*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mt-tdep.c
CommitLineData
d031aafb 1/* Target-dependent code for Morpho mt processor, for GDB.
61def6bd 2
7b6bb8da
JB
3 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
61def6bd
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
61def6bd
KB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
61def6bd
KB
20
21/* Contributed by Michael Snyder, msnyder@redhat.com. */
22
23#include "defs.h"
24#include "frame.h"
25#include "frame-unwind.h"
26#include "frame-base.h"
27#include "symtab.h"
28#include "dis-asm.h"
29#include "arch-utils.h"
30#include "gdbtypes.h"
31#include "gdb_string.h"
32#include "regcache.h"
33#include "reggroups.h"
34#include "gdbcore.h"
35#include "trad-frame.h"
36#include "inferior.h"
37#include "dwarf2-frame.h"
38#include "infcall.h"
39#include "gdb_assert.h"
d8ca156b 40#include "language.h"
79a45b7d 41#include "valprint.h"
61def6bd 42
d031aafb 43enum mt_arch_constants
61def6bd 44{
d031aafb 45 MT_MAX_STRUCT_SIZE = 16
61def6bd
KB
46};
47
d031aafb 48enum mt_gdb_regnums
61def6bd 49{
d031aafb
NS
50 MT_R0_REGNUM, /* 32 bit regs. */
51 MT_R1_REGNUM,
52 MT_1ST_ARGREG = MT_R1_REGNUM,
53 MT_R2_REGNUM,
54 MT_R3_REGNUM,
55 MT_R4_REGNUM,
56 MT_LAST_ARGREG = MT_R4_REGNUM,
57 MT_R5_REGNUM,
58 MT_R6_REGNUM,
59 MT_R7_REGNUM,
60 MT_R8_REGNUM,
61 MT_R9_REGNUM,
62 MT_R10_REGNUM,
63 MT_R11_REGNUM,
64 MT_R12_REGNUM,
65 MT_FP_REGNUM = MT_R12_REGNUM,
66 MT_R13_REGNUM,
67 MT_SP_REGNUM = MT_R13_REGNUM,
68 MT_R14_REGNUM,
69 MT_RA_REGNUM = MT_R14_REGNUM,
70 MT_R15_REGNUM,
71 MT_IRA_REGNUM = MT_R15_REGNUM,
72 MT_PC_REGNUM,
61def6bd
KB
73
74 /* Interrupt Enable pseudo-register, exported by SID. */
d031aafb 75 MT_INT_ENABLE_REGNUM,
61def6bd
KB
76 /* End of CPU regs. */
77
d031aafb 78 MT_NUM_CPU_REGS,
61def6bd
KB
79
80 /* Co-processor registers. */
d031aafb
NS
81 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
82 MT_CPR0_REGNUM,
83 MT_CPR1_REGNUM,
84 MT_CPR2_REGNUM,
85 MT_CPR3_REGNUM,
86 MT_CPR4_REGNUM,
87 MT_CPR5_REGNUM,
88 MT_CPR6_REGNUM,
89 MT_CPR7_REGNUM,
90 MT_CPR8_REGNUM,
91 MT_CPR9_REGNUM,
92 MT_CPR10_REGNUM,
93 MT_CPR11_REGNUM,
94 MT_CPR12_REGNUM,
95 MT_CPR13_REGNUM,
96 MT_CPR14_REGNUM,
97 MT_CPR15_REGNUM,
98 MT_BYPA_REGNUM, /* 32 bit regs. */
99 MT_BYPB_REGNUM,
100 MT_BYPC_REGNUM,
101 MT_FLAG_REGNUM,
102 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
61def6bd 103 six bytes). */
d031aafb
NS
104 MT_MAC_REGNUM, /* 32 bits. */
105 MT_Z1_REGNUM, /* 16 bits. */
106 MT_Z2_REGNUM, /* 16 bits. */
107 MT_ICHANNEL_REGNUM, /* 32 bits. */
108 MT_ISCRAMB_REGNUM, /* 32 bits. */
109 MT_QSCRAMB_REGNUM, /* 32 bits. */
110 MT_OUT_REGNUM, /* 16 bits. */
111 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
112 MT_QCHANNEL_REGNUM, /* 32 bits. */
03a73f77
MM
113 MT_ZI2_REGNUM, /* 16 bits. */
114 MT_ZQ2_REGNUM, /* 16 bits. */
115 MT_CHANNEL2_REGNUM, /* 32 bits. */
116 MT_ISCRAMB2_REGNUM, /* 32 bits. */
117 MT_QSCRAMB2_REGNUM, /* 32 bits. */
118 MT_QCHANNEL2_REGNUM, /* 32 bits. */
61def6bd
KB
119
120 /* Number of real registers. */
d031aafb 121 MT_NUM_REGS,
61def6bd
KB
122
123 /* Pseudo-registers. */
d031aafb
NS
124 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
125 MT_MAC_PSEUDOREG_REGNUM,
60e81fcc
NS
126 MT_COPRO_PSEUDOREG_ARRAY,
127
128 MT_COPRO_PSEUDOREG_DIM_1 = 2,
129 MT_COPRO_PSEUDOREG_DIM_2 = 8,
03a73f77
MM
130 /* The number of pseudo-registers for each coprocessor. These
131 include the real coprocessor registers, the pseudo-registe for
132 the coprocessor number, and the pseudo-register for the MAC. */
133 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
134 /* The register number of the MAC, relative to a given coprocessor. */
135 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
61def6bd
KB
136
137 /* Two pseudo-regs ('coprocessor' and 'mac'). */
60e81fcc
NS
138 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
139 * MT_COPRO_PSEUDOREG_DIM_1
140 * MT_COPRO_PSEUDOREG_DIM_2)
61def6bd
KB
141};
142
df4df182
UW
143/* The tdep structure. */
144struct gdbarch_tdep
145{
146 /* ISA-specific types. */
147 struct type *copro_type;
148};
149
150
61def6bd
KB
151/* Return name of register number specified by REGNUM. */
152
153static const char *
d93859e2 154mt_register_name (struct gdbarch *gdbarch, int regnum)
61def6bd 155{
58b78171 156 static const char *const register_names[] = {
61def6bd
KB
157 /* CPU regs. */
158 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 "pc", "IE",
161 /* Co-processor regs. */
162 "", /* copro register. */
163 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
164 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
165 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
166 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
03a73f77 167 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
61def6bd
KB
168 /* Pseudo-registers. */
169 "coprocessor", "MAC"
170 };
60e81fcc
NS
171 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
172 * MT_COPRO_PSEUDOREG_DIM_1
173 * MT_COPRO_PSEUDOREG_DIM_2];
174
175 if (regnum < 0)
176 return "";
177 if (regnum < ARRAY_SIZE (register_names))
178 return register_names[regnum];
179 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
180 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
181
182 {
183 char *name;
184 const char *stub;
185 unsigned dim_1;
186 unsigned dim_2;
187 unsigned index;
188
189 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
190 index = regnum % MT_COPRO_PSEUDOREG_REGS;
191 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
192 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
193 % MT_COPRO_PSEUDOREG_DIM_1);
194
03a73f77 195 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 196 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
03a73f77 197 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
60e81fcc
NS
198 stub = "";
199 else
200 stub = register_names[index + MT_CPR0_REGNUM];
201 if (!*stub)
202 {
203 array_names[regnum] = stub;
204 return stub;
205 }
206 name = xmalloc (30);
207 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
208 array_names[regnum] = name;
209 return name;
210 }
211}
61def6bd 212
60e81fcc
NS
213/* Return the type of a coprocessor register. */
214
215static struct type *
216mt_copro_register_type (struct gdbarch *arch, int regnum)
217{
218 switch (regnum)
219 {
220 case MT_INT_ENABLE_REGNUM:
221 case MT_ICHANNEL_REGNUM:
222 case MT_QCHANNEL_REGNUM:
223 case MT_ISCRAMB_REGNUM:
224 case MT_QSCRAMB_REGNUM:
df4df182 225 return builtin_type (arch)->builtin_int32;
60e81fcc
NS
226 case MT_BYPA_REGNUM:
227 case MT_BYPB_REGNUM:
228 case MT_BYPC_REGNUM:
229 case MT_Z1_REGNUM:
230 case MT_Z2_REGNUM:
231 case MT_OUT_REGNUM:
03a73f77
MM
232 case MT_ZI2_REGNUM:
233 case MT_ZQ2_REGNUM:
df4df182 234 return builtin_type (arch)->builtin_int16;
60e81fcc
NS
235 case MT_EXMAC_REGNUM:
236 case MT_MAC_REGNUM:
df4df182 237 return builtin_type (arch)->builtin_uint32;
60e81fcc 238 case MT_CONTEXT_REGNUM:
0dfff4cb 239 return builtin_type (arch)->builtin_long_long;
60e81fcc 240 case MT_FLAG_REGNUM:
0dfff4cb 241 return builtin_type (arch)->builtin_unsigned_char;
60e81fcc
NS
242 default:
243 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
df4df182 244 return builtin_type (arch)->builtin_int16;
03a73f77 245 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc
NS
246 {
247 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
248 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
df4df182 249 return builtin_type (arch)->builtin_uint64;
60e81fcc 250 else
df4df182 251 return builtin_type (arch)->builtin_uint32;
60e81fcc
NS
252 }
253 else
df4df182 254 return builtin_type (arch)->builtin_uint32;
60e81fcc 255 }
61def6bd
KB
256}
257
258/* Given ARCH and a register number specified by REGNUM, return the
259 type of that register. */
260
261static struct type *
d031aafb 262mt_register_type (struct gdbarch *arch, int regnum)
61def6bd 263{
df4df182 264 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
61def6bd 265
d031aafb 266 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
61def6bd 267 {
61def6bd
KB
268 switch (regnum)
269 {
d031aafb
NS
270 case MT_PC_REGNUM:
271 case MT_RA_REGNUM:
272 case MT_IRA_REGNUM:
fde6c819 273 return builtin_type (arch)->builtin_func_ptr;
d031aafb
NS
274 case MT_SP_REGNUM:
275 case MT_FP_REGNUM:
fde6c819 276 return builtin_type (arch)->builtin_data_ptr;
d031aafb
NS
277 case MT_COPRO_REGNUM:
278 case MT_COPRO_PSEUDOREG_REGNUM:
df4df182
UW
279 if (tdep->copro_type == NULL)
280 {
281 struct type *elt = builtin_type (arch)->builtin_int16;
282 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
283 }
284 return tdep->copro_type;
d031aafb 285 case MT_MAC_PSEUDOREG_REGNUM:
60e81fcc
NS
286 return mt_copro_register_type (arch,
287 MT_CPR0_REGNUM
03a73f77 288 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
61def6bd 289 default:
d031aafb 290 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
df4df182 291 return builtin_type (arch)->builtin_int32;
60e81fcc
NS
292 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
293 return mt_copro_register_type (arch, regnum);
294 else
295 {
296 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
297 regnum %= MT_COPRO_PSEUDOREG_REGS;
298 regnum += MT_CPR0_REGNUM;
299 return mt_copro_register_type (arch, regnum);
300 }
61def6bd
KB
301 }
302 }
303 internal_error (__FILE__, __LINE__,
d031aafb 304 _("mt_register_type: illegal register number %d"), regnum);
61def6bd
KB
305}
306
307/* Return true if register REGNUM is a member of the register group
308 specified by GROUP. */
309
310static int
d031aafb 311mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
61def6bd
KB
312 struct reggroup *group)
313{
314 /* Groups of registers that can be displayed via "info reg". */
315 if (group == all_reggroup)
316 return (regnum >= 0
d031aafb 317 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
d93859e2 318 && mt_register_name (gdbarch, regnum)[0] != '\0');
61def6bd
KB
319
320 if (group == general_reggroup)
d031aafb 321 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
61def6bd
KB
322
323 if (group == float_reggroup)
324 return 0; /* No float regs. */
325
326 if (group == vector_reggroup)
327 return 0; /* No vector regs. */
328
329 /* For any that are not handled above. */
330 return default_register_reggroup_p (gdbarch, regnum, group);
331}
332
333/* Return the return value convention used for a given type TYPE.
334 Optionally, fetch or set the return value via READBUF or
335 WRITEBUF respectively using REGCACHE for the register
336 values. */
337
338static enum return_value_convention
c055b101
CV
339mt_return_value (struct gdbarch *gdbarch, struct type *func_type,
340 struct type *type, struct regcache *regcache,
341 gdb_byte *readbuf, const gdb_byte *writebuf)
61def6bd 342{
e17a4113
UW
343 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
344
61def6bd
KB
345 if (TYPE_LENGTH (type) > 4)
346 {
347 /* Return values > 4 bytes are returned in memory,
348 pointed to by R11. */
349 if (readbuf)
350 {
351 ULONGEST addr;
352
d031aafb 353 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
354 read_memory (addr, readbuf, TYPE_LENGTH (type));
355 }
356
357 if (writebuf)
358 {
359 ULONGEST addr;
360
d031aafb 361 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
362 write_memory (addr, writebuf, TYPE_LENGTH (type));
363 }
364
365 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
366 }
367 else
368 {
369 if (readbuf)
370 {
371 ULONGEST temp;
372
373 /* Return values of <= 4 bytes are returned in R11. */
d031aafb 374 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
e17a4113
UW
375 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
376 byte_order, temp);
61def6bd
KB
377 }
378
379 if (writebuf)
380 {
381 if (TYPE_LENGTH (type) < 4)
382 {
383 gdb_byte buf[4];
384 /* Add leading zeros to the value. */
385 memset (buf, 0, sizeof (buf));
386 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
387 writebuf, TYPE_LENGTH (type));
d031aafb 388 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
61def6bd
KB
389 }
390 else /* (TYPE_LENGTH (type) == 4 */
d031aafb 391 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
61def6bd
KB
392 }
393
394 return RETURN_VALUE_REGISTER_CONVENTION;
395 }
396}
397
398/* If the input address, PC, is in a function prologue, return the
399 address of the end of the prologue, otherwise return the input
400 address.
401
402 Note: PC is likely to be the function start, since this function
403 is mainly used for advancing a breakpoint to the first line, or
404 stepping to the first line when we have stepped into a function
405 call. */
406
407static CORE_ADDR
6093d2eb 408mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
61def6bd 409{
e17a4113 410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61def6bd
KB
411 CORE_ADDR func_addr = 0, func_end = 0;
412 char *func_name;
413 unsigned long instr;
414
415 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
416 {
417 struct symtab_and_line sal;
418 struct symbol *sym;
419
420 /* Found a function. */
2570f2b7 421 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
61def6bd
KB
422 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
423 {
424 /* Don't use this trick for assembly source files. */
425 sal = find_pc_line (func_addr, 0);
426
427 if (sal.end && sal.end < func_end)
428 {
429 /* Found a line number, use it as end of prologue. */
430 return sal.end;
431 }
432 }
433 }
434
435 /* No function symbol, or no line symbol. Use prologue scanning method. */
436 for (;; pc += 4)
437 {
e17a4113 438 instr = read_memory_unsigned_integer (pc, 4, byte_order);
61def6bd
KB
439 if (instr == 0x12000000) /* nop */
440 continue;
441 if (instr == 0x12ddc000) /* copy sp into fp */
442 continue;
443 instr >>= 16;
444 if (instr == 0x05dd) /* subi sp, sp, imm */
445 continue;
446 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
447 continue;
448 /* Not an obvious prologue instruction. */
449 break;
450 }
451
452 return pc;
453}
454
455/* The breakpoint instruction must be the same size as the smallest
456 instruction in the instruction set.
457
3950dc3f
NS
458 The BP for ms1 is defined as 0x68000000 (BREAK).
459 The BP for ms2 is defined as 0x69000000 (illegal) */
61def6bd
KB
460
461static const gdb_byte *
67d57894
MD
462mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
463 int *bp_size)
61def6bd 464{
3950dc3f
NS
465 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
466 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
61def6bd
KB
467
468 *bp_size = 4;
67d57894 469 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
3950dc3f
NS
470 return ms2_breakpoint;
471
472 return ms1_breakpoint;
61def6bd
KB
473}
474
60e81fcc
NS
475/* Select the correct coprocessor register bank. Return the pseudo
476 regnum we really want to read. */
477
478static int
479mt_select_coprocessor (struct gdbarch *gdbarch,
480 struct regcache *regcache, int regno)
481{
e17a4113 482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
60e81fcc
NS
483 unsigned index, base;
484 gdb_byte copro[4];
485
486 /* Get the copro pseudo regnum. */
487 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
e17a4113
UW
488 base = ((extract_signed_integer (&copro[0], 2, byte_order)
489 * MT_COPRO_PSEUDOREG_DIM_2)
490 + extract_signed_integer (&copro[2], 2, byte_order));
60e81fcc
NS
491
492 regno -= MT_COPRO_PSEUDOREG_ARRAY;
493 index = regno % MT_COPRO_PSEUDOREG_REGS;
494 regno /= MT_COPRO_PSEUDOREG_REGS;
495 if (base != regno)
496 {
497 /* Select the correct coprocessor register bank. Invalidate the
498 coprocessor register cache. */
499 unsigned ix;
500
e17a4113
UW
501 store_signed_integer (&copro[0], 2, byte_order,
502 regno / MT_COPRO_PSEUDOREG_DIM_2);
503 store_signed_integer (&copro[2], 2, byte_order,
504 regno % MT_COPRO_PSEUDOREG_DIM_2);
60e81fcc
NS
505 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
506
507 /* We must flush the cache, as it is now invalid. */
508 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
9c5ea4d9 509 regcache_invalidate (regcache, ix);
60e81fcc
NS
510 }
511
512 return index;
513}
514
61def6bd
KB
515/* Fetch the pseudo registers:
516
60e81fcc 517 There are two regular pseudo-registers:
61def6bd
KB
518 1) The 'coprocessor' pseudo-register (which mirrors the
519 "real" coprocessor register sent by the target), and
520 2) The 'MAC' pseudo-register (which represents the union
521 of the original 32 bit target MAC register and the new
60e81fcc
NS
522 8-bit extended-MAC register).
523
524 Additionally there is an array of coprocessor registers which track
525 the coprocessor registers for each coprocessor. */
61def6bd
KB
526
527static void
d031aafb 528mt_pseudo_register_read (struct gdbarch *gdbarch,
61def6bd
KB
529 struct regcache *regcache, int regno, gdb_byte *buf)
530{
e17a4113
UW
531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
532
61def6bd
KB
533 switch (regno)
534 {
d031aafb
NS
535 case MT_COPRO_REGNUM:
536 case MT_COPRO_PSEUDOREG_REGNUM:
537 regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
61def6bd 538 break;
d031aafb
NS
539 case MT_MAC_REGNUM:
540 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
541 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
542 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd
KB
543 {
544 ULONGEST oldmac = 0, ext_mac = 0;
545 ULONGEST newmac;
546
d031aafb
NS
547 regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
548 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
61def6bd
KB
549 newmac =
550 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
e17a4113 551 store_signed_integer (buf, 8, byte_order, newmac);
61def6bd
KB
552 }
553 else
d031aafb 554 regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
555 break;
556 default:
60e81fcc
NS
557 {
558 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
559
03a73f77 560 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 561 mt_pseudo_register_read (gdbarch, regcache,
03a73f77 562 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc
NS
563 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
564 regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
565 }
61def6bd
KB
566 break;
567 }
568}
569
570/* Write the pseudo registers:
571
d031aafb 572 Mt pseudo-registers are stored directly to the target. The
61def6bd
KB
573 'coprocessor' register is special, because when it is modified, all
574 the other coprocessor regs must be flushed from the reg cache. */
575
576static void
d031aafb 577mt_pseudo_register_write (struct gdbarch *gdbarch,
61def6bd
KB
578 struct regcache *regcache,
579 int regno, const gdb_byte *buf)
580{
e17a4113 581 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61def6bd
KB
582 int i;
583
584 switch (regno)
585 {
d031aafb
NS
586 case MT_COPRO_REGNUM:
587 case MT_COPRO_PSEUDOREG_REGNUM:
588 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
589 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
9c5ea4d9 590 regcache_invalidate (regcache, i);
61def6bd 591 break;
d031aafb
NS
592 case MT_MAC_REGNUM:
593 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
594 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
595 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd
KB
596 {
597 /* The 8-byte MAC pseudo-register must be broken down into two
598 32-byte registers. */
599 unsigned int oldmac, ext_mac;
600 ULONGEST newmac;
601
e17a4113 602 newmac = extract_unsigned_integer (buf, 8, byte_order);
61def6bd
KB
603 oldmac = newmac & 0xffffffff;
604 ext_mac = (newmac >> 32) & 0xff;
d031aafb
NS
605 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
606 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
61def6bd
KB
607 }
608 else
d031aafb 609 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
610 break;
611 default:
60e81fcc
NS
612 {
613 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
614
03a73f77 615 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 616 mt_pseudo_register_write (gdbarch, regcache,
03a73f77 617 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc
NS
618 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
619 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
620 }
61def6bd
KB
621 break;
622 }
623}
624
625static CORE_ADDR
d031aafb 626mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
61def6bd
KB
627{
628 /* Register size is 4 bytes. */
629 return align_down (sp, 4);
630}
631
632/* Implements the "info registers" command. When ``all'' is non-zero,
633 the coprocessor registers will be printed in addition to the rest
634 of the registers. */
635
636static void
d031aafb 637mt_registers_info (struct gdbarch *gdbarch,
d93859e2
UW
638 struct ui_file *file,
639 struct frame_info *frame, int regnum, int all)
61def6bd 640{
e17a4113
UW
641 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
642
61def6bd
KB
643 if (regnum == -1)
644 {
645 int lim;
646
d031aafb 647 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
61def6bd
KB
648
649 for (regnum = 0; regnum < lim; regnum++)
650 {
651 /* Don't display the Qchannel register since it will be displayed
652 along with Ichannel. (See below.) */
d031aafb 653 if (regnum == MT_QCHANNEL_REGNUM)
61def6bd
KB
654 continue;
655
d031aafb 656 mt_registers_info (gdbarch, file, frame, regnum, all);
61def6bd
KB
657
658 /* Display the Qchannel register immediately after Ichannel. */
d031aafb
NS
659 if (regnum == MT_ICHANNEL_REGNUM)
660 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
61def6bd
KB
661 }
662 }
663 else
664 {
d031aafb 665 if (regnum == MT_EXMAC_REGNUM)
61def6bd 666 return;
d031aafb 667 else if (regnum == MT_CONTEXT_REGNUM)
61def6bd
KB
668 {
669 /* Special output handling for 38-bit context register. */
670 unsigned char *buff;
671 unsigned int *bytes, i, regsize;
672
673 regsize = register_size (gdbarch, regnum);
674
675 buff = alloca (regsize);
676 bytes = alloca (regsize * sizeof (*bytes));
677
678 frame_register_read (frame, regnum, buff);
679
c9f4d572 680 fputs_filtered (gdbarch_register_name
d93859e2 681 (gdbarch, regnum), file);
c9f4d572 682 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 683 (gdbarch, regnum)),
c9f4d572 684 file);
61def6bd
KB
685 fputs_filtered ("0x", file);
686
687 for (i = 0; i < regsize; i++)
688 fprintf_filtered (file, "%02x", (unsigned int)
e17a4113 689 extract_unsigned_integer (buff + i, 1, byte_order));
61def6bd
KB
690 fputs_filtered ("\t", file);
691 print_longest (file, 'd', 0,
e17a4113 692 extract_unsigned_integer (buff, regsize, byte_order));
61def6bd
KB
693 fputs_filtered ("\n", file);
694 }
d031aafb
NS
695 else if (regnum == MT_COPRO_REGNUM
696 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
61def6bd
KB
697 {
698 /* Special output handling for the 'coprocessor' register. */
58b78171 699 gdb_byte *buf;
79a45b7d 700 struct value_print_options opts;
61def6bd 701
d031aafb
NS
702 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
703 frame_register_read (frame, MT_COPRO_REGNUM, buf);
61def6bd 704 /* And print. */
d031aafb 705 regnum = MT_COPRO_PSEUDOREG_REGNUM;
d93859e2 706 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
707 file);
708 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 709 (gdbarch, regnum)),
c9f4d572 710 file);
79a45b7d
TT
711 get_raw_print_options (&opts);
712 opts.deref_ref = 1;
61def6bd 713 val_print (register_type (gdbarch, regnum), buf,
0e03807e
TT
714 0, 0, file, 0, NULL,
715 &opts, current_language);
61def6bd
KB
716 fputs_filtered ("\n", file);
717 }
d031aafb 718 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
61def6bd
KB
719 {
720 ULONGEST oldmac, ext_mac, newmac;
58b78171 721 gdb_byte buf[3 * sizeof (LONGEST)];
61def6bd
KB
722
723 /* Get the two "real" mac registers. */
d031aafb 724 frame_register_read (frame, MT_MAC_REGNUM, buf);
3950dc3f 725 oldmac = extract_unsigned_integer
e17a4113 726 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
58b78171
NS
727 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
728 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd 729 {
d031aafb 730 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
3950dc3f 731 ext_mac = extract_unsigned_integer
e17a4113 732 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
61def6bd
KB
733 }
734 else
735 ext_mac = 0;
736
737 /* Add them together. */
738 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
739
740 /* And print. */
d031aafb 741 regnum = MT_MAC_PSEUDOREG_REGNUM;
d93859e2 742 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
743 file);
744 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 745 (gdbarch, regnum)),
c9f4d572 746 file);
61def6bd
KB
747 fputs_filtered ("0x", file);
748 print_longest (file, 'x', 0, newmac);
749 fputs_filtered ("\t", file);
750 print_longest (file, 'u', 0, newmac);
751 fputs_filtered ("\n", file);
752 }
753 else
754 default_print_registers_info (gdbarch, file, frame, regnum, all);
755 }
756}
757
758/* Set up the callee's arguments for an inferior function call. The
759 arguments are pushed on the stack or are placed in registers as
760 appropriate. It also sets up the return address (which points to
761 the call dummy breakpoint).
762
763 Returns the updated (and aligned) stack pointer. */
764
765static CORE_ADDR
d031aafb 766mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
61def6bd
KB
767 struct regcache *regcache, CORE_ADDR bp_addr,
768 int nargs, struct value **args, CORE_ADDR sp,
769 int struct_return, CORE_ADDR struct_addr)
770{
771#define wordsize 4
e17a4113 772 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d031aafb
NS
773 gdb_byte buf[MT_MAX_STRUCT_SIZE];
774 int argreg = MT_1ST_ARGREG;
61def6bd
KB
775 int split_param_len = 0;
776 int stack_dest = sp;
777 int slacklen;
778 int typelen;
779 int i, j;
780
d031aafb
NS
781 /* First handle however many args we can fit into MT_1ST_ARGREG thru
782 MT_LAST_ARGREG. */
783 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
61def6bd 784 {
58b78171 785 const gdb_byte *val;
61def6bd
KB
786 typelen = TYPE_LENGTH (value_type (args[i]));
787 switch (typelen)
788 {
789 case 1:
790 case 2:
791 case 3:
792 case 4:
793 regcache_cooked_write_unsigned (regcache, argreg++,
794 extract_unsigned_integer
795 (value_contents (args[i]),
e17a4113 796 wordsize, byte_order));
61def6bd
KB
797 break;
798 case 8:
799 case 12:
800 case 16:
801 val = value_contents (args[i]);
802 while (typelen > 0)
803 {
d031aafb 804 if (argreg <= MT_LAST_ARGREG)
61def6bd
KB
805 {
806 /* This word of the argument is passed in a register. */
807 regcache_cooked_write_unsigned (regcache, argreg++,
808 extract_unsigned_integer
e17a4113 809 (val, wordsize, byte_order));
61def6bd
KB
810 typelen -= wordsize;
811 val += wordsize;
812 }
813 else
814 {
815 /* Remainder of this arg must be passed on the stack
816 (deferred to do later). */
817 split_param_len = typelen;
818 memcpy (buf, val, typelen);
819 break; /* No more args can be handled in regs. */
820 }
821 }
822 break;
823 default:
824 /* By reverse engineering of gcc output, args bigger than
825 16 bytes go on the stack, and their address is passed
826 in the argreg. */
827 stack_dest -= typelen;
828 write_memory (stack_dest, value_contents (args[i]), typelen);
829 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
830 break;
831 }
832 }
833
834 /* Next, the rest of the arguments go onto the stack, in reverse order. */
835 for (j = nargs - 1; j >= i; j--)
836 {
58b78171
NS
837 gdb_byte *val;
838
61def6bd
KB
839 /* Right-justify the value in an aligned-length buffer. */
840 typelen = TYPE_LENGTH (value_type (args[j]));
841 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
842 val = alloca (typelen + slacklen);
843 memcpy (val, value_contents (args[j]), typelen);
844 memset (val + typelen, 0, slacklen);
845 /* Now write this data to the stack. */
846 stack_dest -= typelen + slacklen;
847 write_memory (stack_dest, val, typelen + slacklen);
848 }
849
850 /* Finally, if a param needs to be split between registers and stack,
851 write the second half to the stack now. */
852 if (split_param_len != 0)
853 {
854 stack_dest -= split_param_len;
855 write_memory (stack_dest, buf, split_param_len);
856 }
857
858 /* Set up return address (provided to us as bp_addr). */
d031aafb 859 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
61def6bd
KB
860
861 /* Store struct return address, if given. */
862 if (struct_return && struct_addr != 0)
d031aafb 863 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
61def6bd
KB
864
865 /* Set aside 16 bytes for the callee to save regs 1-4. */
866 stack_dest -= 16;
867
868 /* Update the stack pointer. */
d031aafb 869 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
61def6bd
KB
870
871 /* And that should do it. Return the new stack pointer. */
872 return stack_dest;
873}
874
875
876/* The 'unwind_cache' data structure. */
877
d031aafb 878struct mt_unwind_cache
61def6bd
KB
879{
880 /* The previous frame's inner most stack address.
881 Used as this frame ID's stack_addr. */
882 CORE_ADDR prev_sp;
883 CORE_ADDR frame_base;
884 int framesize;
885 int frameless_p;
886
887 /* Table indicating the location of each and every register. */
888 struct trad_frame_saved_reg *saved_regs;
889};
890
891/* Initialize an unwind_cache. Build up the saved_regs table etc. for
892 the frame. */
893
d031aafb 894static struct mt_unwind_cache *
94afd7a6 895mt_frame_unwind_cache (struct frame_info *this_frame,
61def6bd
KB
896 void **this_prologue_cache)
897{
898 struct gdbarch *gdbarch;
d031aafb 899 struct mt_unwind_cache *info;
61def6bd
KB
900 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
901 unsigned long instr, upper_half, delayed_store = 0;
902 int regnum, offset;
903 ULONGEST sp, fp;
904
905 if ((*this_prologue_cache))
906 return (*this_prologue_cache);
907
94afd7a6 908 gdbarch = get_frame_arch (this_frame);
d031aafb 909 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
61def6bd
KB
910 (*this_prologue_cache) = info;
911
912 info->prev_sp = 0;
913 info->framesize = 0;
914 info->frame_base = 0;
915 info->frameless_p = 1;
94afd7a6 916 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61def6bd
KB
917
918 /* Grab the frame-relative values of SP and FP, needed below.
919 The frame_saved_register function will find them on the
920 stack or in the registers as appropriate. */
94afd7a6
UW
921 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
922 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
61def6bd 923
94afd7a6 924 start_addr = get_frame_func (this_frame);
61def6bd
KB
925
926 /* Return early if GDB couldn't find the function. */
927 if (start_addr == 0)
928 return info;
929
94afd7a6 930 end_addr = get_frame_pc (this_frame);
d80b854b 931 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
61def6bd
KB
932 if (end_addr == 0)
933 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
934 {
94afd7a6 935 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
61def6bd
KB
936 if (delayed_store) /* previous instr was a push */
937 {
938 upper_half = delayed_store >> 16;
939 regnum = upper_half & 0xf;
940 offset = delayed_store & 0xffff;
941 switch (upper_half & 0xfff0)
942 {
943 case 0x43c0: /* push using frame pointer */
944 info->saved_regs[regnum].addr = offset;
945 break;
946 case 0x43d0: /* push using stack pointer */
947 info->saved_regs[regnum].addr = offset;
948 break;
949 default: /* lint */
950 break;
951 }
952 delayed_store = 0;
953 }
954
955 switch (instr)
956 {
957 case 0x12000000: /* NO-OP */
958 continue;
959 case 0x12ddc000: /* copy sp into fp */
960 info->frameless_p = 0; /* Record that the frame pointer is in use. */
961 continue;
962 default:
963 upper_half = instr >> 16;
964 if (upper_half == 0x05dd || /* subi sp, sp, imm */
965 upper_half == 0x07dd) /* subui sp, sp, imm */
966 {
967 /* Record the frame size. */
968 info->framesize = instr & 0xffff;
969 continue;
970 }
971 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
972 (upper_half & 0xfff0) == 0x43d0) /* stack push */
973 {
974 /* Save this instruction, but don't record the
975 pushed register as 'saved' until we see the
976 next instruction. That's because of deferred stores
977 on this target -- GDB won't be able to read the register
978 from the stack until one instruction later. */
979 delayed_store = instr;
980 continue;
981 }
982 /* Not a prologue instruction. Is this the end of the prologue?
983 This is the most difficult decision; when to stop scanning.
984
985 If we have no line symbol, then the best thing we can do
986 is to stop scanning when we encounter an instruction that
987 is not likely to be a part of the prologue.
988
989 But if we do have a line symbol, then we should
990 keep scanning until we reach it (or we reach end_addr). */
991
992 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
993 continue; /* Keep scanning, recording saved_regs etc. */
994 else
995 break; /* Quit scanning: breakpoint can be set here. */
996 }
997 }
998
999 /* Special handling for the "saved" address of the SP:
1000 The SP is of course never saved on the stack at all, so
1001 by convention what we put here is simply the previous
1002 _value_ of the SP (as opposed to an address where the
1003 previous value would have been pushed). This will also
1004 give us the frame base address. */
1005
1006 if (info->frameless_p)
1007 {
1008 info->frame_base = sp + info->framesize;
1009 info->prev_sp = sp + info->framesize;
1010 }
1011 else
1012 {
1013 info->frame_base = fp + info->framesize;
1014 info->prev_sp = fp + info->framesize;
1015 }
1016 /* Save prev_sp in saved_regs as a value, not as an address. */
d031aafb 1017 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
61def6bd
KB
1018
1019 /* Now convert frame offsets to actual addresses (not offsets). */
d031aafb 1020 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
61def6bd
KB
1021 if (trad_frame_addr_p (info->saved_regs, regnum))
1022 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1023
1024 /* The call instruction moves the caller's PC in the callee's RA reg.
1025 Since this is an unwind, do the reverse. Copy the location of RA
1026 into PC (the address / regnum) so that a request for PC will be
1027 converted into a request for the RA. */
d031aafb 1028 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
61def6bd
KB
1029
1030 return info;
1031}
1032
1033static CORE_ADDR
d031aafb 1034mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1035{
1036 ULONGEST pc;
1037
11411de3 1038 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
61def6bd
KB
1039 return pc;
1040}
1041
1042static CORE_ADDR
d031aafb 1043mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1044{
1045 ULONGEST sp;
1046
11411de3 1047 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
61def6bd
KB
1048 return sp;
1049}
1050
94afd7a6
UW
1051/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1052 frame. The frame ID's base needs to match the TOS value saved by
1053 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
61def6bd
KB
1054
1055static struct frame_id
94afd7a6 1056mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
61def6bd 1057{
94afd7a6
UW
1058 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1059 return frame_id_build (sp, get_frame_pc (this_frame));
61def6bd
KB
1060}
1061
1062/* Given a GDB frame, determine the address of the calling function's
1063 frame. This will be used to create a new GDB frame struct. */
1064
1065static void
94afd7a6 1066mt_frame_this_id (struct frame_info *this_frame,
61def6bd
KB
1067 void **this_prologue_cache, struct frame_id *this_id)
1068{
d031aafb 1069 struct mt_unwind_cache *info =
94afd7a6 1070 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd
KB
1071
1072 if (!(info == NULL || info->prev_sp == 0))
94afd7a6 1073 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
93d42b30 1074
61def6bd
KB
1075 return;
1076}
1077
94afd7a6
UW
1078static struct value *
1079mt_frame_prev_register (struct frame_info *this_frame,
1080 void **this_prologue_cache, int regnum)
61def6bd 1081{
d031aafb 1082 struct mt_unwind_cache *info =
94afd7a6 1083 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd 1084
94afd7a6 1085 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61def6bd
KB
1086}
1087
1088static CORE_ADDR
94afd7a6 1089mt_frame_base_address (struct frame_info *this_frame,
61def6bd
KB
1090 void **this_prologue_cache)
1091{
d031aafb 1092 struct mt_unwind_cache *info =
94afd7a6 1093 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd
KB
1094
1095 return info->frame_base;
1096}
1097
1098/* This is a shared interface: the 'frame_unwind' object is what's
1099 returned by the 'sniffer' function, and in turn specifies how to
1100 get a frame's ID and prev_regs.
1101
1102 This exports the 'prev_register' and 'this_id' methods. */
1103
d031aafb 1104static const struct frame_unwind mt_frame_unwind = {
61def6bd 1105 NORMAL_FRAME,
d031aafb 1106 mt_frame_this_id,
94afd7a6
UW
1107 mt_frame_prev_register,
1108 NULL,
1109 default_frame_sniffer
61def6bd
KB
1110};
1111
61def6bd
KB
1112/* Another shared interface: the 'frame_base' object specifies how to
1113 unwind a frame and secure the base addresses for frame objects
1114 (locals, args). */
1115
d031aafb
NS
1116static struct frame_base mt_frame_base = {
1117 &mt_frame_unwind,
1118 mt_frame_base_address,
1119 mt_frame_base_address,
1120 mt_frame_base_address
61def6bd
KB
1121};
1122
1123static struct gdbarch *
d031aafb 1124mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
61def6bd
KB
1125{
1126 struct gdbarch *gdbarch;
df4df182 1127 struct gdbarch_tdep *tdep;
61def6bd
KB
1128
1129 /* Find a candidate among the list of pre-declared architectures. */
1130 arches = gdbarch_list_lookup_by_info (arches, &info);
1131 if (arches != NULL)
1132 return arches->gdbarch;
1133
1134 /* None found, create a new architecture from the information
1135 provided. */
df4df182
UW
1136 tdep = XCALLOC (1, struct gdbarch_tdep);
1137 gdbarch = gdbarch_alloc (&info, tdep);
61def6bd 1138
cb5c8c39
DJ
1139 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1140 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1141 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
61def6bd 1142
d031aafb
NS
1143 set_gdbarch_register_name (gdbarch, mt_register_name);
1144 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1145 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1146 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1147 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1148 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1149 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1150 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
61def6bd 1151 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
d031aafb 1152 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
61def6bd
KB
1153 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1154 set_gdbarch_frame_args_skip (gdbarch, 0);
d031aafb
NS
1155 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1156 set_gdbarch_register_type (gdbarch, mt_register_type);
1157 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
61def6bd 1158
d031aafb
NS
1159 set_gdbarch_return_value (gdbarch, mt_return_value);
1160 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
61def6bd 1161
d031aafb 1162 set_gdbarch_frame_align (gdbarch, mt_frame_align);
61def6bd 1163
d031aafb 1164 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
61def6bd 1165
d031aafb 1166 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
61def6bd
KB
1167
1168 /* Target builtin data types. */
1169 set_gdbarch_short_bit (gdbarch, 16);
1170 set_gdbarch_int_bit (gdbarch, 32);
1171 set_gdbarch_long_bit (gdbarch, 32);
1172 set_gdbarch_long_long_bit (gdbarch, 64);
1173 set_gdbarch_float_bit (gdbarch, 32);
1174 set_gdbarch_double_bit (gdbarch, 64);
1175 set_gdbarch_long_double_bit (gdbarch, 64);
1176 set_gdbarch_ptr_bit (gdbarch, 32);
1177
1178 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1179 based sniffer. */
94afd7a6
UW
1180 dwarf2_append_unwinders (gdbarch);
1181 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
d031aafb 1182 frame_base_set_default (gdbarch, &mt_frame_base);
61def6bd
KB
1183
1184 /* Register the 'unwind_pc' method. */
d031aafb
NS
1185 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1186 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
61def6bd
KB
1187
1188 /* Methods for saving / extracting a dummy frame's ID.
1189 The ID's stack address must match the SP value returned by
1190 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1191 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
61def6bd
KB
1192
1193 return gdbarch;
1194}
1195
63807e1d
PA
1196/* Provide a prototype to silence -Wmissing-prototypes. */
1197extern initialize_file_ftype _initialize_mt_tdep;
1198
61def6bd 1199void
d031aafb 1200_initialize_mt_tdep (void)
61def6bd 1201{
d031aafb 1202 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
61def6bd 1203}
This page took 0.483214 seconds and 4 git commands to generate.