2013-07-15 Edjunior Barbosa Machado <emachado@linux.vnet.ibm.com>
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
CommitLineData
9abe5450 1/* PPC GNU/Linux native support.
2555fe1a 2
28e7fd62 3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
c877c8e6
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
19
20#include "defs.h"
e162d11b 21#include "gdb_string.h"
6ffbb7ab 22#include "observer.h"
c877c8e6
KB
23#include "frame.h"
24#include "inferior.h"
6ffbb7ab 25#include "gdbthread.h"
c877c8e6 26#include "gdbcore.h"
4e052eda 27#include "regcache.h"
383f0f5b 28#include "gdb_assert.h"
10d6c8cd
DJ
29#include "target.h"
30#include "linux-nat.h"
c877c8e6 31
411cb3f9 32#include <stdint.h>
c877c8e6 33#include <sys/types.h>
c877c8e6
KB
34#include <signal.h>
35#include <sys/user.h>
36#include <sys/ioctl.h>
2555fe1a 37#include "gdb_wait.h"
c877c8e6
KB
38#include <fcntl.h>
39#include <sys/procfs.h>
45229ea4 40#include <sys/ptrace.h>
c877c8e6 41
0df8b418 42/* Prototypes for supply_gregset etc. */
c60c0f5f 43#include "gregset.h"
16333c4f 44#include "ppc-tdep.h"
7284e1be
UW
45#include "ppc-linux-tdep.h"
46
b7622095
LM
47/* Required when using the AUXV. */
48#include "elf/common.h"
49#include "auxv.h"
50
7284e1be
UW
51/* This sometimes isn't defined. */
52#ifndef PT_ORIG_R3
53#define PT_ORIG_R3 34
54#endif
55#ifndef PT_TRAP
56#define PT_TRAP 40
57#endif
c60c0f5f 58
69abc51c
TJB
59/* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
60 If they aren't, we can provide them ourselves (their values are fixed
61 because they are part of the kernel ABI). They are used in the AT_HWCAP
62 entry of the AUXV. */
f4d9bade
UW
63#ifndef PPC_FEATURE_CELL
64#define PPC_FEATURE_CELL 0x00010000
65#endif
b7622095
LM
66#ifndef PPC_FEATURE_BOOKE
67#define PPC_FEATURE_BOOKE 0x00008000
68#endif
f04c6d38
TJB
69#ifndef PPC_FEATURE_HAS_DFP
70#define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
69abc51c 71#endif
b7622095 72
9abe5450
EZ
73/* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
74 configure time check. Some older glibc's (for instance 2.2.1)
75 don't have a specific powerpc version of ptrace.h, and fall back on
76 a generic one. In such cases, sys/ptrace.h defines
77 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
78 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
79 PTRACE_SETVRREGS to be. This also makes a configury check pretty
80 much useless. */
81
82/* These definitions should really come from the glibc header files,
83 but Glibc doesn't know about the vrregs yet. */
84#ifndef PTRACE_GETVRREGS
85#define PTRACE_GETVRREGS 18
86#define PTRACE_SETVRREGS 19
87#endif
88
604c2f83
LM
89/* PTRACE requests for POWER7 VSX registers. */
90#ifndef PTRACE_GETVSXREGS
91#define PTRACE_GETVSXREGS 27
92#define PTRACE_SETVSXREGS 28
93#endif
01904826
JB
94
95/* Similarly for the ptrace requests for getting / setting the SPE
96 registers (ev0 -- ev31, acc, and spefscr). See the description of
97 gdb_evrregset_t for details. */
98#ifndef PTRACE_GETEVRREGS
99#define PTRACE_GETEVRREGS 20
100#define PTRACE_SETEVRREGS 21
101#endif
102
6ffbb7ab 103/* Similarly for the hardware watchpoint support. These requests are used
926bf92d 104 when the PowerPC HWDEBUG ptrace interface is not available. */
e0d24f8d
WZ
105#ifndef PTRACE_GET_DEBUGREG
106#define PTRACE_GET_DEBUGREG 25
107#endif
108#ifndef PTRACE_SET_DEBUGREG
109#define PTRACE_SET_DEBUGREG 26
110#endif
111#ifndef PTRACE_GETSIGINFO
112#define PTRACE_GETSIGINFO 0x4202
113#endif
01904826 114
926bf92d
UW
115/* These requests are used when the PowerPC HWDEBUG ptrace interface is
116 available. It exposes the debug facilities of PowerPC processors, as well
117 as additional features of BookE processors, such as ranged breakpoints and
118 watchpoints and hardware-accelerated condition evaluation. */
6ffbb7ab
TJB
119#ifndef PPC_PTRACE_GETHWDBGINFO
120
926bf92d
UW
121/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
122 ptrace interface is not present in ptrace.h, so we'll have to pretty much
123 include it all here so that the code at least compiles on older systems. */
6ffbb7ab
TJB
124#define PPC_PTRACE_GETHWDBGINFO 0x89
125#define PPC_PTRACE_SETHWDEBUG 0x88
126#define PPC_PTRACE_DELHWDEBUG 0x87
127
128struct ppc_debug_info
129{
0df8b418 130 uint32_t version; /* Only version 1 exists to date. */
6ffbb7ab
TJB
131 uint32_t num_instruction_bps;
132 uint32_t num_data_bps;
133 uint32_t num_condition_regs;
134 uint32_t data_bp_alignment;
0df8b418 135 uint32_t sizeof_condition; /* size of the DVC register. */
6ffbb7ab
TJB
136 uint64_t features;
137};
138
139/* Features will have bits indicating whether there is support for: */
140#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
141#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
142#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
143#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
144
145struct ppc_hw_breakpoint
146{
147 uint32_t version; /* currently, version must be 1 */
148 uint32_t trigger_type; /* only some combinations allowed */
149 uint32_t addr_mode; /* address match mode */
150 uint32_t condition_mode; /* break/watchpoint condition flags */
151 uint64_t addr; /* break/watchpoint address */
152 uint64_t addr2; /* range end or mask */
153 uint64_t condition_value; /* contents of the DVC register */
154};
155
156/* Trigger type. */
157#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
158#define PPC_BREAKPOINT_TRIGGER_READ 0x2
159#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
160#define PPC_BREAKPOINT_TRIGGER_RW 0x6
161
162/* Address mode. */
163#define PPC_BREAKPOINT_MODE_EXACT 0x0
164#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
165#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
166#define PPC_BREAKPOINT_MODE_MASK 0x3
167
168/* Condition mode. */
169#define PPC_BREAKPOINT_CONDITION_NONE 0x0
170#define PPC_BREAKPOINT_CONDITION_AND 0x1
171#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
172#define PPC_BREAKPOINT_CONDITION_OR 0x2
173#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
174#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
175#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
176#define PPC_BREAKPOINT_CONDITION_BE(n) \
177 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
178#endif /* PPC_PTRACE_GETHWDBGINFO */
179
180
181
1dfe79e8
SDJ
182/* Similarly for the general-purpose (gp0 -- gp31)
183 and floating-point registers (fp0 -- fp31). */
184#ifndef PTRACE_GETREGS
185#define PTRACE_GETREGS 12
186#endif
187#ifndef PTRACE_SETREGS
188#define PTRACE_SETREGS 13
189#endif
190#ifndef PTRACE_GETFPREGS
191#define PTRACE_GETFPREGS 14
192#endif
193#ifndef PTRACE_SETFPREGS
194#define PTRACE_SETFPREGS 15
195#endif
196
9abe5450
EZ
197/* This oddity is because the Linux kernel defines elf_vrregset_t as
198 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
199 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
200 the vrsave as an extra 4 bytes at the end. I opted for creating a
201 flat array of chars, so that it is easier to manipulate for gdb.
202
203 There are 32 vector registers 16 bytes longs, plus a VSCR register
204 which is only 4 bytes long, but is fetched as a 16 bytes
0df8b418 205 quantity. Up to here we have the elf_vrregset_t structure.
9abe5450
EZ
206 Appended to this there is space for the VRSAVE register: 4 bytes.
207 Even though this vrsave register is not included in the regset
208 typedef, it is handled by the ptrace requests.
209
210 Note that GNU/Linux doesn't support little endian PPC hardware,
211 therefore the offset at which the real value of the VSCR register
212 is located will be always 12 bytes.
213
214 The layout is like this (where x is the actual value of the vscr reg): */
215
216/* *INDENT-OFF* */
217/*
218 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
219 <-------> <-------><-------><->
220 VR0 VR31 VSCR VRSAVE
221*/
222/* *INDENT-ON* */
223
224#define SIZEOF_VRREGS 33*16+4
225
226typedef char gdb_vrregset_t[SIZEOF_VRREGS];
227
604c2f83
LM
228/* This is the layout of the POWER7 VSX registers and the way they overlap
229 with the existing FPR and VMX registers.
230
231 VSR doubleword 0 VSR doubleword 1
232 ----------------------------------------------------------------
233 VSR[0] | FPR[0] | |
234 ----------------------------------------------------------------
235 VSR[1] | FPR[1] | |
236 ----------------------------------------------------------------
237 | ... | |
238 | ... | |
239 ----------------------------------------------------------------
240 VSR[30] | FPR[30] | |
241 ----------------------------------------------------------------
242 VSR[31] | FPR[31] | |
243 ----------------------------------------------------------------
244 VSR[32] | VR[0] |
245 ----------------------------------------------------------------
246 VSR[33] | VR[1] |
247 ----------------------------------------------------------------
248 | ... |
249 | ... |
250 ----------------------------------------------------------------
251 VSR[62] | VR[30] |
252 ----------------------------------------------------------------
253 VSR[63] | VR[31] |
254 ----------------------------------------------------------------
255
256 VSX has 64 128bit registers. The first 32 registers overlap with
257 the FP registers (doubleword 0) and hence extend them with additional
258 64 bits (doubleword 1). The other 32 regs overlap with the VMX
259 registers. */
260#define SIZEOF_VSXREGS 32*8
261
262typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
01904826 263
b021a221 264/* On PPC processors that support the Signal Processing Extension
01904826 265 (SPE) APU, the general-purpose registers are 64 bits long.
411cb3f9
PG
266 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
267 ptrace calls only access the lower half of each register, to allow
268 them to behave the same way they do on non-SPE systems. There's a
269 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
270 read and write the top halves of all the general-purpose registers
271 at once, along with some SPE-specific registers.
01904826
JB
272
273 GDB itself continues to claim the general-purpose registers are 32
6ced10dd 274 bits long. It has unnamed raw registers that hold the upper halves
b021a221 275 of the gprs, and the full 64-bit SIMD views of the registers,
6ced10dd
JB
276 'ev0' -- 'ev31', are pseudo-registers that splice the top and
277 bottom halves together.
01904826
JB
278
279 This is the structure filled in by PTRACE_GETEVRREGS and written to
280 the inferior's registers by PTRACE_SETEVRREGS. */
281struct gdb_evrregset_t
282{
283 unsigned long evr[32];
284 unsigned long long acc;
285 unsigned long spefscr;
286};
287
604c2f83
LM
288/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
289 PTRACE_SETVSXREGS requests, for reading and writing the VSX
290 POWER7 registers 0 through 31. Zero if we've tried one of them and
291 gotten an error. Note that VSX registers 32 through 63 overlap
292 with VR registers 0 through 31. */
293int have_ptrace_getsetvsxregs = 1;
01904826
JB
294
295/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
296 PTRACE_SETVRREGS requests, for reading and writing the Altivec
297 registers. Zero if we've tried one of them and gotten an
298 error. */
9abe5450
EZ
299int have_ptrace_getvrregs = 1;
300
01904826
JB
301/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
302 PTRACE_SETEVRREGS requests, for reading and writing the SPE
303 registers. Zero if we've tried one of them and gotten an
304 error. */
305int have_ptrace_getsetevrregs = 1;
306
1dfe79e8
SDJ
307/* Non-zero if our kernel may support the PTRACE_GETREGS and
308 PTRACE_SETREGS requests, for reading and writing the
309 general-purpose registers. Zero if we've tried one of
310 them and gotten an error. */
311int have_ptrace_getsetregs = 1;
312
313/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
314 PTRACE_SETFPREGS requests, for reading and writing the
315 floating-pointers registers. Zero if we've tried one of
316 them and gotten an error. */
317int have_ptrace_getsetfpregs = 1;
318
16333c4f
EZ
319/* *INDENT-OFF* */
320/* registers layout, as presented by the ptrace interface:
321PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
322PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
323PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
324PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
0df8b418
MS
325PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
326PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
327PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
328PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
329PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
330PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
331PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
332PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
16333c4f
EZ
333PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
334/* *INDENT_ON * */
c877c8e6 335
45229ea4 336static int
e101270f 337ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
c877c8e6 338{
16333c4f 339 int u_addr = -1;
e101270f 340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
56d0d96a
AC
341 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
342 interface, and not the wordsize of the program's ABI. */
411cb3f9 343 int wordsize = sizeof (long);
16333c4f 344
0df8b418 345 /* General purpose registers occupy 1 slot each in the buffer. */
8bf659e8
JB
346 if (regno >= tdep->ppc_gp0_regnum
347 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
26e75e5c 348 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
16333c4f 349
49ff75ad
JB
350 /* Floating point regs: eight bytes each in both 32- and 64-bit
351 ptrace interfaces. Thus, two slots each in 32-bit interface, one
352 slot each in 64-bit interface. */
383f0f5b
JB
353 if (tdep->ppc_fp0_regnum >= 0
354 && regno >= tdep->ppc_fp0_regnum
366f009f
JB
355 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
356 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
16333c4f 357
0df8b418 358 /* UISA special purpose registers: 1 slot each. */
e101270f 359 if (regno == gdbarch_pc_regnum (gdbarch))
49ff75ad 360 u_addr = PT_NIP * wordsize;
dc5cfeb6 361 if (regno == tdep->ppc_lr_regnum)
49ff75ad 362 u_addr = PT_LNK * wordsize;
dc5cfeb6 363 if (regno == tdep->ppc_cr_regnum)
49ff75ad 364 u_addr = PT_CCR * wordsize;
dc5cfeb6 365 if (regno == tdep->ppc_xer_regnum)
49ff75ad 366 u_addr = PT_XER * wordsize;
dc5cfeb6 367 if (regno == tdep->ppc_ctr_regnum)
49ff75ad 368 u_addr = PT_CTR * wordsize;
f8c59253 369#ifdef PT_MQ
dc5cfeb6 370 if (regno == tdep->ppc_mq_regnum)
49ff75ad 371 u_addr = PT_MQ * wordsize;
f8c59253 372#endif
dc5cfeb6 373 if (regno == tdep->ppc_ps_regnum)
49ff75ad 374 u_addr = PT_MSR * wordsize;
7284e1be
UW
375 if (regno == PPC_ORIG_R3_REGNUM)
376 u_addr = PT_ORIG_R3 * wordsize;
377 if (regno == PPC_TRAP_REGNUM)
378 u_addr = PT_TRAP * wordsize;
383f0f5b
JB
379 if (tdep->ppc_fpscr_regnum >= 0
380 && regno == tdep->ppc_fpscr_regnum)
8f135812
AC
381 {
382 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
383 kernel headers incorrectly contained the 32-bit definition of
384 PT_FPSCR. For the 32-bit definition, floating-point
385 registers occupy two 32-bit "slots", and the FPSCR lives in
69abc51c 386 the second half of such a slot-pair (hence +1). For 64-bit,
8f135812
AC
387 the FPSCR instead occupies the full 64-bit 2-word-slot and
388 hence no adjustment is necessary. Hack around this. */
389 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
390 u_addr = (48 + 32) * wordsize;
69abc51c
TJB
391 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
392 slot and not just its second word. The PT_FPSCR supplied when
393 GDB is compiled as a 32-bit app doesn't reflect this. */
394 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
395 && PT_FPSCR == (48 + 2*32 + 1))
396 u_addr = (48 + 2*32) * wordsize;
8f135812
AC
397 else
398 u_addr = PT_FPSCR * wordsize;
399 }
16333c4f 400 return u_addr;
c877c8e6
KB
401}
402
604c2f83
LM
403/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
404 registers set mechanism, as opposed to the interface for all the
405 other registers, that stores/fetches each register individually. */
406static void
407fetch_vsx_register (struct regcache *regcache, int tid, int regno)
408{
409 int ret;
410 gdb_vsxregset_t regs;
411 struct gdbarch *gdbarch = get_regcache_arch (regcache);
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
414
415 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
416 if (ret < 0)
417 {
418 if (errno == EIO)
419 {
420 have_ptrace_getsetvsxregs = 0;
421 return;
422 }
423 perror_with_name (_("Unable to fetch VSX register"));
424 }
425
426 regcache_raw_supply (regcache, regno,
427 regs + (regno - tdep->ppc_vsr0_upper_regnum)
428 * vsxregsize);
429}
430
9abe5450
EZ
431/* The Linux kernel ptrace interface for AltiVec registers uses the
432 registers set mechanism, as opposed to the interface for all the
433 other registers, that stores/fetches each register individually. */
434static void
56be3814 435fetch_altivec_register (struct regcache *regcache, int tid, int regno)
9abe5450
EZ
436{
437 int ret;
438 int offset = 0;
439 gdb_vrregset_t regs;
40a6adc1
MD
440 struct gdbarch *gdbarch = get_regcache_arch (regcache);
441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
442 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
443
444 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
445 if (ret < 0)
446 {
447 if (errno == EIO)
448 {
449 have_ptrace_getvrregs = 0;
450 return;
451 }
e2e0b3e5 452 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
453 }
454
455 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
456 long on the hardware. We deal only with the lower 4 bytes of the
457 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
458 there is no need to define an offset for it. */
459 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 460 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 461
56be3814 462 regcache_raw_supply (regcache, regno,
0df8b418
MS
463 regs + (regno
464 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
465}
466
01904826
JB
467/* Fetch the top 32 bits of TID's general-purpose registers and the
468 SPE-specific registers, and place the results in EVRREGSET. If we
469 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
470 zeros.
471
472 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
473 PTRACE_SETEVRREGS requests are supported is isolated here, and in
474 set_spe_registers. */
475static void
476get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
477{
478 if (have_ptrace_getsetevrregs)
479 {
480 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
481 return;
482 else
483 {
484 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
485 we just return zeros. */
486 if (errno == EIO)
487 have_ptrace_getsetevrregs = 0;
488 else
489 /* Anything else needs to be reported. */
e2e0b3e5 490 perror_with_name (_("Unable to fetch SPE registers"));
01904826
JB
491 }
492 }
493
494 memset (evrregset, 0, sizeof (*evrregset));
495}
496
6ced10dd
JB
497/* Supply values from TID for SPE-specific raw registers: the upper
498 halves of the GPRs, the accumulator, and the spefscr. REGNO must
499 be the number of an upper half register, acc, spefscr, or -1 to
500 supply the values of all registers. */
01904826 501static void
56be3814 502fetch_spe_register (struct regcache *regcache, int tid, int regno)
01904826 503{
40a6adc1
MD
504 struct gdbarch *gdbarch = get_regcache_arch (regcache);
505 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
506 struct gdb_evrregset_t evrregs;
507
6ced10dd 508 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 509 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 510 gdb_assert (sizeof (evrregs.acc)
40a6adc1 511 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 512 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 513 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
6ced10dd 514
01904826
JB
515 get_spe_registers (tid, &evrregs);
516
6ced10dd 517 if (regno == -1)
01904826 518 {
6ced10dd
JB
519 int i;
520
521 for (i = 0; i < ppc_num_gprs; i++)
56be3814 522 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
6ced10dd 523 &evrregs.evr[i]);
01904826 524 }
6ced10dd
JB
525 else if (tdep->ppc_ev0_upper_regnum <= regno
526 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 527 regcache_raw_supply (regcache, regno,
6ced10dd
JB
528 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
529
530 if (regno == -1
531 || regno == tdep->ppc_acc_regnum)
56be3814 532 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
6ced10dd
JB
533
534 if (regno == -1
535 || regno == tdep->ppc_spefscr_regnum)
56be3814 536 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
6ced10dd 537 &evrregs.spefscr);
01904826
JB
538}
539
45229ea4 540static void
56be3814 541fetch_register (struct regcache *regcache, int tid, int regno)
45229ea4 542{
40a6adc1
MD
543 struct gdbarch *gdbarch = get_regcache_arch (regcache);
544 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 545 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 546 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
4a19ea35 547 int bytes_transferred;
0df8b418 548 unsigned int offset; /* Offset of registers within the u area. */
e362b510 549 gdb_byte buf[MAX_REGISTER_SIZE];
45229ea4 550
be8626e0 551 if (altivec_register_p (gdbarch, regno))
9abe5450
EZ
552 {
553 /* If this is the first time through, or if it is not the first
554 time through, and we have comfirmed that there is kernel
555 support for such a ptrace request, then go and fetch the
556 register. */
557 if (have_ptrace_getvrregs)
558 {
56be3814 559 fetch_altivec_register (regcache, tid, regno);
9abe5450
EZ
560 return;
561 }
562 /* If we have discovered that there is no ptrace support for
563 AltiVec registers, fall through and return zeroes, because
564 regaddr will be -1 in this case. */
565 }
604c2f83
LM
566 if (vsx_register_p (gdbarch, regno))
567 {
568 if (have_ptrace_getsetvsxregs)
569 {
570 fetch_vsx_register (regcache, tid, regno);
571 return;
572 }
573 }
be8626e0 574 else if (spe_register_p (gdbarch, regno))
01904826 575 {
56be3814 576 fetch_spe_register (regcache, tid, regno);
01904826
JB
577 return;
578 }
9abe5450 579
45229ea4
EZ
580 if (regaddr == -1)
581 {
40a6adc1 582 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
56be3814 583 regcache_raw_supply (regcache, regno, buf);
45229ea4
EZ
584 return;
585 }
586
411cb3f9 587 /* Read the raw register using sizeof(long) sized chunks. On a
56d0d96a
AC
588 32-bit platform, 64-bit floating-point registers will require two
589 transfers. */
4a19ea35 590 for (bytes_transferred = 0;
40a6adc1 591 bytes_transferred < register_size (gdbarch, regno);
411cb3f9 592 bytes_transferred += sizeof (long))
45229ea4 593 {
11fde611
JK
594 long l;
595
45229ea4 596 errno = 0;
11fde611 597 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
411cb3f9 598 regaddr += sizeof (long);
45229ea4
EZ
599 if (errno != 0)
600 {
bc97b3ba 601 char message[128];
8c042590
PM
602 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
603 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 604 perror_with_name (message);
45229ea4 605 }
11fde611 606 memcpy (&buf[bytes_transferred], &l, sizeof (l));
45229ea4 607 }
56d0d96a 608
4a19ea35
JB
609 /* Now supply the register. Keep in mind that the regcache's idea
610 of the register's size may not be a multiple of sizeof
411cb3f9 611 (long). */
40a6adc1 612 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
613 {
614 /* Little-endian values are always found at the left end of the
615 bytes transferred. */
56be3814 616 regcache_raw_supply (regcache, regno, buf);
4a19ea35 617 }
40a6adc1 618 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
619 {
620 /* Big-endian values are found at the right end of the bytes
621 transferred. */
40a6adc1 622 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
56be3814 623 regcache_raw_supply (regcache, regno, buf + padding);
4a19ea35
JB
624 }
625 else
a44bddec 626 internal_error (__FILE__, __LINE__,
e2e0b3e5 627 _("fetch_register: unexpected byte order: %d"),
40a6adc1 628 gdbarch_byte_order (gdbarch));
45229ea4
EZ
629}
630
604c2f83
LM
631static void
632supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
633{
634 int i;
635 struct gdbarch *gdbarch = get_regcache_arch (regcache);
636 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
637 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
638
639 for (i = 0; i < ppc_num_vshrs; i++)
640 {
641 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
642 *vsxregsetp + i * vsxregsize);
643 }
644}
645
9abe5450 646static void
56be3814 647supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
648{
649 int i;
40a6adc1
MD
650 struct gdbarch *gdbarch = get_regcache_arch (regcache);
651 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 652 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
653 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
654 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
655
656 for (i = 0; i < num_of_vrregs; i++)
657 {
658 /* The last 2 registers of this set are only 32 bit long, not
659 128. However an offset is necessary only for VSCR because it
660 occupies a whole vector, while VRSAVE occupies a full 4 bytes
661 slot. */
662 if (i == (num_of_vrregs - 2))
56be3814 663 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 664 *vrregsetp + i * vrregsize + offset);
9abe5450 665 else
56be3814 666 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 667 *vrregsetp + i * vrregsize);
9abe5450
EZ
668 }
669}
670
604c2f83
LM
671static void
672fetch_vsx_registers (struct regcache *regcache, int tid)
673{
674 int ret;
675 gdb_vsxregset_t regs;
676
677 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
678 if (ret < 0)
679 {
680 if (errno == EIO)
681 {
682 have_ptrace_getsetvsxregs = 0;
683 return;
684 }
685 perror_with_name (_("Unable to fetch VSX registers"));
686 }
687 supply_vsxregset (regcache, &regs);
688}
689
9abe5450 690static void
56be3814 691fetch_altivec_registers (struct regcache *regcache, int tid)
9abe5450
EZ
692{
693 int ret;
694 gdb_vrregset_t regs;
695
696 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
697 if (ret < 0)
698 {
699 if (errno == EIO)
700 {
701 have_ptrace_getvrregs = 0;
702 return;
703 }
e2e0b3e5 704 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450 705 }
56be3814 706 supply_vrregset (regcache, &regs);
9abe5450
EZ
707}
708
1dfe79e8
SDJ
709/* This function actually issues the request to ptrace, telling
710 it to get all general-purpose registers and put them into the
711 specified regset.
712
713 If the ptrace request does not exist, this function returns 0
714 and properly sets the have_ptrace_* flag. If the request fails,
715 this function calls perror_with_name. Otherwise, if the request
716 succeeds, then the regcache gets filled and 1 is returned. */
717static int
718fetch_all_gp_regs (struct regcache *regcache, int tid)
719{
720 struct gdbarch *gdbarch = get_regcache_arch (regcache);
721 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
722 gdb_gregset_t gregset;
723
724 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
725 {
726 if (errno == EIO)
727 {
728 have_ptrace_getsetregs = 0;
729 return 0;
730 }
731 perror_with_name (_("Couldn't get general-purpose registers."));
732 }
733
734 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
735
736 return 1;
737}
738
739/* This is a wrapper for the fetch_all_gp_regs function. It is
740 responsible for verifying if this target has the ptrace request
741 that can be used to fetch all general-purpose registers at one
742 shot. If it doesn't, then we should fetch them using the
743 old-fashioned way, which is to iterate over the registers and
744 request them one by one. */
745static void
746fetch_gp_regs (struct regcache *regcache, int tid)
747{
748 struct gdbarch *gdbarch = get_regcache_arch (regcache);
749 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
750 int i;
751
752 if (have_ptrace_getsetregs)
753 if (fetch_all_gp_regs (regcache, tid))
754 return;
755
756 /* If we've hit this point, it doesn't really matter which
757 architecture we are using. We just need to read the
758 registers in the "old-fashioned way". */
759 for (i = 0; i < ppc_num_gprs; i++)
760 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
761}
762
763/* This function actually issues the request to ptrace, telling
764 it to get all floating-point registers and put them into the
765 specified regset.
766
767 If the ptrace request does not exist, this function returns 0
768 and properly sets the have_ptrace_* flag. If the request fails,
769 this function calls perror_with_name. Otherwise, if the request
770 succeeds, then the regcache gets filled and 1 is returned. */
771static int
772fetch_all_fp_regs (struct regcache *regcache, int tid)
773{
774 gdb_fpregset_t fpregs;
775
776 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
777 {
778 if (errno == EIO)
779 {
780 have_ptrace_getsetfpregs = 0;
781 return 0;
782 }
783 perror_with_name (_("Couldn't get floating-point registers."));
784 }
785
786 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
787
788 return 1;
789}
790
791/* This is a wrapper for the fetch_all_fp_regs function. It is
792 responsible for verifying if this target has the ptrace request
793 that can be used to fetch all floating-point registers at one
794 shot. If it doesn't, then we should fetch them using the
795 old-fashioned way, which is to iterate over the registers and
796 request them one by one. */
797static void
798fetch_fp_regs (struct regcache *regcache, int tid)
799{
800 struct gdbarch *gdbarch = get_regcache_arch (regcache);
801 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
802 int i;
803
804 if (have_ptrace_getsetfpregs)
805 if (fetch_all_fp_regs (regcache, tid))
806 return;
807
808 /* If we've hit this point, it doesn't really matter which
809 architecture we are using. We just need to read the
810 registers in the "old-fashioned way". */
811 for (i = 0; i < ppc_num_fprs; i++)
812 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
813}
814
45229ea4 815static void
56be3814 816fetch_ppc_registers (struct regcache *regcache, int tid)
45229ea4
EZ
817{
818 int i;
40a6adc1
MD
819 struct gdbarch *gdbarch = get_regcache_arch (regcache);
820 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 821
1dfe79e8 822 fetch_gp_regs (regcache, tid);
32b99774 823 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 824 fetch_fp_regs (regcache, tid);
40a6adc1 825 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 826 if (tdep->ppc_ps_regnum != -1)
56be3814 827 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 828 if (tdep->ppc_cr_regnum != -1)
56be3814 829 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 830 if (tdep->ppc_lr_regnum != -1)
56be3814 831 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 832 if (tdep->ppc_ctr_regnum != -1)
56be3814 833 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 834 if (tdep->ppc_xer_regnum != -1)
56be3814 835 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 836 if (tdep->ppc_mq_regnum != -1)
56be3814 837 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
7284e1be
UW
838 if (ppc_linux_trap_reg_p (gdbarch))
839 {
840 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
841 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
842 }
32b99774 843 if (tdep->ppc_fpscr_regnum != -1)
56be3814 844 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
9abe5450
EZ
845 if (have_ptrace_getvrregs)
846 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 847 fetch_altivec_registers (regcache, tid);
604c2f83
LM
848 if (have_ptrace_getsetvsxregs)
849 if (tdep->ppc_vsr0_upper_regnum != -1)
850 fetch_vsx_registers (regcache, tid);
6ced10dd 851 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 852 fetch_spe_register (regcache, tid, -1);
45229ea4
EZ
853}
854
855/* Fetch registers from the child process. Fetch all registers if
856 regno == -1, otherwise fetch all general registers or all floating
857 point registers depending upon the value of regno. */
10d6c8cd 858static void
28439f5e
PA
859ppc_linux_fetch_inferior_registers (struct target_ops *ops,
860 struct regcache *regcache, int regno)
45229ea4 861{
0df8b418 862 /* Overload thread id onto process id. */
05f13b9c
EZ
863 int tid = TIDGET (inferior_ptid);
864
0df8b418 865 /* No thread id, just use process id. */
05f13b9c
EZ
866 if (tid == 0)
867 tid = PIDGET (inferior_ptid);
868
9abe5450 869 if (regno == -1)
56be3814 870 fetch_ppc_registers (regcache, tid);
45229ea4 871 else
56be3814 872 fetch_register (regcache, tid, regno);
45229ea4
EZ
873}
874
0df8b418 875/* Store one VSX register. */
604c2f83
LM
876static void
877store_vsx_register (const struct regcache *regcache, int tid, int regno)
878{
879 int ret;
880 gdb_vsxregset_t regs;
881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
882 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
883 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
884
9fe70b4f 885 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
604c2f83
LM
886 if (ret < 0)
887 {
888 if (errno == EIO)
889 {
890 have_ptrace_getsetvsxregs = 0;
891 return;
892 }
893 perror_with_name (_("Unable to fetch VSX register"));
894 }
895
896 regcache_raw_collect (regcache, regno, regs +
897 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
898
899 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
900 if (ret < 0)
901 perror_with_name (_("Unable to store VSX register"));
902}
903
0df8b418 904/* Store one register. */
9abe5450 905static void
56be3814 906store_altivec_register (const struct regcache *regcache, int tid, int regno)
9abe5450
EZ
907{
908 int ret;
909 int offset = 0;
910 gdb_vrregset_t regs;
40a6adc1
MD
911 struct gdbarch *gdbarch = get_regcache_arch (regcache);
912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
913 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
914
915 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
916 if (ret < 0)
917 {
918 if (errno == EIO)
919 {
920 have_ptrace_getvrregs = 0;
921 return;
922 }
e2e0b3e5 923 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
924 }
925
926 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
927 long on the hardware. */
928 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 929 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 930
56be3814 931 regcache_raw_collect (regcache, regno,
0df8b418
MS
932 regs + (regno
933 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
934
935 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
936 if (ret < 0)
e2e0b3e5 937 perror_with_name (_("Unable to store AltiVec register"));
9abe5450
EZ
938}
939
01904826
JB
940/* Assuming TID referrs to an SPE process, set the top halves of TID's
941 general-purpose registers and its SPE-specific registers to the
942 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
943 nothing.
944
945 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
946 PTRACE_SETEVRREGS requests are supported is isolated here, and in
947 get_spe_registers. */
948static void
949set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
950{
951 if (have_ptrace_getsetevrregs)
952 {
953 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
954 return;
955 else
956 {
957 /* EIO means that the PTRACE_SETEVRREGS request isn't
958 supported; we fail silently, and don't try the call
959 again. */
960 if (errno == EIO)
961 have_ptrace_getsetevrregs = 0;
962 else
963 /* Anything else needs to be reported. */
e2e0b3e5 964 perror_with_name (_("Unable to set SPE registers"));
01904826
JB
965 }
966 }
967}
968
6ced10dd
JB
969/* Write GDB's value for the SPE-specific raw register REGNO to TID.
970 If REGNO is -1, write the values of all the SPE-specific
971 registers. */
01904826 972static void
56be3814 973store_spe_register (const struct regcache *regcache, int tid, int regno)
01904826 974{
40a6adc1
MD
975 struct gdbarch *gdbarch = get_regcache_arch (regcache);
976 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
977 struct gdb_evrregset_t evrregs;
978
6ced10dd 979 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 980 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 981 gdb_assert (sizeof (evrregs.acc)
40a6adc1 982 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 983 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 984 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
01904826 985
6ced10dd
JB
986 if (regno == -1)
987 /* Since we're going to write out every register, the code below
988 should store to every field of evrregs; if that doesn't happen,
989 make it obvious by initializing it with suspicious values. */
990 memset (&evrregs, 42, sizeof (evrregs));
991 else
992 /* We can only read and write the entire EVR register set at a
993 time, so to write just a single register, we do a
994 read-modify-write maneuver. */
995 get_spe_registers (tid, &evrregs);
996
997 if (regno == -1)
01904826 998 {
6ced10dd
JB
999 int i;
1000
1001 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1002 regcache_raw_collect (regcache,
6ced10dd
JB
1003 tdep->ppc_ev0_upper_regnum + i,
1004 &evrregs.evr[i]);
01904826 1005 }
6ced10dd
JB
1006 else if (tdep->ppc_ev0_upper_regnum <= regno
1007 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 1008 regcache_raw_collect (regcache, regno,
6ced10dd
JB
1009 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1010
1011 if (regno == -1
1012 || regno == tdep->ppc_acc_regnum)
56be3814 1013 regcache_raw_collect (regcache,
6ced10dd
JB
1014 tdep->ppc_acc_regnum,
1015 &evrregs.acc);
1016
1017 if (regno == -1
1018 || regno == tdep->ppc_spefscr_regnum)
56be3814 1019 regcache_raw_collect (regcache,
6ced10dd
JB
1020 tdep->ppc_spefscr_regnum,
1021 &evrregs.spefscr);
01904826
JB
1022
1023 /* Write back the modified register set. */
1024 set_spe_registers (tid, &evrregs);
1025}
1026
45229ea4 1027static void
56be3814 1028store_register (const struct regcache *regcache, int tid, int regno)
45229ea4 1029{
40a6adc1
MD
1030 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1031 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 1032 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 1033 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
52f0bd74 1034 int i;
4a19ea35 1035 size_t bytes_to_transfer;
e362b510 1036 gdb_byte buf[MAX_REGISTER_SIZE];
45229ea4 1037
be8626e0 1038 if (altivec_register_p (gdbarch, regno))
45229ea4 1039 {
56be3814 1040 store_altivec_register (regcache, tid, regno);
45229ea4
EZ
1041 return;
1042 }
604c2f83
LM
1043 if (vsx_register_p (gdbarch, regno))
1044 {
1045 store_vsx_register (regcache, tid, regno);
1046 return;
1047 }
be8626e0 1048 else if (spe_register_p (gdbarch, regno))
01904826 1049 {
56be3814 1050 store_spe_register (regcache, tid, regno);
01904826
JB
1051 return;
1052 }
45229ea4 1053
9abe5450
EZ
1054 if (regaddr == -1)
1055 return;
1056
4a19ea35
JB
1057 /* First collect the register. Keep in mind that the regcache's
1058 idea of the register's size may not be a multiple of sizeof
411cb3f9 1059 (long). */
56d0d96a 1060 memset (buf, 0, sizeof buf);
40a6adc1
MD
1061 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1062 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
1063 {
1064 /* Little-endian values always sit at the left end of the buffer. */
56be3814 1065 regcache_raw_collect (regcache, regno, buf);
4a19ea35 1066 }
40a6adc1 1067 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
1068 {
1069 /* Big-endian values sit at the right end of the buffer. */
40a6adc1 1070 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
56be3814 1071 regcache_raw_collect (regcache, regno, buf + padding);
4a19ea35
JB
1072 }
1073
411cb3f9 1074 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
45229ea4 1075 {
11fde611
JK
1076 long l;
1077
1078 memcpy (&l, &buf[i], sizeof (l));
45229ea4 1079 errno = 0;
11fde611 1080 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
411cb3f9 1081 regaddr += sizeof (long);
e3f36dbd
KB
1082
1083 if (errno == EIO
7284e1be
UW
1084 && (regno == tdep->ppc_fpscr_regnum
1085 || regno == PPC_ORIG_R3_REGNUM
1086 || regno == PPC_TRAP_REGNUM))
e3f36dbd 1087 {
7284e1be
UW
1088 /* Some older kernel versions don't allow fpscr, orig_r3
1089 or trap to be written. */
e3f36dbd
KB
1090 continue;
1091 }
1092
45229ea4
EZ
1093 if (errno != 0)
1094 {
bc97b3ba 1095 char message[128];
8c042590
PM
1096 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1097 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 1098 perror_with_name (message);
45229ea4
EZ
1099 }
1100 }
1101}
1102
604c2f83
LM
1103static void
1104fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1105{
1106 int i;
1107 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1108 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1109 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1110
1111 for (i = 0; i < ppc_num_vshrs; i++)
1112 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1113 *vsxregsetp + i * vsxregsize);
1114}
1115
9abe5450 1116static void
56be3814 1117fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
1118{
1119 int i;
40a6adc1
MD
1120 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 1122 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
1123 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1124 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
1125
1126 for (i = 0; i < num_of_vrregs; i++)
1127 {
1128 /* The last 2 registers of this set are only 32 bit long, not
1129 128, but only VSCR is fetched as a 16 bytes quantity. */
1130 if (i == (num_of_vrregs - 2))
56be3814 1131 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1132 *vrregsetp + i * vrregsize + offset);
9abe5450 1133 else
56be3814 1134 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1135 *vrregsetp + i * vrregsize);
9abe5450
EZ
1136 }
1137}
1138
604c2f83
LM
1139static void
1140store_vsx_registers (const struct regcache *regcache, int tid)
1141{
1142 int ret;
1143 gdb_vsxregset_t regs;
1144
1145 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1146 if (ret < 0)
1147 {
1148 if (errno == EIO)
1149 {
1150 have_ptrace_getsetvsxregs = 0;
1151 return;
1152 }
1153 perror_with_name (_("Couldn't get VSX registers"));
1154 }
1155
1156 fill_vsxregset (regcache, &regs);
1157
1158 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1159 perror_with_name (_("Couldn't write VSX registers"));
1160}
1161
9abe5450 1162static void
56be3814 1163store_altivec_registers (const struct regcache *regcache, int tid)
9abe5450
EZ
1164{
1165 int ret;
1166 gdb_vrregset_t regs;
1167
0897f59b 1168 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
9abe5450
EZ
1169 if (ret < 0)
1170 {
1171 if (errno == EIO)
1172 {
1173 have_ptrace_getvrregs = 0;
1174 return;
1175 }
e2e0b3e5 1176 perror_with_name (_("Couldn't get AltiVec registers"));
9abe5450
EZ
1177 }
1178
56be3814 1179 fill_vrregset (regcache, &regs);
9abe5450 1180
0897f59b 1181 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
e2e0b3e5 1182 perror_with_name (_("Couldn't write AltiVec registers"));
9abe5450
EZ
1183}
1184
1dfe79e8
SDJ
1185/* This function actually issues the request to ptrace, telling
1186 it to store all general-purpose registers present in the specified
1187 regset.
1188
1189 If the ptrace request does not exist, this function returns 0
1190 and properly sets the have_ptrace_* flag. If the request fails,
1191 this function calls perror_with_name. Otherwise, if the request
1192 succeeds, then the regcache is stored and 1 is returned. */
1193static int
1194store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1195{
1196 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1198 gdb_gregset_t gregset;
1199
1200 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1201 {
1202 if (errno == EIO)
1203 {
1204 have_ptrace_getsetregs = 0;
1205 return 0;
1206 }
1207 perror_with_name (_("Couldn't get general-purpose registers."));
1208 }
1209
1210 fill_gregset (regcache, &gregset, regno);
1211
1212 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1213 {
1214 if (errno == EIO)
1215 {
1216 have_ptrace_getsetregs = 0;
1217 return 0;
1218 }
1219 perror_with_name (_("Couldn't set general-purpose registers."));
1220 }
1221
1222 return 1;
1223}
1224
1225/* This is a wrapper for the store_all_gp_regs function. It is
1226 responsible for verifying if this target has the ptrace request
1227 that can be used to store all general-purpose registers at one
1228 shot. If it doesn't, then we should store them using the
1229 old-fashioned way, which is to iterate over the registers and
1230 store them one by one. */
45229ea4 1231static void
1dfe79e8 1232store_gp_regs (const struct regcache *regcache, int tid, int regno)
45229ea4 1233{
40a6adc1
MD
1234 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dfe79e8
SDJ
1236 int i;
1237
1238 if (have_ptrace_getsetregs)
1239 if (store_all_gp_regs (regcache, tid, regno))
1240 return;
1241
1242 /* If we hit this point, it doesn't really matter which
1243 architecture we are using. We just need to store the
1244 registers in the "old-fashioned way". */
6ced10dd 1245 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1246 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1dfe79e8
SDJ
1247}
1248
1249/* This function actually issues the request to ptrace, telling
1250 it to store all floating-point registers present in the specified
1251 regset.
1252
1253 If the ptrace request does not exist, this function returns 0
1254 and properly sets the have_ptrace_* flag. If the request fails,
1255 this function calls perror_with_name. Otherwise, if the request
1256 succeeds, then the regcache is stored and 1 is returned. */
1257static int
1258store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1259{
1260 gdb_fpregset_t fpregs;
1261
1262 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1263 {
1264 if (errno == EIO)
1265 {
1266 have_ptrace_getsetfpregs = 0;
1267 return 0;
1268 }
1269 perror_with_name (_("Couldn't get floating-point registers."));
1270 }
1271
1272 fill_fpregset (regcache, &fpregs, regno);
1273
1274 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1275 {
1276 if (errno == EIO)
1277 {
1278 have_ptrace_getsetfpregs = 0;
1279 return 0;
1280 }
1281 perror_with_name (_("Couldn't set floating-point registers."));
1282 }
1283
1284 return 1;
1285}
1286
1287/* This is a wrapper for the store_all_fp_regs function. It is
1288 responsible for verifying if this target has the ptrace request
1289 that can be used to store all floating-point registers at one
1290 shot. If it doesn't, then we should store them using the
1291 old-fashioned way, which is to iterate over the registers and
1292 store them one by one. */
1293static void
1294store_fp_regs (const struct regcache *regcache, int tid, int regno)
1295{
1296 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1298 int i;
1299
1300 if (have_ptrace_getsetfpregs)
1301 if (store_all_fp_regs (regcache, tid, regno))
1302 return;
1303
1304 /* If we hit this point, it doesn't really matter which
1305 architecture we are using. We just need to store the
1306 registers in the "old-fashioned way". */
1307 for (i = 0; i < ppc_num_fprs; i++)
1308 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1309}
1310
1311static void
1312store_ppc_registers (const struct regcache *regcache, int tid)
1313{
1314 int i;
1315 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1317
1318 store_gp_regs (regcache, tid, -1);
32b99774 1319 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 1320 store_fp_regs (regcache, tid, -1);
40a6adc1 1321 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 1322 if (tdep->ppc_ps_regnum != -1)
56be3814 1323 store_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 1324 if (tdep->ppc_cr_regnum != -1)
56be3814 1325 store_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 1326 if (tdep->ppc_lr_regnum != -1)
56be3814 1327 store_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 1328 if (tdep->ppc_ctr_regnum != -1)
56be3814 1329 store_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 1330 if (tdep->ppc_xer_regnum != -1)
56be3814 1331 store_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 1332 if (tdep->ppc_mq_regnum != -1)
56be3814 1333 store_register (regcache, tid, tdep->ppc_mq_regnum);
32b99774 1334 if (tdep->ppc_fpscr_regnum != -1)
56be3814 1335 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
7284e1be
UW
1336 if (ppc_linux_trap_reg_p (gdbarch))
1337 {
1338 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1339 store_register (regcache, tid, PPC_TRAP_REGNUM);
1340 }
9abe5450
EZ
1341 if (have_ptrace_getvrregs)
1342 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 1343 store_altivec_registers (regcache, tid);
604c2f83
LM
1344 if (have_ptrace_getsetvsxregs)
1345 if (tdep->ppc_vsr0_upper_regnum != -1)
1346 store_vsx_registers (regcache, tid);
6ced10dd 1347 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 1348 store_spe_register (regcache, tid, -1);
45229ea4
EZ
1349}
1350
6ffbb7ab 1351/* Fetch the AT_HWCAP entry from the aux vector. */
b261e0c5
UW
1352static unsigned long
1353ppc_linux_get_hwcap (void)
6ffbb7ab
TJB
1354{
1355 CORE_ADDR field;
1356
1357 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1358 return (unsigned long) field;
1359
1360 return 0;
1361}
1362
1363/* The cached DABR value, to install in new threads.
926bf92d
UW
1364 This variable is used when the PowerPC HWDEBUG ptrace
1365 interface is not available. */
6ffbb7ab
TJB
1366static long saved_dabr_value;
1367
1368/* Global structure that will store information about the available
926bf92d
UW
1369 features provided by the PowerPC HWDEBUG ptrace interface. */
1370static struct ppc_debug_info hwdebug_info;
6ffbb7ab
TJB
1371
1372/* Global variable that holds the maximum number of slots that the
926bf92d
UW
1373 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1374 is available. */
6ffbb7ab
TJB
1375static size_t max_slots_number = 0;
1376
1377struct hw_break_tuple
1378{
1379 long slot;
1380 struct ppc_hw_breakpoint *hw_break;
1381};
1382
1383/* This is an internal VEC created to store information about *points inserted
926bf92d
UW
1384 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1385 available. */
6ffbb7ab
TJB
1386typedef struct thread_points
1387 {
1388 /* The TID to which this *point relates. */
1389 int tid;
1390 /* Information about the *point, such as its address, type, etc.
1391
1392 Each element inside this vector corresponds to a hardware
1393 breakpoint or watchpoint in the thread represented by TID. The maximum
1394 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1395 the tuple is NULL, then the position in the vector is free. */
1396 struct hw_break_tuple *hw_breaks;
1397 } *thread_points_p;
1398DEF_VEC_P (thread_points_p);
1399
1400VEC(thread_points_p) *ppc_threads = NULL;
1401
926bf92d
UW
1402/* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1403 available. */
6ffbb7ab
TJB
1404#define PPC_DEBUG_CURRENT_VERSION 1
1405
926bf92d 1406/* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
e0d24f8d 1407static int
926bf92d 1408have_ptrace_hwdebug_interface (void)
e0d24f8d 1409{
926bf92d 1410 static int have_ptrace_hwdebug_interface = -1;
e0d24f8d 1411
926bf92d 1412 if (have_ptrace_hwdebug_interface == -1)
6ffbb7ab
TJB
1413 {
1414 int tid;
e0d24f8d 1415
6ffbb7ab
TJB
1416 tid = TIDGET (inferior_ptid);
1417 if (tid == 0)
1418 tid = PIDGET (inferior_ptid);
e0d24f8d 1419
926bf92d
UW
1420 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1421 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
6ffbb7ab 1422 {
926bf92d 1423 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
0c56f59b 1424 provides any supported feature. */
926bf92d 1425 if (hwdebug_info.features != 0)
0c56f59b 1426 {
926bf92d
UW
1427 have_ptrace_hwdebug_interface = 1;
1428 max_slots_number = hwdebug_info.num_instruction_bps
1429 + hwdebug_info.num_data_bps
1430 + hwdebug_info.num_condition_regs;
1431 return have_ptrace_hwdebug_interface;
0c56f59b 1432 }
6ffbb7ab 1433 }
926bf92d
UW
1434 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1435 have_ptrace_hwdebug_interface = 0;
1436 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
6ffbb7ab
TJB
1437 }
1438
926bf92d 1439 return have_ptrace_hwdebug_interface;
e0d24f8d
WZ
1440}
1441
6ffbb7ab
TJB
1442static int
1443ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
b7622095 1444{
6ffbb7ab 1445 int total_hw_wp, total_hw_bp;
b7622095 1446
926bf92d 1447 if (have_ptrace_hwdebug_interface ())
6ffbb7ab 1448 {
926bf92d
UW
1449 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1450 available hardware watchpoints and breakpoints is stored at the
1451 hwdebug_info struct. */
1452 total_hw_bp = hwdebug_info.num_instruction_bps;
1453 total_hw_wp = hwdebug_info.num_data_bps;
6ffbb7ab
TJB
1454 }
1455 else
1456 {
926bf92d
UW
1457 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1458 consider having 1 hardware watchpoint and no hardware breakpoints. */
6ffbb7ab
TJB
1459 total_hw_bp = 0;
1460 total_hw_wp = 1;
1461 }
b7622095 1462
6ffbb7ab
TJB
1463 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1464 || type == bp_access_watchpoint || type == bp_watchpoint)
1465 {
bb08bdbd 1466 if (cnt + ot > total_hw_wp)
6ffbb7ab
TJB
1467 return -1;
1468 }
1469 else if (type == bp_hardware_breakpoint)
1470 {
1471 if (cnt > total_hw_bp)
1472 return -1;
1473 }
1474
926bf92d 1475 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1476 {
1477 int tid;
1478 ptid_t ptid = inferior_ptid;
1479
0df8b418
MS
1480 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1481 and whether the target has DABR. If either answer is no, the
1482 ptrace call will return -1. Fail in that case. */
6ffbb7ab
TJB
1483 tid = TIDGET (ptid);
1484 if (tid == 0)
1485 tid = PIDGET (ptid);
1486
1487 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1488 return 0;
1489 }
1490
1491 return 1;
b7622095
LM
1492}
1493
e0d24f8d
WZ
1494static int
1495ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1496{
1497 /* Handle sub-8-byte quantities. */
1498 if (len <= 0)
1499 return 0;
1500
926bf92d
UW
1501 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1502 restrictions for watchpoints in the processors. In that case, we use that
1503 information to determine the hardcoded watchable region for
1504 watchpoints. */
1505 if (have_ptrace_hwdebug_interface ())
6ffbb7ab 1506 {
4feebbdd
EBM
1507 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1508 watchpoints and can watch any access within an arbitrary memory
1509 region. This is useful to watch arrays and structs, for instance. It
1510 takes two hardware watchpoints though. */
e09342b5 1511 if (len > 1
926bf92d 1512 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
4feebbdd 1513 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
e09342b5 1514 return 2;
4feebbdd
EBM
1515 /* Server processors provide one hardware watchpoint and addr+len should
1516 fall in the watchable region provided by the ptrace interface. */
926bf92d
UW
1517 if (hwdebug_info.data_bp_alignment
1518 && (addr + len > (addr & ~(hwdebug_info.data_bp_alignment - 1))
1519 + hwdebug_info.data_bp_alignment))
0cf6dd15 1520 return 0;
6ffbb7ab 1521 }
b7622095 1522 /* addr+len must fall in the 8 byte watchable region for DABR-based
926bf92d
UW
1523 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1524 ptrace interface, DAC-based processors (i.e., embedded processors) will
1525 use addresses aligned to 4-bytes due to the way the read/write flags are
6ffbb7ab
TJB
1526 passed in the old ptrace interface. */
1527 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1528 && (addr + len) > (addr & ~3) + 4)
1529 || (addr + len) > (addr & ~7) + 8)
e0d24f8d
WZ
1530 return 0;
1531
1532 return 1;
1533}
1534
6ffbb7ab 1535/* This function compares two ppc_hw_breakpoint structs field-by-field. */
e4166a49 1536static int
926bf92d 1537hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
6ffbb7ab 1538{
ad422571
TJB
1539 return (a->trigger_type == b->trigger_type
1540 && a->addr_mode == b->addr_mode
1541 && a->condition_mode == b->condition_mode
1542 && a->addr == b->addr
1543 && a->addr2 == b->addr2
6ffbb7ab
TJB
1544 && a->condition_value == b->condition_value);
1545}
1546
1547/* This function can be used to retrieve a thread_points by the TID of the
1548 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1549 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1550 provided TID will be created and returned. */
1551static struct thread_points *
926bf92d 1552hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
6ffbb7ab
TJB
1553{
1554 int i;
1555 struct thread_points *t;
1556
1557 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1558 if (t->tid == tid)
1559 return t;
1560
1561 t = NULL;
1562
1563 /* Do we need to allocate a new point_item
1564 if the wanted one does not exist? */
1565 if (alloc_new)
1566 {
1567 t = xmalloc (sizeof (struct thread_points));
0df8b418
MS
1568 t->hw_breaks
1569 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
6ffbb7ab
TJB
1570 t->tid = tid;
1571 VEC_safe_push (thread_points_p, ppc_threads, t);
1572 }
1573
1574 return t;
1575}
1576
1577/* This function is a generic wrapper that is responsible for inserting a
1578 *point (i.e., calling `ptrace' in order to issue the request to the
1579 kernel) and registering it internally in GDB. */
1580static void
926bf92d 1581hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
6ffbb7ab
TJB
1582{
1583 int i;
1584 long slot;
1585 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1586 struct hw_break_tuple *hw_breaks;
1587 struct cleanup *c = make_cleanup (xfree, p);
1588 struct thread_points *t;
1589 struct hw_break_tuple *tuple;
1590
1591 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1592
1593 errno = 0;
1594 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1595 if (slot < 0)
1596 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1597
1598 /* Everything went fine, so we have to register this *point. */
926bf92d 1599 t = hwdebug_find_thread_points_by_tid (tid, 1);
6ffbb7ab
TJB
1600 gdb_assert (t != NULL);
1601 hw_breaks = t->hw_breaks;
1602
1603 /* Find a free element in the hw_breaks vector. */
1604 for (i = 0; i < max_slots_number; i++)
1605 if (hw_breaks[i].hw_break == NULL)
1606 {
1607 hw_breaks[i].slot = slot;
1608 hw_breaks[i].hw_break = p;
1609 break;
1610 }
1611
1612 gdb_assert (i != max_slots_number);
1613
1614 discard_cleanups (c);
1615}
1616
1617/* This function is a generic wrapper that is responsible for removing a
1618 *point (i.e., calling `ptrace' in order to issue the request to the
1619 kernel), and unregistering it internally at GDB. */
1620static void
926bf92d 1621hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
6ffbb7ab
TJB
1622{
1623 int i;
1624 struct hw_break_tuple *hw_breaks;
1625 struct thread_points *t;
1626
926bf92d 1627 t = hwdebug_find_thread_points_by_tid (tid, 0);
6ffbb7ab
TJB
1628 gdb_assert (t != NULL);
1629 hw_breaks = t->hw_breaks;
1630
1631 for (i = 0; i < max_slots_number; i++)
926bf92d 1632 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
6ffbb7ab
TJB
1633 break;
1634
1635 gdb_assert (i != max_slots_number);
1636
1637 /* We have to ignore ENOENT errors because the kernel implements hardware
1638 breakpoints/watchpoints as "one-shot", that is, they are automatically
1639 deleted when hit. */
1640 errno = 0;
1641 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1642 if (errno != ENOENT)
0df8b418
MS
1643 perror_with_name (_("Unexpected error deleting "
1644 "breakpoint or watchpoint"));
6ffbb7ab
TJB
1645
1646 xfree (hw_breaks[i].hw_break);
1647 hw_breaks[i].hw_break = NULL;
1648}
9f0bdab8 1649
f1310107
TJB
1650/* Return the number of registers needed for a ranged breakpoint. */
1651
1652static int
1653ppc_linux_ranged_break_num_registers (struct target_ops *target)
1654{
926bf92d
UW
1655 return ((have_ptrace_hwdebug_interface ()
1656 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
f1310107
TJB
1657 2 : -1);
1658}
1659
1660/* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1661 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1662
2c387241 1663static int
6ffbb7ab
TJB
1664ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
1665 struct bp_target_info *bp_tgt)
e0d24f8d 1666{
9f0bdab8 1667 struct lwp_info *lp;
6ffbb7ab
TJB
1668 struct ppc_hw_breakpoint p;
1669
926bf92d 1670 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1671 return -1;
1672
ad422571
TJB
1673 p.version = PPC_DEBUG_CURRENT_VERSION;
1674 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1675 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1676 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1677 p.condition_value = 0;
1678
f1310107
TJB
1679 if (bp_tgt->length)
1680 {
1681 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1682
1683 /* The breakpoint will trigger if the address of the instruction is
1684 within the defined range, as follows: p.addr <= address < p.addr2. */
1685 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1686 }
1687 else
1688 {
1689 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1690 p.addr2 = 0;
1691 }
1692
4c38200f 1693 ALL_LWPS (lp)
926bf92d 1694 hwdebug_insert_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
1695
1696 return 0;
1697}
1698
1699static int
1700ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
1701 struct bp_target_info *bp_tgt)
1702{
6ffbb7ab
TJB
1703 struct lwp_info *lp;
1704 struct ppc_hw_breakpoint p;
b7622095 1705
926bf92d 1706 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1707 return -1;
1708
ad422571
TJB
1709 p.version = PPC_DEBUG_CURRENT_VERSION;
1710 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1711 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1712 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1713 p.condition_value = 0;
1714
f1310107
TJB
1715 if (bp_tgt->length)
1716 {
1717 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1718
1719 /* The breakpoint will trigger if the address of the instruction is within
1720 the defined range, as follows: p.addr <= address < p.addr2. */
1721 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1722 }
1723 else
1724 {
1725 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1726 p.addr2 = 0;
1727 }
1728
4c38200f 1729 ALL_LWPS (lp)
926bf92d 1730 hwdebug_remove_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
1731
1732 return 0;
1733}
1734
1735static int
1736get_trigger_type (int rw)
1737{
1738 int t;
1739
1740 if (rw == hw_read)
1741 t = PPC_BREAKPOINT_TRIGGER_READ;
1742 else if (rw == hw_write)
1743 t = PPC_BREAKPOINT_TRIGGER_WRITE;
b7622095 1744 else
6ffbb7ab
TJB
1745 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1746
1747 return t;
1748}
1749
9c06b0b4
TJB
1750/* Insert a new masked watchpoint at ADDR using the mask MASK.
1751 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1752 or hw_access for an access watchpoint. Returns 0 on success and throws
1753 an error on failure. */
1754
1755static int
1756ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1757 CORE_ADDR mask, int rw)
1758{
9c06b0b4
TJB
1759 struct lwp_info *lp;
1760 struct ppc_hw_breakpoint p;
1761
926bf92d 1762 gdb_assert (have_ptrace_hwdebug_interface ());
9c06b0b4
TJB
1763
1764 p.version = PPC_DEBUG_CURRENT_VERSION;
1765 p.trigger_type = get_trigger_type (rw);
1766 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1767 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1768 p.addr = addr;
1769 p.addr2 = mask;
1770 p.condition_value = 0;
1771
4c38200f 1772 ALL_LWPS (lp)
926bf92d 1773 hwdebug_insert_point (&p, TIDGET (lp->ptid));
9c06b0b4
TJB
1774
1775 return 0;
1776}
1777
1778/* Remove a masked watchpoint at ADDR with the mask MASK.
1779 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1780 or hw_access for an access watchpoint. Returns 0 on success and throws
1781 an error on failure. */
1782
1783static int
1784ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1785 CORE_ADDR mask, int rw)
1786{
9c06b0b4
TJB
1787 struct lwp_info *lp;
1788 struct ppc_hw_breakpoint p;
1789
926bf92d 1790 gdb_assert (have_ptrace_hwdebug_interface ());
9c06b0b4
TJB
1791
1792 p.version = PPC_DEBUG_CURRENT_VERSION;
1793 p.trigger_type = get_trigger_type (rw);
1794 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1795 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1796 p.addr = addr;
1797 p.addr2 = mask;
1798 p.condition_value = 0;
1799
4c38200f 1800 ALL_LWPS (lp)
926bf92d 1801 hwdebug_remove_point (&p, TIDGET (lp->ptid));
9c06b0b4
TJB
1802
1803 return 0;
1804}
1805
0cf6dd15
TJB
1806/* Check whether we have at least one free DVC register. */
1807static int
1808can_use_watchpoint_cond_accel (void)
1809{
1810 struct thread_points *p;
1811 int tid = TIDGET (inferior_ptid);
926bf92d 1812 int cnt = hwdebug_info.num_condition_regs, i;
0cf6dd15
TJB
1813 CORE_ADDR tmp_value;
1814
926bf92d 1815 if (!have_ptrace_hwdebug_interface () || cnt == 0)
0cf6dd15
TJB
1816 return 0;
1817
926bf92d 1818 p = hwdebug_find_thread_points_by_tid (tid, 0);
0cf6dd15
TJB
1819
1820 if (p)
1821 {
1822 for (i = 0; i < max_slots_number; i++)
1823 if (p->hw_breaks[i].hw_break != NULL
1824 && (p->hw_breaks[i].hw_break->condition_mode
1825 != PPC_BREAKPOINT_CONDITION_NONE))
1826 cnt--;
1827
1828 /* There are no available slots now. */
1829 if (cnt <= 0)
1830 return 0;
1831 }
1832
1833 return 1;
1834}
1835
1836/* Calculate the enable bits and the contents of the Data Value Compare
1837 debug register present in BookE processors.
1838
1839 ADDR is the address to be watched, LEN is the length of watched data
1840 and DATA_VALUE is the value which will trigger the watchpoint.
1841 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1842 CONDITION_VALUE will hold the value which should be put in the
1843 DVC register. */
1844static void
1845calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1846 uint32_t *condition_mode, uint64_t *condition_value)
1847{
1848 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1849 rightmost_enabled_byte;
1850 CORE_ADDR addr_end_data, addr_end_dvc;
1851
1852 /* The DVC register compares bytes within fixed-length windows which
1853 are word-aligned, with length equal to that of the DVC register.
1854 We need to calculate where our watch region is relative to that
1855 window and enable comparison of the bytes which fall within it. */
1856
926bf92d 1857 align_offset = addr % hwdebug_info.sizeof_condition;
0cf6dd15
TJB
1858 addr_end_data = addr + len;
1859 addr_end_dvc = (addr - align_offset
926bf92d 1860 + hwdebug_info.sizeof_condition);
0cf6dd15
TJB
1861 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1862 addr_end_data - addr_end_dvc : 0;
1863 num_byte_enable = len - num_bytes_off_dvc;
1864 /* Here, bytes are numbered from right to left. */
1865 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1866 addr_end_dvc - addr_end_data : 0;
1867
1868 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1869 for (i = 0; i < num_byte_enable; i++)
0df8b418
MS
1870 *condition_mode
1871 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
0cf6dd15
TJB
1872
1873 /* Now we need to match the position within the DVC of the comparison
1874 value with where the watch region is relative to the window
1875 (i.e., the ALIGN_OFFSET). */
1876
1877 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1878 << rightmost_enabled_byte * 8);
1879}
1880
1881/* Return the number of memory locations that need to be accessed to
1882 evaluate the expression which generated the given value chain.
1883 Returns -1 if there's any register access involved, or if there are
1884 other kinds of values which are not acceptable in a condition
1885 expression (e.g., lval_computed or lval_internalvar). */
1886static int
1887num_memory_accesses (struct value *v)
1888{
1889 int found_memory_cnt = 0;
1890 struct value *head = v;
1891
1892 /* The idea here is that evaluating an expression generates a series
1893 of values, one holding the value of every subexpression. (The
1894 expression a*b+c has five subexpressions: a, b, a*b, c, and
1895 a*b+c.) GDB's values hold almost enough information to establish
1896 the criteria given above --- they identify memory lvalues,
1897 register lvalues, computed values, etcetera. So we can evaluate
1898 the expression, and then scan the chain of values that leaves
1899 behind to determine the memory locations involved in the evaluation
1900 of an expression.
1901
1902 However, I don't think that the values returned by inferior
1903 function calls are special in any way. So this function may not
1904 notice that an expression contains an inferior function call.
1905 FIXME. */
1906
1907 for (; v; v = value_next (v))
1908 {
1909 /* Constants and values from the history are fine. */
1910 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1911 continue;
1912 else if (VALUE_LVAL (v) == lval_memory)
1913 {
1914 /* A lazy memory lvalue is one that GDB never needed to fetch;
1915 we either just used its address (e.g., `a' in `a.b') or
1916 we never needed it at all (e.g., `a' in `a,b'). */
1917 if (!value_lazy (v))
1918 found_memory_cnt++;
1919 }
0df8b418 1920 /* Other kinds of values are not fine. */
0cf6dd15
TJB
1921 else
1922 return -1;
1923 }
1924
1925 return found_memory_cnt;
1926}
1927
1928/* Verifies whether the expression COND can be implemented using the
1929 DVC (Data Value Compare) register in BookE processors. The expression
1930 must test the watch value for equality with a constant expression.
1931 If the function returns 1, DATA_VALUE will contain the constant against
e7db58ea
TJB
1932 which the watch value should be compared and LEN will contain the size
1933 of the constant. */
0cf6dd15
TJB
1934static int
1935check_condition (CORE_ADDR watch_addr, struct expression *cond,
e7db58ea 1936 CORE_ADDR *data_value, int *len)
0cf6dd15
TJB
1937{
1938 int pc = 1, num_accesses_left, num_accesses_right;
1939 struct value *left_val, *right_val, *left_chain, *right_chain;
1940
1941 if (cond->elts[0].opcode != BINOP_EQUAL)
1942 return 0;
1943
1944 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain);
1945 num_accesses_left = num_memory_accesses (left_chain);
1946
1947 if (left_val == NULL || num_accesses_left < 0)
1948 {
1949 free_value_chain (left_chain);
1950
1951 return 0;
1952 }
1953
1954 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain);
1955 num_accesses_right = num_memory_accesses (right_chain);
1956
1957 if (right_val == NULL || num_accesses_right < 0)
1958 {
1959 free_value_chain (left_chain);
1960 free_value_chain (right_chain);
1961
1962 return 0;
1963 }
1964
1965 if (num_accesses_left == 1 && num_accesses_right == 0
1966 && VALUE_LVAL (left_val) == lval_memory
1967 && value_address (left_val) == watch_addr)
e7db58ea
TJB
1968 {
1969 *data_value = value_as_long (right_val);
1970
1971 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1972 the same type as the memory region referenced by LEFT_VAL. */
1973 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1974 }
0cf6dd15
TJB
1975 else if (num_accesses_left == 0 && num_accesses_right == 1
1976 && VALUE_LVAL (right_val) == lval_memory
1977 && value_address (right_val) == watch_addr)
e7db58ea
TJB
1978 {
1979 *data_value = value_as_long (left_val);
1980
1981 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
1982 the same type as the memory region referenced by RIGHT_VAL. */
1983 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
1984 }
0cf6dd15
TJB
1985 else
1986 {
1987 free_value_chain (left_chain);
1988 free_value_chain (right_chain);
1989
1990 return 0;
1991 }
1992
1993 free_value_chain (left_chain);
1994 free_value_chain (right_chain);
1995
1996 return 1;
1997}
1998
1999/* Return non-zero if the target is capable of using hardware to evaluate
2000 the condition expression, thus only triggering the watchpoint when it is
2001 true. */
2002static int
2003ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
2004 struct expression *cond)
2005{
2006 CORE_ADDR data_value;
2007
926bf92d
UW
2008 return (have_ptrace_hwdebug_interface ()
2009 && hwdebug_info.num_condition_regs > 0
e7db58ea 2010 && check_condition (addr, cond, &data_value, &len));
0cf6dd15
TJB
2011}
2012
e09342b5
TJB
2013/* Set up P with the parameters necessary to request a watchpoint covering
2014 LEN bytes starting at ADDR and if possible with condition expression COND
2015 evaluated by hardware. INSERT tells if we are creating a request for
2016 inserting or removing the watchpoint. */
2017
2018static void
2019create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2020 int len, int rw, struct expression *cond,
2021 int insert)
2022{
f16c4e8b 2023 if (len == 1
926bf92d 2024 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
e09342b5
TJB
2025 {
2026 int use_condition;
2027 CORE_ADDR data_value;
2028
2029 use_condition = (insert? can_use_watchpoint_cond_accel ()
926bf92d 2030 : hwdebug_info.num_condition_regs > 0);
e7db58ea
TJB
2031 if (cond && use_condition && check_condition (addr, cond,
2032 &data_value, &len))
e09342b5
TJB
2033 calculate_dvc (addr, len, data_value, &p->condition_mode,
2034 &p->condition_value);
2035 else
2036 {
2037 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2038 p->condition_value = 0;
2039 }
2040
2041 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2042 p->addr2 = 0;
2043 }
2044 else
2045 {
2046 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2047 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2048 p->condition_value = 0;
2049
2050 /* The watchpoint will trigger if the address of the memory access is
2051 within the defined range, as follows: p->addr <= address < p->addr2.
2052
2053 Note that the above sentence just documents how ptrace interprets
2054 its arguments; the watchpoint is set to watch the range defined by
2055 the user _inclusively_, as specified by the user interface. */
2056 p->addr2 = (uint64_t) addr + len;
2057 }
2058
2059 p->version = PPC_DEBUG_CURRENT_VERSION;
2060 p->trigger_type = get_trigger_type (rw);
2061 p->addr = (uint64_t) addr;
2062}
2063
6ffbb7ab 2064static int
0cf6dd15
TJB
2065ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
2066 struct expression *cond)
6ffbb7ab
TJB
2067{
2068 struct lwp_info *lp;
6ffbb7ab
TJB
2069 int ret = -1;
2070
926bf92d 2071 if (have_ptrace_hwdebug_interface ())
e0d24f8d 2072 {
6ffbb7ab
TJB
2073 struct ppc_hw_breakpoint p;
2074
e09342b5 2075 create_watchpoint_request (&p, addr, len, rw, cond, 1);
6ffbb7ab 2076
4c38200f 2077 ALL_LWPS (lp)
926bf92d 2078 hwdebug_insert_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
2079
2080 ret = 0;
e0d24f8d 2081 }
6ffbb7ab
TJB
2082 else
2083 {
2084 long dabr_value;
2085 long read_mode, write_mode;
e0d24f8d 2086
6ffbb7ab
TJB
2087 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2088 {
2089 /* PowerPC 440 requires only the read/write flags to be passed
2090 to the kernel. */
ad422571 2091 read_mode = 1;
6ffbb7ab
TJB
2092 write_mode = 2;
2093 }
2094 else
2095 {
2096 /* PowerPC 970 and other DABR-based processors are required to pass
2097 the Breakpoint Translation bit together with the flags. */
ad422571 2098 read_mode = 5;
6ffbb7ab
TJB
2099 write_mode = 6;
2100 }
1c86e440 2101
6ffbb7ab
TJB
2102 dabr_value = addr & ~(read_mode | write_mode);
2103 switch (rw)
2104 {
2105 case hw_read:
2106 /* Set read and translate bits. */
2107 dabr_value |= read_mode;
2108 break;
2109 case hw_write:
2110 /* Set write and translate bits. */
2111 dabr_value |= write_mode;
2112 break;
2113 case hw_access:
2114 /* Set read, write and translate bits. */
2115 dabr_value |= read_mode | write_mode;
2116 break;
2117 }
1c86e440 2118
6ffbb7ab
TJB
2119 saved_dabr_value = dabr_value;
2120
4c38200f
PA
2121 ALL_LWPS (lp)
2122 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
0cf6dd15 2123 saved_dabr_value) < 0)
6ffbb7ab
TJB
2124 return -1;
2125
2126 ret = 0;
2127 }
2128
2129 return ret;
e0d24f8d
WZ
2130}
2131
2c387241 2132static int
0cf6dd15
TJB
2133ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
2134 struct expression *cond)
e0d24f8d 2135{
9f0bdab8 2136 struct lwp_info *lp;
6ffbb7ab 2137 int ret = -1;
9f0bdab8 2138
926bf92d 2139 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2140 {
2141 struct ppc_hw_breakpoint p;
2142
e09342b5 2143 create_watchpoint_request (&p, addr, len, rw, cond, 0);
6ffbb7ab 2144
4c38200f 2145 ALL_LWPS (lp)
926bf92d 2146 hwdebug_remove_point (&p, TIDGET (lp->ptid));
6ffbb7ab
TJB
2147
2148 ret = 0;
2149 }
2150 else
2151 {
2152 saved_dabr_value = 0;
4c38200f
PA
2153 ALL_LWPS (lp)
2154 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (lp->ptid), 0,
0cf6dd15 2155 saved_dabr_value) < 0)
6ffbb7ab
TJB
2156 return -1;
2157
2158 ret = 0;
2159 }
2160
2161 return ret;
e0d24f8d
WZ
2162}
2163
9f0bdab8 2164static void
7b50312a 2165ppc_linux_new_thread (struct lwp_info *lp)
e0d24f8d 2166{
7b50312a 2167 int tid = TIDGET (lp->ptid);
6ffbb7ab 2168
926bf92d 2169 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2170 {
2171 int i;
2172 struct thread_points *p;
2173 struct hw_break_tuple *hw_breaks;
2174
2175 if (VEC_empty (thread_points_p, ppc_threads))
2176 return;
2177
0df8b418 2178 /* Get a list of breakpoints from any thread. */
6ffbb7ab
TJB
2179 p = VEC_last (thread_points_p, ppc_threads);
2180 hw_breaks = p->hw_breaks;
2181
0df8b418 2182 /* Copy that thread's breakpoints and watchpoints to the new thread. */
6ffbb7ab
TJB
2183 for (i = 0; i < max_slots_number; i++)
2184 if (hw_breaks[i].hw_break)
aacbb8a5
LM
2185 {
2186 /* Older kernels did not make new threads inherit their parent
2187 thread's debug state, so we always clear the slot and replicate
2188 the debug state ourselves, ensuring compatibility with all
2189 kernels. */
2190
2191 /* The ppc debug resource accounting is done through "slots".
2192 Ask the kernel the deallocate this specific *point's slot. */
2193 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2194
926bf92d 2195 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
aacbb8a5 2196 }
6ffbb7ab
TJB
2197 }
2198 else
2199 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2200}
2201
2202static void
2203ppc_linux_thread_exit (struct thread_info *tp, int silent)
2204{
2205 int i;
2206 int tid = TIDGET (tp->ptid);
2207 struct hw_break_tuple *hw_breaks;
2208 struct thread_points *t = NULL, *p;
2209
926bf92d 2210 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2211 return;
2212
2213 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2214 if (p->tid == tid)
2215 {
2216 t = p;
2217 break;
2218 }
2219
2220 if (t == NULL)
2221 return;
2222
2223 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2224
2225 hw_breaks = t->hw_breaks;
2226
2227 for (i = 0; i < max_slots_number; i++)
2228 if (hw_breaks[i].hw_break)
2229 xfree (hw_breaks[i].hw_break);
2230
2231 xfree (t->hw_breaks);
2232 xfree (t);
e0d24f8d
WZ
2233}
2234
2235static int
9f0bdab8 2236ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
e0d24f8d 2237{
f865ee35 2238 siginfo_t siginfo;
e0d24f8d 2239
f865ee35
JK
2240 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2241 return 0;
e0d24f8d 2242
f865ee35
JK
2243 if (siginfo.si_signo != SIGTRAP
2244 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
e0d24f8d
WZ
2245 return 0;
2246
926bf92d 2247 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2248 {
2249 int i;
2250 struct thread_points *t;
2251 struct hw_break_tuple *hw_breaks;
2252 /* The index (or slot) of the *point is passed in the si_errno field. */
f865ee35 2253 int slot = siginfo.si_errno;
6ffbb7ab 2254
926bf92d 2255 t = hwdebug_find_thread_points_by_tid (TIDGET (inferior_ptid), 0);
6ffbb7ab
TJB
2256
2257 /* Find out if this *point is a hardware breakpoint.
2258 If so, we should return 0. */
2259 if (t)
2260 {
2261 hw_breaks = t->hw_breaks;
2262 for (i = 0; i < max_slots_number; i++)
2263 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2264 && hw_breaks[i].hw_break->trigger_type
2265 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2266 return 0;
2267 }
2268 }
2269
f865ee35 2270 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
e0d24f8d
WZ
2271 return 1;
2272}
2273
9f0bdab8
DJ
2274static int
2275ppc_linux_stopped_by_watchpoint (void)
2276{
2277 CORE_ADDR addr;
2278 return ppc_linux_stopped_data_address (&current_target, &addr);
2279}
2280
5009afc5
AS
2281static int
2282ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2283 CORE_ADDR addr,
2284 CORE_ADDR start, int length)
2285{
b7622095
LM
2286 int mask;
2287
926bf92d 2288 if (have_ptrace_hwdebug_interface ()
6ffbb7ab
TJB
2289 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2290 return start <= addr && start + length >= addr;
2291 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
b7622095
LM
2292 mask = 3;
2293 else
2294 mask = 7;
2295
2296 addr &= ~mask;
2297
0df8b418 2298 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
b7622095 2299 return start <= addr + mask && start + length - 1 >= addr;
5009afc5
AS
2300}
2301
9c06b0b4
TJB
2302/* Return the number of registers needed for a masked hardware watchpoint. */
2303
2304static int
2305ppc_linux_masked_watch_num_registers (struct target_ops *target,
2306 CORE_ADDR addr, CORE_ADDR mask)
2307{
926bf92d
UW
2308 if (!have_ptrace_hwdebug_interface ()
2309 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
9c06b0b4
TJB
2310 return -1;
2311 else if ((mask & 0xC0000000) != 0xC0000000)
2312 {
2313 warning (_("The given mask covers kernel address space "
2314 "and cannot be used.\n"));
2315
2316 return -2;
2317 }
2318 else
2319 return 2;
2320}
2321
10d6c8cd 2322static void
28439f5e
PA
2323ppc_linux_store_inferior_registers (struct target_ops *ops,
2324 struct regcache *regcache, int regno)
45229ea4 2325{
0df8b418 2326 /* Overload thread id onto process id. */
05f13b9c
EZ
2327 int tid = TIDGET (inferior_ptid);
2328
0df8b418 2329 /* No thread id, just use process id. */
05f13b9c
EZ
2330 if (tid == 0)
2331 tid = PIDGET (inferior_ptid);
2332
45229ea4 2333 if (regno >= 0)
56be3814 2334 store_register (regcache, tid, regno);
45229ea4 2335 else
56be3814 2336 store_ppc_registers (regcache, tid);
45229ea4
EZ
2337}
2338
f2db237a
AM
2339/* Functions for transferring registers between a gregset_t or fpregset_t
2340 (see sys/ucontext.h) and gdb's regcache. The word size is that used
0df8b418 2341 by the ptrace interface, not the current program's ABI. Eg. if a
f2db237a
AM
2342 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2343 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2344
50c9bd31 2345void
7f7fe91e 2346supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
c877c8e6 2347{
f2db237a 2348 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2349
f2db237a 2350 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
c877c8e6
KB
2351}
2352
fdb28ac4 2353void
7f7fe91e
UW
2354fill_gregset (const struct regcache *regcache,
2355 gdb_gregset_t *gregsetp, int regno)
fdb28ac4 2356{
f2db237a 2357 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2358
f2db237a
AM
2359 if (regno == -1)
2360 memset (gregsetp, 0, sizeof (*gregsetp));
2361 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
fdb28ac4
KB
2362}
2363
50c9bd31 2364void
7f7fe91e 2365supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
c877c8e6 2366{
f2db237a
AM
2367 const struct regset *regset = ppc_linux_fpregset ();
2368
2369 ppc_supply_fpregset (regset, regcache, -1,
2370 fpregsetp, sizeof (*fpregsetp));
c877c8e6 2371}
fdb28ac4 2372
fdb28ac4 2373void
7f7fe91e
UW
2374fill_fpregset (const struct regcache *regcache,
2375 gdb_fpregset_t *fpregsetp, int regno)
fdb28ac4 2376{
f2db237a
AM
2377 const struct regset *regset = ppc_linux_fpregset ();
2378
2379 ppc_collect_fpregset (regset, regcache, regno,
2380 fpregsetp, sizeof (*fpregsetp));
fdb28ac4 2381}
10d6c8cd 2382
409c383c
UW
2383static int
2384ppc_linux_target_wordsize (void)
2385{
2386 int wordsize = 4;
2387
2388 /* Check for 64-bit inferior process. This is the case when the host is
2389 64-bit, and in addition the top bit of the MSR register is set. */
2390#ifdef __powerpc64__
2391 long msr;
2392
2393 int tid = TIDGET (inferior_ptid);
2394 if (tid == 0)
2395 tid = PIDGET (inferior_ptid);
2396
2397 errno = 0;
2398 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2399 if (errno == 0 && msr < 0)
2400 wordsize = 8;
2401#endif
2402
2403 return wordsize;
2404}
2405
2406static int
2407ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2408 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2409{
2410 int sizeof_auxv_field = ppc_linux_target_wordsize ();
f5656ead 2411 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
409c383c
UW
2412 gdb_byte *ptr = *readptr;
2413
2414 if (endptr == ptr)
2415 return 0;
2416
2417 if (endptr - ptr < sizeof_auxv_field * 2)
2418 return -1;
2419
e17a4113 2420 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c 2421 ptr += sizeof_auxv_field;
e17a4113 2422 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c
UW
2423 ptr += sizeof_auxv_field;
2424
2425 *readptr = ptr;
2426 return 1;
2427}
2428
310a98e1
DJ
2429static const struct target_desc *
2430ppc_linux_read_description (struct target_ops *ops)
2431{
7284e1be 2432 int altivec = 0;
604c2f83 2433 int vsx = 0;
69abc51c 2434 int isa205 = 0;
f4d9bade 2435 int cell = 0;
7284e1be
UW
2436
2437 int tid = TIDGET (inferior_ptid);
2438 if (tid == 0)
2439 tid = PIDGET (inferior_ptid);
2440
310a98e1
DJ
2441 if (have_ptrace_getsetevrregs)
2442 {
2443 struct gdb_evrregset_t evrregset;
310a98e1
DJ
2444
2445 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
7284e1be
UW
2446 return tdesc_powerpc_e500l;
2447
2448 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2449 Anything else needs to be reported. */
2450 else if (errno != EIO)
2451 perror_with_name (_("Unable to fetch SPE registers"));
2452 }
2453
604c2f83
LM
2454 if (have_ptrace_getsetvsxregs)
2455 {
2456 gdb_vsxregset_t vsxregset;
2457
2458 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2459 vsx = 1;
2460
2461 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2462 Anything else needs to be reported. */
2463 else if (errno != EIO)
2464 perror_with_name (_("Unable to fetch VSX registers"));
2465 }
2466
7284e1be
UW
2467 if (have_ptrace_getvrregs)
2468 {
2469 gdb_vrregset_t vrregset;
2470
2471 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2472 altivec = 1;
2473
2474 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2475 Anything else needs to be reported. */
2476 else if (errno != EIO)
2477 perror_with_name (_("Unable to fetch AltiVec registers"));
310a98e1
DJ
2478 }
2479
f04c6d38 2480 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
0df8b418 2481 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
f04c6d38
TJB
2482 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2483 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2484 half of the register are for Decimal Floating Point, we check if that
2485 feature is available to decide the size of the FPSCR. */
2486 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
69abc51c
TJB
2487 isa205 = 1;
2488
f4d9bade
UW
2489 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2490 cell = 1;
2491
409c383c
UW
2492 if (ppc_linux_target_wordsize () == 8)
2493 {
f4d9bade
UW
2494 if (cell)
2495 return tdesc_powerpc_cell64l;
2496 else if (vsx)
409c383c
UW
2497 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2498 else if (altivec)
0df8b418
MS
2499 return isa205
2500 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
409c383c
UW
2501
2502 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2503 }
7284e1be 2504
f4d9bade
UW
2505 if (cell)
2506 return tdesc_powerpc_cell32l;
2507 else if (vsx)
69abc51c 2508 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
604c2f83 2509 else if (altivec)
69abc51c 2510 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
604c2f83 2511
69abc51c 2512 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
310a98e1
DJ
2513}
2514
10d6c8cd
DJ
2515void _initialize_ppc_linux_nat (void);
2516
2517void
2518_initialize_ppc_linux_nat (void)
2519{
2520 struct target_ops *t;
2521
2522 /* Fill in the generic GNU/Linux methods. */
2523 t = linux_target ();
2524
2525 /* Add our register access methods. */
2526 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2527 t->to_store_registers = ppc_linux_store_inferior_registers;
2528
6ffbb7ab
TJB
2529 /* Add our breakpoint/watchpoint methods. */
2530 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2531 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2532 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
e0d24f8d
WZ
2533 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2534 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2535 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
9c06b0b4
TJB
2536 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2537 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
e0d24f8d
WZ
2538 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2539 t->to_stopped_data_address = ppc_linux_stopped_data_address;
5009afc5 2540 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
0df8b418
MS
2541 t->to_can_accel_watchpoint_condition
2542 = ppc_linux_can_accel_watchpoint_condition;
9c06b0b4 2543 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
f1310107 2544 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
e0d24f8d 2545
310a98e1 2546 t->to_read_description = ppc_linux_read_description;
409c383c 2547 t->to_auxv_parse = ppc_linux_auxv_parse;
310a98e1 2548
6ffbb7ab
TJB
2549 observer_attach_thread_exit (ppc_linux_thread_exit);
2550
10d6c8cd 2551 /* Register the target. */
f973ed9c 2552 linux_nat_add_target (t);
9f0bdab8 2553 linux_nat_set_new_thread (t, ppc_linux_new_thread);
10d6c8cd 2554}
This page took 1.321977 seconds and 4 git commands to generate.