info *next_frame)
760{
761 return &mn10300_frame_unwind;
762}
763
764static const struct frame_base mn10300_frame_base = {
765 &mn10300_frame_unwind,
766 mn10300_frame_base_address,
767 mn10300_frame_base_address,
768 mn10300_frame_base_address
769};
770
771static CORE_ADDR
772mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
773{
774 ULONGEST pc;
775
776 frame_unwind_unsigned_register (next_frame, E_PC_REGNUM, &pc);
777 return pc;
778}
779
780static CORE_ADDR
781mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
782{
783 ULONGEST sp;
784
785 frame_unwind_unsigned_register (next_frame, E_SP_REGNUM, &sp);
786 return sp;
787}
788
789static void
790mn10300_frame_unwind_init (struct gdbarch *gdbarch)
791{
792 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
793 frame_unwind_append_sniffer (gdbarch, mn10300_frame_sniffer);
794 frame_base_set_default (gdbarch, &mn10300_frame_base);
795 set_gdbarch_unwind_dummy_id (gdbarch, mn10300_unwind_dummy_id);
796 set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
797 set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
798}
799
800/* Function: push_dummy_call
801 *
802 * Set up machine state for a target call, including
803 * function arguments, stack, return address, etc.
804 *
805 */
806
807static CORE_ADDR
808mn10300_push_dummy_call (struct gdbarch *gdbarch,
809 struct value *target_func,
810 struct regcache *regcache,
811 CORE_ADDR bp_addr,
812 int nargs, struct value **args,
813 CORE_ADDR sp,
814 int struct_return,
815 CORE_ADDR struct_addr)
816{
817 const int push_size = register_size (gdbarch, E_PC_REGNUM);
1fb1ca27 818 int regs_used;
342ee437
MS
819 int len, arg_len;
820 int stack_offset = 0;
821 int argnum;
1fb1ca27 822 char *val, valbuf[MAX_REGISTER_SIZE];
342ee437 823
342ee437
MS
824 /* This should be a nop, but align the stack just in case something
825 went wrong. Stacks are four byte aligned on the mn10300. */
826 sp &= ~3;
827
828 /* Now make space on the stack for the args.
829
830 XXX This doesn't appear to handle pass-by-invisible reference
831 arguments. */
1fb1ca27 832 regs_used = struct_return ? 1 : 0;
342ee437
MS
833 for (len = 0, argnum = 0; argnum < nargs; argnum++)
834 {
835 arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
342ee437
MS
836 while (regs_used < 2 && arg_len > 0)
837 {
838 regs_used++;
839 arg_len -= push_size;
840 }
841 len += arg_len;
842 }
843
844 /* Allocate stack space. */
845 sp -= len;
846
1fb1ca27
MS
847 if (struct_return)
848 {
849 regs_used = 1;
850 write_register (E_D0_REGNUM, struct_addr);
851 }
852 else
853 regs_used = 0;
854
342ee437
MS
855 /* Push all arguments onto the stack. */
856 for (argnum = 0; argnum < nargs; argnum++)
857 {
1fb1ca27
MS
858 /* FIXME what about structs? Unions? */
859 if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
860 && TYPE_LENGTH (value_type (*args)) > 8)
861 {
862 /* Change to pointer-to-type. */
863 arg_len = push_size;
864 store_unsigned_integer (valbuf, push_size,
865 VALUE_ADDRESS (*args));
866 val = &valbuf[0];
867 }
868 else
869 {
870 arg_len = TYPE_LENGTH (value_type (*args));
871 val = (char *) value_contents (*args);
872 }
342ee437
MS
873
874 while (regs_used < 2 && arg_len > 0)
875 {
1fb1ca27
MS
876 write_register (regs_used,
877 extract_unsigned_integer (val, push_size));
342ee437
MS
878 val += push_size;
879 arg_len -= push_size;
880 regs_used++;
881 }
882
883 while (arg_len > 0)
884 {
885 write_memory (sp + stack_offset, val, push_size);
886 arg_len -= push_size;
887 val += push_size;
888 stack_offset += push_size;
889 }
890
891 args++;
892 }
893
894 /* Make space for the flushback area. */
895 sp -= 8;
896
897 /* Push the return address that contains the magic breakpoint. */
898 sp -= 4;
899 write_memory_unsigned_integer (sp, push_size, bp_addr);
900 /* Update $sp. */
901 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
902 return sp;
903}
904
336c28c5
KB
905/* If DWARF2 is a register number appearing in Dwarf2 debug info, then
906 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
907 register number. Why don't Dwarf2 and GDB use the same numbering?
908 Who knows? But since people have object files lying around with
909 the existing Dwarf2 numbering, and other people have written stubs
910 to work with the existing GDB, neither of them can change. So we
911 just have to cope. */
912static int
913mn10300_dwarf2_reg_to_regnum (int dwarf2)
914{
915 /* This table is supposed to be shaped like the REGISTER_NAMES
916 initializer in gcc/config/mn10300/mn10300.h. Registers which
917 appear in GCC's numbering, but have no counterpart in GDB's
918 world, are marked with a -1. */
919 static int dwarf2_to_gdb[] = {
920 0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
921 15, 16, 17, 18, 19, 20, 21, 22,
922 32, 33, 34, 35, 36, 37, 38, 39,
923 40, 41, 42, 43, 44, 45, 46, 47,
924 48, 49, 50, 51, 52, 53, 54, 55,
925 56, 57, 58, 59, 60, 61, 62, 63
926 };
927
928 if (dwarf2 < 0
52f0b832 929 || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb)
336c28c5 930 || dwarf2_to_gdb[dwarf2] == -1)
154b82dc
KB
931 {
932 warning (_("Bogus register number in debug info: %d"), dwarf2);
933 return 0;
934 }
336c28c5
KB
935
936 return dwarf2_to_gdb[dwarf2];
937}
342ee437
MS
938
939static struct gdbarch *
940mn10300_gdbarch_init (struct gdbarch_info info,
941 struct gdbarch_list *arches)
942{
943 struct gdbarch *gdbarch;
944 struct gdbarch_tdep *tdep;
945
946 arches = gdbarch_list_lookup_by_info (arches, &info);
947 if (arches != NULL)
948 return arches->gdbarch;
949
950 tdep = xmalloc (sizeof (struct gdbarch_tdep));
951 gdbarch = gdbarch_alloc (&info, tdep);
952
953 switch (info.bfd_arch_info->mach)
954 {
955 case 0:
956 case bfd_mach_mn10300:
957 set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
958 tdep->am33_mode = 0;
959 break;
960 case bfd_mach_am33:
961 set_gdbarch_register_name (gdbarch, am33_register_name);
962 tdep->am33_mode = 1;
963 break;
964 default:
965 internal_error (__FILE__, __LINE__,
966 _("mn10300_gdbarch_init: Unknown mn10300 variant"));
967 break;
968 }
969
970 /* Registers. */
971 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
972 set_gdbarch_register_type (gdbarch, mn10300_register_type);
973 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
974 set_gdbarch_read_pc (gdbarch, mn10300_read_pc);
975 set_gdbarch_write_pc (gdbarch, mn10300_write_pc);
976 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
977 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
336c28c5 978 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
342ee437
MS
979
980 /* Stack unwinding. */
981 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
982 /* Breakpoints. */
983 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
984 /* decr_pc_after_break? */
985 /* Disassembly. */
986 set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
987
988 /* Stage 2 */
99fe5f9d 989 set_gdbarch_return_value (gdbarch, mn10300_return_value);
342ee437
MS
990
991 /* Stage 3 -- get target calls working. */
992 set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
993 /* set_gdbarch_return_value (store, extract) */
994
995
996 mn10300_frame_unwind_init (gdbarch);
997
697e3bc9
KB
998 /* Hook in ABI-specific overrides, if they have been registered. */
999 gdbarch_init_osabi (info, gdbarch);
1000
342ee437
MS
1001 return gdbarch;
1002}
1003
1004/* Dump out the mn10300 specific architecture information. */
1005
1006static void
1007mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1008{
1009 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1010 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1011 tdep->am33_mode);
1012}
1013
1014void
1015_initialize_mn10300_tdep (void)
1016{
1017 gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
1018}
1019
This page took 0.094687 seconds and 4 git commands to generate.