don't let bin2hex call strlen
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
CommitLineData
c877c8e6 1/* Target-dependent code for GDB, the GNU debugger.
4e052eda 2
ecd75fc8 3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c877c8e6
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
23#include "symtab.h"
24#include "target.h"
25#include "gdbcore.h"
26#include "gdbcmd.h"
27#include "symfile.h"
28#include "objfiles.h"
4e052eda 29#include "regcache.h"
fd0407d6 30#include "value.h"
4be87837 31#include "osabi.h"
f9be684a 32#include "regset.h"
6ded7999 33#include "solib-svr4.h"
85e747d2 34#include "solib-spu.h"
cc5f0d61
UW
35#include "solib.h"
36#include "solist.h"
9aa1e687 37#include "ppc-tdep.h"
d78489bf 38#include "ppc64-tdep.h"
7284e1be 39#include "ppc-linux-tdep.h"
5d853008 40#include "glibc-tdep.h"
61a65099
KB
41#include "trad-frame.h"
42#include "frame-unwind.h"
a8f60bfc 43#include "tramp-frame.h"
85e747d2
UW
44#include "observer.h"
45#include "auxv.h"
46#include "elf/common.h"
591a12a1 47#include "elf/ppc64.h"
cc5f0d61
UW
48#include "exceptions.h"
49#include "arch-utils.h"
50#include "spu-tdep.h"
a96d9b2e 51#include "xml-syscall.h"
a5ee0f0c 52#include "linux-tdep.h"
9aa1e687 53
55aa24fb
SDJ
54#include "stap-probe.h"
55#include "ax.h"
56#include "ax-gdb.h"
57#include "cli/cli-utils.h"
58#include "parser-defs.h"
59#include "user-regs.h"
60#include <ctype.h>
b3ac9c77 61#include "elf-bfd.h" /* for elfcore_write_* */
55aa24fb 62
7284e1be
UW
63#include "features/rs6000/powerpc-32l.c"
64#include "features/rs6000/powerpc-altivec32l.c"
f4d9bade 65#include "features/rs6000/powerpc-cell32l.c"
604c2f83 66#include "features/rs6000/powerpc-vsx32l.c"
69abc51c
TJB
67#include "features/rs6000/powerpc-isa205-32l.c"
68#include "features/rs6000/powerpc-isa205-altivec32l.c"
69#include "features/rs6000/powerpc-isa205-vsx32l.c"
7284e1be
UW
70#include "features/rs6000/powerpc-64l.c"
71#include "features/rs6000/powerpc-altivec64l.c"
f4d9bade 72#include "features/rs6000/powerpc-cell64l.c"
604c2f83 73#include "features/rs6000/powerpc-vsx64l.c"
69abc51c
TJB
74#include "features/rs6000/powerpc-isa205-64l.c"
75#include "features/rs6000/powerpc-isa205-altivec64l.c"
76#include "features/rs6000/powerpc-isa205-vsx64l.c"
7284e1be
UW
77#include "features/rs6000/powerpc-e500l.c"
78
5d853008
ME
79/* Shared library operations for PowerPC-Linux. */
80static struct target_so_ops powerpc_so_ops;
81
a96d9b2e
SDJ
82/* The syscall's XML filename for PPC and PPC64. */
83#define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml"
84#define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml"
c877c8e6 85
122a33de
KB
86/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
87 in much the same fashion as memory_remove_breakpoint in mem-break.c,
88 but is careful not to write back the previous contents if the code
89 in question has changed in between inserting the breakpoint and
90 removing it.
91
92 Here is the problem that we're trying to solve...
93
94 Once upon a time, before introducing this function to remove
95 breakpoints from the inferior, setting a breakpoint on a shared
96 library function prior to running the program would not work
97 properly. In order to understand the problem, it is first
98 necessary to understand a little bit about dynamic linking on
99 this platform.
100
101 A call to a shared library function is accomplished via a bl
102 (branch-and-link) instruction whose branch target is an entry
103 in the procedure linkage table (PLT). The PLT in the object
104 file is uninitialized. To gdb, prior to running the program, the
105 entries in the PLT are all zeros.
106
107 Once the program starts running, the shared libraries are loaded
108 and the procedure linkage table is initialized, but the entries in
109 the table are not (necessarily) resolved. Once a function is
110 actually called, the code in the PLT is hit and the function is
111 resolved. In order to better illustrate this, an example is in
112 order; the following example is from the gdb testsuite.
113
114 We start the program shmain.
115
116 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
117 [...]
118
119 We place two breakpoints, one on shr1 and the other on main.
120
121 (gdb) b shr1
122 Breakpoint 1 at 0x100409d4
123 (gdb) b main
124 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
125
126 Examine the instruction (and the immediatly following instruction)
127 upon which the breakpoint was placed. Note that the PLT entry
128 for shr1 contains zeros.
129
130 (gdb) x/2i 0x100409d4
131 0x100409d4 <shr1>: .long 0x0
132 0x100409d8 <shr1+4>: .long 0x0
133
134 Now run 'til main.
135
136 (gdb) r
137 Starting program: gdb.base/shmain
138 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
139
140 Breakpoint 2, main ()
141 at gdb.base/shmain.c:44
142 44 g = 1;
143
144 Examine the PLT again. Note that the loading of the shared
145 library has initialized the PLT to code which loads a constant
146 (which I think is an index into the GOT) into r11 and then
147 branchs a short distance to the code which actually does the
148 resolving.
149
150 (gdb) x/2i 0x100409d4
151 0x100409d4 <shr1>: li r11,4
152 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
153 (gdb) c
154 Continuing.
155
156 Breakpoint 1, shr1 (x=1)
157 at gdb.base/shr1.c:19
158 19 l = 1;
159
160 Now we've hit the breakpoint at shr1. (The breakpoint was
161 reset from the PLT entry to the actual shr1 function after the
162 shared library was loaded.) Note that the PLT entry has been
0df8b418 163 resolved to contain a branch that takes us directly to shr1.
122a33de
KB
164 (The real one, not the PLT entry.)
165
166 (gdb) x/2i 0x100409d4
167 0x100409d4 <shr1>: b 0xffaf76c <shr1>
168 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
169
170 The thing to note here is that the PLT entry for shr1 has been
171 changed twice.
172
173 Now the problem should be obvious. GDB places a breakpoint (a
0df8b418 174 trap instruction) on the zero value of the PLT entry for shr1.
122a33de
KB
175 Later on, after the shared library had been loaded and the PLT
176 initialized, GDB gets a signal indicating this fact and attempts
177 (as it always does when it stops) to remove all the breakpoints.
178
179 The breakpoint removal was causing the former contents (a zero
180 word) to be written back to the now initialized PLT entry thus
181 destroying a portion of the initialization that had occurred only a
182 short time ago. When execution continued, the zero word would be
766062f6 183 executed as an instruction an illegal instruction trap was
122a33de
KB
184 generated instead. (0 is not a legal instruction.)
185
186 The fix for this problem was fairly straightforward. The function
187 memory_remove_breakpoint from mem-break.c was copied to this file,
188 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
189 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
190 function.
191
192 The differences between ppc_linux_memory_remove_breakpoint () and
193 memory_remove_breakpoint () are minor. All that the former does
194 that the latter does not is check to make sure that the breakpoint
195 location actually contains a breakpoint (trap instruction) prior
196 to attempting to write back the old contents. If it does contain
0df8b418 197 a trap instruction, we allow the old contents to be written back.
122a33de
KB
198 Otherwise, we silently do nothing.
199
200 The big question is whether memory_remove_breakpoint () should be
201 changed to have the same functionality. The downside is that more
202 traffic is generated for remote targets since we'll have an extra
203 fetch of a memory word each time a breakpoint is removed.
204
205 For the time being, we'll leave this self-modifying-code-friendly
206 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
207 else in the event that some other platform has similar needs with
208 regard to removing breakpoints in some potentially self modifying
209 code. */
63807e1d 210static int
ae4b2284
MD
211ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
212 struct bp_target_info *bp_tgt)
482ca3f5 213{
8181d85f 214 CORE_ADDR addr = bp_tgt->placed_address;
f4f9705a 215 const unsigned char *bp;
482ca3f5
KB
216 int val;
217 int bplen;
50fd1280 218 gdb_byte old_contents[BREAKPOINT_MAX];
8defab1a 219 struct cleanup *cleanup;
482ca3f5
KB
220
221 /* Determine appropriate breakpoint contents and size for this address. */
ae4b2284 222 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
482ca3f5 223 if (bp == NULL)
8a3fe4f8 224 error (_("Software breakpoints not implemented for this target."));
482ca3f5 225
8defab1a
DJ
226 /* Make sure we see the memory breakpoints. */
227 cleanup = make_show_memory_breakpoints_cleanup (1);
482ca3f5
KB
228 val = target_read_memory (addr, old_contents, bplen);
229
230 /* If our breakpoint is no longer at the address, this means that the
231 program modified the code on us, so it is wrong to put back the
0df8b418 232 old value. */
482ca3f5 233 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
dd110abf 234 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen);
482ca3f5 235
8defab1a 236 do_cleanups (cleanup);
482ca3f5
KB
237 return val;
238}
6ded7999 239
b9ff3018
AC
240/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
241 than the 32 bit SYSV R4 ABI structure return convention - all
242 structures, no matter their size, are put in memory. Vectors,
243 which were added later, do get returned in a register though. */
244
05580c65 245static enum return_value_convention
6a3a010b 246ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
247 struct type *valtype, struct regcache *regcache,
248 gdb_byte *readbuf, const gdb_byte *writebuf)
b9ff3018 249{
05580c65
AC
250 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
251 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
252 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
253 && TYPE_VECTOR (valtype)))
254 return RETURN_VALUE_STRUCT_CONVENTION;
255 else
6a3a010b 256 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache,
c055b101 257 readbuf, writebuf);
b9ff3018
AC
258}
259
6207416c 260static struct core_regset_section ppc_linux_vsx_regset_sections[] =
17ea7499 261{
2f2241f1 262 { ".reg", 48 * 4, "general-purpose" },
1b1818e4
UW
263 { ".reg2", 264, "floating-point" },
264 { ".reg-ppc-vmx", 544, "ppc Altivec" },
265 { ".reg-ppc-vsx", 256, "POWER7 VSX" },
17ea7499
CES
266 { NULL, 0}
267};
268
6207416c
LM
269static struct core_regset_section ppc_linux_vmx_regset_sections[] =
270{
2f2241f1 271 { ".reg", 48 * 4, "general-purpose" },
1b1818e4
UW
272 { ".reg2", 264, "floating-point" },
273 { ".reg-ppc-vmx", 544, "ppc Altivec" },
6207416c
LM
274 { NULL, 0}
275};
276
277static struct core_regset_section ppc_linux_fp_regset_sections[] =
278{
2f2241f1
UW
279 { ".reg", 48 * 4, "general-purpose" },
280 { ".reg2", 264, "floating-point" },
281 { NULL, 0}
282};
283
284static struct core_regset_section ppc64_linux_vsx_regset_sections[] =
285{
286 { ".reg", 48 * 8, "general-purpose" },
287 { ".reg2", 264, "floating-point" },
288 { ".reg-ppc-vmx", 544, "ppc Altivec" },
289 { ".reg-ppc-vsx", 256, "POWER7 VSX" },
290 { NULL, 0}
291};
292
293static struct core_regset_section ppc64_linux_vmx_regset_sections[] =
294{
295 { ".reg", 48 * 8, "general-purpose" },
296 { ".reg2", 264, "floating-point" },
297 { ".reg-ppc-vmx", 544, "ppc Altivec" },
298 { NULL, 0}
299};
300
301static struct core_regset_section ppc64_linux_fp_regset_sections[] =
302{
303 { ".reg", 48 * 8, "general-purpose" },
1b1818e4 304 { ".reg2", 264, "floating-point" },
6207416c
LM
305 { NULL, 0}
306};
307
5d853008 308/* PLT stub in executable. */
d78489bf 309static struct ppc_insn_pattern powerpc32_plt_stub[] =
5d853008
ME
310 {
311 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */
312 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */
313 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
314 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
315 { 0, 0, 0 }
316 };
317
318/* PLT stub in shared library. */
d78489bf 319static struct ppc_insn_pattern powerpc32_plt_stub_so[] =
5d853008
ME
320 {
321 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */
322 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */
323 { 0xffffffff, 0x4e800420, 0 }, /* bctr */
324 { 0xffffffff, 0x60000000, 0 }, /* nop */
325 { 0, 0, 0 }
326 };
327#define POWERPC32_PLT_STUB_LEN ARRAY_SIZE (powerpc32_plt_stub)
328
329/* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt
330 section. For secure PLT, stub is in .text and we need to check
331 instruction patterns. */
332
333static int
334powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc)
335{
7cbd4a93 336 struct bound_minimal_symbol sym;
5d853008
ME
337
338 /* Check whether PC is in the dynamic linker. This also checks
339 whether it is in the .plt section, used by non-PIC executables. */
340 if (svr4_in_dynsym_resolve_code (pc))
341 return 1;
342
343 /* Check if we are in the resolver. */
344 sym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93
TT
345 if (sym.minsym != NULL
346 && (strcmp (SYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0
347 || strcmp (SYMBOL_LINKAGE_NAME (sym.minsym),
348 "__glink_PLTresolve") == 0))
5d853008
ME
349 return 1;
350
351 return 0;
352}
353
354/* Follow PLT stub to actual routine. */
355
356static CORE_ADDR
357ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
358{
463920bf 359 unsigned int insnbuf[POWERPC32_PLT_STUB_LEN];
5d853008
ME
360 struct gdbarch *gdbarch = get_frame_arch (frame);
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
363 CORE_ADDR target = 0;
364
845d4708 365 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf))
5d853008
ME
366 {
367 /* Insn pattern is
368 lis r11, xxxx
369 lwz r11, xxxx(r11)
370 Branch target is in r11. */
371
d78489bf
AT
372 target = (ppc_insn_d_field (insnbuf[0]) << 16)
373 | ppc_insn_d_field (insnbuf[1]);
5d853008
ME
374 target = read_memory_unsigned_integer (target, 4, byte_order);
375 }
376
845d4708 377 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so, insnbuf))
5d853008
ME
378 {
379 /* Insn pattern is
380 lwz r11, xxxx(r30)
381 Branch target is in r11. */
382
383 target = get_frame_register_unsigned (frame, tdep->ppc_gp0_regnum + 30)
d78489bf 384 + ppc_insn_d_field (insnbuf[0]);
5d853008
ME
385 target = read_memory_unsigned_integer (target, 4, byte_order);
386 }
387
388 return target;
389}
f470a70a 390
7284e1be
UW
391/* Wrappers to handle Linux-only registers. */
392
393static void
394ppc_linux_supply_gregset (const struct regset *regset,
395 struct regcache *regcache,
396 int regnum, const void *gregs, size_t len)
397{
398 const struct ppc_reg_offsets *offsets = regset->descr;
399
400 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
401
402 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
403 {
404 /* "orig_r3" is stored 2 slots after "pc". */
405 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
406 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
407 offsets->pc_offset + 2 * offsets->gpr_size,
408 offsets->gpr_size);
409
410 /* "trap" is stored 8 slots after "pc". */
411 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
412 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
413 offsets->pc_offset + 8 * offsets->gpr_size,
414 offsets->gpr_size);
415 }
416}
f2db237a 417
f9be684a 418static void
f2db237a
AM
419ppc_linux_collect_gregset (const struct regset *regset,
420 const struct regcache *regcache,
421 int regnum, void *gregs, size_t len)
f9be684a 422{
7284e1be
UW
423 const struct ppc_reg_offsets *offsets = regset->descr;
424
425 /* Clear areas in the linux gregset not written elsewhere. */
f2db237a
AM
426 if (regnum == -1)
427 memset (gregs, 0, len);
7284e1be 428
f2db237a 429 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
7284e1be
UW
430
431 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
432 {
433 /* "orig_r3" is stored 2 slots after "pc". */
434 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
435 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
436 offsets->pc_offset + 2 * offsets->gpr_size,
437 offsets->gpr_size);
438
439 /* "trap" is stored 8 slots after "pc". */
440 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
441 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
442 offsets->pc_offset + 8 * offsets->gpr_size,
443 offsets->gpr_size);
444 }
f9be684a
AC
445}
446
f2db237a
AM
447/* Regset descriptions. */
448static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
449 {
450 /* General-purpose registers. */
451 /* .r0_offset = */ 0,
452 /* .gpr_size = */ 4,
453 /* .xr_size = */ 4,
454 /* .pc_offset = */ 128,
455 /* .ps_offset = */ 132,
456 /* .cr_offset = */ 152,
457 /* .lr_offset = */ 144,
458 /* .ctr_offset = */ 140,
459 /* .xer_offset = */ 148,
460 /* .mq_offset = */ 156,
461
462 /* Floating-point registers. */
463 /* .f0_offset = */ 0,
464 /* .fpscr_offset = */ 256,
465 /* .fpscr_size = */ 8,
466
467 /* AltiVec registers. */
468 /* .vr0_offset = */ 0,
06caf7d2
CES
469 /* .vscr_offset = */ 512 + 12,
470 /* .vrsave_offset = */ 528
f2db237a 471 };
f9be684a 472
f2db237a
AM
473static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
474 {
475 /* General-purpose registers. */
476 /* .r0_offset = */ 0,
477 /* .gpr_size = */ 8,
478 /* .xr_size = */ 8,
479 /* .pc_offset = */ 256,
480 /* .ps_offset = */ 264,
481 /* .cr_offset = */ 304,
482 /* .lr_offset = */ 288,
483 /* .ctr_offset = */ 280,
484 /* .xer_offset = */ 296,
485 /* .mq_offset = */ 312,
486
487 /* Floating-point registers. */
488 /* .f0_offset = */ 0,
489 /* .fpscr_offset = */ 256,
490 /* .fpscr_size = */ 8,
491
492 /* AltiVec registers. */
493 /* .vr0_offset = */ 0,
06caf7d2
CES
494 /* .vscr_offset = */ 512 + 12,
495 /* .vrsave_offset = */ 528
f2db237a 496 };
2fda4977 497
f2db237a
AM
498static const struct regset ppc32_linux_gregset = {
499 &ppc32_linux_reg_offsets,
7284e1be 500 ppc_linux_supply_gregset,
f2db237a
AM
501 ppc_linux_collect_gregset,
502 NULL
f9be684a
AC
503};
504
f2db237a
AM
505static const struct regset ppc64_linux_gregset = {
506 &ppc64_linux_reg_offsets,
7284e1be 507 ppc_linux_supply_gregset,
f2db237a
AM
508 ppc_linux_collect_gregset,
509 NULL
510};
f9be684a 511
f2db237a
AM
512static const struct regset ppc32_linux_fpregset = {
513 &ppc32_linux_reg_offsets,
514 ppc_supply_fpregset,
515 ppc_collect_fpregset,
516 NULL
f9be684a
AC
517};
518
06caf7d2
CES
519static const struct regset ppc32_linux_vrregset = {
520 &ppc32_linux_reg_offsets,
521 ppc_supply_vrregset,
522 ppc_collect_vrregset,
523 NULL
524};
525
604c2f83
LM
526static const struct regset ppc32_linux_vsxregset = {
527 &ppc32_linux_reg_offsets,
528 ppc_supply_vsxregset,
529 ppc_collect_vsxregset,
530 NULL
531};
532
f2db237a
AM
533const struct regset *
534ppc_linux_gregset (int wordsize)
2fda4977 535{
f2db237a 536 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
2fda4977
DJ
537}
538
f2db237a
AM
539const struct regset *
540ppc_linux_fpregset (void)
541{
542 return &ppc32_linux_fpregset;
543}
2fda4977 544
f9be684a
AC
545static const struct regset *
546ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
547 const char *sect_name, size_t sect_size)
2fda4977 548{
f9be684a
AC
549 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
550 if (strcmp (sect_name, ".reg") == 0)
2fda4977 551 {
f9be684a
AC
552 if (tdep->wordsize == 4)
553 return &ppc32_linux_gregset;
2fda4977 554 else
f9be684a 555 return &ppc64_linux_gregset;
2fda4977 556 }
f9be684a 557 if (strcmp (sect_name, ".reg2") == 0)
f2db237a 558 return &ppc32_linux_fpregset;
06caf7d2
CES
559 if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
560 return &ppc32_linux_vrregset;
604c2f83
LM
561 if (strcmp (sect_name, ".reg-ppc-vsx") == 0)
562 return &ppc32_linux_vsxregset;
f9be684a 563 return NULL;
2fda4977
DJ
564}
565
a8f60bfc 566static void
5366653e 567ppc_linux_sigtramp_cache (struct frame_info *this_frame,
a8f60bfc
AC
568 struct trad_frame_cache *this_cache,
569 CORE_ADDR func, LONGEST offset,
570 int bias)
571{
572 CORE_ADDR base;
573 CORE_ADDR regs;
574 CORE_ADDR gpregs;
575 CORE_ADDR fpregs;
576 int i;
5366653e 577 struct gdbarch *gdbarch = get_frame_arch (this_frame);
a8f60bfc 578 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 579 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a8f60bfc 580
5366653e
DJ
581 base = get_frame_register_unsigned (this_frame,
582 gdbarch_sp_regnum (gdbarch));
583 if (bias > 0 && get_frame_pc (this_frame) != func)
a8f60bfc
AC
584 /* See below, some signal trampolines increment the stack as their
585 first instruction, need to compensate for that. */
586 base -= bias;
587
588 /* Find the address of the register buffer pointer. */
589 regs = base + offset;
590 /* Use that to find the address of the corresponding register
591 buffers. */
e17a4113 592 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order);
a8f60bfc
AC
593 fpregs = gpregs + 48 * tdep->wordsize;
594
595 /* General purpose. */
596 for (i = 0; i < 32; i++)
597 {
598 int regnum = i + tdep->ppc_gp0_regnum;
0df8b418
MS
599 trad_frame_set_reg_addr (this_cache,
600 regnum, gpregs + i * tdep->wordsize);
a8f60bfc 601 }
3e8c568d 602 trad_frame_set_reg_addr (this_cache,
40a6adc1 603 gdbarch_pc_regnum (gdbarch),
3e8c568d 604 gpregs + 32 * tdep->wordsize);
a8f60bfc
AC
605 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
606 gpregs + 35 * tdep->wordsize);
607 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
608 gpregs + 36 * tdep->wordsize);
609 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
610 gpregs + 37 * tdep->wordsize);
611 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
612 gpregs + 38 * tdep->wordsize);
613
7284e1be
UW
614 if (ppc_linux_trap_reg_p (gdbarch))
615 {
616 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
617 gpregs + 34 * tdep->wordsize);
618 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
619 gpregs + 40 * tdep->wordsize);
620 }
621
60f140f9
PG
622 if (ppc_floating_point_unit_p (gdbarch))
623 {
624 /* Floating point registers. */
625 for (i = 0; i < 32; i++)
626 {
40a6adc1 627 int regnum = i + gdbarch_fp0_regnum (gdbarch);
60f140f9
PG
628 trad_frame_set_reg_addr (this_cache, regnum,
629 fpregs + i * tdep->wordsize);
630 }
631 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
4019046a 632 fpregs + 32 * tdep->wordsize);
60f140f9 633 }
a8f60bfc
AC
634 trad_frame_set_id (this_cache, frame_id_build (base, func));
635}
636
637static void
638ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
5366653e 639 struct frame_info *this_frame,
a8f60bfc
AC
640 struct trad_frame_cache *this_cache,
641 CORE_ADDR func)
642{
5366653e 643 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
a8f60bfc
AC
644 0xd0 /* Offset to ucontext_t. */
645 + 0x30 /* Offset to .reg. */,
646 0);
647}
648
649static void
650ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
5366653e 651 struct frame_info *this_frame,
a8f60bfc
AC
652 struct trad_frame_cache *this_cache,
653 CORE_ADDR func)
654{
5366653e 655 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
a8f60bfc
AC
656 0x80 /* Offset to ucontext_t. */
657 + 0xe0 /* Offset to .reg. */,
658 128);
659}
660
661static void
662ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
5366653e 663 struct frame_info *this_frame,
a8f60bfc
AC
664 struct trad_frame_cache *this_cache,
665 CORE_ADDR func)
666{
5366653e 667 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
a8f60bfc
AC
668 0x40 /* Offset to ucontext_t. */
669 + 0x1c /* Offset to .reg. */,
670 0);
671}
672
673static void
674ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
5366653e 675 struct frame_info *this_frame,
a8f60bfc
AC
676 struct trad_frame_cache *this_cache,
677 CORE_ADDR func)
678{
5366653e 679 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
a8f60bfc
AC
680 0x80 /* Offset to struct sigcontext. */
681 + 0x38 /* Offset to .reg. */,
682 128);
683}
684
685static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
686 SIGTRAMP_FRAME,
687 4,
688 {
689 { 0x380000ac, -1 }, /* li r0, 172 */
690 { 0x44000002, -1 }, /* sc */
691 { TRAMP_SENTINEL_INSN },
692 },
693 ppc32_linux_sigaction_cache_init
694};
695static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
696 SIGTRAMP_FRAME,
697 4,
698 {
699 { 0x38210080, -1 }, /* addi r1,r1,128 */
700 { 0x380000ac, -1 }, /* li r0, 172 */
701 { 0x44000002, -1 }, /* sc */
702 { TRAMP_SENTINEL_INSN },
703 },
704 ppc64_linux_sigaction_cache_init
705};
706static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
707 SIGTRAMP_FRAME,
708 4,
709 {
710 { 0x38000077, -1 }, /* li r0,119 */
711 { 0x44000002, -1 }, /* sc */
712 { TRAMP_SENTINEL_INSN },
713 },
714 ppc32_linux_sighandler_cache_init
715};
716static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
717 SIGTRAMP_FRAME,
718 4,
719 {
720 { 0x38210080, -1 }, /* addi r1,r1,128 */
721 { 0x38000077, -1 }, /* li r0,119 */
722 { 0x44000002, -1 }, /* sc */
723 { TRAMP_SENTINEL_INSN },
724 },
725 ppc64_linux_sighandler_cache_init
726};
727
7284e1be 728
85e747d2
UW
729/* Address to use for displaced stepping. When debugging a stand-alone
730 SPU executable, entry_point_address () will point to an SPU local-store
731 address and is thus not usable as displaced stepping location. We use
732 the auxiliary vector to determine the PowerPC-side entry point address
733 instead. */
734
735static CORE_ADDR ppc_linux_entry_point_addr = 0;
736
737static void
738ppc_linux_inferior_created (struct target_ops *target, int from_tty)
739{
740 ppc_linux_entry_point_addr = 0;
741}
742
743static CORE_ADDR
744ppc_linux_displaced_step_location (struct gdbarch *gdbarch)
745{
746 if (ppc_linux_entry_point_addr == 0)
747 {
748 CORE_ADDR addr;
749
750 /* Determine entry point from target auxiliary vector. */
751 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
752 error (_("Cannot find AT_ENTRY auxiliary vector entry."));
753
754 /* Make certain that the address points at real code, and not a
755 function descriptor. */
756 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
757 &current_target);
758
759 /* Inferior calls also use the entry point as a breakpoint location.
760 We don't want displaced stepping to interfere with those
761 breakpoints, so leave space. */
5931a2fa 762 ppc_linux_entry_point_addr = addr + 2 * PPC_INSN_SIZE;
85e747d2
UW
763 }
764
765 return ppc_linux_entry_point_addr;
766}
767
768
7284e1be
UW
769/* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
770int
771ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
772{
773 /* If we do not have a target description with registers, then
774 the special registers will not be included in the register set. */
775 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
776 return 0;
777
778 /* If we do, then it is safe to check the size. */
779 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
780 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
781}
782
a96d9b2e
SDJ
783/* Return the current system call's number present in the
784 r0 register. When the function fails, it returns -1. */
785static LONGEST
786ppc_linux_get_syscall_number (struct gdbarch *gdbarch,
787 ptid_t ptid)
788{
789 struct regcache *regcache = get_thread_regcache (ptid);
790 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
792 struct cleanup *cleanbuf;
793 /* The content of a register */
794 gdb_byte *buf;
795 /* The result */
796 LONGEST ret;
797
798 /* Make sure we're in a 32- or 64-bit machine */
799 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8);
800
801 buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte));
802
803 cleanbuf = make_cleanup (xfree, buf);
804
805 /* Getting the system call number from the register.
806 When dealing with PowerPC architecture, this information
807 is stored at 0th register. */
808 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf);
809
810 ret = extract_signed_integer (buf, tdep->wordsize, byte_order);
811 do_cleanups (cleanbuf);
812
813 return ret;
814}
815
7284e1be
UW
816static void
817ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
818{
819 struct gdbarch *gdbarch = get_regcache_arch (regcache);
820
821 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
822
823 /* Set special TRAP register to -1 to prevent the kernel from
824 messing with the PC we just installed, if we happen to be
825 within an interrupted system call that the kernel wants to
826 restart.
827
828 Note that after we return from the dummy call, the TRAP and
829 ORIG_R3 registers will be automatically restored, and the
830 kernel continues to restart the system call at this point. */
831 if (ppc_linux_trap_reg_p (gdbarch))
832 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
833}
834
f4d9bade
UW
835static int
836ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data)
837{
838 return strncmp (bfd_section_name (abfd, asect), "SPU/", 4) == 0;
839}
840
7284e1be
UW
841static const struct target_desc *
842ppc_linux_core_read_description (struct gdbarch *gdbarch,
843 struct target_ops *target,
844 bfd *abfd)
845{
f4d9bade 846 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL);
7284e1be 847 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
604c2f83 848 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx");
7284e1be
UW
849 asection *section = bfd_get_section_by_name (abfd, ".reg");
850 if (! section)
851 return NULL;
852
853 switch (bfd_section_size (abfd, section))
854 {
855 case 48 * 4:
f4d9bade
UW
856 if (cell)
857 return tdesc_powerpc_cell32l;
858 else if (vsx)
604c2f83
LM
859 return tdesc_powerpc_vsx32l;
860 else if (altivec)
861 return tdesc_powerpc_altivec32l;
862 else
863 return tdesc_powerpc_32l;
7284e1be
UW
864
865 case 48 * 8:
f4d9bade
UW
866 if (cell)
867 return tdesc_powerpc_cell64l;
868 else if (vsx)
604c2f83
LM
869 return tdesc_powerpc_vsx64l;
870 else if (altivec)
871 return tdesc_powerpc_altivec64l;
872 else
873 return tdesc_powerpc_64l;
7284e1be
UW
874
875 default:
876 return NULL;
877 }
878}
879
591a12a1
UW
880
881/* Implementation of `gdbarch_elf_make_msymbol_special', as defined in
882 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
883
884static void
885ppc_elfv2_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
886{
887 elf_symbol_type *elf_sym = (elf_symbol_type *)sym;
888
889 /* If the symbol is marked as having a local entry point, set a target
890 flag in the msymbol. We currently only support local entry point
891 offsets of 8 bytes, which is the only entry point offset ever used
892 by current compilers. If/when other offsets are ever used, we will
893 have to use additional target flag bits to store them. */
894 switch (PPC64_LOCAL_ENTRY_OFFSET (elf_sym->internal_elf_sym.st_other))
895 {
896 default:
897 break;
898 case 8:
899 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
900 break;
901 }
902}
903
904/* Implementation of `gdbarch_skip_entrypoint', as defined in
905 gdbarch.h. This implementation is used for the ELFv2 ABI only. */
906
907static CORE_ADDR
908ppc_elfv2_skip_entrypoint (struct gdbarch *gdbarch, CORE_ADDR pc)
909{
910 struct bound_minimal_symbol fun;
911 int local_entry_offset = 0;
912
913 fun = lookup_minimal_symbol_by_pc (pc);
914 if (fun.minsym == NULL)
915 return pc;
916
917 /* See ppc_elfv2_elf_make_msymbol_special for how local entry point
918 offset values are encoded. */
919 if (MSYMBOL_TARGET_FLAG_1 (fun.minsym))
920 local_entry_offset = 8;
921
922 if (SYMBOL_VALUE_ADDRESS (fun.minsym) <= pc
923 && pc < SYMBOL_VALUE_ADDRESS (fun.minsym) + local_entry_offset)
924 return SYMBOL_VALUE_ADDRESS (fun.minsym) + local_entry_offset;
925
926 return pc;
927}
928
55aa24fb
SDJ
929/* Implementation of `gdbarch_stap_is_single_operand', as defined in
930 gdbarch.h. */
931
932static int
933ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
934{
935 return (*s == 'i' /* Literal number. */
936 || (isdigit (*s) && s[1] == '('
937 && isdigit (s[2])) /* Displacement. */
938 || (*s == '(' && isdigit (s[1])) /* Register indirection. */
939 || isdigit (*s)); /* Register value. */
940}
941
942/* Implementation of `gdbarch_stap_parse_special_token', as defined in
943 gdbarch.h. */
944
945static int
946ppc_stap_parse_special_token (struct gdbarch *gdbarch,
947 struct stap_parse_info *p)
948{
949 if (isdigit (*p->arg))
950 {
951 /* This temporary pointer is needed because we have to do a lookahead.
952 We could be dealing with a register displacement, and in such case
953 we would not need to do anything. */
954 const char *s = p->arg;
955 char *regname;
956 int len;
957 struct stoken str;
958
959 while (isdigit (*s))
960 ++s;
961
962 if (*s == '(')
963 {
964 /* It is a register displacement indeed. Returning 0 means we are
965 deferring the treatment of this case to the generic parser. */
966 return 0;
967 }
968
969 len = s - p->arg;
970 regname = alloca (len + 2);
971 regname[0] = 'r';
972
973 strncpy (regname + 1, p->arg, len);
974 ++len;
975 regname[len] = '\0';
976
977 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
978 error (_("Invalid register name `%s' on expression `%s'."),
979 regname, p->saved_arg);
980
981 write_exp_elt_opcode (OP_REGISTER);
982 str.ptr = regname;
983 str.length = len;
984 write_exp_string (str);
985 write_exp_elt_opcode (OP_REGISTER);
986
987 p->arg = s;
988 }
989 else
990 {
991 /* All the other tokens should be handled correctly by the generic
992 parser. */
993 return 0;
994 }
995
996 return 1;
997}
cc5f0d61
UW
998
999/* Cell/B.E. active SPE context tracking support. */
1000
1001static struct objfile *spe_context_objfile = NULL;
1002static CORE_ADDR spe_context_lm_addr = 0;
1003static CORE_ADDR spe_context_offset = 0;
1004
1005static ptid_t spe_context_cache_ptid;
1006static CORE_ADDR spe_context_cache_address;
1007
1008/* Hook into inferior_created, solib_loaded, and solib_unloaded observers
1009 to track whether we've loaded a version of libspe2 (as static or dynamic
1010 library) that provides the __spe_current_active_context variable. */
1011static void
1012ppc_linux_spe_context_lookup (struct objfile *objfile)
1013{
1014 struct minimal_symbol *sym;
1015
1016 if (!objfile)
1017 {
1018 spe_context_objfile = NULL;
1019 spe_context_lm_addr = 0;
1020 spe_context_offset = 0;
1021 spe_context_cache_ptid = minus_one_ptid;
1022 spe_context_cache_address = 0;
1023 return;
1024 }
1025
1026 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile);
1027 if (sym)
1028 {
1029 spe_context_objfile = objfile;
1030 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile);
1031 spe_context_offset = SYMBOL_VALUE_ADDRESS (sym);
1032 spe_context_cache_ptid = minus_one_ptid;
1033 spe_context_cache_address = 0;
1034 return;
1035 }
1036}
1037
1038static void
1039ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty)
1040{
1041 struct objfile *objfile;
1042
1043 ppc_linux_spe_context_lookup (NULL);
1044 ALL_OBJFILES (objfile)
1045 ppc_linux_spe_context_lookup (objfile);
1046}
1047
1048static void
1049ppc_linux_spe_context_solib_loaded (struct so_list *so)
1050{
1051 if (strstr (so->so_original_name, "/libspe") != NULL)
1052 {
7e559477 1053 solib_read_symbols (so, 0);
cc5f0d61
UW
1054 ppc_linux_spe_context_lookup (so->objfile);
1055 }
1056}
1057
1058static void
1059ppc_linux_spe_context_solib_unloaded (struct so_list *so)
1060{
1061 if (so->objfile == spe_context_objfile)
1062 ppc_linux_spe_context_lookup (NULL);
1063}
1064
1065/* Retrieve contents of the N'th element in the current thread's
1066 linked SPE context list into ID and NPC. Return the address of
1067 said context element, or 0 if not found. */
1068static CORE_ADDR
1069ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order,
1070 int n, int *id, unsigned int *npc)
1071{
1072 CORE_ADDR spe_context = 0;
1073 gdb_byte buf[16];
1074 int i;
1075
1076 /* Quick exit if we have not found __spe_current_active_context. */
1077 if (!spe_context_objfile)
1078 return 0;
1079
1080 /* Look up cached address of thread-local variable. */
1081 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid))
1082 {
1083 struct target_ops *target = &current_target;
1084 volatile struct gdb_exception ex;
1085
1086 while (target && !target->to_get_thread_local_address)
1087 target = find_target_beneath (target);
1088 if (!target)
1089 return 0;
1090
1091 TRY_CATCH (ex, RETURN_MASK_ERROR)
1092 {
1093 /* We do not call target_translate_tls_address here, because
1094 svr4_fetch_objfile_link_map may invalidate the frame chain,
1095 which must not do while inside a frame sniffer.
1096
1097 Instead, we have cached the lm_addr value, and use that to
1098 directly call the target's to_get_thread_local_address. */
1099 spe_context_cache_address
1100 = target->to_get_thread_local_address (target, inferior_ptid,
1101 spe_context_lm_addr,
1102 spe_context_offset);
1103 spe_context_cache_ptid = inferior_ptid;
1104 }
1105
1106 if (ex.reason < 0)
1107 return 0;
1108 }
1109
1110 /* Read variable value. */
1111 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0)
1112 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1113
1114 /* Cyle through to N'th linked list element. */
1115 for (i = 0; i < n && spe_context; i++)
1116 if (target_read_memory (spe_context + align_up (12, wordsize),
1117 buf, wordsize) == 0)
1118 spe_context = extract_unsigned_integer (buf, wordsize, byte_order);
1119 else
1120 spe_context = 0;
1121
1122 /* Read current context. */
1123 if (spe_context
1124 && target_read_memory (spe_context, buf, 12) != 0)
1125 spe_context = 0;
1126
1127 /* Extract data elements. */
1128 if (spe_context)
1129 {
1130 if (id)
1131 *id = extract_signed_integer (buf, 4, byte_order);
1132 if (npc)
1133 *npc = extract_unsigned_integer (buf + 4, 4, byte_order);
1134 }
1135
1136 return spe_context;
1137}
1138
1139
1140/* Cell/B.E. cross-architecture unwinder support. */
1141
1142struct ppu2spu_cache
1143{
1144 struct frame_id frame_id;
1145 struct regcache *regcache;
1146};
1147
1148static struct gdbarch *
1149ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache)
1150{
1151 struct ppu2spu_cache *cache = *this_cache;
1152 return get_regcache_arch (cache->regcache);
1153}
1154
1155static void
1156ppu2spu_this_id (struct frame_info *this_frame,
1157 void **this_cache, struct frame_id *this_id)
1158{
1159 struct ppu2spu_cache *cache = *this_cache;
1160 *this_id = cache->frame_id;
1161}
1162
1163static struct value *
1164ppu2spu_prev_register (struct frame_info *this_frame,
1165 void **this_cache, int regnum)
1166{
1167 struct ppu2spu_cache *cache = *this_cache;
1168 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1169 gdb_byte *buf;
1170
1171 buf = alloca (register_size (gdbarch, regnum));
a536c6d7
UW
1172
1173 if (regnum < gdbarch_num_regs (gdbarch))
1174 regcache_raw_read (cache->regcache, regnum, buf);
1175 else
1176 gdbarch_pseudo_register_read (gdbarch, cache->regcache, regnum, buf);
1177
cc5f0d61
UW
1178 return frame_unwind_got_bytes (this_frame, regnum, buf);
1179}
1180
1181struct ppu2spu_data
1182{
1183 struct gdbarch *gdbarch;
1184 int id;
1185 unsigned int npc;
1186 gdb_byte gprs[128*16];
1187};
1188
1189static int
1190ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf)
1191{
1192 struct ppu2spu_data *data = src;
1193 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch);
1194
1195 if (regnum >= 0 && regnum < SPU_NUM_GPRS)
1196 memcpy (buf, data->gprs + 16*regnum, 16);
1197 else if (regnum == SPU_ID_REGNUM)
1198 store_unsigned_integer (buf, 4, byte_order, data->id);
1199 else if (regnum == SPU_PC_REGNUM)
1200 store_unsigned_integer (buf, 4, byte_order, data->npc);
1201 else
a536c6d7 1202 return REG_UNAVAILABLE;
cc5f0d61 1203
a536c6d7 1204 return REG_VALID;
cc5f0d61
UW
1205}
1206
1207static int
1208ppu2spu_sniffer (const struct frame_unwind *self,
1209 struct frame_info *this_frame, void **this_prologue_cache)
1210{
1211 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1213 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1214 struct ppu2spu_data data;
1215 struct frame_info *fi;
1216 CORE_ADDR base, func, backchain, spe_context;
1217 gdb_byte buf[8];
1218 int n = 0;
1219
1220 /* Count the number of SPU contexts already in the frame chain. */
1221 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1222 if (get_frame_type (fi) == ARCH_FRAME
1223 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu)
1224 n++;
1225
1226 base = get_frame_sp (this_frame);
1227 func = get_frame_pc (this_frame);
1228 if (target_read_memory (base, buf, tdep->wordsize))
1229 return 0;
1230 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order);
1231
1232 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order,
1233 n, &data.id, &data.npc);
1234 if (spe_context && base <= spe_context && spe_context < backchain)
1235 {
1236 char annex[32];
1237
1238 /* Find gdbarch for SPU. */
1239 struct gdbarch_info info;
1240 gdbarch_info_init (&info);
1241 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
1242 info.byte_order = BFD_ENDIAN_BIG;
1243 info.osabi = GDB_OSABI_LINUX;
1244 info.tdep_info = (void *) &data.id;
1245 data.gdbarch = gdbarch_find_by_info (info);
1246 if (!data.gdbarch)
1247 return 0;
1248
1249 xsnprintf (annex, sizeof annex, "%d/regs", data.id);
1250 if (target_read (&current_target, TARGET_OBJECT_SPU, annex,
1251 data.gprs, 0, sizeof data.gprs)
1252 == sizeof data.gprs)
1253 {
1254 struct ppu2spu_cache *cache
1255 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache);
1256
d37346f0
DJ
1257 struct address_space *aspace = get_frame_address_space (this_frame);
1258 struct regcache *regcache = regcache_xmalloc (data.gdbarch, aspace);
cc5f0d61
UW
1259 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1260 regcache_save (regcache, ppu2spu_unwind_register, &data);
1261 discard_cleanups (cleanups);
1262
1263 cache->frame_id = frame_id_build (base, func);
1264 cache->regcache = regcache;
1265 *this_prologue_cache = cache;
1266 return 1;
1267 }
1268 }
1269
1270 return 0;
1271}
1272
1273static void
1274ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache)
1275{
1276 struct ppu2spu_cache *cache = this_cache;
1277 regcache_xfree (cache->regcache);
1278}
1279
1280static const struct frame_unwind ppu2spu_unwind = {
1281 ARCH_FRAME,
8fbca658 1282 default_frame_unwind_stop_reason,
cc5f0d61
UW
1283 ppu2spu_this_id,
1284 ppu2spu_prev_register,
1285 NULL,
1286 ppu2spu_sniffer,
1287 ppu2spu_dealloc_cache,
1288 ppu2spu_prev_arch,
1289};
1290
1291
7b112f9c
JT
1292static void
1293ppc_linux_init_abi (struct gdbarch_info info,
1294 struct gdbarch *gdbarch)
1295{
1296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7284e1be 1297 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
05c0465e
SDJ
1298 static const char *const stap_integer_prefixes[] = { "i", NULL };
1299 static const char *const stap_register_indirection_prefixes[] = { "(",
1300 NULL };
1301 static const char *const stap_register_indirection_suffixes[] = { ")",
1302 NULL };
7b112f9c 1303
a5ee0f0c
PA
1304 linux_init_abi (info, gdbarch);
1305
b14d30e1
JM
1306 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
1307 128-bit, they are IBM long double, not IEEE quad long double as
1308 in the System V ABI PowerPC Processor Supplement. We can safely
1309 let them default to 128-bit, since the debug info will give the
1310 size of type actually used in each case. */
1311 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
1312 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0598a43c 1313
7284e1be
UW
1314 /* Handle inferior calls during interrupted system calls. */
1315 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
1316
a96d9b2e
SDJ
1317 /* Get the syscall number from the arch's register. */
1318 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number);
1319
55aa24fb 1320 /* SystemTap functions. */
05c0465e
SDJ
1321 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1322 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1323 stap_register_indirection_prefixes);
1324 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1325 stap_register_indirection_suffixes);
55aa24fb
SDJ
1326 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1327 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand);
1328 set_gdbarch_stap_parse_special_token (gdbarch,
1329 ppc_stap_parse_special_token);
1330
7b112f9c
JT
1331 if (tdep->wordsize == 4)
1332 {
b9ff3018
AC
1333 /* Until November 2001, gcc did not comply with the 32 bit SysV
1334 R4 ABI requirement that structures less than or equal to 8
1335 bytes should be returned in registers. Instead GCC was using
b021a221 1336 the AIX/PowerOpen ABI - everything returned in memory
b9ff3018
AC
1337 (well ignoring vectors that is). When this was corrected, it
1338 wasn't fixed for GNU/Linux native platform. Use the
1339 PowerOpen struct convention. */
05580c65 1340 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
b9ff3018 1341
7b112f9c
JT
1342 set_gdbarch_memory_remove_breakpoint (gdbarch,
1343 ppc_linux_memory_remove_breakpoint);
61a65099 1344
f470a70a 1345 /* Shared library handling. */
5d853008 1346 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code);
7b112f9c 1347 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1348 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
a8f60bfc 1349
a96d9b2e
SDJ
1350 /* Setting the correct XML syscall filename. */
1351 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC);
1352
a8f60bfc 1353 /* Trampolines. */
0df8b418
MS
1354 tramp_frame_prepend_unwinder (gdbarch,
1355 &ppc32_linux_sigaction_tramp_frame);
1356 tramp_frame_prepend_unwinder (gdbarch,
1357 &ppc32_linux_sighandler_tramp_frame);
a78c2d62
UW
1358
1359 /* BFD target for core files. */
1360 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1361 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle");
1362 else
1363 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc");
2f2241f1
UW
1364
1365 /* Supported register sections. */
1366 if (tdesc_find_feature (info.target_desc,
1367 "org.gnu.gdb.power.vsx"))
1368 set_gdbarch_core_regset_sections (gdbarch,
1369 ppc_linux_vsx_regset_sections);
1370 else if (tdesc_find_feature (info.target_desc,
1371 "org.gnu.gdb.power.altivec"))
1372 set_gdbarch_core_regset_sections (gdbarch,
1373 ppc_linux_vmx_regset_sections);
1374 else
1375 set_gdbarch_core_regset_sections (gdbarch,
1376 ppc_linux_fp_regset_sections);
5d853008
ME
1377
1378 if (powerpc_so_ops.in_dynsym_resolve_code == NULL)
1379 {
1380 powerpc_so_ops = svr4_so_ops;
1381 /* Override dynamic resolve function. */
1382 powerpc_so_ops.in_dynsym_resolve_code =
1383 powerpc_linux_in_dynsym_resolve_code;
1384 }
1385 set_solib_ops (gdbarch, &powerpc_so_ops);
1386
1387 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
7b112f9c 1388 }
f470a70a
JB
1389
1390 if (tdep->wordsize == 8)
1391 {
d4094b6a
UW
1392 if (tdep->elf_abi == POWERPC_ELF_V1)
1393 {
1394 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
1395 function descriptors). */
1396 set_gdbarch_convert_from_func_ptr_addr
1397 (gdbarch, ppc64_convert_from_func_ptr_addr);
00d5f93a 1398
d4094b6a
UW
1399 set_gdbarch_elf_make_msymbol_special
1400 (gdbarch, ppc64_elf_make_msymbol_special);
1401 }
591a12a1
UW
1402 else
1403 {
1404 set_gdbarch_elf_make_msymbol_special
1405 (gdbarch, ppc_elfv2_elf_make_msymbol_special);
1406
1407 set_gdbarch_skip_entrypoint (gdbarch, ppc_elfv2_skip_entrypoint);
1408 }
24c274a1 1409
fb318ff7 1410 /* Shared library handling. */
2bbe3cc1 1411 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
fb318ff7
DJ
1412 set_solib_svr4_fetch_link_map_offsets
1413 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1414
a96d9b2e
SDJ
1415 /* Setting the correct XML syscall filename. */
1416 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC64);
1417
a8f60bfc 1418 /* Trampolines. */
0df8b418
MS
1419 tramp_frame_prepend_unwinder (gdbarch,
1420 &ppc64_linux_sigaction_tramp_frame);
1421 tramp_frame_prepend_unwinder (gdbarch,
1422 &ppc64_linux_sighandler_tramp_frame);
a78c2d62
UW
1423
1424 /* BFD target for core files. */
1425 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1426 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle");
1427 else
1428 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc");
2f2241f1
UW
1429
1430 /* Supported register sections. */
1431 if (tdesc_find_feature (info.target_desc,
1432 "org.gnu.gdb.power.vsx"))
1433 set_gdbarch_core_regset_sections (gdbarch,
1434 ppc64_linux_vsx_regset_sections);
1435 else if (tdesc_find_feature (info.target_desc,
1436 "org.gnu.gdb.power.altivec"))
1437 set_gdbarch_core_regset_sections (gdbarch,
1438 ppc64_linux_vmx_regset_sections);
1439 else
1440 set_gdbarch_core_regset_sections (gdbarch,
1441 ppc64_linux_fp_regset_sections);
f470a70a 1442 }
b3ac9c77
SDJ
1443
1444 /* PPC32 uses a different prpsinfo32 compared to most other Linux
1445 archs. */
1446 if (tdep->wordsize == 4)
1447 set_gdbarch_elfcore_write_linux_prpsinfo (gdbarch,
1448 elfcore_write_ppc_linux_prpsinfo32);
1449
0df8b418
MS
1450 set_gdbarch_regset_from_core_section (gdbarch,
1451 ppc_linux_regset_from_core_section);
7284e1be 1452 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
b2756930
KB
1453
1454 /* Enable TLS support. */
1455 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1456 svr4_fetch_objfile_link_map);
7284e1be
UW
1457
1458 if (tdesc_data)
1459 {
1460 const struct tdesc_feature *feature;
1461
1462 /* If we have target-described registers, then we can safely
1463 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
1464 (whether they are described or not). */
1465 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
1466 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
1467
1468 /* If they are present, then assign them to the reserved number. */
1469 feature = tdesc_find_feature (info.target_desc,
1470 "org.gnu.gdb.power.linux");
1471 if (feature != NULL)
1472 {
1473 tdesc_numbered_register (feature, tdesc_data,
1474 PPC_ORIG_R3_REGNUM, "orig_r3");
1475 tdesc_numbered_register (feature, tdesc_data,
1476 PPC_TRAP_REGNUM, "trap");
1477 }
1478 }
85e747d2
UW
1479
1480 /* Enable Cell/B.E. if supported by the target. */
1481 if (tdesc_compatible_p (info.target_desc,
1482 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu)))
1483 {
1484 /* Cell/B.E. multi-architecture support. */
1485 set_spu_solib_ops (gdbarch);
1486
cc5f0d61
UW
1487 /* Cell/B.E. cross-architecture unwinder support. */
1488 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind);
1489
85e747d2
UW
1490 /* The default displaced_step_at_entry_point doesn't work for
1491 SPU stand-alone executables. */
1492 set_gdbarch_displaced_step_location (gdbarch,
1493 ppc_linux_displaced_step_location);
1494 }
f782ad9b
AS
1495
1496 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
7b112f9c
JT
1497}
1498
63807e1d
PA
1499/* Provide a prototype to silence -Wmissing-prototypes. */
1500extern initialize_file_ftype _initialize_ppc_linux_tdep;
1501
7b112f9c
JT
1502void
1503_initialize_ppc_linux_tdep (void)
1504{
0a0a4ac3
AC
1505 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1506 64-bit PowerPC, and the older rs6k. */
1507 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1508 ppc_linux_init_abi);
1509 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1510 ppc_linux_init_abi);
1511 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1512 ppc_linux_init_abi);
7284e1be 1513
85e747d2
UW
1514 /* Attach to inferior_created observer. */
1515 observer_attach_inferior_created (ppc_linux_inferior_created);
1516
cc5f0d61
UW
1517 /* Attach to observers to track __spe_current_active_context. */
1518 observer_attach_inferior_created (ppc_linux_spe_context_inferior_created);
1519 observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded);
1520 observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded);
1521
7284e1be
UW
1522 /* Initialize the Linux target descriptions. */
1523 initialize_tdesc_powerpc_32l ();
1524 initialize_tdesc_powerpc_altivec32l ();
f4d9bade 1525 initialize_tdesc_powerpc_cell32l ();
604c2f83 1526 initialize_tdesc_powerpc_vsx32l ();
69abc51c
TJB
1527 initialize_tdesc_powerpc_isa205_32l ();
1528 initialize_tdesc_powerpc_isa205_altivec32l ();
1529 initialize_tdesc_powerpc_isa205_vsx32l ();
7284e1be
UW
1530 initialize_tdesc_powerpc_64l ();
1531 initialize_tdesc_powerpc_altivec64l ();
f4d9bade 1532 initialize_tdesc_powerpc_cell64l ();
604c2f83 1533 initialize_tdesc_powerpc_vsx64l ();
69abc51c
TJB
1534 initialize_tdesc_powerpc_isa205_64l ();
1535 initialize_tdesc_powerpc_isa205_altivec64l ();
1536 initialize_tdesc_powerpc_isa205_vsx64l ();
7284e1be 1537 initialize_tdesc_powerpc_e500l ();
7b112f9c 1538}
This page took 1.217365 seconds and 4 git commands to generate.