gdb/
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
CommitLineData
9abe5450 1/* PPC GNU/Linux native support.
2555fe1a 2
28e7fd62 3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
c877c8e6
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
19
20#include "defs.h"
e162d11b 21#include "gdb_string.h"
6ffbb7ab 22#include "observer.h"
c877c8e6
KB
23#include "frame.h"
24#include "inferior.h"
6ffbb7ab 25#include "gdbthread.h"
c877c8e6 26#include "gdbcore.h"
4e052eda 27#include "regcache.h"
383f0f5b 28#include "gdb_assert.h"
10d6c8cd
DJ
29#include "target.h"
30#include "linux-nat.h"
c877c8e6 31
411cb3f9 32#include <stdint.h>
c877c8e6
KB
33#include <sys/types.h>
34#include <sys/param.h>
35#include <signal.h>
36#include <sys/user.h>
37#include <sys/ioctl.h>
2555fe1a 38#include "gdb_wait.h"
c877c8e6
KB
39#include <fcntl.h>
40#include <sys/procfs.h>
45229ea4 41#include <sys/ptrace.h>
c877c8e6 42
0df8b418 43/* Prototypes for supply_gregset etc. */
c60c0f5f 44#include "gregset.h"
16333c4f 45#include "ppc-tdep.h"
7284e1be
UW
46#include "ppc-linux-tdep.h"
47
b7622095
LM
48/* Required when using the AUXV. */
49#include "elf/common.h"
50#include "auxv.h"
51
7284e1be
UW
52/* This sometimes isn't defined. */
53#ifndef PT_ORIG_R3
54#define PT_ORIG_R3 34
55#endif
56#ifndef PT_TRAP
57#define PT_TRAP 40
58#endif
c60c0f5f 59
69abc51c
TJB
60/* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
61 If they aren't, we can provide them ourselves (their values are fixed
62 because they are part of the kernel ABI). They are used in the AT_HWCAP
63 entry of the AUXV. */
f4d9bade
UW
64#ifndef PPC_FEATURE_CELL
65#define PPC_FEATURE_CELL 0x00010000
66#endif
b7622095
LM
67#ifndef PPC_FEATURE_BOOKE
68#define PPC_FEATURE_BOOKE 0x00008000
69#endif
f04c6d38
TJB
70#ifndef PPC_FEATURE_HAS_DFP
71#define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
69abc51c 72#endif
b7622095 73
9abe5450
EZ
74/* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
75 configure time check. Some older glibc's (for instance 2.2.1)
76 don't have a specific powerpc version of ptrace.h, and fall back on
77 a generic one. In such cases, sys/ptrace.h defines
78 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
79 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
80 PTRACE_SETVRREGS to be. This also makes a configury check pretty
81 much useless. */
82
83/* These definitions should really come from the glibc header files,
84 but Glibc doesn't know about the vrregs yet. */
85#ifndef PTRACE_GETVRREGS
86#define PTRACE_GETVRREGS 18
87#define PTRACE_SETVRREGS 19
88#endif
89
604c2f83
LM
90/* PTRACE requests for POWER7 VSX registers. */
91#ifndef PTRACE_GETVSXREGS
92#define PTRACE_GETVSXREGS 27
93#define PTRACE_SETVSXREGS 28
94#endif
01904826
JB
95
96/* Similarly for the ptrace requests for getting / setting the SPE
97 registers (ev0 -- ev31, acc, and spefscr). See the description of
98 gdb_evrregset_t for details. */
99#ifndef PTRACE_GETEVRREGS
100#define PTRACE_GETEVRREGS 20
101#define PTRACE_SETEVRREGS 21
102#endif
103
6ffbb7ab
TJB
104/* Similarly for the hardware watchpoint support. These requests are used
105 when the BookE kernel interface is not available. */
e0d24f8d
WZ
106#ifndef PTRACE_GET_DEBUGREG
107#define PTRACE_GET_DEBUGREG 25
108#endif
109#ifndef PTRACE_SET_DEBUGREG
110#define PTRACE_SET_DEBUGREG 26
111#endif
112#ifndef PTRACE_GETSIGINFO
113#define PTRACE_GETSIGINFO 0x4202
114#endif
01904826 115
6ffbb7ab
TJB
116/* These requests are used when the BookE kernel interface is available.
117 It exposes the additional debug features of BookE processors, such as
118 ranged breakpoints and watchpoints and hardware-accelerated condition
119 evaluation. */
120#ifndef PPC_PTRACE_GETHWDBGINFO
121
122/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the new BookE
123 interface is not present in ptrace.h, so we'll have to pretty much include
124 it all here so that the code at least compiles on older systems. */
125#define PPC_PTRACE_GETHWDBGINFO 0x89
126#define PPC_PTRACE_SETHWDEBUG 0x88
127#define PPC_PTRACE_DELHWDEBUG 0x87
128
129struct ppc_debug_info
130{
0df8b418 131 uint32_t version; /* Only version 1 exists to date. */
6ffbb7ab
TJB
132 uint32_t num_instruction_bps;
133 uint32_t num_data_bps;
134 uint32_t num_condition_regs;
135 uint32_t data_bp_alignment;
0df8b418 136 uint32_t sizeof_condition; /* size of the DVC register. */
6ffbb7ab
TJB
137 uint64_t features;
138};
139
140/* Features will have bits indicating whether there is support for: */
141#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
142#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
143#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
144#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
145
146struct ppc_hw_breakpoint
147{
148 uint32_t version; /* currently, version must be 1 */
149 uint32_t trigger_type; /* only some combinations allowed */
150 uint32_t addr_mode; /* address match mode */
151 uint32_t condition_mode; /* break/watchpoint condition flags */
152 uint64_t addr; /* break/watchpoint address */
153 uint64_t addr2; /* range end or mask */
154 uint64_t condition_value; /* contents of the DVC register */
155};
156
157/* Trigger type. */
158#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
159#define PPC_BREAKPOINT_TRIGGER_READ 0x2
160#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
161#define PPC_BREAKPOINT_TRIGGER_RW 0x6
162
163/* Address mode. */
164#define PPC_BREAKPOINT_MODE_EXACT 0x0
165#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
166#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
167#define PPC_BREAKPOINT_MODE_MASK 0x3
168
169/* Condition mode. */
170#define PPC_BREAKPOINT_CONDITION_NONE 0x0
171#define PPC_BREAKPOINT_CONDITION_AND 0x1
172#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
173#define PPC_BREAKPOINT_CONDITION_OR 0x2
174#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
175#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
176#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
177#define PPC_BREAKPOINT_CONDITION_BE(n) \
178 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
179#endif /* PPC_PTRACE_GETHWDBGINFO */
180
181
182
1dfe79e8
SDJ
183/* Similarly for the general-purpose (gp0 -- gp31)
184 and floating-point registers (fp0 -- fp31). */
185#ifndef PTRACE_GETREGS
186#define PTRACE_GETREGS 12
187#endif
188#ifndef PTRACE_SETREGS
189#define PTRACE_SETREGS 13
190#endif
191#ifndef PTRACE_GETFPREGS
192#define PTRACE_GETFPREGS 14
193#endif
194#ifndef PTRACE_SETFPREGS
195#define PTRACE_SETFPREGS 15
196#endif
197
9abe5450
EZ
198/* This oddity is because the Linux kernel defines elf_vrregset_t as
199 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
200 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
201 the vrsave as an extra 4 bytes at the end. I opted for creating a
202 flat array of chars, so that it is easier to manipulate for gdb.
203
204 There are 32 vector registers 16 bytes longs, plus a VSCR register
205 which is only 4 bytes long, but is fetched as a 16 bytes
0df8b418 206 quantity. Up to here we have the elf_vrregset_t structure.
9abe5450
EZ
207 Appended to this there is space for the VRSAVE register: 4 bytes.
208 Even though this vrsave register is not included in the regset
209 typedef, it is handled by the ptrace requests.
210
211 Note that GNU/Linux doesn't support little endian PPC hardware,
212 therefore the offset at which the real value of the VSCR register
213 is located will be always 12 bytes.
214
215 The layout is like this (where x is the actual value of the vscr reg): */
216
217/* *INDENT-OFF* */
218/*
219 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
220 <-------> <-------><-------><->
221 VR0 VR31 VSCR VRSAVE
222*/
223/* *INDENT-ON* */
224
225#define SIZEOF_VRREGS 33*16+4
226
227typedef char gdb_vrregset_t[SIZEOF_VRREGS];
228
604c2f83
LM
229/* This is the layout of the POWER7 VSX registers and the way they overlap
230 with the existing FPR and VMX registers.
231
232 VSR doubleword 0 VSR doubleword 1
233 ----------------------------------------------------------------
234 VSR[0] | FPR[0] | |
235 ----------------------------------------------------------------
236 VSR[1] | FPR[1] | |
237 ----------------------------------------------------------------
238 | ... | |
239 | ... | |
240 ----------------------------------------------------------------
241 VSR[30] | FPR[30] | |
242 ----------------------------------------------------------------
243 VSR[31] | FPR[31] | |
244 ----------------------------------------------------------------
245 VSR[32] | VR[0] |
246 ----------------------------------------------------------------
247 VSR[33] | VR[1] |
248 ----------------------------------------------------------------
249 | ... |
250 | ... |
251 ----------------------------------------------------------------
252 VSR[62] | VR[30] |
253 ----------------------------------------------------------------
254 VSR[63] | VR[31] |
255 ----------------------------------------------------------------
256
257 VSX has 64 128bit registers. The first 32 registers overlap with
258 the FP registers (doubleword 0) and hence extend them with additional
259 64 bits (doubleword 1). The other 32 regs overlap with the VMX
260 registers. */
261#define SIZEOF_VSXREGS 32*8
262
263typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
01904826 264
b021a221 265/* On PPC processors that support the Signal Processing Extension
01904826 266 (SPE) APU, the general-purpose registers are 64 bits long.
411cb3f9
PG
267 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
268 ptrace calls only access the lower half of each register, to allow
269 them to behave the same way they do on non-SPE systems. There's a
270 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
271 read and write the top halves of all the general-purpose registers
272 at once, along with some SPE-specific registers.
01904826
JB
273
274 GDB itself continues to claim the general-purpose registers are 32
6ced10dd 275 bits long. It has unnamed raw registers that hold the upper halves
b021a221 276 of the gprs, and the full 64-bit SIMD views of the registers,
6ced10dd
JB
277 'ev0' -- 'ev31', are pseudo-registers that splice the top and
278 bottom halves together.
01904826
JB
279
280 This is the structure filled in by PTRACE_GETEVRREGS and written to
281 the inferior's registers by PTRACE_SETEVRREGS. */
282struct gdb_evrregset_t
283{
284 unsigned long evr[32];
285 unsigned long long acc;
286 unsigned long spefscr;
287};
288
604c2f83
LM
289/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
290 PTRACE_SETVSXREGS requests, for reading and writing the VSX
291 POWER7 registers 0 through 31. Zero if we've tried one of them and
292 gotten an error. Note that VSX registers 32 through 63 overlap
293 with VR registers 0 through 31. */
294int have_ptrace_getsetvsxregs = 1;
01904826
JB
295
296/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
297 PTRACE_SETVRREGS requests, for reading and writing the Altivec
298 registers. Zero if we've tried one of them and gotten an
299 error. */
9abe5450
EZ
300int have_ptrace_getvrregs = 1;
301
01904826
JB
302/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
303 PTRACE_SETEVRREGS requests, for reading and writing the SPE
304 registers. Zero if we've tried one of them and gotten an
305 error. */
306int have_ptrace_getsetevrregs = 1;
307
1dfe79e8
SDJ
308/* Non-zero if our kernel may support the PTRACE_GETREGS and
309 PTRACE_SETREGS requests, for reading and writing the
310 general-purpose registers. Zero if we've tried one of
311 them and gotten an error. */
312int have_ptrace_getsetregs = 1;
313
314/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
315 PTRACE_SETFPREGS requests, for reading and writing the
316 floating-pointers registers. Zero if we've tried one of
317 them and gotten an error. */
318int have_ptrace_getsetfpregs = 1;
319
16333c4f
EZ
320/* *INDENT-OFF* */
321/* registers layout, as presented by the ptrace interface:
322PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
323PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
324PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
325PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
0df8b418
MS
326PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
327PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
328PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
329PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
330PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
331PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
332PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
333PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
16333c4f
EZ
334PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
335/* *INDENT_ON * */
c877c8e6 336
45229ea4 337static int
e101270f 338ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
c877c8e6 339{
16333c4f 340 int u_addr = -1;
e101270f 341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
56d0d96a
AC
342 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
343 interface, and not the wordsize of the program's ABI. */
411cb3f9 344 int wordsize = sizeof (long);
16333c4f 345
0df8b418 346 /* General purpose registers occupy 1 slot each in the buffer. */
8bf659e8
JB
347 if (regno >= tdep->ppc_gp0_regnum
348 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
26e75e5c 349 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
16333c4f 350
49ff75ad
JB
351 /* Floating point regs: eight bytes each in both 32- and 64-bit
352 ptrace interfaces. Thus, two slots each in 32-bit interface, one
353 slot each in 64-bit interface. */
383f0f5b
JB
354 if (tdep->ppc_fp0_regnum >= 0
355 && regno >= tdep->ppc_fp0_regnum
366f009f
JB
356 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
357 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
16333c4f 358
0df8b418 359 /* UISA special purpose registers: 1 slot each. */
e101270f 360 if (regno == gdbarch_pc_regnum (gdbarch))
49ff75ad 361 u_addr = PT_NIP * wordsize;
dc5cfeb6 362 if (regno == tdep->ppc_lr_regnum)
49ff75ad 363 u_addr = PT_LNK * wordsize;
dc5cfeb6 364 if (regno == tdep->ppc_cr_regnum)
49ff75ad 365 u_addr = PT_CCR * wordsize;
dc5cfeb6 366 if (regno == tdep->ppc_xer_regnum)
49ff75ad 367 u_addr = PT_XER * wordsize;
dc5cfeb6 368 if (regno == tdep->ppc_ctr_regnum)
49ff75ad 369 u_addr = PT_CTR * wordsize;
f8c59253 370#ifdef PT_MQ
dc5cfeb6 371 if (regno == tdep->ppc_mq_regnum)
49ff75ad 372 u_addr = PT_MQ * wordsize;
f8c59253 373#endif
dc5cfeb6 374 if (regno == tdep->ppc_ps_regnum)
49ff75ad 375 u_addr = PT_MSR * wordsize;
7284e1be
UW
376 if (regno == PPC_ORIG_R3_REGNUM)
377 u_addr = PT_ORIG_R3 * wordsize;
378 if (regno == PPC_TRAP_REGNUM)
379 u_addr = PT_TRAP * wordsize;
383f0f5b
JB
380 if (tdep->ppc_fpscr_regnum >= 0
381 && regno == tdep->ppc_fpscr_regnum)
8f135812
AC
382 {
383 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
384 kernel headers incorrectly contained the 32-bit definition of
385 PT_FPSCR. For the 32-bit definition, floating-point
386 registers occupy two 32-bit "slots", and the FPSCR lives in
69abc51c 387 the second half of such a slot-pair (hence +1). For 64-bit,
8f135812
AC
388 the FPSCR instead occupies the full 64-bit 2-word-slot and
389 hence no adjustment is necessary. Hack around this. */
390 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
391 u_addr = (48 + 32) * wordsize;
69abc51c
TJB
392 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
393 slot and not just its second word. The PT_FPSCR supplied when
394 GDB is compiled as a 32-bit app doesn't reflect this. */
395 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
396 && PT_FPSCR == (48 + 2*32 + 1))
397 u_addr = (48 + 2*32) * wordsize;
8f135812
AC
398 else
399 u_addr = PT_FPSCR * wordsize;
400 }
16333c4f 401 return u_addr;
c877c8e6
KB
402}
403
604c2f83
LM
404/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
405 registers set mechanism, as opposed to the interface for all the
406 other registers, that stores/fetches each register individually. */
407static void
408fetch_vsx_register (struct regcache *regcache, int tid, int regno)
409{
410 int ret;
411 gdb_vsxregset_t regs;
412 struct gdbarch *gdbarch = get_regcache_arch (regcache);
413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
414 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
415
416 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
417 if (ret < 0)
418 {
419 if (errno == EIO)
420 {
421 have_ptrace_getsetvsxregs = 0;
422 return;
423 }
424 perror_with_name (_("Unable to fetch VSX register"));
425 }
426
427 regcache_raw_supply (regcache, regno,
428 regs + (regno - tdep->ppc_vsr0_upper_regnum)
429 * vsxregsize);
430}
431
9abe5450
EZ
432/* The Linux kernel ptrace interface for AltiVec registers uses the
433 registers set mechanism, as opposed to the interface for all the
434 other registers, that stores/fetches each register individually. */
435static void
56be3814 436fetch_altivec_register (struct regcache *regcache, int tid, int regno)
9abe5450
EZ
437{
438 int ret;
439 int offset = 0;
440 gdb_vrregset_t regs;
40a6adc1
MD
441 struct gdbarch *gdbarch = get_regcache_arch (regcache);
442 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
443 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
444
445 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
446 if (ret < 0)
447 {
448 if (errno == EIO)
449 {
450 have_ptrace_getvrregs = 0;
451 return;
452 }
e2e0b3e5 453 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
454 }
455
456 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
457 long on the hardware. We deal only with the lower 4 bytes of the
458 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
459 there is no need to define an offset for it. */
460 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 461 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 462
56be3814 463 regcache_raw_supply (regcache, regno,
0df8b418
MS
464 regs + (regno
465 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
466}
467
01904826
JB
468/* Fetch the top 32 bits of TID's general-purpose registers and the
469 SPE-specific registers, and place the results in EVRREGSET. If we
470 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
471 zeros.
472
473 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
474 PTRACE_SETEVRREGS requests are supported is isolated here, and in
475 set_spe_registers. */
476static void
477get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
478{
479 if (have_ptrace_getsetevrregs)
480 {
481 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
482 return;
483 else
484 {
485 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
486 we just return zeros. */
487 if (errno == EIO)
488 have_ptrace_getsetevrregs = 0;
489 else
490 /* Anything else needs to be reported. */
e2e0b3e5 491 perror_with_name (_("Unable to fetch SPE registers"));
01904826
JB
492 }
493 }
494
495 memset (evrregset, 0, sizeof (*evrregset));
496}
497
6ced10dd
JB
498/* Supply values from TID for SPE-specific raw registers: the upper
499 halves of the GPRs, the accumulator, and the spefscr. REGNO must
500 be the number of an upper half register, acc, spefscr, or -1 to
501 supply the values of all registers. */
01904826 502static void
56be3814 503fetch_spe_register (struct regcache *regcache, int tid, int regno)
01904826 504{
40a6adc1
MD
505 struct gdbarch *gdbarch = get_regcache_arch (regcache);
506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
507 struct gdb_evrregset_t evrregs;
508
6ced10dd 509 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 510 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 511 gdb_assert (sizeof (evrregs.acc)
40a6adc1 512 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 513 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 514 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
6ced10dd 515
01904826
JB
516 get_spe_registers (tid, &evrregs);
517
6ced10dd 518 if (regno == -1)
01904826 519 {
6ced10dd
JB
520 int i;
521
522 for (i = 0; i < ppc_num_gprs; i++)
56be3814 523 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
6ced10dd 524 &evrregs.evr[i]);
01904826 525 }
6ced10dd
JB
526 else if (tdep->ppc_ev0_upper_regnum <= regno
527 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 528 regcache_raw_supply (regcache, regno,
6ced10dd
JB
529 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
530
531 if (regno == -1
532 || regno == tdep->ppc_acc_regnum)
56be3814 533 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
6ced10dd
JB
534
535 if (regno == -1
536 || regno == tdep->ppc_spefscr_regnum)
56be3814 537 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
6ced10dd 538 &evrregs.spefscr);
01904826
JB
539}
540
45229ea4 541static void
56be3814 542fetch_register (struct regcache *regcache, int tid, int regno)
45229ea4 543{
40a6adc1
MD
544 struct gdbarch *gdbarch = get_regcache_arch (regcache);
545 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 546 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 547 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
4a19ea35 548 int bytes_transferred;
0df8b418 549 unsigned int offset; /* Offset of registers within the u area. */
e362b510 550 gdb_byte buf[MAX_REGISTER_SIZE];
45229ea4 551
be8626e0 552 if (altivec_register_p (gdbarch, regno))
9abe5450
EZ
553 {
554 /* If this is the first time through, or if it is not the first
555 time through, and we have comfirmed that there is kernel
556 support for such a ptrace request, then go and fetch the
557 register. */
558 if (have_ptrace_getvrregs)
559 {
56be3814 560 fetch_altivec_register (regcache, tid, regno);
9abe5450
EZ
561 return;
562 }
563 /* If we have discovered that there is no ptrace support for
564 AltiVec registers, fall through and return zeroes, because
565 regaddr will be -1 in this case. */
566 }
604c2f83
LM
567 if (vsx_register_p (gdbarch, regno))
568 {
569 if (have_ptrace_getsetvsxregs)
570 {
571 fetch_vsx_register (regcache, tid, regno);
572 return;
573 }
574 }
be8626e0 575 else if (spe_register_p (gdbarch, regno))
01904826 576 {
56be3814 577 fetch_spe_register (regcache, tid, regno);
01904826
JB
578 return;
579 }
9abe5450 580
45229ea4
EZ
581 if (regaddr == -1)
582 {
40a6adc1 583 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
56be3814 584 regcache_raw_supply (regcache, regno, buf);
45229ea4
EZ
585 return;
586 }
587
411cb3f9 588 /* Read the raw register using sizeof(long) sized chunks. On a
56d0d96a
AC
589 32-bit platform, 64-bit floating-point registers will require two
590 transfers. */
4a19ea35 591 for (bytes_transferred = 0;
40a6adc1 592 bytes_transferred < register_size (gdbarch, regno);
411cb3f9 593 bytes_transferred += sizeof (long))
45229ea4 594 {
11fde611
JK
595 long l;
596
45229ea4 597 errno = 0;
11fde611 598 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
411cb3f9 599 regaddr += sizeof (long);
45229ea4
EZ
600 if (errno != 0)
601 {
bc97b3ba 602 char message[128];
8c042590
PM
603 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
604 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 605 perror_with_name (message);
45229ea4 606 }
11fde611 607 memcpy (&buf[bytes_transferred], &l, sizeof (l));
45229ea4 608 }
56d0d96a 609
4a19ea35
JB
610 /* Now supply the register. Keep in mind that the regcache's idea
611 of the register's size may not be a multiple of sizeof
411cb3f9 612 (long). */
40a6adc1 613 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
614 {
615 /* Little-endian values are always found at the left end of the
616 bytes transferred. */
56be3814 617 regcache_raw_supply (regcache, regno, buf);
4a19ea35 618 }
40a6adc1 619 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
620 {
621 /* Big-endian values are found at the right end of the bytes
622 transferred. */
40a6adc1 623 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
56be3814 624 regcache_raw_supply (regcache, regno, buf + padding);
4a19ea35
JB
625 }
626 else
a44bddec 627 internal_error (__FILE__, __LINE__,
e2e0b3e5 628 _("fetch_register: unexpected byte order: %d"),
40a6adc1 629 gdbarch_byte_order (gdbarch));
45229ea4
EZ
630}
631
604c2f83
LM
632static void
633supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
634{
635 int i;
636 struct gdbarch *gdbarch = get_regcache_arch (regcache);
637 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
638 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
639
640 for (i = 0; i < ppc_num_vshrs; i++)
641 {
642 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
643 *vsxregsetp + i * vsxregsize);
644 }
645}
646
9abe5450 647static void
56be3814 648supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
649{
650 int i;
40a6adc1
MD
651 struct gdbarch *gdbarch = get_regcache_arch (regcache);
652 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 653 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
654 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
655 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
656
657 for (i = 0; i < num_of_vrregs; i++)
658 {
659 /* The last 2 registers of this set are only 32 bit long, not
660 128. However an offset is necessary only for VSCR because it
661 occupies a whole vector, while VRSAVE occupies a full 4 bytes
662 slot. */
663 if (i == (num_of_vrregs - 2))
56be3814 664 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 665 *vrregsetp + i * vrregsize + offset);
9abe5450 666 else
56be3814 667 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 668 *vrregsetp + i * vrregsize);
9abe5450
EZ
669 }
670}
671
604c2f83
LM
672static void
673fetch_vsx_registers (struct regcache *regcache, int tid)
674{
675 int ret;
676 gdb_vsxregset_t regs;
677
678 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
679 if (ret < 0)
680 {
681 if (errno == EIO)
682 {
683 have_ptrace_getsetvsxregs = 0;
684 return;
685 }
686 perror_with_name (_("Unable to fetch VSX registers"));
687 }
688 supply_vsxregset (regcache, &regs);
689}
690
9abe5450 691static void
56be3814 692fetch_altivec_registers (struct regcache *regcache, int tid)
9abe5450
EZ
693{
694 int ret;
695 gdb_vrregset_t regs;
696
697 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
698 if (ret < 0)
699 {
700 if (errno == EIO)
701 {
702 have_ptrace_getvrregs = 0;
703 return;
704 }
e2e0b3e5 705 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450 706 }
56be3814 707 supply_vrregset (regcache, &regs);
9abe5450
EZ
708}
709
1dfe79e8
SDJ
710/* This function actually issues the request to ptrace, telling
711 it to get all general-purpose registers and put them into the
712 specified regset.
713
714 If the ptrace request does not exist, this function returns 0
715 and properly sets the have_ptrace_* flag. If the request fails,
716 this function calls perror_with_name. Otherwise, if the request
717 succeeds, then the regcache gets filled and 1 is returned. */
718static int
719fetch_all_gp_regs (struct regcache *regcache, int tid)
720{
721 struct gdbarch *gdbarch = get_regcache_arch (regcache);
722 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
723 gdb_gregset_t gregset;
724
725 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
726 {
727 if (errno == EIO)
728 {
729 have_ptrace_getsetregs = 0;
730 return 0;
731 }
732 perror_with_name (_("Couldn't get general-purpose registers."));
733 }
734
735 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
736
737 return 1;
738}
739
740/* This is a wrapper for the fetch_all_gp_regs function. It is
741 responsible for verifying if this target has the ptrace request
742 that can be used to fetch all general-purpose registers at one
743 shot. If it doesn't, then we should fetch them using the
744 old-fashioned way, which is to iterate over the registers and
745 request them one by one. */
746static void
747fetch_gp_regs (struct regcache *regcache, int tid)
748{
749 struct gdbarch *gdbarch = get_regcache_arch (regcache);
750 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
751 int i;
752
753 if (have_ptrace_getsetregs)
754 if (fetch_all_gp_regs (regcache, tid))
755 return;
756
757 /* If we've hit this point, it doesn't really matter which
758 architecture we are using. We just need to read the
759 registers in the "old-fashioned way". */
760 for (i = 0; i < ppc_num_gprs; i++)
761 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
762}
763
764/* This function actually issues the request to ptrace, telling
765 it to get all floating-point registers and put them into the
766 specified regset.
767
768 If the ptrace request does not exist, this function returns 0
769 and properly sets the have_ptrace_* flag. If the request fails,
770 this function calls perror_with_name. Otherwise, if the request
771 succeeds, then the regcache gets filled and 1 is returned. */
772static int
773fetch_all_fp_regs (struct regcache *regcache, int tid)
774{
775 gdb_fpregset_t fpregs;
776
777 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
778 {
779 if (errno == EIO)
780 {
781 have_ptrace_getsetfpregs = 0;
782 return 0;
783 }
784 perror_with_name (_("Couldn't get floating-point registers."));
785 }
786
787 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
788
789 return 1;
790}
791
792/* This is a wrapper for the fetch_all_fp_regs function. It is
793 responsible for verifying if this target has the ptrace request
794 that can be used to fetch all floating-point registers at one
795 shot. If it doesn't, then we should fetch them using the
796 old-fashioned way, which is to iterate over the registers and
797 request them one by one. */
798static void
799fetch_fp_regs (struct regcache *regcache, int tid)
800{
801 struct gdbarch *gdbarch = get_regcache_arch (regcache);
802 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
803 int i;
804
805 if (have_ptrace_getsetfpregs)
806 if (fetch_all_fp_regs (regcache, tid))
807 return;
808
809 /* If we've hit this point, it doesn't really matter which
810 architecture we are using. We just need to read the
811 registers in the "old-fashioned way". */
812 for (i = 0; i < ppc_num_fprs; i++)
813 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
814}
815
45229ea4 816static void
56be3814 817fetch_ppc_registers (struct regcache *regcache, int tid)
45229ea4
EZ
818{
819 int i;
40a6adc1
MD
820 struct gdbarch *gdbarch = get_regcache_arch (regcache);
821 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 822
1dfe79e8 823 fetch_gp_regs (regcache, tid);
32b99774 824 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 825 fetch_fp_regs (regcache, tid);
40a6adc1 826 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 827 if (tdep->ppc_ps_regnum != -1)
56be3814 828 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 829 if (tdep->ppc_cr_regnum != -1)
56be3814 830 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 831 if (tdep->ppc_lr_regnum != -1)
56be3814 832 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 833 if (tdep->ppc_ctr_regnum != -1)
56be3814 834 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 835 if (tdep->ppc_xer_regnum != -1)
56be3814 836 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 837 if (tdep->ppc_mq_regnum != -1)
56be3814 838 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
7284e1be
UW
839 if (ppc_linux_trap_reg_p (gdbarch))
840 {
841 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
842 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
843 }
32b99774 844 if (tdep->ppc_fpscr_regnum != -1)
56be3814 845 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
9abe5450
EZ
846 if (have_ptrace_getvrregs)
847 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 848 fetch_altivec_registers (regcache, tid);
604c2f83
LM
849 if (have_ptrace_getsetvsxregs)
850 if (tdep->ppc_vsr0_upper_regnum != -1)
851 fetch_vsx_registers (regcache, tid);
6ced10dd 852 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 853 fetch_spe_register (regcache, tid, -1);
45229ea4
EZ
854}
855
856/* Fetch registers from the child process. Fetch all registers if
857 regno == -1, otherwise fetch all general registers or all floating
858 point registers depending upon the value of regno. */
10d6c8cd 859static void
28439f5e
PA
860ppc_linux_fetch_inferior_registers (struct target_ops *ops,
861 struct regcache *regcache, int regno)
45229ea4 862{
0df8b418 863 /* Overload thread id onto process id. */
05f13b9c
EZ
864 int tid = TIDGET (inferior_ptid);
865
0df8b418 866 /* No thread id, just use process id. */
05f13b9c
EZ
867 if (tid == 0)
868 tid = PIDGET (inferior_ptid);
869
9abe5450 870 if (regno == -1)
56be3814 871 fetch_ppc_registers (regcache, tid);
45229ea4 872 else
56be3814 873 fetch_register (regcache, tid, regno);
45229ea4
EZ
874}
875
0df8b418 876/* Store one VSX register. */
604c2f83
LM
877static void
878store_vsx_register (const struct regcache *regcache, int tid, int regno)
879{
880 int ret;
881 gdb_vsxregset_t regs;
882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
883 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
884 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
885
9fe70b4f 886 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
604c2f83
LM
887 if (ret < 0)
888 {
889 if (errno == EIO)
890 {
891 have_ptrace_getsetvsxregs = 0;
892 return;
893 }
894 perror_with_name (_("Unable to fetch VSX register"));
895 }
896
897 regcache_raw_collect (regcache, regno, regs +
898 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
899
900 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
901 if (ret < 0)
902 perror_with_name (_("Unable to store VSX register"));
903}
904
0df8b418 905/* Store one register. */
9abe5450 906static void
56be3814 907store_altivec_register (const struct regcache *regcache, int tid, int regno)
9abe5450
EZ
908{
909 int ret;
910 int offset = 0;
911 gdb_vrregset_t regs;
40a6adc1
MD
912 struct gdbarch *gdbarch = get_regcache_arch (regcache);
913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
914 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
915
916 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
917 if (ret < 0)
918 {
919 if (errno == EIO)
920 {
921 have_ptrace_getvrregs = 0;
922 return;
923 }
e2e0b3e5 924 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
925 }
926
927 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
928 long on the hardware. */
929 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 930 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 931
56be3814 932 regcache_raw_collect (regcache, regno,
0df8b418
MS
933 regs + (regno
934 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
935
936 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
937 if (ret < 0)
e2e0b3e5 938 perror_with_name (_("Unable to store AltiVec register"));
9abe5450
EZ
939}
940
01904826
JB
941/* Assuming TID referrs to an SPE process, set the top halves of TID's
942 general-purpose registers and its SPE-specific registers to the
943 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
944 nothing.
945
946 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
947 PTRACE_SETEVRREGS requests are supported is isolated here, and in
948 get_spe_registers. */
949static void
950set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
951{
952 if (have_ptrace_getsetevrregs)
953 {
954 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
955 return;
956 else
957 {
958 /* EIO means that the PTRACE_SETEVRREGS request isn't
959 supported; we fail silently, and don't try the call
960 again. */
961 if (errno == EIO)
962 have_ptrace_getsetevrregs = 0;
963 else
964 /* Anything else needs to be reported. */
e2e0b3e5 965 perror_with_name (_("Unable to set SPE registers"));
01904826
JB
966 }
967 }
968}
969
6ced10dd
JB
970/* Write GDB's value for the SPE-specific raw register REGNO to TID.
971 If REGNO is -1, write the values of all the SPE-specific
972 registers. */
01904826 973static void
56be3814 974store_spe_register (const struct regcache *regcache, int tid, int regno)
01904826 975{
40a6adc1
MD
976 struct gdbarch *gdbarch = get_regcache_arch (regcache);
977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
978 struct gdb_evrregset_t evrregs;
979
6ced10dd 980 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 981 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 982 gdb_assert (sizeof (evrregs.acc)
40a6adc1 983 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 984 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 985 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
01904826 986
6ced10dd
JB
987 if (regno == -1)
988 /* Since we're going to write out every register, the code below
989 should store to every field of evrregs; if that doesn't happen,
990 make it obvious by initializing it with suspicious values. */
991 memset (&evrregs, 42, sizeof (evrregs));
992 else
993 /* We can only read and write the entire EVR register set at a
994 time, so to write just a single register, we do a
995 read-modify-write maneuver. */
996 get_spe_registers (tid, &evrregs);
997
998 if (regno == -1)
01904826 999 {
6ced10dd
JB
1000 int i;
1001
1002 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1003 regcache_raw_collect (regcache,
6ced10dd
JB
1004 tdep->ppc_ev0_upper_regnum + i,
1005 &evrregs.evr[i]);
01904826 1006 }
6ced10dd
JB
1007 else if (tdep->ppc_ev0_upper_regnum <= regno
1008 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 1009 regcache_raw_collect (regcache, regno,
6ced10dd
JB
1010 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1011
1012 if (regno == -1
1013 || regno == tdep->ppc_acc_regnum)
56be3814 1014 regcache_raw_collect (regcache,
6ced10dd
JB
1015 tdep->ppc_acc_regnum,
1016 &evrregs.acc);
1017
1018 if (regno == -1
1019 || regno == tdep->ppc_spefscr_regnum)
56be3814 1020 regcache_raw_collect (regcache,
6ced10dd
JB
1021 tdep->ppc_spefscr_regnum,
1022 &evrregs.spefscr);
01904826
JB
1023
1024 /* Write back the modified register set. */
1025 set_spe_registers (tid, &evrregs);
1026}
1027
45229ea4 1028static void
56be3814 1029store_register (const struct regcache *regcache, int tid, int regno)
45229ea4 1030{
40a6adc1
MD
1031 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 1033 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 1034 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
52f0bd74 1035 int i;
4a19ea35 1036 size_t bytes_to_transfer;
e362b510 1037 gdb_byte buf[MAX_REGISTER_SIZE];
45229ea4 1038
be8626e0 1039 if (altivec_register_p (gdbarch, regno))
45229ea4 1040 {
56be3814 1041 store_altivec_register (regcache, tid, regno);
45229ea4
EZ
1042 return;
1043 }
604c2f83
LM
1044 if (vsx_register_p (gdbarch, regno))
1045 {
1046 store_vsx_register (regcache, tid, regno);
1047 return;
1048 }
be8626e0 1049 else if (spe_register_p (gdbarch, regno))
01904826 1050 {
56be3814 1051 store_spe_register (regcache, tid, regno);
01904826
JB
1052 return;
1053 }
45229ea4 1054
9abe5450
EZ
1055 if (regaddr == -1)
1056 return;
1057
4a19ea35
JB
1058 /* First collect the register. Keep in mind that the regcache's
1059 idea of the register's size may not be a multiple of sizeof
411cb3f9 1060 (long). */
56d0d96a 1061 memset (buf, 0, sizeof buf);
40a6adc1
MD
1062 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1063 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
1064 {
1065 /* Little-endian values always sit at the left end of the buffer. */
56be3814 1066 regcache_raw_collect (regcache, regno, buf);
4a19ea35 1067 }
40a6adc1 1068 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
1069 {
1070 /* Big-endian values sit at the right end of the buffer. */
40a6adc1 1071 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
56be3814 1072 regcache_raw_collect (regcache, regno, buf + padding);
4a19ea35
JB
1073 }
1074
411cb3f9 1075 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
45229ea4 1076 {
11fde611
JK
1077 long l;
1078
1079 memcpy (&l, &buf[i], sizeof (l));
45229ea4 1080 errno = 0;
11fde611 1081 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
411cb3f9 1082 regaddr += sizeof (long);
e3f36dbd
KB
1083
1084 if (errno == EIO
7284e1be
UW
1085 && (regno == tdep->ppc_fpscr_regnum
1086 || regno == PPC_ORIG_R3_REGNUM
1087 || regno == PPC_TRAP_REGNUM))
e3f36dbd 1088 {
7284e1be
UW
1089 /* Some older kernel versions don't allow fpscr, orig_r3
1090 or trap to be written. */
e3f36dbd
KB
1091 continue;
1092 }
1093
45229ea4
EZ
1094 if (errno != 0)
1095 {
bc97b3ba 1096 char message[128];
8c042590
PM
1097 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1098 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 1099 perror_with_name (message);
45229ea4
EZ
1100 }
1101 }
1102}
1103
604c2f83
LM
1104static void
1105fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1106{
1107 int i;
1108 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1110 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1111
1112 for (i = 0; i < ppc_num_vshrs; i++)
1113 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1114 *vsxregsetp + i * vsxregsize);
1115}
1116
9abe5450 1117static void
56be3814 1118fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
1119{
1120 int i;
40a6adc1
MD
1121 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 1123 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
1124 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1125 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
1126
1127 for (i = 0; i < num_of_vrregs; i++)
1128 {
1129 /* The last 2 registers of this set are only 32 bit long, not
1130 128, but only VSCR is fetched as a 16 bytes quantity. */
1131 if (i == (num_of_vrregs - 2))
56be3814 1132 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1133 *vrregsetp + i * vrregsize + offset);
9abe5450 1134 else
56be3814 1135 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1136 *vrregsetp + i * vrregsize);
9abe5450
EZ
1137 }
1138}
1139
604c2f83
LM
1140static void
1141store_vsx_registers (const struct regcache *regcache, int tid)
1142{
1143 int ret;
1144 gdb_vsxregset_t regs;
1145
1146 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1147 if (ret < 0)
1148 {
1149 if (errno == EIO)
1150 {
1151 have_ptrace_getsetvsxregs = 0;
1152 return;
1153 }
1154 perror_with_name (_("Couldn't get VSX registers"));
1155 }
1156
1157 fill_vsxregset (regcache, &regs);
1158
1159 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1160 perror_with_name (_("Couldn't write VSX registers"));
1161}
1162
9abe5450 1163static void
56be3814 1164store_altivec_registers (const struct regcache *regcache, int tid)
9abe5450
EZ
1165{
1166 int ret;
1167 gdb_vrregset_t regs;
1168
0897f59b 1169 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
9abe5450
EZ
1170 if (ret < 0)
1171 {
1172 if (errno == EIO)
1173 {
1174 have_ptrace_getvrregs = 0;
1175 return;
1176 }
e2e0b3e5 1177 perror_with_name (_("Couldn't get AltiVec registers"));
9abe5450
EZ
1178 }
1179
56be3814 1180 fill_vrregset (regcache, &regs);
9abe5450 1181
0897f59b 1182 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
e2e0b3e5 1183 perror_with_name (_("Couldn't write AltiVec registers"));
9abe5450
EZ
1184}
1185
1dfe79e8
SDJ
1186/* This function actually issues the request to ptrace, telling
1187 it to store all general-purpose registers present in the specified
1188 regset.
1189
1190 If the ptrace request does not exist, this function returns 0
1191 and properly sets the have_ptrace_* flag. If the request fails,
1192 this function calls perror_with_name. Otherwise, if the request
1193 succeeds, then the regcache is stored and 1 is returned. */
1194static int
1195store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1196{
1197 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1198 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1199 gdb_gregset_t gregset;
1200
1201 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1202 {
1203 if (errno == EIO)
1204 {
1205 have_ptrace_getsetregs = 0;
1206 return 0;
1207 }
1208 perror_with_name (_("Couldn't get general-purpose registers."));
1209 }
1210
1211 fill_gregset (regcache, &gregset, regno);
1212
1213 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1214 {
1215 if (errno == EIO)
1216 {
1217 have_ptrace_getsetregs = 0;
1218 return 0;
1219 }
1220 perror_with_name (_("Couldn't set general-purpose registers."));
1221 }
1222
1223 return 1;
1224}
1225
1226/* This is a wrapper for the store_all_gp_regs function. It is
1227 responsible for verifying if this target has the ptrace request
1228 that can be used to store all general-purpose registers at one
1229 shot. If it doesn't, then we should store them using the
1230 old-fashioned way, which is to iterate over the registers and
1231 store them one by one. */
45229ea4 1232static void
1dfe79e8 1233store_gp_regs (const struct regcache *regcache, int tid, int regno)
45229ea4 1234{
40a6adc1
MD
1235 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dfe79e8
SDJ
1237 int i;
1238
1239 if (have_ptrace_getsetregs)
1240 if (store_all_gp_regs (regcache, tid, regno))
1241 return;
1242
1243 /* If we hit this point, it doesn't really matter which
1244 architecture we are using. We just need to store the
1245 registers in the "old-fashioned way". */
6ced10dd 1246 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1247 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1dfe79e8
SDJ
1248}
1249
1250/* This function actually issues the request to ptrace, telling
1251 it to store all floating-point registers present in the specified
1252 regset.
1253
1254 If the ptrace request does not exist, this function returns 0
1255 and properly sets the have_ptrace_* flag. If the request fails,
1256 this function calls perror_with_name. Otherwise, if the request
1257 succeeds, then the regcache is stored and 1 is returned. */
1258static int
1259store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1260{
1261 gdb_fpregset_t fpregs;
1262
1263 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1264 {
1265 if (errno == EIO)
1266 {
1267 have_ptrace_getsetfpregs = 0;
1268 return 0;
1269 }
1270 perror_with_name (_("Couldn't get floating-point registers."));
1271 }
1272
1273 fill_fpregset (regcache, &fpregs, regno);
1274
1275 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1276 {
1277 if (errno == EIO)
1278 {
1279 have_ptrace_getsetfpregs = 0;
1280 return 0;
1281 }
1282 perror_with_name (_("Couldn't set floating-point registers."));
1283 }
1284
1285 return 1;
1286}
1287
1288/* This is a wrapper for the store_all_fp_regs function. It is
1289 responsible for verifying if this target has the ptrace request
1290 that can be used to store all floating-point registers at one
1291 shot. If it doesn't, then we should store them using the
1292 old-fashioned way, which is to iterate over the registers and
1293 store them one by one. */
1294static void
1295store_fp_regs (const struct regcache *regcache, int tid, int regno)
1296{
1297 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1299 int i;
1300
1301 if (have_ptrace_getsetfpregs)
1302 if (store_all_fp_regs (regcache, tid, regno))
1303 return;
1304
1305 /* If we hit this point, it doesn't really matter which
1306 architecture we are using. We just need to store the
1307 registers in the "old-fashioned way". */
1308 for (i = 0; i < ppc_num_fprs; i++)
1309 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1310}
1311
1312static void
1313store_ppc_registers (const struct regcache *regcache, int tid)
1314{
1315 int i;
1316 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1318
1319 store_gp_regs (regcache, tid, -1);
32b99774 1320 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 1321 store_fp_regs (regcache, tid, -1);
40a6adc1 1322 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 1323 if (tdep->ppc_ps_regnum != -1)
56be3814 1324 store_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 1325 if (tdep->ppc_cr_regnum != -1)
56be3814 1326 store_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 1327 if (tdep->ppc_lr_regnum != -1)
56be3814 1328 store_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 1329 if (tdep->ppc_ctr_regnum != -1)
56be3814 1330 store_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 1331 if (tdep->ppc_xer_regnum != -1)
56be3814 1332 store_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 1333 if (tdep->ppc_mq_regnum != -1)
56be3814 1334 store_register (regcache, tid, tdep->ppc_mq_regnum);
32b99774 1335 if (tdep->ppc_fpscr_regnum != -1)
56be3814 1336 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
7284e1be
UW
1337 if (ppc_linux_trap_reg_p (gdbarch))
1338 {
1339 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1340 store_register (regcache, tid, PPC_TRAP_REGNUM);
1341 }
9abe5450
EZ
1342 if (have_ptrace_getvrregs)
1343 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 1344 store_altivec_registers (regcache, tid);
604c2f83
LM
1345 if (have_ptrace_getsetvsxregs)
1346 if (tdep->ppc_vsr0_upper_regnum != -1)
1347 store_vsx_registers (regcache, tid);
6ced10dd 1348 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 1349 store_spe_register (regcache, tid, -1);
45229ea4
EZ
1350}
1351
6ffbb7ab 1352/* Fetch the AT_HWCAP entry from the aux vector. */
b261e0c5
UW
1353static unsigned long
1354ppc_linux_get_hwcap (void)
6ffbb7ab
TJB
1355{
1356 CORE_ADDR field;
1357
1358 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1359 return (unsigned long) field;
1360
1361 return 0;
1362}
1363
1364/* The cached DABR value, to install in new threads.
1365 This variable is used when we are dealing with non-BookE
1366 processors. */
1367static long saved_dabr_value;
1368
1369/* Global structure that will store information about the available
1370 features on this BookE processor. */
1371static struct ppc_debug_info booke_debug_info;
1372
1373/* Global variable that holds the maximum number of slots that the
1374 kernel will use. This is only used when the processor is BookE. */
1375static size_t max_slots_number = 0;
1376
1377struct hw_break_tuple
1378{
1379 long slot;
1380 struct ppc_hw_breakpoint *hw_break;
1381};
1382
1383/* This is an internal VEC created to store information about *points inserted
1384 for each thread. This is used for BookE processors. */
1385typedef struct thread_points
1386 {
1387 /* The TID to which this *point relates. */
1388 int tid;
1389 /* Information about the *point, such as its address, type, etc.
1390
1391 Each element inside this vector corresponds to a hardware
1392 breakpoint or watchpoint in the thread represented by TID. The maximum
1393 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1394 the tuple is NULL, then the position in the vector is free. */
1395 struct hw_break_tuple *hw_breaks;
1396 } *thread_points_p;
1397DEF_VEC_P (thread_points_p);
1398
1399VEC(thread_points_p) *ppc_threads = NULL;
1400
1401/* The version of the kernel interface that we will use if the processor is
1402 BookE. */
1403#define PPC_DEBUG_CURRENT_VERSION 1
1404
1405/* Returns non-zero if we support the ptrace interface which enables
1406 booke debugging resources. */
e0d24f8d 1407static int
6ffbb7ab 1408have_ptrace_booke_interface (void)
e0d24f8d 1409{
6ffbb7ab 1410 static int have_ptrace_booke_interface = -1;
e0d24f8d 1411
6ffbb7ab
TJB
1412 if (have_ptrace_booke_interface == -1)
1413 {
1414 int tid;
e0d24f8d 1415
6ffbb7ab
TJB
1416 tid = TIDGET (inferior_ptid);
1417 if (tid == 0)
1418 tid = PIDGET (inferior_ptid);
e0d24f8d 1419
6ffbb7ab
TJB
1420 /* Check for kernel support for BOOKE debug registers. */
1421 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &booke_debug_info) >= 0)
1422 {
0c56f59b
EBM
1423 /* Check whether ptrace BOOKE interface is functional and
1424 provides any supported feature. */
1425 if (booke_debug_info.features != 0)
1426 {
1427 have_ptrace_booke_interface = 1;
1428 max_slots_number = booke_debug_info.num_instruction_bps
1429 + booke_debug_info.num_data_bps
1430 + booke_debug_info.num_condition_regs;
1431 return have_ptrace_booke_interface;
1432 }
6ffbb7ab 1433 }
0c56f59b
EBM
1434 /* Old school interface and no BOOKE debug registers support. */
1435 have_ptrace_booke_interface = 0;
1436 memset (&booke_debug_info, 0, sizeof (struct ppc_debug_info));
6ffbb7ab
TJB
1437 }
1438
1439 return have_ptrace_booke_interface;
e0d24f8d
WZ
1440}
1441
6ffbb7ab
TJB
1442static int
1443ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
b7622095 1444{
6ffbb7ab 1445 int total_hw_wp, total_hw_bp;
b7622095 1446
6ffbb7ab
TJB
1447 if (have_ptrace_booke_interface ())
1448 {
1449 /* For PPC BookE processors, the number of available hardware
1450 watchpoints and breakpoints is stored at the booke_debug_info
1451 struct. */
1452 total_hw_bp = booke_debug_info.num_instruction_bps;
1453 total_hw_wp = booke_debug_info.num_data_bps;
1454 }
1455 else
1456 {
1457 /* For PPC server processors, we accept 1 hardware watchpoint and 0
1458 hardware breakpoints. */
1459 total_hw_bp = 0;
1460 total_hw_wp = 1;
1461 }
b7622095 1462
6ffbb7ab
TJB
1463 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1464 || type == bp_access_watchpoint || type == bp_watchpoint)
1465 {
bb08bdbd 1466 if (cnt + ot > total_hw_wp)
6ffbb7ab
TJB
1467 return -1;
1468 }
1469 else if (type == bp_hardware_breakpoint)
1470 {
1471 if (cnt > total_hw_bp)
1472 return -1;
1473 }
1474
1475 if (!have_ptrace_booke_interface ())
1476 {
1477 int tid;
1478 ptid_t ptid = inferior_ptid;
1479
0df8b418
MS
1480 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1481 and whether the target has DABR. If either answer is no, the
1482 ptrace call will return -1. Fail in that case. */
6ffbb7ab
TJB
1483 tid = TIDGET (ptid);
1484 if (tid == 0)
1485 tid = PIDGET (ptid);
1486
1487 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1488 return 0;
1489 }
1490
1491 return 1;
b7622095
LM
1492}
1493
e0d24f8d
WZ
1494static int
1495ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1496{
1497 /* Handle sub-8-byte quantities. */
1498 if (len <= 0)
1499 return 0;
1500
6ffbb7ab
TJB
1501 /* The new BookE ptrace interface tells if there are alignment restrictions
1502 for watchpoints in the processors. In that case, we use that information
1503 to determine the hardcoded watchable region for watchpoints. */
1504 if (have_ptrace_booke_interface ())
1505 {
4feebbdd
EBM
1506 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1507 watchpoints and can watch any access within an arbitrary memory
1508 region. This is useful to watch arrays and structs, for instance. It
1509 takes two hardware watchpoints though. */
e09342b5 1510 if (len > 1
4feebbdd
EBM
1511 && booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
1512 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
e09342b5 1513 return 2;
4feebbdd
EBM
1514 /* Server processors provide one hardware watchpoint and addr+len should
1515 fall in the watchable region provided by the ptrace interface. */
1516 if (booke_debug_info.data_bp_alignment
1517 && (addr + len > (addr & ~(booke_debug_info.data_bp_alignment - 1))
1518 + booke_debug_info.data_bp_alignment))
0cf6dd15 1519 return 0;
6ffbb7ab 1520 }
b7622095 1521 /* addr+len must fall in the 8 byte watchable region for DABR-based
6ffbb7ab
TJB
1522 processors (i.e., server processors). Without the new BookE ptrace
1523 interface, DAC-based processors (i.e., embedded processors) will use
b7622095 1524 addresses aligned to 4-bytes due to the way the read/write flags are
6ffbb7ab
TJB
1525 passed in the old ptrace interface. */
1526 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1527 && (addr + len) > (addr & ~3) + 4)
1528 || (addr + len) > (addr & ~7) + 8)
e0d24f8d
WZ
1529 return 0;
1530
1531 return 1;
1532}
1533
6ffbb7ab 1534/* This function compares two ppc_hw_breakpoint structs field-by-field. */
e4166a49 1535static int
6ffbb7ab
TJB
1536booke_cmp_hw_point (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
1537{
ad422571
TJB
1538 return (a->trigger_type == b->trigger_type
1539 && a->addr_mode == b->addr_mode
1540 && a->condition_mode == b->condition_mode
1541 && a->addr == b->addr
1542 && a->addr2 == b->addr2
6ffbb7ab
TJB
1543 && a->condition_value == b->condition_value);
1544}
1545
1546/* This function can be used to retrieve a thread_points by the TID of the
1547 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1548 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1549 provided TID will be created and returned. */
1550static struct thread_points *
1551booke_find_thread_points_by_tid (int tid, int alloc_new)
1552{
1553 int i;
1554 struct thread_points *t;
1555
1556 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1557 if (t->tid == tid)
1558 return t;
1559
1560 t = NULL;
1561
1562 /* Do we need to allocate a new point_item
1563 if the wanted one does not exist? */
1564 if (alloc_new)
1565 {
1566 t = xmalloc (sizeof (struct thread_points));
0df8b418
MS
1567 t->hw_breaks
1568 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
6ffbb7ab
TJB
1569 t->tid = tid;
1570 VEC_safe_push (thread_points_p, ppc_threads, t);
1571 }
1572
1573 return t;
1574}
1575
1576/* This function is a generic wrapper that is responsible for inserting a
1577 *point (i.e., calling `ptrace' in order to issue the request to the
1578 kernel) and registering it internally in GDB. */
1579static void
1580booke_insert_point (struct ppc_hw_breakpoint *b, int tid)
1581{
1582 int i;
1583 long slot;
1584 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1585 struct hw_break_tuple *hw_breaks;
1586 struct cleanup *c = make_cleanup (xfree, p);
1587 struct thread_points *t;
1588 struct hw_break_tuple *tuple;
1589
1590 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1591
1592 errno = 0;
1593 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1594 if (slot < 0)
1595 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1596
1597 /* Everything went fine, so we have to register this *point. */
1598 t = booke_find_thread_points_by_tid (tid, 1);
1599 gdb_assert (t != NULL);
1600 hw_breaks = t->hw_breaks;
1601
1602 /* Find a free element in the hw_breaks vector. */
1603 for (i = 0; i < max_slots_number; i++)
1604 if (hw_breaks[i].hw_break == NULL)
1605 {
1606 hw_breaks[i].slot = slot;
1607 hw_breaks[i].hw_break = p;
1608 break;
1609 }
1610
1611 gdb_assert (i != max_slots_number);
1612
1613 discard_cleanups (c);
1614}
1615
1616/* This function is a generic wrapper that is responsible for removing a
1617 *point (i.e., calling `ptrace' in order to issue the request to the
1618 kernel), and unregistering it internally at GDB. */
1619static void
1620booke_remove_point (struct ppc_hw_breakpoint *b, int tid)
1621{
1622 int i;
1623 struct hw_break_tuple *hw_breaks;
1624 struct thread_points *t;
1625
1626 t = booke_find_thread_points_by_tid (tid, 0);
1627 gdb_assert (t != NULL);
1628 hw_breaks = t->hw_breaks;
1629
1630 for (i = 0; i < max_slots_number; i++)
1631 if (hw_breaks[i].hw_break && booke_cmp_hw_point (hw_breaks[i].hw_break, b))
1632 break;
1633
1634 gdb_assert (i != max_slots_number);
1635
1636 /* We have to ignore ENOENT errors because the kernel implements hardware
1637 breakpoints/watchpoints as "one-shot", that is, they are automatically
1638 deleted when hit. */
1639 errno = 0;
1640 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1641 if (errno != ENOENT)
0df8b418
MS
1642 perror_with_name (_("Unexpected error deleting "
1643 "breakpoint or watchpoint"));
6ffbb7ab
TJB
1644
1645 xfree (hw_breaks[i].hw_break);
1646 hw_breaks[i].hw_break = NULL;
1647}
9f0bdab8 1648
f1310107
TJB
1649/* Return the number of registers needed for a ranged breakpoint. */
1650
1651static int
1652ppc_linux_ranged_break_num_registers (struct target_ops *target)
1653{
1654 return ((have_ptrace_booke_interface ()
1655 && booke_debug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
1656 2 : -1);
1657}
1658
1659/* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1660 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1661
2c387241 1662static int
6ffbb7ab
TJB
1663ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1664 struct bp_target_info *bp_tgt)
e0d24f8d 1665{
9f0bdab8 1666 struct lwp_info *lp;
6ffbb7ab
TJB
1667 struct ppc_hw_breakpoint p;
1668
1669 if (!have_ptrace_booke_interface ())
1670 return -1;
1671
ad422571
TJB
1672 p.version = PPC_DEBUG_CURRENT_VERSION;
1673 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1674 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1675 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1676 p.condition_value = 0;
1677
f1310107
TJB
1678 if (bp_tgt->length)
1679 {
1680 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1681
1682 /* The breakpoint will trigger if the address of the instruction is
1683 within the defined range, as follows: p.addr <= address < p.addr2. */
1684 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1685 }
1686 else
1687 {
1688 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1689 p.addr2 = 0;
1690 }
1691
4c38200f
PA
1692 ALL_LWPS (lp)
1693 booke_insert_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
1694
1695 return 0;
1696}
1697
1698static int
1699ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1700 struct bp_target_info *bp_tgt)
1701{
6ffbb7ab
TJB
1702 struct lwp_info *lp;
1703 struct ppc_hw_breakpoint p;
b7622095 1704
6ffbb7ab
TJB
1705 if (!have_ptrace_booke_interface ())
1706 return -1;
1707
ad422571
TJB
1708 p.version = PPC_DEBUG_CURRENT_VERSION;
1709 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1710 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1711 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1712 p.condition_value = 0;
1713
f1310107
TJB
1714 if (bp_tgt->length)
1715 {
1716 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1717
1718 /* The breakpoint will trigger if the address of the instruction is within
1719 the defined range, as follows: p.addr <= address < p.addr2. */
1720 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1721 }
1722 else
1723 {
1724 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1725 p.addr2 = 0;
1726 }
1727
4c38200f
PA
1728 ALL_LWPS (lp)
1729 booke_remove_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
1730
1731 return 0;
1732}
1733
1734static int
1735get_trigger_type (int rw)
1736{
1737 int t;
1738
1739 if (rw == hw_read)
1740 t = PPC_BREAKPOINT_TRIGGER_READ;
1741 else if (rw == hw_write)
1742 t = PPC_BREAKPOINT_TRIGGER_WRITE;
b7622095 1743 else
6ffbb7ab
TJB
1744 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1745
1746 return t;
1747}
1748
9c06b0b4
TJB
1749/* Insert a new masked watchpoint at ADDR using the mask MASK.
1750 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1751 or hw_access for an access watchpoint. Returns 0 on success and throws
1752 an error on failure. */
1753
1754static int
1755ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1756 CORE_ADDR mask, int rw)
1757{
9c06b0b4
TJB
1758 struct lwp_info *lp;
1759 struct ppc_hw_breakpoint p;
1760
1761 gdb_assert (have_ptrace_booke_interface ());
1762
1763 p.version = PPC_DEBUG_CURRENT_VERSION;
1764 p.trigger_type = get_trigger_type (rw);
1765 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1766 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1767 p.addr = addr;
1768 p.addr2 = mask;
1769 p.condition_value = 0;
1770
4c38200f
PA
1771 ALL_LWPS (lp)
1772 booke_insert_point (&p, TIDGET (lp->ptid));
9c06b0b4
TJB
1773
1774 return 0;
1775}
1776
1777/* Remove a masked watchpoint at ADDR with the mask MASK.
1778 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1779 or hw_access for an access watchpoint. Returns 0 on success and throws
1780 an error on failure. */
1781
1782static int
1783ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1784 CORE_ADDR mask, int rw)
1785{
9c06b0b4
TJB
1786 struct lwp_info *lp;
1787 struct ppc_hw_breakpoint p;
1788
1789 gdb_assert (have_ptrace_booke_interface ());
1790
1791 p.version = PPC_DEBUG_CURRENT_VERSION;
1792 p.trigger_type = get_trigger_type (rw);
1793 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1794 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1795 p.addr = addr;
1796 p.addr2 = mask;
1797 p.condition_value = 0;
1798
4c38200f
PA
1799 ALL_LWPS (lp)
1800 booke_remove_point (&p, TIDGET (lp->ptid));
9c06b0b4
TJB
1801
1802 return 0;
1803}
1804
0cf6dd15
TJB
1805/* Check whether we have at least one free DVC register. */
1806static int
1807can_use_watchpoint_cond_accel (void)
1808{
1809 struct thread_points *p;
1810 int tid = TIDGET (inferior_ptid);
1811 int cnt = booke_debug_info.num_condition_regs, i;
1812 CORE_ADDR tmp_value;
1813
1814 if (!have_ptrace_booke_interface () || cnt == 0)
1815 return 0;
1816
1817 p = booke_find_thread_points_by_tid (tid, 0);
1818
1819 if (p)
1820 {
1821 for (i = 0; i < max_slots_number; i++)
1822 if (p->hw_breaks[i].hw_break != NULL
1823 && (p->hw_breaks[i].hw_break->condition_mode
1824 != PPC_BREAKPOINT_CONDITION_NONE))
1825 cnt--;
1826
1827 /* There are no available slots now. */
1828 if (cnt <= 0)
1829 return 0;
1830 }
1831
1832 return 1;
1833}
1834
1835/* Calculate the enable bits and the contents of the Data Value Compare
1836 debug register present in BookE processors.
1837
1838 ADDR is the address to be watched, LEN is the length of watched data
1839 and DATA_VALUE is the value which will trigger the watchpoint.
1840 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1841 CONDITION_VALUE will hold the value which should be put in the
1842 DVC register. */
1843static void
1844calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1845 uint32_t *condition_mode, uint64_t *condition_value)
1846{
1847 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1848 rightmost_enabled_byte;
1849 CORE_ADDR addr_end_data, addr_end_dvc;
1850
1851 /* The DVC register compares bytes within fixed-length windows which
1852 are word-aligned, with length equal to that of the DVC register.
1853 We need to calculate where our watch region is relative to that
1854 window and enable comparison of the bytes which fall within it. */
1855
1856 align_offset = addr % booke_debug_info.sizeof_condition;
1857 addr_end_data = addr + len;
1858 addr_end_dvc = (addr - align_offset
1859 + booke_debug_info.sizeof_condition);
1860 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1861 addr_end_data - addr_end_dvc : 0;
1862 num_byte_enable = len - num_bytes_off_dvc;
1863 /* Here, bytes are numbered from right to left. */
1864 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1865 addr_end_dvc - addr_end_data : 0;
1866
1867 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1868 for (i = 0; i < num_byte_enable; i++)
0df8b418
MS
1869 *condition_mode
1870 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
0cf6dd15
TJB
1871
1872 /* Now we need to match the position within the DVC of the comparison
1873 value with where the watch region is relative to the window
1874 (i.e., the ALIGN_OFFSET). */
1875
1876 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1877 << rightmost_enabled_byte * 8);
1878}
1879
1880/* Return the number of memory locations that need to be accessed to
1881 evaluate the expression which generated the given value chain.
1882 Returns -1 if there's any register access involved, or if there are
1883 other kinds of values which are not acceptable in a condition
1884 expression (e.g., lval_computed or lval_internalvar). */
1885static int
1886num_memory_accesses (struct value *v)
1887{
1888 int found_memory_cnt = 0;
1889 struct value *head = v;
1890
1891 /* The idea here is that evaluating an expression generates a series
1892 of values, one holding the value of every subexpression. (The
1893 expression a*b+c has five subexpressions: a, b, a*b, c, and
1894 a*b+c.) GDB's values hold almost enough information to establish
1895 the criteria given above --- they identify memory lvalues,
1896 register lvalues, computed values, etcetera. So we can evaluate
1897 the expression, and then scan the chain of values that leaves
1898 behind to determine the memory locations involved in the evaluation
1899 of an expression.
1900
1901 However, I don't think that the values returned by inferior
1902 function calls are special in any way. So this function may not
1903 notice that an expression contains an inferior function call.
1904 FIXME. */
1905
1906 for (; v; v = value_next (v))
1907 {
1908 /* Constants and values from the history are fine. */
1909 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1910 continue;
1911 else if (VALUE_LVAL (v) == lval_memory)
1912 {
1913 /* A lazy memory lvalue is one that GDB never needed to fetch;
1914 we either just used its address (e.g., `a' in `a.b') or
1915 we never needed it at all (e.g., `a' in `a,b'). */
1916 if (!value_lazy (v))
1917 found_memory_cnt++;
1918 }
0df8b418 1919 /* Other kinds of values are not fine. */
0cf6dd15
TJB
1920 else
1921 return -1;
1922 }
1923
1924 return found_memory_cnt;
1925}
1926
1927/* Verifies whether the expression COND can be implemented using the
1928 DVC (Data Value Compare) register in BookE processors. The expression
1929 must test the watch value for equality with a constant expression.
1930 If the function returns 1, DATA_VALUE will contain the constant against
e7db58ea
TJB
1931 which the watch value should be compared and LEN will contain the size
1932 of the constant. */
0cf6dd15
TJB
1933static int
1934check_condition (CORE_ADDR watch_addr, struct expression *cond,
e7db58ea 1935 CORE_ADDR *data_value, int *len)
0cf6dd15
TJB
1936{
1937 int pc = 1, num_accesses_left, num_accesses_right;
1938 struct value *left_val, *right_val, *left_chain, *right_chain;
1939
1940 if (cond->elts[0].opcode != BINOP_EQUAL)
1941 return 0;
1942
1943 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain);
1944 num_accesses_left = num_memory_accesses (left_chain);
1945
1946 if (left_val == NULL || num_accesses_left < 0)
1947 {
1948 free_value_chain (left_chain);
1949
1950 return 0;
1951 }
1952
1953 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain);
1954 num_accesses_right = num_memory_accesses (right_chain);
1955
1956 if (right_val == NULL || num_accesses_right < 0)
1957 {
1958 free_value_chain (left_chain);
1959 free_value_chain (right_chain);
1960
1961 return 0;
1962 }
1963
1964 if (num_accesses_left == 1 && num_accesses_right == 0
1965 && VALUE_LVAL (left_val) == lval_memory
1966 && value_address (left_val) == watch_addr)
e7db58ea
TJB
1967 {
1968 *data_value = value_as_long (right_val);
1969
1970 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1971 the same type as the memory region referenced by LEFT_VAL. */
1972 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1973 }
0cf6dd15
TJB
1974 else if (num_accesses_left == 0 && num_accesses_right == 1
1975 && VALUE_LVAL (right_val) == lval_memory
1976 && value_address (right_val) == watch_addr)
e7db58ea
TJB
1977 {
1978 *data_value = value_as_long (left_val);
1979
1980 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1981 the same type as the memory region referenced by RIGHT_VAL. */
1982 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1983 }
0cf6dd15
TJB
1984 else
1985 {
1986 free_value_chain (left_chain);
1987 free_value_chain (right_chain);
1988
1989 return 0;
1990 }
1991
1992 free_value_chain (left_chain);
1993 free_value_chain (right_chain);
1994
1995 return 1;
1996}
1997
1998/* Return non-zero if the target is capable of using hardware to evaluate
1999 the condition expression, thus only triggering the watchpoint when it is
2000 true. */
2001static int
2002ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
2003 struct expression *cond)
2004{
2005 CORE_ADDR data_value;
2006
2007 return (have_ptrace_booke_interface ()
2008 && booke_debug_info.num_condition_regs > 0
e7db58ea 2009 && check_condition (addr, cond, &data_value, &len));
0cf6dd15
TJB
2010}
2011
e09342b5
TJB
2012/* Set up P with the parameters necessary to request a watchpoint covering
2013 LEN bytes starting at ADDR and if possible with condition expression COND
2014 evaluated by hardware. INSERT tells if we are creating a request for
2015 inserting or removing the watchpoint. */
2016
2017static void
2018create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2019 int len, int rw, struct expression *cond,
2020 int insert)
2021{
f16c4e8b
AS
2022 if (len == 1
2023 || !(booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
e09342b5
TJB
2024 {
2025 int use_condition;
2026 CORE_ADDR data_value;
2027
2028 use_condition = (insert? can_use_watchpoint_cond_accel ()
2029 : booke_debug_info.num_condition_regs > 0);
e7db58ea
TJB
2030 if (cond && use_condition && check_condition (addr, cond,
2031 &data_value, &len))
e09342b5
TJB
2032 calculate_dvc (addr, len, data_value, &p->condition_mode,
2033 &p->condition_value);
2034 else
2035 {
2036 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2037 p->condition_value = 0;
2038 }
2039
2040 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2041 p->addr2 = 0;
2042 }
2043 else
2044 {
2045 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2046 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2047 p->condition_value = 0;
2048
2049 /* The watchpoint will trigger if the address of the memory access is
2050 within the defined range, as follows: p->addr <= address < p->addr2.
2051
2052 Note that the above sentence just documents how ptrace interprets
2053 its arguments; the watchpoint is set to watch the range defined by
2054 the user _inclusively_, as specified by the user interface. */
2055 p->addr2 = (uint64_t) addr + len;
2056 }
2057
2058 p->version = PPC_DEBUG_CURRENT_VERSION;
2059 p->trigger_type = get_trigger_type (rw);
2060 p->addr = (uint64_t) addr;
2061}
2062
6ffbb7ab 2063static int
0cf6dd15
TJB
2064ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
2065 struct expression *cond)
6ffbb7ab
TJB
2066{
2067 struct lwp_info *lp;
6ffbb7ab
TJB
2068 int ret = -1;
2069
2070 if (have_ptrace_booke_interface ())
e0d24f8d 2071 {
6ffbb7ab
TJB
2072 struct ppc_hw_breakpoint p;
2073
e09342b5 2074 create_watchpoint_request (&p, addr, len, rw, cond, 1);
6ffbb7ab 2075
4c38200f
PA
2076 ALL_LWPS (lp)
2077 booke_insert_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
2078
2079 ret = 0;
e0d24f8d 2080 }
6ffbb7ab
TJB
2081 else
2082 {
2083 long dabr_value;
2084 long read_mode, write_mode;
e0d24f8d 2085
6ffbb7ab
TJB
2086 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2087 {
2088 /* PowerPC 440 requires only the read/write flags to be passed
2089 to the kernel. */
ad422571 2090 read_mode = 1;
6ffbb7ab
TJB
2091 write_mode = 2;
2092 }
2093 else
2094 {
2095 /* PowerPC 970 and other DABR-based processors are required to pass
2096 the Breakpoint Translation bit together with the flags. */
ad422571 2097 read_mode = 5;
6ffbb7ab
TJB
2098 write_mode = 6;
2099 }
1c86e440 2100
6ffbb7ab
TJB
2101 dabr_value = addr & ~(read_mode | write_mode);
2102 switch (rw)
2103 {
2104 case hw_read:
2105 /* Set read and translate bits. */
2106 dabr_value |= read_mode;
2107 break;
2108 case hw_write:
2109 /* Set write and translate bits. */
2110 dabr_value |= write_mode;
2111 break;
2112 case hw_access:
2113 /* Set read, write and translate bits. */
2114 dabr_value |= read_mode | write_mode;
2115 break;
2116 }
1c86e440 2117
6ffbb7ab
TJB
2118 saved_dabr_value = dabr_value;
2119
4c38200f
PA
2120 ALL_LWPS (lp)
2121 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
0cf6dd15 2122 saved_dabr_value) < 0)
6ffbb7ab
TJB
2123 return -1;
2124
2125 ret = 0;
2126 }
2127
2128 return ret;
e0d24f8d
WZ
2129}
2130
2c387241 2131static int
0cf6dd15
TJB
2132ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
2133 struct expression *cond)
e0d24f8d 2134{
9f0bdab8 2135 struct lwp_info *lp;
6ffbb7ab 2136 int ret = -1;
9f0bdab8 2137
6ffbb7ab
TJB
2138 if (have_ptrace_booke_interface ())
2139 {
2140 struct ppc_hw_breakpoint p;
2141
e09342b5 2142 create_watchpoint_request (&p, addr, len, rw, cond, 0);
6ffbb7ab 2143
4c38200f
PA
2144 ALL_LWPS (lp)
2145 booke_remove_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
2146
2147 ret = 0;
2148 }
2149 else
2150 {
2151 saved_dabr_value = 0;
4c38200f
PA
2152 ALL_LWPS (lp)
2153 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
0cf6dd15 2154 saved_dabr_value) < 0)
6ffbb7ab
TJB
2155 return -1;
2156
2157 ret = 0;
2158 }
2159
2160 return ret;
e0d24f8d
WZ
2161}
2162
9f0bdab8 2163static void
7b50312a 2164ppc_linux_new_thread (struct lwp_info *lp)
e0d24f8d 2165{
7b50312a 2166 int tid = TIDGET (lp->ptid);
6ffbb7ab
TJB
2167
2168 if (have_ptrace_booke_interface ())
2169 {
2170 int i;
2171 struct thread_points *p;
2172 struct hw_break_tuple *hw_breaks;
2173
2174 if (VEC_empty (thread_points_p, ppc_threads))
2175 return;
2176
0df8b418 2177 /* Get a list of breakpoints from any thread. */
6ffbb7ab
TJB
2178 p = VEC_last (thread_points_p, ppc_threads);
2179 hw_breaks = p->hw_breaks;
2180
0df8b418 2181 /* Copy that thread's breakpoints and watchpoints to the new thread. */
6ffbb7ab
TJB
2182 for (i = 0; i < max_slots_number; i++)
2183 if (hw_breaks[i].hw_break)
aacbb8a5
LM
2184 {
2185 /* Older kernels did not make new threads inherit their parent
2186 thread's debug state, so we always clear the slot and replicate
2187 the debug state ourselves, ensuring compatibility with all
2188 kernels. */
2189
2190 /* The ppc debug resource accounting is done through "slots".
2191 Ask the kernel the deallocate this specific *point's slot. */
2192 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2193
2194 booke_insert_point (hw_breaks[i].hw_break, tid);
2195 }
6ffbb7ab
TJB
2196 }
2197 else
2198 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2199}
2200
2201static void
2202ppc_linux_thread_exit (struct thread_info *tp, int silent)
2203{
2204 int i;
2205 int tid = TIDGET (tp->ptid);
2206 struct hw_break_tuple *hw_breaks;
2207 struct thread_points *t = NULL, *p;
2208
2209 if (!have_ptrace_booke_interface ())
2210 return;
2211
2212 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2213 if (p->tid == tid)
2214 {
2215 t = p;
2216 break;
2217 }
2218
2219 if (t == NULL)
2220 return;
2221
2222 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2223
2224 hw_breaks = t->hw_breaks;
2225
2226 for (i = 0; i < max_slots_number; i++)
2227 if (hw_breaks[i].hw_break)
2228 xfree (hw_breaks[i].hw_break);
2229
2230 xfree (t->hw_breaks);
2231 xfree (t);
e0d24f8d
WZ
2232}
2233
2234static int
9f0bdab8 2235ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
e0d24f8d 2236{
f865ee35 2237 siginfo_t siginfo;
e0d24f8d 2238
f865ee35
JK
2239 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2240 return 0;
e0d24f8d 2241
f865ee35
JK
2242 if (siginfo.si_signo != SIGTRAP
2243 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
e0d24f8d
WZ
2244 return 0;
2245
6ffbb7ab
TJB
2246 if (have_ptrace_booke_interface ())
2247 {
2248 int i;
2249 struct thread_points *t;
2250 struct hw_break_tuple *hw_breaks;
2251 /* The index (or slot) of the *point is passed in the si_errno field. */
f865ee35 2252 int slot = siginfo.si_errno;
6ffbb7ab
TJB
2253
2254 t = booke_find_thread_points_by_tid (TIDGET (inferior_ptid), 0);
2255
2256 /* Find out if this *point is a hardware breakpoint.
2257 If so, we should return 0. */
2258 if (t)
2259 {
2260 hw_breaks = t->hw_breaks;
2261 for (i = 0; i < max_slots_number; i++)
2262 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2263 && hw_breaks[i].hw_break->trigger_type
2264 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2265 return 0;
2266 }
2267 }
2268
f865ee35 2269 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
e0d24f8d
WZ
2270 return 1;
2271}
2272
9f0bdab8
DJ
2273static int
2274ppc_linux_stopped_by_watchpoint (void)
2275{
2276 CORE_ADDR addr;
2277 return ppc_linux_stopped_data_address (&current_target, &addr);
2278}
2279
5009afc5
AS
2280static int
2281ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2282 CORE_ADDR addr,
2283 CORE_ADDR start, int length)
2284{
b7622095
LM
2285 int mask;
2286
6ffbb7ab
TJB
2287 if (have_ptrace_booke_interface ()
2288 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2289 return start <= addr && start + length >= addr;
2290 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
b7622095
LM
2291 mask = 3;
2292 else
2293 mask = 7;
2294
2295 addr &= ~mask;
2296
0df8b418 2297 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
b7622095 2298 return start <= addr + mask && start + length - 1 >= addr;
5009afc5
AS
2299}
2300
9c06b0b4
TJB
2301/* Return the number of registers needed for a masked hardware watchpoint. */
2302
2303static int
2304ppc_linux_masked_watch_num_registers (struct target_ops *target,
2305 CORE_ADDR addr, CORE_ADDR mask)
2306{
2307 if (!have_ptrace_booke_interface ()
2308 || (booke_debug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
2309 return -1;
2310 else if ((mask & 0xC0000000) != 0xC0000000)
2311 {
2312 warning (_("The given mask covers kernel address space "
2313 "and cannot be used.\n"));
2314
2315 return -2;
2316 }
2317 else
2318 return 2;
2319}
2320
10d6c8cd 2321static void
28439f5e
PA
2322ppc_linux_store_inferior_registers (struct target_ops *ops,
2323 struct regcache *regcache, int regno)
45229ea4 2324{
0df8b418 2325 /* Overload thread id onto process id. */
05f13b9c
EZ
2326 int tid = TIDGET (inferior_ptid);
2327
0df8b418 2328 /* No thread id, just use process id. */
05f13b9c
EZ
2329 if (tid == 0)
2330 tid = PIDGET (inferior_ptid);
2331
45229ea4 2332 if (regno >= 0)
56be3814 2333 store_register (regcache, tid, regno);
45229ea4 2334 else
56be3814 2335 store_ppc_registers (regcache, tid);
45229ea4
EZ
2336}
2337
f2db237a
AM
2338/* Functions for transferring registers between a gregset_t or fpregset_t
2339 (see sys/ucontext.h) and gdb's regcache. The word size is that used
0df8b418 2340 by the ptrace interface, not the current program's ABI. Eg. if a
f2db237a
AM
2341 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2342 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2343
50c9bd31 2344void
7f7fe91e 2345supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
c877c8e6 2346{
f2db237a 2347 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2348
f2db237a 2349 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
c877c8e6
KB
2350}
2351
fdb28ac4 2352void
7f7fe91e
UW
2353fill_gregset (const struct regcache *regcache,
2354 gdb_gregset_t *gregsetp, int regno)
fdb28ac4 2355{
f2db237a 2356 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2357
f2db237a
AM
2358 if (regno == -1)
2359 memset (gregsetp, 0, sizeof (*gregsetp));
2360 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
fdb28ac4
KB
2361}
2362
50c9bd31 2363void
7f7fe91e 2364supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
c877c8e6 2365{
f2db237a
AM
2366 const struct regset *regset = ppc_linux_fpregset ();
2367
2368 ppc_supply_fpregset (regset, regcache, -1,
2369 fpregsetp, sizeof (*fpregsetp));
c877c8e6 2370}
fdb28ac4 2371
fdb28ac4 2372void
7f7fe91e
UW
2373fill_fpregset (const struct regcache *regcache,
2374 gdb_fpregset_t *fpregsetp, int regno)
fdb28ac4 2375{
f2db237a
AM
2376 const struct regset *regset = ppc_linux_fpregset ();
2377
2378 ppc_collect_fpregset (regset, regcache, regno,
2379 fpregsetp, sizeof (*fpregsetp));
fdb28ac4 2380}
10d6c8cd 2381
409c383c
UW
2382static int
2383ppc_linux_target_wordsize (void)
2384{
2385 int wordsize = 4;
2386
2387 /* Check for 64-bit inferior process. This is the case when the host is
2388 64-bit, and in addition the top bit of the MSR register is set. */
2389#ifdef __powerpc64__
2390 long msr;
2391
2392 int tid = TIDGET (inferior_ptid);
2393 if (tid == 0)
2394 tid = PIDGET (inferior_ptid);
2395
2396 errno = 0;
2397 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2398 if (errno == 0 && msr < 0)
2399 wordsize = 8;
2400#endif
2401
2402 return wordsize;
2403}
2404
2405static int
2406ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2407 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2408{
2409 int sizeof_auxv_field = ppc_linux_target_wordsize ();
f5656ead 2410 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
409c383c
UW
2411 gdb_byte *ptr = *readptr;
2412
2413 if (endptr == ptr)
2414 return 0;
2415
2416 if (endptr - ptr < sizeof_auxv_field * 2)
2417 return -1;
2418
e17a4113 2419 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c 2420 ptr += sizeof_auxv_field;
e17a4113 2421 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c
UW
2422 ptr += sizeof_auxv_field;
2423
2424 *readptr = ptr;
2425 return 1;
2426}
2427
310a98e1
DJ
2428static const struct target_desc *
2429ppc_linux_read_description (struct target_ops *ops)
2430{
7284e1be 2431 int altivec = 0;
604c2f83 2432 int vsx = 0;
69abc51c 2433 int isa205 = 0;
f4d9bade 2434 int cell = 0;
7284e1be
UW
2435
2436 int tid = TIDGET (inferior_ptid);
2437 if (tid == 0)
2438 tid = PIDGET (inferior_ptid);
2439
310a98e1
DJ
2440 if (have_ptrace_getsetevrregs)
2441 {
2442 struct gdb_evrregset_t evrregset;
310a98e1
DJ
2443
2444 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
7284e1be
UW
2445 return tdesc_powerpc_e500l;
2446
2447 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2448 Anything else needs to be reported. */
2449 else if (errno != EIO)
2450 perror_with_name (_("Unable to fetch SPE registers"));
2451 }
2452
604c2f83
LM
2453 if (have_ptrace_getsetvsxregs)
2454 {
2455 gdb_vsxregset_t vsxregset;
2456
2457 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2458 vsx = 1;
2459
2460 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2461 Anything else needs to be reported. */
2462 else if (errno != EIO)
2463 perror_with_name (_("Unable to fetch VSX registers"));
2464 }
2465
7284e1be
UW
2466 if (have_ptrace_getvrregs)
2467 {
2468 gdb_vrregset_t vrregset;
2469
2470 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2471 altivec = 1;
2472
2473 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2474 Anything else needs to be reported. */
2475 else if (errno != EIO)
2476 perror_with_name (_("Unable to fetch AltiVec registers"));
310a98e1
DJ
2477 }
2478
f04c6d38 2479 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
0df8b418 2480 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
f04c6d38
TJB
2481 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2482 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2483 half of the register are for Decimal Floating Point, we check if that
2484 feature is available to decide the size of the FPSCR. */
2485 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
69abc51c
TJB
2486 isa205 = 1;
2487
f4d9bade
UW
2488 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2489 cell = 1;
2490
409c383c
UW
2491 if (ppc_linux_target_wordsize () == 8)
2492 {
f4d9bade
UW
2493 if (cell)
2494 return tdesc_powerpc_cell64l;
2495 else if (vsx)
409c383c
UW
2496 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2497 else if (altivec)
0df8b418
MS
2498 return isa205
2499 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
409c383c
UW
2500
2501 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2502 }
7284e1be 2503
f4d9bade
UW
2504 if (cell)
2505 return tdesc_powerpc_cell32l;
2506 else if (vsx)
69abc51c 2507 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
604c2f83 2508 else if (altivec)
69abc51c 2509 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
604c2f83 2510
69abc51c 2511 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
310a98e1
DJ
2512}
2513
10d6c8cd
DJ
2514void _initialize_ppc_linux_nat (void);
2515
2516void
2517_initialize_ppc_linux_nat (void)
2518{
2519 struct target_ops *t;
2520
2521 /* Fill in the generic GNU/Linux methods. */
2522 t = linux_target ();
2523
2524 /* Add our register access methods. */
2525 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2526 t->to_store_registers = ppc_linux_store_inferior_registers;
2527
6ffbb7ab
TJB
2528 /* Add our breakpoint/watchpoint methods. */
2529 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2530 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2531 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
e0d24f8d
WZ
2532 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2533 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2534 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
9c06b0b4
TJB
2535 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2536 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
e0d24f8d
WZ
2537 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2538 t->to_stopped_data_address = ppc_linux_stopped_data_address;
5009afc5 2539 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
0df8b418
MS
2540 t->to_can_accel_watchpoint_condition
2541 = ppc_linux_can_accel_watchpoint_condition;
9c06b0b4 2542 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
f1310107 2543 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
e0d24f8d 2544
310a98e1 2545 t->to_read_description = ppc_linux_read_description;
409c383c 2546 t->to_auxv_parse = ppc_linux_auxv_parse;
310a98e1 2547
6ffbb7ab
TJB
2548 observer_attach_thread_exit (ppc_linux_thread_exit);
2549
10d6c8cd 2550 /* Register the target. */
f973ed9c 2551 linux_nat_add_target (t);
9f0bdab8 2552 linux_nat_set_new_thread (t, ppc_linux_new_thread);
10d6c8cd 2553}
This page took 3.552875 seconds and 4 git commands to generate.