Commit | Line | Data |
---|---|---|
a1217d97 | 1 | /* Target-machine dependent code for Nios II, for GDB. |
61baf725 | 2 | Copyright (C) 2012-2017 Free Software Foundation, Inc. |
a1217d97 SL |
3 | Contributed by Peter Brookes (pbrookes@altera.com) |
4 | and Andrew Draper (adraper@altera.com). | |
5 | Contributed by Mentor Graphics, Inc. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 3 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "frame-unwind.h" | |
25 | #include "frame-base.h" | |
26 | #include "trad-frame.h" | |
27 | #include "dwarf2-frame.h" | |
28 | #include "symtab.h" | |
29 | #include "inferior.h" | |
30 | #include "gdbtypes.h" | |
31 | #include "gdbcore.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "osabi.h" | |
34 | #include "target.h" | |
35 | #include "dis-asm.h" | |
36 | #include "regcache.h" | |
37 | #include "value.h" | |
38 | #include "symfile.h" | |
39 | #include "arch-utils.h" | |
40 | #include "floatformat.h" | |
a1217d97 SL |
41 | #include "infcall.h" |
42 | #include "regset.h" | |
43 | #include "target-descriptions.h" | |
44 | ||
45 | /* To get entry_point_address. */ | |
46 | #include "objfiles.h" | |
325fac50 | 47 | #include <algorithm> |
a1217d97 | 48 | |
a1217d97 SL |
49 | /* Nios II specific header. */ |
50 | #include "nios2-tdep.h" | |
51 | ||
52 | #include "features/nios2.c" | |
53 | ||
54 | /* Control debugging information emitted in this file. */ | |
55 | ||
56 | static int nios2_debug = 0; | |
57 | ||
58 | /* The following structures are used in the cache for prologue | |
59 | analysis; see the reg_value and reg_saved tables in | |
60 | struct nios2_unwind_cache, respectively. */ | |
61 | ||
62 | /* struct reg_value is used to record that a register has the same value | |
63 | as reg at the given offset from the start of a function. */ | |
64 | ||
65 | struct reg_value | |
66 | { | |
67 | int reg; | |
68 | unsigned int offset; | |
69 | }; | |
70 | ||
71 | /* struct reg_saved is used to record that a register value has been saved at | |
72 | basereg + addr, for basereg >= 0. If basereg < 0, that indicates | |
73 | that the register is not known to have been saved. Note that when | |
74 | basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0), | |
75 | addr is an absolute address. */ | |
76 | ||
77 | struct reg_saved | |
78 | { | |
79 | int basereg; | |
80 | CORE_ADDR addr; | |
81 | }; | |
82 | ||
83 | struct nios2_unwind_cache | |
84 | { | |
85 | /* The frame's base, optionally used by the high-level debug info. */ | |
86 | CORE_ADDR base; | |
87 | ||
88 | /* The previous frame's inner most stack address. Used as this | |
89 | frame ID's stack_addr. */ | |
90 | CORE_ADDR cfa; | |
91 | ||
92 | /* The address of the first instruction in this function. */ | |
93 | CORE_ADDR pc; | |
94 | ||
95 | /* Which register holds the return address for the frame. */ | |
96 | int return_regnum; | |
97 | ||
98 | /* Table indicating what changes have been made to each register. */ | |
99 | struct reg_value reg_value[NIOS2_NUM_REGS]; | |
100 | ||
101 | /* Table indicating where each register has been saved. */ | |
102 | struct reg_saved reg_saved[NIOS2_NUM_REGS]; | |
103 | }; | |
104 | ||
105 | ||
106 | /* This array is a mapping from Dwarf-2 register numbering to GDB's. */ | |
107 | ||
108 | static int nios2_dwarf2gdb_regno_map[] = | |
109 | { | |
110 | 0, 1, 2, 3, | |
111 | 4, 5, 6, 7, | |
112 | 8, 9, 10, 11, | |
113 | 12, 13, 14, 15, | |
114 | 16, 17, 18, 19, | |
115 | 20, 21, 22, 23, | |
116 | 24, 25, | |
117 | NIOS2_GP_REGNUM, /* 26 */ | |
118 | NIOS2_SP_REGNUM, /* 27 */ | |
119 | NIOS2_FP_REGNUM, /* 28 */ | |
120 | NIOS2_EA_REGNUM, /* 29 */ | |
121 | NIOS2_BA_REGNUM, /* 30 */ | |
122 | NIOS2_RA_REGNUM, /* 31 */ | |
123 | NIOS2_PC_REGNUM, /* 32 */ | |
124 | NIOS2_STATUS_REGNUM, /* 33 */ | |
125 | NIOS2_ESTATUS_REGNUM, /* 34 */ | |
126 | NIOS2_BSTATUS_REGNUM, /* 35 */ | |
127 | NIOS2_IENABLE_REGNUM, /* 36 */ | |
128 | NIOS2_IPENDING_REGNUM, /* 37 */ | |
129 | NIOS2_CPUID_REGNUM, /* 38 */ | |
130 | 39, /* CTL6 */ /* 39 */ | |
131 | NIOS2_EXCEPTION_REGNUM, /* 40 */ | |
132 | NIOS2_PTEADDR_REGNUM, /* 41 */ | |
133 | NIOS2_TLBACC_REGNUM, /* 42 */ | |
134 | NIOS2_TLBMISC_REGNUM, /* 43 */ | |
135 | NIOS2_ECCINJ_REGNUM, /* 44 */ | |
136 | NIOS2_BADADDR_REGNUM, /* 45 */ | |
137 | NIOS2_CONFIG_REGNUM, /* 46 */ | |
138 | NIOS2_MPUBASE_REGNUM, /* 47 */ | |
139 | NIOS2_MPUACC_REGNUM /* 48 */ | |
140 | }; | |
141 | ||
0fde2c53 | 142 | gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS); |
a1217d97 SL |
143 | |
144 | /* Implement the dwarf2_reg_to_regnum gdbarch method. */ | |
145 | ||
146 | static int | |
147 | nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg) | |
148 | { | |
0fde2c53 DE |
149 | if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS) |
150 | return -1; | |
a1217d97 SL |
151 | |
152 | return nios2_dwarf2gdb_regno_map[dw_reg]; | |
153 | } | |
154 | ||
155 | /* Canonical names for the 49 registers. */ | |
156 | ||
157 | static const char *const nios2_reg_names[NIOS2_NUM_REGS] = | |
158 | { | |
159 | "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7", | |
160 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
161 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
0b76b0ce | 162 | "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra", |
a1217d97 SL |
163 | "pc", |
164 | "status", "estatus", "bstatus", "ienable", | |
165 | "ipending", "cpuid", "ctl6", "exception", | |
166 | "pteaddr", "tlbacc", "tlbmisc", "eccinj", | |
167 | "badaddr", "config", "mpubase", "mpuacc" | |
168 | }; | |
169 | ||
170 | /* Implement the register_name gdbarch method. */ | |
171 | ||
172 | static const char * | |
173 | nios2_register_name (struct gdbarch *gdbarch, int regno) | |
174 | { | |
175 | /* Use mnemonic aliases for GPRs. */ | |
176 | if (regno >= 0 && regno < NIOS2_NUM_REGS) | |
177 | return nios2_reg_names[regno]; | |
178 | else | |
179 | return tdesc_register_name (gdbarch, regno); | |
180 | } | |
181 | ||
182 | /* Implement the register_type gdbarch method. */ | |
183 | ||
184 | static struct type * | |
185 | nios2_register_type (struct gdbarch *gdbarch, int regno) | |
186 | { | |
187 | /* If the XML description has register information, use that to | |
188 | determine the register type. */ | |
189 | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | |
190 | return tdesc_register_type (gdbarch, regno); | |
191 | ||
192 | if (regno == NIOS2_PC_REGNUM) | |
193 | return builtin_type (gdbarch)->builtin_func_ptr; | |
194 | else if (regno == NIOS2_SP_REGNUM) | |
195 | return builtin_type (gdbarch)->builtin_data_ptr; | |
196 | else | |
197 | return builtin_type (gdbarch)->builtin_uint32; | |
198 | } | |
199 | ||
200 | /* Given a return value in REGCACHE with a type VALTYPE, | |
201 | extract and copy its value into VALBUF. */ | |
202 | ||
203 | static void | |
204 | nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
205 | struct regcache *regcache, gdb_byte *valbuf) | |
206 | { | |
207 | int len = TYPE_LENGTH (valtype); | |
208 | ||
209 | /* Return values of up to 8 bytes are returned in $r2 $r3. */ | |
210 | if (len <= register_size (gdbarch, NIOS2_R2_REGNUM)) | |
211 | regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf); | |
212 | else | |
213 | { | |
214 | gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM) | |
215 | + register_size (gdbarch, NIOS2_R3_REGNUM))); | |
216 | regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf); | |
217 | regcache_cooked_read (regcache, NIOS2_R3_REGNUM, valbuf + 4); | |
218 | } | |
219 | } | |
220 | ||
221 | /* Write into appropriate registers a function return value | |
222 | of type TYPE, given in virtual format. */ | |
223 | ||
224 | static void | |
225 | nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
226 | struct regcache *regcache, const gdb_byte *valbuf) | |
227 | { | |
228 | int len = TYPE_LENGTH (valtype); | |
229 | ||
230 | /* Return values of up to 8 bytes are returned in $r2 $r3. */ | |
231 | if (len <= register_size (gdbarch, NIOS2_R2_REGNUM)) | |
232 | regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf); | |
233 | else | |
234 | { | |
235 | gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM) | |
236 | + register_size (gdbarch, NIOS2_R3_REGNUM))); | |
237 | regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf); | |
238 | regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4); | |
239 | } | |
240 | } | |
241 | ||
242 | ||
243 | /* Set up the default values of the registers. */ | |
244 | ||
245 | static void | |
246 | nios2_setup_default (struct nios2_unwind_cache *cache) | |
247 | { | |
248 | int i; | |
249 | ||
250 | for (i = 0; i < NIOS2_NUM_REGS; i++) | |
251 | { | |
252 | /* All registers start off holding their previous values. */ | |
253 | cache->reg_value[i].reg = i; | |
254 | cache->reg_value[i].offset = 0; | |
255 | ||
256 | /* All registers start off not saved. */ | |
257 | cache->reg_saved[i].basereg = -1; | |
258 | cache->reg_saved[i].addr = 0; | |
259 | } | |
260 | } | |
261 | ||
262 | /* Initialize the unwind cache. */ | |
263 | ||
264 | static void | |
265 | nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc) | |
266 | { | |
267 | cache->base = 0; | |
268 | cache->cfa = 0; | |
269 | cache->pc = pc; | |
270 | cache->return_regnum = NIOS2_RA_REGNUM; | |
271 | nios2_setup_default (cache); | |
272 | } | |
273 | ||
d53c26c7 SL |
274 | /* Read and identify an instruction at PC. If INSNP is non-null, |
275 | store the instruction word into that location. Return the opcode | |
276 | pointer or NULL if the memory couldn't be read or disassembled. */ | |
277 | ||
278 | static const struct nios2_opcode * | |
279 | nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc, | |
280 | unsigned int *insnp) | |
281 | { | |
282 | LONGEST memword; | |
283 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | |
284 | unsigned int insn; | |
285 | ||
af60a1ef SL |
286 | if (mach == bfd_mach_nios2r2) |
287 | { | |
288 | if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE, | |
289 | BFD_ENDIAN_LITTLE, &memword) | |
290 | && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE, | |
291 | BFD_ENDIAN_LITTLE, &memword)) | |
292 | return NULL; | |
293 | } | |
294 | else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE, | |
295 | gdbarch_byte_order (gdbarch), &memword)) | |
d53c26c7 SL |
296 | return NULL; |
297 | ||
298 | insn = (unsigned int) memword; | |
299 | if (insnp) | |
300 | *insnp = insn; | |
301 | return nios2_find_opcode_hash (insn, mach); | |
302 | } | |
303 | ||
304 | ||
305 | /* Match and disassemble an ADD-type instruction, with 3 register operands. | |
306 | Returns true on success, and fills in the operand pointers. */ | |
307 | ||
308 | static int | |
309 | nios2_match_add (uint32_t insn, const struct nios2_opcode *op, | |
310 | unsigned long mach, int *ra, int *rb, int *rc) | |
311 | { | |
af60a1ef SL |
312 | int is_r2 = (mach == bfd_mach_nios2r2); |
313 | ||
314 | if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV)) | |
d53c26c7 SL |
315 | { |
316 | *ra = GET_IW_R_A (insn); | |
317 | *rb = GET_IW_R_B (insn); | |
318 | *rc = GET_IW_R_C (insn); | |
319 | return 1; | |
320 | } | |
af60a1ef SL |
321 | else if (!is_r2) |
322 | return 0; | |
323 | else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV) | |
324 | { | |
325 | *ra = GET_IW_F3X6L5_A (insn); | |
326 | *rb = GET_IW_F3X6L5_B (insn); | |
327 | *rc = GET_IW_F3X6L5_C (insn); | |
328 | return 1; | |
329 | } | |
330 | else if (op->match == MATCH_R2_ADD_N) | |
331 | { | |
332 | *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)]; | |
333 | *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)]; | |
334 | *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)]; | |
335 | return 1; | |
336 | } | |
337 | else if (op->match == MATCH_R2_MOV_N) | |
338 | { | |
339 | *ra = GET_IW_F2_A (insn); | |
340 | *rb = 0; | |
341 | *rc = GET_IW_F2_B (insn); | |
342 | return 1; | |
343 | } | |
d53c26c7 SL |
344 | return 0; |
345 | } | |
346 | ||
347 | /* Match and disassemble a SUB-type instruction, with 3 register operands. | |
348 | Returns true on success, and fills in the operand pointers. */ | |
349 | ||
350 | static int | |
351 | nios2_match_sub (uint32_t insn, const struct nios2_opcode *op, | |
352 | unsigned long mach, int *ra, int *rb, int *rc) | |
353 | { | |
af60a1ef SL |
354 | int is_r2 = (mach == bfd_mach_nios2r2); |
355 | ||
356 | if (!is_r2 && op->match == MATCH_R1_SUB) | |
d53c26c7 SL |
357 | { |
358 | *ra = GET_IW_R_A (insn); | |
359 | *rb = GET_IW_R_B (insn); | |
360 | *rc = GET_IW_R_C (insn); | |
361 | return 1; | |
362 | } | |
af60a1ef SL |
363 | else if (!is_r2) |
364 | return 0; | |
365 | else if (op->match == MATCH_R2_SUB) | |
366 | { | |
367 | *ra = GET_IW_F3X6L5_A (insn); | |
368 | *rb = GET_IW_F3X6L5_B (insn); | |
369 | *rc = GET_IW_F3X6L5_C (insn); | |
370 | return 1; | |
371 | } | |
372 | else if (op->match == MATCH_R2_SUB_N) | |
373 | { | |
374 | *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)]; | |
375 | *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)]; | |
376 | *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)]; | |
377 | return 1; | |
378 | } | |
d53c26c7 SL |
379 | return 0; |
380 | } | |
381 | ||
382 | /* Match and disassemble an ADDI-type instruction, with 2 register operands | |
383 | and one immediate operand. | |
384 | Returns true on success, and fills in the operand pointers. */ | |
385 | ||
386 | static int | |
387 | nios2_match_addi (uint32_t insn, const struct nios2_opcode *op, | |
388 | unsigned long mach, int *ra, int *rb, int *imm) | |
389 | { | |
af60a1ef SL |
390 | int is_r2 = (mach == bfd_mach_nios2r2); |
391 | ||
392 | if (!is_r2 && op->match == MATCH_R1_ADDI) | |
d53c26c7 SL |
393 | { |
394 | *ra = GET_IW_I_A (insn); | |
395 | *rb = GET_IW_I_B (insn); | |
396 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | |
397 | return 1; | |
398 | } | |
af60a1ef SL |
399 | else if (!is_r2) |
400 | return 0; | |
401 | else if (op->match == MATCH_R2_ADDI) | |
402 | { | |
403 | *ra = GET_IW_F2I16_A (insn); | |
404 | *rb = GET_IW_F2I16_B (insn); | |
405 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | |
406 | return 1; | |
407 | } | |
408 | else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N) | |
409 | { | |
410 | *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)]; | |
411 | *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)]; | |
412 | *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)]; | |
413 | if (op->match == MATCH_R2_SUBI_N) | |
414 | *imm = - (*imm); | |
415 | return 1; | |
416 | } | |
417 | else if (op->match == MATCH_R2_SPADDI_N) | |
418 | { | |
419 | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; | |
420 | *rb = NIOS2_SP_REGNUM; | |
421 | *imm = GET_IW_T1I7_IMM7 (insn) << 2; | |
422 | return 1; | |
423 | } | |
424 | else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N) | |
425 | { | |
426 | *ra = NIOS2_SP_REGNUM; | |
427 | *rb = NIOS2_SP_REGNUM; | |
428 | *imm = GET_IW_X1I7_IMM7 (insn) << 2; | |
429 | if (op->match == MATCH_R2_SPDECI_N) | |
430 | *imm = - (*imm); | |
431 | return 1; | |
432 | } | |
d53c26c7 SL |
433 | return 0; |
434 | } | |
435 | ||
436 | /* Match and disassemble an ORHI-type instruction, with 2 register operands | |
437 | and one unsigned immediate operand. | |
438 | Returns true on success, and fills in the operand pointers. */ | |
439 | ||
440 | static int | |
441 | nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op, | |
442 | unsigned long mach, int *ra, int *rb, unsigned int *uimm) | |
443 | { | |
af60a1ef SL |
444 | int is_r2 = (mach == bfd_mach_nios2r2); |
445 | ||
446 | if (!is_r2 && op->match == MATCH_R1_ORHI) | |
d53c26c7 SL |
447 | { |
448 | *ra = GET_IW_I_A (insn); | |
449 | *rb = GET_IW_I_B (insn); | |
450 | *uimm = GET_IW_I_IMM16 (insn); | |
451 | return 1; | |
452 | } | |
af60a1ef SL |
453 | else if (!is_r2) |
454 | return 0; | |
455 | else if (op->match == MATCH_R2_ORHI) | |
456 | { | |
457 | *ra = GET_IW_F2I16_A (insn); | |
458 | *rb = GET_IW_F2I16_B (insn); | |
459 | *uimm = GET_IW_F2I16_IMM16 (insn); | |
460 | return 1; | |
461 | } | |
d53c26c7 SL |
462 | return 0; |
463 | } | |
464 | ||
465 | /* Match and disassemble a STW-type instruction, with 2 register operands | |
466 | and one immediate operand. | |
467 | Returns true on success, and fills in the operand pointers. */ | |
468 | ||
469 | static int | |
470 | nios2_match_stw (uint32_t insn, const struct nios2_opcode *op, | |
471 | unsigned long mach, int *ra, int *rb, int *imm) | |
472 | { | |
af60a1ef SL |
473 | int is_r2 = (mach == bfd_mach_nios2r2); |
474 | ||
475 | if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO)) | |
d53c26c7 SL |
476 | { |
477 | *ra = GET_IW_I_A (insn); | |
478 | *rb = GET_IW_I_B (insn); | |
479 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | |
480 | return 1; | |
481 | } | |
af60a1ef SL |
482 | else if (!is_r2) |
483 | return 0; | |
484 | else if (op->match == MATCH_R2_STW) | |
485 | { | |
486 | *ra = GET_IW_F2I16_A (insn); | |
487 | *rb = GET_IW_F2I16_B (insn); | |
488 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | |
489 | return 1; | |
490 | } | |
491 | else if (op->match == MATCH_R2_STWIO) | |
492 | { | |
493 | *ra = GET_IW_F2X4I12_A (insn); | |
494 | *rb = GET_IW_F2X4I12_B (insn); | |
495 | *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20; | |
496 | return 1; | |
497 | } | |
498 | else if (op->match == MATCH_R2_STW_N) | |
499 | { | |
500 | *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)]; | |
501 | *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)]; | |
502 | *imm = GET_IW_T2I4_IMM4 (insn) << 2; | |
503 | return 1; | |
504 | } | |
505 | else if (op->match == MATCH_R2_STWSP_N) | |
506 | { | |
507 | *ra = NIOS2_SP_REGNUM; | |
508 | *rb = GET_IW_F1I5_B (insn); | |
509 | *imm = GET_IW_F1I5_IMM5 (insn) << 2; | |
510 | return 1; | |
511 | } | |
512 | else if (op->match == MATCH_R2_STWZ_N) | |
513 | { | |
514 | *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)]; | |
515 | *rb = 0; | |
516 | *imm = GET_IW_T1X1I6_IMM6 (insn) << 2; | |
517 | return 1; | |
518 | } | |
d53c26c7 SL |
519 | return 0; |
520 | } | |
521 | ||
522 | /* Match and disassemble a LDW-type instruction, with 2 register operands | |
523 | and one immediate operand. | |
524 | Returns true on success, and fills in the operand pointers. */ | |
525 | ||
526 | static int | |
527 | nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op, | |
528 | unsigned long mach, int *ra, int *rb, int *imm) | |
529 | { | |
af60a1ef SL |
530 | int is_r2 = (mach == bfd_mach_nios2r2); |
531 | ||
532 | if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO)) | |
d53c26c7 SL |
533 | { |
534 | *ra = GET_IW_I_A (insn); | |
535 | *rb = GET_IW_I_B (insn); | |
536 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | |
537 | return 1; | |
538 | } | |
af60a1ef SL |
539 | else if (!is_r2) |
540 | return 0; | |
541 | else if (op->match == MATCH_R2_LDW) | |
542 | { | |
543 | *ra = GET_IW_F2I16_A (insn); | |
544 | *rb = GET_IW_F2I16_B (insn); | |
545 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | |
546 | return 1; | |
547 | } | |
548 | else if (op->match == MATCH_R2_LDWIO) | |
549 | { | |
550 | *ra = GET_IW_F2X4I12_A (insn); | |
551 | *rb = GET_IW_F2X4I12_B (insn); | |
552 | *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20; | |
553 | return 1; | |
554 | } | |
555 | else if (op->match == MATCH_R2_LDW_N) | |
556 | { | |
557 | *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)]; | |
558 | *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)]; | |
559 | *imm = GET_IW_T2I4_IMM4 (insn) << 2; | |
560 | return 1; | |
561 | } | |
562 | else if (op->match == MATCH_R2_LDWSP_N) | |
563 | { | |
564 | *ra = NIOS2_SP_REGNUM; | |
565 | *rb = GET_IW_F1I5_B (insn); | |
566 | *imm = GET_IW_F1I5_IMM5 (insn) << 2; | |
567 | return 1; | |
568 | } | |
d53c26c7 SL |
569 | return 0; |
570 | } | |
571 | ||
572 | /* Match and disassemble a RDCTL instruction, with 2 register operands. | |
573 | Returns true on success, and fills in the operand pointers. */ | |
574 | ||
575 | static int | |
576 | nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op, | |
577 | unsigned long mach, int *ra, int *rc) | |
578 | { | |
af60a1ef SL |
579 | int is_r2 = (mach == bfd_mach_nios2r2); |
580 | ||
581 | if (!is_r2 && (op->match == MATCH_R1_RDCTL)) | |
d53c26c7 SL |
582 | { |
583 | *ra = GET_IW_R_IMM5 (insn); | |
584 | *rc = GET_IW_R_C (insn); | |
585 | return 1; | |
586 | } | |
af60a1ef SL |
587 | else if (!is_r2) |
588 | return 0; | |
589 | else if (op->match == MATCH_R2_RDCTL) | |
590 | { | |
591 | *ra = GET_IW_F3X6L5_IMM5 (insn); | |
592 | *rc = GET_IW_F3X6L5_C (insn); | |
593 | return 1; | |
594 | } | |
d53c26c7 SL |
595 | return 0; |
596 | } | |
597 | ||
af60a1ef SL |
598 | /* Match and disassemble a PUSH.N or STWM instruction. |
599 | Returns true on success, and fills in the operand pointers. */ | |
600 | ||
601 | static int | |
602 | nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op, | |
603 | unsigned long mach, unsigned int *reglist, | |
604 | int *ra, int *imm, int *wb, int *id) | |
605 | { | |
606 | int is_r2 = (mach == bfd_mach_nios2r2); | |
607 | ||
608 | if (!is_r2) | |
609 | return 0; | |
610 | else if (op->match == MATCH_R2_PUSH_N) | |
611 | { | |
612 | *reglist = 1 << 31; | |
613 | if (GET_IW_L5I4X1_FP (insn)) | |
614 | *reglist |= (1 << 28); | |
615 | if (GET_IW_L5I4X1_CS (insn)) | |
616 | { | |
617 | int val = GET_IW_L5I4X1_REGRANGE (insn); | |
618 | *reglist |= nios2_r2_reg_range_mappings[val]; | |
619 | } | |
620 | *ra = NIOS2_SP_REGNUM; | |
621 | *imm = GET_IW_L5I4X1_IMM4 (insn) << 2; | |
622 | *wb = 1; | |
623 | *id = 0; | |
624 | return 1; | |
625 | } | |
626 | else if (op->match == MATCH_R2_STWM) | |
627 | { | |
628 | unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn); | |
629 | if (GET_IW_F1X4L17_RS (insn)) | |
630 | { | |
631 | *reglist = ((rawmask << 14) & 0x00ffc000); | |
632 | if (rawmask & (1 << 10)) | |
633 | *reglist |= (1 << 28); | |
634 | if (rawmask & (1 << 11)) | |
635 | *reglist |= (1 << 31); | |
636 | } | |
637 | else | |
638 | *reglist = rawmask << 2; | |
639 | *ra = GET_IW_F1X4L17_A (insn); | |
640 | *imm = 0; | |
641 | *wb = GET_IW_F1X4L17_WB (insn); | |
642 | *id = GET_IW_F1X4L17_ID (insn); | |
643 | return 1; | |
644 | } | |
645 | return 0; | |
646 | } | |
647 | ||
648 | /* Match and disassemble a POP.N or LDWM instruction. | |
649 | Returns true on success, and fills in the operand pointers. */ | |
650 | ||
651 | static int | |
652 | nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op, | |
653 | unsigned long mach, unsigned int *reglist, | |
654 | int *ra, int *imm, int *wb, int *id, int *ret) | |
655 | { | |
656 | int is_r2 = (mach == bfd_mach_nios2r2); | |
657 | ||
658 | if (!is_r2) | |
659 | return 0; | |
660 | else if (op->match == MATCH_R2_POP_N) | |
661 | { | |
662 | *reglist = 1 << 31; | |
663 | if (GET_IW_L5I4X1_FP (insn)) | |
664 | *reglist |= (1 << 28); | |
665 | if (GET_IW_L5I4X1_CS (insn)) | |
666 | { | |
667 | int val = GET_IW_L5I4X1_REGRANGE (insn); | |
668 | *reglist |= nios2_r2_reg_range_mappings[val]; | |
669 | } | |
670 | *ra = NIOS2_SP_REGNUM; | |
671 | *imm = GET_IW_L5I4X1_IMM4 (insn) << 2; | |
672 | *wb = 1; | |
673 | *id = 1; | |
674 | *ret = 1; | |
675 | return 1; | |
676 | } | |
677 | else if (op->match == MATCH_R2_LDWM) | |
678 | { | |
679 | unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn); | |
680 | if (GET_IW_F1X4L17_RS (insn)) | |
681 | { | |
682 | *reglist = ((rawmask << 14) & 0x00ffc000); | |
683 | if (rawmask & (1 << 10)) | |
684 | *reglist |= (1 << 28); | |
685 | if (rawmask & (1 << 11)) | |
686 | *reglist |= (1 << 31); | |
687 | } | |
688 | else | |
689 | *reglist = rawmask << 2; | |
690 | *ra = GET_IW_F1X4L17_A (insn); | |
691 | *imm = 0; | |
692 | *wb = GET_IW_F1X4L17_WB (insn); | |
693 | *id = GET_IW_F1X4L17_ID (insn); | |
694 | *ret = GET_IW_F1X4L17_PC (insn); | |
695 | return 1; | |
696 | } | |
697 | return 0; | |
698 | } | |
d53c26c7 SL |
699 | |
700 | /* Match and disassemble a branch instruction, with (potentially) | |
701 | 2 register operands and one immediate operand. | |
702 | Returns true on success, and fills in the operand pointers. */ | |
703 | ||
704 | enum branch_condition { | |
705 | branch_none, | |
706 | branch_eq, | |
707 | branch_ne, | |
708 | branch_ge, | |
709 | branch_geu, | |
710 | branch_lt, | |
711 | branch_ltu | |
712 | }; | |
713 | ||
714 | static int | |
715 | nios2_match_branch (uint32_t insn, const struct nios2_opcode *op, | |
716 | unsigned long mach, int *ra, int *rb, int *imm, | |
717 | enum branch_condition *cond) | |
718 | { | |
af60a1ef SL |
719 | int is_r2 = (mach == bfd_mach_nios2r2); |
720 | ||
721 | if (!is_r2) | |
d53c26c7 | 722 | { |
af60a1ef SL |
723 | switch (op->match) |
724 | { | |
725 | case MATCH_R1_BR: | |
726 | *cond = branch_none; | |
727 | break; | |
728 | case MATCH_R1_BEQ: | |
729 | *cond = branch_eq; | |
730 | break; | |
731 | case MATCH_R1_BNE: | |
732 | *cond = branch_ne; | |
733 | break; | |
734 | case MATCH_R1_BGE: | |
735 | *cond = branch_ge; | |
736 | break; | |
737 | case MATCH_R1_BGEU: | |
738 | *cond = branch_geu; | |
739 | break; | |
740 | case MATCH_R1_BLT: | |
741 | *cond = branch_lt; | |
742 | break; | |
743 | case MATCH_R1_BLTU: | |
744 | *cond = branch_ltu; | |
745 | break; | |
746 | default: | |
747 | return 0; | |
748 | } | |
749 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | |
750 | *ra = GET_IW_I_A (insn); | |
751 | *rb = GET_IW_I_B (insn); | |
752 | return 1; | |
d53c26c7 | 753 | } |
af60a1ef SL |
754 | else |
755 | { | |
756 | switch (op->match) | |
757 | { | |
758 | case MATCH_R2_BR_N: | |
759 | *cond = branch_none; | |
760 | *ra = NIOS2_Z_REGNUM; | |
761 | *rb = NIOS2_Z_REGNUM; | |
762 | *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21; | |
763 | return 1; | |
764 | case MATCH_R2_BEQZ_N: | |
765 | *cond = branch_eq; | |
766 | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; | |
767 | *rb = NIOS2_Z_REGNUM; | |
768 | *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24; | |
769 | return 1; | |
770 | case MATCH_R2_BNEZ_N: | |
771 | *cond = branch_ne; | |
772 | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; | |
773 | *rb = NIOS2_Z_REGNUM; | |
774 | *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24; | |
775 | return 1; | |
776 | case MATCH_R2_BR: | |
777 | *cond = branch_none; | |
778 | break; | |
779 | case MATCH_R2_BEQ: | |
780 | *cond = branch_eq; | |
781 | break; | |
782 | case MATCH_R2_BNE: | |
783 | *cond = branch_ne; | |
784 | break; | |
785 | case MATCH_R2_BGE: | |
786 | *cond = branch_ge; | |
787 | break; | |
788 | case MATCH_R2_BGEU: | |
789 | *cond = branch_geu; | |
790 | break; | |
791 | case MATCH_R2_BLT: | |
792 | *cond = branch_lt; | |
793 | break; | |
794 | case MATCH_R2_BLTU: | |
795 | *cond = branch_ltu; | |
796 | break; | |
797 | default: | |
798 | return 0; | |
799 | } | |
800 | *ra = GET_IW_F2I16_A (insn); | |
801 | *rb = GET_IW_F2I16_B (insn); | |
802 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | |
803 | return 1; | |
804 | } | |
805 | return 0; | |
d53c26c7 SL |
806 | } |
807 | ||
808 | /* Match and disassemble a direct jump instruction, with an | |
809 | unsigned operand. Returns true on success, and fills in the operand | |
810 | pointer. */ | |
811 | ||
812 | static int | |
813 | nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op, | |
814 | unsigned long mach, unsigned int *uimm) | |
815 | { | |
af60a1ef SL |
816 | int is_r2 = (mach == bfd_mach_nios2r2); |
817 | ||
818 | if (!is_r2 && op->match == MATCH_R1_JMPI) | |
d53c26c7 SL |
819 | { |
820 | *uimm = GET_IW_J_IMM26 (insn) << 2; | |
821 | return 1; | |
822 | } | |
af60a1ef SL |
823 | else if (!is_r2) |
824 | return 0; | |
825 | else if (op->match == MATCH_R2_JMPI) | |
826 | { | |
827 | *uimm = GET_IW_L26_IMM26 (insn) << 2; | |
828 | return 1; | |
829 | } | |
d53c26c7 SL |
830 | return 0; |
831 | } | |
832 | ||
833 | /* Match and disassemble a direct call instruction, with an | |
834 | unsigned operand. Returns true on success, and fills in the operand | |
835 | pointer. */ | |
836 | ||
837 | static int | |
838 | nios2_match_calli (uint32_t insn, const struct nios2_opcode *op, | |
839 | unsigned long mach, unsigned int *uimm) | |
840 | { | |
af60a1ef SL |
841 | int is_r2 = (mach == bfd_mach_nios2r2); |
842 | ||
843 | if (!is_r2 && op->match == MATCH_R1_CALL) | |
d53c26c7 SL |
844 | { |
845 | *uimm = GET_IW_J_IMM26 (insn) << 2; | |
846 | return 1; | |
847 | } | |
af60a1ef SL |
848 | else if (!is_r2) |
849 | return 0; | |
850 | else if (op->match == MATCH_R2_CALL) | |
851 | { | |
852 | *uimm = GET_IW_L26_IMM26 (insn) << 2; | |
853 | return 1; | |
854 | } | |
d53c26c7 SL |
855 | return 0; |
856 | } | |
857 | ||
858 | /* Match and disassemble an indirect jump instruction, with a | |
859 | (possibly implicit) register operand. Returns true on success, and fills | |
860 | in the operand pointer. */ | |
861 | ||
862 | static int | |
863 | nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op, | |
864 | unsigned long mach, int *ra) | |
865 | { | |
af60a1ef SL |
866 | int is_r2 = (mach == bfd_mach_nios2r2); |
867 | ||
868 | if (!is_r2) | |
869 | switch (op->match) | |
870 | { | |
871 | case MATCH_R1_JMP: | |
872 | *ra = GET_IW_I_A (insn); | |
873 | return 1; | |
874 | case MATCH_R1_RET: | |
875 | *ra = NIOS2_RA_REGNUM; | |
876 | return 1; | |
877 | case MATCH_R1_ERET: | |
878 | *ra = NIOS2_EA_REGNUM; | |
879 | return 1; | |
880 | case MATCH_R1_BRET: | |
881 | *ra = NIOS2_BA_REGNUM; | |
882 | return 1; | |
883 | default: | |
884 | return 0; | |
885 | } | |
886 | else | |
887 | switch (op->match) | |
888 | { | |
889 | case MATCH_R2_JMP: | |
890 | *ra = GET_IW_F2I16_A (insn); | |
891 | return 1; | |
892 | case MATCH_R2_JMPR_N: | |
893 | *ra = GET_IW_F1X1_A (insn); | |
894 | return 1; | |
895 | case MATCH_R2_RET: | |
896 | case MATCH_R2_RET_N: | |
897 | *ra = NIOS2_RA_REGNUM; | |
898 | return 1; | |
899 | case MATCH_R2_ERET: | |
900 | *ra = NIOS2_EA_REGNUM; | |
901 | return 1; | |
902 | case MATCH_R2_BRET: | |
903 | *ra = NIOS2_BA_REGNUM; | |
904 | return 1; | |
905 | default: | |
906 | return 0; | |
907 | } | |
908 | return 0; | |
d53c26c7 SL |
909 | } |
910 | ||
911 | /* Match and disassemble an indirect call instruction, with a register | |
912 | operand. Returns true on success, and fills in the operand pointer. */ | |
913 | ||
914 | static int | |
915 | nios2_match_callr (uint32_t insn, const struct nios2_opcode *op, | |
916 | unsigned long mach, int *ra) | |
917 | { | |
af60a1ef SL |
918 | int is_r2 = (mach == bfd_mach_nios2r2); |
919 | ||
920 | if (!is_r2 && op->match == MATCH_R1_CALLR) | |
d53c26c7 SL |
921 | { |
922 | *ra = GET_IW_I_A (insn); | |
923 | return 1; | |
924 | } | |
af60a1ef SL |
925 | else if (!is_r2) |
926 | return 0; | |
927 | else if (op->match == MATCH_R2_CALLR) | |
928 | { | |
929 | *ra = GET_IW_F2I16_A (insn); | |
930 | return 1; | |
931 | } | |
932 | else if (op->match == MATCH_R2_CALLR_N) | |
933 | { | |
934 | *ra = GET_IW_F1X1_A (insn); | |
935 | return 1; | |
936 | } | |
d53c26c7 SL |
937 | return 0; |
938 | } | |
939 | ||
940 | /* Match and disassemble a break instruction, with an unsigned operand. | |
941 | Returns true on success, and fills in the operand pointer. */ | |
942 | ||
943 | static int | |
944 | nios2_match_break (uint32_t insn, const struct nios2_opcode *op, | |
945 | unsigned long mach, unsigned int *uimm) | |
946 | { | |
af60a1ef SL |
947 | int is_r2 = (mach == bfd_mach_nios2r2); |
948 | ||
949 | if (!is_r2 && op->match == MATCH_R1_BREAK) | |
d53c26c7 SL |
950 | { |
951 | *uimm = GET_IW_R_IMM5 (insn); | |
952 | return 1; | |
953 | } | |
af60a1ef SL |
954 | else if (!is_r2) |
955 | return 0; | |
956 | else if (op->match == MATCH_R2_BREAK) | |
957 | { | |
958 | *uimm = GET_IW_F3X6L5_IMM5 (insn); | |
959 | return 1; | |
960 | } | |
961 | else if (op->match == MATCH_R2_BREAK_N) | |
962 | { | |
963 | *uimm = GET_IW_X2L5_IMM5 (insn); | |
964 | return 1; | |
965 | } | |
d53c26c7 SL |
966 | return 0; |
967 | } | |
968 | ||
969 | /* Match and disassemble a trap instruction, with an unsigned operand. | |
970 | Returns true on success, and fills in the operand pointer. */ | |
971 | ||
972 | static int | |
973 | nios2_match_trap (uint32_t insn, const struct nios2_opcode *op, | |
974 | unsigned long mach, unsigned int *uimm) | |
975 | { | |
af60a1ef SL |
976 | int is_r2 = (mach == bfd_mach_nios2r2); |
977 | ||
978 | if (!is_r2 && op->match == MATCH_R1_TRAP) | |
d53c26c7 SL |
979 | { |
980 | *uimm = GET_IW_R_IMM5 (insn); | |
981 | return 1; | |
982 | } | |
af60a1ef SL |
983 | else if (!is_r2) |
984 | return 0; | |
985 | else if (op->match == MATCH_R2_TRAP) | |
986 | { | |
987 | *uimm = GET_IW_F3X6L5_IMM5 (insn); | |
988 | return 1; | |
989 | } | |
990 | else if (op->match == MATCH_R2_TRAP_N) | |
991 | { | |
992 | *uimm = GET_IW_X2L5_IMM5 (insn); | |
993 | return 1; | |
994 | } | |
d53c26c7 SL |
995 | return 0; |
996 | } | |
997 | ||
a1217d97 SL |
998 | /* Helper function to identify when we're in a function epilogue; |
999 | that is, the part of the function from the point at which the | |
d53c26c7 SL |
1000 | stack adjustments are made, to the return or sibcall. |
1001 | Note that we may have several stack adjustment instructions, and | |
1002 | this function needs to test whether the stack teardown has already | |
1003 | started before current_pc, not whether it has completed. */ | |
a1217d97 SL |
1004 | |
1005 | static int | |
1006 | nios2_in_epilogue_p (struct gdbarch *gdbarch, | |
1007 | CORE_ADDR current_pc, | |
1008 | CORE_ADDR start_pc) | |
1009 | { | |
d53c26c7 | 1010 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
af60a1ef | 1011 | int is_r2 = (mach == bfd_mach_nios2r2); |
7f1659b5 SL |
1012 | /* Maximum number of possibly-epilogue instructions to check. |
1013 | Note that this number should not be too large, else we can | |
1014 | potentially end up iterating through unmapped memory. */ | |
1015 | int ninsns, max_insns = 5; | |
d53c26c7 SL |
1016 | unsigned int insn; |
1017 | const struct nios2_opcode *op = NULL; | |
1018 | unsigned int uimm; | |
1019 | int imm; | |
af60a1ef | 1020 | int wb, id, ret; |
d53c26c7 SL |
1021 | int ra, rb, rc; |
1022 | enum branch_condition cond; | |
7f1659b5 | 1023 | CORE_ADDR pc; |
a1217d97 SL |
1024 | |
1025 | /* There has to be a previous instruction in the function. */ | |
7f1659b5 SL |
1026 | if (current_pc <= start_pc) |
1027 | return 0; | |
1028 | ||
af60a1ef SL |
1029 | /* Find the previous instruction before current_pc. For R2, it might |
1030 | be either a 16-bit or 32-bit instruction; the only way to know for | |
1031 | sure is to scan through from the beginning of the function, | |
1032 | disassembling as we go. */ | |
1033 | if (is_r2) | |
1034 | for (pc = start_pc; ; ) | |
1035 | { | |
1036 | op = nios2_fetch_insn (gdbarch, pc, &insn); | |
1037 | if (op == NULL) | |
1038 | return 0; | |
1039 | if (pc + op->size < current_pc) | |
1040 | pc += op->size; | |
1041 | else | |
1042 | break; | |
1043 | /* We can skip over insns to a forward branch target. Since | |
1044 | the branch offset is relative to the next instruction, | |
1045 | it's correct to do this after incrementing the pc above. */ | |
1046 | if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond) | |
1047 | && imm > 0 | |
1048 | && pc + imm < current_pc) | |
1049 | pc += imm; | |
1050 | } | |
1051 | /* Otherwise just go back to the previous 32-bit insn. */ | |
1052 | else | |
1053 | pc = current_pc - NIOS2_OPCODE_SIZE; | |
d53c26c7 | 1054 | |
7f1659b5 SL |
1055 | /* Beginning with the previous instruction we just located, check whether |
1056 | we are in a sequence of at least one stack adjustment instruction. | |
1057 | Possible instructions here include: | |
d53c26c7 SL |
1058 | ADDI sp, sp, n |
1059 | ADD sp, sp, rn | |
af60a1ef SL |
1060 | LDW sp, n(sp) |
1061 | SPINCI.N n | |
1062 | LDWSP.N sp, n(sp) | |
1063 | LDWM {reglist}, (sp)++, wb */ | |
7f1659b5 SL |
1064 | for (ninsns = 0; ninsns < max_insns; ninsns++) |
1065 | { | |
1066 | int ok = 0; | |
1067 | ||
1068 | /* Fetch the insn at pc. */ | |
1069 | op = nios2_fetch_insn (gdbarch, pc, &insn); | |
d53c26c7 SL |
1070 | if (op == NULL) |
1071 | return 0; | |
7f1659b5 | 1072 | pc += op->size; |
d53c26c7 SL |
1073 | |
1074 | /* Was it a stack adjustment? */ | |
1075 | if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm)) | |
1076 | ok = (rb == NIOS2_SP_REGNUM); | |
1077 | else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc)) | |
1078 | ok = (rc == NIOS2_SP_REGNUM); | |
1079 | else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm)) | |
1080 | ok = (rb == NIOS2_SP_REGNUM); | |
af60a1ef SL |
1081 | else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, |
1082 | &imm, &wb, &ret, &id)) | |
1083 | ok = (ra == NIOS2_SP_REGNUM && wb && id); | |
d53c26c7 | 1084 | if (!ok) |
7f1659b5 | 1085 | break; |
a1217d97 | 1086 | } |
7f1659b5 SL |
1087 | |
1088 | /* No stack adjustments found. */ | |
1089 | if (ninsns == 0) | |
1090 | return 0; | |
1091 | ||
1092 | /* We found more stack adjustments than we expect GCC to be generating. | |
1093 | Since it looks like a stack unwind might be in progress tell GDB to | |
1094 | treat it as such. */ | |
1095 | if (ninsns == max_insns) | |
1096 | return 1; | |
1097 | ||
1098 | /* The next instruction following the stack adjustments must be a | |
af60a1ef SL |
1099 | return, jump, or unconditional branch, or a CDX pop.n or ldwm |
1100 | that does an implicit return. */ | |
7f1659b5 SL |
1101 | if (nios2_match_jmpr (insn, op, mach, &ra) |
1102 | || nios2_match_jmpi (insn, op, mach, &uimm) | |
af60a1ef SL |
1103 | || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret) |
1104 | && ret) | |
7f1659b5 SL |
1105 | || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond) |
1106 | && cond == branch_none)) | |
1107 | return 1; | |
1108 | ||
a1217d97 SL |
1109 | return 0; |
1110 | } | |
1111 | ||
c9cf6e20 | 1112 | /* Implement the stack_frame_destroyed_p gdbarch method. */ |
a1217d97 SL |
1113 | |
1114 | static int | |
c9cf6e20 | 1115 | nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
a1217d97 SL |
1116 | { |
1117 | CORE_ADDR func_addr; | |
1118 | ||
1119 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | |
1120 | return nios2_in_epilogue_p (gdbarch, pc, func_addr); | |
1121 | ||
1122 | return 0; | |
1123 | } | |
1124 | ||
a1217d97 SL |
1125 | /* Do prologue analysis, returning the PC of the first instruction |
1126 | after the function prologue. Assumes CACHE has already been | |
1127 | initialized. THIS_FRAME can be null, in which case we are only | |
1128 | interested in skipping the prologue. Otherwise CACHE is filled in | |
1129 | from the frame information. | |
1130 | ||
d53c26c7 SL |
1131 | The prologue may consist of the following parts: |
1132 | 1) Profiling instrumentation. For non-PIC code it looks like: | |
a1217d97 SL |
1133 | mov r8, ra |
1134 | call mcount | |
1135 | mov ra, r8 | |
1136 | ||
d53c26c7 | 1137 | 2) A stack adjustment and save of R4-R7 for varargs functions. |
af60a1ef SL |
1138 | For R2 CDX this is typically handled with a STWM, otherwise |
1139 | this is typically merged with item 3. | |
d53c26c7 | 1140 | |
af60a1ef SL |
1141 | 3) A stack adjustment and save of the callee-saved registers. |
1142 | For R2 CDX these are typically handled with a PUSH.N or STWM, | |
1143 | otherwise as an explicit SP decrement and individual register | |
d53c26c7 SL |
1144 | saves. |
1145 | ||
1146 | There may also be a stack switch here in an exception handler | |
1147 | in place of a stack adjustment. It looks like: | |
a1217d97 SL |
1148 | movhi rx, %hiadj(newstack) |
1149 | addhi rx, rx, %lo(newstack) | |
1150 | stw sp, constant(rx) | |
1151 | mov sp, rx | |
1152 | ||
9aaf8e3a | 1153 | 4) A frame pointer save, which can be either a MOV or ADDI. |
d53c26c7 | 1154 | |
9aaf8e3a SL |
1155 | 5) A further stack pointer adjustment. This is normally included |
1156 | adjustment in step 3 unless the total adjustment is too large | |
d53c26c7 SL |
1157 | to be done in one step. |
1158 | ||
1159 | 7) A stack overflow check, which can take either of these forms: | |
a1217d97 | 1160 | bgeu sp, rx, +8 |
9aaf8e3a | 1161 | trap 3 |
a1217d97 SL |
1162 | or |
1163 | bltu sp, rx, .Lstack_overflow | |
1164 | ... | |
1165 | .Lstack_overflow: | |
9aaf8e3a SL |
1166 | trap 3 |
1167 | ||
1168 | Older versions of GCC emitted "break 3" instead of "trap 3" here, | |
1169 | so we check for both cases. | |
1170 | ||
1171 | Older GCC versions emitted stack overflow checks after the SP | |
1172 | adjustments in both steps 3 and 4. Starting with GCC 6, there is | |
1173 | at most one overflow check, which is placed before the first | |
1174 | stack adjustment for R2 CDX and after the first stack adjustment | |
1175 | otherwise. | |
a1217d97 | 1176 | |
d53c26c7 SL |
1177 | The prologue instructions may be combined or interleaved with other |
1178 | instructions. | |
a1217d97 SL |
1179 | |
1180 | To cope with all this variability we decode all the instructions | |
d53c26c7 SL |
1181 | from the start of the prologue until we hit an instruction that |
1182 | cannot possibly be a prologue instruction, such as a branch, call, | |
1183 | return, or epilogue instruction. The prologue is considered to end | |
1184 | at the last instruction that can definitely be considered a | |
1185 | prologue instruction. */ | |
a1217d97 SL |
1186 | |
1187 | static CORE_ADDR | |
1188 | nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc, | |
1189 | const CORE_ADDR current_pc, | |
1190 | struct nios2_unwind_cache *cache, | |
1191 | struct frame_info *this_frame) | |
1192 | { | |
d53c26c7 | 1193 | /* Maximum number of possibly-prologue instructions to check. |
a1217d97 SL |
1194 | Note that this number should not be too large, else we can |
1195 | potentially end up iterating through unmapped memory. */ | |
d53c26c7 | 1196 | int ninsns, max_insns = 50; |
a1217d97 | 1197 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
d53c26c7 | 1198 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
a1217d97 SL |
1199 | |
1200 | /* Does the frame set up the FP register? */ | |
1201 | int base_reg = 0; | |
1202 | ||
1203 | struct reg_value *value = cache->reg_value; | |
1204 | struct reg_value temp_value[NIOS2_NUM_REGS]; | |
1205 | ||
1206 | int i; | |
1207 | ||
1208 | /* Save the starting PC so we can correct the pc after running | |
1209 | through the prolog, using symbol info. */ | |
1210 | CORE_ADDR pc = start_pc; | |
1211 | ||
1212 | /* Is this an exception handler? */ | |
1213 | int exception_handler = 0; | |
1214 | ||
1215 | /* What was the original value of SP (or fake original value for | |
1216 | functions which switch stacks? */ | |
1217 | CORE_ADDR frame_high; | |
1218 | ||
d53c26c7 | 1219 | /* The last definitely-prologue instruction seen. */ |
a1217d97 SL |
1220 | CORE_ADDR prologue_end; |
1221 | ||
1222 | /* Is this the innermost function? */ | |
1223 | int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1); | |
1224 | ||
1225 | if (nios2_debug) | |
1226 | fprintf_unfiltered (gdb_stdlog, | |
1227 | "{ nios2_analyze_prologue start=%s, current=%s ", | |
1228 | paddress (gdbarch, start_pc), | |
1229 | paddress (gdbarch, current_pc)); | |
1230 | ||
1231 | /* Set up the default values of the registers. */ | |
1232 | nios2_setup_default (cache); | |
a1217d97 SL |
1233 | |
1234 | /* Find the prologue instructions. */ | |
d53c26c7 SL |
1235 | prologue_end = start_pc; |
1236 | for (ninsns = 0; ninsns < max_insns; ninsns++) | |
a1217d97 SL |
1237 | { |
1238 | /* Present instruction. */ | |
1239 | uint32_t insn; | |
d53c26c7 SL |
1240 | const struct nios2_opcode *op; |
1241 | int ra, rb, rc, imm; | |
1242 | unsigned int uimm; | |
1243 | unsigned int reglist; | |
af60a1ef | 1244 | int wb, id, ret; |
d53c26c7 | 1245 | enum branch_condition cond; |
a1217d97 SL |
1246 | |
1247 | if (pc == current_pc) | |
1248 | { | |
1249 | /* When we reach the current PC we must save the current | |
1250 | register state (for the backtrace) but keep analysing | |
1251 | because there might be more to find out (eg. is this an | |
1252 | exception handler). */ | |
1253 | memcpy (temp_value, value, sizeof (temp_value)); | |
1254 | value = temp_value; | |
1255 | if (nios2_debug) | |
1256 | fprintf_unfiltered (gdb_stdlog, "*"); | |
1257 | } | |
1258 | ||
d53c26c7 SL |
1259 | op = nios2_fetch_insn (gdbarch, pc, &insn); |
1260 | ||
1261 | /* Unknown opcode? Stop scanning. */ | |
1262 | if (op == NULL) | |
1263 | break; | |
1264 | pc += op->size; | |
a1217d97 SL |
1265 | |
1266 | if (nios2_debug) | |
af60a1ef SL |
1267 | { |
1268 | if (op->size == 2) | |
1269 | fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff); | |
1270 | else | |
1271 | fprintf_unfiltered (gdb_stdlog, "[%08X]", insn); | |
1272 | } | |
a1217d97 SL |
1273 | |
1274 | /* The following instructions can appear in the prologue. */ | |
1275 | ||
d53c26c7 | 1276 | if (nios2_match_add (insn, op, mach, &ra, &rb, &rc)) |
a1217d97 SL |
1277 | { |
1278 | /* ADD rc, ra, rb (also used for MOV) */ | |
a1217d97 SL |
1279 | if (rc == NIOS2_SP_REGNUM |
1280 | && rb == 0 | |
1281 | && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg) | |
1282 | { | |
1283 | /* If the previous value of SP is available somewhere | |
1284 | near the new stack pointer value then this is a | |
1285 | stack switch. */ | |
1286 | ||
1287 | /* If any registers were saved on the stack before then | |
1288 | we can't backtrace into them now. */ | |
1289 | for (i = 0 ; i < NIOS2_NUM_REGS ; i++) | |
1290 | { | |
1291 | if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM) | |
1292 | cache->reg_saved[i].basereg = -1; | |
1293 | if (value[i].reg == NIOS2_SP_REGNUM) | |
1294 | value[i].reg = -1; | |
1295 | } | |
1296 | ||
1297 | /* Create a fake "high water mark" 4 bytes above where SP | |
1298 | was stored and fake up the registers to be consistent | |
1299 | with that. */ | |
1300 | value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM; | |
1301 | value[NIOS2_SP_REGNUM].offset | |
1302 | = (value[ra].offset | |
1303 | - cache->reg_saved[NIOS2_SP_REGNUM].addr | |
1304 | - 4); | |
1305 | cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM; | |
1306 | cache->reg_saved[NIOS2_SP_REGNUM].addr = -4; | |
1307 | } | |
1308 | ||
aa489395 SL |
1309 | else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM) |
1310 | /* This is setting SP from FP. This only happens in the | |
1311 | function epilogue. */ | |
1312 | break; | |
1313 | ||
a1217d97 SL |
1314 | else if (rc != 0) |
1315 | { | |
1316 | if (value[rb].reg == 0) | |
1317 | value[rc].reg = value[ra].reg; | |
1318 | else if (value[ra].reg == 0) | |
1319 | value[rc].reg = value[rb].reg; | |
1320 | else | |
1321 | value[rc].reg = -1; | |
1322 | value[rc].offset = value[ra].offset + value[rb].offset; | |
1323 | } | |
a1217d97 | 1324 | |
aa489395 SL |
1325 | /* The add/move is only considered a prologue instruction |
1326 | if the destination is SP or FP. */ | |
1327 | if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM) | |
1328 | prologue_end = pc; | |
d53c26c7 SL |
1329 | } |
1330 | ||
1331 | else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc)) | |
a1217d97 SL |
1332 | { |
1333 | /* SUB rc, ra, rb */ | |
aa489395 SL |
1334 | if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM |
1335 | && value[rc].reg != 0) | |
1336 | /* If we are decrementing the SP by a non-constant amount, | |
1337 | this is alloca, not part of the prologue. */ | |
1338 | break; | |
1339 | else if (rc != 0) | |
a1217d97 SL |
1340 | { |
1341 | if (value[rb].reg == 0) | |
1342 | value[rc].reg = value[ra].reg; | |
1343 | else | |
1344 | value[rc].reg = -1; | |
1345 | value[rc].offset = value[ra].offset - value[rb].offset; | |
1346 | } | |
1347 | } | |
1348 | ||
d53c26c7 | 1349 | else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm)) |
a1217d97 | 1350 | { |
d53c26c7 | 1351 | /* ADDI rb, ra, imm */ |
a1217d97 | 1352 | |
aa489395 | 1353 | /* A positive stack adjustment has to be part of the epilogue. */ |
a1217d97 | 1354 | if (rb == NIOS2_SP_REGNUM |
aa489395 SL |
1355 | && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM)) |
1356 | break; | |
1357 | ||
1358 | /* Likewise restoring SP from FP. */ | |
1359 | else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM) | |
a1217d97 SL |
1360 | break; |
1361 | ||
1362 | if (rb != 0) | |
1363 | { | |
1364 | value[rb].reg = value[ra].reg; | |
d53c26c7 | 1365 | value[rb].offset = value[ra].offset + imm; |
a1217d97 SL |
1366 | } |
1367 | ||
aa489395 SL |
1368 | /* The add is only considered a prologue instruction |
1369 | if the destination is SP or FP. */ | |
1370 | if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM) | |
1371 | prologue_end = pc; | |
a1217d97 SL |
1372 | } |
1373 | ||
d53c26c7 | 1374 | else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm)) |
a1217d97 | 1375 | { |
d53c26c7 | 1376 | /* ORHI rb, ra, uimm (also used for MOVHI) */ |
a1217d97 SL |
1377 | if (rb != 0) |
1378 | { | |
1379 | value[rb].reg = (value[ra].reg == 0) ? 0 : -1; | |
d53c26c7 | 1380 | value[rb].offset = value[ra].offset | (uimm << 16); |
a1217d97 SL |
1381 | } |
1382 | } | |
1383 | ||
d53c26c7 | 1384 | else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm)) |
a1217d97 | 1385 | { |
d53c26c7 | 1386 | /* STW rb, imm(ra) */ |
a1217d97 | 1387 | |
d53c26c7 | 1388 | /* Are we storing the original value of a register to the stack? |
a1217d97 SL |
1389 | For exception handlers the value of EA-4 (return |
1390 | address from interrupts etc) is sometimes stored. */ | |
1391 | int orig = value[rb].reg; | |
1392 | if (orig > 0 | |
1393 | && (value[rb].offset == 0 | |
d53c26c7 | 1394 | || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4)) |
e1b5381f | 1395 | && value[ra].reg == NIOS2_SP_REGNUM) |
d53c26c7 SL |
1396 | { |
1397 | if (pc < current_pc) | |
a1217d97 | 1398 | { |
d53c26c7 SL |
1399 | /* Save off callee saved registers. */ |
1400 | cache->reg_saved[orig].basereg = value[ra].reg; | |
1401 | cache->reg_saved[orig].addr = value[ra].offset + imm; | |
a1217d97 | 1402 | } |
d53c26c7 SL |
1403 | |
1404 | prologue_end = pc; | |
1405 | ||
1406 | if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM) | |
1407 | exception_handler = 1; | |
a1217d97 SL |
1408 | } |
1409 | else | |
d53c26c7 SL |
1410 | /* Non-stack memory writes cannot appear in the prologue. */ |
1411 | break; | |
a1217d97 SL |
1412 | } |
1413 | ||
af60a1ef SL |
1414 | else if (nios2_match_stwm (insn, op, mach, |
1415 | ®list, &ra, &imm, &wb, &id)) | |
1416 | { | |
1417 | /* PUSH.N {reglist}, adjust | |
1418 | or | |
1419 | STWM {reglist}, --(SP)[, writeback] */ | |
1420 | int i; | |
1421 | int off = 0; | |
1422 | ||
1423 | if (ra != NIOS2_SP_REGNUM || id != 0) | |
1424 | /* This is a non-stack-push memory write and cannot be | |
1425 | part of the prologue. */ | |
1426 | break; | |
1427 | ||
1428 | for (i = 31; i >= 0; i--) | |
1429 | if (reglist & (1 << i)) | |
1430 | { | |
1431 | int orig = value[i].reg; | |
1432 | ||
1433 | off += 4; | |
1434 | if (orig > 0 && value[i].offset == 0 && pc < current_pc) | |
1435 | { | |
1436 | cache->reg_saved[orig].basereg | |
1437 | = value[NIOS2_SP_REGNUM].reg; | |
1438 | cache->reg_saved[orig].addr | |
1439 | = value[NIOS2_SP_REGNUM].offset - off; | |
1440 | } | |
1441 | } | |
1442 | ||
1443 | if (wb) | |
1444 | value[NIOS2_SP_REGNUM].offset -= off; | |
1445 | value[NIOS2_SP_REGNUM].offset -= imm; | |
1446 | ||
1447 | prologue_end = pc; | |
1448 | } | |
1449 | ||
d53c26c7 | 1450 | else if (nios2_match_rdctl (insn, op, mach, &ra, &rc)) |
a1217d97 | 1451 | { |
d53c26c7 SL |
1452 | /* RDCTL rC, ctlN |
1453 | This can appear in exception handlers in combination with | |
1454 | a subsequent save to the stack frame. */ | |
a1217d97 SL |
1455 | if (rc != 0) |
1456 | { | |
d53c26c7 | 1457 | value[rc].reg = NIOS2_STATUS_REGNUM + ra; |
a1217d97 SL |
1458 | value[rc].offset = 0; |
1459 | } | |
a1217d97 SL |
1460 | } |
1461 | ||
d53c26c7 | 1462 | else if (nios2_match_calli (insn, op, mach, &uimm)) |
a1217d97 | 1463 | { |
d53c26c7 SL |
1464 | if (value[8].reg == NIOS2_RA_REGNUM |
1465 | && value[8].offset == 0 | |
1466 | && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM | |
1467 | && value[NIOS2_SP_REGNUM].offset == 0) | |
1468 | { | |
1469 | /* A CALL instruction. This is treated as a call to mcount | |
1470 | if ra has been stored into r8 beforehand and if it's | |
1471 | before the stack adjust. | |
1472 | Note mcount corrupts r2-r3, r9-r15 & ra. */ | |
1473 | for (i = 2 ; i <= 3 ; i++) | |
1474 | value[i].reg = -1; | |
1475 | for (i = 9 ; i <= 15 ; i++) | |
1476 | value[i].reg = -1; | |
1477 | value[NIOS2_RA_REGNUM].reg = -1; | |
1478 | ||
1479 | prologue_end = pc; | |
1480 | } | |
a1217d97 | 1481 | |
d53c26c7 | 1482 | /* Other calls are not part of the prologue. */ |
a1217d97 | 1483 | else |
d53c26c7 | 1484 | break; |
a1217d97 SL |
1485 | } |
1486 | ||
d53c26c7 | 1487 | else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)) |
a1217d97 | 1488 | { |
d53c26c7 SL |
1489 | /* Branches not involving a stack overflow check aren't part of |
1490 | the prologue. */ | |
1491 | if (ra != NIOS2_SP_REGNUM) | |
1492 | break; | |
1493 | else if (cond == branch_geu) | |
a1217d97 | 1494 | { |
d53c26c7 | 1495 | /* BGEU sp, rx, +8 |
9aaf8e3a | 1496 | TRAP 3 (or BREAK 3) |
d53c26c7 SL |
1497 | This instruction sequence is used in stack checking; |
1498 | we can ignore it. */ | |
1499 | unsigned int next_insn; | |
1500 | const struct nios2_opcode *next_op | |
1501 | = nios2_fetch_insn (gdbarch, pc, &next_insn); | |
1502 | if (next_op != NULL | |
9aaf8e3a SL |
1503 | && (nios2_match_trap (next_insn, op, mach, &uimm) |
1504 | || nios2_match_break (next_insn, op, mach, &uimm))) | |
d53c26c7 SL |
1505 | pc += next_op->size; |
1506 | else | |
1507 | break; | |
a1217d97 | 1508 | } |
d53c26c7 SL |
1509 | else if (cond == branch_ltu) |
1510 | { | |
1511 | /* BLTU sp, rx, .Lstackoverflow | |
9aaf8e3a SL |
1512 | If the location branched to holds a TRAP or BREAK |
1513 | instruction then this is also stack overflow detection. */ | |
d53c26c7 SL |
1514 | unsigned int next_insn; |
1515 | const struct nios2_opcode *next_op | |
1516 | = nios2_fetch_insn (gdbarch, pc + imm, &next_insn); | |
1517 | if (next_op != NULL | |
9aaf8e3a SL |
1518 | && (nios2_match_trap (next_insn, op, mach, &uimm) |
1519 | || nios2_match_break (next_insn, op, mach, &uimm))) | |
d53c26c7 SL |
1520 | ; |
1521 | else | |
1522 | break; | |
1523 | } | |
1524 | else | |
1525 | break; | |
a1217d97 SL |
1526 | } |
1527 | ||
9aaf8e3a | 1528 | /* All other calls, jumps, returns, TRAPs, or BREAKs terminate |
d53c26c7 SL |
1529 | the prologue. */ |
1530 | else if (nios2_match_callr (insn, op, mach, &ra) | |
1531 | || nios2_match_jmpr (insn, op, mach, &ra) | |
9aaf8e3a | 1532 | || nios2_match_jmpi (insn, op, mach, &uimm) |
af60a1ef SL |
1533 | || (nios2_match_ldwm (insn, op, mach, ®list, &ra, |
1534 | &imm, &wb, &id, &ret) | |
1535 | && ret) | |
9aaf8e3a SL |
1536 | || nios2_match_trap (insn, op, mach, &uimm) |
1537 | || nios2_match_break (insn, op, mach, &uimm)) | |
d53c26c7 | 1538 | break; |
a1217d97 SL |
1539 | } |
1540 | ||
1541 | /* If THIS_FRAME is NULL, we are being called from skip_prologue | |
1542 | and are only interested in the PROLOGUE_END value, so just | |
1543 | return that now and skip over the cache updates, which depend | |
1544 | on having frame information. */ | |
1545 | if (this_frame == NULL) | |
1546 | return prologue_end; | |
1547 | ||
1548 | /* If we are in the function epilogue and have already popped | |
1549 | registers off the stack in preparation for returning, then we | |
1550 | want to go back to the original register values. */ | |
1551 | if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc)) | |
1552 | nios2_setup_default (cache); | |
1553 | ||
1554 | /* Exception handlers use a different return address register. */ | |
1555 | if (exception_handler) | |
1556 | cache->return_regnum = NIOS2_EA_REGNUM; | |
1557 | ||
1558 | if (nios2_debug) | |
1559 | fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum); | |
1560 | ||
1561 | if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM) | |
1562 | /* If the FP now holds an offset from the CFA then this is a | |
1563 | normal frame which uses the frame pointer. */ | |
1564 | base_reg = NIOS2_FP_REGNUM; | |
1565 | else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM) | |
1566 | /* FP doesn't hold an offset from the CFA. If SP still holds an | |
1567 | offset from the CFA then we might be in a function which omits | |
1568 | the frame pointer, or we might be partway through the prologue. | |
1569 | In both cases we can find the CFA using SP. */ | |
1570 | base_reg = NIOS2_SP_REGNUM; | |
1571 | else | |
1572 | { | |
1573 | /* Somehow the stack pointer has been corrupted. | |
1574 | We can't return. */ | |
1575 | if (nios2_debug) | |
1576 | fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n"); | |
1577 | return 0; | |
1578 | } | |
1579 | ||
1580 | if (cache->reg_value[base_reg].offset == 0 | |
1581 | || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM | |
1582 | || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM) | |
1583 | { | |
1584 | /* If the frame didn't adjust the stack, didn't save RA or | |
1585 | didn't save EA in an exception handler then it must either | |
1586 | be a leaf function (doesn't call any other functions) or it | |
1587 | can't return. If it has called another function then it | |
1588 | can't be a leaf, so set base == 0 to indicate that we can't | |
1589 | backtrace past it. */ | |
1590 | ||
1591 | if (!innermost) | |
1592 | { | |
1593 | /* If it isn't the innermost function then it can't be a | |
1594 | leaf, unless it was interrupted. Check whether RA for | |
1595 | this frame is the same as PC. If so then it probably | |
1596 | wasn't interrupted. */ | |
1597 | CORE_ADDR ra | |
1598 | = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM); | |
1599 | ||
1600 | if (ra == current_pc) | |
1601 | { | |
1602 | if (nios2_debug) | |
1603 | fprintf_unfiltered | |
1604 | (gdb_stdlog, | |
1605 | "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n", | |
1606 | paddress (gdbarch, cache->reg_value[base_reg].offset), | |
1607 | cache->reg_saved[NIOS2_RA_REGNUM].basereg, | |
1608 | cache->return_regnum, | |
1609 | cache->reg_saved[cache->return_regnum].basereg); | |
1610 | return 0; | |
1611 | } | |
1612 | } | |
1613 | } | |
1614 | ||
1615 | /* Get the value of whichever register we are using for the | |
1616 | base. */ | |
1617 | cache->base = get_frame_register_unsigned (this_frame, base_reg); | |
1618 | ||
1619 | /* What was the value of SP at the start of this function (or just | |
1620 | after the stack switch). */ | |
1621 | frame_high = cache->base - cache->reg_value[base_reg].offset; | |
1622 | ||
1623 | /* Adjust all the saved registers such that they contain addresses | |
1624 | instead of offsets. */ | |
1625 | for (i = 0; i < NIOS2_NUM_REGS; i++) | |
1626 | if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM) | |
1627 | { | |
1628 | cache->reg_saved[i].basereg = NIOS2_Z_REGNUM; | |
1629 | cache->reg_saved[i].addr += frame_high; | |
1630 | } | |
1631 | ||
1632 | for (i = 0; i < NIOS2_NUM_REGS; i++) | |
1633 | if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM) | |
1634 | { | |
1635 | CORE_ADDR gp = get_frame_register_unsigned (this_frame, | |
1636 | NIOS2_GP_REGNUM); | |
1637 | ||
1638 | for ( ; i < NIOS2_NUM_REGS; i++) | |
1639 | if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM) | |
1640 | { | |
1641 | cache->reg_saved[i].basereg = NIOS2_Z_REGNUM; | |
1642 | cache->reg_saved[i].addr += gp; | |
1643 | } | |
1644 | } | |
1645 | ||
1646 | /* Work out what the value of SP was on the first instruction of | |
1647 | this function. If we didn't switch stacks then this can be | |
1648 | trivially computed from the base address. */ | |
1649 | if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM) | |
1650 | cache->cfa | |
1651 | = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr, | |
1652 | 4, byte_order); | |
1653 | else | |
1654 | cache->cfa = frame_high; | |
1655 | ||
1656 | /* Exception handlers restore ESTATUS into STATUS. */ | |
1657 | if (exception_handler) | |
1658 | { | |
1659 | cache->reg_saved[NIOS2_STATUS_REGNUM] | |
1660 | = cache->reg_saved[NIOS2_ESTATUS_REGNUM]; | |
1661 | cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1; | |
1662 | } | |
1663 | ||
1664 | if (nios2_debug) | |
1665 | fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n", | |
1666 | paddress (gdbarch, cache->cfa)); | |
1667 | ||
1668 | return prologue_end; | |
1669 | } | |
1670 | ||
1671 | /* Implement the skip_prologue gdbarch hook. */ | |
1672 | ||
1673 | static CORE_ADDR | |
1674 | nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) | |
1675 | { | |
a1217d97 SL |
1676 | CORE_ADDR func_addr; |
1677 | ||
1678 | struct nios2_unwind_cache cache; | |
1679 | ||
1680 | /* See if we can determine the end of the prologue via the symbol | |
1681 | table. If so, then return either PC, or the PC after the | |
1682 | prologue, whichever is greater. */ | |
1683 | if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) | |
1684 | { | |
1685 | CORE_ADDR post_prologue_pc | |
1686 | = skip_prologue_using_sal (gdbarch, func_addr); | |
1687 | ||
1688 | if (post_prologue_pc != 0) | |
325fac50 | 1689 | return std::max (start_pc, post_prologue_pc); |
a1217d97 SL |
1690 | } |
1691 | ||
1692 | /* Prologue analysis does the rest.... */ | |
1693 | nios2_init_cache (&cache, start_pc); | |
1694 | return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL); | |
1695 | } | |
1696 | ||
cd6c3b4f YQ |
1697 | /* Implement the breakpoint_kind_from_pc gdbarch method. */ |
1698 | ||
d19280ad YQ |
1699 | static int |
1700 | nios2_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | |
1701 | { | |
1702 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | |
1703 | ||
1704 | if (mach == bfd_mach_nios2r2) | |
1705 | { | |
1706 | unsigned int insn; | |
1707 | const struct nios2_opcode *op | |
1708 | = nios2_fetch_insn (gdbarch, *pcptr, &insn); | |
1709 | ||
1710 | if (op && op->size == NIOS2_CDX_OPCODE_SIZE) | |
1711 | return NIOS2_CDX_OPCODE_SIZE; | |
1712 | else | |
1713 | return NIOS2_OPCODE_SIZE; | |
1714 | } | |
1715 | else | |
1716 | return NIOS2_OPCODE_SIZE; | |
1717 | } | |
b73c49b7 | 1718 | |
cd6c3b4f YQ |
1719 | /* Implement the sw_breakpoint_from_kind gdbarch method. */ |
1720 | ||
d19280ad YQ |
1721 | static const gdb_byte * |
1722 | nios2_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | |
1723 | { | |
1724 | /* The Nios II ABI for Linux says: "Userspace programs should not use | |
b73c49b7 SL |
1725 | the break instruction and userspace debuggers should not insert |
1726 | one." and "Userspace breakpoints are accomplished using the trap | |
1727 | instruction with immediate operand 31 (all ones)." | |
1728 | ||
1729 | So, we use "trap 31" consistently as the breakpoint on bare-metal | |
1730 | as well as Linux targets. */ | |
a1217d97 | 1731 | |
d19280ad YQ |
1732 | /* R2 trap encoding: |
1733 | ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0)) | |
1734 | 0xb7fd0020 | |
1735 | CDX trap.n encoding: | |
1736 | ((0xd << 12) | (0x1f << 6) | (0x9 << 0)) | |
1737 | 0xd7c9 | |
1738 | Note that code is always little-endian on R2. */ | |
1739 | *size = kind; | |
d53c26c7 | 1740 | |
d19280ad | 1741 | if (kind == NIOS2_CDX_OPCODE_SIZE) |
af60a1ef | 1742 | { |
af60a1ef | 1743 | static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7}; |
af60a1ef | 1744 | |
d19280ad YQ |
1745 | return cdx_breakpoint_le; |
1746 | } | |
1747 | else | |
1748 | { | |
1749 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | |
1750 | ||
1751 | if (mach == bfd_mach_nios2r2) | |
af60a1ef | 1752 | { |
d19280ad YQ |
1753 | static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7}; |
1754 | ||
1755 | return r2_breakpoint_le; | |
af60a1ef SL |
1756 | } |
1757 | else | |
1758 | { | |
d19280ad YQ |
1759 | enum bfd_endian byte_order_for_code |
1760 | = gdbarch_byte_order_for_code (gdbarch); | |
1761 | /* R1 trap encoding: | |
1762 | ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0)) | |
1763 | 0x003b6ffa */ | |
1764 | static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0}; | |
1765 | static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa}; | |
1766 | ||
1767 | if (byte_order_for_code == BFD_ENDIAN_BIG) | |
1768 | return r1_breakpoint_be; | |
1769 | else | |
1770 | return r1_breakpoint_le; | |
af60a1ef SL |
1771 | } |
1772 | } | |
a1217d97 SL |
1773 | } |
1774 | ||
1775 | /* Implement the print_insn gdbarch method. */ | |
1776 | ||
1777 | static int | |
1778 | nios2_print_insn (bfd_vma memaddr, disassemble_info *info) | |
1779 | { | |
1780 | if (info->endian == BFD_ENDIAN_BIG) | |
1781 | return print_insn_big_nios2 (memaddr, info); | |
1782 | else | |
1783 | return print_insn_little_nios2 (memaddr, info); | |
1784 | } | |
1785 | ||
1786 | ||
1787 | /* Implement the frame_align gdbarch method. */ | |
1788 | ||
1789 | static CORE_ADDR | |
1790 | nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1791 | { | |
1792 | return align_down (addr, 4); | |
1793 | } | |
1794 | ||
1795 | ||
1796 | /* Implement the return_value gdbarch method. */ | |
1797 | ||
1798 | static enum return_value_convention | |
1799 | nios2_return_value (struct gdbarch *gdbarch, struct value *function, | |
1800 | struct type *type, struct regcache *regcache, | |
1801 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
1802 | { | |
1803 | if (TYPE_LENGTH (type) > 8) | |
1804 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1805 | ||
1806 | if (readbuf) | |
1807 | nios2_extract_return_value (gdbarch, type, regcache, readbuf); | |
1808 | if (writebuf) | |
1809 | nios2_store_return_value (gdbarch, type, regcache, writebuf); | |
1810 | ||
1811 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1812 | } | |
1813 | ||
1814 | /* Implement the dummy_id gdbarch method. */ | |
1815 | ||
1816 | static struct frame_id | |
1817 | nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
1818 | { | |
1819 | return frame_id_build | |
1820 | (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM), | |
1821 | get_frame_pc (this_frame)); | |
1822 | } | |
1823 | ||
1824 | /* Implement the push_dummy_call gdbarch method. */ | |
1825 | ||
1826 | static CORE_ADDR | |
1827 | nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
1828 | struct regcache *regcache, CORE_ADDR bp_addr, | |
1829 | int nargs, struct value **args, CORE_ADDR sp, | |
1830 | int struct_return, CORE_ADDR struct_addr) | |
1831 | { | |
1832 | int argreg; | |
1833 | int float_argreg; | |
1834 | int argnum; | |
1835 | int len = 0; | |
1836 | int stack_offset = 0; | |
1837 | CORE_ADDR func_addr = find_function_addr (function, NULL); | |
1838 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1839 | ||
1840 | /* Set the return address register to point to the entry point of | |
1841 | the program, where a breakpoint lies in wait. */ | |
1842 | regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr); | |
1843 | ||
1844 | /* Now make space on the stack for the args. */ | |
1845 | for (argnum = 0; argnum < nargs; argnum++) | |
1846 | len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4); | |
1847 | sp -= len; | |
1848 | ||
1849 | /* Initialize the register pointer. */ | |
1850 | argreg = NIOS2_FIRST_ARGREG; | |
1851 | ||
1852 | /* The struct_return pointer occupies the first parameter-passing | |
1853 | register. */ | |
1854 | if (struct_return) | |
1855 | regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); | |
1856 | ||
1857 | /* Now load as many as possible of the first arguments into | |
1858 | registers, and push the rest onto the stack. Loop through args | |
1859 | from first to last. */ | |
1860 | for (argnum = 0; argnum < nargs; argnum++) | |
1861 | { | |
1862 | const gdb_byte *val; | |
a1217d97 SL |
1863 | struct value *arg = args[argnum]; |
1864 | struct type *arg_type = check_typedef (value_type (arg)); | |
1865 | int len = TYPE_LENGTH (arg_type); | |
a1217d97 SL |
1866 | |
1867 | val = value_contents (arg); | |
1868 | ||
1869 | /* Copy the argument to general registers or the stack in | |
1870 | register-sized pieces. Large arguments are split between | |
1871 | registers and stack. */ | |
1872 | while (len > 0) | |
1873 | { | |
1874 | int partial_len = (len < 4 ? len : 4); | |
1875 | ||
1876 | if (argreg <= NIOS2_LAST_ARGREG) | |
1877 | { | |
1878 | /* The argument is being passed in a register. */ | |
1879 | CORE_ADDR regval = extract_unsigned_integer (val, partial_len, | |
1880 | byte_order); | |
1881 | ||
1882 | regcache_cooked_write_unsigned (regcache, argreg, regval); | |
1883 | argreg++; | |
1884 | } | |
1885 | else | |
1886 | { | |
1887 | /* The argument is being passed on the stack. */ | |
1888 | CORE_ADDR addr = sp + stack_offset; | |
1889 | ||
1890 | write_memory (addr, val, partial_len); | |
1891 | stack_offset += align_up (partial_len, 4); | |
1892 | } | |
1893 | ||
1894 | len -= partial_len; | |
1895 | val += partial_len; | |
1896 | } | |
1897 | } | |
1898 | ||
1899 | regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp); | |
1900 | ||
1901 | /* Return adjusted stack pointer. */ | |
1902 | return sp; | |
1903 | } | |
1904 | ||
1905 | /* Implement the unwind_pc gdbarch method. */ | |
1906 | ||
1907 | static CORE_ADDR | |
1908 | nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1909 | { | |
1910 | gdb_byte buf[4]; | |
1911 | ||
1912 | frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf); | |
1913 | return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); | |
1914 | } | |
1915 | ||
1916 | /* Implement the unwind_sp gdbarch method. */ | |
1917 | ||
1918 | static CORE_ADDR | |
1919 | nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
1920 | { | |
1921 | return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM); | |
1922 | } | |
1923 | ||
1924 | /* Use prologue analysis to fill in the register cache | |
1925 | *THIS_PROLOGUE_CACHE for THIS_FRAME. This function initializes | |
1926 | *THIS_PROLOGUE_CACHE first. */ | |
1927 | ||
1928 | static struct nios2_unwind_cache * | |
1929 | nios2_frame_unwind_cache (struct frame_info *this_frame, | |
1930 | void **this_prologue_cache) | |
1931 | { | |
1932 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1933 | CORE_ADDR current_pc; | |
1934 | struct nios2_unwind_cache *cache; | |
a1217d97 SL |
1935 | |
1936 | if (*this_prologue_cache) | |
19ba03f4 | 1937 | return (struct nios2_unwind_cache *) *this_prologue_cache; |
a1217d97 SL |
1938 | |
1939 | cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache); | |
1940 | *this_prologue_cache = cache; | |
1941 | ||
1942 | /* Zero all fields. */ | |
1943 | nios2_init_cache (cache, get_frame_func (this_frame)); | |
1944 | ||
1945 | /* Prologue analysis does the rest... */ | |
1946 | current_pc = get_frame_pc (this_frame); | |
1947 | if (cache->pc != 0) | |
1948 | nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame); | |
1949 | ||
1950 | return cache; | |
1951 | } | |
1952 | ||
1953 | /* Implement the this_id function for the normal unwinder. */ | |
1954 | ||
1955 | static void | |
1956 | nios2_frame_this_id (struct frame_info *this_frame, void **this_cache, | |
1957 | struct frame_id *this_id) | |
1958 | { | |
1959 | struct nios2_unwind_cache *cache = | |
1960 | nios2_frame_unwind_cache (this_frame, this_cache); | |
1961 | ||
1962 | /* This marks the outermost frame. */ | |
1963 | if (cache->base == 0) | |
1964 | return; | |
1965 | ||
1966 | *this_id = frame_id_build (cache->cfa, cache->pc); | |
1967 | } | |
1968 | ||
1969 | /* Implement the prev_register function for the normal unwinder. */ | |
1970 | ||
1971 | static struct value * | |
1972 | nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache, | |
1973 | int regnum) | |
1974 | { | |
1975 | struct nios2_unwind_cache *cache = | |
1976 | nios2_frame_unwind_cache (this_frame, this_cache); | |
1977 | ||
1978 | gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS); | |
1979 | ||
1980 | /* The PC of the previous frame is stored in the RA register of | |
1981 | the current frame. Frob regnum so that we pull the value from | |
1982 | the correct place. */ | |
1983 | if (regnum == NIOS2_PC_REGNUM) | |
1984 | regnum = cache->return_regnum; | |
1985 | ||
1986 | if (regnum == NIOS2_SP_REGNUM && cache->cfa) | |
1987 | return frame_unwind_got_constant (this_frame, regnum, cache->cfa); | |
1988 | ||
1989 | /* If we've worked out where a register is stored then load it from | |
1990 | there. */ | |
1991 | if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM) | |
1992 | return frame_unwind_got_memory (this_frame, regnum, | |
1993 | cache->reg_saved[regnum].addr); | |
1994 | ||
1995 | return frame_unwind_got_register (this_frame, regnum, regnum); | |
1996 | } | |
1997 | ||
1998 | /* Implement the this_base, this_locals, and this_args hooks | |
1999 | for the normal unwinder. */ | |
2000 | ||
2001 | static CORE_ADDR | |
2002 | nios2_frame_base_address (struct frame_info *this_frame, void **this_cache) | |
2003 | { | |
2004 | struct nios2_unwind_cache *info | |
2005 | = nios2_frame_unwind_cache (this_frame, this_cache); | |
2006 | ||
2007 | return info->base; | |
2008 | } | |
2009 | ||
2010 | /* Data structures for the normal prologue-analysis-based | |
2011 | unwinder. */ | |
2012 | ||
2013 | static const struct frame_unwind nios2_frame_unwind = | |
2014 | { | |
2015 | NORMAL_FRAME, | |
2016 | default_frame_unwind_stop_reason, | |
2017 | nios2_frame_this_id, | |
2018 | nios2_frame_prev_register, | |
2019 | NULL, | |
2020 | default_frame_sniffer | |
2021 | }; | |
2022 | ||
2023 | static const struct frame_base nios2_frame_base = | |
2024 | { | |
2025 | &nios2_frame_unwind, | |
2026 | nios2_frame_base_address, | |
2027 | nios2_frame_base_address, | |
2028 | nios2_frame_base_address | |
2029 | }; | |
2030 | ||
2031 | /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use | |
2032 | in the stub unwinder. */ | |
2033 | ||
2034 | static struct trad_frame_cache * | |
2035 | nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache) | |
2036 | { | |
2037 | CORE_ADDR pc; | |
2038 | CORE_ADDR start_addr; | |
2039 | CORE_ADDR stack_addr; | |
2040 | struct trad_frame_cache *this_trad_cache; | |
2041 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
a1217d97 SL |
2042 | |
2043 | if (*this_cache != NULL) | |
19ba03f4 | 2044 | return (struct trad_frame_cache *) *this_cache; |
a1217d97 SL |
2045 | this_trad_cache = trad_frame_cache_zalloc (this_frame); |
2046 | *this_cache = this_trad_cache; | |
2047 | ||
2048 | /* The return address is in the link register. */ | |
2049 | trad_frame_set_reg_realreg (this_trad_cache, | |
2050 | gdbarch_pc_regnum (gdbarch), | |
2051 | NIOS2_RA_REGNUM); | |
2052 | ||
2053 | /* Frame ID, since it's a frameless / stackless function, no stack | |
2054 | space is allocated and SP on entry is the current SP. */ | |
2055 | pc = get_frame_pc (this_frame); | |
2056 | find_pc_partial_function (pc, NULL, &start_addr, NULL); | |
2057 | stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM); | |
2058 | trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr)); | |
2059 | /* Assume that the frame's base is the same as the stack pointer. */ | |
2060 | trad_frame_set_this_base (this_trad_cache, stack_addr); | |
2061 | ||
2062 | return this_trad_cache; | |
2063 | } | |
2064 | ||
2065 | /* Implement the this_id function for the stub unwinder. */ | |
2066 | ||
2067 | static void | |
2068 | nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache, | |
2069 | struct frame_id *this_id) | |
2070 | { | |
2071 | struct trad_frame_cache *this_trad_cache | |
2072 | = nios2_stub_frame_cache (this_frame, this_cache); | |
2073 | ||
2074 | trad_frame_get_id (this_trad_cache, this_id); | |
2075 | } | |
2076 | ||
2077 | /* Implement the prev_register function for the stub unwinder. */ | |
2078 | ||
2079 | static struct value * | |
2080 | nios2_stub_frame_prev_register (struct frame_info *this_frame, | |
2081 | void **this_cache, int regnum) | |
2082 | { | |
2083 | struct trad_frame_cache *this_trad_cache | |
2084 | = nios2_stub_frame_cache (this_frame, this_cache); | |
2085 | ||
2086 | return trad_frame_get_register (this_trad_cache, this_frame, regnum); | |
2087 | } | |
2088 | ||
2089 | /* Implement the sniffer function for the stub unwinder. | |
2090 | This unwinder is used for cases where the normal | |
2091 | prologue-analysis-based unwinder can't work, | |
2092 | such as PLT stubs. */ | |
2093 | ||
2094 | static int | |
2095 | nios2_stub_frame_sniffer (const struct frame_unwind *self, | |
2096 | struct frame_info *this_frame, void **cache) | |
2097 | { | |
2098 | gdb_byte dummy[4]; | |
a1217d97 SL |
2099 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
2100 | ||
2101 | /* Use the stub unwinder for unreadable code. */ | |
2102 | if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0) | |
2103 | return 1; | |
2104 | ||
3e5d3a5a | 2105 | if (in_plt_section (pc)) |
a1217d97 SL |
2106 | return 1; |
2107 | ||
2108 | return 0; | |
2109 | } | |
2110 | ||
a1217d97 SL |
2111 | /* Define the data structures for the stub unwinder. */ |
2112 | ||
2113 | static const struct frame_unwind nios2_stub_frame_unwind = | |
2114 | { | |
2115 | NORMAL_FRAME, | |
2116 | default_frame_unwind_stop_reason, | |
2117 | nios2_stub_frame_this_id, | |
2118 | nios2_stub_frame_prev_register, | |
2119 | NULL, | |
2120 | nios2_stub_frame_sniffer | |
2121 | }; | |
2122 | ||
a1217d97 | 2123 | |
a1217d97 SL |
2124 | |
2125 | /* Determine where to set a single step breakpoint while considering | |
2126 | branch prediction. */ | |
2127 | ||
2128 | static CORE_ADDR | |
3889f490 | 2129 | nios2_get_next_pc (struct regcache *regcache, CORE_ADDR pc) |
a1217d97 | 2130 | { |
3889f490 | 2131 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
a1217d97 | 2132 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
d53c26c7 SL |
2133 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
2134 | unsigned int insn; | |
2135 | const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn); | |
a1217d97 SL |
2136 | int ra; |
2137 | int rb; | |
d53c26c7 SL |
2138 | int imm; |
2139 | unsigned int uimm; | |
af60a1ef | 2140 | int wb, id, ret; |
d53c26c7 SL |
2141 | enum branch_condition cond; |
2142 | ||
2143 | /* Do something stupid if we can't disassemble the insn at pc. */ | |
2144 | if (op == NULL) | |
2145 | return pc + NIOS2_OPCODE_SIZE; | |
2146 | ||
2147 | if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)) | |
a1217d97 | 2148 | { |
3889f490 YQ |
2149 | int ras = regcache_raw_get_signed (regcache, ra); |
2150 | int rbs = regcache_raw_get_signed (regcache, rb); | |
2151 | unsigned int rau = regcache_raw_get_unsigned (regcache, ra); | |
2152 | unsigned int rbu = regcache_raw_get_unsigned (regcache, rb); | |
a1217d97 | 2153 | |
d53c26c7 SL |
2154 | pc += op->size; |
2155 | switch (cond) | |
a1217d97 | 2156 | { |
d53c26c7 SL |
2157 | case branch_none: |
2158 | pc += imm; | |
2159 | break; | |
2160 | case branch_eq: | |
2161 | if (ras == rbs) | |
2162 | pc += imm; | |
2163 | break; | |
2164 | case branch_ne: | |
2165 | if (ras != rbs) | |
2166 | pc += imm; | |
2167 | break; | |
2168 | case branch_ge: | |
2169 | if (ras >= rbs) | |
2170 | pc += imm; | |
2171 | break; | |
2172 | case branch_geu: | |
2173 | if (rau >= rbu) | |
2174 | pc += imm; | |
2175 | break; | |
2176 | case branch_lt: | |
2177 | if (ras < rbs) | |
2178 | pc += imm; | |
2179 | break; | |
2180 | case branch_ltu: | |
2181 | if (rau < rbu) | |
2182 | pc += imm; | |
a1217d97 | 2183 | break; |
a1217d97 SL |
2184 | default: |
2185 | break; | |
2186 | } | |
a1217d97 | 2187 | } |
d53c26c7 SL |
2188 | |
2189 | else if (nios2_match_jmpi (insn, op, mach, &uimm) | |
2190 | || nios2_match_calli (insn, op, mach, &uimm)) | |
2191 | pc = (pc & 0xf0000000) | uimm; | |
2192 | ||
2193 | else if (nios2_match_jmpr (insn, op, mach, &ra) | |
2194 | || nios2_match_callr (insn, op, mach, &ra)) | |
3889f490 | 2195 | pc = regcache_raw_get_unsigned (regcache, ra); |
d53c26c7 | 2196 | |
af60a1ef SL |
2197 | else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret) |
2198 | && ret) | |
2199 | { | |
2200 | /* If ra is in the reglist, we have to use the value saved in the | |
2201 | stack frame rather than the current value. */ | |
2202 | if (uimm & (1 << NIOS2_RA_REGNUM)) | |
3889f490 | 2203 | pc = nios2_unwind_pc (gdbarch, get_current_frame ()); |
af60a1ef | 2204 | else |
3889f490 | 2205 | pc = regcache_raw_get_unsigned (regcache, NIOS2_RA_REGNUM); |
af60a1ef SL |
2206 | } |
2207 | ||
2208 | else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0) | |
d53c26c7 SL |
2209 | { |
2210 | if (tdep->syscall_next_pc != NULL) | |
3889f490 | 2211 | return tdep->syscall_next_pc (get_current_frame (), op); |
d53c26c7 SL |
2212 | } |
2213 | ||
2214 | else | |
2215 | pc += op->size; | |
2216 | ||
a1217d97 SL |
2217 | return pc; |
2218 | } | |
2219 | ||
2220 | /* Implement the software_single_step gdbarch method. */ | |
2221 | ||
93f9a11f | 2222 | static VEC (CORE_ADDR) * |
f5ea389a | 2223 | nios2_software_single_step (struct regcache *regcache) |
a1217d97 | 2224 | { |
3889f490 YQ |
2225 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
2226 | CORE_ADDR next_pc = nios2_get_next_pc (regcache, regcache_read_pc (regcache)); | |
93f9a11f | 2227 | VEC (CORE_ADDR) *next_pcs = NULL; |
a1217d97 | 2228 | |
93f9a11f | 2229 | VEC_safe_push (CORE_ADDR, next_pcs, next_pc); |
a1217d97 | 2230 | |
93f9a11f | 2231 | return next_pcs; |
a1217d97 SL |
2232 | } |
2233 | ||
2234 | /* Implement the get_longjump_target gdbarch method. */ | |
2235 | ||
2236 | static int | |
2237 | nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) | |
2238 | { | |
2239 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
2240 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2241 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2242 | CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM); | |
2243 | gdb_byte buf[4]; | |
2244 | ||
2245 | if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4)) | |
2246 | return 0; | |
2247 | ||
2248 | *pc = extract_unsigned_integer (buf, 4, byte_order); | |
2249 | return 1; | |
2250 | } | |
2251 | ||
2252 | /* Initialize the Nios II gdbarch. */ | |
2253 | ||
2254 | static struct gdbarch * | |
2255 | nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2256 | { | |
2257 | struct gdbarch *gdbarch; | |
2258 | struct gdbarch_tdep *tdep; | |
870f88f7 | 2259 | int i; |
a1217d97 SL |
2260 | struct tdesc_arch_data *tdesc_data = NULL; |
2261 | const struct target_desc *tdesc = info.target_desc; | |
2262 | ||
2263 | if (!tdesc_has_registers (tdesc)) | |
2264 | /* Pick a default target description. */ | |
2265 | tdesc = tdesc_nios2; | |
2266 | ||
2267 | /* Check any target description for validity. */ | |
2268 | if (tdesc_has_registers (tdesc)) | |
2269 | { | |
2270 | const struct tdesc_feature *feature; | |
2271 | int valid_p; | |
2272 | ||
2273 | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu"); | |
2274 | if (feature == NULL) | |
2275 | return NULL; | |
2276 | ||
2277 | tdesc_data = tdesc_data_alloc (); | |
2278 | ||
2279 | valid_p = 1; | |
2280 | ||
2281 | for (i = 0; i < NIOS2_NUM_REGS; i++) | |
2282 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
2283 | nios2_reg_names[i]); | |
2284 | ||
2285 | if (!valid_p) | |
2286 | { | |
2287 | tdesc_data_cleanup (tdesc_data); | |
2288 | return NULL; | |
2289 | } | |
2290 | } | |
2291 | ||
2292 | /* Find a candidate among the list of pre-declared architectures. */ | |
2293 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
2294 | if (arches != NULL) | |
2295 | return arches->gdbarch; | |
2296 | ||
2297 | /* None found, create a new architecture from the information | |
2298 | provided. */ | |
8d749320 | 2299 | tdep = XCNEW (struct gdbarch_tdep); |
a1217d97 SL |
2300 | gdbarch = gdbarch_alloc (&info, tdep); |
2301 | ||
2302 | /* longjmp support not enabled by default. */ | |
2303 | tdep->jb_pc = -1; | |
2304 | ||
2305 | /* Data type sizes. */ | |
2306 | set_gdbarch_ptr_bit (gdbarch, 32); | |
2307 | set_gdbarch_addr_bit (gdbarch, 32); | |
2308 | set_gdbarch_short_bit (gdbarch, 16); | |
2309 | set_gdbarch_int_bit (gdbarch, 32); | |
2310 | set_gdbarch_long_bit (gdbarch, 32); | |
2311 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2312 | set_gdbarch_float_bit (gdbarch, 32); | |
2313 | set_gdbarch_double_bit (gdbarch, 64); | |
2314 | ||
2315 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | |
2316 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
2317 | ||
2318 | /* The register set. */ | |
2319 | set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS); | |
2320 | set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM); | |
2321 | set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM); /* Pseudo register PC */ | |
2322 | ||
2323 | set_gdbarch_register_name (gdbarch, nios2_register_name); | |
2324 | set_gdbarch_register_type (gdbarch, nios2_register_type); | |
2325 | ||
2326 | /* Provide register mappings for stabs and dwarf2. */ | |
2327 | set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); | |
2328 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); | |
2329 | ||
2330 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2331 | ||
2332 | /* Call dummy code. */ | |
2333 | set_gdbarch_frame_align (gdbarch, nios2_frame_align); | |
2334 | ||
2335 | set_gdbarch_return_value (gdbarch, nios2_return_value); | |
2336 | ||
2337 | set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue); | |
c9cf6e20 | 2338 | set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p); |
04180708 YQ |
2339 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, nios2_breakpoint_kind_from_pc); |
2340 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, nios2_sw_breakpoint_from_kind); | |
a1217d97 SL |
2341 | |
2342 | set_gdbarch_dummy_id (gdbarch, nios2_dummy_id); | |
2343 | set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc); | |
2344 | set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp); | |
2345 | ||
2346 | /* The dwarf2 unwinder will normally produce the best results if | |
2347 | the debug information is available, so register it first. */ | |
2348 | dwarf2_append_unwinders (gdbarch); | |
2349 | frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind); | |
2350 | frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind); | |
2351 | ||
2352 | /* Single stepping. */ | |
2353 | set_gdbarch_software_single_step (gdbarch, nios2_software_single_step); | |
2354 | ||
2355 | /* Hook in ABI-specific overrides, if they have been registered. */ | |
2356 | gdbarch_init_osabi (info, gdbarch); | |
2357 | ||
2358 | if (tdep->jb_pc >= 0) | |
2359 | set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target); | |
2360 | ||
2361 | frame_base_set_default (gdbarch, &nios2_frame_base); | |
2362 | ||
2363 | set_gdbarch_print_insn (gdbarch, nios2_print_insn); | |
2364 | ||
2365 | /* Enable inferior call support. */ | |
2366 | set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call); | |
2367 | ||
2368 | if (tdesc_data) | |
2369 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); | |
2370 | ||
2371 | return gdbarch; | |
2372 | } | |
2373 | ||
2374 | extern initialize_file_ftype _initialize_nios2_tdep; /* -Wmissing-prototypes */ | |
2375 | ||
2376 | void | |
2377 | _initialize_nios2_tdep (void) | |
2378 | { | |
2379 | gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL); | |
2380 | initialize_tdesc_nios2 (); | |
2381 | ||
2382 | /* Allow debugging this file's internals. */ | |
2383 | add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug, | |
2384 | _("Set Nios II debugging."), | |
2385 | _("Show Nios II debugging."), | |
2386 | _("When on, Nios II specific debugging is enabled."), | |
2387 | NULL, | |
2388 | NULL, | |
2389 | &setdebuglist, &showdebuglist); | |
2390 | } |