Introduce class psymtab_storage
[deliverable/binutils-gdb.git] / gdb / objfiles.h
CommitLineData
c906108c 1/* Definitions for symbol file management in GDB.
af5f3db6 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#if !defined (OBJFILES_H)
21#define OBJFILES_H
22
63e43d3a 23#include "hashtab.h"
3956d554 24#include "gdb_obstack.h" /* For obstack internals. */
b15cc25c 25#include "objfile-flags.h"
af5bf4ad 26#include "symfile.h"
6c95b8df 27#include "progspace.h"
8e260fc0 28#include "registry.h"
65cf3563 29#include "gdb_bfd.h"
d320c2b5 30#include "psymtab.h"
b5ec771e 31#include <vector>
21708325 32#include "common/next-iterator.h"
cac85af2 33#include "common/safe-iterator.h"
3956d554 34
af5f3db6 35struct bcache;
2de7ced7 36struct htab;
4a4b3fed 37struct objfile_data;
af5bf4ad 38struct partial_symbol;
08c0b5bc 39
c906108c
SS
40/* This structure maintains information on a per-objfile basis about the
41 "entry point" of the objfile, and the scope within which the entry point
42 exists. It is possible that gdb will see more than one objfile that is
43 executable, each with its own entry point.
44
45 For example, for dynamically linked executables in SVR4, the dynamic linker
46 code is contained within the shared C library, which is actually executable
47 and is run by the kernel first when an exec is done of a user executable
48 that is dynamically linked. The dynamic linker within the shared C library
49 then maps in the various program segments in the user executable and jumps
50 to the user executable's recorded entry point, as if the call had been made
51 directly by the kernel.
52
73c1e0a1
AC
53 The traditional gdb method of using this info was to use the
54 recorded entry point to set the entry-file's lowpc and highpc from
627b3ba2
AC
55 the debugging information, where these values are the starting
56 address (inclusive) and ending address (exclusive) of the
57 instruction space in the executable which correspond to the
0df8b418 58 "startup file", i.e. crt0.o in most cases. This file is assumed to
627b3ba2
AC
59 be a startup file and frames with pc's inside it are treated as
60 nonexistent. Setting these variables is necessary so that
61 backtraces do not fly off the bottom of the stack.
62
63 NOTE: cagney/2003-09-09: It turns out that this "traditional"
64 method doesn't work. Corinna writes: ``It turns out that the call
2f72f850 65 to test for "inside entry file" destroys a meaningful backtrace
0df8b418 66 under some conditions. E.g. the backtrace tests in the asm-source
627b3ba2
AC
67 testcase are broken for some targets. In this test the functions
68 are all implemented as part of one file and the testcase is not
69 necessarily linked with a start file (depending on the target).
70 What happens is, that the first frame is printed normaly and
71 following frames are treated as being inside the enttry file then.
72 This way, only the #0 frame is printed in the backtrace output.''
73 Ref "frame.c" "NOTE: vinschen/2003-04-01".
c906108c
SS
74
75 Gdb also supports an alternate method to avoid running off the bottom
76 of the stack.
77
78 There are two frames that are "special", the frame for the function
79 containing the process entry point, since it has no predecessor frame,
80 and the frame for the function containing the user code entry point
81 (the main() function), since all the predecessor frames are for the
82 process startup code. Since we have no guarantee that the linked
83 in startup modules have any debugging information that gdb can use,
84 we need to avoid following frame pointers back into frames that might
95cf5869 85 have been built in the startup code, as we might get hopelessly
c906108c
SS
86 confused. However, we almost always have debugging information
87 available for main().
88
618ce49f
AC
89 These variables are used to save the range of PC values which are
90 valid within the main() function and within the function containing
91 the process entry point. If we always consider the frame for
92 main() as the outermost frame when debugging user code, and the
93 frame for the process entry point function as the outermost frame
94 when debugging startup code, then all we have to do is have
95 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
96 current PC is within the range specified by these variables. In
97 essence, we set "ceilings" in the frame chain beyond which we will
c906108c
SS
98 not proceed when following the frame chain back up the stack.
99
100 A nice side effect is that we can still debug startup code without
101 running off the end of the frame chain, assuming that we have usable
102 debugging information in the startup modules, and if we choose to not
103 use the block at main, or can't find it for some reason, everything
104 still works as before. And if we have no startup code debugging
105 information but we do have usable information for main(), backtraces
6e4c6c91 106 from user code don't go wandering off into the startup code. */
c906108c
SS
107
108struct entry_info
95cf5869
DE
109{
110 /* The unrelocated value we should use for this objfile entry point. */
111 CORE_ADDR entry_point;
c906108c 112
95cf5869
DE
113 /* The index of the section in which the entry point appears. */
114 int the_bfd_section_index;
53eddfa6 115
95cf5869
DE
116 /* Set to 1 iff ENTRY_POINT contains a valid value. */
117 unsigned entry_point_p : 1;
6ef55de7 118
95cf5869
DE
119 /* Set to 1 iff this object was initialized. */
120 unsigned initialized : 1;
121};
c906108c 122
f1f6aadf
PA
123/* Sections in an objfile. The section offsets are stored in the
124 OBJFILE. */
c906108c 125
c5aa993b 126struct obj_section
95cf5869
DE
127{
128 /* BFD section pointer */
129 struct bfd_section *the_bfd_section;
c906108c 130
95cf5869
DE
131 /* Objfile this section is part of. */
132 struct objfile *objfile;
c906108c 133
95cf5869
DE
134 /* True if this "overlay section" is mapped into an "overlay region". */
135 int ovly_mapped;
136};
c906108c 137
f1f6aadf
PA
138/* Relocation offset applied to S. */
139#define obj_section_offset(s) \
65cf3563 140 (((s)->objfile->section_offsets)->offsets[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])
f1f6aadf
PA
141
142/* The memory address of section S (vma + offset). */
143#define obj_section_addr(s) \
1706c199 144 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
145 + obj_section_offset (s))
146
147/* The one-passed-the-end memory address of section S
148 (vma + size + offset). */
149#define obj_section_endaddr(s) \
1706c199 150 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
151 + bfd_get_section_size ((s)->the_bfd_section) \
152 + obj_section_offset (s))
c906108c 153
c906108c
SS
154/* The "objstats" structure provides a place for gdb to record some
155 interesting information about its internal state at runtime, on a
156 per objfile basis, such as information about the number of symbols
0df8b418 157 read, size of string table (if any), etc. */
c906108c 158
c5aa993b 159struct objstats
95cf5869
DE
160{
161 /* Number of partial symbols read. */
9e86da07 162 int n_psyms = 0;
95cf5869
DE
163
164 /* Number of full symbols read. */
9e86da07 165 int n_syms = 0;
95cf5869
DE
166
167 /* Number of ".stabs" read (if applicable). */
9e86da07 168 int n_stabs = 0;
95cf5869
DE
169
170 /* Number of types. */
9e86da07 171 int n_types = 0;
95cf5869
DE
172
173 /* Size of stringtable, (if applicable). */
9e86da07 174 int sz_strtab = 0;
95cf5869 175};
c906108c
SS
176
177#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
178#define OBJSTATS struct objstats stats
a14ed312
KB
179extern void print_objfile_statistics (void);
180extern void print_symbol_bcache_statistics (void);
c906108c 181
9227b5eb 182/* Number of entries in the minimal symbol hash table. */
375f3d86 183#define MINIMAL_SYMBOL_HASH_SIZE 2039
9227b5eb 184
706e3705
TT
185/* Some objfile data is hung off the BFD. This enables sharing of the
186 data across all objfiles using the BFD. The data is stored in an
187 instance of this structure, and associated with the BFD using the
188 registry system. */
189
190struct objfile_per_bfd_storage
191{
23732b1e
PA
192 objfile_per_bfd_storage ()
193 : minsyms_read (false)
194 {}
195
706e3705
TT
196 /* The storage has an obstack of its own. */
197
23732b1e 198 auto_obstack storage_obstack;
95cf5869 199
706e3705
TT
200 /* Byte cache for file names. */
201
23732b1e 202 bcache *filename_cache = NULL;
6532ff36
TT
203
204 /* Byte cache for macros. */
95cf5869 205
23732b1e 206 bcache *macro_cache = NULL;
df6d5441
TT
207
208 /* The gdbarch associated with the BFD. Note that this gdbarch is
209 determined solely from BFD information, without looking at target
210 information. The gdbarch determined from a running target may
211 differ from this e.g. with respect to register types and names. */
212
23732b1e 213 struct gdbarch *gdbarch = NULL;
84a1243b
TT
214
215 /* Hash table for mapping symbol names to demangled names. Each
216 entry in the hash table is actually two consecutive strings,
217 both null-terminated; the first one is a mangled or linkage
218 name, and the second is the demangled name or just a zero byte
219 if the name doesn't demangle. */
95cf5869 220
23732b1e 221 htab *demangled_names_hash = NULL;
6ef55de7
TT
222
223 /* The per-objfile information about the entry point, the scope (file/func)
224 containing the entry point, and the scope of the user's main() func. */
225
23732b1e 226 entry_info ei {};
3d548a53
TT
227
228 /* The name and language of any "main" found in this objfile. The
229 name can be NULL, which means that the information was not
230 recorded. */
231
23732b1e
PA
232 const char *name_of_main = NULL;
233 enum language language_of_main = language_unknown;
34643a32
TT
234
235 /* Each file contains a pointer to an array of minimal symbols for all
236 global symbols that are defined within the file. The array is
237 terminated by a "null symbol", one that has a NULL pointer for the
238 name and a zero value for the address. This makes it easy to walk
239 through the array when passed a pointer to somewhere in the middle
240 of it. There is also a count of the number of symbols, which does
241 not include the terminating null symbol. The array itself, as well
242 as all the data that it points to, should be allocated on the
243 objfile_obstack for this file. */
244
23732b1e
PA
245 minimal_symbol *msymbols = NULL;
246 int minimal_symbol_count = 0;
34643a32 247
5f6cac40
TT
248 /* The number of minimal symbols read, before any minimal symbol
249 de-duplication is applied. Note in particular that this has only
250 a passing relationship with the actual size of the table above;
251 use minimal_symbol_count if you need the true size. */
95cf5869 252
23732b1e 253 int n_minsyms = 0;
5f6cac40 254
34643a32
TT
255 /* This is true if minimal symbols have already been read. Symbol
256 readers can use this to bypass minimal symbol reading. Also, the
257 minimal symbol table management code in minsyms.c uses this to
258 suppress new minimal symbols. You might think that MSYMBOLS or
259 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
260 for multiple readers to install minimal symbols into a given
261 per-BFD. */
262
23732b1e 263 bool minsyms_read : 1;
34643a32
TT
264
265 /* This is a hash table used to index the minimal symbols by name. */
266
23732b1e 267 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
34643a32
TT
268
269 /* This hash table is used to index the minimal symbols by their
270 demangled names. */
271
23732b1e 272 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
b5ec771e
PA
273
274 /* All the different languages of symbols found in the demangled
275 hash table. A flat/vector-based map is more efficient than a map
276 or hash table here, since this will only usually contain zero or
277 one entries. */
278 std::vector<enum language> demangled_hash_languages;
706e3705
TT
279};
280
c906108c
SS
281/* Master structure for keeping track of each file from which
282 gdb reads symbols. There are several ways these get allocated: 1.
283 The main symbol file, symfile_objfile, set by the symbol-file command,
284 2. Additional symbol files added by the add-symbol-file command,
285 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
286 for modules that were loaded when GDB attached to a remote system
287 (see remote-vx.c). */
288
289struct objfile
95cf5869 290{
9e86da07
TT
291 objfile (bfd *, const char *, objfile_flags);
292 ~objfile ();
293
294 DISABLE_COPY_AND_ASSIGN (objfile);
295
95cf5869
DE
296 /* All struct objfile's are chained together by their next pointers.
297 The program space field "objfiles" (frequently referenced via
298 the macro "object_files") points to the first link in this chain. */
c906108c 299
9e86da07 300 struct objfile *next = nullptr;
c906108c 301
95cf5869
DE
302 /* The object file's original name as specified by the user,
303 made absolute, and tilde-expanded. However, it is not canonicalized
304 (i.e., it has not been passed through gdb_realpath).
305 This pointer is never NULL. This does not have to be freed; it is
306 guaranteed to have a lifetime at least as long as the objfile. */
c906108c 307
9e86da07 308 char *original_name = nullptr;
c906108c 309
9e86da07 310 CORE_ADDR addr_low = 0;
c906108c 311
b15cc25c 312 /* Some flag bits for this objfile. */
e4f6d2ec 313
b15cc25c 314 objfile_flags flags;
c906108c 315
95cf5869 316 /* The program space associated with this objfile. */
c906108c 317
95cf5869 318 struct program_space *pspace;
6c95b8df 319
95cf5869
DE
320 /* List of compunits.
321 These are used to do symbol lookups and file/line-number lookups. */
6c95b8df 322
9e86da07 323 struct compunit_symtab *compunit_symtabs = nullptr;
c906108c 324
d320c2b5 325 /* The partial symbol tables. */
c906108c 326
d320c2b5 327 std::shared_ptr<psymtab_storage> partial_symtabs;
c906108c 328
95cf5869
DE
329 /* The object file's BFD. Can be null if the objfile contains only
330 minimal symbols, e.g. the run time common symbols for SunOS4. */
c906108c 331
95cf5869 332 bfd *obfd;
c906108c 333
95cf5869
DE
334 /* The per-BFD data. Note that this is treated specially if OBFD
335 is NULL. */
c906108c 336
9e86da07 337 struct objfile_per_bfd_storage *per_bfd = nullptr;
706e3705 338
95cf5869
DE
339 /* The modification timestamp of the object file, as of the last time
340 we read its symbols. */
706e3705 341
9e86da07 342 long mtime = 0;
c906108c 343
95cf5869
DE
344 /* Obstack to hold objects that should be freed when we load a new symbol
345 table from this object file. */
c906108c 346
9e86da07 347 struct obstack objfile_obstack {};
b99607ea 348
71a3c369
TT
349 /* Map symbol addresses to the partial symtab that defines the
350 object at that address. */
351
352 std::vector<std::pair<CORE_ADDR, partial_symtab *>> psymbol_map;
353
95cf5869
DE
354 /* Structure which keeps track of functions that manipulate objfile's
355 of the same type as this objfile. I.e. the function to read partial
356 symbols for example. Note that this structure is in statically
357 allocated memory, and is shared by all objfiles that use the
358 object module reader of this type. */
c906108c 359
9e86da07 360 const struct sym_fns *sf = nullptr;
c906108c 361
95cf5869 362 /* Per objfile data-pointers required by other GDB modules. */
c906108c 363
9e86da07 364 REGISTRY_FIELDS {};
0d0e1a63 365
95cf5869
DE
366 /* Set of relocation offsets to apply to each section.
367 The table is indexed by the_bfd_section->index, thus it is generally
368 as large as the number of sections in the binary.
369 The table is stored on the objfile_obstack.
0d0e1a63 370
95cf5869
DE
371 These offsets indicate that all symbols (including partial and
372 minimal symbols) which have been read have been relocated by this
373 much. Symbols which are yet to be read need to be relocated by it. */
c906108c 374
9e86da07
TT
375 struct section_offsets *section_offsets = nullptr;
376 int num_sections = 0;
c906108c 377
95cf5869
DE
378 /* Indexes in the section_offsets array. These are initialized by the
379 *_symfile_offsets() family of functions (som_symfile_offsets,
380 xcoff_symfile_offsets, default_symfile_offsets). In theory they
381 should correspond to the section indexes used by bfd for the
382 current objfile. The exception to this for the time being is the
9e86da07
TT
383 SOM version.
384
385 These are initialized to -1 so that we can later detect if they
386 are used w/o being properly assigned to. */
c906108c 387
9e86da07
TT
388 int sect_index_text = -1;
389 int sect_index_data = -1;
390 int sect_index_bss = -1;
391 int sect_index_rodata = -1;
b8fbeb18 392
95cf5869
DE
393 /* These pointers are used to locate the section table, which
394 among other things, is used to map pc addresses into sections.
395 SECTIONS points to the first entry in the table, and
396 SECTIONS_END points to the first location past the last entry
397 in the table. The table is stored on the objfile_obstack. The
398 sections are indexed by the BFD section index; but the
399 structure data is only valid for certain sections
400 (e.g. non-empty, SEC_ALLOC). */
b8fbeb18 401
9e86da07
TT
402 struct obj_section *sections = nullptr;
403 struct obj_section *sections_end = nullptr;
c906108c 404
95cf5869
DE
405 /* GDB allows to have debug symbols in separate object files. This is
406 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
407 Although this is a tree structure, GDB only support one level
408 (ie a separate debug for a separate debug is not supported). Note that
409 separate debug object are in the main chain and therefore will be
8b31193a 410 visited by all_objfiles & co iterators. Separate debug objfile always
95cf5869 411 has a non-nul separate_debug_objfile_backlink. */
c906108c 412
95cf5869 413 /* Link to the first separate debug object, if any. */
15d123c9 414
9e86da07 415 struct objfile *separate_debug_objfile = nullptr;
5b5d99cf 416
95cf5869
DE
417 /* If this is a separate debug object, this is used as a link to the
418 actual executable objfile. */
15d123c9 419
9e86da07 420 struct objfile *separate_debug_objfile_backlink = nullptr;
15d123c9 421
95cf5869
DE
422 /* If this is a separate debug object, this is a link to the next one
423 for the same executable objfile. */
5c4e30ca 424
9e86da07 425 struct objfile *separate_debug_objfile_link = nullptr;
95cf5869
DE
426
427 /* Place to stash various statistics about this objfile. */
428
429 OBJSTATS;
430
431 /* A linked list of symbols created when reading template types or
432 function templates. These symbols are not stored in any symbol
433 table, so we have to keep them here to relocate them
434 properly. */
435
9e86da07 436 struct symbol *template_symbols = nullptr;
63e43d3a
PMR
437
438 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
439 block *) that have one.
440
441 In the context of nested functions (available in Pascal, Ada and GNU C,
442 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
443 for a function is a way to get the frame corresponding to the enclosing
444 function.
445
446 Very few blocks have a static link, so it's more memory efficient to
447 store these here rather than in struct block. Static links must be
448 allocated on the objfile's obstack. */
9e86da07 449 htab_t static_links {};
95cf5869 450};
c906108c 451
c906108c
SS
452/* Declarations for functions defined in objfiles.c */
453
9c1877ea 454extern struct gdbarch *get_objfile_arch (const struct objfile *);
5e2b427d 455
abd0a5fa
JK
456extern int entry_point_address_query (CORE_ADDR *entry_p);
457
9ab9195f
EZ
458extern CORE_ADDR entry_point_address (void);
459
d82ea6a8 460extern void build_objfile_section_table (struct objfile *);
c906108c 461
15d123c9
TG
462extern struct objfile *objfile_separate_debug_iterate (const struct objfile *,
463 const struct objfile *);
464
5b5d99cf
JB
465extern void put_objfile_before (struct objfile *, struct objfile *);
466
15d123c9
TG
467extern void add_separate_debug_objfile (struct objfile *, struct objfile *);
468
a14ed312 469extern void unlink_objfile (struct objfile *);
c906108c 470
15d123c9
TG
471extern void free_objfile_separate_debug (struct objfile *);
472
a14ed312 473extern void free_all_objfiles (void);
c906108c 474
3189cb12 475extern void objfile_relocate (struct objfile *, const struct section_offsets *);
4141a416 476extern void objfile_rebase (struct objfile *, CORE_ADDR);
c906108c 477
55333a84
DE
478extern int objfile_has_partial_symbols (struct objfile *objfile);
479
480extern int objfile_has_full_symbols (struct objfile *objfile);
481
e361b228
TG
482extern int objfile_has_symbols (struct objfile *objfile);
483
a14ed312 484extern int have_partial_symbols (void);
c906108c 485
a14ed312 486extern int have_full_symbols (void);
c906108c 487
8fb8eb5c
DE
488extern void objfile_set_sym_fns (struct objfile *objfile,
489 const struct sym_fns *sf);
490
bb272892 491extern void objfiles_changed (void);
63644780
NB
492
493extern int is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
bb272892 494
d03de421
PA
495/* Return true if ADDRESS maps into one of the sections of a
496 OBJF_SHARED objfile of PSPACE and false otherwise. */
08351840 497
d03de421
PA
498extern int shared_objfile_contains_address_p (struct program_space *pspace,
499 CORE_ADDR address);
08351840 500
c906108c
SS
501/* This operation deletes all objfile entries that represent solibs that
502 weren't explicitly loaded by the user, via e.g., the add-symbol-file
0df8b418
MS
503 command. */
504
a14ed312 505extern void objfile_purge_solibs (void);
c906108c
SS
506
507/* Functions for dealing with the minimal symbol table, really a misc
508 address<->symbol mapping for things we don't have debug symbols for. */
509
a14ed312 510extern int have_minimal_symbols (void);
c906108c 511
a14ed312 512extern struct obj_section *find_pc_section (CORE_ADDR pc);
c906108c 513
3e5d3a5a 514/* Return non-zero if PC is in a section called NAME. */
a121b7c1 515extern int pc_in_section (CORE_ADDR, const char *);
3e5d3a5a
MR
516
517/* Return non-zero if PC is in a SVR4-style procedure linkage table
518 section. */
519
520static inline int
521in_plt_section (CORE_ADDR pc)
522{
523 return pc_in_section (pc, ".plt");
524}
c906108c 525
0d0e1a63
MK
526/* Keep a registry of per-objfile data-pointers required by other GDB
527 modules. */
8e260fc0 528DECLARE_REGISTRY(objfile);
e3c69974 529
607ece04
GB
530/* In normal use, the section map will be rebuilt by find_pc_section
531 if objfiles have been added, removed or relocated since it was last
532 called. Calling inhibit_section_map_updates will inhibit this
06424eac
TT
533 behavior until the returned scoped_restore object is destroyed. If
534 you call inhibit_section_map_updates you must ensure that every
535 call to find_pc_section in the inhibited region relates to a
536 section that is already in the section map and has not since been
537 removed or relocated. */
538extern scoped_restore_tmpl<int> inhibit_section_map_updates
539 (struct program_space *pspace);
607ece04 540
19630284
JB
541extern void default_iterate_over_objfiles_in_search_order
542 (struct gdbarch *gdbarch,
543 iterate_over_objfiles_in_search_order_cb_ftype *cb,
544 void *cb_data, struct objfile *current_objfile);
0d0e1a63
MK
545\f
546
21708325
TT
547/* An iterarable object that can be used to iterate over all
548 objfiles. The basic use is in a foreach, like:
549
550 for (objfile *objf : all_objfiles (pspace)) { ... } */
551
552class all_objfiles : public next_adapter<struct objfile>
553{
554public:
555
556 explicit all_objfiles (struct program_space *pspace)
557 : next_adapter<struct objfile> (pspace->objfiles)
558 {
559 }
560};
561
cac85af2
TT
562/* An iterarable object that can be used to iterate over all
563 objfiles. The basic use is in a foreach, like:
21708325 564
cac85af2
TT
565 for (objfile *objf : all_objfiles_safe (pspace)) { ... }
566
567 This variant uses a basic_safe_iterator so that objfiles can be
568 deleted during iteration. */
569
570class all_objfiles_safe
571 : public next_adapter<struct objfile,
572 basic_safe_iterator<next_iterator<objfile>>>
573{
574public:
575
576 explicit all_objfiles_safe (struct program_space *pspace)
577 : next_adapter<struct objfile,
578 basic_safe_iterator<next_iterator<objfile>>>
579 (pspace->objfiles)
580 {
581 }
582};
583
592553c4
TT
584/* A range adapter that makes it possible to iterate over all
585 compunits in one objfile. */
586
587class objfile_compunits : public next_adapter<struct compunit_symtab>
588{
589public:
d790cf0a 590
592553c4
TT
591 explicit objfile_compunits (struct objfile *objfile)
592 : next_adapter<struct compunit_symtab> (objfile->compunit_symtabs)
593 {
594 }
595};
d790cf0a 596
5325b9bf
TT
597/* A range adapter that makes it possible to iterate over all
598 minimal symbols of an objfile. */
c906108c 599
5325b9bf
TT
600class objfile_msymbols
601{
602public:
603
604 explicit objfile_msymbols (struct objfile *objfile)
605 : m_objfile (objfile)
606 {
607 }
608
609 struct iterator
610 {
611 typedef iterator self_type;
612 typedef struct minimal_symbol *value_type;
613 typedef struct minimal_symbol *&reference;
614 typedef struct minimal_symbol **pointer;
615 typedef std::forward_iterator_tag iterator_category;
616 typedef int difference_type;
617
618 explicit iterator (struct objfile *objfile)
619 : m_msym (objfile->per_bfd->msymbols)
620 {
621 /* Make sure to properly handle the case where there are no
622 minsyms. */
623 if (MSYMBOL_LINKAGE_NAME (m_msym) == nullptr)
624 m_msym = nullptr;
625 }
626
627 iterator ()
628 : m_msym (nullptr)
629 {
630 }
631
632 value_type operator* () const
633 {
634 return m_msym;
635 }
636
637 bool operator== (const self_type &other) const
638 {
639 return m_msym == other.m_msym;
640 }
641
642 bool operator!= (const self_type &other) const
643 {
644 return m_msym != other.m_msym;
645 }
646
647 self_type &operator++ ()
648 {
649 if (m_msym != nullptr)
650 {
651 ++m_msym;
652 if (MSYMBOL_LINKAGE_NAME (m_msym) == nullptr)
653 m_msym = nullptr;
654 }
655 return *this;
656 }
657
658 private:
659 struct minimal_symbol *m_msym;
660 };
661
662 iterator begin () const
663 {
664 return iterator (m_objfile);
665 }
666
667 iterator end () const
668 {
669 return iterator ();
670 }
671
672private:
673
674 struct objfile *m_objfile;
675};
c906108c 676
d320c2b5
TT
677/* A range adapter that makes it possible to iterate over all
678 psymtabs in one objfile. */
679
680class objfile_psymtabs : public next_adapter<struct partial_symtab>
681{
682public:
683
684 explicit objfile_psymtabs (struct objfile *objfile)
685 : next_adapter<struct partial_symtab> (objfile->partial_symtabs->psymtabs)
686 {
687 }
688};
689
c906108c 690#define ALL_OBJFILE_OSECTIONS(objfile, osect) \
65cf3563
TT
691 for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
692 if (osect->the_bfd_section == NULL) \
693 { \
694 /* Nothing. */ \
695 } \
696 else
c906108c 697
b8fbeb18 698#define SECT_OFF_DATA(objfile) \
8e65ff28 699 ((objfile->sect_index_data == -1) \
3e43a32a
MS
700 ? (internal_error (__FILE__, __LINE__, \
701 _("sect_index_data not initialized")), -1) \
8e65ff28 702 : objfile->sect_index_data)
b8fbeb18
EZ
703
704#define SECT_OFF_RODATA(objfile) \
8e65ff28 705 ((objfile->sect_index_rodata == -1) \
3e43a32a
MS
706 ? (internal_error (__FILE__, __LINE__, \
707 _("sect_index_rodata not initialized")), -1) \
8e65ff28 708 : objfile->sect_index_rodata)
b8fbeb18
EZ
709
710#define SECT_OFF_TEXT(objfile) \
8e65ff28 711 ((objfile->sect_index_text == -1) \
3e43a32a
MS
712 ? (internal_error (__FILE__, __LINE__, \
713 _("sect_index_text not initialized")), -1) \
8e65ff28 714 : objfile->sect_index_text)
b8fbeb18 715
a4c8257b 716/* Sometimes the .bss section is missing from the objfile, so we don't
0df8b418
MS
717 want to die here. Let the users of SECT_OFF_BSS deal with an
718 uninitialized section index. */
a4c8257b 719#define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
b8fbeb18 720
c14c28ba
PP
721/* Answer whether there is more than one object file loaded. */
722
723#define MULTI_OBJFILE_P() (object_files && object_files->next)
724
706e3705
TT
725/* Reset the per-BFD storage area on OBJ. */
726
727void set_objfile_per_bfd (struct objfile *obj);
728
e02c96a7
DE
729/* Return canonical name for OBJFILE.
730 This is the real file name if the file has been opened.
731 Otherwise it is the original name supplied by the user. */
732
4262abfb
JK
733const char *objfile_name (const struct objfile *objfile);
734
e02c96a7
DE
735/* Return the (real) file name of OBJFILE if the file has been opened,
736 otherwise return NULL. */
737
738const char *objfile_filename (const struct objfile *objfile);
739
cc485e62
DE
740/* Return the name to print for OBJFILE in debugging messages. */
741
742extern const char *objfile_debug_name (const struct objfile *objfile);
743
015d2e7e
DE
744/* Return the name of the file format of OBJFILE if the file has been opened,
745 otherwise return NULL. */
746
747const char *objfile_flavour_name (struct objfile *objfile);
748
3d548a53
TT
749/* Set the objfile's notion of the "main" name and language. */
750
751extern void set_objfile_main_name (struct objfile *objfile,
752 const char *name, enum language lang);
753
63e43d3a
PMR
754extern void objfile_register_static_link
755 (struct objfile *objfile,
756 const struct block *block,
757 const struct dynamic_prop *static_link);
758
759extern const struct dynamic_prop *objfile_lookup_static_link
760 (struct objfile *objfile, const struct block *block);
761
c5aa993b 762#endif /* !defined (OBJFILES_H) */
This page took 1.72824 seconds and 4 git commands to generate.