* elf32-sh.c (sh_elf_relocate_section): Suppress warnings for
[deliverable/binutils-gdb.git] / gdb / parse.c
CommitLineData
c906108c 1/* Parse expressions for GDB.
c4a172b5 2
28e7fd62 3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c4a172b5 4
c906108c
SS
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23/* Parse an expression from text in a string,
ae0c443d 24 and return the result as a struct expression pointer.
c906108c
SS
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
c5aa993b 31
c906108c 32#include "defs.h"
12c89474 33#include <ctype.h>
e17c207e 34#include "arch-utils.h"
c906108c 35#include "gdb_string.h"
c906108c
SS
36#include "symtab.h"
37#include "gdbtypes.h"
38#include "frame.h"
39#include "expression.h"
40#include "value.h"
41#include "command.h"
42#include "language.h"
0b4e1325 43#include "f-lang.h"
c906108c
SS
44#include "parser-defs.h"
45#include "gdbcmd.h"
c5aa993b 46#include "symfile.h" /* for overlay functions */
f57d151a 47#include "inferior.h"
d16aafd8 48#include "doublest.h"
0406ec40 49#include "gdb_assert.h"
fe898f56 50#include "block.h"
59f92a09 51#include "source.h"
9e35dae4 52#include "objfiles.h"
65d12d83 53#include "exceptions.h"
029a67e4 54#include "user-regs.h"
e2305d34 55
5f9769d1
PH
56/* Standard set of definitions for printing, dumping, prefixifying,
57 * and evaluating expressions. */
58
59const struct exp_descriptor exp_descriptor_standard =
60 {
61 print_subexp_standard,
62 operator_length_standard,
c0201579 63 operator_check_standard,
5f9769d1
PH
64 op_name_standard,
65 dump_subexp_body_standard,
66 evaluate_subexp_standard
67 };
c906108c
SS
68\f
69/* Global variables declared in parser-defs.h (and commented there). */
70struct expression *expout;
71int expout_size;
72int expout_ptr;
270140bd 73const struct block *expression_context_block;
84f0252a 74CORE_ADDR expression_context_pc;
270140bd 75const struct block *innermost_block;
c906108c 76int arglist_len;
1a7d0ce4 77static struct type_stack type_stack;
c906108c 78char *lexptr;
665132f9 79char *prev_lexptr;
c906108c
SS
80int paren_depth;
81int comma_terminates;
3a913e29 82
155da517
TT
83/* True if parsing an expression to attempt completion. */
84int parse_completion;
65d12d83
TT
85
86/* The index of the last struct expression directly before a '.' or
87 '->'. This is set when parsing and is only used when completing a
88 field name. It is -1 if no dereference operation was found. */
89static int expout_last_struct = -1;
2f68a895
TT
90
91/* If we are completing a tagged type name, this will be nonzero. */
92static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
93
94/* The token for tagged type name completion. */
95static char *expout_completion_name;
96
c906108c 97\f
ccce17b0 98static unsigned int expressiondebug = 0;
920d2a44
AC
99static void
100show_expressiondebug (struct ui_file *file, int from_tty,
101 struct cmd_list_element *c, const char *value)
102{
103 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
104}
c906108c 105
92981e24
TT
106
107/* Non-zero if an expression parser should set yydebug. */
108int parser_debug;
109
110static void
111show_parserdebug (struct ui_file *file, int from_tty,
112 struct cmd_list_element *c, const char *value)
113{
114 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
115}
116
117
74b7792f 118static void free_funcalls (void *ignore);
c906108c 119
65d12d83
TT
120static int prefixify_subexp (struct expression *, struct expression *, int,
121 int);
c906108c 122
6f937416 123static struct expression *parse_exp_in_context (const char **, CORE_ADDR,
270140bd 124 const struct block *, int,
65d12d83 125 int, int *);
6f937416
PA
126static struct expression *parse_exp_in_context_1 (char **, CORE_ADDR,
127 const struct block *, int,
128 int, int *);
e85c3284 129
a14ed312 130void _initialize_parse (void);
392a587b 131
c906108c
SS
132/* Data structure for saving values of arglist_len for function calls whose
133 arguments contain other function calls. */
134
135struct funcall
136 {
137 struct funcall *next;
138 int arglist_len;
139 };
140
141static struct funcall *funcall_chain;
142
c906108c
SS
143/* Begin counting arguments for a function call,
144 saving the data about any containing call. */
145
146void
fba45db2 147start_arglist (void)
c906108c 148{
f86f5ca3 149 struct funcall *new;
c906108c
SS
150
151 new = (struct funcall *) xmalloc (sizeof (struct funcall));
152 new->next = funcall_chain;
153 new->arglist_len = arglist_len;
154 arglist_len = 0;
155 funcall_chain = new;
156}
157
158/* Return the number of arguments in a function call just terminated,
159 and restore the data for the containing function call. */
160
161int
fba45db2 162end_arglist (void)
c906108c 163{
f86f5ca3
PH
164 int val = arglist_len;
165 struct funcall *call = funcall_chain;
ad3bbd48 166
c906108c
SS
167 funcall_chain = call->next;
168 arglist_len = call->arglist_len;
b8c9b27d 169 xfree (call);
c906108c
SS
170 return val;
171}
172
173/* Free everything in the funcall chain.
174 Used when there is an error inside parsing. */
175
176static void
74b7792f 177free_funcalls (void *ignore)
c906108c 178{
f86f5ca3 179 struct funcall *call, *next;
c906108c
SS
180
181 for (call = funcall_chain; call; call = next)
182 {
183 next = call->next;
b8c9b27d 184 xfree (call);
c906108c
SS
185 }
186}
187\f
ae0c443d 188/* This page contains the functions for adding data to the struct expression
c906108c
SS
189 being constructed. */
190
55aa24fb 191/* See definition in parser-defs.h. */
2dbca4d6 192
55aa24fb 193void
2dbca4d6
SDJ
194initialize_expout (int initial_size, const struct language_defn *lang,
195 struct gdbarch *gdbarch)
196{
197 expout_size = initial_size;
198 expout_ptr = 0;
199 expout = xmalloc (sizeof (struct expression)
200 + EXP_ELEM_TO_BYTES (expout_size));
201 expout->language_defn = lang;
202 expout->gdbarch = gdbarch;
203}
204
55aa24fb 205/* See definition in parser-defs.h. */
2dbca4d6 206
55aa24fb 207void
2dbca4d6
SDJ
208reallocate_expout (void)
209{
210 /* Record the actual number of expression elements, and then
211 reallocate the expression memory so that we free up any
212 excess elements. */
213
214 expout->nelts = expout_ptr;
215 expout = xrealloc ((char *) expout,
216 sizeof (struct expression)
217 + EXP_ELEM_TO_BYTES (expout_ptr));
218}
219
c906108c
SS
220/* Add one element to the end of the expression. */
221
222/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
0df8b418 223 a register through here. */
c906108c 224
ae0c443d
JK
225static void
226write_exp_elt (const union exp_element *expelt)
c906108c
SS
227{
228 if (expout_ptr >= expout_size)
229 {
230 expout_size *= 2;
231 expout = (struct expression *)
232 xrealloc ((char *) expout, sizeof (struct expression)
233 + EXP_ELEM_TO_BYTES (expout_size));
234 }
ae0c443d 235 expout->elts[expout_ptr++] = *expelt;
c906108c
SS
236}
237
238void
fba45db2 239write_exp_elt_opcode (enum exp_opcode expelt)
c906108c
SS
240{
241 union exp_element tmp;
242
ad3bbd48 243 memset (&tmp, 0, sizeof (union exp_element));
c906108c 244 tmp.opcode = expelt;
ae0c443d 245 write_exp_elt (&tmp);
c906108c
SS
246}
247
248void
fba45db2 249write_exp_elt_sym (struct symbol *expelt)
c906108c
SS
250{
251 union exp_element tmp;
252
ad3bbd48 253 memset (&tmp, 0, sizeof (union exp_element));
c906108c 254 tmp.symbol = expelt;
ae0c443d 255 write_exp_elt (&tmp);
c906108c
SS
256}
257
258void
270140bd 259write_exp_elt_block (const struct block *b)
c906108c
SS
260{
261 union exp_element tmp;
ad3bbd48 262
09153d55 263 memset (&tmp, 0, sizeof (union exp_element));
c906108c 264 tmp.block = b;
ae0c443d 265 write_exp_elt (&tmp);
c906108c
SS
266}
267
9e35dae4
DJ
268void
269write_exp_elt_objfile (struct objfile *objfile)
270{
271 union exp_element tmp;
ad3bbd48 272
9e35dae4
DJ
273 memset (&tmp, 0, sizeof (union exp_element));
274 tmp.objfile = objfile;
ae0c443d 275 write_exp_elt (&tmp);
9e35dae4
DJ
276}
277
c906108c 278void
fba45db2 279write_exp_elt_longcst (LONGEST expelt)
c906108c
SS
280{
281 union exp_element tmp;
282
ad3bbd48 283 memset (&tmp, 0, sizeof (union exp_element));
c906108c 284 tmp.longconst = expelt;
ae0c443d 285 write_exp_elt (&tmp);
c906108c
SS
286}
287
288void
fba45db2 289write_exp_elt_dblcst (DOUBLEST expelt)
c906108c
SS
290{
291 union exp_element tmp;
292
ad3bbd48 293 memset (&tmp, 0, sizeof (union exp_element));
c906108c 294 tmp.doubleconst = expelt;
ae0c443d 295 write_exp_elt (&tmp);
c906108c
SS
296}
297
27bc4d80
TJB
298void
299write_exp_elt_decfloatcst (gdb_byte expelt[16])
300{
301 union exp_element tmp;
302 int index;
303
304 for (index = 0; index < 16; index++)
305 tmp.decfloatconst[index] = expelt[index];
306
ae0c443d 307 write_exp_elt (&tmp);
27bc4d80
TJB
308}
309
c906108c 310void
fba45db2 311write_exp_elt_type (struct type *expelt)
c906108c
SS
312{
313 union exp_element tmp;
314
ad3bbd48 315 memset (&tmp, 0, sizeof (union exp_element));
c906108c 316 tmp.type = expelt;
ae0c443d 317 write_exp_elt (&tmp);
c906108c
SS
318}
319
320void
fba45db2 321write_exp_elt_intern (struct internalvar *expelt)
c906108c
SS
322{
323 union exp_element tmp;
324
ad3bbd48 325 memset (&tmp, 0, sizeof (union exp_element));
c906108c 326 tmp.internalvar = expelt;
ae0c443d 327 write_exp_elt (&tmp);
c906108c
SS
328}
329
330/* Add a string constant to the end of the expression.
331
332 String constants are stored by first writing an expression element
333 that contains the length of the string, then stuffing the string
334 constant itself into however many expression elements are needed
335 to hold it, and then writing another expression element that contains
0df8b418 336 the length of the string. I.e. an expression element at each end of
c906108c
SS
337 the string records the string length, so you can skip over the
338 expression elements containing the actual string bytes from either
339 end of the string. Note that this also allows gdb to handle
340 strings with embedded null bytes, as is required for some languages.
341
342 Don't be fooled by the fact that the string is null byte terminated,
bc3b79fd 343 this is strictly for the convenience of debugging gdb itself.
c906108c
SS
344 Gdb does not depend up the string being null terminated, since the
345 actual length is recorded in expression elements at each end of the
346 string. The null byte is taken into consideration when computing how
347 many expression elements are required to hold the string constant, of
0df8b418 348 course. */
c906108c
SS
349
350
351void
fba45db2 352write_exp_string (struct stoken str)
c906108c 353{
f86f5ca3
PH
354 int len = str.length;
355 int lenelt;
356 char *strdata;
c906108c
SS
357
358 /* Compute the number of expression elements required to hold the string
359 (including a null byte terminator), along with one expression element
360 at each end to record the actual string length (not including the
0df8b418 361 null byte terminator). */
c906108c
SS
362
363 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
364
365 /* Ensure that we have enough available expression elements to store
0df8b418 366 everything. */
c906108c
SS
367
368 if ((expout_ptr + lenelt) >= expout_size)
369 {
370 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
371 expout = (struct expression *)
372 xrealloc ((char *) expout, (sizeof (struct expression)
373 + EXP_ELEM_TO_BYTES (expout_size)));
374 }
375
376 /* Write the leading length expression element (which advances the current
377 expression element index), then write the string constant followed by a
378 terminating null byte, and then write the trailing length expression
0df8b418 379 element. */
c906108c
SS
380
381 write_exp_elt_longcst ((LONGEST) len);
382 strdata = (char *) &expout->elts[expout_ptr];
383 memcpy (strdata, str.ptr, len);
384 *(strdata + len) = '\0';
385 expout_ptr += lenelt - 2;
386 write_exp_elt_longcst ((LONGEST) len);
387}
388
6c7a06a3
TT
389/* Add a vector of string constants to the end of the expression.
390
391 This adds an OP_STRING operation, but encodes the contents
392 differently from write_exp_string. The language is expected to
393 handle evaluation of this expression itself.
394
395 After the usual OP_STRING header, TYPE is written into the
396 expression as a long constant. The interpretation of this field is
397 up to the language evaluator.
398
399 Next, each string in VEC is written. The length is written as a
400 long constant, followed by the contents of the string. */
401
402void
403write_exp_string_vector (int type, struct stoken_vector *vec)
404{
405 int i, n_slots, len;
406
407 /* Compute the size. We compute the size in number of slots to
408 avoid issues with string padding. */
409 n_slots = 0;
410 for (i = 0; i < vec->len; ++i)
411 {
412 /* One slot for the length of this element, plus the number of
413 slots needed for this string. */
414 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
415 }
416
417 /* One more slot for the type of the string. */
418 ++n_slots;
419
420 /* Now compute a phony string length. */
421 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
422
423 n_slots += 4;
424 if ((expout_ptr + n_slots) >= expout_size)
425 {
426 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
427 expout = (struct expression *)
428 xrealloc ((char *) expout, (sizeof (struct expression)
429 + EXP_ELEM_TO_BYTES (expout_size)));
430 }
431
432 write_exp_elt_opcode (OP_STRING);
433 write_exp_elt_longcst (len);
434 write_exp_elt_longcst (type);
435
436 for (i = 0; i < vec->len; ++i)
437 {
438 write_exp_elt_longcst (vec->tokens[i].length);
439 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
440 vec->tokens[i].length);
441 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
442 }
443
444 write_exp_elt_longcst (len);
445 write_exp_elt_opcode (OP_STRING);
446}
447
c906108c
SS
448/* Add a bitstring constant to the end of the expression.
449
450 Bitstring constants are stored by first writing an expression element
451 that contains the length of the bitstring (in bits), then stuffing the
452 bitstring constant itself into however many expression elements are
453 needed to hold it, and then writing another expression element that
0df8b418 454 contains the length of the bitstring. I.e. an expression element at
c906108c
SS
455 each end of the bitstring records the bitstring length, so you can skip
456 over the expression elements containing the actual bitstring bytes from
0df8b418 457 either end of the bitstring. */
c906108c
SS
458
459void
fba45db2 460write_exp_bitstring (struct stoken str)
c906108c 461{
f86f5ca3
PH
462 int bits = str.length; /* length in bits */
463 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
464 int lenelt;
465 char *strdata;
c906108c
SS
466
467 /* Compute the number of expression elements required to hold the bitstring,
468 along with one expression element at each end to record the actual
0df8b418 469 bitstring length in bits. */
c906108c
SS
470
471 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
472
473 /* Ensure that we have enough available expression elements to store
0df8b418 474 everything. */
c906108c
SS
475
476 if ((expout_ptr + lenelt) >= expout_size)
477 {
478 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
479 expout = (struct expression *)
480 xrealloc ((char *) expout, (sizeof (struct expression)
481 + EXP_ELEM_TO_BYTES (expout_size)));
482 }
483
484 /* Write the leading length expression element (which advances the current
485 expression element index), then write the bitstring constant, and then
0df8b418 486 write the trailing length expression element. */
c906108c
SS
487
488 write_exp_elt_longcst ((LONGEST) bits);
489 strdata = (char *) &expout->elts[expout_ptr];
490 memcpy (strdata, str.ptr, len);
491 expout_ptr += lenelt - 2;
492 write_exp_elt_longcst ((LONGEST) bits);
493}
494
495/* Add the appropriate elements for a minimal symbol to the end of
c841afd5 496 the expression. */
c906108c 497
c906108c 498void
c841afd5 499write_exp_msymbol (struct minimal_symbol *msymbol)
c906108c 500{
bccdca4a
UW
501 struct objfile *objfile = msymbol_objfile (msymbol);
502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
503
504 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
714835d5 505 struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
712f90be 506 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
bccdca4a
UW
507 CORE_ADDR pc;
508
509 /* The minimal symbol might point to a function descriptor;
510 resolve it to the actual code address instead. */
511 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
512 if (pc != addr)
513 {
0875794a
JK
514 struct minimal_symbol *ifunc_msym = lookup_minimal_symbol_by_pc (pc);
515
bccdca4a
UW
516 /* In this case, assume we have a code symbol instead of
517 a data symbol. */
0875794a
JK
518
519 if (ifunc_msym != NULL && MSYMBOL_TYPE (ifunc_msym) == mst_text_gnu_ifunc
520 && SYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
521 {
522 /* A function descriptor has been resolved but PC is still in the
523 STT_GNU_IFUNC resolver body (such as because inferior does not
524 run to be able to call it). */
525
526 type = mst_text_gnu_ifunc;
527 }
528 else
529 type = mst_text;
714835d5 530 section = NULL;
bccdca4a
UW
531 addr = pc;
532 }
533
534 if (overlay_debugging)
714835d5 535 addr = symbol_overlayed_address (addr, section);
c906108c
SS
536
537 write_exp_elt_opcode (OP_LONG);
a858089e 538 /* Let's make the type big enough to hold a 64-bit address. */
46bf5051 539 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
c906108c 540 write_exp_elt_longcst ((LONGEST) addr);
c906108c
SS
541 write_exp_elt_opcode (OP_LONG);
542
714835d5 543 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
9e35dae4 544 {
9e35dae4 545 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
bccdca4a 546 write_exp_elt_objfile (objfile);
46bf5051 547 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
9e35dae4
DJ
548 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
549 return;
550 }
551
c906108c 552 write_exp_elt_opcode (UNOP_MEMVAL);
bccdca4a 553 switch (type)
c906108c
SS
554 {
555 case mst_text:
556 case mst_file_text:
557 case mst_solib_trampoline:
46bf5051 558 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
c906108c
SS
559 break;
560
0875794a
JK
561 case mst_text_gnu_ifunc:
562 write_exp_elt_type (objfile_type (objfile)
563 ->nodebug_text_gnu_ifunc_symbol);
564 break;
565
c906108c
SS
566 case mst_data:
567 case mst_file_data:
568 case mst_bss:
569 case mst_file_bss:
46bf5051 570 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
c906108c
SS
571 break;
572
0875794a
JK
573 case mst_slot_got_plt:
574 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
575 break;
576
c906108c 577 default:
46bf5051 578 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
c906108c
SS
579 break;
580 }
581 write_exp_elt_opcode (UNOP_MEMVAL);
582}
65d12d83
TT
583
584/* Mark the current index as the starting location of a structure
585 expression. This is used when completing on field names. */
586
587void
588mark_struct_expression (void)
589{
2f68a895
TT
590 gdb_assert (parse_completion
591 && expout_tag_completion_type == TYPE_CODE_UNDEF);
65d12d83
TT
592 expout_last_struct = expout_ptr;
593}
594
2f68a895
TT
595/* Indicate that the current parser invocation is completing a tag.
596 TAG is the type code of the tag, and PTR and LENGTH represent the
597 start of the tag name. */
598
599void
600mark_completion_tag (enum type_code tag, const char *ptr, int length)
601{
602 gdb_assert (parse_completion
603 && expout_tag_completion_type == TYPE_CODE_UNDEF
604 && expout_completion_name == NULL
605 && expout_last_struct == -1);
606 gdb_assert (tag == TYPE_CODE_UNION
607 || tag == TYPE_CODE_STRUCT
608 || tag == TYPE_CODE_CLASS
609 || tag == TYPE_CODE_ENUM);
610 expout_tag_completion_type = tag;
611 expout_completion_name = xmalloc (length + 1);
612 memcpy (expout_completion_name, ptr, length);
613 expout_completion_name[length] = '\0';
614}
615
c906108c
SS
616\f
617/* Recognize tokens that start with '$'. These include:
618
c5aa993b
JM
619 $regname A native register name or a "standard
620 register name".
c906108c 621
c5aa993b
JM
622 $variable A convenience variable with a name chosen
623 by the user.
c906108c 624
c5aa993b
JM
625 $digits Value history with index <digits>, starting
626 from the first value which has index 1.
c906108c 627
c5aa993b 628 $$digits Value history with index <digits> relative
0df8b418 629 to the last value. I.e. $$0 is the last
c5aa993b
JM
630 value, $$1 is the one previous to that, $$2
631 is the one previous to $$1, etc.
c906108c 632
c5aa993b 633 $ | $0 | $$0 The last value in the value history.
c906108c 634
c5aa993b 635 $$ An abbreviation for the second to the last
0df8b418 636 value in the value history, I.e. $$1 */
c906108c
SS
637
638void
fba45db2 639write_dollar_variable (struct stoken str)
c906108c 640{
d7318818
RC
641 struct symbol *sym = NULL;
642 struct minimal_symbol *msym = NULL;
c4a3d09a 643 struct internalvar *isym = NULL;
d7318818 644
c906108c 645 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
0df8b418 646 and $$digits (equivalent to $<-digits> if you could type that). */
c906108c 647
c906108c
SS
648 int negate = 0;
649 int i = 1;
650 /* Double dollar means negate the number and add -1 as well.
651 Thus $$ alone means -1. */
652 if (str.length >= 2 && str.ptr[1] == '$')
653 {
654 negate = 1;
655 i = 2;
656 }
657 if (i == str.length)
658 {
0df8b418 659 /* Just dollars (one or two). */
c5aa993b 660 i = -negate;
c906108c
SS
661 goto handle_last;
662 }
663 /* Is the rest of the token digits? */
664 for (; i < str.length; i++)
665 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
666 break;
667 if (i == str.length)
668 {
669 i = atoi (str.ptr + 1 + negate);
670 if (negate)
c5aa993b 671 i = -i;
c906108c
SS
672 goto handle_last;
673 }
c5aa993b 674
c906108c
SS
675 /* Handle tokens that refer to machine registers:
676 $ followed by a register name. */
d80b854b 677 i = user_reg_map_name_to_regnum (parse_gdbarch,
029a67e4 678 str.ptr + 1, str.length - 1);
c5aa993b 679 if (i >= 0)
c906108c
SS
680 goto handle_register;
681
c4a3d09a
MF
682 /* Any names starting with $ are probably debugger internal variables. */
683
684 isym = lookup_only_internalvar (copy_name (str) + 1);
685 if (isym)
686 {
687 write_exp_elt_opcode (OP_INTERNALVAR);
688 write_exp_elt_intern (isym);
689 write_exp_elt_opcode (OP_INTERNALVAR);
690 return;
691 }
692
d7318818 693 /* On some systems, such as HP-UX and hppa-linux, certain system routines
0df8b418 694 have names beginning with $ or $$. Check for those, first. */
d7318818
RC
695
696 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
1993b719 697 VAR_DOMAIN, NULL);
d7318818
RC
698 if (sym)
699 {
700 write_exp_elt_opcode (OP_VAR_VALUE);
701 write_exp_elt_block (block_found); /* set by lookup_symbol */
702 write_exp_elt_sym (sym);
703 write_exp_elt_opcode (OP_VAR_VALUE);
704 return;
705 }
706 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
707 if (msym)
c906108c 708 {
c841afd5 709 write_exp_msymbol (msym);
d7318818 710 return;
c906108c 711 }
c5aa993b 712
c4a3d09a 713 /* Any other names are assumed to be debugger internal variables. */
c906108c
SS
714
715 write_exp_elt_opcode (OP_INTERNALVAR);
c4a3d09a 716 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
c5aa993b 717 write_exp_elt_opcode (OP_INTERNALVAR);
c906108c 718 return;
c5aa993b 719handle_last:
c906108c
SS
720 write_exp_elt_opcode (OP_LAST);
721 write_exp_elt_longcst ((LONGEST) i);
722 write_exp_elt_opcode (OP_LAST);
723 return;
c5aa993b 724handle_register:
c906108c 725 write_exp_elt_opcode (OP_REGISTER);
67f3407f
DJ
726 str.length--;
727 str.ptr++;
728 write_exp_string (str);
c5aa993b 729 write_exp_elt_opcode (OP_REGISTER);
c906108c
SS
730 return;
731}
732
733
c906108c 734char *
fba45db2 735find_template_name_end (char *p)
c906108c
SS
736{
737 int depth = 1;
738 int just_seen_right = 0;
739 int just_seen_colon = 0;
740 int just_seen_space = 0;
c5aa993b 741
c906108c
SS
742 if (!p || (*p != '<'))
743 return 0;
744
745 while (*++p)
746 {
747 switch (*p)
c5aa993b
JM
748 {
749 case '\'':
750 case '\"':
751 case '{':
752 case '}':
0df8b418 753 /* In future, may want to allow these?? */
c5aa993b
JM
754 return 0;
755 case '<':
756 depth++; /* start nested template */
757 if (just_seen_colon || just_seen_right || just_seen_space)
758 return 0; /* but not after : or :: or > or space */
759 break;
760 case '>':
761 if (just_seen_colon || just_seen_right)
762 return 0; /* end a (nested?) template */
763 just_seen_right = 1; /* but not after : or :: */
764 if (--depth == 0) /* also disallow >>, insist on > > */
765 return ++p; /* if outermost ended, return */
766 break;
767 case ':':
768 if (just_seen_space || (just_seen_colon > 1))
769 return 0; /* nested class spec coming up */
770 just_seen_colon++; /* we allow :: but not :::: */
771 break;
772 case ' ':
773 break;
774 default:
775 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
776 (*p >= 'A' && *p <= 'Z') ||
777 (*p >= '0' && *p <= '9') ||
778 (*p == '_') || (*p == ',') || /* commas for template args */
779 (*p == '&') || (*p == '*') || /* pointer and ref types */
780 (*p == '(') || (*p == ')') || /* function types */
781 (*p == '[') || (*p == ']'))) /* array types */
782 return 0;
783 }
c906108c 784 if (*p != ' ')
c5aa993b 785 just_seen_space = 0;
c906108c 786 if (*p != ':')
c5aa993b 787 just_seen_colon = 0;
c906108c 788 if (*p != '>')
c5aa993b 789 just_seen_right = 0;
c906108c
SS
790 }
791 return 0;
792}
c5aa993b 793\f
c906108c 794
1a4eeb98 795/* Return a null-terminated temporary copy of the name of a string token.
c906108c 796
1a4eeb98
DE
797 Tokens that refer to names do so with explicit pointer and length,
798 so they can share the storage that lexptr is parsing.
799 When it is necessary to pass a name to a function that expects
800 a null-terminated string, the substring is copied out
801 into a separate block of storage.
802
803 N.B. A single buffer is reused on each call. */
c906108c
SS
804
805char *
fba45db2 806copy_name (struct stoken token)
c906108c 807{
1a4eeb98
DE
808 /* A temporary buffer for identifiers, so we can null-terminate them.
809 We allocate this with xrealloc. parse_exp_1 used to allocate with
810 alloca, using the size of the whole expression as a conservative
811 estimate of the space needed. However, macro expansion can
812 introduce names longer than the original expression; there's no
813 practical way to know beforehand how large that might be. */
814 static char *namecopy;
815 static size_t namecopy_size;
816
3a913e29
JB
817 /* Make sure there's enough space for the token. */
818 if (namecopy_size < token.length + 1)
819 {
820 namecopy_size = token.length + 1;
821 namecopy = xrealloc (namecopy, token.length + 1);
822 }
823
c906108c
SS
824 memcpy (namecopy, token.ptr, token.length);
825 namecopy[token.length] = 0;
3a913e29 826
c906108c
SS
827 return namecopy;
828}
829\f
55aa24fb
SDJ
830
831/* See comments on parser-defs.h. */
832
833int
f86f5ca3 834prefixify_expression (struct expression *expr)
c906108c 835{
df2a60d0 836 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
f86f5ca3
PH
837 struct expression *temp;
838 int inpos = expr->nelts, outpos = 0;
c906108c
SS
839
840 temp = (struct expression *) alloca (len);
841
842 /* Copy the original expression into temp. */
843 memcpy (temp, expr, len);
844
65d12d83 845 return prefixify_subexp (temp, expr, inpos, outpos);
c906108c
SS
846}
847
24daaebc
PH
848/* Return the number of exp_elements in the postfix subexpression
849 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
c906108c
SS
850
851int
f86f5ca3 852length_of_subexp (struct expression *expr, int endpos)
24daaebc 853{
6b4398f7 854 int oplen, args;
24daaebc
PH
855
856 operator_length (expr, endpos, &oplen, &args);
857
858 while (args > 0)
859 {
860 oplen += length_of_subexp (expr, endpos - oplen);
861 args--;
862 }
863
864 return oplen;
865}
866
867/* Sets *OPLENP to the length of the operator whose (last) index is
868 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
869 operator takes. */
870
871void
554794dc
SDJ
872operator_length (const struct expression *expr, int endpos, int *oplenp,
873 int *argsp)
5f9769d1
PH
874{
875 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
876 oplenp, argsp);
877}
878
879/* Default value for operator_length in exp_descriptor vectors. */
880
881void
554794dc 882operator_length_standard (const struct expression *expr, int endpos,
5f9769d1 883 int *oplenp, int *argsp)
c906108c 884{
f86f5ca3
PH
885 int oplen = 1;
886 int args = 0;
0b4e1325 887 enum f90_range_type range_type;
f86f5ca3 888 int i;
c906108c
SS
889
890 if (endpos < 1)
8a3fe4f8 891 error (_("?error in operator_length_standard"));
c906108c
SS
892
893 i = (int) expr->elts[endpos - 1].opcode;
894
895 switch (i)
896 {
897 /* C++ */
898 case OP_SCOPE:
899 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
900 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
901 break;
902
903 case OP_LONG:
904 case OP_DOUBLE:
27bc4d80 905 case OP_DECFLOAT:
c906108c
SS
906 case OP_VAR_VALUE:
907 oplen = 4;
908 break;
909
910 case OP_TYPE:
911 case OP_BOOL:
912 case OP_LAST:
c906108c 913 case OP_INTERNALVAR:
36b11add 914 case OP_VAR_ENTRY_VALUE:
c906108c
SS
915 oplen = 3;
916 break;
917
918 case OP_COMPLEX:
c806c55a 919 oplen = 3;
c906108c 920 args = 2;
c5aa993b 921 break;
c906108c
SS
922
923 case OP_FUNCALL:
924 case OP_F77_UNDETERMINED_ARGLIST:
925 oplen = 3;
926 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
927 break;
928
072bba3b
KS
929 case TYPE_INSTANCE:
930 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
931 args = 1;
932 break;
933
0df8b418 934 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
53c551b7
AF
935 oplen = 4;
936 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
937 break;
938
c906108c
SS
939 case UNOP_MAX:
940 case UNOP_MIN:
941 oplen = 3;
942 break;
943
9eaf6705 944 case UNOP_CAST_TYPE:
4e8f195d
TT
945 case UNOP_DYNAMIC_CAST:
946 case UNOP_REINTERPRET_CAST:
9eaf6705
TT
947 case UNOP_MEMVAL_TYPE:
948 oplen = 1;
949 args = 2;
950 break;
951
952 case BINOP_VAL:
953 case UNOP_CAST:
c5aa993b 954 case UNOP_MEMVAL:
c906108c
SS
955 oplen = 3;
956 args = 1;
957 break;
958
9e35dae4
DJ
959 case UNOP_MEMVAL_TLS:
960 oplen = 4;
961 args = 1;
962 break;
963
c906108c
SS
964 case UNOP_ABS:
965 case UNOP_CAP:
966 case UNOP_CHR:
967 case UNOP_FLOAT:
968 case UNOP_HIGH:
969 case UNOP_ODD:
970 case UNOP_ORD:
971 case UNOP_TRUNC:
608b4967
TT
972 case OP_TYPEOF:
973 case OP_DECLTYPE:
c906108c
SS
974 oplen = 1;
975 args = 1;
976 break;
977
7322dca9
SW
978 case OP_ADL_FUNC:
979 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
980 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
981 oplen++;
982 oplen++;
983 break;
984
c906108c
SS
985 case STRUCTOP_STRUCT:
986 case STRUCTOP_PTR:
987 args = 1;
988 /* fall through */
67f3407f 989 case OP_REGISTER:
c906108c
SS
990 case OP_M2_STRING:
991 case OP_STRING:
3e43a32a 992 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
0df8b418
MS
993 NSString constant. */
994 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
c906108c 995 case OP_NAME:
c906108c
SS
996 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
997 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
998 break;
999
c906108c
SS
1000 case OP_ARRAY:
1001 oplen = 4;
1002 args = longest_to_int (expr->elts[endpos - 2].longconst);
1003 args -= longest_to_int (expr->elts[endpos - 3].longconst);
1004 args += 1;
1005 break;
1006
1007 case TERNOP_COND:
1008 case TERNOP_SLICE:
c906108c
SS
1009 args = 3;
1010 break;
1011
1012 /* Modula-2 */
c5aa993b 1013 case MULTI_SUBSCRIPT:
c906108c 1014 oplen = 3;
c5aa993b 1015 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
c906108c
SS
1016 break;
1017
1018 case BINOP_ASSIGN_MODIFY:
1019 oplen = 3;
1020 args = 2;
1021 break;
1022
1023 /* C++ */
1024 case OP_THIS:
1025 oplen = 2;
1026 break;
1027
0b4e1325
WZ
1028 case OP_F90_RANGE:
1029 oplen = 3;
1030
1031 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1032 switch (range_type)
1033 {
1034 case LOW_BOUND_DEFAULT:
1035 case HIGH_BOUND_DEFAULT:
1036 args = 1;
1037 break;
1038 case BOTH_BOUND_DEFAULT:
1039 args = 0;
1040 break;
1041 case NONE_BOUND_DEFAULT:
1042 args = 2;
1043 break;
1044 }
1045
1046 break;
1047
c906108c
SS
1048 default:
1049 args = 1 + (i < (int) BINOP_END);
1050 }
1051
24daaebc
PH
1052 *oplenp = oplen;
1053 *argsp = args;
c906108c
SS
1054}
1055
1056/* Copy the subexpression ending just before index INEND in INEXPR
1057 into OUTEXPR, starting at index OUTBEG.
65d12d83
TT
1058 In the process, convert it from suffix to prefix form.
1059 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1060 Otherwise, it returns the index of the subexpression which is the
1061 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
c906108c 1062
65d12d83 1063static int
f86f5ca3
PH
1064prefixify_subexp (struct expression *inexpr,
1065 struct expression *outexpr, int inend, int outbeg)
c906108c 1066{
24daaebc
PH
1067 int oplen;
1068 int args;
f86f5ca3 1069 int i;
c906108c 1070 int *arglens;
65d12d83 1071 int result = -1;
c906108c 1072
24daaebc 1073 operator_length (inexpr, inend, &oplen, &args);
c906108c
SS
1074
1075 /* Copy the final operator itself, from the end of the input
1076 to the beginning of the output. */
1077 inend -= oplen;
1078 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1079 EXP_ELEM_TO_BYTES (oplen));
1080 outbeg += oplen;
1081
65d12d83
TT
1082 if (expout_last_struct == inend)
1083 result = outbeg - oplen;
1084
c906108c
SS
1085 /* Find the lengths of the arg subexpressions. */
1086 arglens = (int *) alloca (args * sizeof (int));
1087 for (i = args - 1; i >= 0; i--)
1088 {
1089 oplen = length_of_subexp (inexpr, inend);
1090 arglens[i] = oplen;
1091 inend -= oplen;
1092 }
1093
1094 /* Now copy each subexpression, preserving the order of
1095 the subexpressions, but prefixifying each one.
1096 In this loop, inend starts at the beginning of
1097 the expression this level is working on
1098 and marches forward over the arguments.
1099 outbeg does similarly in the output. */
1100 for (i = 0; i < args; i++)
1101 {
65d12d83 1102 int r;
ad3bbd48 1103
c906108c
SS
1104 oplen = arglens[i];
1105 inend += oplen;
65d12d83
TT
1106 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1107 if (r != -1)
1108 {
1109 /* Return immediately. We probably have only parsed a
1110 partial expression, so we don't want to try to reverse
1111 the other operands. */
1112 return r;
1113 }
c906108c
SS
1114 outbeg += oplen;
1115 }
65d12d83
TT
1116
1117 return result;
c906108c
SS
1118}
1119\f
c906108c 1120/* Read an expression from the string *STRINGPTR points to,
ae0c443d 1121 parse it, and return a pointer to a struct expression that we malloc.
c906108c
SS
1122 Use block BLOCK as the lexical context for variable names;
1123 if BLOCK is zero, use the block of the selected stack frame.
1124 Meanwhile, advance *STRINGPTR to point after the expression,
1125 at the first nonwhite character that is not part of the expression
1126 (possibly a null character).
1127
1128 If COMMA is nonzero, stop if a comma is reached. */
1129
1130struct expression *
bbc13ae3 1131parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
270140bd 1132 int comma)
6f937416
PA
1133{
1134 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1135}
1136
1137static struct expression *
1138parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1139 const struct block *block,
1140 int comma, int void_context_p, int *out_subexp)
e85c3284 1141{
bbc13ae3
KS
1142 struct expression *expr;
1143 char *const_hack = *stringptr ? xstrdup (*stringptr) : NULL;
1144 char *orig = const_hack;
1145 struct cleanup *back_to = make_cleanup (xfree, const_hack);
1146
6f937416
PA
1147 expr = parse_exp_in_context_1 (&const_hack, pc, block, comma,
1148 void_context_p, out_subexp);
bbc13ae3
KS
1149 (*stringptr) += const_hack - orig;
1150 do_cleanups (back_to);
1151 return expr;
e85c3284
PH
1152}
1153
1154/* As for parse_exp_1, except that if VOID_CONTEXT_P, then
65d12d83
TT
1155 no value is expected from the expression.
1156 OUT_SUBEXP is set when attempting to complete a field name; in this
1157 case it is set to the index of the subexpression on the
1158 left-hand-side of the struct op. If not doing such completion, it
1159 is left untouched. */
e85c3284
PH
1160
1161static struct expression *
6f937416
PA
1162parse_exp_in_context_1 (char **stringptr, CORE_ADDR pc,
1163 const struct block *block,
1164 int comma, int void_context_p, int *out_subexp)
c906108c 1165{
65d12d83 1166 volatile struct gdb_exception except;
5b12a61c 1167 struct cleanup *old_chain, *inner_chain;
0cce5bd9 1168 const struct language_defn *lang = NULL;
65d12d83 1169 int subexp;
c906108c
SS
1170
1171 lexptr = *stringptr;
665132f9 1172 prev_lexptr = NULL;
c906108c
SS
1173
1174 paren_depth = 0;
1a7d0ce4 1175 type_stack.depth = 0;
65d12d83 1176 expout_last_struct = -1;
2f68a895
TT
1177 expout_tag_completion_type = TYPE_CODE_UNDEF;
1178 xfree (expout_completion_name);
1179 expout_completion_name = NULL;
c906108c
SS
1180
1181 comma_terminates = comma;
1182
1183 if (lexptr == 0 || *lexptr == 0)
e2e0b3e5 1184 error_no_arg (_("expression to compute"));
c906108c 1185
74b7792f 1186 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
c906108c
SS
1187 funcall_chain = 0;
1188
d705c43c 1189 expression_context_block = block;
59f92a09 1190
d705c43c
PA
1191 /* If no context specified, try using the current frame, if any. */
1192 if (!expression_context_block)
1193 expression_context_block = get_selected_block (&expression_context_pc);
1bb9788d 1194 else if (pc == 0)
d705c43c 1195 expression_context_pc = BLOCK_START (expression_context_block);
1bb9788d
TT
1196 else
1197 expression_context_pc = pc;
59f92a09 1198
d705c43c 1199 /* Fall back to using the current source static context, if any. */
59f92a09 1200
d705c43c 1201 if (!expression_context_block)
59f92a09
FF
1202 {
1203 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1204 if (cursal.symtab)
d705c43c
PA
1205 expression_context_block
1206 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1207 if (expression_context_block)
1208 expression_context_pc = BLOCK_START (expression_context_block);
84f0252a 1209 }
c906108c 1210
0cce5bd9
JB
1211 if (language_mode == language_mode_auto && block != NULL)
1212 {
1213 /* Find the language associated to the given context block.
1214 Default to the current language if it can not be determined.
1215
1216 Note that using the language corresponding to the current frame
1217 can sometimes give unexpected results. For instance, this
1218 routine is often called several times during the inferior
1219 startup phase to re-parse breakpoint expressions after
1220 a new shared library has been loaded. The language associated
1221 to the current frame at this moment is not relevant for
0df8b418 1222 the breakpoint. Using it would therefore be silly, so it seems
0cce5bd9 1223 better to rely on the current language rather than relying on
0df8b418 1224 the current frame language to parse the expression. That's why
0cce5bd9
JB
1225 we do the following language detection only if the context block
1226 has been specifically provided. */
1227 struct symbol *func = block_linkage_function (block);
1228
1229 if (func != NULL)
1230 lang = language_def (SYMBOL_LANGUAGE (func));
1231 if (lang == NULL || lang->la_language == language_unknown)
1232 lang = current_language;
1233 }
1234 else
1235 lang = current_language;
1236
5b12a61c
JK
1237 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1238 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1239 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1240 to the value matching SELECTED_FRAME as set by get_current_arch. */
2dbca4d6 1241 initialize_expout (10, lang, get_current_arch ());
5b12a61c
JK
1242 inner_chain = make_cleanup_restore_current_language ();
1243 set_language (lang->la_language);
c906108c 1244
65d12d83
TT
1245 TRY_CATCH (except, RETURN_MASK_ALL)
1246 {
0cce5bd9
JB
1247 if (lang->la_parser ())
1248 lang->la_error (NULL);
65d12d83
TT
1249 }
1250 if (except.reason < 0)
1251 {
155da517 1252 if (! parse_completion)
65d12d83
TT
1253 {
1254 xfree (expout);
1255 throw_exception (except);
1256 }
1257 }
c906108c 1258
2dbca4d6 1259 reallocate_expout ();
c906108c
SS
1260
1261 /* Convert expression from postfix form as generated by yacc
0df8b418 1262 parser, to a prefix form. */
c906108c 1263
c906108c 1264 if (expressiondebug)
24daaebc
PH
1265 dump_raw_expression (expout, gdb_stdlog,
1266 "before conversion to prefix form");
c906108c 1267
65d12d83
TT
1268 subexp = prefixify_expression (expout);
1269 if (out_subexp)
1270 *out_subexp = subexp;
c906108c 1271
0cce5bd9 1272 lang->la_post_parser (&expout, void_context_p);
e85c3284 1273
c906108c 1274 if (expressiondebug)
24daaebc 1275 dump_prefix_expression (expout, gdb_stdlog);
c906108c 1276
5b12a61c
JK
1277 do_cleanups (inner_chain);
1278 discard_cleanups (old_chain);
1279
c906108c
SS
1280 *stringptr = lexptr;
1281 return expout;
1282}
1283
1284/* Parse STRING as an expression, and complain if this fails
1285 to use up all of the contents of STRING. */
1286
1287struct expression *
bbc13ae3 1288parse_expression (const char *string)
c906108c 1289{
f86f5ca3 1290 struct expression *exp;
ad3bbd48 1291
1bb9788d 1292 exp = parse_exp_1 (&string, 0, 0, 0);
c906108c 1293 if (*string)
8a3fe4f8 1294 error (_("Junk after end of expression."));
c906108c
SS
1295 return exp;
1296}
e85c3284 1297
65d12d83
TT
1298/* Parse STRING as an expression. If parsing ends in the middle of a
1299 field reference, return the type of the left-hand-side of the
1300 reference; furthermore, if the parsing ends in the field name,
c92817ce
TT
1301 return the field name in *NAME. If the parsing ends in the middle
1302 of a field reference, but the reference is somehow invalid, throw
1303 an exception. In all other cases, return NULL. Returned non-NULL
1304 *NAME must be freed by the caller. */
65d12d83
TT
1305
1306struct type *
6f937416 1307parse_expression_for_completion (const char *string, char **name,
2f68a895 1308 enum type_code *code)
65d12d83
TT
1309{
1310 struct expression *exp = NULL;
1311 struct value *val;
1312 int subexp;
1313 volatile struct gdb_exception except;
1314
c92817ce 1315 TRY_CATCH (except, RETURN_MASK_ERROR)
65d12d83 1316 {
155da517 1317 parse_completion = 1;
1bb9788d 1318 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
65d12d83 1319 }
155da517 1320 parse_completion = 0;
65d12d83
TT
1321 if (except.reason < 0 || ! exp)
1322 return NULL;
2f68a895
TT
1323
1324 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1325 {
1326 *code = expout_tag_completion_type;
1327 *name = expout_completion_name;
1328 expout_completion_name = NULL;
1329 return NULL;
1330 }
1331
65d12d83
TT
1332 if (expout_last_struct == -1)
1333 {
1334 xfree (exp);
1335 return NULL;
1336 }
1337
1338 *name = extract_field_op (exp, &subexp);
1339 if (!*name)
1340 {
1341 xfree (exp);
1342 return NULL;
1343 }
a0b7aece 1344
c92817ce
TT
1345 /* This might throw an exception. If so, we want to let it
1346 propagate. */
65d12d83 1347 val = evaluate_subexpression_type (exp, subexp);
c92817ce
TT
1348 /* (*NAME) is a part of the EXP memory block freed below. */
1349 *name = xstrdup (*name);
65d12d83
TT
1350 xfree (exp);
1351
1352 return value_type (val);
1353}
1354
0df8b418 1355/* A post-parser that does nothing. */
e85c3284 1356
e85c3284
PH
1357void
1358null_post_parser (struct expression **exp, int void_context_p)
1359{
1360}
d30f5e1f
DE
1361
1362/* Parse floating point value P of length LEN.
1363 Return 0 (false) if invalid, 1 (true) if valid.
1364 The successfully parsed number is stored in D.
1365 *SUFFIX points to the suffix of the number in P.
1366
1367 NOTE: This accepts the floating point syntax that sscanf accepts. */
1368
1369int
1370parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1371{
1372 char *copy;
d30f5e1f
DE
1373 int n, num;
1374
1375 copy = xmalloc (len + 1);
1376 memcpy (copy, p, len);
1377 copy[len] = 0;
1378
1379 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1380 xfree (copy);
1381
1382 /* The sscanf man page suggests not making any assumptions on the effect
1383 of %n on the result, so we don't.
1384 That is why we simply test num == 0. */
1385 if (num == 0)
1386 return 0;
1387
1388 *suffix = p + n;
1389 return 1;
1390}
1391
1392/* Parse floating point value P of length LEN, using the C syntax for floats.
1393 Return 0 (false) if invalid, 1 (true) if valid.
1394 The successfully parsed number is stored in *D.
1395 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1396
1397int
1398parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1399 DOUBLEST *d, struct type **t)
1400{
1401 const char *suffix;
1402 int suffix_len;
1403 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1404
1405 if (! parse_float (p, len, d, &suffix))
1406 return 0;
1407
1408 suffix_len = p + len - suffix;
1409
1410 if (suffix_len == 0)
1411 *t = builtin_types->builtin_double;
1412 else if (suffix_len == 1)
1413 {
1414 /* Handle suffixes: 'f' for float, 'l' for long double. */
1415 if (tolower (*suffix) == 'f')
1416 *t = builtin_types->builtin_float;
1417 else if (tolower (*suffix) == 'l')
1418 *t = builtin_types->builtin_long_double;
1419 else
1420 return 0;
1421 }
1422 else
1423 return 0;
1424
1425 return 1;
1426}
c906108c
SS
1427\f
1428/* Stuff for maintaining a stack of types. Currently just used by C, but
1429 probably useful for any language which declares its types "backwards". */
1430
fcde5961
TT
1431/* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1432
47663de5 1433static void
fcde5961 1434type_stack_reserve (struct type_stack *stack, int howmuch)
c906108c 1435{
fcde5961 1436 if (stack->depth + howmuch >= stack->size)
c906108c 1437 {
fcde5961
TT
1438 stack->size *= 2;
1439 if (stack->size < howmuch)
1440 stack->size = howmuch;
1441 stack->elements = xrealloc (stack->elements,
1442 stack->size * sizeof (union type_stack_elt));
c906108c 1443 }
47663de5
MS
1444}
1445
fcde5961
TT
1446/* Ensure that there is a single open slot in the global type stack. */
1447
1448static void
1449check_type_stack_depth (void)
1450{
1451 type_stack_reserve (&type_stack, 1);
1452}
1453
95c391b6
TT
1454/* A helper function for insert_type and insert_type_address_space.
1455 This does work of expanding the type stack and inserting the new
1456 element, ELEMENT, into the stack at location SLOT. */
1457
1458static void
1459insert_into_type_stack (int slot, union type_stack_elt element)
1460{
1461 check_type_stack_depth ();
1462
1a7d0ce4
TT
1463 if (slot < type_stack.depth)
1464 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1465 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1466 type_stack.elements[slot] = element;
1467 ++type_stack.depth;
95c391b6
TT
1468}
1469
1470/* Insert a new type, TP, at the bottom of the type stack. If TP is
1471 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1472 a qualifier, it is inserted at slot 1 (just above a previous
1473 tp_pointer) if there is anything on the stack, or simply pushed if
1474 the stack is empty. Other values for TP are invalid. */
1475
1476void
1477insert_type (enum type_pieces tp)
1478{
1479 union type_stack_elt element;
1480 int slot;
1481
1482 gdb_assert (tp == tp_pointer || tp == tp_reference
1483 || tp == tp_const || tp == tp_volatile);
1484
1485 /* If there is anything on the stack (we know it will be a
1486 tp_pointer), insert the qualifier above it. Otherwise, simply
1487 push this on the top of the stack. */
1a7d0ce4 1488 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
95c391b6
TT
1489 slot = 1;
1490 else
1491 slot = 0;
1492
1493 element.piece = tp;
1494 insert_into_type_stack (slot, element);
1495}
1496
47663de5
MS
1497void
1498push_type (enum type_pieces tp)
1499{
1500 check_type_stack_depth ();
1a7d0ce4 1501 type_stack.elements[type_stack.depth++].piece = tp;
c906108c
SS
1502}
1503
1504void
fba45db2 1505push_type_int (int n)
c906108c 1506{
47663de5 1507 check_type_stack_depth ();
1a7d0ce4 1508 type_stack.elements[type_stack.depth++].int_val = n;
c906108c
SS
1509}
1510
95c391b6
TT
1511/* Insert a tp_space_identifier and the corresponding address space
1512 value into the stack. STRING is the name of an address space, as
1513 recognized by address_space_name_to_int. If the stack is empty,
1514 the new elements are simply pushed. If the stack is not empty,
1515 this function assumes that the first item on the stack is a
1516 tp_pointer, and the new values are inserted above the first
1517 item. */
1518
47663de5 1519void
95c391b6 1520insert_type_address_space (char *string)
47663de5 1521{
95c391b6
TT
1522 union type_stack_elt element;
1523 int slot;
1524
1525 /* If there is anything on the stack (we know it will be a
1526 tp_pointer), insert the address space qualifier above it.
1527 Otherwise, simply push this on the top of the stack. */
1a7d0ce4 1528 if (type_stack.depth)
95c391b6
TT
1529 slot = 1;
1530 else
1531 slot = 0;
1532
1533 element.piece = tp_space_identifier;
1534 insert_into_type_stack (slot, element);
1535 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1536 insert_into_type_stack (slot, element);
47663de5
MS
1537}
1538
c5aa993b 1539enum type_pieces
fba45db2 1540pop_type (void)
c906108c 1541{
1a7d0ce4
TT
1542 if (type_stack.depth)
1543 return type_stack.elements[--type_stack.depth].piece;
c906108c
SS
1544 return tp_end;
1545}
1546
1547int
fba45db2 1548pop_type_int (void)
c906108c 1549{
1a7d0ce4
TT
1550 if (type_stack.depth)
1551 return type_stack.elements[--type_stack.depth].int_val;
c906108c
SS
1552 /* "Can't happen". */
1553 return 0;
1554}
1555
71918a86
TT
1556/* Pop a type list element from the global type stack. */
1557
1558static VEC (type_ptr) *
1559pop_typelist (void)
1560{
1561 gdb_assert (type_stack.depth);
1562 return type_stack.elements[--type_stack.depth].typelist_val;
1563}
1564
fcde5961
TT
1565/* Pop a type_stack element from the global type stack. */
1566
1567static struct type_stack *
1568pop_type_stack (void)
1569{
1570 gdb_assert (type_stack.depth);
1571 return type_stack.elements[--type_stack.depth].stack_val;
1572}
1573
1574/* Append the elements of the type stack FROM to the type stack TO.
1575 Always returns TO. */
1576
1577struct type_stack *
1578append_type_stack (struct type_stack *to, struct type_stack *from)
1579{
1580 type_stack_reserve (to, from->depth);
1581
1582 memcpy (&to->elements[to->depth], &from->elements[0],
1583 from->depth * sizeof (union type_stack_elt));
1584 to->depth += from->depth;
1585
1586 return to;
1587}
1588
1589/* Push the type stack STACK as an element on the global type stack. */
1590
1591void
1592push_type_stack (struct type_stack *stack)
1593{
1594 check_type_stack_depth ();
1595 type_stack.elements[type_stack.depth++].stack_val = stack;
1596 push_type (tp_type_stack);
1597}
1598
1599/* Copy the global type stack into a newly allocated type stack and
1600 return it. The global stack is cleared. The returned type stack
1601 must be freed with type_stack_cleanup. */
1602
1603struct type_stack *
1604get_type_stack (void)
1605{
1606 struct type_stack *result = XNEW (struct type_stack);
1607
1608 *result = type_stack;
1609 type_stack.depth = 0;
1610 type_stack.size = 0;
1611 type_stack.elements = NULL;
1612
1613 return result;
1614}
1615
1616/* A cleanup function that destroys a single type stack. */
1617
1618void
1619type_stack_cleanup (void *arg)
1620{
1621 struct type_stack *stack = arg;
1622
1623 xfree (stack->elements);
1624 xfree (stack);
1625}
1626
71918a86 1627/* Push a function type with arguments onto the global type stack.
a6fb9c08
TT
1628 LIST holds the argument types. If the final item in LIST is NULL,
1629 then the function will be varargs. */
71918a86
TT
1630
1631void
1632push_typelist (VEC (type_ptr) *list)
1633{
1634 check_type_stack_depth ();
1635 type_stack.elements[type_stack.depth++].typelist_val = list;
1636 push_type (tp_function_with_arguments);
1637}
1638
c906108c
SS
1639/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1640 as modified by all the stuff on the stack. */
1641struct type *
fba45db2 1642follow_types (struct type *follow_type)
c906108c
SS
1643{
1644 int done = 0;
2e2394a0
MS
1645 int make_const = 0;
1646 int make_volatile = 0;
47663de5 1647 int make_addr_space = 0;
c906108c 1648 int array_size;
c906108c
SS
1649
1650 while (!done)
1651 switch (pop_type ())
1652 {
1653 case tp_end:
1654 done = 1;
2e2394a0
MS
1655 if (make_const)
1656 follow_type = make_cv_type (make_const,
1657 TYPE_VOLATILE (follow_type),
1658 follow_type, 0);
1659 if (make_volatile)
1660 follow_type = make_cv_type (TYPE_CONST (follow_type),
1661 make_volatile,
1662 follow_type, 0);
47663de5
MS
1663 if (make_addr_space)
1664 follow_type = make_type_with_address_space (follow_type,
1665 make_addr_space);
1666 make_const = make_volatile = 0;
1667 make_addr_space = 0;
2e2394a0
MS
1668 break;
1669 case tp_const:
1670 make_const = 1;
1671 break;
1672 case tp_volatile:
1673 make_volatile = 1;
c906108c 1674 break;
47663de5
MS
1675 case tp_space_identifier:
1676 make_addr_space = pop_type_int ();
1677 break;
c906108c
SS
1678 case tp_pointer:
1679 follow_type = lookup_pointer_type (follow_type);
2e2394a0
MS
1680 if (make_const)
1681 follow_type = make_cv_type (make_const,
1682 TYPE_VOLATILE (follow_type),
1683 follow_type, 0);
1684 if (make_volatile)
1685 follow_type = make_cv_type (TYPE_CONST (follow_type),
1686 make_volatile,
1687 follow_type, 0);
47663de5
MS
1688 if (make_addr_space)
1689 follow_type = make_type_with_address_space (follow_type,
1690 make_addr_space);
2e2394a0 1691 make_const = make_volatile = 0;
47663de5 1692 make_addr_space = 0;
c906108c
SS
1693 break;
1694 case tp_reference:
1695 follow_type = lookup_reference_type (follow_type);
2e2394a0 1696 if (make_const)
47663de5
MS
1697 follow_type = make_cv_type (make_const,
1698 TYPE_VOLATILE (follow_type),
1699 follow_type, 0);
2e2394a0 1700 if (make_volatile)
47663de5
MS
1701 follow_type = make_cv_type (TYPE_CONST (follow_type),
1702 make_volatile,
1703 follow_type, 0);
1704 if (make_addr_space)
1705 follow_type = make_type_with_address_space (follow_type,
1706 make_addr_space);
2e2394a0 1707 make_const = make_volatile = 0;
47663de5 1708 make_addr_space = 0;
c906108c
SS
1709 break;
1710 case tp_array:
1711 array_size = pop_type_int ();
1712 /* FIXME-type-allocation: need a way to free this type when we are
1713 done with it. */
c906108c 1714 follow_type =
e3506a9f
UW
1715 lookup_array_range_type (follow_type,
1716 0, array_size >= 0 ? array_size - 1 : 0);
c906108c 1717 if (array_size < 0)
d78df370 1718 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
c906108c
SS
1719 break;
1720 case tp_function:
1721 /* FIXME-type-allocation: need a way to free this type when we are
1722 done with it. */
1723 follow_type = lookup_function_type (follow_type);
1724 break;
fcde5961 1725
71918a86
TT
1726 case tp_function_with_arguments:
1727 {
1728 VEC (type_ptr) *args = pop_typelist ();
1729
1730 follow_type
1731 = lookup_function_type_with_arguments (follow_type,
1732 VEC_length (type_ptr, args),
1733 VEC_address (type_ptr,
1734 args));
1735 VEC_free (type_ptr, args);
1736 }
1737 break;
1738
fcde5961
TT
1739 case tp_type_stack:
1740 {
1741 struct type_stack *stack = pop_type_stack ();
1742 /* Sort of ugly, but not really much worse than the
1743 alternatives. */
1744 struct type_stack save = type_stack;
1745
1746 type_stack = *stack;
1747 follow_type = follow_types (follow_type);
1748 gdb_assert (type_stack.depth == 0);
1749
1750 type_stack = save;
1751 }
1752 break;
1753 default:
1754 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
c906108c
SS
1755 }
1756 return follow_type;
1757}
1758\f
f461f5cf
PM
1759/* This function avoids direct calls to fprintf
1760 in the parser generated debug code. */
1761void
1762parser_fprintf (FILE *x, const char *y, ...)
1763{
1764 va_list args;
ad3bbd48 1765
f461f5cf
PM
1766 va_start (args, y);
1767 if (x == stderr)
1768 vfprintf_unfiltered (gdb_stderr, y, args);
1769 else
1770 {
1771 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1772 vfprintf_unfiltered (gdb_stderr, y, args);
1773 }
1774 va_end (args);
1775}
1776
c0201579
JK
1777/* Implementation of the exp_descriptor method operator_check. */
1778
1779int
1780operator_check_standard (struct expression *exp, int pos,
1781 int (*objfile_func) (struct objfile *objfile,
1782 void *data),
1783 void *data)
1784{
1785 const union exp_element *const elts = exp->elts;
1786 struct type *type = NULL;
1787 struct objfile *objfile = NULL;
1788
1789 /* Extended operators should have been already handled by exp_descriptor
1790 iterate method of its specific language. */
1791 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1792
1793 /* Track the callers of write_exp_elt_type for this table. */
1794
1795 switch (elts[pos].opcode)
1796 {
1797 case BINOP_VAL:
1798 case OP_COMPLEX:
1799 case OP_DECFLOAT:
1800 case OP_DOUBLE:
1801 case OP_LONG:
1802 case OP_SCOPE:
1803 case OP_TYPE:
1804 case UNOP_CAST:
c0201579
JK
1805 case UNOP_MAX:
1806 case UNOP_MEMVAL:
1807 case UNOP_MIN:
1808 type = elts[pos + 1].type;
1809 break;
1810
1811 case TYPE_INSTANCE:
1812 {
1813 LONGEST arg, nargs = elts[pos + 1].longconst;
1814
1815 for (arg = 0; arg < nargs; arg++)
1816 {
1817 struct type *type = elts[pos + 2 + arg].type;
1818 struct objfile *objfile = TYPE_OBJFILE (type);
1819
1820 if (objfile && (*objfile_func) (objfile, data))
1821 return 1;
1822 }
1823 }
1824 break;
1825
1826 case UNOP_MEMVAL_TLS:
1827 objfile = elts[pos + 1].objfile;
1828 type = elts[pos + 2].type;
1829 break;
1830
1831 case OP_VAR_VALUE:
1832 {
1833 const struct block *const block = elts[pos + 1].block;
1834 const struct symbol *const symbol = elts[pos + 2].symbol;
1835
1836 /* Check objfile where the variable itself is placed.
1837 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1838 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1839 return 1;
1840
1841 /* Check objfile where is placed the code touching the variable. */
1842 objfile = lookup_objfile_from_block (block);
1843
1844 type = SYMBOL_TYPE (symbol);
1845 }
1846 break;
1847 }
1848
1849 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1850
1851 if (type && TYPE_OBJFILE (type)
1852 && (*objfile_func) (TYPE_OBJFILE (type), data))
1853 return 1;
1854 if (objfile && (*objfile_func) (objfile, data))
1855 return 1;
1856
1857 return 0;
1858}
1859
1860/* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1861 The functions are never called with NULL OBJFILE. Functions get passed an
1862 arbitrary caller supplied DATA pointer. If any of the functions returns
1863 non-zero value then (any other) non-zero value is immediately returned to
1864 the caller. Otherwise zero is returned after iterating through whole EXP.
1865 */
1866
1867static int
1868exp_iterate (struct expression *exp,
1869 int (*objfile_func) (struct objfile *objfile, void *data),
1870 void *data)
1871{
1872 int endpos;
c0201579
JK
1873
1874 for (endpos = exp->nelts; endpos > 0; )
1875 {
1876 int pos, args, oplen = 0;
1877
dc21167c 1878 operator_length (exp, endpos, &oplen, &args);
c0201579
JK
1879 gdb_assert (oplen > 0);
1880
1881 pos = endpos - oplen;
1882 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1883 objfile_func, data))
1884 return 1;
1885
1886 endpos = pos;
1887 }
1888
1889 return 0;
1890}
1891
1892/* Helper for exp_uses_objfile. */
1893
1894static int
1895exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1896{
1897 struct objfile *objfile = objfile_voidp;
1898
1899 if (exp_objfile->separate_debug_objfile_backlink)
1900 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1901
1902 return exp_objfile == objfile;
1903}
1904
1905/* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1906 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1907 file. */
1908
1909int
1910exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1911{
1912 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1913
1914 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1915}
1916
ac9a91a7 1917void
fba45db2 1918_initialize_parse (void)
ac9a91a7 1919{
fcde5961 1920 type_stack.size = 0;
1a7d0ce4 1921 type_stack.depth = 0;
fcde5961 1922 type_stack.elements = NULL;
ac9a91a7 1923
ccce17b0
YQ
1924 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1925 &expressiondebug,
1926 _("Set expression debugging."),
1927 _("Show expression debugging."),
1928 _("When non-zero, the internal representation "
1929 "of expressions will be printed."),
1930 NULL,
1931 show_expressiondebug,
1932 &setdebuglist, &showdebuglist);
92981e24 1933 add_setshow_boolean_cmd ("parser", class_maintenance,
3e43a32a
MS
1934 &parser_debug,
1935 _("Set parser debugging."),
1936 _("Show parser debugging."),
1937 _("When non-zero, expression parser "
1938 "tracing will be enabled."),
92981e24
TT
1939 NULL,
1940 show_parserdebug,
1941 &setdebuglist, &showdebuglist);
c906108c 1942}
This page took 1.233282 seconds and 4 git commands to generate.