2004-09-03 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / regcache.c
CommitLineData
32178cab 1/* Cache and manage the values of registers for GDB, the GNU debugger.
3fadccb3
AC
2
3 Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000,
9564ee9f 4 2001, 2002, 2004 Free Software Foundation, Inc.
32178cab
MS
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23#include "defs.h"
32178cab
MS
24#include "inferior.h"
25#include "target.h"
26#include "gdbarch.h"
705152c5 27#include "gdbcmd.h"
4e052eda 28#include "regcache.h"
b59ff9d5 29#include "reggroups.h"
61a0eb5b 30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
af030b9a 32#include "gdbcmd.h" /* For maintenanceprintlist. */
f4c5303c 33#include "observer.h"
32178cab
MS
34
35/*
36 * DATA STRUCTURE
37 *
38 * Here is the actual register cache.
39 */
40
3fadccb3
AC
41/* Per-architecture object describing the layout of a register cache.
42 Computed once when the architecture is created */
43
44struct gdbarch_data *regcache_descr_handle;
45
46struct regcache_descr
47{
48 /* The architecture this descriptor belongs to. */
49 struct gdbarch *gdbarch;
50
bb1db049
AC
51 /* The raw register cache. Each raw (or hard) register is supplied
52 by the target interface. The raw cache should not contain
53 redundant information - if the PC is constructed from two
54 registers then those regigisters and not the PC lives in the raw
55 cache. */
3fadccb3
AC
56 int nr_raw_registers;
57 long sizeof_raw_registers;
58 long sizeof_raw_register_valid_p;
59
d138e37a
AC
60 /* The cooked register space. Each cooked register in the range
61 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
62 register. The remaining [NR_RAW_REGISTERS
02f60eae 63 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
d138e37a 64 both raw registers and memory by the architecture methods
02f60eae 65 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
d138e37a 66 int nr_cooked_registers;
067df2e5
AC
67 long sizeof_cooked_registers;
68 long sizeof_cooked_register_valid_p;
d138e37a
AC
69
70 /* Offset and size (in 8 bit bytes), of reach register in the
71 register cache. All registers (including those in the range
72 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset.
73 Assigning all registers an offset makes it possible to keep
74 legacy code, such as that found in read_register_bytes() and
75 write_register_bytes() working. */
3fadccb3 76 long *register_offset;
3fadccb3 77 long *sizeof_register;
3fadccb3 78
bb425013
AC
79 /* Cached table containing the type of each register. */
80 struct type **register_type;
3fadccb3
AC
81};
82
3fadccb3
AC
83static void *
84init_regcache_descr (struct gdbarch *gdbarch)
85{
86 int i;
87 struct regcache_descr *descr;
88 gdb_assert (gdbarch != NULL);
89
bb425013 90 /* Create an initial, zero filled, table. */
116f06ea 91 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
3fadccb3 92 descr->gdbarch = gdbarch;
3fadccb3 93
d138e37a
AC
94 /* Total size of the register space. The raw registers are mapped
95 directly onto the raw register cache while the pseudo's are
3fadccb3 96 either mapped onto raw-registers or memory. */
d138e37a 97 descr->nr_cooked_registers = NUM_REGS + NUM_PSEUDO_REGS;
067df2e5 98 descr->sizeof_cooked_register_valid_p = NUM_REGS + NUM_PSEUDO_REGS;
3fadccb3 99
bb425013 100 /* Fill in a table of register types. */
116f06ea
AC
101 descr->register_type
102 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *);
bb425013 103 for (i = 0; i < descr->nr_cooked_registers; i++)
336a3131 104 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
bb425013 105
bb1db049
AC
106 /* Construct a strictly RAW register cache. Don't allow pseudo's
107 into the register cache. */
108 descr->nr_raw_registers = NUM_REGS;
109
110 /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p
111 array. This pretects GDB from erant code that accesses elements
112 of the global register_valid_p[] array in the range [NUM_REGS
113 .. NUM_REGS + NUM_PSEUDO_REGS). */
114 descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;
115
067df2e5 116 /* Lay out the register cache.
3fadccb3 117
bb425013
AC
118 NOTE: cagney/2002-05-22: Only register_type() is used when
119 constructing the register cache. It is assumed that the
120 register's raw size, virtual size and type length are all the
121 same. */
3fadccb3
AC
122
123 {
124 long offset = 0;
116f06ea
AC
125 descr->sizeof_register
126 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
127 descr->register_offset
128 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
d138e37a 129 for (i = 0; i < descr->nr_cooked_registers; i++)
3fadccb3 130 {
bb425013 131 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
3fadccb3
AC
132 descr->register_offset[i] = offset;
133 offset += descr->sizeof_register[i];
123a958e 134 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
3fadccb3
AC
135 }
136 /* Set the real size of the register cache buffer. */
067df2e5 137 descr->sizeof_cooked_registers = offset;
3fadccb3
AC
138 }
139
067df2e5 140 /* FIXME: cagney/2002-05-22: Should only need to allocate space for
ce2826aa 141 the raw registers. Unfortunately some code still accesses the
067df2e5
AC
142 register array directly using the global registers[]. Until that
143 code has been purged, play safe and over allocating the register
144 buffer. Ulgh! */
145 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
146
3fadccb3
AC
147 return descr;
148}
149
150static struct regcache_descr *
151regcache_descr (struct gdbarch *gdbarch)
152{
153 return gdbarch_data (gdbarch, regcache_descr_handle);
154}
155
bb425013
AC
156/* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
159struct type *
160register_type (struct gdbarch *gdbarch, int regnum)
161{
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
164 return descr->register_type[regnum];
165}
166
0ed04cce
AC
167/* Utility functions returning useful register attributes stored in
168 the regcache descr. */
169
08a617da
AC
170int
171register_size (struct gdbarch *gdbarch, int regnum)
172{
173 struct regcache_descr *descr = regcache_descr (gdbarch);
174 int size;
175 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
176 size = descr->sizeof_register[regnum];
08a617da
AC
177 return size;
178}
179
3fadccb3
AC
180/* The register cache for storing raw register values. */
181
182struct regcache
183{
184 struct regcache_descr *descr;
51b1fe4e
AC
185 /* The register buffers. A read-only register cache can hold the
186 full [0 .. NUM_REGS + NUM_PSEUDO_REGS) while a read/write
187 register cache can only hold [0 .. NUM_REGS). */
188 char *registers;
189 char *register_valid_p;
2d28509a
AC
190 /* Is this a read-only cache? A read-only cache is used for saving
191 the target's register state (e.g, across an inferior function
192 call or just before forcing a function return). A read-only
193 cache can only be updated via the methods regcache_dup() and
194 regcache_cpy(). The actual contents are determined by the
195 reggroup_save and reggroup_restore methods. */
196 int readonly_p;
3fadccb3
AC
197};
198
199struct regcache *
200regcache_xmalloc (struct gdbarch *gdbarch)
201{
202 struct regcache_descr *descr;
203 struct regcache *regcache;
204 gdb_assert (gdbarch != NULL);
205 descr = regcache_descr (gdbarch);
206 regcache = XMALLOC (struct regcache);
207 regcache->descr = descr;
51b1fe4e 208 regcache->registers
3fadccb3 209 = XCALLOC (descr->sizeof_raw_registers, char);
51b1fe4e 210 regcache->register_valid_p
3fadccb3 211 = XCALLOC (descr->sizeof_raw_register_valid_p, char);
2d28509a 212 regcache->readonly_p = 1;
3fadccb3
AC
213 return regcache;
214}
215
216void
217regcache_xfree (struct regcache *regcache)
218{
219 if (regcache == NULL)
220 return;
51b1fe4e
AC
221 xfree (regcache->registers);
222 xfree (regcache->register_valid_p);
3fadccb3
AC
223 xfree (regcache);
224}
225
b9362cc7 226static void
36160dc4
AC
227do_regcache_xfree (void *data)
228{
229 regcache_xfree (data);
230}
231
232struct cleanup *
233make_cleanup_regcache_xfree (struct regcache *regcache)
234{
235 return make_cleanup (do_regcache_xfree, regcache);
236}
237
41d35cb0
MK
238/* Return REGCACHE's architecture. */
239
240struct gdbarch *
241get_regcache_arch (const struct regcache *regcache)
242{
243 return regcache->descr->gdbarch;
244}
245
51b1fe4e
AC
246/* Return a pointer to register REGNUM's buffer cache. */
247
248static char *
9a661b68 249register_buffer (const struct regcache *regcache, int regnum)
51b1fe4e
AC
250{
251 return regcache->registers + regcache->descr->register_offset[regnum];
252}
253
2d28509a 254void
5602984a
AC
255regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
256 void *src)
2d28509a
AC
257{
258 struct gdbarch *gdbarch = dst->descr->gdbarch;
123a958e 259 char buf[MAX_REGISTER_SIZE];
2d28509a 260 int regnum;
2d28509a 261 /* The DST should be `read-only', if it wasn't then the save would
5602984a 262 end up trying to write the register values back out to the
2d28509a 263 target. */
2d28509a
AC
264 gdb_assert (dst->readonly_p);
265 /* Clear the dest. */
266 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
267 memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p);
268 /* Copy over any registers (identified by their membership in the
5602984a
AC
269 save_reggroup) and mark them as valid. The full [0 .. NUM_REGS +
270 NUM_PSEUDO_REGS) range is checked since some architectures need
271 to save/restore `cooked' registers that live in memory. */
2d28509a
AC
272 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
273 {
274 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
275 {
5602984a
AC
276 int valid = cooked_read (src, regnum, buf);
277 if (valid)
278 {
279 memcpy (register_buffer (dst, regnum), buf,
280 register_size (gdbarch, regnum));
281 dst->register_valid_p[regnum] = 1;
282 }
2d28509a
AC
283 }
284 }
285}
286
287void
5602984a
AC
288regcache_restore (struct regcache *dst,
289 regcache_cooked_read_ftype *cooked_read,
290 void *src)
2d28509a
AC
291{
292 struct gdbarch *gdbarch = dst->descr->gdbarch;
123a958e 293 char buf[MAX_REGISTER_SIZE];
2d28509a 294 int regnum;
5602984a
AC
295 /* The dst had better not be read-only. If it is, the `restore'
296 doesn't make much sense. */
2d28509a 297 gdb_assert (!dst->readonly_p);
2d28509a 298 /* Copy over any registers, being careful to only restore those that
5602984a
AC
299 were both saved and need to be restored. The full [0 .. NUM_REGS
300 + NUM_PSEUDO_REGS) range is checked since some architectures need
301 to save/restore `cooked' registers that live in memory. */
302 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
2d28509a 303 {
5602984a 304 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
2d28509a 305 {
5602984a
AC
306 int valid = cooked_read (src, regnum, buf);
307 if (valid)
308 regcache_cooked_write (dst, regnum, buf);
2d28509a
AC
309 }
310 }
311}
312
5602984a
AC
313static int
314do_cooked_read (void *src, int regnum, void *buf)
315{
316 struct regcache *regcache = src;
6f4e5a41 317 if (!regcache->register_valid_p[regnum] && regcache->readonly_p)
5602984a
AC
318 /* Don't even think about fetching a register from a read-only
319 cache when the register isn't yet valid. There isn't a target
320 from which the register value can be fetched. */
321 return 0;
322 regcache_cooked_read (regcache, regnum, buf);
323 return 1;
324}
325
326
3fadccb3
AC
327void
328regcache_cpy (struct regcache *dst, struct regcache *src)
329{
330 int i;
331 char *buf;
332 gdb_assert (src != NULL && dst != NULL);
333 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
334 gdb_assert (src != dst);
2d28509a
AC
335 gdb_assert (src->readonly_p || dst->readonly_p);
336 if (!src->readonly_p)
5602984a 337 regcache_save (dst, do_cooked_read, src);
2d28509a 338 else if (!dst->readonly_p)
5602984a 339 regcache_restore (dst, do_cooked_read, src);
2d28509a
AC
340 else
341 regcache_cpy_no_passthrough (dst, src);
3fadccb3
AC
342}
343
344void
345regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
346{
347 int i;
348 gdb_assert (src != NULL && dst != NULL);
349 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
350 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
351 move of data into the current_regcache(). Doing this would be
9564ee9f 352 silly - it would mean that valid_p would be completely invalid. */
3fadccb3 353 gdb_assert (dst != current_regcache);
51b1fe4e
AC
354 memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers);
355 memcpy (dst->register_valid_p, src->register_valid_p,
3fadccb3
AC
356 dst->descr->sizeof_raw_register_valid_p);
357}
358
359struct regcache *
360regcache_dup (struct regcache *src)
361{
362 struct regcache *newbuf;
363 gdb_assert (current_regcache != NULL);
364 newbuf = regcache_xmalloc (src->descr->gdbarch);
365 regcache_cpy (newbuf, src);
366 return newbuf;
367}
368
369struct regcache *
370regcache_dup_no_passthrough (struct regcache *src)
371{
372 struct regcache *newbuf;
373 gdb_assert (current_regcache != NULL);
374 newbuf = regcache_xmalloc (src->descr->gdbarch);
375 regcache_cpy_no_passthrough (newbuf, src);
376 return newbuf;
377}
378
379int
380regcache_valid_p (struct regcache *regcache, int regnum)
381{
382 gdb_assert (regcache != NULL);
383 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
51b1fe4e 384 return regcache->register_valid_p[regnum];
3fadccb3
AC
385}
386
3fadccb3
AC
387char *
388deprecated_grub_regcache_for_registers (struct regcache *regcache)
389{
51b1fe4e 390 return regcache->registers;
3fadccb3
AC
391}
392
3fadccb3
AC
393/* Global structure containing the current regcache. */
394/* FIXME: cagney/2002-05-11: The two global arrays registers[] and
8262ee23 395 deprecated_register_valid[] currently point into this structure. */
3fadccb3
AC
396struct regcache *current_regcache;
397
5ebd2499 398/* NOTE: this is a write-through cache. There is no "dirty" bit for
32178cab
MS
399 recording if the register values have been changed (eg. by the
400 user). Therefore all registers must be written back to the
401 target when appropriate. */
402
403/* REGISTERS contains the cached register values (in target byte order). */
404
524d7c18 405char *deprecated_registers;
32178cab 406
8262ee23 407/* DEPRECATED_REGISTER_VALID is 0 if the register needs to be fetched,
32178cab
MS
408 1 if it has been fetched, and
409 -1 if the register value was not available.
c97dcfc7
AC
410
411 "Not available" indicates that the target is not not able to supply
412 the register at this state. The register may become available at a
413 later time (after the next resume). This often occures when GDB is
414 manipulating a target that contains only a snapshot of the entire
415 system being debugged - some of the registers in such a system may
416 not have been saved. */
32178cab 417
8262ee23 418signed char *deprecated_register_valid;
32178cab 419
39f77062 420/* The thread/process associated with the current set of registers. */
32178cab 421
39f77062 422static ptid_t registers_ptid;
32178cab
MS
423
424/*
425 * FUNCTIONS:
426 */
427
428/* REGISTER_CACHED()
429
430 Returns 0 if the value is not in the cache (needs fetch).
431 >0 if the value is in the cache.
432 <0 if the value is permanently unavailable (don't ask again). */
433
434int
435register_cached (int regnum)
436{
8262ee23 437 return deprecated_register_valid[regnum];
32178cab
MS
438}
439
7302a204
ND
440/* Record that REGNUM's value is cached if STATE is >0, uncached but
441 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
442
443void
444set_register_cached (int regnum, int state)
445{
53826de9
AC
446 gdb_assert (regnum >= 0);
447 gdb_assert (regnum < current_regcache->descr->nr_raw_registers);
51b1fe4e 448 current_regcache->register_valid_p[regnum] = state;
7302a204
ND
449}
450
f4c5303c
OF
451/* Observer for the target_changed event. */
452
453void
454regcache_observer_target_changed (struct target_ops *target)
455{
456 registers_changed ();
457}
458
32178cab
MS
459/* Low level examining and depositing of registers.
460
461 The caller is responsible for making sure that the inferior is
462 stopped before calling the fetching routines, or it will get
463 garbage. (a change from GDB version 3, in which the caller got the
464 value from the last stop). */
465
466/* REGISTERS_CHANGED ()
467
468 Indicate that registers may have changed, so invalidate the cache. */
469
470void
471registers_changed (void)
472{
473 int i;
32178cab 474
39f77062 475 registers_ptid = pid_to_ptid (-1);
32178cab
MS
476
477 /* Force cleanup of any alloca areas if using C alloca instead of
478 a builtin alloca. This particular call is used to clean up
479 areas allocated by low level target code which may build up
480 during lengthy interactions between gdb and the target before
481 gdb gives control to the user (ie watchpoints). */
482 alloca (0);
483
53826de9 484 for (i = 0; i < current_regcache->descr->nr_raw_registers; i++)
7302a204 485 set_register_cached (i, 0);
32178cab 486
9a4105ab
AC
487 if (deprecated_registers_changed_hook)
488 deprecated_registers_changed_hook ();
32178cab
MS
489}
490
2b9e5f3f 491/* DEPRECATED_REGISTERS_FETCHED ()
32178cab
MS
492
493 Indicate that all registers have been fetched, so mark them all valid. */
494
31e9866e
AC
495/* FIXME: cagney/2001-12-04: This function is DEPRECATED. The target
496 code was blatting the registers[] array and then calling this.
23a6d369 497 Since targets should only be using regcache_raw_supply() the need for
31e9866e 498 this function/hack is eliminated. */
32178cab
MS
499
500void
2b9e5f3f 501deprecated_registers_fetched (void)
32178cab
MS
502{
503 int i;
32178cab 504
a728f042 505 for (i = 0; i < NUM_REGS; i++)
7302a204 506 set_register_cached (i, 1);
fcdc5976 507 /* Do not assume that the pseudo-regs have also been fetched.
31e9866e 508 Fetching all real regs NEVER accounts for pseudo-regs. */
32178cab
MS
509}
510
73937e03
AC
511/* deprecated_read_register_bytes and deprecated_write_register_bytes
512 are generally a *BAD* idea. They are inefficient because they need
513 to check for partial updates, which can only be done by scanning
514 through all of the registers and seeing if the bytes that are being
515 read/written fall inside of an invalid register. [The main reason
516 this is necessary is that register sizes can vary, so a simple
517 index won't suffice.] It is far better to call read_register_gen
518 and write_register_gen if you want to get at the raw register
519 contents, as it only takes a regnum as an argument, and therefore
520 can't do a partial register update.
32178cab
MS
521
522 Prior to the recent fixes to check for partial updates, both read
73937e03
AC
523 and deprecated_write_register_bytes always checked to see if any
524 registers were stale, and then called target_fetch_registers (-1)
525 to update the whole set. This caused really slowed things down for
526 remote targets. */
32178cab
MS
527
528/* Copy INLEN bytes of consecutive data from registers
529 starting with the INREGBYTE'th byte of register data
530 into memory at MYADDR. */
531
532void
73937e03 533deprecated_read_register_bytes (int in_start, char *in_buf, int in_len)
32178cab 534{
61a0eb5b 535 int in_end = in_start + in_len;
5ebd2499 536 int regnum;
d9d9c31f 537 char reg_buf[MAX_REGISTER_SIZE];
32178cab
MS
538
539 /* See if we are trying to read bytes from out-of-date registers. If so,
540 update just those registers. */
541
5ebd2499 542 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
32178cab 543 {
61a0eb5b
AC
544 int reg_start;
545 int reg_end;
546 int reg_len;
547 int start;
548 int end;
549 int byte;
32178cab 550
62700349 551 reg_start = DEPRECATED_REGISTER_BYTE (regnum);
3acba339 552 reg_len = register_size (current_gdbarch, regnum);
61a0eb5b 553 reg_end = reg_start + reg_len;
32178cab 554
61a0eb5b 555 if (reg_end <= in_start || in_end <= reg_start)
5ebd2499 556 /* The range the user wants to read doesn't overlap with regnum. */
32178cab
MS
557 continue;
558
275f450c
AC
559 if (REGISTER_NAME (regnum) != NULL && *REGISTER_NAME (regnum) != '\0')
560 /* Force the cache to fetch the entire register. */
4caf0990 561 deprecated_read_register_gen (regnum, reg_buf);
275f450c
AC
562 else
563 /* Legacy note: even though this register is ``invalid'' we
564 still need to return something. It would appear that some
565 code relies on apparent gaps in the register array also
566 being returned. */
567 /* FIXME: cagney/2001-08-18: This is just silly. It defeats
568 the entire register read/write flow of control. Must
569 resist temptation to return 0xdeadbeef. */
524d7c18 570 memcpy (reg_buf, &deprecated_registers[reg_start], reg_len);
32178cab 571
61a0eb5b
AC
572 /* Legacy note: This function, for some reason, allows a NULL
573 input buffer. If the buffer is NULL, the registers are still
574 fetched, just the final transfer is skipped. */
575 if (in_buf == NULL)
576 continue;
577
578 /* start = max (reg_start, in_start) */
579 if (reg_start > in_start)
580 start = reg_start;
581 else
582 start = in_start;
583
584 /* end = min (reg_end, in_end) */
585 if (reg_end < in_end)
586 end = reg_end;
587 else
588 end = in_end;
589
590 /* Transfer just the bytes common to both IN_BUF and REG_BUF */
591 for (byte = start; byte < end; byte++)
165cd47f 592 {
61a0eb5b 593 in_buf[byte - in_start] = reg_buf[byte - reg_start];
165cd47f 594 }
32178cab 595 }
32178cab
MS
596}
597
61a0eb5b 598void
1aaa5f99 599regcache_raw_read (struct regcache *regcache, int regnum, void *buf)
61a0eb5b 600{
3fadccb3
AC
601 gdb_assert (regcache != NULL && buf != NULL);
602 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
3fadccb3
AC
603 /* Make certain that the register cache is up-to-date with respect
604 to the current thread. This switching shouldn't be necessary
605 only there is still only one target side register cache. Sigh!
606 On the bright side, at least there is a regcache object. */
2d28509a 607 if (!regcache->readonly_p)
3fadccb3
AC
608 {
609 gdb_assert (regcache == current_regcache);
610 if (! ptid_equal (registers_ptid, inferior_ptid))
611 {
612 registers_changed ();
613 registers_ptid = inferior_ptid;
614 }
615 if (!register_cached (regnum))
5c27f28a 616 target_fetch_registers (regnum);
0a8146bf
AC
617#if 0
618 /* FIXME: cagney/2004-08-07: At present a number of targets
619 forget (or didn't know that they needed) set this leading to
620 panics. Also is the problem that target's need to indicate
621 that a register is in one of the possible states: valid,
622 undefined, unknown. The last of which isn't yet
623 possible. */
7ab3286f 624 gdb_assert (register_cached (regnum));
0a8146bf 625#endif
3fadccb3
AC
626 }
627 /* Copy the value directly into the register cache. */
51b1fe4e 628 memcpy (buf, register_buffer (regcache, regnum),
3fadccb3 629 regcache->descr->sizeof_register[regnum]);
61a0eb5b
AC
630}
631
28fc6740
AC
632void
633regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
634{
635 char *buf;
636 gdb_assert (regcache != NULL);
637 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
638 buf = alloca (regcache->descr->sizeof_register[regnum]);
639 regcache_raw_read (regcache, regnum, buf);
640 (*val) = extract_signed_integer (buf,
641 regcache->descr->sizeof_register[regnum]);
642}
643
644void
645regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
646 ULONGEST *val)
647{
648 char *buf;
649 gdb_assert (regcache != NULL);
650 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
651 buf = alloca (regcache->descr->sizeof_register[regnum]);
652 regcache_raw_read (regcache, regnum, buf);
653 (*val) = extract_unsigned_integer (buf,
654 regcache->descr->sizeof_register[regnum]);
655}
656
c00dcbe9
MK
657void
658regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
659{
660 void *buf;
661 gdb_assert (regcache != NULL);
662 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
663 buf = alloca (regcache->descr->sizeof_register[regnum]);
664 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
665 regcache_raw_write (regcache, regnum, buf);
666}
667
668void
669regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
670 ULONGEST val)
671{
672 void *buf;
673 gdb_assert (regcache != NULL);
674 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
675 buf = alloca (regcache->descr->sizeof_register[regnum]);
676 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
677 regcache_raw_write (regcache, regnum, buf);
678}
679
61a0eb5b 680void
4caf0990 681deprecated_read_register_gen (int regnum, char *buf)
61a0eb5b 682{
3fadccb3
AC
683 gdb_assert (current_regcache != NULL);
684 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
68365089
AC
685 regcache_cooked_read (current_regcache, regnum, buf);
686}
687
688void
29e1842b 689regcache_cooked_read (struct regcache *regcache, int regnum, void *buf)
68365089 690{
d138e37a 691 gdb_assert (regnum >= 0);
68365089
AC
692 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
693 if (regnum < regcache->descr->nr_raw_registers)
694 regcache_raw_read (regcache, regnum, buf);
2d28509a
AC
695 else if (regcache->readonly_p
696 && regnum < regcache->descr->nr_cooked_registers
697 && regcache->register_valid_p[regnum])
b2fa5097 698 /* Read-only register cache, perhaps the cooked value was cached? */
2d28509a
AC
699 memcpy (buf, register_buffer (regcache, regnum),
700 regcache->descr->sizeof_register[regnum]);
d138e37a 701 else
68365089
AC
702 gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
703 regnum, buf);
61a0eb5b
AC
704}
705
a378f419
AC
706void
707regcache_cooked_read_signed (struct regcache *regcache, int regnum,
708 LONGEST *val)
709{
710 char *buf;
711 gdb_assert (regcache != NULL);
a66a9c23 712 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
a378f419
AC
713 buf = alloca (regcache->descr->sizeof_register[regnum]);
714 regcache_cooked_read (regcache, regnum, buf);
715 (*val) = extract_signed_integer (buf,
716 regcache->descr->sizeof_register[regnum]);
717}
718
719void
720regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
721 ULONGEST *val)
722{
723 char *buf;
724 gdb_assert (regcache != NULL);
a66a9c23 725 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
a378f419
AC
726 buf = alloca (regcache->descr->sizeof_register[regnum]);
727 regcache_cooked_read (regcache, regnum, buf);
728 (*val) = extract_unsigned_integer (buf,
729 regcache->descr->sizeof_register[regnum]);
730}
731
a66a9c23
AC
732void
733regcache_cooked_write_signed (struct regcache *regcache, int regnum,
734 LONGEST val)
735{
736 void *buf;
737 gdb_assert (regcache != NULL);
738 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
739 buf = alloca (regcache->descr->sizeof_register[regnum]);
740 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
741 regcache_cooked_write (regcache, regnum, buf);
742}
743
744void
745regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
746 ULONGEST val)
747{
748 void *buf;
749 gdb_assert (regcache != NULL);
750 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
751 buf = alloca (regcache->descr->sizeof_register[regnum]);
752 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
753 regcache_cooked_write (regcache, regnum, buf);
754}
755
61a0eb5b 756void
1aaa5f99 757regcache_raw_write (struct regcache *regcache, int regnum, const void *buf)
61a0eb5b 758{
3fadccb3
AC
759 gdb_assert (regcache != NULL && buf != NULL);
760 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
2d28509a 761 gdb_assert (!regcache->readonly_p);
3fadccb3 762
3fadccb3
AC
763 /* On the sparc, writing %g0 is a no-op, so we don't even want to
764 change the registers array if something writes to this register. */
765 if (CANNOT_STORE_REGISTER (regnum))
766 return;
767
3fadccb3
AC
768 /* Make certain that the correct cache is selected. */
769 gdb_assert (regcache == current_regcache);
770 if (! ptid_equal (registers_ptid, inferior_ptid))
771 {
772 registers_changed ();
773 registers_ptid = inferior_ptid;
774 }
775
776 /* If we have a valid copy of the register, and new value == old
777 value, then don't bother doing the actual store. */
778 if (regcache_valid_p (regcache, regnum)
779 && (memcmp (register_buffer (regcache, regnum), buf,
780 regcache->descr->sizeof_register[regnum]) == 0))
781 return;
782
783 target_prepare_to_store ();
784 memcpy (register_buffer (regcache, regnum), buf,
785 regcache->descr->sizeof_register[regnum]);
51b1fe4e 786 regcache->register_valid_p[regnum] = 1;
5c27f28a 787 target_store_registers (regnum);
61a0eb5b
AC
788}
789
790void
4caf0990 791deprecated_write_register_gen (int regnum, char *buf)
61a0eb5b 792{
3fadccb3
AC
793 gdb_assert (current_regcache != NULL);
794 gdb_assert (current_regcache->descr->gdbarch == current_gdbarch);
68365089
AC
795 regcache_cooked_write (current_regcache, regnum, buf);
796}
797
798void
29e1842b 799regcache_cooked_write (struct regcache *regcache, int regnum, const void *buf)
68365089 800{
d138e37a 801 gdb_assert (regnum >= 0);
68365089
AC
802 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
803 if (regnum < regcache->descr->nr_raw_registers)
804 regcache_raw_write (regcache, regnum, buf);
d138e37a 805 else
68365089 806 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
d8124050 807 regnum, buf);
61a0eb5b
AC
808}
809
32178cab
MS
810/* Copy INLEN bytes of consecutive data from memory at MYADDR
811 into registers starting with the MYREGSTART'th byte of register data. */
812
813void
73937e03 814deprecated_write_register_bytes (int myregstart, char *myaddr, int inlen)
32178cab
MS
815{
816 int myregend = myregstart + inlen;
5ebd2499 817 int regnum;
32178cab
MS
818
819 target_prepare_to_store ();
820
821 /* Scan through the registers updating any that are covered by the
822 range myregstart<=>myregend using write_register_gen, which does
823 nice things like handling threads, and avoiding updates when the
824 new and old contents are the same. */
825
5ebd2499 826 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
32178cab
MS
827 {
828 int regstart, regend;
829
62700349 830 regstart = DEPRECATED_REGISTER_BYTE (regnum);
3acba339 831 regend = regstart + register_size (current_gdbarch, regnum);
32178cab
MS
832
833 /* Is this register completely outside the range the user is writing? */
834 if (myregend <= regstart || regend <= myregstart)
835 /* do nothing */ ;
836
837 /* Is this register completely within the range the user is writing? */
838 else if (myregstart <= regstart && regend <= myregend)
4caf0990 839 deprecated_write_register_gen (regnum, myaddr + (regstart - myregstart));
32178cab
MS
840
841 /* The register partially overlaps the range being written. */
842 else
843 {
d9d9c31f 844 char regbuf[MAX_REGISTER_SIZE];
32178cab
MS
845 /* What's the overlap between this register's bytes and
846 those the caller wants to write? */
847 int overlapstart = max (regstart, myregstart);
848 int overlapend = min (regend, myregend);
849
850 /* We may be doing a partial update of an invalid register.
851 Update it from the target before scribbling on it. */
4caf0990 852 deprecated_read_register_gen (regnum, regbuf);
32178cab 853
524d7c18 854 memcpy (&deprecated_registers[overlapstart],
32178cab
MS
855 myaddr + (overlapstart - myregstart),
856 overlapend - overlapstart);
857
5c27f28a 858 target_store_registers (regnum);
32178cab
MS
859 }
860 }
861}
862
06c0b04e
AC
863/* Perform a partial register transfer using a read, modify, write
864 operation. */
865
866typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
867 void *buf);
868typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
869 const void *buf);
870
b9362cc7 871static void
06c0b04e
AC
872regcache_xfer_part (struct regcache *regcache, int regnum,
873 int offset, int len, void *in, const void *out,
874 regcache_read_ftype *read, regcache_write_ftype *write)
875{
876 struct regcache_descr *descr = regcache->descr;
123a958e 877 bfd_byte reg[MAX_REGISTER_SIZE];
06c0b04e
AC
878 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
879 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
880 /* Something to do? */
881 if (offset + len == 0)
882 return;
883 /* Read (when needed) ... */
884 if (in != NULL
885 || offset > 0
886 || offset + len < descr->sizeof_register[regnum])
887 {
888 gdb_assert (read != NULL);
889 read (regcache, regnum, reg);
890 }
891 /* ... modify ... */
892 if (in != NULL)
893 memcpy (in, reg + offset, len);
894 if (out != NULL)
895 memcpy (reg + offset, out, len);
896 /* ... write (when needed). */
897 if (out != NULL)
898 {
899 gdb_assert (write != NULL);
900 write (regcache, regnum, reg);
901 }
902}
903
904void
905regcache_raw_read_part (struct regcache *regcache, int regnum,
906 int offset, int len, void *buf)
907{
908 struct regcache_descr *descr = regcache->descr;
909 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
910 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
911 regcache_raw_read, regcache_raw_write);
912}
913
914void
915regcache_raw_write_part (struct regcache *regcache, int regnum,
916 int offset, int len, const void *buf)
917{
918 struct regcache_descr *descr = regcache->descr;
919 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
920 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
921 regcache_raw_read, regcache_raw_write);
922}
923
924void
925regcache_cooked_read_part (struct regcache *regcache, int regnum,
926 int offset, int len, void *buf)
927{
928 struct regcache_descr *descr = regcache->descr;
929 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
930 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
931 regcache_cooked_read, regcache_cooked_write);
932}
933
934void
935regcache_cooked_write_part (struct regcache *regcache, int regnum,
936 int offset, int len, const void *buf)
937{
938 struct regcache_descr *descr = regcache->descr;
939 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
940 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
941 regcache_cooked_read, regcache_cooked_write);
942}
32178cab 943
d3b22ed5
AC
944/* Hack to keep code that view the register buffer as raw bytes
945 working. */
946
947int
948register_offset_hack (struct gdbarch *gdbarch, int regnum)
949{
950 struct regcache_descr *descr = regcache_descr (gdbarch);
951 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
952 return descr->register_offset[regnum];
953}
954
f42accbe
AC
955/* Hack to keep code using register_bytes working. */
956
957int
958deprecated_register_bytes (void)
959{
960 return current_regcache->descr->sizeof_raw_registers;
961}
962
5ebd2499 963/* Return the contents of register REGNUM as an unsigned integer. */
32178cab 964
173155e8 965ULONGEST
5ebd2499 966read_register (int regnum)
32178cab 967{
3acba339 968 char *buf = alloca (register_size (current_gdbarch, regnum));
4caf0990 969 deprecated_read_register_gen (regnum, buf);
3acba339 970 return (extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)));
32178cab
MS
971}
972
173155e8 973ULONGEST
39f77062 974read_register_pid (int regnum, ptid_t ptid)
32178cab 975{
39f77062 976 ptid_t save_ptid;
32178cab
MS
977 int save_pid;
978 CORE_ADDR retval;
979
39f77062 980 if (ptid_equal (ptid, inferior_ptid))
5ebd2499 981 return read_register (regnum);
32178cab 982
39f77062 983 save_ptid = inferior_ptid;
32178cab 984
39f77062 985 inferior_ptid = ptid;
32178cab 986
5ebd2499 987 retval = read_register (regnum);
32178cab 988
39f77062 989 inferior_ptid = save_ptid;
32178cab
MS
990
991 return retval;
992}
993
5ebd2499 994/* Store VALUE into the raw contents of register number REGNUM. */
32178cab
MS
995
996void
5ebd2499 997write_register (int regnum, LONGEST val)
32178cab 998{
61a0eb5b 999 void *buf;
32178cab 1000 int size;
3acba339 1001 size = register_size (current_gdbarch, regnum);
32178cab
MS
1002 buf = alloca (size);
1003 store_signed_integer (buf, size, (LONGEST) val);
4caf0990 1004 deprecated_write_register_gen (regnum, buf);
32178cab
MS
1005}
1006
1007void
39f77062 1008write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
32178cab 1009{
39f77062 1010 ptid_t save_ptid;
32178cab 1011
39f77062 1012 if (ptid_equal (ptid, inferior_ptid))
32178cab 1013 {
5ebd2499 1014 write_register (regnum, val);
32178cab
MS
1015 return;
1016 }
1017
39f77062 1018 save_ptid = inferior_ptid;
32178cab 1019
39f77062 1020 inferior_ptid = ptid;
32178cab 1021
5ebd2499 1022 write_register (regnum, val);
32178cab 1023
39f77062 1024 inferior_ptid = save_ptid;
32178cab
MS
1025}
1026
a16d75cc 1027/* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
9a661b68
MK
1028
1029void
1030regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
1031{
1032 void *regbuf;
1033 size_t size;
1034
a16d75cc 1035 gdb_assert (regcache != NULL);
9a661b68
MK
1036 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1037 gdb_assert (!regcache->readonly_p);
1038
1039 /* FIXME: kettenis/20030828: It shouldn't be necessary to handle
1040 CURRENT_REGCACHE specially here. */
1041 if (regcache == current_regcache
1042 && !ptid_equal (registers_ptid, inferior_ptid))
1043 {
1044 registers_changed ();
1045 registers_ptid = inferior_ptid;
1046 }
1047
1048 regbuf = register_buffer (regcache, regnum);
1049 size = regcache->descr->sizeof_register[regnum];
1050
1051 if (buf)
1052 memcpy (regbuf, buf, size);
1053 else
1054 memset (regbuf, 0, size);
1055
1056 /* Mark the register as cached. */
1057 regcache->register_valid_p[regnum] = 1;
1058}
1059
1060/* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1061
1062void
1063regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1064{
1065 const void *regbuf;
1066 size_t size;
1067
1068 gdb_assert (regcache != NULL && buf != NULL);
1069 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1070
1071 regbuf = register_buffer (regcache, regnum);
1072 size = regcache->descr->sizeof_register[regnum];
1073 memcpy (buf, regbuf, size);
1074}
1075
193cb69f 1076
9c8dbfa9
AC
1077/* read_pc, write_pc, read_sp, etc. Special handling for registers
1078 PC, SP, and FP. */
32178cab 1079
9c8dbfa9
AC
1080/* NOTE: cagney/2001-02-18: The functions read_pc_pid(), read_pc() and
1081 read_sp(), will eventually be replaced by per-frame methods.
1082 Instead of relying on the global INFERIOR_PTID, they will use the
1083 contextual information provided by the FRAME. These functions do
1084 not belong in the register cache. */
32178cab 1085
cde9ea48 1086/* NOTE: cagney/2003-06-07: The functions generic_target_write_pc(),
9c8dbfa9
AC
1087 write_pc_pid() and write_pc(), all need to be replaced by something
1088 that does not rely on global state. But what? */
32178cab
MS
1089
1090CORE_ADDR
39f77062 1091read_pc_pid (ptid_t ptid)
32178cab 1092{
39f77062 1093 ptid_t saved_inferior_ptid;
32178cab
MS
1094 CORE_ADDR pc_val;
1095
39f77062
KB
1096 /* In case ptid != inferior_ptid. */
1097 saved_inferior_ptid = inferior_ptid;
1098 inferior_ptid = ptid;
32178cab 1099
cde9ea48
AC
1100 if (TARGET_READ_PC_P ())
1101 pc_val = TARGET_READ_PC (ptid);
1102 /* Else use per-frame method on get_current_frame. */
1103 else if (PC_REGNUM >= 0)
1104 {
1105 CORE_ADDR raw_val = read_register_pid (PC_REGNUM, ptid);
6ba34a8d 1106 pc_val = ADDR_BITS_REMOVE (raw_val);
cde9ea48
AC
1107 }
1108 else
1109 internal_error (__FILE__, __LINE__, "read_pc_pid: Unable to find PC");
32178cab 1110
39f77062 1111 inferior_ptid = saved_inferior_ptid;
32178cab
MS
1112 return pc_val;
1113}
1114
1115CORE_ADDR
1116read_pc (void)
1117{
39f77062 1118 return read_pc_pid (inferior_ptid);
32178cab
MS
1119}
1120
32178cab 1121void
39f77062 1122generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
32178cab 1123{
32178cab 1124 if (PC_REGNUM >= 0)
39f77062 1125 write_register_pid (PC_REGNUM, pc, ptid);
afb18d0f
AC
1126 else
1127 internal_error (__FILE__, __LINE__,
1128 "generic_target_write_pc");
32178cab
MS
1129}
1130
1131void
39f77062 1132write_pc_pid (CORE_ADDR pc, ptid_t ptid)
32178cab 1133{
39f77062 1134 ptid_t saved_inferior_ptid;
32178cab 1135
39f77062
KB
1136 /* In case ptid != inferior_ptid. */
1137 saved_inferior_ptid = inferior_ptid;
1138 inferior_ptid = ptid;
32178cab 1139
39f77062 1140 TARGET_WRITE_PC (pc, ptid);
32178cab 1141
39f77062 1142 inferior_ptid = saved_inferior_ptid;
32178cab
MS
1143}
1144
1145void
1146write_pc (CORE_ADDR pc)
1147{
39f77062 1148 write_pc_pid (pc, inferior_ptid);
32178cab
MS
1149}
1150
1151/* Cope with strage ways of getting to the stack and frame pointers */
1152
32178cab
MS
1153CORE_ADDR
1154read_sp (void)
1155{
bd1ce8ba
AC
1156 if (TARGET_READ_SP_P ())
1157 return TARGET_READ_SP ();
a9e5fdc2
AC
1158 else if (gdbarch_unwind_sp_p (current_gdbarch))
1159 return get_frame_sp (get_current_frame ());
bd1ce8ba 1160 else if (SP_REGNUM >= 0)
a9e5fdc2
AC
1161 /* Try SP_REGNUM last: this makes all sorts of [wrong] assumptions
1162 about the architecture so put it at the end. */
bd1ce8ba
AC
1163 return read_register (SP_REGNUM);
1164 internal_error (__FILE__, __LINE__, "read_sp: Unable to find SP");
32178cab
MS
1165}
1166
705152c5
MS
1167static void
1168reg_flush_command (char *command, int from_tty)
1169{
1170 /* Force-flush the register cache. */
1171 registers_changed ();
1172 if (from_tty)
1173 printf_filtered ("Register cache flushed.\n");
1174}
1175
32178cab
MS
1176static void
1177build_regcache (void)
3fadccb3
AC
1178{
1179 current_regcache = regcache_xmalloc (current_gdbarch);
2d28509a 1180 current_regcache->readonly_p = 0;
524d7c18 1181 deprecated_registers = deprecated_grub_regcache_for_registers (current_regcache);
b923b08d 1182 deprecated_register_valid = current_regcache->register_valid_p;
3fadccb3
AC
1183}
1184
af030b9a
AC
1185static void
1186dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
1187 const unsigned char *buf, long len)
1188{
1189 int i;
1190 switch (endian)
1191 {
1192 case BFD_ENDIAN_BIG:
1193 for (i = 0; i < len; i++)
1194 fprintf_unfiltered (file, "%02x", buf[i]);
1195 break;
1196 case BFD_ENDIAN_LITTLE:
1197 for (i = len - 1; i >= 0; i--)
1198 fprintf_unfiltered (file, "%02x", buf[i]);
1199 break;
1200 default:
1201 internal_error (__FILE__, __LINE__, "Bad switch");
1202 }
1203}
1204
1205enum regcache_dump_what
1206{
b59ff9d5 1207 regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups
af030b9a
AC
1208};
1209
1210static void
1211regcache_dump (struct regcache *regcache, struct ui_file *file,
1212 enum regcache_dump_what what_to_dump)
1213{
1214 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
b59ff9d5 1215 struct gdbarch *gdbarch = regcache->descr->gdbarch;
af030b9a
AC
1216 int regnum;
1217 int footnote_nr = 0;
1218 int footnote_register_size = 0;
1219 int footnote_register_offset = 0;
1220 int footnote_register_type_name_null = 0;
1221 long register_offset = 0;
123a958e 1222 unsigned char buf[MAX_REGISTER_SIZE];
af030b9a
AC
1223
1224#if 0
af030b9a
AC
1225 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1226 regcache->descr->nr_raw_registers);
1227 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1228 regcache->descr->nr_cooked_registers);
1229 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1230 regcache->descr->sizeof_raw_registers);
1231 fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n",
1232 regcache->descr->sizeof_raw_register_valid_p);
af030b9a
AC
1233 fprintf_unfiltered (file, "NUM_REGS %d\n", NUM_REGS);
1234 fprintf_unfiltered (file, "NUM_PSEUDO_REGS %d\n", NUM_PSEUDO_REGS);
1235#endif
1236
1237 gdb_assert (regcache->descr->nr_cooked_registers
1238 == (NUM_REGS + NUM_PSEUDO_REGS));
1239
1240 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1241 {
1242 /* Name. */
1243 if (regnum < 0)
1244 fprintf_unfiltered (file, " %-10s", "Name");
1245 else
1246 {
1247 const char *p = REGISTER_NAME (regnum);
1248 if (p == NULL)
1249 p = "";
1250 else if (p[0] == '\0')
1251 p = "''";
1252 fprintf_unfiltered (file, " %-10s", p);
1253 }
1254
1255 /* Number. */
1256 if (regnum < 0)
1257 fprintf_unfiltered (file, " %4s", "Nr");
1258 else
1259 fprintf_unfiltered (file, " %4d", regnum);
1260
1261 /* Relative number. */
1262 if (regnum < 0)
1263 fprintf_unfiltered (file, " %4s", "Rel");
1264 else if (regnum < NUM_REGS)
1265 fprintf_unfiltered (file, " %4d", regnum);
1266 else
1267 fprintf_unfiltered (file, " %4d", (regnum - NUM_REGS));
1268
1269 /* Offset. */
1270 if (regnum < 0)
1271 fprintf_unfiltered (file, " %6s ", "Offset");
1272 else
1273 {
1274 fprintf_unfiltered (file, " %6ld",
1275 regcache->descr->register_offset[regnum]);
a7e3c2ad 1276 if (register_offset != regcache->descr->register_offset[regnum]
62700349 1277 || register_offset != DEPRECATED_REGISTER_BYTE (regnum)
d3b22ed5
AC
1278 || (regnum > 0
1279 && (regcache->descr->register_offset[regnum]
1280 != (regcache->descr->register_offset[regnum - 1]
1281 + regcache->descr->sizeof_register[regnum - 1])))
1282 )
af030b9a
AC
1283 {
1284 if (!footnote_register_offset)
1285 footnote_register_offset = ++footnote_nr;
1286 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1287 }
1288 else
1289 fprintf_unfiltered (file, " ");
1290 register_offset = (regcache->descr->register_offset[regnum]
1291 + regcache->descr->sizeof_register[regnum]);
1292 }
1293
1294 /* Size. */
1295 if (regnum < 0)
1296 fprintf_unfiltered (file, " %5s ", "Size");
1297 else
01e1877c
AC
1298 fprintf_unfiltered (file, " %5ld",
1299 regcache->descr->sizeof_register[regnum]);
af030b9a
AC
1300
1301 /* Type. */
b59ff9d5
AC
1302 {
1303 const char *t;
1304 if (regnum < 0)
1305 t = "Type";
1306 else
1307 {
1308 static const char blt[] = "builtin_type";
1309 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1310 if (t == NULL)
1311 {
1312 char *n;
1313 if (!footnote_register_type_name_null)
1314 footnote_register_type_name_null = ++footnote_nr;
b435e160 1315 n = xstrprintf ("*%d", footnote_register_type_name_null);
b59ff9d5
AC
1316 make_cleanup (xfree, n);
1317 t = n;
1318 }
1319 /* Chop a leading builtin_type. */
1320 if (strncmp (t, blt, strlen (blt)) == 0)
1321 t += strlen (blt);
1322 }
1323 fprintf_unfiltered (file, " %-15s", t);
1324 }
1325
1326 /* Leading space always present. */
1327 fprintf_unfiltered (file, " ");
af030b9a
AC
1328
1329 /* Value, raw. */
1330 if (what_to_dump == regcache_dump_raw)
1331 {
1332 if (regnum < 0)
1333 fprintf_unfiltered (file, "Raw value");
1334 else if (regnum >= regcache->descr->nr_raw_registers)
1335 fprintf_unfiltered (file, "<cooked>");
1336 else if (!regcache_valid_p (regcache, regnum))
1337 fprintf_unfiltered (file, "<invalid>");
1338 else
1339 {
1340 regcache_raw_read (regcache, regnum, buf);
1341 fprintf_unfiltered (file, "0x");
1342 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
01e1877c 1343 regcache->descr->sizeof_register[regnum]);
af030b9a
AC
1344 }
1345 }
1346
1347 /* Value, cooked. */
1348 if (what_to_dump == regcache_dump_cooked)
1349 {
1350 if (regnum < 0)
1351 fprintf_unfiltered (file, "Cooked value");
1352 else
1353 {
1354 regcache_cooked_read (regcache, regnum, buf);
1355 fprintf_unfiltered (file, "0x");
1356 dump_endian_bytes (file, TARGET_BYTE_ORDER, buf,
01e1877c 1357 regcache->descr->sizeof_register[regnum]);
af030b9a
AC
1358 }
1359 }
1360
b59ff9d5
AC
1361 /* Group members. */
1362 if (what_to_dump == regcache_dump_groups)
1363 {
1364 if (regnum < 0)
1365 fprintf_unfiltered (file, "Groups");
1366 else
1367 {
b59ff9d5 1368 const char *sep = "";
6c7d17ba
AC
1369 struct reggroup *group;
1370 for (group = reggroup_next (gdbarch, NULL);
1371 group != NULL;
1372 group = reggroup_next (gdbarch, group))
b59ff9d5 1373 {
6c7d17ba 1374 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
b59ff9d5 1375 {
6c7d17ba 1376 fprintf_unfiltered (file, "%s%s", sep, reggroup_name (group));
b59ff9d5
AC
1377 sep = ",";
1378 }
1379 }
1380 }
1381 }
1382
af030b9a
AC
1383 fprintf_unfiltered (file, "\n");
1384 }
1385
1386 if (footnote_register_size)
1387 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1388 footnote_register_size);
1389 if (footnote_register_offset)
1390 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1391 footnote_register_offset);
1392 if (footnote_register_type_name_null)
1393 fprintf_unfiltered (file,
1394 "*%d: Register type's name NULL.\n",
1395 footnote_register_type_name_null);
1396 do_cleanups (cleanups);
1397}
1398
1399static void
1400regcache_print (char *args, enum regcache_dump_what what_to_dump)
1401{
1402 if (args == NULL)
1403 regcache_dump (current_regcache, gdb_stdout, what_to_dump);
1404 else
1405 {
1406 struct ui_file *file = gdb_fopen (args, "w");
1407 if (file == NULL)
1408 perror_with_name ("maintenance print architecture");
1409 regcache_dump (current_regcache, file, what_to_dump);
1410 ui_file_delete (file);
1411 }
1412}
1413
1414static void
1415maintenance_print_registers (char *args, int from_tty)
1416{
1417 regcache_print (args, regcache_dump_none);
1418}
1419
1420static void
1421maintenance_print_raw_registers (char *args, int from_tty)
1422{
1423 regcache_print (args, regcache_dump_raw);
1424}
1425
1426static void
1427maintenance_print_cooked_registers (char *args, int from_tty)
1428{
1429 regcache_print (args, regcache_dump_cooked);
1430}
1431
b59ff9d5
AC
1432static void
1433maintenance_print_register_groups (char *args, int from_tty)
1434{
1435 regcache_print (args, regcache_dump_groups);
1436}
1437
b9362cc7
AC
1438extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1439
32178cab
MS
1440void
1441_initialize_regcache (void)
1442{
030f20e1 1443 regcache_descr_handle = gdbarch_data_register_post_init (init_regcache_descr);
046a4708
AC
1444 DEPRECATED_REGISTER_GDBARCH_SWAP (current_regcache);
1445 DEPRECATED_REGISTER_GDBARCH_SWAP (deprecated_registers);
1446 DEPRECATED_REGISTER_GDBARCH_SWAP (deprecated_register_valid);
1447 deprecated_register_gdbarch_swap (NULL, 0, build_regcache);
705152c5 1448
f4c5303c
OF
1449 observer_attach_target_changed (regcache_observer_target_changed);
1450
705152c5
MS
1451 add_com ("flushregs", class_maintenance, reg_flush_command,
1452 "Force gdb to flush its register cache (maintainer command)");
39f77062
KB
1453
1454 /* Initialize the thread/process associated with the current set of
1455 registers. For now, -1 is special, and means `no current process'. */
1456 registers_ptid = pid_to_ptid (-1);
af030b9a
AC
1457
1458 add_cmd ("registers", class_maintenance,
1459 maintenance_print_registers,
1460 "Print the internal register configuration.\
1461Takes an optional file parameter.",
1462 &maintenanceprintlist);
1463 add_cmd ("raw-registers", class_maintenance,
1464 maintenance_print_raw_registers,
1465 "Print the internal register configuration including raw values.\
1466Takes an optional file parameter.",
1467 &maintenanceprintlist);
1468 add_cmd ("cooked-registers", class_maintenance,
1469 maintenance_print_cooked_registers,
1470 "Print the internal register configuration including cooked values.\
b59ff9d5
AC
1471Takes an optional file parameter.",
1472 &maintenanceprintlist);
1473 add_cmd ("register-groups", class_maintenance,
1474 maintenance_print_register_groups,
1475 "Print the internal register configuration including each register's group.\
af030b9a
AC
1476Takes an optional file parameter.",
1477 &maintenanceprintlist);
1478
32178cab 1479}
This page took 0.479067 seconds and 4 git commands to generate.