* inftarg.c (child_thread_alive): New function to see if a
[deliverable/binutils-gdb.git] / gdb / parse.c
CommitLineData
3d6b6a90 1/* Parse expressions for GDB.
d92f3f08 2 Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc.
3d6b6a90
JG
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* Parse an expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. */
30
3d6b6a90 31#include "defs.h"
ba47c66a 32#include <string.h>
3d6b6a90 33#include "symtab.h"
1ab3bf1b 34#include "gdbtypes.h"
3d6b6a90
JG
35#include "frame.h"
36#include "expression.h"
37#include "value.h"
38#include "command.h"
39#include "language.h"
40#include "parser-defs.h"
79448221
JK
41\f
42/* Global variables declared in parser-defs.h (and commented there). */
43struct expression *expout;
44int expout_size;
45int expout_ptr;
46struct block *expression_context_block;
47struct block *innermost_block;
79448221
JK
48int arglist_len;
49union type_stack_elt *type_stack;
50int type_stack_depth, type_stack_size;
51char *lexptr;
52char *namecopy;
53int paren_depth;
54int comma_terminates;
55\f
9da75ad3
FF
56static void
57free_funcalls PARAMS ((void));
58
1ab3bf1b
JG
59static void
60prefixify_expression PARAMS ((struct expression *));
61
62static int
63length_of_subexp PARAMS ((struct expression *, int));
64
65static void
66prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
67
9da75ad3
FF
68/* Data structure for saving values of arglist_len for function calls whose
69 arguments contain other function calls. */
70
71struct funcall
72 {
73 struct funcall *next;
74 int arglist_len;
75 };
76
77static struct funcall *funcall_chain;
78
3d6b6a90
JG
79/* Assign machine-independent names to certain registers
80 (unless overridden by the REGISTER_NAMES table) */
81
a332e593
SC
82#ifdef NO_STD_REGS
83unsigned num_std_regs = 0;
84struct std_regs std_regs[1];
85#else
3d6b6a90 86struct std_regs std_regs[] = {
a332e593 87
3d6b6a90
JG
88#ifdef PC_REGNUM
89 { "pc", PC_REGNUM },
90#endif
91#ifdef FP_REGNUM
92 { "fp", FP_REGNUM },
93#endif
94#ifdef SP_REGNUM
95 { "sp", SP_REGNUM },
96#endif
97#ifdef PS_REGNUM
98 { "ps", PS_REGNUM },
99#endif
a332e593 100
3d6b6a90
JG
101};
102
103unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]);
104
a332e593
SC
105#endif
106
3d6b6a90
JG
107
108/* Begin counting arguments for a function call,
109 saving the data about any containing call. */
110
111void
112start_arglist ()
113{
9da75ad3 114 register struct funcall *new;
3d6b6a90 115
9da75ad3 116 new = (struct funcall *) xmalloc (sizeof (struct funcall));
3d6b6a90
JG
117 new->next = funcall_chain;
118 new->arglist_len = arglist_len;
119 arglist_len = 0;
120 funcall_chain = new;
121}
122
123/* Return the number of arguments in a function call just terminated,
124 and restore the data for the containing function call. */
125
126int
127end_arglist ()
128{
129 register int val = arglist_len;
130 register struct funcall *call = funcall_chain;
131 funcall_chain = call->next;
132 arglist_len = call->arglist_len;
be772100 133 free ((PTR)call);
3d6b6a90
JG
134 return val;
135}
136
137/* Free everything in the funcall chain.
138 Used when there is an error inside parsing. */
139
9da75ad3 140static void
3d6b6a90
JG
141free_funcalls ()
142{
143 register struct funcall *call, *next;
144
145 for (call = funcall_chain; call; call = next)
146 {
147 next = call->next;
be772100 148 free ((PTR)call);
3d6b6a90
JG
149 }
150}
151\f
152/* This page contains the functions for adding data to the struct expression
153 being constructed. */
154
155/* Add one element to the end of the expression. */
156
157/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
158 a register through here */
159
160void
161write_exp_elt (expelt)
162 union exp_element expelt;
163{
164 if (expout_ptr >= expout_size)
165 {
166 expout_size *= 2;
81028ab0
FF
167 expout = (struct expression *)
168 xrealloc ((char *) expout, sizeof (struct expression)
169 + EXP_ELEM_TO_BYTES (expout_size));
3d6b6a90
JG
170 }
171 expout->elts[expout_ptr++] = expelt;
172}
173
174void
175write_exp_elt_opcode (expelt)
176 enum exp_opcode expelt;
177{
178 union exp_element tmp;
179
180 tmp.opcode = expelt;
181
182 write_exp_elt (tmp);
183}
184
185void
186write_exp_elt_sym (expelt)
187 struct symbol *expelt;
188{
189 union exp_element tmp;
190
191 tmp.symbol = expelt;
192
193 write_exp_elt (tmp);
194}
195
479fdd26
JK
196void
197write_exp_elt_block (b)
198 struct block *b;
199{
200 union exp_element tmp;
201 tmp.block = b;
202 write_exp_elt (tmp);
203}
204
3d6b6a90
JG
205void
206write_exp_elt_longcst (expelt)
207 LONGEST expelt;
208{
209 union exp_element tmp;
210
211 tmp.longconst = expelt;
212
213 write_exp_elt (tmp);
214}
215
216void
217write_exp_elt_dblcst (expelt)
218 double expelt;
219{
220 union exp_element tmp;
221
222 tmp.doubleconst = expelt;
223
224 write_exp_elt (tmp);
225}
226
227void
228write_exp_elt_type (expelt)
229 struct type *expelt;
230{
231 union exp_element tmp;
232
233 tmp.type = expelt;
234
235 write_exp_elt (tmp);
236}
237
238void
239write_exp_elt_intern (expelt)
240 struct internalvar *expelt;
241{
242 union exp_element tmp;
243
244 tmp.internalvar = expelt;
245
246 write_exp_elt (tmp);
247}
248
249/* Add a string constant to the end of the expression.
d1065385
FF
250
251 String constants are stored by first writing an expression element
252 that contains the length of the string, then stuffing the string
253 constant itself into however many expression elements are needed
254 to hold it, and then writing another expression element that contains
255 the length of the string. I.E. an expression element at each end of
256 the string records the string length, so you can skip over the
257 expression elements containing the actual string bytes from either
258 end of the string. Note that this also allows gdb to handle
259 strings with embedded null bytes, as is required for some languages.
260
261 Don't be fooled by the fact that the string is null byte terminated,
262 this is strictly for the convenience of debugging gdb itself. Gdb
263 Gdb does not depend up the string being null terminated, since the
264 actual length is recorded in expression elements at each end of the
265 string. The null byte is taken into consideration when computing how
266 many expression elements are required to hold the string constant, of
267 course. */
268
3d6b6a90
JG
269
270void
271write_exp_string (str)
272 struct stoken str;
273{
274 register int len = str.length;
d1065385
FF
275 register int lenelt;
276 register char *strdata;
3d6b6a90 277
d1065385
FF
278 /* Compute the number of expression elements required to hold the string
279 (including a null byte terminator), along with one expression element
280 at each end to record the actual string length (not including the
281 null byte terminator). */
3d6b6a90 282
81028ab0 283 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
d1065385
FF
284
285 /* Ensure that we have enough available expression elements to store
286 everything. */
287
288 if ((expout_ptr + lenelt) >= expout_size)
3d6b6a90 289 {
d1065385 290 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
3d6b6a90 291 expout = (struct expression *)
1ab3bf1b 292 xrealloc ((char *) expout, (sizeof (struct expression)
81028ab0 293 + EXP_ELEM_TO_BYTES (expout_size)));
3d6b6a90 294 }
d1065385
FF
295
296 /* Write the leading length expression element (which advances the current
297 expression element index), then write the string constant followed by a
298 terminating null byte, and then write the trailing length expression
299 element. */
300
301 write_exp_elt_longcst ((LONGEST) len);
302 strdata = (char *) &expout->elts[expout_ptr];
303 memcpy (strdata, str.ptr, len);
304 *(strdata + len) = '\0';
305 expout_ptr += lenelt - 2;
3d6b6a90
JG
306 write_exp_elt_longcst ((LONGEST) len);
307}
81028ab0
FF
308
309/* Add a bitstring constant to the end of the expression.
310
311 Bitstring constants are stored by first writing an expression element
312 that contains the length of the bitstring (in bits), then stuffing the
313 bitstring constant itself into however many expression elements are
314 needed to hold it, and then writing another expression element that
315 contains the length of the bitstring. I.E. an expression element at
316 each end of the bitstring records the bitstring length, so you can skip
317 over the expression elements containing the actual bitstring bytes from
318 either end of the bitstring. */
319
320void
321write_exp_bitstring (str)
322 struct stoken str;
323{
324 register int bits = str.length; /* length in bits */
325 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
326 register int lenelt;
327 register char *strdata;
328
329 /* Compute the number of expression elements required to hold the bitstring,
330 along with one expression element at each end to record the actual
331 bitstring length in bits. */
332
333 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
334
335 /* Ensure that we have enough available expression elements to store
336 everything. */
337
338 if ((expout_ptr + lenelt) >= expout_size)
339 {
340 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
341 expout = (struct expression *)
342 xrealloc ((char *) expout, (sizeof (struct expression)
343 + EXP_ELEM_TO_BYTES (expout_size)));
344 }
345
346 /* Write the leading length expression element (which advances the current
347 expression element index), then write the bitstring constant, and then
348 write the trailing length expression element. */
349
350 write_exp_elt_longcst ((LONGEST) bits);
351 strdata = (char *) &expout->elts[expout_ptr];
352 memcpy (strdata, str.ptr, len);
353 expout_ptr += lenelt - 2;
354 write_exp_elt_longcst ((LONGEST) bits);
355}
abe28b92
JK
356
357/* Add the appropriate elements for a minimal symbol to the end of
3fb93d86
JK
358 the expression. The rationale behind passing in text_symbol_type and
359 data_symbol_type was so that Modula-2 could pass in WORD for
360 data_symbol_type. Perhaps it still is useful to have those types vary
361 based on the language, but they no longer have names like "int", so
362 the initial rationale is gone. */
363
364static struct type *msym_text_symbol_type;
365static struct type *msym_data_symbol_type;
366static struct type *msym_unknown_symbol_type;
abe28b92
JK
367
368void
369write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
370 struct minimal_symbol *msymbol;
371 struct type *text_symbol_type;
372 struct type *data_symbol_type;
373{
374 write_exp_elt_opcode (OP_LONG);
4461196e 375 write_exp_elt_type (lookup_pointer_type (builtin_type_void));
abe28b92
JK
376 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
377 write_exp_elt_opcode (OP_LONG);
378
379 write_exp_elt_opcode (UNOP_MEMVAL);
380 switch (msymbol -> type)
381 {
382 case mst_text:
383 case mst_file_text:
ae6d035d 384 case mst_solib_trampoline:
3fb93d86 385 write_exp_elt_type (msym_text_symbol_type);
abe28b92
JK
386 break;
387
388 case mst_data:
389 case mst_file_data:
390 case mst_bss:
391 case mst_file_bss:
3fb93d86 392 write_exp_elt_type (msym_data_symbol_type);
abe28b92
JK
393 break;
394
395 default:
3fb93d86 396 write_exp_elt_type (msym_unknown_symbol_type);
abe28b92
JK
397 break;
398 }
399 write_exp_elt_opcode (UNOP_MEMVAL);
400}
3d6b6a90
JG
401\f
402/* Return a null-terminated temporary copy of the name
403 of a string token. */
404
405char *
406copy_name (token)
407 struct stoken token;
408{
4ed3a9ea 409 memcpy (namecopy, token.ptr, token.length);
3d6b6a90
JG
410 namecopy[token.length] = 0;
411 return namecopy;
412}
413\f
414/* Reverse an expression from suffix form (in which it is constructed)
415 to prefix form (in which we can conveniently print or execute it). */
416
1ab3bf1b 417static void
3d6b6a90
JG
418prefixify_expression (expr)
419 register struct expression *expr;
420{
81028ab0
FF
421 register int len =
422 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
3d6b6a90
JG
423 register struct expression *temp;
424 register int inpos = expr->nelts, outpos = 0;
425
426 temp = (struct expression *) alloca (len);
427
428 /* Copy the original expression into temp. */
4ed3a9ea 429 memcpy (temp, expr, len);
3d6b6a90
JG
430
431 prefixify_subexp (temp, expr, inpos, outpos);
432}
433
434/* Return the number of exp_elements in the subexpression of EXPR
435 whose last exp_element is at index ENDPOS - 1 in EXPR. */
436
1ab3bf1b 437static int
3d6b6a90
JG
438length_of_subexp (expr, endpos)
439 register struct expression *expr;
440 register int endpos;
441{
442 register int oplen = 1;
443 register int args = 0;
444 register int i;
445
d1065385 446 if (endpos < 1)
3d6b6a90
JG
447 error ("?error in length_of_subexp");
448
449 i = (int) expr->elts[endpos - 1].opcode;
450
451 switch (i)
452 {
453 /* C++ */
454 case OP_SCOPE:
81028ab0
FF
455 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
456 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
3d6b6a90
JG
457 break;
458
459 case OP_LONG:
460 case OP_DOUBLE:
479fdd26 461 case OP_VAR_VALUE:
3d6b6a90
JG
462 oplen = 4;
463 break;
464
465 case OP_TYPE:
466 case OP_BOOL:
3d6b6a90
JG
467 case OP_LAST:
468 case OP_REGISTER:
469 case OP_INTERNALVAR:
470 oplen = 3;
471 break;
472
ead95f8a 473 case OP_COMPLEX:
a91a6192
SS
474 oplen = 1;
475 args = 2;
476 break;
477
3d6b6a90 478 case OP_FUNCALL:
a91a6192 479 case OP_F77_UNDETERMINED_ARGLIST:
3d6b6a90 480 oplen = 3;
d1065385 481 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
3d6b6a90
JG
482 break;
483
484 case UNOP_MAX:
485 case UNOP_MIN:
486 oplen = 3;
3d6b6a90
JG
487 break;
488
489 case BINOP_VAL:
490 case UNOP_CAST:
491 case UNOP_MEMVAL:
492 oplen = 3;
493 args = 1;
494 break;
495
496 case UNOP_ABS:
497 case UNOP_CAP:
498 case UNOP_CHR:
499 case UNOP_FLOAT:
500 case UNOP_HIGH:
501 case UNOP_ODD:
502 case UNOP_ORD:
503 case UNOP_TRUNC:
504 oplen = 1;
505 args = 1;
506 break;
507
dcda44a0 508 case OP_LABELED:
2640f7e1
JG
509 case STRUCTOP_STRUCT:
510 case STRUCTOP_PTR:
511 args = 1;
d1065385 512 /* fall through */
3d6b6a90
JG
513 case OP_M2_STRING:
514 case OP_STRING:
81028ab0
FF
515 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
516 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
517 break;
518
519 case OP_BITSTRING:
520 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
521 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
522 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
3d6b6a90
JG
523 break;
524
c4413e2c
FF
525 case OP_ARRAY:
526 oplen = 4;
527 args = longest_to_int (expr->elts[endpos - 2].longconst);
528 args -= longest_to_int (expr->elts[endpos - 3].longconst);
529 args += 1;
530 break;
531
3d6b6a90 532 case TERNOP_COND:
f91a9e05
PB
533 case TERNOP_SLICE:
534 case TERNOP_SLICE_COUNT:
3d6b6a90
JG
535 args = 3;
536 break;
537
538 /* Modula-2 */
54bbbfb4 539 case MULTI_SUBSCRIPT:
a91a6192 540 oplen = 3;
d1065385 541 args = 1 + longest_to_int (expr->elts[endpos- 2].longconst);
3d6b6a90
JG
542 break;
543
544 case BINOP_ASSIGN_MODIFY:
545 oplen = 3;
546 args = 2;
547 break;
548
549 /* C++ */
550 case OP_THIS:
551 oplen = 2;
552 break;
553
554 default:
555 args = 1 + (i < (int) BINOP_END);
556 }
557
558 while (args > 0)
559 {
560 oplen += length_of_subexp (expr, endpos - oplen);
561 args--;
562 }
563
564 return oplen;
565}
566
567/* Copy the subexpression ending just before index INEND in INEXPR
568 into OUTEXPR, starting at index OUTBEG.
569 In the process, convert it from suffix to prefix form. */
570
571static void
572prefixify_subexp (inexpr, outexpr, inend, outbeg)
573 register struct expression *inexpr;
574 struct expression *outexpr;
575 register int inend;
576 int outbeg;
577{
578 register int oplen = 1;
579 register int args = 0;
580 register int i;
581 int *arglens;
582 enum exp_opcode opcode;
583
584 /* Compute how long the last operation is (in OPLEN),
585 and also how many preceding subexpressions serve as
586 arguments for it (in ARGS). */
587
588 opcode = inexpr->elts[inend - 1].opcode;
589 switch (opcode)
590 {
591 /* C++ */
592 case OP_SCOPE:
81028ab0
FF
593 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
594 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
3d6b6a90
JG
595 break;
596
597 case OP_LONG:
598 case OP_DOUBLE:
479fdd26 599 case OP_VAR_VALUE:
3d6b6a90
JG
600 oplen = 4;
601 break;
602
603 case OP_TYPE:
604 case OP_BOOL:
3d6b6a90
JG
605 case OP_LAST:
606 case OP_REGISTER:
607 case OP_INTERNALVAR:
608 oplen = 3;
609 break;
610
ead95f8a 611 case OP_COMPLEX:
a91a6192
SS
612 oplen = 1;
613 args = 2;
614 break;
615
3d6b6a90 616 case OP_FUNCALL:
a91a6192 617 case OP_F77_UNDETERMINED_ARGLIST:
3d6b6a90 618 oplen = 3;
d1065385 619 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
3d6b6a90
JG
620 break;
621
622 case UNOP_MIN:
623 case UNOP_MAX:
624 oplen = 3;
3d6b6a90
JG
625 break;
626
627 case UNOP_CAST:
628 case UNOP_MEMVAL:
629 oplen = 3;
630 args = 1;
631 break;
632
633 case UNOP_ABS:
634 case UNOP_CAP:
635 case UNOP_CHR:
636 case UNOP_FLOAT:
637 case UNOP_HIGH:
638 case UNOP_ODD:
639 case UNOP_ORD:
640 case UNOP_TRUNC:
641 oplen=1;
642 args=1;
643 break;
644
61c1724b 645 case STRUCTOP_STRUCT:
2640f7e1 646 case STRUCTOP_PTR:
dcda44a0 647 case OP_LABELED:
2640f7e1 648 args = 1;
d1065385 649 /* fall through */
3d6b6a90
JG
650 case OP_M2_STRING:
651 case OP_STRING:
81028ab0
FF
652 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
653 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
654 break;
655
656 case OP_BITSTRING:
657 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
658 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
659 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
3d6b6a90
JG
660 break;
661
c4413e2c
FF
662 case OP_ARRAY:
663 oplen = 4;
664 args = longest_to_int (inexpr->elts[inend - 2].longconst);
665 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
666 args += 1;
667 break;
668
3d6b6a90 669 case TERNOP_COND:
f91a9e05
PB
670 case TERNOP_SLICE:
671 case TERNOP_SLICE_COUNT:
3d6b6a90
JG
672 args = 3;
673 break;
674
675 case BINOP_ASSIGN_MODIFY:
676 oplen = 3;
677 args = 2;
678 break;
679
680 /* Modula-2 */
54bbbfb4 681 case MULTI_SUBSCRIPT:
a91a6192 682 oplen = 3;
d1065385 683 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
3d6b6a90
JG
684 break;
685
686 /* C++ */
687 case OP_THIS:
688 oplen = 2;
689 break;
690
691 default:
692 args = 1 + ((int) opcode < (int) BINOP_END);
693 }
694
695 /* Copy the final operator itself, from the end of the input
696 to the beginning of the output. */
697 inend -= oplen;
4ed3a9ea 698 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
81028ab0 699 EXP_ELEM_TO_BYTES (oplen));
3d6b6a90
JG
700 outbeg += oplen;
701
702 /* Find the lengths of the arg subexpressions. */
703 arglens = (int *) alloca (args * sizeof (int));
704 for (i = args - 1; i >= 0; i--)
705 {
706 oplen = length_of_subexp (inexpr, inend);
707 arglens[i] = oplen;
708 inend -= oplen;
709 }
710
711 /* Now copy each subexpression, preserving the order of
712 the subexpressions, but prefixifying each one.
713 In this loop, inend starts at the beginning of
714 the expression this level is working on
715 and marches forward over the arguments.
716 outbeg does similarly in the output. */
717 for (i = 0; i < args; i++)
718 {
719 oplen = arglens[i];
720 inend += oplen;
721 prefixify_subexp (inexpr, outexpr, inend, outbeg);
722 outbeg += oplen;
723 }
724}
725\f
726/* This page contains the two entry points to this file. */
727
728/* Read an expression from the string *STRINGPTR points to,
729 parse it, and return a pointer to a struct expression that we malloc.
730 Use block BLOCK as the lexical context for variable names;
731 if BLOCK is zero, use the block of the selected stack frame.
732 Meanwhile, advance *STRINGPTR to point after the expression,
733 at the first nonwhite character that is not part of the expression
734 (possibly a null character).
735
736 If COMMA is nonzero, stop if a comma is reached. */
737
738struct expression *
739parse_exp_1 (stringptr, block, comma)
740 char **stringptr;
741 struct block *block;
742 int comma;
743{
744 struct cleanup *old_chain;
745
746 lexptr = *stringptr;
747
748 paren_depth = 0;
749 type_stack_depth = 0;
750
751 comma_terminates = comma;
752
753 if (lexptr == 0 || *lexptr == 0)
754 error_no_arg ("expression to compute");
755
756 old_chain = make_cleanup (free_funcalls, 0);
757 funcall_chain = 0;
758
759 expression_context_block = block ? block : get_selected_block ();
760
761 namecopy = (char *) alloca (strlen (lexptr) + 1);
762 expout_size = 10;
763 expout_ptr = 0;
764 expout = (struct expression *)
81028ab0 765 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
3d6b6a90
JG
766 expout->language_defn = current_language;
767 make_cleanup (free_current_contents, &expout);
768
769 if (current_language->la_parser ())
770 current_language->la_error (NULL);
771
772 discard_cleanups (old_chain);
54bbbfb4
FF
773
774 /* Record the actual number of expression elements, and then
775 reallocate the expression memory so that we free up any
776 excess elements. */
777
3d6b6a90
JG
778 expout->nelts = expout_ptr;
779 expout = (struct expression *)
1ab3bf1b 780 xrealloc ((char *) expout,
81028ab0 781 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
54bbbfb4
FF
782
783 /* Convert expression from postfix form as generated by yacc
784 parser, to a prefix form. */
785
199b2450 786 DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form");
3d6b6a90 787 prefixify_expression (expout);
199b2450 788 DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form");
54bbbfb4 789
3d6b6a90
JG
790 *stringptr = lexptr;
791 return expout;
792}
793
794/* Parse STRING as an expression, and complain if this fails
795 to use up all of the contents of STRING. */
796
797struct expression *
798parse_expression (string)
799 char *string;
800{
801 register struct expression *exp;
802 exp = parse_exp_1 (&string, 0, 0);
803 if (*string)
804 error ("Junk after end of expression.");
805 return exp;
806}
f843c95f
JK
807\f
808/* Stuff for maintaining a stack of types. Currently just used by C, but
809 probably useful for any language which declares its types "backwards". */
3d6b6a90
JG
810
811void
812push_type (tp)
813 enum type_pieces tp;
814{
815 if (type_stack_depth == type_stack_size)
816 {
817 type_stack_size *= 2;
818 type_stack = (union type_stack_elt *)
1ab3bf1b 819 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
3d6b6a90
JG
820 }
821 type_stack[type_stack_depth++].piece = tp;
822}
823
824void
825push_type_int (n)
826 int n;
827{
828 if (type_stack_depth == type_stack_size)
829 {
830 type_stack_size *= 2;
831 type_stack = (union type_stack_elt *)
1ab3bf1b 832 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
3d6b6a90
JG
833 }
834 type_stack[type_stack_depth++].int_val = n;
835}
836
837enum type_pieces
838pop_type ()
839{
840 if (type_stack_depth)
841 return type_stack[--type_stack_depth].piece;
842 return tp_end;
843}
844
845int
846pop_type_int ()
847{
848 if (type_stack_depth)
849 return type_stack[--type_stack_depth].int_val;
850 /* "Can't happen". */
851 return 0;
852}
853
f843c95f
JK
854/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
855 as modified by all the stuff on the stack. */
856struct type *
857follow_types (follow_type)
858 struct type *follow_type;
859{
860 int done = 0;
861 int array_size;
862 struct type *range_type;
863
864 while (!done)
865 switch (pop_type ())
866 {
867 case tp_end:
868 done = 1;
869 break;
870 case tp_pointer:
871 follow_type = lookup_pointer_type (follow_type);
872 break;
873 case tp_reference:
874 follow_type = lookup_reference_type (follow_type);
875 break;
876 case tp_array:
877 array_size = pop_type_int ();
36633dcc
JK
878 /* FIXME-type-allocation: need a way to free this type when we are
879 done with it. */
fda36387
PB
880 range_type =
881 create_range_type ((struct type *) NULL,
882 builtin_type_int, 0,
883 array_size >= 0 ? array_size - 1 : 0);
884 follow_type =
885 create_array_type ((struct type *) NULL,
886 follow_type, range_type);
887 if (array_size < 0)
888 TYPE_ARRAY_UPPER_BOUND_TYPE(follow_type)
889 = BOUND_CANNOT_BE_DETERMINED;
f843c95f
JK
890 break;
891 case tp_function:
36633dcc
JK
892 /* FIXME-type-allocation: need a way to free this type when we are
893 done with it. */
f843c95f
JK
894 follow_type = lookup_function_type (follow_type);
895 break;
896 }
897 return follow_type;
898}
899\f
3d6b6a90
JG
900void
901_initialize_parse ()
902{
903 type_stack_size = 80;
904 type_stack_depth = 0;
905 type_stack = (union type_stack_elt *)
906 xmalloc (type_stack_size * sizeof (*type_stack));
3fb93d86
JK
907
908 msym_text_symbol_type =
eedb3363 909 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
3fb93d86
JK
910 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
911 msym_data_symbol_type =
912 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
eedb3363 913 "<data variable, no debug info>", NULL);
3fb93d86 914 msym_unknown_symbol_type =
eedb3363
JK
915 init_type (TYPE_CODE_INT, 1, 0,
916 "<variable (not text or data), no debug info>",
3fb93d86 917 NULL);
3d6b6a90 918}
This page took 0.320412 seconds and 4 git commands to generate.