*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / objfiles.c
CommitLineData
c906108c 1/* GDB routines for manipulating objfiles.
af5f3db6
AC
2
3 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2de7ced7 4 2001, 2002, 2003 Free Software Foundation, Inc.
af5f3db6 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25/* This file contains support routines for creating, manipulating, and
26 destroying objfile structures. */
27
28#include "defs.h"
29#include "bfd.h" /* Binary File Description */
30#include "symtab.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdb-stabs.h"
34#include "target.h"
af5f3db6 35#include "bcache.h"
c906108c
SS
36
37#include <sys/types.h>
38#include "gdb_stat.h"
39#include <fcntl.h>
04ea0df1 40#include "gdb_obstack.h"
c906108c 41#include "gdb_string.h"
2de7ced7 42#include "hashtab.h"
c906108c 43
7a292a7a
SS
44#include "breakpoint.h"
45
c906108c
SS
46/* Prototypes for local functions */
47
48#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
49
ed1801df
AC
50#include "mmalloc.h"
51
a14ed312 52static int open_existing_mapped_file (char *, long, int);
c906108c 53
a14ed312 54static int open_mapped_file (char *filename, long mtime, int flags);
c906108c 55
4efb68b1 56static void *map_to_file (int);
c906108c 57
c5aa993b 58#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c 59
4efb68b1 60static void add_to_objfile_sections (bfd *, sec_ptr, void *);
c906108c
SS
61
62/* Externally visible variables that are owned by this module.
63 See declarations in objfile.h for more info. */
64
c5aa993b 65struct objfile *object_files; /* Linked list of all objfiles */
c906108c
SS
66struct objfile *current_objfile; /* For symbol file being read in */
67struct objfile *symfile_objfile; /* Main symbol table loaded from */
68struct objfile *rt_common_objfile; /* For runtime common symbols */
69
c5aa993b 70int mapped_symbol_files; /* Try to use mapped symbol files */
c906108c
SS
71
72/* Locate all mappable sections of a BFD file.
73 objfile_p_char is a char * to get it through
74 bfd_map_over_sections; we cast it back to its proper type. */
75
76#ifndef TARGET_KEEP_SECTION
77#define TARGET_KEEP_SECTION(ASECT) 0
78#endif
79
96baa820
JM
80/* Called via bfd_map_over_sections to build up the section table that
81 the objfile references. The objfile contains pointers to the start
82 of the table (objfile->sections) and to the first location after
83 the end of the table (objfile->sections_end). */
84
c906108c 85static void
4efb68b1 86add_to_objfile_sections (bfd *abfd, sec_ptr asect, void *objfile_p_char)
c906108c
SS
87{
88 struct objfile *objfile = (struct objfile *) objfile_p_char;
89 struct obj_section section;
90 flagword aflag;
91
92 aflag = bfd_get_section_flags (abfd, asect);
93
c5aa993b 94 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
c906108c
SS
95 return;
96
97 if (0 == bfd_section_size (abfd, asect))
98 return;
99 section.offset = 0;
100 section.objfile = objfile;
101 section.the_bfd_section = asect;
102 section.ovly_mapped = 0;
103 section.addr = bfd_section_vma (abfd, asect);
104 section.endaddr = section.addr + bfd_section_size (abfd, asect);
c5aa993b 105 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
c906108c
SS
106 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
107}
108
109/* Builds a section table for OBJFILE.
110 Returns 0 if OK, 1 on error (in which case bfd_error contains the
96baa820
JM
111 error).
112
113 Note that while we are building the table, which goes into the
114 psymbol obstack, we hijack the sections_end pointer to instead hold
115 a count of the number of sections. When bfd_map_over_sections
116 returns, this count is used to compute the pointer to the end of
117 the sections table, which then overwrites the count.
118
119 Also note that the OFFSET and OVLY_MAPPED in each table entry
120 are initialized to zero.
121
122 Also note that if anything else writes to the psymbol obstack while
123 we are building the table, we're pretty much hosed. */
c906108c
SS
124
125int
fba45db2 126build_objfile_section_table (struct objfile *objfile)
c906108c
SS
127{
128 /* objfile->sections can be already set when reading a mapped symbol
129 file. I believe that we do need to rebuild the section table in
130 this case (we rebuild other things derived from the bfd), but we
131 can't free the old one (it's in the psymbol_obstack). So we just
132 waste some memory. */
133
134 objfile->sections_end = 0;
c5aa993b 135 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
c906108c
SS
136 objfile->sections = (struct obj_section *)
137 obstack_finish (&objfile->psymbol_obstack);
138 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
c5aa993b 139 return (0);
c906108c
SS
140}
141
2df3850c
JM
142/* Given a pointer to an initialized bfd (ABFD) and some flag bits
143 allocate a new objfile struct, fill it in as best we can, link it
144 into the list of all known objfiles, and return a pointer to the
145 new objfile struct.
c906108c 146
2df3850c
JM
147 The FLAGS word contains various bits (OBJF_*) that can be taken as
148 requests for specific operations, like trying to open a mapped
149 version of the objfile (OBJF_MAPPED). Other bits like
150 OBJF_SHARED are simply copied through to the new objfile flags
151 member. */
c906108c 152
eb9a305d
DC
153/* NOTE: carlton/2003-02-04: This function is called with args NULL, 0
154 by jv-lang.c, to create an artificial objfile used to hold
155 information about dynamically-loaded Java classes. Unfortunately,
156 that branch of this function doesn't get tested very frequently, so
157 it's prone to breakage. (E.g. at one time the name was set to NULL
158 in that situation, which broke a loop over all names in the dynamic
159 library loader.) If you change this function, please try to leave
160 things in a consistent state even if abfd is NULL. */
161
c906108c 162struct objfile *
fba45db2 163allocate_objfile (bfd *abfd, int flags)
c906108c
SS
164{
165 struct objfile *objfile = NULL;
166 struct objfile *last_one = NULL;
167
2df3850c
JM
168 if (mapped_symbol_files)
169 flags |= OBJF_MAPPED;
c906108c
SS
170
171#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
172 if (abfd != NULL)
c5aa993b 173 {
c906108c 174
c5aa993b
JM
175 /* If we can support mapped symbol files, try to open/reopen the
176 mapped file that corresponds to the file from which we wish to
177 read symbols. If the objfile is to be mapped, we must malloc
178 the structure itself using the mmap version, and arrange that
179 all memory allocation for the objfile uses the mmap routines.
180 If we are reusing an existing mapped file, from which we get
181 our objfile pointer, we have to make sure that we update the
182 pointers to the alloc/free functions in the obstack, in case
183 these functions have moved within the current gdb. */
184
185 int fd;
186
187 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
2df3850c 188 flags);
c5aa993b
JM
189 if (fd >= 0)
190 {
4efb68b1 191 void *md;
c906108c 192
c5aa993b
JM
193 if ((md = map_to_file (fd)) == NULL)
194 {
195 close (fd);
196 }
197 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
198 {
199 /* Update memory corruption handler function addresses. */
200 init_malloc (md);
201 objfile->md = md;
202 objfile->mmfd = fd;
203 /* Update pointers to functions to *our* copies */
2de7ced7
DJ
204 if (objfile->demangled_names_hash)
205 htab_set_functions_ex
206 (objfile->demangled_names_hash, htab_hash_string,
207 (int (*) (const void *, const void *)) streq, NULL,
208 objfile->md, xmcalloc, xmfree);
c5aa993b 209 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
aac7f4ea 210 obstack_freefun (&objfile->psymbol_cache.cache, xmfree);
99d9066e
JB
211 obstack_chunkfun (&objfile->macro_cache.cache, xmmalloc);
212 obstack_freefun (&objfile->macro_cache.cache, xmfree);
c5aa993b 213 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
aac7f4ea 214 obstack_freefun (&objfile->psymbol_obstack, xmfree);
c5aa993b 215 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
aac7f4ea 216 obstack_freefun (&objfile->symbol_obstack, xmfree);
c5aa993b 217 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
aac7f4ea 218 obstack_freefun (&objfile->type_obstack, xmfree);
c5aa993b
JM
219 /* If already in objfile list, unlink it. */
220 unlink_objfile (objfile);
221 /* Forget things specific to a particular gdb, may have changed. */
222 objfile->sf = NULL;
223 }
224 else
225 {
c906108c 226
c5aa993b
JM
227 /* Set up to detect internal memory corruption. MUST be
228 done before the first malloc. See comments in
229 init_malloc() and mmcheck(). */
230
231 init_malloc (md);
232
233 objfile = (struct objfile *)
234 xmmalloc (md, sizeof (struct objfile));
235 memset (objfile, 0, sizeof (struct objfile));
236 objfile->md = md;
237 objfile->mmfd = fd;
238 objfile->flags |= OBJF_MAPPED;
239 mmalloc_setkey (objfile->md, 0, objfile);
240 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
aac7f4ea 241 0, 0, xmmalloc, xmfree,
c5aa993b 242 objfile->md);
99d9066e
JB
243 obstack_specify_allocation_with_arg (&objfile->macro_cache.cache,
244 0, 0, xmmalloc, xmfree,
245 objfile->md);
c5aa993b 246 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
aac7f4ea 247 0, 0, xmmalloc, xmfree,
c5aa993b
JM
248 objfile->md);
249 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
aac7f4ea 250 0, 0, xmmalloc, xmfree,
c5aa993b
JM
251 objfile->md);
252 obstack_specify_allocation_with_arg (&objfile->type_obstack,
aac7f4ea 253 0, 0, xmmalloc, xmfree,
c5aa993b
JM
254 objfile->md);
255 }
256 }
c906108c 257
2df3850c 258 if ((flags & OBJF_MAPPED) && (objfile == NULL))
c5aa993b
JM
259 {
260 warning ("symbol table for '%s' will not be mapped",
261 bfd_get_filename (abfd));
2df3850c 262 flags &= ~OBJF_MAPPED;
c5aa993b
JM
263 }
264 }
265#else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
c906108c 266
2df3850c 267 if (flags & OBJF_MAPPED)
c906108c
SS
268 {
269 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
270
271 /* Turn off the global flag so we don't try to do mapped symbol tables
c5aa993b
JM
272 any more, which shuts up gdb unless the user specifically gives the
273 "mapped" keyword again. */
c906108c
SS
274
275 mapped_symbol_files = 0;
2df3850c 276 flags &= ~OBJF_MAPPED;
c906108c
SS
277 }
278
c5aa993b 279#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c
SS
280
281 /* If we don't support mapped symbol files, didn't ask for the file to be
282 mapped, or failed to open the mapped file for some reason, then revert
283 back to an unmapped objfile. */
284
285 if (objfile == NULL)
286 {
287 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
288 memset (objfile, 0, sizeof (struct objfile));
c5aa993b 289 objfile->md = NULL;
af5f3db6
AC
290 objfile->psymbol_cache = bcache_xmalloc ();
291 objfile->macro_cache = bcache_xmalloc ();
c5aa993b 292 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
b8c9b27d 293 xfree);
c5aa993b 294 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
b8c9b27d 295 xfree);
c5aa993b 296 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
b8c9b27d 297 xfree);
2df3850c 298 flags &= ~OBJF_MAPPED;
15831452
JB
299
300 terminate_minimal_symbol_table (objfile);
c906108c
SS
301 }
302
303 /* Update the per-objfile information that comes from the bfd, ensuring
304 that any data that is reference is saved in the per-objfile data
305 region. */
306
c5aa993b
JM
307 objfile->obfd = abfd;
308 if (objfile->name != NULL)
c906108c 309 {
aac7f4ea 310 xmfree (objfile->md, objfile->name);
c906108c
SS
311 }
312 if (abfd != NULL)
313 {
c5aa993b
JM
314 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
315 objfile->mtime = bfd_get_mtime (abfd);
c906108c
SS
316
317 /* Build section table. */
318
319 if (build_objfile_section_table (objfile))
320 {
c5aa993b
JM
321 error ("Can't find the file sections in `%s': %s",
322 objfile->name, bfd_errmsg (bfd_get_error ()));
c906108c
SS
323 }
324 }
eb9a305d
DC
325 else
326 {
327 objfile->name = "<<anonymous objfile>>";
328 }
c906108c 329
b8fbeb18
EZ
330 /* Initialize the section indexes for this objfile, so that we can
331 later detect if they are used w/o being properly assigned to. */
332
333 objfile->sect_index_text = -1;
334 objfile->sect_index_data = -1;
335 objfile->sect_index_bss = -1;
336 objfile->sect_index_rodata = -1;
337
c906108c
SS
338 /* Add this file onto the tail of the linked list of other such files. */
339
c5aa993b 340 objfile->next = NULL;
c906108c
SS
341 if (object_files == NULL)
342 object_files = objfile;
343 else
344 {
345 for (last_one = object_files;
c5aa993b
JM
346 last_one->next;
347 last_one = last_one->next);
348 last_one->next = objfile;
c906108c
SS
349 }
350
2df3850c
JM
351 /* Save passed in flag bits. */
352 objfile->flags |= flags;
c906108c
SS
353
354 return (objfile);
355}
356
15831452
JB
357
358/* Create the terminating entry of OBJFILE's minimal symbol table.
359 If OBJFILE->msymbols is zero, allocate a single entry from
360 OBJFILE->symbol_obstack; otherwise, just initialize
361 OBJFILE->msymbols[OBJFILE->minimal_symbol_count]. */
362void
363terminate_minimal_symbol_table (struct objfile *objfile)
364{
365 if (! objfile->msymbols)
366 objfile->msymbols = ((struct minimal_symbol *)
367 obstack_alloc (&objfile->symbol_obstack,
368 sizeof (objfile->msymbols[0])));
369
370 {
371 struct minimal_symbol *m
372 = &objfile->msymbols[objfile->minimal_symbol_count];
373
374 memset (m, 0, sizeof (*m));
375 SYMBOL_NAME (m) = NULL;
376 SYMBOL_VALUE_ADDRESS (m) = 0;
377 MSYMBOL_INFO (m) = NULL;
378 MSYMBOL_TYPE (m) = mst_unknown;
379 SYMBOL_INIT_LANGUAGE_SPECIFIC (m, language_unknown);
380 }
381}
382
383
5b5d99cf
JB
384/* Put one object file before a specified on in the global list.
385 This can be used to make sure an object file is destroyed before
386 another when using ALL_OBJFILES_SAFE to free all objfiles. */
387void
388put_objfile_before (struct objfile *objfile, struct objfile *before_this)
389{
390 struct objfile **objp;
391
392 unlink_objfile (objfile);
393
394 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
395 {
396 if (*objp == before_this)
397 {
398 objfile->next = *objp;
399 *objp = objfile;
400 return;
401 }
402 }
403
404 internal_error (__FILE__, __LINE__,
405 "put_objfile_before: before objfile not in list");
406}
407
c906108c
SS
408/* Put OBJFILE at the front of the list. */
409
410void
fba45db2 411objfile_to_front (struct objfile *objfile)
c906108c
SS
412{
413 struct objfile **objp;
414 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
415 {
416 if (*objp == objfile)
417 {
418 /* Unhook it from where it is. */
419 *objp = objfile->next;
420 /* Put it in the front. */
421 objfile->next = object_files;
422 object_files = objfile;
423 break;
424 }
425 }
426}
427
428/* Unlink OBJFILE from the list of known objfiles, if it is found in the
429 list.
430
431 It is not a bug, or error, to call this function if OBJFILE is not known
432 to be in the current list. This is done in the case of mapped objfiles,
433 for example, just to ensure that the mapped objfile doesn't appear twice
434 in the list. Since the list is threaded, linking in a mapped objfile
435 twice would create a circular list.
436
437 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
438 unlinking it, just to ensure that we have completely severed any linkages
439 between the OBJFILE and the list. */
440
441void
fba45db2 442unlink_objfile (struct objfile *objfile)
c906108c 443{
c5aa993b 444 struct objfile **objpp;
c906108c 445
c5aa993b 446 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
c906108c 447 {
c5aa993b 448 if (*objpp == objfile)
c906108c 449 {
c5aa993b
JM
450 *objpp = (*objpp)->next;
451 objfile->next = NULL;
07cd4b97 452 return;
c906108c
SS
453 }
454 }
07cd4b97 455
8e65ff28
AC
456 internal_error (__FILE__, __LINE__,
457 "unlink_objfile: objfile already unlinked");
c906108c
SS
458}
459
460
461/* Destroy an objfile and all the symtabs and psymtabs under it. Note
462 that as much as possible is allocated on the symbol_obstack and
463 psymbol_obstack, so that the memory can be efficiently freed.
464
465 Things which we do NOT free because they are not in malloc'd memory
466 or not in memory specific to the objfile include:
467
c5aa993b 468 objfile -> sf
c906108c
SS
469
470 FIXME: If the objfile is using reusable symbol information (via mmalloc),
471 then we need to take into account the fact that more than one process
472 may be using the symbol information at the same time (when mmalloc is
473 extended to support cooperative locking). When more than one process
474 is using the mapped symbol info, we need to be more careful about when
475 we free objects in the reusable area. */
476
477void
fba45db2 478free_objfile (struct objfile *objfile)
c906108c 479{
5b5d99cf
JB
480 if (objfile->separate_debug_objfile)
481 {
482 free_objfile (objfile->separate_debug_objfile);
483 }
484
485 if (objfile->separate_debug_objfile_backlink)
486 {
487 /* We freed the separate debug file, make sure the base objfile
488 doesn't reference it. */
489 objfile->separate_debug_objfile_backlink->separate_debug_objfile = NULL;
490 }
491
c906108c
SS
492 /* First do any symbol file specific actions required when we are
493 finished with a particular symbol file. Note that if the objfile
494 is using reusable symbol information (via mmalloc) then each of
495 these routines is responsible for doing the correct thing, either
496 freeing things which are valid only during this particular gdb
497 execution, or leaving them to be reused during the next one. */
498
c5aa993b 499 if (objfile->sf != NULL)
c906108c 500 {
c5aa993b 501 (*objfile->sf->sym_finish) (objfile);
c906108c
SS
502 }
503
504 /* We always close the bfd. */
505
c5aa993b 506 if (objfile->obfd != NULL)
c906108c
SS
507 {
508 char *name = bfd_get_filename (objfile->obfd);
c5aa993b 509 if (!bfd_close (objfile->obfd))
c906108c
SS
510 warning ("cannot close \"%s\": %s",
511 name, bfd_errmsg (bfd_get_error ()));
b8c9b27d 512 xfree (name);
c906108c
SS
513 }
514
515 /* Remove it from the chain of all objfiles. */
516
517 unlink_objfile (objfile);
518
519 /* If we are going to free the runtime common objfile, mark it
520 as unallocated. */
521
522 if (objfile == rt_common_objfile)
523 rt_common_objfile = NULL;
524
525 /* Before the symbol table code was redone to make it easier to
526 selectively load and remove information particular to a specific
527 linkage unit, gdb used to do these things whenever the monolithic
528 symbol table was blown away. How much still needs to be done
529 is unknown, but we play it safe for now and keep each action until
530 it is shown to be no longer needed. */
c5aa993b 531
c906108c
SS
532 /* I *think* all our callers call clear_symtab_users. If so, no need
533 to call this here. */
534 clear_pc_function_cache ();
535
536 /* The last thing we do is free the objfile struct itself for the
aac7f4ea
AC
537 non-reusable case, or detach from the mapped file for the
538 reusable case. Note that the mmalloc_detach or the xmfree() is
539 the last thing we can do with this objfile. */
c906108c
SS
540
541#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
542
c5aa993b 543 if (objfile->flags & OBJF_MAPPED)
c906108c
SS
544 {
545 /* Remember the fd so we can close it. We can't close it before
c5aa993b 546 doing the detach, and after the detach the objfile is gone. */
c906108c
SS
547 int mmfd;
548
c5aa993b
JM
549 mmfd = objfile->mmfd;
550 mmalloc_detach (objfile->md);
c906108c
SS
551 objfile = NULL;
552 close (mmfd);
553 }
554
c5aa993b 555#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c
SS
556
557 /* If we still have an objfile, then either we don't support reusable
558 objfiles or this one was not reusable. So free it normally. */
559
560 if (objfile != NULL)
561 {
c5aa993b 562 if (objfile->name != NULL)
c906108c 563 {
aac7f4ea 564 xmfree (objfile->md, objfile->name);
c906108c
SS
565 }
566 if (objfile->global_psymbols.list)
aac7f4ea 567 xmfree (objfile->md, objfile->global_psymbols.list);
c906108c 568 if (objfile->static_psymbols.list)
aac7f4ea 569 xmfree (objfile->md, objfile->static_psymbols.list);
c906108c 570 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
571 bcache_xfree (objfile->psymbol_cache);
572 bcache_xfree (objfile->macro_cache);
2de7ced7
DJ
573 if (objfile->demangled_names_hash)
574 htab_delete (objfile->demangled_names_hash);
c5aa993b
JM
575 obstack_free (&objfile->psymbol_obstack, 0);
576 obstack_free (&objfile->symbol_obstack, 0);
577 obstack_free (&objfile->type_obstack, 0);
aac7f4ea 578 xmfree (objfile->md, objfile);
c906108c
SS
579 objfile = NULL;
580 }
581}
582
74b7792f
AC
583static void
584do_free_objfile_cleanup (void *obj)
585{
586 free_objfile (obj);
587}
588
589struct cleanup *
590make_cleanup_free_objfile (struct objfile *obj)
591{
592 return make_cleanup (do_free_objfile_cleanup, obj);
593}
c906108c
SS
594
595/* Free all the object files at once and clean up their users. */
596
597void
fba45db2 598free_all_objfiles (void)
c906108c
SS
599{
600 struct objfile *objfile, *temp;
601
602 ALL_OBJFILES_SAFE (objfile, temp)
c5aa993b
JM
603 {
604 free_objfile (objfile);
605 }
c906108c
SS
606 clear_symtab_users ();
607}
608\f
609/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
610 entries in new_offsets. */
611void
fba45db2 612objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
c906108c 613{
d4f3574e
SS
614 struct section_offsets *delta =
615 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
c906108c
SS
616
617 {
618 int i;
619 int something_changed = 0;
620 for (i = 0; i < objfile->num_sections; ++i)
621 {
a4c8257b 622 delta->offsets[i] =
c906108c
SS
623 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
624 if (ANOFFSET (delta, i) != 0)
625 something_changed = 1;
626 }
627 if (!something_changed)
628 return;
629 }
630
631 /* OK, get all the symtabs. */
632 {
633 struct symtab *s;
634
635 ALL_OBJFILE_SYMTABS (objfile, s)
c5aa993b
JM
636 {
637 struct linetable *l;
638 struct blockvector *bv;
639 int i;
640
641 /* First the line table. */
642 l = LINETABLE (s);
643 if (l)
644 {
645 for (i = 0; i < l->nitems; ++i)
646 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
647 }
c906108c 648
c5aa993b
JM
649 /* Don't relocate a shared blockvector more than once. */
650 if (!s->primary)
651 continue;
c906108c 652
c5aa993b
JM
653 bv = BLOCKVECTOR (s);
654 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
655 {
656 struct block *b;
e88c90f2 657 struct symbol *sym;
c5aa993b
JM
658 int j;
659
660 b = BLOCKVECTOR_BLOCK (bv, i);
661 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
662 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
663
e88c90f2 664 ALL_BLOCK_SYMBOLS (b, j, sym)
c5aa993b 665 {
7a78d0ee
KB
666 fixup_symbol_section (sym, objfile);
667
c5aa993b
JM
668 /* The RS6000 code from which this was taken skipped
669 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
670 But I'm leaving out that test, on the theory that
671 they can't possibly pass the tests below. */
672 if ((SYMBOL_CLASS (sym) == LOC_LABEL
673 || SYMBOL_CLASS (sym) == LOC_STATIC
674 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
675 && SYMBOL_SECTION (sym) >= 0)
676 {
677 SYMBOL_VALUE_ADDRESS (sym) +=
678 ANOFFSET (delta, SYMBOL_SECTION (sym));
679 }
c906108c 680#ifdef MIPS_EFI_SYMBOL_NAME
c5aa993b 681 /* Relocate Extra Function Info for ecoff. */
c906108c 682
c5aa993b
JM
683 else if (SYMBOL_CLASS (sym) == LOC_CONST
684 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
494b7ec9 685 && strcmp (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
c5aa993b 686 ecoff_relocate_efi (sym, ANOFFSET (delta,
c906108c
SS
687 s->block_line_section));
688#endif
c5aa993b
JM
689 }
690 }
691 }
c906108c
SS
692 }
693
694 {
695 struct partial_symtab *p;
696
697 ALL_OBJFILE_PSYMTABS (objfile, p)
c5aa993b 698 {
b8fbeb18
EZ
699 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
700 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
c5aa993b 701 }
c906108c
SS
702 }
703
704 {
705 struct partial_symbol **psym;
706
707 for (psym = objfile->global_psymbols.list;
708 psym < objfile->global_psymbols.next;
709 psym++)
7a78d0ee
KB
710 {
711 fixup_psymbol_section (*psym, objfile);
712 if (SYMBOL_SECTION (*psym) >= 0)
713 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
714 SYMBOL_SECTION (*psym));
715 }
c906108c
SS
716 for (psym = objfile->static_psymbols.list;
717 psym < objfile->static_psymbols.next;
718 psym++)
7a78d0ee
KB
719 {
720 fixup_psymbol_section (*psym, objfile);
721 if (SYMBOL_SECTION (*psym) >= 0)
722 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
723 SYMBOL_SECTION (*psym));
724 }
c906108c
SS
725 }
726
727 {
728 struct minimal_symbol *msym;
729 ALL_OBJFILE_MSYMBOLS (objfile, msym)
730 if (SYMBOL_SECTION (msym) >= 0)
c5aa993b 731 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
c906108c
SS
732 }
733 /* Relocating different sections by different amounts may cause the symbols
734 to be out of order. */
735 msymbols_sort (objfile);
736
737 {
738 int i;
739 for (i = 0; i < objfile->num_sections; ++i)
a4c8257b 740 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
c906108c
SS
741 }
742
36b0c0e0
PS
743 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
744 {
745 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
746 only as a fallback. */
747 struct obj_section *s;
748 s = find_pc_section (objfile->ei.entry_point);
749 if (s)
750 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
751 else
752 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
753 }
754
c906108c
SS
755 {
756 struct obj_section *s;
757 bfd *abfd;
758
759 abfd = objfile->obfd;
760
96baa820 761 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 762 {
78f0949b
KB
763 int idx = s->the_bfd_section->index;
764
765 s->addr += ANOFFSET (delta, idx);
766 s->endaddr += ANOFFSET (delta, idx);
c906108c
SS
767 }
768 }
769
c906108c
SS
770 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
771 {
b8fbeb18
EZ
772 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
773 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
c906108c
SS
774 }
775
776 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
777 {
b8fbeb18
EZ
778 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
779 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
c906108c
SS
780 }
781
782 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
783 {
b8fbeb18
EZ
784 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
785 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
c906108c
SS
786 }
787
788 /* Relocate breakpoints as necessary, after things are relocated. */
789 breakpoint_re_set ();
790}
791\f
792/* Many places in gdb want to test just to see if we have any partial
793 symbols available. This function returns zero if none are currently
794 available, nonzero otherwise. */
795
796int
fba45db2 797have_partial_symbols (void)
c906108c
SS
798{
799 struct objfile *ofp;
800
801 ALL_OBJFILES (ofp)
c5aa993b
JM
802 {
803 if (ofp->psymtabs != NULL)
804 {
805 return 1;
806 }
807 }
c906108c
SS
808 return 0;
809}
810
811/* Many places in gdb want to test just to see if we have any full
812 symbols available. This function returns zero if none are currently
813 available, nonzero otherwise. */
814
815int
fba45db2 816have_full_symbols (void)
c906108c
SS
817{
818 struct objfile *ofp;
819
820 ALL_OBJFILES (ofp)
c5aa993b
JM
821 {
822 if (ofp->symtabs != NULL)
823 {
824 return 1;
825 }
826 }
c906108c
SS
827 return 0;
828}
829
830
831/* This operations deletes all objfile entries that represent solibs that
832 weren't explicitly loaded by the user, via e.g., the add-symbol-file
833 command.
c5aa993b 834 */
c906108c 835void
fba45db2 836objfile_purge_solibs (void)
c906108c 837{
c5aa993b
JM
838 struct objfile *objf;
839 struct objfile *temp;
c906108c
SS
840
841 ALL_OBJFILES_SAFE (objf, temp)
842 {
843 /* We assume that the solib package has been purged already, or will
844 be soon.
c5aa993b 845 */
2df3850c 846 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
c906108c
SS
847 free_objfile (objf);
848 }
849}
850
851
852/* Many places in gdb want to test just to see if we have any minimal
853 symbols available. This function returns zero if none are currently
854 available, nonzero otherwise. */
855
856int
fba45db2 857have_minimal_symbols (void)
c906108c
SS
858{
859 struct objfile *ofp;
860
861 ALL_OBJFILES (ofp)
c5aa993b 862 {
15831452 863 if (ofp->minimal_symbol_count > 0)
c5aa993b
JM
864 {
865 return 1;
866 }
867 }
c906108c
SS
868 return 0;
869}
870
871#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
872
873/* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
874 of the corresponding symbol file in MTIME, try to open an existing file
875 with the name SYMSFILENAME and verify it is more recent than the base
876 file by checking it's timestamp against MTIME.
877
878 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
879
880 If SYMSFILENAME does exist, but is out of date, we check to see if the
881 user has specified creation of a mapped file. If so, we don't issue
882 any warning message because we will be creating a new mapped file anyway,
883 overwriting the old one. If not, then we issue a warning message so that
884 the user will know why we aren't using this existing mapped symbol file.
885 In either case, we return -1.
886
887 If SYMSFILENAME does exist and is not out of date, but can't be opened for
888 some reason, then prints an appropriate system error message and returns -1.
889
890 Otherwise, returns the open file descriptor. */
891
892static int
fba45db2 893open_existing_mapped_file (char *symsfilename, long mtime, int flags)
c906108c
SS
894{
895 int fd = -1;
896 struct stat sbuf;
897
898 if (stat (symsfilename, &sbuf) == 0)
899 {
900 if (sbuf.st_mtime < mtime)
901 {
2df3850c 902 if (!(flags & OBJF_MAPPED))
c906108c
SS
903 {
904 warning ("mapped symbol file `%s' is out of date, ignored it",
905 symsfilename);
906 }
907 }
908 else if ((fd = open (symsfilename, O_RDWR)) < 0)
909 {
910 if (error_pre_print)
911 {
912 printf_unfiltered (error_pre_print);
913 }
914 print_sys_errmsg (symsfilename, errno);
915 }
916 }
917 return (fd);
918}
919
920/* Look for a mapped symbol file that corresponds to FILENAME and is more
921 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
922 use a mapped symbol file for this file, so create a new one if one does
923 not currently exist.
924
925 If found, then return an open file descriptor for the file, otherwise
926 return -1.
927
928 This routine is responsible for implementing the policy that generates
929 the name of the mapped symbol file from the name of a file containing
930 symbols that gdb would like to read. Currently this policy is to append
931 ".syms" to the name of the file.
932
933 This routine is also responsible for implementing the policy that
934 determines where the mapped symbol file is found (the search path).
935 This policy is that when reading an existing mapped file, a file of
936 the correct name in the current directory takes precedence over a
937 file of the correct name in the same directory as the symbol file.
938 When creating a new mapped file, it is always created in the current
939 directory. This helps to minimize the chances of a user unknowingly
940 creating big mapped files in places like /bin and /usr/local/bin, and
941 allows a local copy to override a manually installed global copy (in
942 /bin for example). */
943
944static int
fba45db2 945open_mapped_file (char *filename, long mtime, int flags)
c906108c
SS
946{
947 int fd;
948 char *symsfilename;
949
950 /* First try to open an existing file in the current directory, and
951 then try the directory where the symbol file is located. */
952
bdda63b0 953 symsfilename = concat ("./", lbasename (filename), ".syms", (char *) NULL);
2df3850c 954 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
c906108c 955 {
b8c9b27d 956 xfree (symsfilename);
c906108c 957 symsfilename = concat (filename, ".syms", (char *) NULL);
2fc18c15 958 fd = open_existing_mapped_file (symsfilename, mtime, flags);
c906108c
SS
959 }
960
961 /* If we don't have an open file by now, then either the file does not
962 already exist, or the base file has changed since it was created. In
963 either case, if the user has specified use of a mapped file, then
964 create a new mapped file, truncating any existing one. If we can't
965 create one, print a system error message saying why we can't.
966
967 By default the file is rw for everyone, with the user's umask taking
968 care of turning off the permissions the user wants off. */
969
2fc18c15 970 if ((fd < 0) && (flags & OBJF_MAPPED))
c906108c 971 {
b8c9b27d 972 xfree (symsfilename);
bdda63b0 973 symsfilename = concat ("./", lbasename (filename), ".syms",
c906108c
SS
974 (char *) NULL);
975 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
976 {
977 if (error_pre_print)
978 {
979 printf_unfiltered (error_pre_print);
980 }
981 print_sys_errmsg (symsfilename, errno);
982 }
983 }
984
b8c9b27d 985 xfree (symsfilename);
c906108c
SS
986 return (fd);
987}
988
4efb68b1 989static void *
fba45db2 990map_to_file (int fd)
c906108c 991{
4efb68b1 992 void *md;
c906108c
SS
993 CORE_ADDR mapto;
994
4efb68b1 995 md = mmalloc_attach (fd, 0);
c906108c
SS
996 if (md != NULL)
997 {
998 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
999 md = mmalloc_detach (md);
1000 if (md != NULL)
1001 {
1002 /* FIXME: should figure out why detach failed */
1003 md = NULL;
1004 }
1005 else if (mapto != (CORE_ADDR) NULL)
1006 {
1007 /* This mapping file needs to be remapped at "mapto" */
4efb68b1 1008 md = mmalloc_attach (fd, mapto);
c906108c
SS
1009 }
1010 else
1011 {
1012 /* This is a freshly created mapping file. */
1013 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
1014 if (mapto != 0)
1015 {
1016 /* To avoid reusing the freshly created mapping file, at the
c5aa993b
JM
1017 address selected by mmap, we must truncate it before trying
1018 to do an attach at the address we want. */
c906108c 1019 ftruncate (fd, 0);
4efb68b1 1020 md = mmalloc_attach (fd, mapto);
c906108c
SS
1021 if (md != NULL)
1022 {
4efb68b1 1023 mmalloc_setkey (md, 1, mapto);
c906108c
SS
1024 }
1025 }
1026 }
1027 }
1028 return (md);
1029}
1030
c5aa993b 1031#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c
SS
1032
1033/* Returns a section whose range includes PC and SECTION,
1034 or NULL if none found. Note the distinction between the return type,
1035 struct obj_section (which is defined in gdb), and the input type
1036 struct sec (which is a bfd-defined data type). The obj_section
1037 contains a pointer to the bfd struct sec section. */
1038
1039struct obj_section *
fba45db2 1040find_pc_sect_section (CORE_ADDR pc, struct sec *section)
c906108c
SS
1041{
1042 struct obj_section *s;
1043 struct objfile *objfile;
c5aa993b 1044
96baa820 1045 ALL_OBJSECTIONS (objfile, s)
c5aa993b
JM
1046 if ((section == 0 || section == s->the_bfd_section) &&
1047 s->addr <= pc && pc < s->endaddr)
c5aa993b 1048 return (s);
c906108c 1049
c5aa993b 1050 return (NULL);
c906108c
SS
1051}
1052
1053/* Returns a section whose range includes PC or NULL if none found.
1054 Backward compatibility, no section. */
1055
1056struct obj_section *
fba45db2 1057find_pc_section (CORE_ADDR pc)
c906108c
SS
1058{
1059 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
1060}
c5aa993b 1061
c906108c
SS
1062
1063/* In SVR4, we recognize a trampoline by it's section name.
1064 That is, if the pc is in a section named ".plt" then we are in
1065 a trampoline. */
1066
1067int
fba45db2 1068in_plt_section (CORE_ADDR pc, char *name)
c906108c
SS
1069{
1070 struct obj_section *s;
1071 int retval = 0;
c5aa993b
JM
1072
1073 s = find_pc_section (pc);
1074
c906108c
SS
1075 retval = (s != NULL
1076 && s->the_bfd_section->name != NULL
1077 && STREQ (s->the_bfd_section->name, ".plt"));
c5aa993b 1078 return (retval);
c906108c 1079}
7be570e7
JM
1080
1081/* Return nonzero if NAME is in the import list of OBJFILE. Else
1082 return zero. */
1083
1084int
fba45db2 1085is_in_import_list (char *name, struct objfile *objfile)
7be570e7
JM
1086{
1087 register int i;
1088
1089 if (!objfile || !name || !*name)
1090 return 0;
1091
1092 for (i = 0; i < objfile->import_list_size; i++)
1093 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
1094 return 1;
1095 return 0;
1096}
1097
This page took 0.357585 seconds and 4 git commands to generate.