gdbserver: Use std::list for all_dlls
[deliverable/binutils-gdb.git] / gdb / objfiles.h
CommitLineData
c906108c 1/* Definitions for symbol file management in GDB.
af5f3db6 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#if !defined (OBJFILES_H)
21#define OBJFILES_H
22
63e43d3a 23#include "hashtab.h"
3956d554 24#include "gdb_obstack.h" /* For obstack internals. */
b15cc25c 25#include "objfile-flags.h"
af5bf4ad 26#include "symfile.h"
6c95b8df 27#include "progspace.h"
8e260fc0 28#include "registry.h"
65cf3563 29#include "gdb_bfd.h"
3956d554 30
af5f3db6 31struct bcache;
2de7ced7 32struct htab;
4a4b3fed 33struct objfile_data;
af5bf4ad 34struct partial_symbol;
08c0b5bc 35
c906108c
SS
36/* This structure maintains information on a per-objfile basis about the
37 "entry point" of the objfile, and the scope within which the entry point
38 exists. It is possible that gdb will see more than one objfile that is
39 executable, each with its own entry point.
40
41 For example, for dynamically linked executables in SVR4, the dynamic linker
42 code is contained within the shared C library, which is actually executable
43 and is run by the kernel first when an exec is done of a user executable
44 that is dynamically linked. The dynamic linker within the shared C library
45 then maps in the various program segments in the user executable and jumps
46 to the user executable's recorded entry point, as if the call had been made
47 directly by the kernel.
48
73c1e0a1
AC
49 The traditional gdb method of using this info was to use the
50 recorded entry point to set the entry-file's lowpc and highpc from
627b3ba2
AC
51 the debugging information, where these values are the starting
52 address (inclusive) and ending address (exclusive) of the
53 instruction space in the executable which correspond to the
0df8b418 54 "startup file", i.e. crt0.o in most cases. This file is assumed to
627b3ba2
AC
55 be a startup file and frames with pc's inside it are treated as
56 nonexistent. Setting these variables is necessary so that
57 backtraces do not fly off the bottom of the stack.
58
59 NOTE: cagney/2003-09-09: It turns out that this "traditional"
60 method doesn't work. Corinna writes: ``It turns out that the call
2f72f850 61 to test for "inside entry file" destroys a meaningful backtrace
0df8b418 62 under some conditions. E.g. the backtrace tests in the asm-source
627b3ba2
AC
63 testcase are broken for some targets. In this test the functions
64 are all implemented as part of one file and the testcase is not
65 necessarily linked with a start file (depending on the target).
66 What happens is, that the first frame is printed normaly and
67 following frames are treated as being inside the enttry file then.
68 This way, only the #0 frame is printed in the backtrace output.''
69 Ref "frame.c" "NOTE: vinschen/2003-04-01".
c906108c
SS
70
71 Gdb also supports an alternate method to avoid running off the bottom
72 of the stack.
73
74 There are two frames that are "special", the frame for the function
75 containing the process entry point, since it has no predecessor frame,
76 and the frame for the function containing the user code entry point
77 (the main() function), since all the predecessor frames are for the
78 process startup code. Since we have no guarantee that the linked
79 in startup modules have any debugging information that gdb can use,
80 we need to avoid following frame pointers back into frames that might
95cf5869 81 have been built in the startup code, as we might get hopelessly
c906108c
SS
82 confused. However, we almost always have debugging information
83 available for main().
84
618ce49f
AC
85 These variables are used to save the range of PC values which are
86 valid within the main() function and within the function containing
87 the process entry point. If we always consider the frame for
88 main() as the outermost frame when debugging user code, and the
89 frame for the process entry point function as the outermost frame
90 when debugging startup code, then all we have to do is have
91 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
92 current PC is within the range specified by these variables. In
93 essence, we set "ceilings" in the frame chain beyond which we will
c906108c
SS
94 not proceed when following the frame chain back up the stack.
95
96 A nice side effect is that we can still debug startup code without
97 running off the end of the frame chain, assuming that we have usable
98 debugging information in the startup modules, and if we choose to not
99 use the block at main, or can't find it for some reason, everything
100 still works as before. And if we have no startup code debugging
101 information but we do have usable information for main(), backtraces
6e4c6c91 102 from user code don't go wandering off into the startup code. */
c906108c
SS
103
104struct entry_info
95cf5869
DE
105{
106 /* The unrelocated value we should use for this objfile entry point. */
107 CORE_ADDR entry_point;
c906108c 108
95cf5869
DE
109 /* The index of the section in which the entry point appears. */
110 int the_bfd_section_index;
53eddfa6 111
95cf5869
DE
112 /* Set to 1 iff ENTRY_POINT contains a valid value. */
113 unsigned entry_point_p : 1;
6ef55de7 114
95cf5869
DE
115 /* Set to 1 iff this object was initialized. */
116 unsigned initialized : 1;
117};
c906108c 118
f1f6aadf
PA
119/* Sections in an objfile. The section offsets are stored in the
120 OBJFILE. */
c906108c 121
c5aa993b 122struct obj_section
95cf5869
DE
123{
124 /* BFD section pointer */
125 struct bfd_section *the_bfd_section;
c906108c 126
95cf5869
DE
127 /* Objfile this section is part of. */
128 struct objfile *objfile;
c906108c 129
95cf5869
DE
130 /* True if this "overlay section" is mapped into an "overlay region". */
131 int ovly_mapped;
132};
c906108c 133
f1f6aadf
PA
134/* Relocation offset applied to S. */
135#define obj_section_offset(s) \
65cf3563 136 (((s)->objfile->section_offsets)->offsets[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])
f1f6aadf
PA
137
138/* The memory address of section S (vma + offset). */
139#define obj_section_addr(s) \
1706c199 140 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
141 + obj_section_offset (s))
142
143/* The one-passed-the-end memory address of section S
144 (vma + size + offset). */
145#define obj_section_endaddr(s) \
1706c199 146 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
147 + bfd_get_section_size ((s)->the_bfd_section) \
148 + obj_section_offset (s))
c906108c 149
c906108c
SS
150/* The "objstats" structure provides a place for gdb to record some
151 interesting information about its internal state at runtime, on a
152 per objfile basis, such as information about the number of symbols
0df8b418 153 read, size of string table (if any), etc. */
c906108c 154
c5aa993b 155struct objstats
95cf5869
DE
156{
157 /* Number of partial symbols read. */
9e86da07 158 int n_psyms = 0;
95cf5869
DE
159
160 /* Number of full symbols read. */
9e86da07 161 int n_syms = 0;
95cf5869
DE
162
163 /* Number of ".stabs" read (if applicable). */
9e86da07 164 int n_stabs = 0;
95cf5869
DE
165
166 /* Number of types. */
9e86da07 167 int n_types = 0;
95cf5869
DE
168
169 /* Size of stringtable, (if applicable). */
9e86da07 170 int sz_strtab = 0;
95cf5869 171};
c906108c
SS
172
173#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
174#define OBJSTATS struct objstats stats
a14ed312
KB
175extern void print_objfile_statistics (void);
176extern void print_symbol_bcache_statistics (void);
c906108c 177
9227b5eb 178/* Number of entries in the minimal symbol hash table. */
375f3d86 179#define MINIMAL_SYMBOL_HASH_SIZE 2039
9227b5eb 180
706e3705
TT
181/* Some objfile data is hung off the BFD. This enables sharing of the
182 data across all objfiles using the BFD. The data is stored in an
183 instance of this structure, and associated with the BFD using the
184 registry system. */
185
186struct objfile_per_bfd_storage
187{
23732b1e
PA
188 objfile_per_bfd_storage ()
189 : minsyms_read (false)
190 {}
191
706e3705
TT
192 /* The storage has an obstack of its own. */
193
23732b1e 194 auto_obstack storage_obstack;
95cf5869 195
706e3705
TT
196 /* Byte cache for file names. */
197
23732b1e 198 bcache *filename_cache = NULL;
6532ff36
TT
199
200 /* Byte cache for macros. */
95cf5869 201
23732b1e 202 bcache *macro_cache = NULL;
df6d5441
TT
203
204 /* The gdbarch associated with the BFD. Note that this gdbarch is
205 determined solely from BFD information, without looking at target
206 information. The gdbarch determined from a running target may
207 differ from this e.g. with respect to register types and names. */
208
23732b1e 209 struct gdbarch *gdbarch = NULL;
84a1243b
TT
210
211 /* Hash table for mapping symbol names to demangled names. Each
212 entry in the hash table is actually two consecutive strings,
213 both null-terminated; the first one is a mangled or linkage
214 name, and the second is the demangled name or just a zero byte
215 if the name doesn't demangle. */
95cf5869 216
23732b1e 217 htab *demangled_names_hash = NULL;
6ef55de7
TT
218
219 /* The per-objfile information about the entry point, the scope (file/func)
220 containing the entry point, and the scope of the user's main() func. */
221
23732b1e 222 entry_info ei {};
3d548a53
TT
223
224 /* The name and language of any "main" found in this objfile. The
225 name can be NULL, which means that the information was not
226 recorded. */
227
23732b1e
PA
228 const char *name_of_main = NULL;
229 enum language language_of_main = language_unknown;
34643a32
TT
230
231 /* Each file contains a pointer to an array of minimal symbols for all
232 global symbols that are defined within the file. The array is
233 terminated by a "null symbol", one that has a NULL pointer for the
234 name and a zero value for the address. This makes it easy to walk
235 through the array when passed a pointer to somewhere in the middle
236 of it. There is also a count of the number of symbols, which does
237 not include the terminating null symbol. The array itself, as well
238 as all the data that it points to, should be allocated on the
239 objfile_obstack for this file. */
240
23732b1e
PA
241 minimal_symbol *msymbols = NULL;
242 int minimal_symbol_count = 0;
34643a32 243
5f6cac40
TT
244 /* The number of minimal symbols read, before any minimal symbol
245 de-duplication is applied. Note in particular that this has only
246 a passing relationship with the actual size of the table above;
247 use minimal_symbol_count if you need the true size. */
95cf5869 248
23732b1e 249 int n_minsyms = 0;
5f6cac40 250
34643a32
TT
251 /* This is true if minimal symbols have already been read. Symbol
252 readers can use this to bypass minimal symbol reading. Also, the
253 minimal symbol table management code in minsyms.c uses this to
254 suppress new minimal symbols. You might think that MSYMBOLS or
255 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
256 for multiple readers to install minimal symbols into a given
257 per-BFD. */
258
23732b1e 259 bool minsyms_read : 1;
34643a32
TT
260
261 /* This is a hash table used to index the minimal symbols by name. */
262
23732b1e 263 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
34643a32
TT
264
265 /* This hash table is used to index the minimal symbols by their
266 demangled names. */
267
23732b1e 268 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
706e3705
TT
269};
270
c906108c
SS
271/* Master structure for keeping track of each file from which
272 gdb reads symbols. There are several ways these get allocated: 1.
273 The main symbol file, symfile_objfile, set by the symbol-file command,
274 2. Additional symbol files added by the add-symbol-file command,
275 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
276 for modules that were loaded when GDB attached to a remote system
277 (see remote-vx.c). */
278
279struct objfile
95cf5869 280{
9e86da07
TT
281 objfile (bfd *, const char *, objfile_flags);
282 ~objfile ();
283
284 DISABLE_COPY_AND_ASSIGN (objfile);
285
95cf5869
DE
286 /* All struct objfile's are chained together by their next pointers.
287 The program space field "objfiles" (frequently referenced via
288 the macro "object_files") points to the first link in this chain. */
c906108c 289
9e86da07 290 struct objfile *next = nullptr;
c906108c 291
95cf5869
DE
292 /* The object file's original name as specified by the user,
293 made absolute, and tilde-expanded. However, it is not canonicalized
294 (i.e., it has not been passed through gdb_realpath).
295 This pointer is never NULL. This does not have to be freed; it is
296 guaranteed to have a lifetime at least as long as the objfile. */
c906108c 297
9e86da07 298 char *original_name = nullptr;
c906108c 299
9e86da07 300 CORE_ADDR addr_low = 0;
c906108c 301
b15cc25c 302 /* Some flag bits for this objfile. */
e4f6d2ec 303
b15cc25c 304 objfile_flags flags;
c906108c 305
95cf5869 306 /* The program space associated with this objfile. */
c906108c 307
95cf5869 308 struct program_space *pspace;
6c95b8df 309
95cf5869
DE
310 /* List of compunits.
311 These are used to do symbol lookups and file/line-number lookups. */
6c95b8df 312
9e86da07 313 struct compunit_symtab *compunit_symtabs = nullptr;
c906108c 314
95cf5869
DE
315 /* Each objfile points to a linked list of partial symtabs derived from
316 this file, one partial symtab structure for each compilation unit
317 (source file). */
c906108c 318
9e86da07 319 struct partial_symtab *psymtabs = nullptr;
c906108c 320
95cf5869
DE
321 /* Map addresses to the entries of PSYMTABS. It would be more efficient to
322 have a map per the whole process but ADDRMAP cannot selectively remove
323 its items during FREE_OBJFILE. This mapping is already present even for
324 PARTIAL_SYMTABs which still have no corresponding full SYMTABs read. */
c906108c 325
9e86da07 326 struct addrmap *psymtabs_addrmap = nullptr;
ff013f42 327
95cf5869 328 /* List of freed partial symtabs, available for re-use. */
ff013f42 329
9e86da07 330 struct partial_symtab *free_psymtabs = nullptr;
c906108c 331
95cf5869
DE
332 /* The object file's BFD. Can be null if the objfile contains only
333 minimal symbols, e.g. the run time common symbols for SunOS4. */
c906108c 334
95cf5869 335 bfd *obfd;
c906108c 336
95cf5869
DE
337 /* The per-BFD data. Note that this is treated specially if OBFD
338 is NULL. */
c906108c 339
9e86da07 340 struct objfile_per_bfd_storage *per_bfd = nullptr;
706e3705 341
95cf5869
DE
342 /* The modification timestamp of the object file, as of the last time
343 we read its symbols. */
706e3705 344
9e86da07 345 long mtime = 0;
c906108c 346
95cf5869
DE
347 /* Obstack to hold objects that should be freed when we load a new symbol
348 table from this object file. */
c906108c 349
9e86da07 350 struct obstack objfile_obstack {};
b99607ea 351
95cf5869
DE
352 /* A byte cache where we can stash arbitrary "chunks" of bytes that
353 will not change. */
b99607ea 354
9e86da07 355 struct psymbol_bcache *psymbol_cache;
c906108c 356
95cf5869
DE
357 /* Vectors of all partial symbols read in from file. The actual data
358 is stored in the objfile_obstack. */
c906108c 359
af5bf4ad
SM
360 std::vector<partial_symbol *> global_psymbols;
361 std::vector<partial_symbol *> static_psymbols;
c906108c 362
95cf5869
DE
363 /* Structure which keeps track of functions that manipulate objfile's
364 of the same type as this objfile. I.e. the function to read partial
365 symbols for example. Note that this structure is in statically
366 allocated memory, and is shared by all objfiles that use the
367 object module reader of this type. */
c906108c 368
9e86da07 369 const struct sym_fns *sf = nullptr;
c906108c 370
95cf5869 371 /* Per objfile data-pointers required by other GDB modules. */
c906108c 372
9e86da07 373 REGISTRY_FIELDS {};
0d0e1a63 374
95cf5869
DE
375 /* Set of relocation offsets to apply to each section.
376 The table is indexed by the_bfd_section->index, thus it is generally
377 as large as the number of sections in the binary.
378 The table is stored on the objfile_obstack.
0d0e1a63 379
95cf5869
DE
380 These offsets indicate that all symbols (including partial and
381 minimal symbols) which have been read have been relocated by this
382 much. Symbols which are yet to be read need to be relocated by it. */
c906108c 383
9e86da07
TT
384 struct section_offsets *section_offsets = nullptr;
385 int num_sections = 0;
c906108c 386
95cf5869
DE
387 /* Indexes in the section_offsets array. These are initialized by the
388 *_symfile_offsets() family of functions (som_symfile_offsets,
389 xcoff_symfile_offsets, default_symfile_offsets). In theory they
390 should correspond to the section indexes used by bfd for the
391 current objfile. The exception to this for the time being is the
9e86da07
TT
392 SOM version.
393
394 These are initialized to -1 so that we can later detect if they
395 are used w/o being properly assigned to. */
c906108c 396
9e86da07
TT
397 int sect_index_text = -1;
398 int sect_index_data = -1;
399 int sect_index_bss = -1;
400 int sect_index_rodata = -1;
b8fbeb18 401
95cf5869
DE
402 /* These pointers are used to locate the section table, which
403 among other things, is used to map pc addresses into sections.
404 SECTIONS points to the first entry in the table, and
405 SECTIONS_END points to the first location past the last entry
406 in the table. The table is stored on the objfile_obstack. The
407 sections are indexed by the BFD section index; but the
408 structure data is only valid for certain sections
409 (e.g. non-empty, SEC_ALLOC). */
b8fbeb18 410
9e86da07
TT
411 struct obj_section *sections = nullptr;
412 struct obj_section *sections_end = nullptr;
c906108c 413
95cf5869
DE
414 /* GDB allows to have debug symbols in separate object files. This is
415 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
416 Although this is a tree structure, GDB only support one level
417 (ie a separate debug for a separate debug is not supported). Note that
418 separate debug object are in the main chain and therefore will be
419 visited by ALL_OBJFILES & co iterators. Separate debug objfile always
420 has a non-nul separate_debug_objfile_backlink. */
c906108c 421
95cf5869 422 /* Link to the first separate debug object, if any. */
15d123c9 423
9e86da07 424 struct objfile *separate_debug_objfile = nullptr;
5b5d99cf 425
95cf5869
DE
426 /* If this is a separate debug object, this is used as a link to the
427 actual executable objfile. */
15d123c9 428
9e86da07 429 struct objfile *separate_debug_objfile_backlink = nullptr;
15d123c9 430
95cf5869
DE
431 /* If this is a separate debug object, this is a link to the next one
432 for the same executable objfile. */
5c4e30ca 433
9e86da07 434 struct objfile *separate_debug_objfile_link = nullptr;
95cf5869
DE
435
436 /* Place to stash various statistics about this objfile. */
437
438 OBJSTATS;
439
440 /* A linked list of symbols created when reading template types or
441 function templates. These symbols are not stored in any symbol
442 table, so we have to keep them here to relocate them
443 properly. */
444
9e86da07 445 struct symbol *template_symbols = nullptr;
63e43d3a
PMR
446
447 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
448 block *) that have one.
449
450 In the context of nested functions (available in Pascal, Ada and GNU C,
451 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
452 for a function is a way to get the frame corresponding to the enclosing
453 function.
454
455 Very few blocks have a static link, so it's more memory efficient to
456 store these here rather than in struct block. Static links must be
457 allocated on the objfile's obstack. */
9e86da07 458 htab_t static_links {};
95cf5869 459};
c906108c 460
c906108c
SS
461/* Declarations for functions defined in objfiles.c */
462
9c1877ea 463extern struct gdbarch *get_objfile_arch (const struct objfile *);
5e2b427d 464
abd0a5fa
JK
465extern int entry_point_address_query (CORE_ADDR *entry_p);
466
9ab9195f
EZ
467extern CORE_ADDR entry_point_address (void);
468
d82ea6a8 469extern void build_objfile_section_table (struct objfile *);
c906108c 470
15d123c9
TG
471extern struct objfile *objfile_separate_debug_iterate (const struct objfile *,
472 const struct objfile *);
473
5b5d99cf
JB
474extern void put_objfile_before (struct objfile *, struct objfile *);
475
15d123c9
TG
476extern void add_separate_debug_objfile (struct objfile *, struct objfile *);
477
a14ed312 478extern void unlink_objfile (struct objfile *);
c906108c 479
15d123c9
TG
480extern void free_objfile_separate_debug (struct objfile *);
481
74b7792f
AC
482extern struct cleanup *make_cleanup_free_objfile (struct objfile *);
483
a14ed312 484extern void free_all_objfiles (void);
c906108c 485
3189cb12 486extern void objfile_relocate (struct objfile *, const struct section_offsets *);
4141a416 487extern void objfile_rebase (struct objfile *, CORE_ADDR);
c906108c 488
55333a84
DE
489extern int objfile_has_partial_symbols (struct objfile *objfile);
490
491extern int objfile_has_full_symbols (struct objfile *objfile);
492
e361b228
TG
493extern int objfile_has_symbols (struct objfile *objfile);
494
a14ed312 495extern int have_partial_symbols (void);
c906108c 496
a14ed312 497extern int have_full_symbols (void);
c906108c 498
8fb8eb5c
DE
499extern void objfile_set_sym_fns (struct objfile *objfile,
500 const struct sym_fns *sf);
501
bb272892 502extern void objfiles_changed (void);
63644780
NB
503
504extern int is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
bb272892 505
d03de421
PA
506/* Return true if ADDRESS maps into one of the sections of a
507 OBJF_SHARED objfile of PSPACE and false otherwise. */
08351840 508
d03de421
PA
509extern int shared_objfile_contains_address_p (struct program_space *pspace,
510 CORE_ADDR address);
08351840 511
c906108c
SS
512/* This operation deletes all objfile entries that represent solibs that
513 weren't explicitly loaded by the user, via e.g., the add-symbol-file
0df8b418
MS
514 command. */
515
a14ed312 516extern void objfile_purge_solibs (void);
c906108c
SS
517
518/* Functions for dealing with the minimal symbol table, really a misc
519 address<->symbol mapping for things we don't have debug symbols for. */
520
a14ed312 521extern int have_minimal_symbols (void);
c906108c 522
a14ed312 523extern struct obj_section *find_pc_section (CORE_ADDR pc);
c906108c 524
3e5d3a5a 525/* Return non-zero if PC is in a section called NAME. */
a121b7c1 526extern int pc_in_section (CORE_ADDR, const char *);
3e5d3a5a
MR
527
528/* Return non-zero if PC is in a SVR4-style procedure linkage table
529 section. */
530
531static inline int
532in_plt_section (CORE_ADDR pc)
533{
534 return pc_in_section (pc, ".plt");
535}
c906108c 536
0d0e1a63
MK
537/* Keep a registry of per-objfile data-pointers required by other GDB
538 modules. */
8e260fc0 539DECLARE_REGISTRY(objfile);
e3c69974 540
607ece04
GB
541/* In normal use, the section map will be rebuilt by find_pc_section
542 if objfiles have been added, removed or relocated since it was last
543 called. Calling inhibit_section_map_updates will inhibit this
544 behavior until resume_section_map_updates is called. If you call
545 inhibit_section_map_updates you must ensure that every call to
546 find_pc_section in the inhibited region relates to a section that
547 is already in the section map and has not since been removed or
548 relocated. */
549extern void inhibit_section_map_updates (struct program_space *pspace);
550
551/* Resume automatically rebuilding the section map as required. */
552extern void resume_section_map_updates (struct program_space *pspace);
553
554/* Version of the above suitable for use as a cleanup. */
555extern void resume_section_map_updates_cleanup (void *arg);
556
19630284
JB
557extern void default_iterate_over_objfiles_in_search_order
558 (struct gdbarch *gdbarch,
559 iterate_over_objfiles_in_search_order_cb_ftype *cb,
560 void *cb_data, struct objfile *current_objfile);
0d0e1a63
MK
561\f
562
6c95b8df
PA
563/* Traverse all object files in the current program space.
564 ALL_OBJFILES_SAFE works even if you delete the objfile during the
565 traversal. */
566
567/* Traverse all object files in program space SS. */
c906108c 568
6c95b8df 569#define ALL_PSPACE_OBJFILES(ss, obj) \
81b52a3a 570 for ((obj) = ss->objfiles; (obj) != NULL; (obj) = (obj)->next)
c906108c 571
6c95b8df
PA
572#define ALL_OBJFILES(obj) \
573 for ((obj) = current_program_space->objfiles; \
574 (obj) != NULL; \
575 (obj) = (obj)->next)
576
577#define ALL_OBJFILES_SAFE(obj,nxt) \
578 for ((obj) = current_program_space->objfiles; \
c906108c
SS
579 (obj) != NULL? ((nxt)=(obj)->next,1) :0; \
580 (obj) = (nxt))
581
582/* Traverse all symtabs in one objfile. */
583
43f3e411
DE
584#define ALL_OBJFILE_FILETABS(objfile, cu, s) \
585 ALL_OBJFILE_COMPUNITS (objfile, cu) \
586 ALL_COMPUNIT_FILETABS (cu, s)
c906108c 587
43f3e411 588/* Traverse all compunits in one objfile. */
d790cf0a 589
43f3e411
DE
590#define ALL_OBJFILE_COMPUNITS(objfile, cu) \
591 for ((cu) = (objfile) -> compunit_symtabs; (cu) != NULL; (cu) = (cu) -> next)
d790cf0a 592
c906108c
SS
593/* Traverse all minimal symbols in one objfile. */
594
34643a32
TT
595#define ALL_OBJFILE_MSYMBOLS(objfile, m) \
596 for ((m) = (objfile)->per_bfd->msymbols; \
597 MSYMBOL_LINKAGE_NAME (m) != NULL; \
598 (m)++)
c906108c 599
6c95b8df
PA
600/* Traverse all symtabs in all objfiles in the current symbol
601 space. */
c906108c 602
43f3e411
DE
603#define ALL_FILETABS(objfile, ps, s) \
604 ALL_OBJFILES (objfile) \
605 ALL_OBJFILE_FILETABS (objfile, ps, s)
c906108c 606
43f3e411 607/* Traverse all compunits in all objfiles in the current program space. */
11309657 608
43f3e411 609#define ALL_COMPUNITS(objfile, cu) \
11309657 610 ALL_OBJFILES (objfile) \
43f3e411 611 ALL_OBJFILE_COMPUNITS (objfile, cu)
11309657 612
6c95b8df
PA
613/* Traverse all minimal symbols in all objfiles in the current symbol
614 space. */
c906108c
SS
615
616#define ALL_MSYMBOLS(objfile, m) \
617 ALL_OBJFILES (objfile) \
15831452 618 ALL_OBJFILE_MSYMBOLS (objfile, m)
c906108c
SS
619
620#define ALL_OBJFILE_OSECTIONS(objfile, osect) \
65cf3563
TT
621 for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
622 if (osect->the_bfd_section == NULL) \
623 { \
624 /* Nothing. */ \
625 } \
626 else
c906108c 627
96a8853a
PA
628/* Traverse all obj_sections in all objfiles in the current program
629 space.
630
631 Note that this detects a "break" in the inner loop, and exits
632 immediately from the outer loop as well, thus, client code doesn't
633 need to know that this is implemented with a double for. The extra
634 hair is to make sure that a "break;" stops the outer loop iterating
635 as well, and both OBJFILE and OSECT are left unmodified:
636
637 - The outer loop learns about the inner loop's end condition, and
638 stops iterating if it detects the inner loop didn't reach its
639 end. In other words, the outer loop keeps going only if the
640 inner loop reached its end cleanly [(osect) ==
641 (objfile)->sections_end].
642
643 - OSECT is initialized in the outer loop initialization
644 expressions, such as if the inner loop has reached its end, so
645 the check mentioned above succeeds the first time.
646
647 - The trick to not clearing OBJFILE on a "break;" is, in the outer
648 loop's loop expression, advance OBJFILE, but iff the inner loop
649 reached its end. If not, there was a "break;", so leave OBJFILE
650 as is; the outer loop's conditional will break immediately as
0df8b418 651 well (as OSECT will be different from OBJFILE->sections_end). */
96a8853a
PA
652
653#define ALL_OBJSECTIONS(objfile, osect) \
654 for ((objfile) = current_program_space->objfiles, \
655 (objfile) != NULL ? ((osect) = (objfile)->sections_end) : 0; \
656 (objfile) != NULL \
657 && (osect) == (objfile)->sections_end; \
658 ((osect) == (objfile)->sections_end \
659 ? ((objfile) = (objfile)->next, \
660 (objfile) != NULL ? (osect) = (objfile)->sections_end : 0) \
661 : 0)) \
65cf3563 662 ALL_OBJFILE_OSECTIONS (objfile, osect)
c906108c 663
b8fbeb18 664#define SECT_OFF_DATA(objfile) \
8e65ff28 665 ((objfile->sect_index_data == -1) \
3e43a32a
MS
666 ? (internal_error (__FILE__, __LINE__, \
667 _("sect_index_data not initialized")), -1) \
8e65ff28 668 : objfile->sect_index_data)
b8fbeb18
EZ
669
670#define SECT_OFF_RODATA(objfile) \
8e65ff28 671 ((objfile->sect_index_rodata == -1) \
3e43a32a
MS
672 ? (internal_error (__FILE__, __LINE__, \
673 _("sect_index_rodata not initialized")), -1) \
8e65ff28 674 : objfile->sect_index_rodata)
b8fbeb18
EZ
675
676#define SECT_OFF_TEXT(objfile) \
8e65ff28 677 ((objfile->sect_index_text == -1) \
3e43a32a
MS
678 ? (internal_error (__FILE__, __LINE__, \
679 _("sect_index_text not initialized")), -1) \
8e65ff28 680 : objfile->sect_index_text)
b8fbeb18 681
a4c8257b 682/* Sometimes the .bss section is missing from the objfile, so we don't
0df8b418
MS
683 want to die here. Let the users of SECT_OFF_BSS deal with an
684 uninitialized section index. */
a4c8257b 685#define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
b8fbeb18 686
c14c28ba
PP
687/* Answer whether there is more than one object file loaded. */
688
689#define MULTI_OBJFILE_P() (object_files && object_files->next)
690
706e3705
TT
691/* Reset the per-BFD storage area on OBJ. */
692
693void set_objfile_per_bfd (struct objfile *obj);
694
e02c96a7
DE
695/* Return canonical name for OBJFILE.
696 This is the real file name if the file has been opened.
697 Otherwise it is the original name supplied by the user. */
698
4262abfb
JK
699const char *objfile_name (const struct objfile *objfile);
700
e02c96a7
DE
701/* Return the (real) file name of OBJFILE if the file has been opened,
702 otherwise return NULL. */
703
704const char *objfile_filename (const struct objfile *objfile);
705
cc485e62
DE
706/* Return the name to print for OBJFILE in debugging messages. */
707
708extern const char *objfile_debug_name (const struct objfile *objfile);
709
015d2e7e
DE
710/* Return the name of the file format of OBJFILE if the file has been opened,
711 otherwise return NULL. */
712
713const char *objfile_flavour_name (struct objfile *objfile);
714
3d548a53
TT
715/* Set the objfile's notion of the "main" name and language. */
716
717extern void set_objfile_main_name (struct objfile *objfile,
718 const char *name, enum language lang);
719
63e43d3a
PMR
720extern void objfile_register_static_link
721 (struct objfile *objfile,
722 const struct block *block,
723 const struct dynamic_prop *static_link);
724
725extern const struct dynamic_prop *objfile_lookup_static_link
726 (struct objfile *objfile, const struct block *block);
727
c5aa993b 728#endif /* !defined (OBJFILES_H) */
This page took 2.353839 seconds and 4 git commands to generate.