From Craig Silverstein: TLS test cleanups.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
6aba47ca
DJ
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
721d14ba 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "frame.h"
24#include "inferior.h"
25#include "symtab.h"
26#include "target.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
c906108c 29#include "objfiles.h"
7a78ae4e 30#include "arch-utils.h"
4e052eda 31#include "regcache.h"
d195bc9f 32#include "regset.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
1fcc0bb8 35#include "parser-defs.h"
4be87837 36#include "osabi.h"
7d9b040b 37#include "infcall.h"
9f643768
JB
38#include "sim-regno.h"
39#include "gdb/sim-ppc.h"
6ced10dd 40#include "reggroups.h"
4fc771b8 41#include "dwarf2-frame.h"
7a78ae4e 42
2fccf04a 43#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 44#include "coff/internal.h" /* for libcoff.h */
2fccf04a 45#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
46#include "coff/xcoff.h"
47#include "libxcoff.h"
7a78ae4e 48
9aa1e687 49#include "elf-bfd.h"
7a78ae4e 50
6ded7999 51#include "solib-svr4.h"
9aa1e687 52#include "ppc-tdep.h"
7a78ae4e 53
338ef23d 54#include "gdb_assert.h"
a89aa300 55#include "dis-asm.h"
338ef23d 56
61a65099
KB
57#include "trad-frame.h"
58#include "frame-unwind.h"
59#include "frame-base.h"
60
1f82754b 61#include "rs6000-tdep.h"
c44ca51c 62
7a78ae4e
ND
63/* If the kernel has to deliver a signal, it pushes a sigcontext
64 structure on the stack and then calls the signal handler, passing
65 the address of the sigcontext in an argument register. Usually
66 the signal handler doesn't save this register, so we have to
67 access the sigcontext structure via an offset from the signal handler
68 frame.
69 The following constants were determined by experimentation on AIX 3.2. */
70#define SIG_FRAME_PC_OFFSET 96
71#define SIG_FRAME_LR_OFFSET 108
72#define SIG_FRAME_FP_OFFSET 284
73
7a78ae4e
ND
74/* To be used by skip_prologue. */
75
76struct rs6000_framedata
77 {
78 int offset; /* total size of frame --- the distance
79 by which we decrement sp to allocate
80 the frame */
81 int saved_gpr; /* smallest # of saved gpr */
82 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 83 int saved_vr; /* smallest # of saved vr */
96ff0de4 84 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
85 int alloca_reg; /* alloca register number (frame ptr) */
86 char frameless; /* true if frameless functions. */
87 char nosavedpc; /* true if pc not saved. */
88 int gpr_offset; /* offset of saved gprs from prev sp */
89 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 90 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 91 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
92 int lr_offset; /* offset of saved lr */
93 int cr_offset; /* offset of saved cr */
6be8bc0c 94 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
95 };
96
97/* Description of a single register. */
98
99struct reg
100 {
101 char *name; /* name of register */
0bcc32ae
JB
102 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
103 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
7a78ae4e 104 unsigned char fpr; /* whether register is floating-point */
489461e2 105 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
106 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
107 This is an ISA SPR number, not a GDB
108 register number. */
7a78ae4e
ND
109 };
110
c906108c
SS
111/* Hook for determining the TOC address when calling functions in the
112 inferior under AIX. The initialization code in rs6000-nat.c sets
113 this hook to point to find_toc_address. */
114
7a78ae4e
ND
115CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
116
c906108c
SS
117/* Static function prototypes */
118
0b1b3e42
UW
119static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
120 int instr, CORE_ADDR pc, CORE_ADDR safety);
077276e8
KB
121static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
122 struct rs6000_framedata *);
c906108c 123
64b84175
KB
124/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
125int
126altivec_register_p (int regno)
127{
128 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
129 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
130 return 0;
131 else
132 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
133}
134
383f0f5b 135
867e2dc5
JB
136/* Return true if REGNO is an SPE register, false otherwise. */
137int
138spe_register_p (int regno)
139{
140 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
141
142 /* Is it a reference to EV0 -- EV31, and do we have those? */
143 if (tdep->ppc_ev0_regnum >= 0
144 && tdep->ppc_ev31_regnum >= 0
145 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
146 return 1;
147
6ced10dd
JB
148 /* Is it a reference to one of the raw upper GPR halves? */
149 if (tdep->ppc_ev0_upper_regnum >= 0
150 && tdep->ppc_ev0_upper_regnum <= regno
151 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
152 return 1;
153
867e2dc5
JB
154 /* Is it a reference to the 64-bit accumulator, and do we have that? */
155 if (tdep->ppc_acc_regnum >= 0
156 && tdep->ppc_acc_regnum == regno)
157 return 1;
158
159 /* Is it a reference to the SPE floating-point status and control register,
160 and do we have that? */
161 if (tdep->ppc_spefscr_regnum >= 0
162 && tdep->ppc_spefscr_regnum == regno)
163 return 1;
164
165 return 0;
166}
167
168
383f0f5b
JB
169/* Return non-zero if the architecture described by GDBARCH has
170 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
171int
172ppc_floating_point_unit_p (struct gdbarch *gdbarch)
173{
383f0f5b
JB
174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
175
176 return (tdep->ppc_fp0_regnum >= 0
177 && tdep->ppc_fpscr_regnum >= 0);
0a613259 178}
9f643768 179
09991fa0
JB
180
181/* Check that TABLE[GDB_REGNO] is not already initialized, and then
182 set it to SIM_REGNO.
183
184 This is a helper function for init_sim_regno_table, constructing
185 the table mapping GDB register numbers to sim register numbers; we
186 initialize every element in that table to -1 before we start
187 filling it in. */
9f643768
JB
188static void
189set_sim_regno (int *table, int gdb_regno, int sim_regno)
190{
191 /* Make sure we don't try to assign any given GDB register a sim
192 register number more than once. */
193 gdb_assert (table[gdb_regno] == -1);
194 table[gdb_regno] = sim_regno;
195}
196
09991fa0
JB
197
198/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
199 numbers to simulator register numbers, based on the values placed
200 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
201static void
202init_sim_regno_table (struct gdbarch *arch)
203{
204 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
205 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
206 const struct reg *regs = tdep->regs;
207 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
208 int i;
209
210 /* Presume that all registers not explicitly mentioned below are
211 unavailable from the sim. */
212 for (i = 0; i < total_regs; i++)
213 sim_regno[i] = -1;
214
215 /* General-purpose registers. */
216 for (i = 0; i < ppc_num_gprs; i++)
217 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
218
219 /* Floating-point registers. */
220 if (tdep->ppc_fp0_regnum >= 0)
221 for (i = 0; i < ppc_num_fprs; i++)
222 set_sim_regno (sim_regno,
223 tdep->ppc_fp0_regnum + i,
224 sim_ppc_f0_regnum + i);
225 if (tdep->ppc_fpscr_regnum >= 0)
226 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
227
228 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
229 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
230 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
231
232 /* Segment registers. */
233 if (tdep->ppc_sr0_regnum >= 0)
234 for (i = 0; i < ppc_num_srs; i++)
235 set_sim_regno (sim_regno,
236 tdep->ppc_sr0_regnum + i,
237 sim_ppc_sr0_regnum + i);
238
239 /* Altivec registers. */
240 if (tdep->ppc_vr0_regnum >= 0)
241 {
242 for (i = 0; i < ppc_num_vrs; i++)
243 set_sim_regno (sim_regno,
244 tdep->ppc_vr0_regnum + i,
245 sim_ppc_vr0_regnum + i);
246
247 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
248 we can treat this more like the other cases. */
249 set_sim_regno (sim_regno,
250 tdep->ppc_vr0_regnum + ppc_num_vrs,
251 sim_ppc_vscr_regnum);
252 }
253 /* vsave is a special-purpose register, so the code below handles it. */
254
255 /* SPE APU (E500) registers. */
256 if (tdep->ppc_ev0_regnum >= 0)
257 for (i = 0; i < ppc_num_gprs; i++)
258 set_sim_regno (sim_regno,
259 tdep->ppc_ev0_regnum + i,
260 sim_ppc_ev0_regnum + i);
6ced10dd
JB
261 if (tdep->ppc_ev0_upper_regnum >= 0)
262 for (i = 0; i < ppc_num_gprs; i++)
263 set_sim_regno (sim_regno,
264 tdep->ppc_ev0_upper_regnum + i,
265 sim_ppc_rh0_regnum + i);
9f643768
JB
266 if (tdep->ppc_acc_regnum >= 0)
267 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
268 /* spefscr is a special-purpose register, so the code below handles it. */
269
270 /* Now handle all special-purpose registers. Verify that they
271 haven't mistakenly been assigned numbers by any of the above
272 code). */
273 for (i = 0; i < total_regs; i++)
274 if (regs[i].spr_num >= 0)
275 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
276
277 /* Drop the initialized array into place. */
278 tdep->sim_regno = sim_regno;
279}
280
09991fa0
JB
281
282/* Given a GDB register number REG, return the corresponding SIM
283 register number. */
9f643768
JB
284static int
285rs6000_register_sim_regno (int reg)
286{
287 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
288 int sim_regno;
289
f57d151a
UW
290 gdb_assert (0 <= reg
291 && reg <= gdbarch_num_regs (current_gdbarch)
292 + gdbarch_num_pseudo_regs (current_gdbarch));
9f643768
JB
293 sim_regno = tdep->sim_regno[reg];
294
295 if (sim_regno >= 0)
296 return sim_regno;
297 else
298 return LEGACY_SIM_REGNO_IGNORE;
299}
300
d195bc9f
MK
301\f
302
303/* Register set support functions. */
304
f2db237a
AM
305/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
306 Write the register to REGCACHE. */
307
d195bc9f
MK
308static void
309ppc_supply_reg (struct regcache *regcache, int regnum,
f2db237a 310 const gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
311{
312 if (regnum != -1 && offset != -1)
f2db237a
AM
313 {
314 if (regsize > 4)
315 {
316 struct gdbarch *gdbarch = get_regcache_arch (regcache);
317 int gdb_regsize = register_size (gdbarch, regnum);
318 if (gdb_regsize < regsize
319 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
320 offset += regsize - gdb_regsize;
321 }
322 regcache_raw_supply (regcache, regnum, regs + offset);
323 }
d195bc9f
MK
324}
325
f2db237a
AM
326/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
327 in a field REGSIZE wide. Zero pad as necessary. */
328
d195bc9f
MK
329static void
330ppc_collect_reg (const struct regcache *regcache, int regnum,
f2db237a 331 gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
332{
333 if (regnum != -1 && offset != -1)
f2db237a
AM
334 {
335 if (regsize > 4)
336 {
337 struct gdbarch *gdbarch = get_regcache_arch (regcache);
338 int gdb_regsize = register_size (gdbarch, regnum);
339 if (gdb_regsize < regsize)
340 {
341 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
342 {
343 memset (regs + offset, 0, regsize - gdb_regsize);
344 offset += regsize - gdb_regsize;
345 }
346 else
347 memset (regs + offset + regsize - gdb_regsize, 0,
348 regsize - gdb_regsize);
349 }
350 }
351 regcache_raw_collect (regcache, regnum, regs + offset);
352 }
d195bc9f
MK
353}
354
f2db237a
AM
355static int
356ppc_greg_offset (struct gdbarch *gdbarch,
357 struct gdbarch_tdep *tdep,
358 const struct ppc_reg_offsets *offsets,
359 int regnum,
360 int *regsize)
361{
362 *regsize = offsets->gpr_size;
363 if (regnum >= tdep->ppc_gp0_regnum
364 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
365 return (offsets->r0_offset
366 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
367
368 if (regnum == gdbarch_pc_regnum (gdbarch))
369 return offsets->pc_offset;
370
371 if (regnum == tdep->ppc_ps_regnum)
372 return offsets->ps_offset;
373
374 if (regnum == tdep->ppc_lr_regnum)
375 return offsets->lr_offset;
376
377 if (regnum == tdep->ppc_ctr_regnum)
378 return offsets->ctr_offset;
379
380 *regsize = offsets->xr_size;
381 if (regnum == tdep->ppc_cr_regnum)
382 return offsets->cr_offset;
383
384 if (regnum == tdep->ppc_xer_regnum)
385 return offsets->xer_offset;
386
387 if (regnum == tdep->ppc_mq_regnum)
388 return offsets->mq_offset;
389
390 return -1;
391}
392
393static int
394ppc_fpreg_offset (struct gdbarch_tdep *tdep,
395 const struct ppc_reg_offsets *offsets,
396 int regnum)
397{
398 if (regnum >= tdep->ppc_fp0_regnum
399 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
400 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
401
402 if (regnum == tdep->ppc_fpscr_regnum)
403 return offsets->fpscr_offset;
404
405 return -1;
406}
407
d195bc9f
MK
408/* Supply register REGNUM in the general-purpose register set REGSET
409 from the buffer specified by GREGS and LEN to register cache
410 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
411
412void
413ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
414 int regnum, const void *gregs, size_t len)
415{
416 struct gdbarch *gdbarch = get_regcache_arch (regcache);
417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
418 const struct ppc_reg_offsets *offsets = regset->descr;
419 size_t offset;
f2db237a 420 int regsize;
d195bc9f 421
f2db237a 422 if (regnum == -1)
d195bc9f 423 {
f2db237a
AM
424 int i;
425 int gpr_size = offsets->gpr_size;
426
427 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
428 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
429 i++, offset += gpr_size)
430 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
431
432 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
433 gregs, offsets->pc_offset, gpr_size);
434 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
435 gregs, offsets->ps_offset, gpr_size);
436 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
437 gregs, offsets->lr_offset, gpr_size);
438 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
439 gregs, offsets->ctr_offset, gpr_size);
440 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset, offsets->xr_size);
442 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
443 gregs, offsets->xer_offset, offsets->xr_size);
444 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
445 gregs, offsets->mq_offset, offsets->xr_size);
446 return;
d195bc9f
MK
447 }
448
f2db237a
AM
449 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
450 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
d195bc9f
MK
451}
452
453/* Supply register REGNUM in the floating-point register set REGSET
454 from the buffer specified by FPREGS and LEN to register cache
455 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
456
457void
458ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
459 int regnum, const void *fpregs, size_t len)
460{
461 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
462 struct gdbarch_tdep *tdep;
463 const struct ppc_reg_offsets *offsets;
d195bc9f 464 size_t offset;
d195bc9f 465
f2db237a
AM
466 if (!ppc_floating_point_unit_p (gdbarch))
467 return;
383f0f5b 468
f2db237a
AM
469 tdep = gdbarch_tdep (gdbarch);
470 offsets = regset->descr;
471 if (regnum == -1)
d195bc9f 472 {
f2db237a
AM
473 int i;
474
475 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
476 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
477 i++, offset += 8)
478 ppc_supply_reg (regcache, i, fpregs, offset, 8);
479
480 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
481 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
482 return;
d195bc9f
MK
483 }
484
f2db237a
AM
485 offset = ppc_fpreg_offset (tdep, offsets, regnum);
486 ppc_supply_reg (regcache, regnum, fpregs, offset,
487 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
488}
489
490/* Collect register REGNUM in the general-purpose register set
f2db237a 491 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
492 GREGS and LEN. If REGNUM is -1, do this for all registers in
493 REGSET. */
494
495void
496ppc_collect_gregset (const struct regset *regset,
497 const struct regcache *regcache,
498 int regnum, void *gregs, size_t len)
499{
500 struct gdbarch *gdbarch = get_regcache_arch (regcache);
501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
502 const struct ppc_reg_offsets *offsets = regset->descr;
503 size_t offset;
f2db237a 504 int regsize;
d195bc9f 505
f2db237a 506 if (regnum == -1)
d195bc9f 507 {
f2db237a
AM
508 int i;
509 int gpr_size = offsets->gpr_size;
510
511 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
512 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
513 i++, offset += gpr_size)
514 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
515
516 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
517 gregs, offsets->pc_offset, gpr_size);
518 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
519 gregs, offsets->ps_offset, gpr_size);
520 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
521 gregs, offsets->lr_offset, gpr_size);
522 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
523 gregs, offsets->ctr_offset, gpr_size);
524 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
525 gregs, offsets->cr_offset, offsets->xr_size);
526 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
527 gregs, offsets->xer_offset, offsets->xr_size);
528 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
529 gregs, offsets->mq_offset, offsets->xr_size);
530 return;
d195bc9f
MK
531 }
532
f2db237a
AM
533 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
534 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
d195bc9f
MK
535}
536
537/* Collect register REGNUM in the floating-point register set
f2db237a 538 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
539 FPREGS and LEN. If REGNUM is -1, do this for all registers in
540 REGSET. */
541
542void
543ppc_collect_fpregset (const struct regset *regset,
544 const struct regcache *regcache,
545 int regnum, void *fpregs, size_t len)
546{
547 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
548 struct gdbarch_tdep *tdep;
549 const struct ppc_reg_offsets *offsets;
d195bc9f 550 size_t offset;
d195bc9f 551
f2db237a
AM
552 if (!ppc_floating_point_unit_p (gdbarch))
553 return;
383f0f5b 554
f2db237a
AM
555 tdep = gdbarch_tdep (gdbarch);
556 offsets = regset->descr;
557 if (regnum == -1)
d195bc9f 558 {
f2db237a
AM
559 int i;
560
561 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
562 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
563 i++, offset += 8)
564 ppc_collect_reg (regcache, i, fpregs, offset, 8);
565
566 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
567 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
568 return;
d195bc9f
MK
569 }
570
f2db237a
AM
571 offset = ppc_fpreg_offset (tdep, offsets, regnum);
572 ppc_collect_reg (regcache, regnum, fpregs, offset,
573 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
574}
575\f
0a613259 576
7a78ae4e 577/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 578
7a78ae4e
ND
579static CORE_ADDR
580read_memory_addr (CORE_ADDR memaddr, int len)
581{
582 return read_memory_unsigned_integer (memaddr, len);
583}
c906108c 584
7a78ae4e
ND
585static CORE_ADDR
586rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
587{
588 struct rs6000_framedata frame;
4e463ff5
DJ
589 CORE_ADDR limit_pc, func_addr;
590
591 /* See if we can determine the end of the prologue via the symbol table.
592 If so, then return either PC, or the PC after the prologue, whichever
593 is greater. */
594 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
595 {
596 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
597 if (post_prologue_pc != 0)
598 return max (pc, post_prologue_pc);
599 }
600
601 /* Can't determine prologue from the symbol table, need to examine
602 instructions. */
603
604 /* Find an upper limit on the function prologue using the debug
605 information. If the debug information could not be used to provide
606 that bound, then use an arbitrary large number as the upper bound. */
607 limit_pc = skip_prologue_using_sal (pc);
608 if (limit_pc == 0)
609 limit_pc = pc + 100; /* Magic. */
610
611 pc = skip_prologue (pc, limit_pc, &frame);
b83266a0
SS
612 return pc;
613}
614
0d1243d9
PG
615static int
616insn_changes_sp_or_jumps (unsigned long insn)
617{
618 int opcode = (insn >> 26) & 0x03f;
619 int sd = (insn >> 21) & 0x01f;
620 int a = (insn >> 16) & 0x01f;
621 int subcode = (insn >> 1) & 0x3ff;
622
623 /* Changes the stack pointer. */
624
625 /* NOTE: There are many ways to change the value of a given register.
626 The ways below are those used when the register is R1, the SP,
627 in a funtion's epilogue. */
628
629 if (opcode == 31 && subcode == 444 && a == 1)
630 return 1; /* mr R1,Rn */
631 if (opcode == 14 && sd == 1)
632 return 1; /* addi R1,Rn,simm */
633 if (opcode == 58 && sd == 1)
634 return 1; /* ld R1,ds(Rn) */
635
636 /* Transfers control. */
637
638 if (opcode == 18)
639 return 1; /* b */
640 if (opcode == 16)
641 return 1; /* bc */
642 if (opcode == 19 && subcode == 16)
643 return 1; /* bclr */
644 if (opcode == 19 && subcode == 528)
645 return 1; /* bcctr */
646
647 return 0;
648}
649
650/* Return true if we are in the function's epilogue, i.e. after the
651 instruction that destroyed the function's stack frame.
652
653 1) scan forward from the point of execution:
654 a) If you find an instruction that modifies the stack pointer
655 or transfers control (except a return), execution is not in
656 an epilogue, return.
657 b) Stop scanning if you find a return instruction or reach the
658 end of the function or reach the hard limit for the size of
659 an epilogue.
660 2) scan backward from the point of execution:
661 a) If you find an instruction that modifies the stack pointer,
662 execution *is* in an epilogue, return.
663 b) Stop scanning if you reach an instruction that transfers
664 control or the beginning of the function or reach the hard
665 limit for the size of an epilogue. */
666
667static int
668rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
669{
670 bfd_byte insn_buf[PPC_INSN_SIZE];
671 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
672 unsigned long insn;
673 struct frame_info *curfrm;
674
675 /* Find the search limits based on function boundaries and hard limit. */
676
677 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
678 return 0;
679
680 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
681 if (epilogue_start < func_start) epilogue_start = func_start;
682
683 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
684 if (epilogue_end > func_end) epilogue_end = func_end;
685
686 curfrm = get_current_frame ();
687
688 /* Scan forward until next 'blr'. */
689
690 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
691 {
692 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
693 return 0;
4e463ff5 694 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
695 if (insn == 0x4e800020)
696 break;
697 if (insn_changes_sp_or_jumps (insn))
698 return 0;
699 }
700
701 /* Scan backward until adjustment to stack pointer (R1). */
702
703 for (scan_pc = pc - PPC_INSN_SIZE;
704 scan_pc >= epilogue_start;
705 scan_pc -= PPC_INSN_SIZE)
706 {
707 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
708 return 0;
4e463ff5 709 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
710 if (insn_changes_sp_or_jumps (insn))
711 return 1;
712 }
713
714 return 0;
715}
716
143985b7 717/* Get the ith function argument for the current function. */
b9362cc7 718static CORE_ADDR
143985b7
AF
719rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
720 struct type *type)
721{
50fd1280 722 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
723}
724
c906108c
SS
725/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
726
727static CORE_ADDR
0b1b3e42
UW
728branch_dest (struct frame_info *frame, int opcode, int instr,
729 CORE_ADDR pc, CORE_ADDR safety)
c906108c 730{
0b1b3e42 731 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
c906108c
SS
732 CORE_ADDR dest;
733 int immediate;
734 int absolute;
735 int ext_op;
736
737 absolute = (int) ((instr >> 1) & 1);
738
c5aa993b
JM
739 switch (opcode)
740 {
741 case 18:
742 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
743 if (absolute)
744 dest = immediate;
745 else
746 dest = pc + immediate;
747 break;
748
749 case 16:
750 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
751 if (absolute)
752 dest = immediate;
753 else
754 dest = pc + immediate;
755 break;
756
757 case 19:
758 ext_op = (instr >> 1) & 0x3ff;
759
760 if (ext_op == 16) /* br conditional register */
761 {
0b1b3e42 762 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
c5aa993b
JM
763
764 /* If we are about to return from a signal handler, dest is
765 something like 0x3c90. The current frame is a signal handler
766 caller frame, upon completion of the sigreturn system call
767 execution will return to the saved PC in the frame. */
0b1b3e42
UW
768 if (dest < tdep->text_segment_base)
769 dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
770 tdep->wordsize);
c5aa993b
JM
771 }
772
773 else if (ext_op == 528) /* br cond to count reg */
774 {
0b1b3e42 775 dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
c5aa993b
JM
776
777 /* If we are about to execute a system call, dest is something
778 like 0x22fc or 0x3b00. Upon completion the system call
779 will return to the address in the link register. */
0b1b3e42
UW
780 if (dest < tdep->text_segment_base)
781 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
c5aa993b
JM
782 }
783 else
784 return -1;
785 break;
c906108c 786
c5aa993b
JM
787 default:
788 return -1;
789 }
0b1b3e42 790 return (dest < tdep->text_segment_base) ? safety : dest;
c906108c
SS
791}
792
793
794/* Sequence of bytes for breakpoint instruction. */
795
f4f9705a 796const static unsigned char *
7a78ae4e 797rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 798{
aaab4dba
AC
799 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
800 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 801 *bp_size = 4;
4c6b5505 802 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
803 return big_breakpoint;
804 else
805 return little_breakpoint;
806}
807
808
ce5eab59
UW
809/* Instruction masks used during single-stepping of atomic sequences. */
810#define LWARX_MASK 0xfc0007fe
811#define LWARX_INSTRUCTION 0x7c000028
812#define LDARX_INSTRUCTION 0x7c0000A8
813#define STWCX_MASK 0xfc0007ff
814#define STWCX_INSTRUCTION 0x7c00012d
815#define STDCX_INSTRUCTION 0x7c0001ad
816#define BC_MASK 0xfc000000
817#define BC_INSTRUCTION 0x40000000
818
819/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
820 instruction and ending with a STWCX/STDCX instruction. If such a sequence
821 is found, attempt to step through it. A breakpoint is placed at the end of
822 the sequence. */
823
824static int
0b1b3e42 825deal_with_atomic_sequence (struct frame_info *frame)
ce5eab59 826{
0b1b3e42 827 CORE_ADDR pc = get_frame_pc (frame);
ce5eab59
UW
828 CORE_ADDR breaks[2] = {-1, -1};
829 CORE_ADDR loc = pc;
830 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
24d45690 831 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
ce5eab59
UW
832 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
833 int insn_count;
834 int index;
835 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
836 const int atomic_sequence_length = 16; /* Instruction sequence length. */
24d45690 837 int opcode; /* Branch instruction's OPcode. */
ce5eab59
UW
838 int bc_insn_count = 0; /* Conditional branch instruction count. */
839
840 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
841 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
842 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
843 return 0;
844
845 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
846 instructions. */
847 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
848 {
849 loc += PPC_INSN_SIZE;
850 insn = read_memory_integer (loc, PPC_INSN_SIZE);
851
852 /* Assume that there is at most one conditional branch in the atomic
853 sequence. If a conditional branch is found, put a breakpoint in
854 its destination address. */
855 if ((insn & BC_MASK) == BC_INSTRUCTION)
856 {
857 if (bc_insn_count >= 1)
858 return 0; /* More than one conditional branch found, fallback
859 to the standard single-step code. */
860
24d45690 861 opcode = insn >> 26;
0b1b3e42 862 branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
ce5eab59
UW
863
864 if (branch_bp != -1)
865 {
866 breaks[1] = branch_bp;
867 bc_insn_count++;
868 last_breakpoint++;
869 }
870 }
871
872 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
873 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
874 break;
875 }
876
877 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
878 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
879 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
880 return 0;
881
24d45690 882 closing_insn = loc;
ce5eab59
UW
883 loc += PPC_INSN_SIZE;
884 insn = read_memory_integer (loc, PPC_INSN_SIZE);
885
886 /* Insert a breakpoint right after the end of the atomic sequence. */
887 breaks[0] = loc;
888
24d45690
UW
889 /* Check for duplicated breakpoints. Check also for a breakpoint
890 placed (branch instruction's destination) at the stwcx/stdcx
891 instruction, this resets the reservation and take us back to the
892 lwarx/ldarx instruction at the beginning of the atomic sequence. */
893 if (last_breakpoint && ((breaks[1] == breaks[0])
894 || (breaks[1] == closing_insn)))
ce5eab59
UW
895 last_breakpoint = 0;
896
897 /* Effectively inserts the breakpoints. */
898 for (index = 0; index <= last_breakpoint; index++)
899 insert_single_step_breakpoint (breaks[index]);
900
901 return 1;
902}
903
904/* AIX does not support PT_STEP. Simulate it. */
c906108c 905
e6590a1b 906int
0b1b3e42 907rs6000_software_single_step (struct frame_info *frame)
c906108c 908{
7c40d541
KB
909 CORE_ADDR dummy;
910 int breakp_sz;
50fd1280 911 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
912 int ii, insn;
913 CORE_ADDR loc;
914 CORE_ADDR breaks[2];
915 int opcode;
916
0b1b3e42 917 loc = get_frame_pc (frame);
c906108c 918
e0cd558a 919 insn = read_memory_integer (loc, 4);
c906108c 920
0b1b3e42 921 if (deal_with_atomic_sequence (frame))
ce5eab59
UW
922 return 1;
923
e0cd558a
UW
924 breaks[0] = loc + breakp_sz;
925 opcode = insn >> 26;
0b1b3e42 926 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
c906108c 927
e0cd558a
UW
928 /* Don't put two breakpoints on the same address. */
929 if (breaks[1] == breaks[0])
930 breaks[1] = -1;
c906108c 931
e0cd558a
UW
932 for (ii = 0; ii < 2; ++ii)
933 {
934 /* ignore invalid breakpoint. */
935 if (breaks[ii] == -1)
936 continue;
937 insert_single_step_breakpoint (breaks[ii]);
c5aa993b 938 }
c906108c 939
c906108c 940 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 941 /* What errors? {read,write}_memory call error(). */
e6590a1b 942 return 1;
c906108c
SS
943}
944
945
946/* return pc value after skipping a function prologue and also return
947 information about a function frame.
948
949 in struct rs6000_framedata fdata:
c5aa993b
JM
950 - frameless is TRUE, if function does not have a frame.
951 - nosavedpc is TRUE, if function does not save %pc value in its frame.
952 - offset is the initial size of this stack frame --- the amount by
953 which we decrement the sp to allocate the frame.
954 - saved_gpr is the number of the first saved gpr.
955 - saved_fpr is the number of the first saved fpr.
6be8bc0c 956 - saved_vr is the number of the first saved vr.
96ff0de4 957 - saved_ev is the number of the first saved ev.
c5aa993b
JM
958 - alloca_reg is the number of the register used for alloca() handling.
959 Otherwise -1.
960 - gpr_offset is the offset of the first saved gpr from the previous frame.
961 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 962 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 963 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
964 - lr_offset is the offset of the saved lr
965 - cr_offset is the offset of the saved cr
6be8bc0c 966 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 967 */
c906108c
SS
968
969#define SIGNED_SHORT(x) \
970 ((sizeof (short) == 2) \
971 ? ((int)(short)(x)) \
972 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
973
974#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
975
55d05f3b
KB
976/* Limit the number of skipped non-prologue instructions, as the examining
977 of the prologue is expensive. */
978static int max_skip_non_prologue_insns = 10;
979
773df3e5
JB
980/* Return nonzero if the given instruction OP can be part of the prologue
981 of a function and saves a parameter on the stack. FRAMEP should be
982 set if one of the previous instructions in the function has set the
983 Frame Pointer. */
984
985static int
986store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
987{
988 /* Move parameters from argument registers to temporary register. */
989 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
990 {
991 /* Rx must be scratch register r0. */
992 const int rx_regno = (op >> 16) & 31;
993 /* Ry: Only r3 - r10 are used for parameter passing. */
994 const int ry_regno = GET_SRC_REG (op);
995
996 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
997 {
998 *r0_contains_arg = 1;
999 return 1;
1000 }
1001 else
1002 return 0;
1003 }
1004
1005 /* Save a General Purpose Register on stack. */
1006
1007 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1008 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1009 {
1010 /* Rx: Only r3 - r10 are used for parameter passing. */
1011 const int rx_regno = GET_SRC_REG (op);
1012
1013 return (rx_regno >= 3 && rx_regno <= 10);
1014 }
1015
1016 /* Save a General Purpose Register on stack via the Frame Pointer. */
1017
1018 if (framep &&
1019 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1020 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1021 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1022 {
1023 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1024 However, the compiler sometimes uses r0 to hold an argument. */
1025 const int rx_regno = GET_SRC_REG (op);
1026
1027 return ((rx_regno >= 3 && rx_regno <= 10)
1028 || (rx_regno == 0 && *r0_contains_arg));
1029 }
1030
1031 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1032 {
1033 /* Only f2 - f8 are used for parameter passing. */
1034 const int src_regno = GET_SRC_REG (op);
1035
1036 return (src_regno >= 2 && src_regno <= 8);
1037 }
1038
1039 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1040 {
1041 /* Only f2 - f8 are used for parameter passing. */
1042 const int src_regno = GET_SRC_REG (op);
1043
1044 return (src_regno >= 2 && src_regno <= 8);
1045 }
1046
1047 /* Not an insn that saves a parameter on stack. */
1048 return 0;
1049}
55d05f3b 1050
3c77c82a
DJ
1051/* Assuming that INSN is a "bl" instruction located at PC, return
1052 nonzero if the destination of the branch is a "blrl" instruction.
1053
1054 This sequence is sometimes found in certain function prologues.
1055 It allows the function to load the LR register with a value that
1056 they can use to access PIC data using PC-relative offsets. */
1057
1058static int
1059bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
1060{
0b1b3e42
UW
1061 CORE_ADDR dest;
1062 int immediate;
1063 int absolute;
3c77c82a
DJ
1064 int dest_insn;
1065
0b1b3e42
UW
1066 absolute = (int) ((insn >> 1) & 1);
1067 immediate = ((insn & ~3) << 6) >> 6;
1068 if (absolute)
1069 dest = immediate;
1070 else
1071 dest = pc + immediate;
1072
3c77c82a
DJ
1073 dest_insn = read_memory_integer (dest, 4);
1074 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1075 return 1;
1076
1077 return 0;
1078}
1079
7a78ae4e 1080static CORE_ADDR
077276e8 1081skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
1082{
1083 CORE_ADDR orig_pc = pc;
55d05f3b 1084 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 1085 CORE_ADDR li_found_pc = 0;
50fd1280 1086 gdb_byte buf[4];
c906108c
SS
1087 unsigned long op;
1088 long offset = 0;
6be8bc0c 1089 long vr_saved_offset = 0;
482ca3f5
KB
1090 int lr_reg = -1;
1091 int cr_reg = -1;
6be8bc0c 1092 int vr_reg = -1;
96ff0de4
EZ
1093 int ev_reg = -1;
1094 long ev_offset = 0;
6be8bc0c 1095 int vrsave_reg = -1;
c906108c
SS
1096 int reg;
1097 int framep = 0;
1098 int minimal_toc_loaded = 0;
ddb20c56 1099 int prev_insn_was_prologue_insn = 1;
55d05f3b 1100 int num_skip_non_prologue_insns = 0;
773df3e5 1101 int r0_contains_arg = 0;
96ff0de4 1102 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 1103 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1104
ddb20c56 1105 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1106 fdata->saved_gpr = -1;
1107 fdata->saved_fpr = -1;
6be8bc0c 1108 fdata->saved_vr = -1;
96ff0de4 1109 fdata->saved_ev = -1;
c906108c
SS
1110 fdata->alloca_reg = -1;
1111 fdata->frameless = 1;
1112 fdata->nosavedpc = 1;
1113
55d05f3b 1114 for (;; pc += 4)
c906108c 1115 {
ddb20c56
KB
1116 /* Sometimes it isn't clear if an instruction is a prologue
1117 instruction or not. When we encounter one of these ambiguous
1118 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1119 Otherwise, we'll assume that it really is a prologue instruction. */
1120 if (prev_insn_was_prologue_insn)
1121 last_prologue_pc = pc;
55d05f3b
KB
1122
1123 /* Stop scanning if we've hit the limit. */
4e463ff5 1124 if (pc >= lim_pc)
55d05f3b
KB
1125 break;
1126
ddb20c56
KB
1127 prev_insn_was_prologue_insn = 1;
1128
55d05f3b 1129 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1130 if (target_read_memory (pc, buf, 4))
1131 break;
4e463ff5 1132 op = extract_unsigned_integer (buf, 4);
c906108c 1133
c5aa993b
JM
1134 if ((op & 0xfc1fffff) == 0x7c0802a6)
1135 { /* mflr Rx */
43b1ab88
AC
1136 /* Since shared library / PIC code, which needs to get its
1137 address at runtime, can appear to save more than one link
1138 register vis:
1139
1140 *INDENT-OFF*
1141 stwu r1,-304(r1)
1142 mflr r3
1143 bl 0xff570d0 (blrl)
1144 stw r30,296(r1)
1145 mflr r30
1146 stw r31,300(r1)
1147 stw r3,308(r1);
1148 ...
1149 *INDENT-ON*
1150
1151 remember just the first one, but skip over additional
1152 ones. */
721d14ba 1153 if (lr_reg == -1)
43b1ab88 1154 lr_reg = (op & 0x03e00000);
773df3e5
JB
1155 if (lr_reg == 0)
1156 r0_contains_arg = 0;
c5aa993b 1157 continue;
c5aa993b
JM
1158 }
1159 else if ((op & 0xfc1fffff) == 0x7c000026)
1160 { /* mfcr Rx */
98f08d3d 1161 cr_reg = (op & 0x03e00000);
773df3e5
JB
1162 if (cr_reg == 0)
1163 r0_contains_arg = 0;
c5aa993b 1164 continue;
c906108c 1165
c906108c 1166 }
c5aa993b
JM
1167 else if ((op & 0xfc1f0000) == 0xd8010000)
1168 { /* stfd Rx,NUM(r1) */
1169 reg = GET_SRC_REG (op);
1170 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1171 {
1172 fdata->saved_fpr = reg;
1173 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1174 }
1175 continue;
c906108c 1176
c5aa993b
JM
1177 }
1178 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1179 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1180 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1181 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1182 {
1183
1184 reg = GET_SRC_REG (op);
1185 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1186 {
1187 fdata->saved_gpr = reg;
7a78ae4e 1188 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1189 op &= ~3UL;
c5aa993b
JM
1190 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1191 }
1192 continue;
c906108c 1193
ddb20c56
KB
1194 }
1195 else if ((op & 0xffff0000) == 0x60000000)
1196 {
96ff0de4 1197 /* nop */
ddb20c56
KB
1198 /* Allow nops in the prologue, but do not consider them to
1199 be part of the prologue unless followed by other prologue
1200 instructions. */
1201 prev_insn_was_prologue_insn = 0;
1202 continue;
1203
c906108c 1204 }
c5aa993b
JM
1205 else if ((op & 0xffff0000) == 0x3c000000)
1206 { /* addis 0,0,NUM, used
1207 for >= 32k frames */
1208 fdata->offset = (op & 0x0000ffff) << 16;
1209 fdata->frameless = 0;
773df3e5 1210 r0_contains_arg = 0;
c5aa993b
JM
1211 continue;
1212
1213 }
1214 else if ((op & 0xffff0000) == 0x60000000)
1215 { /* ori 0,0,NUM, 2nd ha
1216 lf of >= 32k frames */
1217 fdata->offset |= (op & 0x0000ffff);
1218 fdata->frameless = 0;
773df3e5 1219 r0_contains_arg = 0;
c5aa993b
JM
1220 continue;
1221
1222 }
be723e22 1223 else if (lr_reg >= 0 &&
98f08d3d
KB
1224 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1225 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1226 /* stw Rx, NUM(r1) */
1227 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1228 /* stwu Rx, NUM(r1) */
1229 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1230 { /* where Rx == lr */
1231 fdata->lr_offset = offset;
c5aa993b 1232 fdata->nosavedpc = 0;
be723e22
MS
1233 /* Invalidate lr_reg, but don't set it to -1.
1234 That would mean that it had never been set. */
1235 lr_reg = -2;
98f08d3d
KB
1236 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1237 (op & 0xfc000000) == 0x90000000) /* stw */
1238 {
1239 /* Does not update r1, so add displacement to lr_offset. */
1240 fdata->lr_offset += SIGNED_SHORT (op);
1241 }
c5aa993b
JM
1242 continue;
1243
1244 }
be723e22 1245 else if (cr_reg >= 0 &&
98f08d3d
KB
1246 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1247 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1248 /* stw Rx, NUM(r1) */
1249 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1250 /* stwu Rx, NUM(r1) */
1251 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1252 { /* where Rx == cr */
1253 fdata->cr_offset = offset;
be723e22
MS
1254 /* Invalidate cr_reg, but don't set it to -1.
1255 That would mean that it had never been set. */
1256 cr_reg = -2;
98f08d3d
KB
1257 if ((op & 0xfc000003) == 0xf8000000 ||
1258 (op & 0xfc000000) == 0x90000000)
1259 {
1260 /* Does not update r1, so add displacement to cr_offset. */
1261 fdata->cr_offset += SIGNED_SHORT (op);
1262 }
c5aa993b
JM
1263 continue;
1264
1265 }
721d14ba
DJ
1266 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1267 {
1268 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1269 prediction bits. If the LR has already been saved, we can
1270 skip it. */
1271 continue;
1272 }
c5aa993b
JM
1273 else if (op == 0x48000005)
1274 { /* bl .+4 used in
1275 -mrelocatable */
1276 continue;
1277
1278 }
1279 else if (op == 0x48000004)
1280 { /* b .+4 (xlc) */
1281 break;
1282
c5aa993b 1283 }
6be8bc0c
EZ
1284 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1285 in V.4 -mminimal-toc */
c5aa993b
JM
1286 (op & 0xffff0000) == 0x3bde0000)
1287 { /* addi 30,30,foo@l */
1288 continue;
c906108c 1289
c5aa993b
JM
1290 }
1291 else if ((op & 0xfc000001) == 0x48000001)
1292 { /* bl foo,
1293 to save fprs??? */
c906108c 1294
c5aa993b 1295 fdata->frameless = 0;
3c77c82a
DJ
1296
1297 /* If the return address has already been saved, we can skip
1298 calls to blrl (for PIC). */
1299 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1300 continue;
1301
6be8bc0c 1302 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1303 the first three instructions of the prologue and either
1304 we have no line table information or the line info tells
1305 us that the subroutine call is not part of the line
1306 associated with the prologue. */
c5aa993b 1307 if ((pc - orig_pc) > 8)
ebd98106
FF
1308 {
1309 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1310 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1311
1312 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1313 break;
1314 }
c5aa993b
JM
1315
1316 op = read_memory_integer (pc + 4, 4);
1317
6be8bc0c
EZ
1318 /* At this point, make sure this is not a trampoline
1319 function (a function that simply calls another functions,
1320 and nothing else). If the next is not a nop, this branch
1321 was part of the function prologue. */
c5aa993b
JM
1322
1323 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1324 break; /* don't skip over
1325 this branch */
1326 continue;
1327
c5aa993b 1328 }
98f08d3d
KB
1329 /* update stack pointer */
1330 else if ((op & 0xfc1f0000) == 0x94010000)
1331 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1332 fdata->frameless = 0;
1333 fdata->offset = SIGNED_SHORT (op);
1334 offset = fdata->offset;
1335 continue;
c5aa993b 1336 }
98f08d3d
KB
1337 else if ((op & 0xfc1f016a) == 0x7c01016e)
1338 { /* stwux rX,r1,rY */
1339 /* no way to figure out what r1 is going to be */
1340 fdata->frameless = 0;
1341 offset = fdata->offset;
1342 continue;
1343 }
1344 else if ((op & 0xfc1f0003) == 0xf8010001)
1345 { /* stdu rX,NUM(r1) */
1346 fdata->frameless = 0;
1347 fdata->offset = SIGNED_SHORT (op & ~3UL);
1348 offset = fdata->offset;
1349 continue;
1350 }
1351 else if ((op & 0xfc1f016a) == 0x7c01016a)
1352 { /* stdux rX,r1,rY */
1353 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1354 fdata->frameless = 0;
1355 offset = fdata->offset;
1356 continue;
c5aa993b 1357 }
7313566f
FF
1358 else if ((op & 0xffff0000) == 0x38210000)
1359 { /* addi r1,r1,SIMM */
1360 fdata->frameless = 0;
1361 fdata->offset += SIGNED_SHORT (op);
1362 offset = fdata->offset;
1363 continue;
1364 }
4e463ff5
DJ
1365 /* Load up minimal toc pointer. Do not treat an epilogue restore
1366 of r31 as a minimal TOC load. */
98f08d3d
KB
1367 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1368 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1369 && !framep
c5aa993b 1370 && !minimal_toc_loaded)
98f08d3d 1371 {
c5aa993b
JM
1372 minimal_toc_loaded = 1;
1373 continue;
1374
f6077098
KB
1375 /* move parameters from argument registers to local variable
1376 registers */
1377 }
1378 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1379 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1380 (((op >> 21) & 31) <= 10) &&
96ff0de4 1381 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1382 {
1383 continue;
1384
c5aa993b
JM
1385 /* store parameters in stack */
1386 }
e802b915 1387 /* Move parameters from argument registers to temporary register. */
773df3e5 1388 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1389 {
c5aa993b
JM
1390 continue;
1391
1392 /* Set up frame pointer */
1393 }
1394 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1395 || op == 0x7c3f0b78)
1396 { /* mr r31, r1 */
1397 fdata->frameless = 0;
1398 framep = 1;
6f99cb26 1399 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1400 continue;
1401
1402 /* Another way to set up the frame pointer. */
1403 }
1404 else if ((op & 0xfc1fffff) == 0x38010000)
1405 { /* addi rX, r1, 0x0 */
1406 fdata->frameless = 0;
1407 framep = 1;
6f99cb26
AC
1408 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1409 + ((op & ~0x38010000) >> 21));
c5aa993b 1410 continue;
c5aa993b 1411 }
6be8bc0c
EZ
1412 /* AltiVec related instructions. */
1413 /* Store the vrsave register (spr 256) in another register for
1414 later manipulation, or load a register into the vrsave
1415 register. 2 instructions are used: mfvrsave and
1416 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1417 and mtspr SPR256, Rn. */
1418 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1419 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1420 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1421 {
1422 vrsave_reg = GET_SRC_REG (op);
1423 continue;
1424 }
1425 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1426 {
1427 continue;
1428 }
1429 /* Store the register where vrsave was saved to onto the stack:
1430 rS is the register where vrsave was stored in a previous
1431 instruction. */
1432 /* 100100 sssss 00001 dddddddd dddddddd */
1433 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1434 {
1435 if (vrsave_reg == GET_SRC_REG (op))
1436 {
1437 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1438 vrsave_reg = -1;
1439 }
1440 continue;
1441 }
1442 /* Compute the new value of vrsave, by modifying the register
1443 where vrsave was saved to. */
1444 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1445 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1446 {
1447 continue;
1448 }
1449 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1450 in a pair of insns to save the vector registers on the
1451 stack. */
1452 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1453 /* 001110 01110 00000 iiii iiii iiii iiii */
1454 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1455 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1456 {
773df3e5
JB
1457 if ((op & 0xffff0000) == 0x38000000)
1458 r0_contains_arg = 0;
6be8bc0c
EZ
1459 li_found_pc = pc;
1460 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1461
1462 /* This insn by itself is not part of the prologue, unless
1463 if part of the pair of insns mentioned above. So do not
1464 record this insn as part of the prologue yet. */
1465 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1466 }
1467 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1468 /* 011111 sssss 11111 00000 00111001110 */
1469 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1470 {
1471 if (pc == (li_found_pc + 4))
1472 {
1473 vr_reg = GET_SRC_REG (op);
1474 /* If this is the first vector reg to be saved, or if
1475 it has a lower number than others previously seen,
1476 reupdate the frame info. */
1477 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1478 {
1479 fdata->saved_vr = vr_reg;
1480 fdata->vr_offset = vr_saved_offset + offset;
1481 }
1482 vr_saved_offset = -1;
1483 vr_reg = -1;
1484 li_found_pc = 0;
1485 }
1486 }
1487 /* End AltiVec related instructions. */
96ff0de4
EZ
1488
1489 /* Start BookE related instructions. */
1490 /* Store gen register S at (r31+uimm).
1491 Any register less than r13 is volatile, so we don't care. */
1492 /* 000100 sssss 11111 iiiii 01100100001 */
1493 else if (arch_info->mach == bfd_mach_ppc_e500
1494 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1495 {
1496 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1497 {
1498 unsigned int imm;
1499 ev_reg = GET_SRC_REG (op);
1500 imm = (op >> 11) & 0x1f;
1501 ev_offset = imm * 8;
1502 /* If this is the first vector reg to be saved, or if
1503 it has a lower number than others previously seen,
1504 reupdate the frame info. */
1505 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1506 {
1507 fdata->saved_ev = ev_reg;
1508 fdata->ev_offset = ev_offset + offset;
1509 }
1510 }
1511 continue;
1512 }
1513 /* Store gen register rS at (r1+rB). */
1514 /* 000100 sssss 00001 bbbbb 01100100000 */
1515 else if (arch_info->mach == bfd_mach_ppc_e500
1516 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1517 {
1518 if (pc == (li_found_pc + 4))
1519 {
1520 ev_reg = GET_SRC_REG (op);
1521 /* If this is the first vector reg to be saved, or if
1522 it has a lower number than others previously seen,
1523 reupdate the frame info. */
1524 /* We know the contents of rB from the previous instruction. */
1525 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1526 {
1527 fdata->saved_ev = ev_reg;
1528 fdata->ev_offset = vr_saved_offset + offset;
1529 }
1530 vr_saved_offset = -1;
1531 ev_reg = -1;
1532 li_found_pc = 0;
1533 }
1534 continue;
1535 }
1536 /* Store gen register r31 at (rA+uimm). */
1537 /* 000100 11111 aaaaa iiiii 01100100001 */
1538 else if (arch_info->mach == bfd_mach_ppc_e500
1539 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1540 {
1541 /* Wwe know that the source register is 31 already, but
1542 it can't hurt to compute it. */
1543 ev_reg = GET_SRC_REG (op);
1544 ev_offset = ((op >> 11) & 0x1f) * 8;
1545 /* If this is the first vector reg to be saved, or if
1546 it has a lower number than others previously seen,
1547 reupdate the frame info. */
1548 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1549 {
1550 fdata->saved_ev = ev_reg;
1551 fdata->ev_offset = ev_offset + offset;
1552 }
1553
1554 continue;
1555 }
1556 /* Store gen register S at (r31+r0).
1557 Store param on stack when offset from SP bigger than 4 bytes. */
1558 /* 000100 sssss 11111 00000 01100100000 */
1559 else if (arch_info->mach == bfd_mach_ppc_e500
1560 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1561 {
1562 if (pc == (li_found_pc + 4))
1563 {
1564 if ((op & 0x03e00000) >= 0x01a00000)
1565 {
1566 ev_reg = GET_SRC_REG (op);
1567 /* If this is the first vector reg to be saved, or if
1568 it has a lower number than others previously seen,
1569 reupdate the frame info. */
1570 /* We know the contents of r0 from the previous
1571 instruction. */
1572 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1573 {
1574 fdata->saved_ev = ev_reg;
1575 fdata->ev_offset = vr_saved_offset + offset;
1576 }
1577 ev_reg = -1;
1578 }
1579 vr_saved_offset = -1;
1580 li_found_pc = 0;
1581 continue;
1582 }
1583 }
1584 /* End BookE related instructions. */
1585
c5aa993b
JM
1586 else
1587 {
55d05f3b
KB
1588 /* Not a recognized prologue instruction.
1589 Handle optimizer code motions into the prologue by continuing
1590 the search if we have no valid frame yet or if the return
1591 address is not yet saved in the frame. */
4e463ff5 1592 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
55d05f3b
KB
1593 break;
1594
1595 if (op == 0x4e800020 /* blr */
1596 || op == 0x4e800420) /* bctr */
1597 /* Do not scan past epilogue in frameless functions or
1598 trampolines. */
1599 break;
1600 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1601 /* Never skip branches. */
55d05f3b
KB
1602 break;
1603
1604 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1605 /* Do not scan too many insns, scanning insns is expensive with
1606 remote targets. */
1607 break;
1608
1609 /* Continue scanning. */
1610 prev_insn_was_prologue_insn = 0;
1611 continue;
c5aa993b 1612 }
c906108c
SS
1613 }
1614
1615#if 0
1616/* I have problems with skipping over __main() that I need to address
1617 * sometime. Previously, I used to use misc_function_vector which
1618 * didn't work as well as I wanted to be. -MGO */
1619
1620 /* If the first thing after skipping a prolog is a branch to a function,
1621 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1622 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1623 work before calling a function right after a prologue, thus we can
64366f1c 1624 single out such gcc2 behaviour. */
c906108c 1625
c906108c 1626
c5aa993b
JM
1627 if ((op & 0xfc000001) == 0x48000001)
1628 { /* bl foo, an initializer function? */
1629 op = read_memory_integer (pc + 4, 4);
1630
1631 if (op == 0x4def7b82)
1632 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1633
64366f1c
EZ
1634 /* Check and see if we are in main. If so, skip over this
1635 initializer function as well. */
c906108c 1636
c5aa993b 1637 tmp = find_pc_misc_function (pc);
6314a349
AC
1638 if (tmp >= 0
1639 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1640 return pc + 8;
1641 }
c906108c 1642 }
c906108c 1643#endif /* 0 */
c5aa993b
JM
1644
1645 fdata->offset = -fdata->offset;
ddb20c56 1646 return last_prologue_pc;
c906108c
SS
1647}
1648
1649
1650/*************************************************************************
f6077098 1651 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1652 frames, etc.
1653*************************************************************************/
1654
c906108c 1655
11269d7e
AC
1656/* All the ABI's require 16 byte alignment. */
1657static CORE_ADDR
1658rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1659{
1660 return (addr & -16);
1661}
1662
7a78ae4e 1663/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1664 the first eight words of the argument list (that might be less than
1665 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1666 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1667 passed in fpr's, in addition to that. Rest of the parameters if any
1668 are passed in user stack. There might be cases in which half of the
c906108c
SS
1669 parameter is copied into registers, the other half is pushed into
1670 stack.
1671
7a78ae4e
ND
1672 Stack must be aligned on 64-bit boundaries when synthesizing
1673 function calls.
1674
c906108c
SS
1675 If the function is returning a structure, then the return address is passed
1676 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1677 starting from r4. */
c906108c 1678
7a78ae4e 1679static CORE_ADDR
7d9b040b 1680rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1681 struct regcache *regcache, CORE_ADDR bp_addr,
1682 int nargs, struct value **args, CORE_ADDR sp,
1683 int struct_return, CORE_ADDR struct_addr)
c906108c 1684{
8b164abb 1685 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c906108c
SS
1686 int ii;
1687 int len = 0;
c5aa993b
JM
1688 int argno; /* current argument number */
1689 int argbytes; /* current argument byte */
50fd1280 1690 gdb_byte tmp_buffer[50];
c5aa993b 1691 int f_argno = 0; /* current floating point argno */
8b164abb 1692 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
7d9b040b 1693 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1694
ea7c478f 1695 struct value *arg = 0;
c906108c
SS
1696 struct type *type;
1697
fb4443d8 1698 ULONGEST saved_sp;
c906108c 1699
383f0f5b
JB
1700 /* The calling convention this function implements assumes the
1701 processor has floating-point registers. We shouldn't be using it
1702 on PPC variants that lack them. */
8b164abb 1703 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 1704
64366f1c 1705 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1706 Copy them appropriately. */
1707 ii = 0;
1708
1709 /* If the function is returning a `struct', then the first word
1710 (which will be passed in r3) is used for struct return address.
1711 In that case we should advance one word and start from r4
1712 register to copy parameters. */
1713 if (struct_return)
1714 {
1715 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1716 struct_addr);
1717 ii++;
1718 }
c906108c
SS
1719
1720/*
c5aa993b
JM
1721 effectively indirect call... gcc does...
1722
1723 return_val example( float, int);
1724
1725 eabi:
1726 float in fp0, int in r3
1727 offset of stack on overflow 8/16
1728 for varargs, must go by type.
1729 power open:
1730 float in r3&r4, int in r5
1731 offset of stack on overflow different
1732 both:
1733 return in r3 or f0. If no float, must study how gcc emulates floats;
1734 pay attention to arg promotion.
1735 User may have to cast\args to handle promotion correctly
1736 since gdb won't know if prototype supplied or not.
1737 */
c906108c 1738
c5aa993b
JM
1739 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1740 {
8b164abb 1741 int reg_size = register_size (gdbarch, ii + 3);
c5aa993b
JM
1742
1743 arg = args[argno];
df407dfe 1744 type = check_typedef (value_type (arg));
c5aa993b
JM
1745 len = TYPE_LENGTH (type);
1746
1747 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1748 {
1749
64366f1c 1750 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1751 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1752 there is no way we would run out of them. */
c5aa993b 1753
9f335945
KB
1754 gdb_assert (len <= 8);
1755
1756 regcache_cooked_write (regcache,
1757 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1758 value_contents (arg));
c5aa993b
JM
1759 ++f_argno;
1760 }
1761
f6077098 1762 if (len > reg_size)
c5aa993b
JM
1763 {
1764
64366f1c 1765 /* Argument takes more than one register. */
c5aa993b
JM
1766 while (argbytes < len)
1767 {
50fd1280 1768 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1769 memset (word, 0, reg_size);
1770 memcpy (word,
0fd88904 1771 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1772 (len - argbytes) > reg_size
1773 ? reg_size : len - argbytes);
9f335945
KB
1774 regcache_cooked_write (regcache,
1775 tdep->ppc_gp0_regnum + 3 + ii,
1776 word);
f6077098 1777 ++ii, argbytes += reg_size;
c5aa993b
JM
1778
1779 if (ii >= 8)
1780 goto ran_out_of_registers_for_arguments;
1781 }
1782 argbytes = 0;
1783 --ii;
1784 }
1785 else
64366f1c
EZ
1786 {
1787 /* Argument can fit in one register. No problem. */
8b164abb 1788 int adj = gdbarch_byte_order (gdbarch)
4c6b5505 1789 == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1790 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1791
1792 memset (word, 0, reg_size);
0fd88904 1793 memcpy (word, value_contents (arg), len);
9f335945 1794 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1795 }
1796 ++argno;
c906108c 1797 }
c906108c
SS
1798
1799ran_out_of_registers_for_arguments:
1800
3e8c568d 1801 regcache_cooked_read_unsigned (regcache,
8b164abb 1802 gdbarch_sp_regnum (gdbarch),
3e8c568d 1803 &saved_sp);
cc9836a8 1804
64366f1c 1805 /* Location for 8 parameters are always reserved. */
7a78ae4e 1806 sp -= wordsize * 8;
f6077098 1807
64366f1c 1808 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1809 sp -= wordsize * 6;
f6077098 1810
64366f1c 1811 /* Stack pointer must be quadword aligned. */
7a78ae4e 1812 sp &= -16;
c906108c 1813
64366f1c
EZ
1814 /* If there are more arguments, allocate space for them in
1815 the stack, then push them starting from the ninth one. */
c906108c 1816
c5aa993b
JM
1817 if ((argno < nargs) || argbytes)
1818 {
1819 int space = 0, jj;
c906108c 1820
c5aa993b
JM
1821 if (argbytes)
1822 {
1823 space += ((len - argbytes + 3) & -4);
1824 jj = argno + 1;
1825 }
1826 else
1827 jj = argno;
c906108c 1828
c5aa993b
JM
1829 for (; jj < nargs; ++jj)
1830 {
ea7c478f 1831 struct value *val = args[jj];
df407dfe 1832 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1833 }
c906108c 1834
64366f1c 1835 /* Add location required for the rest of the parameters. */
f6077098 1836 space = (space + 15) & -16;
c5aa993b 1837 sp -= space;
c906108c 1838
7aea86e6
AC
1839 /* This is another instance we need to be concerned about
1840 securing our stack space. If we write anything underneath %sp
1841 (r1), we might conflict with the kernel who thinks he is free
1842 to use this area. So, update %sp first before doing anything
1843 else. */
1844
3e8c568d 1845 regcache_raw_write_signed (regcache,
8b164abb 1846 gdbarch_sp_regnum (gdbarch), sp);
7aea86e6 1847
64366f1c
EZ
1848 /* If the last argument copied into the registers didn't fit there
1849 completely, push the rest of it into stack. */
c906108c 1850
c5aa993b
JM
1851 if (argbytes)
1852 {
1853 write_memory (sp + 24 + (ii * 4),
50fd1280 1854 value_contents (arg) + argbytes,
c5aa993b
JM
1855 len - argbytes);
1856 ++argno;
1857 ii += ((len - argbytes + 3) & -4) / 4;
1858 }
c906108c 1859
64366f1c 1860 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1861 for (; argno < nargs; ++argno)
1862 {
c906108c 1863
c5aa993b 1864 arg = args[argno];
df407dfe 1865 type = check_typedef (value_type (arg));
c5aa993b 1866 len = TYPE_LENGTH (type);
c906108c
SS
1867
1868
64366f1c
EZ
1869 /* Float types should be passed in fpr's, as well as in the
1870 stack. */
c5aa993b
JM
1871 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1872 {
c906108c 1873
9f335945 1874 gdb_assert (len <= 8);
c906108c 1875
9f335945
KB
1876 regcache_cooked_write (regcache,
1877 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1878 value_contents (arg));
c5aa993b
JM
1879 ++f_argno;
1880 }
c906108c 1881
50fd1280 1882 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1883 ii += ((len + 3) & -4) / 4;
1884 }
c906108c 1885 }
c906108c 1886
69517000 1887 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1888 be set _before_ the corresponding stack space is used. On AIX,
1889 this even applies when the target has been completely stopped!
1890 Not doing this can lead to conflicts with the kernel which thinks
1891 that it still has control over this not-yet-allocated stack
1892 region. */
8b164abb 1893 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
33a7c2fc 1894
7aea86e6 1895 /* Set back chain properly. */
8ba0209f
AM
1896 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1897 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 1898
e56a0ecc
AC
1899 /* Point the inferior function call's return address at the dummy's
1900 breakpoint. */
1901 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1902
794a477a
AC
1903 /* Set the TOC register, get the value from the objfile reader
1904 which, in turn, gets it from the VMAP table. */
1905 if (rs6000_find_toc_address_hook != NULL)
1906 {
1907 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1908 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1909 }
1910
56be3814 1911 target_store_registers (regcache, -1);
c906108c
SS
1912 return sp;
1913}
c906108c 1914
d217aaed
MK
1915static enum return_value_convention
1916rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1917 struct regcache *regcache, gdb_byte *readbuf,
1918 const gdb_byte *writebuf)
c906108c 1919{
8b164abb 1920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d217aaed 1921 gdb_byte buf[8];
c906108c 1922
383f0f5b
JB
1923 /* The calling convention this function implements assumes the
1924 processor has floating-point registers. We shouldn't be using it
d217aaed 1925 on PowerPC variants that lack them. */
8b164abb 1926 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 1927
d217aaed
MK
1928 /* AltiVec extension: Functions that declare a vector data type as a
1929 return value place that return value in VR2. */
1930 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1931 && TYPE_LENGTH (valtype) == 16)
c5aa993b 1932 {
d217aaed
MK
1933 if (readbuf)
1934 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1935 if (writebuf)
1936 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
c906108c 1937
d217aaed 1938 return RETURN_VALUE_REGISTER_CONVENTION;
c5aa993b 1939 }
d217aaed
MK
1940
1941 /* If the called subprogram returns an aggregate, there exists an
1942 implicit first argument, whose value is the address of a caller-
1943 allocated buffer into which the callee is assumed to store its
1944 return value. All explicit parameters are appropriately
1945 relabeled. */
1946 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1947 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1948 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1949 return RETURN_VALUE_STRUCT_CONVENTION;
1950
1951 /* Scalar floating-point values are returned in FPR1 for float or
1952 double, and in FPR1:FPR2 for quadword precision. Fortran
1953 complex*8 and complex*16 are returned in FPR1:FPR2, and
1954 complex*32 is returned in FPR1:FPR4. */
1955 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1956 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1957 {
1958 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1959 gdb_byte regval[8];
1960
1961 /* FIXME: kettenis/2007-01-01: Add support for quadword
1962 precision and complex. */
1963
1964 if (readbuf)
1965 {
1966 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1967 convert_typed_floating (regval, regtype, readbuf, valtype);
1968 }
1969 if (writebuf)
1970 {
1971 convert_typed_floating (writebuf, valtype, regval, regtype);
1972 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1973 }
1974
1975 return RETURN_VALUE_REGISTER_CONVENTION;
1976 }
1977
1978 /* Values of the types int, long, short, pointer, and char (length
1979 is less than or equal to four bytes), as well as bit values of
1980 lengths less than or equal to 32 bits, must be returned right
1981 justified in GPR3 with signed values sign extended and unsigned
1982 values zero extended, as necessary. */
1983 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
ace1378a 1984 {
d217aaed
MK
1985 if (readbuf)
1986 {
1987 ULONGEST regval;
1988
1989 /* For reading we don't have to worry about sign extension. */
1990 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1991 &regval);
1992 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1993 }
1994 if (writebuf)
1995 {
1996 /* For writing, use unpack_long since that should handle any
1997 required sign extension. */
1998 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1999 unpack_long (valtype, writebuf));
2000 }
2001
2002 return RETURN_VALUE_REGISTER_CONVENTION;
ace1378a 2003 }
d217aaed
MK
2004
2005 /* Eight-byte non-floating-point scalar values must be returned in
2006 GPR3:GPR4. */
2007
2008 if (TYPE_LENGTH (valtype) == 8)
c5aa993b 2009 {
d217aaed
MK
2010 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
2011 gdb_assert (tdep->wordsize == 4);
2012
2013 if (readbuf)
2014 {
2015 gdb_byte regval[8];
2016
2017 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
2018 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
2019 regval + 4);
2020 memcpy (readbuf, regval, 8);
2021 }
2022 if (writebuf)
2023 {
2024 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
2025 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
2026 writebuf + 4);
2027 }
2028
2029 return RETURN_VALUE_REGISTER_CONVENTION;
c906108c 2030 }
d217aaed
MK
2031
2032 return RETURN_VALUE_STRUCT_CONVENTION;
c906108c
SS
2033}
2034
977adac5
ND
2035/* Return whether handle_inferior_event() should proceed through code
2036 starting at PC in function NAME when stepping.
2037
2038 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2039 handle memory references that are too distant to fit in instructions
2040 generated by the compiler. For example, if 'foo' in the following
2041 instruction:
2042
2043 lwz r9,foo(r2)
2044
2045 is greater than 32767, the linker might replace the lwz with a branch to
2046 somewhere in @FIX1 that does the load in 2 instructions and then branches
2047 back to where execution should continue.
2048
2049 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
2050 Unfortunately, the linker uses the "b" instruction for the
2051 branches, meaning that the link register doesn't get set.
2052 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 2053
e76f05fa
UW
2054 Instead, use the gdbarch_skip_trampoline_code and
2055 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 2056 @FIX code. */
977adac5
ND
2057
2058int
2059rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
2060{
2061 return name && !strncmp (name, "@FIX", 4);
2062}
2063
2064/* Skip code that the user doesn't want to see when stepping:
2065
2066 1. Indirect function calls use a piece of trampoline code to do context
2067 switching, i.e. to set the new TOC table. Skip such code if we are on
2068 its first instruction (as when we have single-stepped to here).
2069
2070 2. Skip shared library trampoline code (which is different from
c906108c 2071 indirect function call trampolines).
977adac5
ND
2072
2073 3. Skip bigtoc fixup code.
2074
c906108c 2075 Result is desired PC to step until, or NULL if we are not in
977adac5 2076 code that should be skipped. */
c906108c
SS
2077
2078CORE_ADDR
52f729a7 2079rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 2080{
52f0bd74 2081 unsigned int ii, op;
977adac5 2082 int rel;
c906108c 2083 CORE_ADDR solib_target_pc;
977adac5 2084 struct minimal_symbol *msymbol;
c906108c 2085
c5aa993b
JM
2086 static unsigned trampoline_code[] =
2087 {
2088 0x800b0000, /* l r0,0x0(r11) */
2089 0x90410014, /* st r2,0x14(r1) */
2090 0x7c0903a6, /* mtctr r0 */
2091 0x804b0004, /* l r2,0x4(r11) */
2092 0x816b0008, /* l r11,0x8(r11) */
2093 0x4e800420, /* bctr */
2094 0x4e800020, /* br */
2095 0
c906108c
SS
2096 };
2097
977adac5
ND
2098 /* Check for bigtoc fixup code. */
2099 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
2100 if (msymbol
2101 && rs6000_in_solib_return_trampoline (pc,
2102 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
2103 {
2104 /* Double-check that the third instruction from PC is relative "b". */
2105 op = read_memory_integer (pc + 8, 4);
2106 if ((op & 0xfc000003) == 0x48000000)
2107 {
2108 /* Extract bits 6-29 as a signed 24-bit relative word address and
2109 add it to the containing PC. */
2110 rel = ((int)(op << 6) >> 6);
2111 return pc + 8 + rel;
2112 }
2113 }
2114
c906108c 2115 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2116 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2117 if (solib_target_pc)
2118 return solib_target_pc;
2119
c5aa993b
JM
2120 for (ii = 0; trampoline_code[ii]; ++ii)
2121 {
2122 op = read_memory_integer (pc + (ii * 4), 4);
2123 if (op != trampoline_code[ii])
2124 return 0;
2125 }
52f729a7 2126 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
8b164abb
UW
2127 pc = read_memory_addr (ii,
2128 gdbarch_tdep (get_frame_arch (frame))->wordsize); /* (r11) value */
c906108c
SS
2129 return pc;
2130}
2131
794ac428
UW
2132/* ISA-specific vector types. */
2133
2134static struct type *
2135rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2136{
2137 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2138
2139 if (!tdep->ppc_builtin_type_vec64)
2140 {
2141 /* The type we're building is this: */
2142#if 0
2143 union __gdb_builtin_type_vec64
2144 {
2145 int64_t uint64;
2146 float v2_float[2];
2147 int32_t v2_int32[2];
2148 int16_t v4_int16[4];
2149 int8_t v8_int8[8];
2150 };
2151#endif
2152
2153 struct type *t;
2154
2155 t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2156 append_composite_type_field (t, "uint64", builtin_type_int64);
2157 append_composite_type_field (t, "v2_float",
2158 init_vector_type (builtin_type_float, 2));
2159 append_composite_type_field (t, "v2_int32",
2160 init_vector_type (builtin_type_int32, 2));
2161 append_composite_type_field (t, "v4_int16",
2162 init_vector_type (builtin_type_int16, 4));
2163 append_composite_type_field (t, "v8_int8",
2164 init_vector_type (builtin_type_int8, 8));
2165
2166 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2167 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2168 tdep->ppc_builtin_type_vec64 = t;
2169 }
2170
2171 return tdep->ppc_builtin_type_vec64;
2172}
2173
2174static struct type *
2175rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2176{
2177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2178
2179 if (!tdep->ppc_builtin_type_vec128)
2180 {
2181 /* The type we're building is this: */
2182#if 0
2183 union __gdb_builtin_type_vec128
2184 {
2185 int128_t uint128;
2186 float v4_float[4];
2187 int32_t v4_int32[4];
2188 int16_t v8_int16[8];
2189 int8_t v16_int8[16];
2190 };
2191#endif
2192
2193 struct type *t;
2194
2195 t = init_composite_type ("__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2196 append_composite_type_field (t, "uint128", builtin_type_int128);
2197 append_composite_type_field (t, "v4_float",
2198 init_vector_type (builtin_type_float, 4));
2199 append_composite_type_field (t, "v4_int32",
2200 init_vector_type (builtin_type_int32, 4));
2201 append_composite_type_field (t, "v8_int16",
2202 init_vector_type (builtin_type_int16, 8));
2203 append_composite_type_field (t, "v16_int8",
2204 init_vector_type (builtin_type_int8, 16));
2205
2206 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2207 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2208 tdep->ppc_builtin_type_vec128 = t;
2209 }
2210
2211 return tdep->ppc_builtin_type_vec128;
2212}
2213
7a78ae4e 2214/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 2215 isn't available with that word size, return 0. */
7a78ae4e
ND
2216
2217static int
2218regsize (const struct reg *reg, int wordsize)
2219{
2220 return wordsize == 8 ? reg->sz64 : reg->sz32;
2221}
2222
2223/* Return the name of register number N, or null if no such register exists
64366f1c 2224 in the current architecture. */
7a78ae4e 2225
fa88f677 2226static const char *
7a78ae4e
ND
2227rs6000_register_name (int n)
2228{
21283beb 2229 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
2230 const struct reg *reg = tdep->regs + n;
2231
2232 if (!regsize (reg, tdep->wordsize))
2233 return NULL;
2234 return reg->name;
2235}
2236
7a78ae4e
ND
2237/* Return the GDB type object for the "standard" data type
2238 of data in register N. */
2239
2240static struct type *
691d145a 2241rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 2242{
691d145a 2243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
2244 const struct reg *reg = tdep->regs + n;
2245
1fcc0bb8
EZ
2246 if (reg->fpr)
2247 return builtin_type_double;
2248 else
2249 {
2250 int size = regsize (reg, tdep->wordsize);
2251 switch (size)
2252 {
449a5da4
AC
2253 case 0:
2254 return builtin_type_int0;
2255 case 4:
ed6edd9b 2256 return builtin_type_uint32;
1fcc0bb8 2257 case 8:
c8001721 2258 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
794ac428 2259 return rs6000_builtin_type_vec64 (gdbarch);
c8001721 2260 else
ed6edd9b 2261 return builtin_type_uint64;
1fcc0bb8
EZ
2262 break;
2263 case 16:
794ac428 2264 return rs6000_builtin_type_vec128 (gdbarch);
1fcc0bb8
EZ
2265 break;
2266 default:
e2e0b3e5 2267 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 2268 n, size);
1fcc0bb8
EZ
2269 }
2270 }
7a78ae4e
ND
2271}
2272
c44ca51c
AC
2273/* Is REGNUM a member of REGGROUP? */
2274static int
2275rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2276 struct reggroup *group)
2277{
2278 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2279 int float_p;
2280 int vector_p;
2281 int general_p;
2282
8b164abb
UW
2283 if (gdbarch_register_name (gdbarch, regnum) == NULL
2284 || *gdbarch_register_name (gdbarch, regnum) == '\0')
c44ca51c
AC
2285 return 0;
2286 if (group == all_reggroup)
2287 return 1;
2288
2289 float_p = (regnum == tdep->ppc_fpscr_regnum
2290 || (regnum >= tdep->ppc_fp0_regnum
2291 && regnum < tdep->ppc_fp0_regnum + 32));
2292 if (group == float_reggroup)
2293 return float_p;
2294
826d5376
PG
2295 vector_p = ((tdep->ppc_vr0_regnum >= 0
2296 && regnum >= tdep->ppc_vr0_regnum
c44ca51c 2297 && regnum < tdep->ppc_vr0_regnum + 32)
826d5376
PG
2298 || (tdep->ppc_ev0_regnum >= 0
2299 && regnum >= tdep->ppc_ev0_regnum
c44ca51c 2300 && regnum < tdep->ppc_ev0_regnum + 32)
3bf49e1b 2301 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
c44ca51c
AC
2302 || regnum == tdep->ppc_vrsave_regnum
2303 || regnum == tdep->ppc_acc_regnum
2304 || regnum == tdep->ppc_spefscr_regnum);
2305 if (group == vector_reggroup)
2306 return vector_p;
2307
2308 /* Note that PS aka MSR isn't included - it's a system register (and
2309 besides, due to GCC's CFI foobar you do not want to restore
2310 it). */
2311 general_p = ((regnum >= tdep->ppc_gp0_regnum
2312 && regnum < tdep->ppc_gp0_regnum + 32)
2313 || regnum == tdep->ppc_toc_regnum
2314 || regnum == tdep->ppc_cr_regnum
2315 || regnum == tdep->ppc_lr_regnum
2316 || regnum == tdep->ppc_ctr_regnum
2317 || regnum == tdep->ppc_xer_regnum
8b164abb 2318 || regnum == gdbarch_pc_regnum (gdbarch));
c44ca51c
AC
2319 if (group == general_reggroup)
2320 return general_p;
2321
2322 if (group == save_reggroup || group == restore_reggroup)
2323 return general_p || vector_p || float_p;
2324
2325 return 0;
2326}
2327
691d145a 2328/* The register format for RS/6000 floating point registers is always
64366f1c 2329 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2330
2331static int
691d145a 2332rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 2333{
691d145a
JB
2334 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2335
2336 return (reg->fpr
2337 && TYPE_CODE (type) == TYPE_CODE_FLT
2338 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
2339}
2340
7a78ae4e 2341static void
691d145a
JB
2342rs6000_register_to_value (struct frame_info *frame,
2343 int regnum,
2344 struct type *type,
50fd1280 2345 gdb_byte *to)
7a78ae4e 2346{
8b164abb 2347 const struct reg *reg = gdbarch_tdep (get_frame_arch (frame))->regs + regnum;
50fd1280 2348 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
2349
2350 gdb_assert (reg->fpr);
2351 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2352
691d145a
JB
2353 get_frame_register (frame, regnum, from);
2354 convert_typed_floating (from, builtin_type_double, to, type);
2355}
7a292a7a 2356
7a78ae4e 2357static void
691d145a
JB
2358rs6000_value_to_register (struct frame_info *frame,
2359 int regnum,
2360 struct type *type,
50fd1280 2361 const gdb_byte *from)
7a78ae4e 2362{
8b164abb 2363 const struct reg *reg = gdbarch_tdep (get_frame_arch (frame))->regs + regnum;
50fd1280 2364 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
2365
2366 gdb_assert (reg->fpr);
2367 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2368
2369 convert_typed_floating (from, type, to, builtin_type_double);
2370 put_frame_register (frame, regnum, to);
7a78ae4e 2371}
c906108c 2372
6ced10dd
JB
2373/* Move SPE vector register values between a 64-bit buffer and the two
2374 32-bit raw register halves in a regcache. This function handles
2375 both splitting a 64-bit value into two 32-bit halves, and joining
2376 two halves into a whole 64-bit value, depending on the function
2377 passed as the MOVE argument.
2378
2379 EV_REG must be the number of an SPE evN vector register --- a
2380 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2381 64-bit buffer.
2382
2383 Call MOVE once for each 32-bit half of that register, passing
2384 REGCACHE, the number of the raw register corresponding to that
2385 half, and the address of the appropriate half of BUFFER.
2386
2387 For example, passing 'regcache_raw_read' as the MOVE function will
2388 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2389 'regcache_raw_supply' will supply the contents of BUFFER to the
2390 appropriate pair of raw registers in REGCACHE.
2391
2392 You may need to cast away some 'const' qualifiers when passing
2393 MOVE, since this function can't tell at compile-time which of
2394 REGCACHE or BUFFER is acting as the source of the data. If C had
2395 co-variant type qualifiers, ... */
2396static void
2397e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 2398 int regnum, gdb_byte *buf),
6ced10dd 2399 struct regcache *regcache, int ev_reg,
50fd1280 2400 gdb_byte *buffer)
6ced10dd
JB
2401{
2402 struct gdbarch *arch = get_regcache_arch (regcache);
2403 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2404 int reg_index;
50fd1280 2405 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
2406
2407 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2408 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2409
2410 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2411
8b164abb 2412 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
6ced10dd
JB
2413 {
2414 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2415 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2416 }
2417 else
2418 {
2419 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2420 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2421 }
2422}
2423
c8001721
EZ
2424static void
2425e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2426 int reg_nr, gdb_byte *buffer)
c8001721 2427{
6ced10dd 2428 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2429 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2430
6ced10dd
JB
2431 gdb_assert (regcache_arch == gdbarch);
2432
2433 if (tdep->ppc_ev0_regnum <= reg_nr
2434 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2435 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2436 else
a44bddec 2437 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2438 _("e500_pseudo_register_read: "
2439 "called on unexpected register '%s' (%d)"),
a44bddec 2440 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2441}
2442
2443static void
2444e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2445 int reg_nr, const gdb_byte *buffer)
c8001721 2446{
6ced10dd 2447 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2448 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2449
6ced10dd
JB
2450 gdb_assert (regcache_arch == gdbarch);
2451
2452 if (tdep->ppc_ev0_regnum <= reg_nr
2453 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2454 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2455 regcache_raw_write,
50fd1280 2456 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2457 else
a44bddec 2458 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2459 _("e500_pseudo_register_read: "
2460 "called on unexpected register '%s' (%d)"),
a44bddec 2461 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2462}
2463
2464/* The E500 needs a custom reggroup function: it has anonymous raw
2465 registers, and default_register_reggroup_p assumes that anonymous
2466 registers are not members of any reggroup. */
2467static int
2468e500_register_reggroup_p (struct gdbarch *gdbarch,
2469 int regnum,
2470 struct reggroup *group)
2471{
2472 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2473
2474 /* The save and restore register groups need to include the
2475 upper-half registers, even though they're anonymous. */
2476 if ((group == save_reggroup
2477 || group == restore_reggroup)
2478 && (tdep->ppc_ev0_upper_regnum <= regnum
2479 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2480 return 1;
2481
2482 /* In all other regards, the default reggroup definition is fine. */
2483 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2484}
2485
18ed0c4e 2486/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2487static int
18ed0c4e 2488rs6000_stab_reg_to_regnum (int num)
c8001721 2489{
9f744501 2490 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2491
9f744501
JB
2492 if (0 <= num && num <= 31)
2493 return tdep->ppc_gp0_regnum + num;
2494 else if (32 <= num && num <= 63)
383f0f5b
JB
2495 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2496 specifies registers the architecture doesn't have? Our
2497 callers don't check the value we return. */
366f009f 2498 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2499 else if (77 <= num && num <= 108)
2500 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2501 else if (1200 <= num && num < 1200 + 32)
2502 return tdep->ppc_ev0_regnum + (num - 1200);
2503 else
2504 switch (num)
2505 {
2506 case 64:
2507 return tdep->ppc_mq_regnum;
2508 case 65:
2509 return tdep->ppc_lr_regnum;
2510 case 66:
2511 return tdep->ppc_ctr_regnum;
2512 case 76:
2513 return tdep->ppc_xer_regnum;
2514 case 109:
2515 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2516 case 110:
2517 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2518 case 111:
18ed0c4e 2519 return tdep->ppc_acc_regnum;
867e2dc5 2520 case 112:
18ed0c4e 2521 return tdep->ppc_spefscr_regnum;
9f744501
JB
2522 default:
2523 return num;
2524 }
18ed0c4e 2525}
9f744501 2526
9f744501 2527
18ed0c4e
JB
2528/* Convert a Dwarf 2 register number to a GDB register number. */
2529static int
2530rs6000_dwarf2_reg_to_regnum (int num)
2531{
2532 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2533
18ed0c4e
JB
2534 if (0 <= num && num <= 31)
2535 return tdep->ppc_gp0_regnum + num;
2536 else if (32 <= num && num <= 63)
2537 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2538 specifies registers the architecture doesn't have? Our
2539 callers don't check the value we return. */
2540 return tdep->ppc_fp0_regnum + (num - 32);
2541 else if (1124 <= num && num < 1124 + 32)
2542 return tdep->ppc_vr0_regnum + (num - 1124);
2543 else if (1200 <= num && num < 1200 + 32)
2544 return tdep->ppc_ev0_regnum + (num - 1200);
2545 else
2546 switch (num)
2547 {
a489f789
AS
2548 case 64:
2549 return tdep->ppc_cr_regnum;
18ed0c4e
JB
2550 case 67:
2551 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2552 case 99:
2553 return tdep->ppc_acc_regnum;
2554 case 100:
2555 return tdep->ppc_mq_regnum;
2556 case 101:
2557 return tdep->ppc_xer_regnum;
2558 case 108:
2559 return tdep->ppc_lr_regnum;
2560 case 109:
2561 return tdep->ppc_ctr_regnum;
2562 case 356:
2563 return tdep->ppc_vrsave_regnum;
2564 case 612:
2565 return tdep->ppc_spefscr_regnum;
2566 default:
2567 return num;
2568 }
2188cbdd
EZ
2569}
2570
4fc771b8
DJ
2571/* Translate a .eh_frame register to DWARF register, or adjust a
2572 .debug_frame register. */
2573
2574static int
2575rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2576{
2577 /* GCC releases before 3.4 use GCC internal register numbering in
2578 .debug_frame (and .debug_info, et cetera). The numbering is
2579 different from the standard SysV numbering for everything except
2580 for GPRs and FPRs. We can not detect this problem in most cases
2581 - to get accurate debug info for variables living in lr, ctr, v0,
2582 et cetera, use a newer version of GCC. But we must detect
2583 one important case - lr is in column 65 in .debug_frame output,
2584 instead of 108.
2585
2586 GCC 3.4, and the "hammer" branch, have a related problem. They
2587 record lr register saves in .debug_frame as 108, but still record
2588 the return column as 65. We fix that up too.
2589
2590 We can do this because 65 is assigned to fpsr, and GCC never
2591 generates debug info referring to it. To add support for
2592 handwritten debug info that restores fpsr, we would need to add a
2593 producer version check to this. */
2594 if (!eh_frame_p)
2595 {
2596 if (num == 65)
2597 return 108;
2598 else
2599 return num;
2600 }
2601
2602 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2603 internal register numbering; translate that to the standard DWARF2
2604 register numbering. */
2605 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2606 return num;
2607 else if (68 <= num && num <= 75) /* cr0-cr8 */
2608 return num - 68 + 86;
2609 else if (77 <= num && num <= 108) /* vr0-vr31 */
2610 return num - 77 + 1124;
2611 else
2612 switch (num)
2613 {
2614 case 64: /* mq */
2615 return 100;
2616 case 65: /* lr */
2617 return 108;
2618 case 66: /* ctr */
2619 return 109;
2620 case 76: /* xer */
2621 return 101;
2622 case 109: /* vrsave */
2623 return 356;
2624 case 110: /* vscr */
2625 return 67;
2626 case 111: /* spe_acc */
2627 return 99;
2628 case 112: /* spefscr */
2629 return 612;
2630 default:
2631 return num;
2632 }
2633}
c906108c 2634\f
e2d0e7eb 2635/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2636
2637 Usually a function pointer's representation is simply the address
2638 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2639 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2640 three words, the first word is the address of the function, the
2641 second word is the TOC pointer (r2), and the third word is the
2642 static chain value. Throughout GDB it is currently assumed that a
2643 function pointer contains the address of the function, which is not
2644 easy to fix. In addition, the conversion of a function address to
8ba0209f 2645 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2646 inferior's memory space, with all its drawbacks. To be able to
2647 call C++ virtual methods in the inferior (which are called via
f517ea4e 2648 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2649 function address from a function pointer. */
2650
f517ea4e
PS
2651/* Return real function address if ADDR (a function pointer) is in the data
2652 space and is therefore a special function pointer. */
c906108c 2653
b9362cc7 2654static CORE_ADDR
e2d0e7eb
AC
2655rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2656 CORE_ADDR addr,
2657 struct target_ops *targ)
c906108c
SS
2658{
2659 struct obj_section *s;
2660
2661 s = find_pc_section (addr);
2662 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2663 return addr;
c906108c 2664
7a78ae4e 2665 /* ADDR is in the data space, so it's a special function pointer. */
7f68ac27 2666 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
c906108c 2667}
c906108c 2668\f
c5aa993b 2669
7a78ae4e 2670/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2671
2672
7a78ae4e
ND
2673/* The arrays here called registers_MUMBLE hold information about available
2674 registers.
c906108c
SS
2675
2676 For each family of PPC variants, I've tried to isolate out the
2677 common registers and put them up front, so that as long as you get
2678 the general family right, GDB will correctly identify the registers
2679 common to that family. The common register sets are:
2680
2681 For the 60x family: hid0 hid1 iabr dabr pir
2682
2683 For the 505 and 860 family: eie eid nri
2684
2685 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2686 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2687 pbu1 pbl2 pbu2
c906108c
SS
2688
2689 Most of these register groups aren't anything formal. I arrived at
2690 them by looking at the registers that occurred in more than one
6f5987a6
KB
2691 processor.
2692
2693 Note: kevinb/2002-04-30: Support for the fpscr register was added
2694 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2695 for Power. For PowerPC, slot 70 was unused and was already in the
2696 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2697 slot 70 was being used for "mq", so the next available slot (71)
2698 was chosen. It would have been nice to be able to make the
2699 register numbers the same across processor cores, but this wasn't
2700 possible without either 1) renumbering some registers for some
2701 processors or 2) assigning fpscr to a really high slot that's
2702 larger than any current register number. Doing (1) is bad because
2703 existing stubs would break. Doing (2) is undesirable because it
2704 would introduce a really large gap between fpscr and the rest of
2705 the registers for most processors. */
7a78ae4e 2706
64366f1c 2707/* Convenience macros for populating register arrays. */
7a78ae4e 2708
64366f1c 2709/* Within another macro, convert S to a string. */
7a78ae4e
ND
2710
2711#define STR(s) #s
2712
2713/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2714 and 64 bits on 64-bit systems. */
13ac140c 2715#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2716
2717/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2718 systems. */
13ac140c 2719#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2720
2721/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2722 systems. */
13ac140c 2723#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2724
1fcc0bb8 2725/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2726 systems. */
13ac140c 2727#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2728
64366f1c 2729/* Return a struct reg defining floating-point register NAME. */
13ac140c 2730#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2731
6ced10dd
JB
2732/* Return a struct reg defining a pseudo register NAME that is 64 bits
2733 long on all systems. */
2734#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2735
2736/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2737 systems and that doesn't exist on 64-bit systems. */
13ac140c 2738#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2739
2740/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2741 systems and that doesn't exist on 32-bit systems. */
13ac140c 2742#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2743
64366f1c 2744/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2745#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2746
6ced10dd
JB
2747/* Return a struct reg defining an anonymous raw register that's 32
2748 bits on all systems. */
2749#define A4 { 0, 4, 4, 0, 0, -1 }
2750
13ac140c
JB
2751/* Return a struct reg defining an SPR named NAME that is 32 bits on
2752 32-bit systems and 64 bits on 64-bit systems. */
2753#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2754
2755/* Return a struct reg defining an SPR named NAME that is 32 bits on
2756 all systems. */
2757#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2758
2759/* Return a struct reg defining an SPR named NAME that is 32 bits on
2760 all systems, and whose SPR number is NUMBER. */
2761#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2762
2763/* Return a struct reg defining an SPR named NAME that's 64 bits on
2764 64-bit systems and that doesn't exist on 32-bit systems. */
2765#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2766
7a78ae4e
ND
2767/* UISA registers common across all architectures, including POWER. */
2768
2769#define COMMON_UISA_REGS \
2770 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2771 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2772 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2773 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2774 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2775 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2776 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2777 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2778 /* 64 */ R(pc), R(ps)
2779
2780/* UISA-level SPRs for PowerPC. */
2781#define PPC_UISA_SPRS \
13ac140c 2782 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2783
c8001721
EZ
2784/* UISA-level SPRs for PowerPC without floating point support. */
2785#define PPC_UISA_NOFP_SPRS \
13ac140c 2786 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2787
7a78ae4e
ND
2788/* Segment registers, for PowerPC. */
2789#define PPC_SEGMENT_REGS \
2790 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2791 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2792 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2793 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2794
2795/* OEA SPRs for PowerPC. */
2796#define PPC_OEA_SPRS \
13ac140c
JB
2797 /* 87 */ S4(pvr), \
2798 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2799 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2800 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2801 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2802 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2803 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2804 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2805 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2806
64366f1c 2807/* AltiVec registers. */
1fcc0bb8
EZ
2808#define PPC_ALTIVEC_REGS \
2809 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2810 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2811 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2812 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2813 /*151*/R4(vscr), R4(vrsave)
2814
c8001721 2815
6ced10dd
JB
2816/* On machines supporting the SPE APU, the general-purpose registers
2817 are 64 bits long. There are SIMD vector instructions to treat them
2818 as pairs of floats, but the rest of the instruction set treats them
2819 as 32-bit registers, and only operates on their lower halves.
2820
2821 In the GDB regcache, we treat their high and low halves as separate
2822 registers. The low halves we present as the general-purpose
2823 registers, and then we have pseudo-registers that stitch together
2824 the upper and lower halves and present them as pseudo-registers. */
2825
2826/* SPE GPR lower halves --- raw registers. */
2827#define PPC_SPE_GP_REGS \
2828 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2829 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2830 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2831 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2832
2833/* SPE GPR upper halves --- anonymous raw registers. */
2834#define PPC_SPE_UPPER_GP_REGS \
2835 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2836 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2837 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2838 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2839
2840/* SPE GPR vector registers --- pseudo registers based on underlying
2841 gprs and the anonymous upper half raw registers. */
2842#define PPC_EV_PSEUDO_REGS \
2843/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2844/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2845/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2846/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2847
7a78ae4e 2848/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2849 user-level SPR's. */
7a78ae4e 2850static const struct reg registers_power[] =
c906108c 2851{
7a78ae4e 2852 COMMON_UISA_REGS,
13ac140c 2853 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2854 /* 71 */ R4(fpscr)
c906108c
SS
2855};
2856
7a78ae4e 2857/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2858 view of the PowerPC. */
7a78ae4e 2859static const struct reg registers_powerpc[] =
c906108c 2860{
7a78ae4e 2861 COMMON_UISA_REGS,
1fcc0bb8
EZ
2862 PPC_UISA_SPRS,
2863 PPC_ALTIVEC_REGS
c906108c
SS
2864};
2865
13ac140c
JB
2866/* IBM PowerPC 403.
2867
2868 Some notes about the "tcr" special-purpose register:
2869 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2870 403's programmable interval timer, fixed interval timer, and
2871 watchdog timer.
2872 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2873 watchdog timer, and nothing else.
2874
2875 Some of the fields are similar between the two, but they're not
2876 compatible with each other. Since the two variants have different
2877 registers, with different numbers, but the same name, we can't
2878 splice the register name to get the SPR number. */
7a78ae4e 2879static const struct reg registers_403[] =
c5aa993b 2880{
7a78ae4e
ND
2881 COMMON_UISA_REGS,
2882 PPC_UISA_SPRS,
2883 PPC_SEGMENT_REGS,
2884 PPC_OEA_SPRS,
13ac140c
JB
2885 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2886 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2887 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2888 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2889 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2890 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2891};
2892
13ac140c
JB
2893/* IBM PowerPC 403GC.
2894 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2895static const struct reg registers_403GC[] =
c5aa993b 2896{
7a78ae4e
ND
2897 COMMON_UISA_REGS,
2898 PPC_UISA_SPRS,
2899 PPC_SEGMENT_REGS,
2900 PPC_OEA_SPRS,
13ac140c
JB
2901 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2902 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2903 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2904 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2905 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2906 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2907 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2908 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2909};
2910
64366f1c 2911/* Motorola PowerPC 505. */
7a78ae4e 2912static const struct reg registers_505[] =
c5aa993b 2913{
7a78ae4e
ND
2914 COMMON_UISA_REGS,
2915 PPC_UISA_SPRS,
2916 PPC_SEGMENT_REGS,
2917 PPC_OEA_SPRS,
13ac140c 2918 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2919};
2920
64366f1c 2921/* Motorola PowerPC 860 or 850. */
7a78ae4e 2922static const struct reg registers_860[] =
c5aa993b 2923{
7a78ae4e
ND
2924 COMMON_UISA_REGS,
2925 PPC_UISA_SPRS,
2926 PPC_SEGMENT_REGS,
2927 PPC_OEA_SPRS,
13ac140c
JB
2928 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2929 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2930 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2931 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2932 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2933 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2934 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2935 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2936 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2937 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2938 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2939 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2940};
2941
7a78ae4e
ND
2942/* Motorola PowerPC 601. Note that the 601 has different register numbers
2943 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2944 register is the stub's problem. */
7a78ae4e 2945static const struct reg registers_601[] =
c5aa993b 2946{
7a78ae4e
ND
2947 COMMON_UISA_REGS,
2948 PPC_UISA_SPRS,
2949 PPC_SEGMENT_REGS,
2950 PPC_OEA_SPRS,
13ac140c
JB
2951 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2952 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2953};
2954
13ac140c
JB
2955/* Motorola PowerPC 602.
2956 See the notes under the 403 about 'tcr'. */
7a78ae4e 2957static const struct reg registers_602[] =
c5aa993b 2958{
7a78ae4e
ND
2959 COMMON_UISA_REGS,
2960 PPC_UISA_SPRS,
2961 PPC_SEGMENT_REGS,
2962 PPC_OEA_SPRS,
13ac140c
JB
2963 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2964 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2965 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2966};
2967
64366f1c 2968/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2969static const struct reg registers_603[] =
c5aa993b 2970{
7a78ae4e
ND
2971 COMMON_UISA_REGS,
2972 PPC_UISA_SPRS,
2973 PPC_SEGMENT_REGS,
2974 PPC_OEA_SPRS,
13ac140c
JB
2975 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2976 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2977 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2978};
2979
64366f1c 2980/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2981static const struct reg registers_604[] =
c5aa993b 2982{
7a78ae4e
ND
2983 COMMON_UISA_REGS,
2984 PPC_UISA_SPRS,
2985 PPC_SEGMENT_REGS,
2986 PPC_OEA_SPRS,
13ac140c
JB
2987 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2988 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2989 /* 127 */ S(sia), S(sda)
c906108c
SS
2990};
2991
64366f1c 2992/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2993static const struct reg registers_750[] =
c5aa993b 2994{
7a78ae4e
ND
2995 COMMON_UISA_REGS,
2996 PPC_UISA_SPRS,
2997 PPC_SEGMENT_REGS,
2998 PPC_OEA_SPRS,
13ac140c
JB
2999 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
3000 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
3001 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
3002 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
3003 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
3004 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
3005};
3006
3007
64366f1c 3008/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
3009static const struct reg registers_7400[] =
3010{
3011 /* gpr0-gpr31, fpr0-fpr31 */
3012 COMMON_UISA_REGS,
13c7b1ca 3013 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
3014 PPC_UISA_SPRS,
3015 /* sr0-sr15 */
3016 PPC_SEGMENT_REGS,
3017 PPC_OEA_SPRS,
3018 /* vr0-vr31, vrsave, vscr */
3019 PPC_ALTIVEC_REGS
3020 /* FIXME? Add more registers? */
3021};
3022
c8001721
EZ
3023/* Motorola e500. */
3024static const struct reg registers_e500[] =
3025{
6ced10dd
JB
3026 /* 0 .. 31 */ PPC_SPE_GP_REGS,
3027 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
3028 /* 64 .. 65 */ R(pc), R(ps),
3029 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
3030 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
3031 /* NOTE: Add new registers here the end of the raw register
3032 list and just before the first pseudo register. */
6ced10dd 3033 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
3034};
3035
c906108c 3036/* Information about a particular processor variant. */
7a78ae4e 3037
c906108c 3038struct variant
c5aa993b
JM
3039 {
3040 /* Name of this variant. */
3041 char *name;
c906108c 3042
c5aa993b
JM
3043 /* English description of the variant. */
3044 char *description;
c906108c 3045
64366f1c 3046 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
3047 enum bfd_architecture arch;
3048
64366f1c 3049 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
3050 unsigned long mach;
3051
489461e2
EZ
3052 /* Number of real registers. */
3053 int nregs;
3054
3055 /* Number of pseudo registers. */
3056 int npregs;
3057
3058 /* Number of total registers (the sum of nregs and npregs). */
3059 int num_tot_regs;
3060
c5aa993b
JM
3061 /* Table of register names; registers[R] is the name of the register
3062 number R. */
7a78ae4e 3063 const struct reg *regs;
c5aa993b 3064 };
c906108c 3065
489461e2
EZ
3066#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
3067
3068static int
3069num_registers (const struct reg *reg_list, int num_tot_regs)
3070{
3071 int i;
3072 int nregs = 0;
3073
3074 for (i = 0; i < num_tot_regs; i++)
3075 if (!reg_list[i].pseudo)
3076 nregs++;
3077
3078 return nregs;
3079}
3080
3081static int
3082num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
3083{
3084 int i;
3085 int npregs = 0;
3086
3087 for (i = 0; i < num_tot_regs; i++)
3088 if (reg_list[i].pseudo)
3089 npregs ++;
3090
3091 return npregs;
3092}
c906108c 3093
c906108c
SS
3094/* Information in this table comes from the following web sites:
3095 IBM: http://www.chips.ibm.com:80/products/embedded/
3096 Motorola: http://www.mot.com/SPS/PowerPC/
3097
3098 I'm sure I've got some of the variant descriptions not quite right.
3099 Please report any inaccuracies you find to GDB's maintainer.
3100
3101 If you add entries to this table, please be sure to allow the new
3102 value as an argument to the --with-cpu flag, in configure.in. */
3103
489461e2 3104static struct variant variants[] =
c906108c 3105{
489461e2 3106
7a78ae4e 3107 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
3108 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
3109 registers_powerpc},
7a78ae4e 3110 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
3111 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
3112 registers_power},
7a78ae4e 3113 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
3114 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
3115 registers_403},
7a78ae4e 3116 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
3117 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
3118 registers_601},
7a78ae4e 3119 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
3120 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
3121 registers_602},
7a78ae4e 3122 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
3123 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
3124 registers_603},
7a78ae4e 3125 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
3126 604, -1, -1, tot_num_registers (registers_604),
3127 registers_604},
7a78ae4e 3128 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
3129 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
3130 registers_403GC},
7a78ae4e 3131 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
3132 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
3133 registers_505},
7a78ae4e 3134 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
3135 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
3136 registers_860},
7a78ae4e 3137 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
3138 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
3139 registers_750},
1fcc0bb8 3140 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
3141 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
3142 registers_7400},
c8001721
EZ
3143 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3144 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
3145 registers_e500},
7a78ae4e 3146
5d57ee30
KB
3147 /* 64-bit */
3148 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
3149 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
3150 registers_powerpc},
7a78ae4e 3151 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
3152 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
3153 registers_powerpc},
5d57ee30 3154 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
3155 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
3156 registers_powerpc},
7a78ae4e 3157 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
3158 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
3159 registers_powerpc},
5d57ee30 3160 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
3161 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
3162 registers_powerpc},
5d57ee30 3163 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
3164 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
3165 registers_powerpc},
5d57ee30 3166
64366f1c 3167 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 3168 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
3169 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
3170 registers_power},
7a78ae4e 3171 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
3172 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
3173 registers_power},
7a78ae4e 3174 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
3175 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
3176 registers_power},
7a78ae4e 3177
489461e2 3178 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
3179};
3180
64366f1c 3181/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
3182
3183static void
3184init_variants (void)
3185{
3186 struct variant *v;
3187
3188 for (v = variants; v->name; v++)
3189 {
3190 if (v->nregs == -1)
3191 v->nregs = num_registers (v->regs, v->num_tot_regs);
3192 if (v->npregs == -1)
3193 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
3194 }
3195}
c906108c 3196
7a78ae4e 3197/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 3198 MACH. If no such variant exists, return null. */
c906108c 3199
7a78ae4e
ND
3200static const struct variant *
3201find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 3202{
7a78ae4e 3203 const struct variant *v;
c5aa993b 3204
7a78ae4e
ND
3205 for (v = variants; v->name; v++)
3206 if (arch == v->arch && mach == v->mach)
3207 return v;
c906108c 3208
7a78ae4e 3209 return NULL;
c906108c 3210}
9364a0ef
EZ
3211
3212static int
3213gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3214{
ee4f0f76
DJ
3215 if (!info->disassembler_options)
3216 info->disassembler_options = "any";
3217
4c6b5505 3218 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
9364a0ef
EZ
3219 return print_insn_big_powerpc (memaddr, info);
3220 else
3221 return print_insn_little_powerpc (memaddr, info);
3222}
7a78ae4e 3223\f
61a65099
KB
3224static CORE_ADDR
3225rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3226{
3e8c568d 3227 return frame_unwind_register_unsigned (next_frame,
8b164abb 3228 gdbarch_pc_regnum (gdbarch));
61a65099
KB
3229}
3230
3231static struct frame_id
3232rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
3233{
3e8c568d 3234 return frame_id_build (frame_unwind_register_unsigned
8b164abb 3235 (next_frame, gdbarch_sp_regnum (gdbarch)),
3e8c568d 3236 frame_pc_unwind (next_frame));
61a65099
KB
3237}
3238
3239struct rs6000_frame_cache
3240{
3241 CORE_ADDR base;
3242 CORE_ADDR initial_sp;
3243 struct trad_frame_saved_reg *saved_regs;
3244};
3245
3246static struct rs6000_frame_cache *
3247rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
3248{
3249 struct rs6000_frame_cache *cache;
3250 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3252 struct rs6000_framedata fdata;
3253 int wordsize = tdep->wordsize;
e10b1c4c 3254 CORE_ADDR func, pc;
61a65099
KB
3255
3256 if ((*this_cache) != NULL)
3257 return (*this_cache);
3258 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3259 (*this_cache) = cache;
3260 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
3261
93d42b30 3262 func = frame_func_unwind (next_frame, NORMAL_FRAME);
e10b1c4c
DJ
3263 pc = frame_pc_unwind (next_frame);
3264 skip_prologue (func, pc, &fdata);
3265
3266 /* Figure out the parent's stack pointer. */
3267
3268 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3269 address of the current frame. Things might be easier if the
3270 ->frame pointed to the outer-most address of the frame. In
3271 the mean time, the address of the prev frame is used as the
3272 base address of this frame. */
3e8c568d 3273 cache->base = frame_unwind_register_unsigned
8b164abb 3274 (next_frame, gdbarch_sp_regnum (gdbarch));
e10b1c4c
DJ
3275
3276 /* If the function appears to be frameless, check a couple of likely
3277 indicators that we have simply failed to find the frame setup.
3278 Two common cases of this are missing symbols (i.e.
3279 frame_func_unwind returns the wrong address or 0), and assembly
3280 stubs which have a fast exit path but set up a frame on the slow
3281 path.
3282
3283 If the LR appears to return to this function, then presume that
3284 we have an ABI compliant frame that we failed to find. */
3285 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3286 {
e10b1c4c
DJ
3287 CORE_ADDR saved_lr;
3288 int make_frame = 0;
3289
3290 saved_lr = frame_unwind_register_unsigned (next_frame,
3291 tdep->ppc_lr_regnum);
3292 if (func == 0 && saved_lr == pc)
3293 make_frame = 1;
3294 else if (func != 0)
3295 {
3296 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3297 if (func == saved_func)
3298 make_frame = 1;
3299 }
3300
3301 if (make_frame)
3302 {
3303 fdata.frameless = 0;
de6a76fd 3304 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3305 }
61a65099 3306 }
e10b1c4c
DJ
3307
3308 if (!fdata.frameless)
3309 /* Frameless really means stackless. */
3310 cache->base = read_memory_addr (cache->base, wordsize);
3311
3e8c568d 3312 trad_frame_set_value (cache->saved_regs,
8b164abb 3313 gdbarch_sp_regnum (gdbarch), cache->base);
61a65099
KB
3314
3315 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3316 All fpr's from saved_fpr to fp31 are saved. */
3317
3318 if (fdata.saved_fpr >= 0)
3319 {
3320 int i;
3321 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3322
3323 /* If skip_prologue says floating-point registers were saved,
3324 but the current architecture has no floating-point registers,
3325 then that's strange. But we have no indices to even record
3326 the addresses under, so we just ignore it. */
3327 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3328 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3329 {
3330 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3331 fpr_addr += 8;
3332 }
61a65099
KB
3333 }
3334
3335 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3336 All gpr's from saved_gpr to gpr31 are saved. */
3337
3338 if (fdata.saved_gpr >= 0)
3339 {
3340 int i;
3341 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3342 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
3343 {
3344 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3345 gpr_addr += wordsize;
3346 }
3347 }
3348
3349 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3350 All vr's from saved_vr to vr31 are saved. */
3351 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3352 {
3353 if (fdata.saved_vr >= 0)
3354 {
3355 int i;
3356 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3357 for (i = fdata.saved_vr; i < 32; i++)
3358 {
3359 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3360 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3361 }
3362 }
3363 }
3364
3365 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3366 All vr's from saved_ev to ev31 are saved. ????? */
3367 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3368 {
3369 if (fdata.saved_ev >= 0)
3370 {
3371 int i;
3372 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 3373 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3374 {
3375 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3376 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3377 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3378 }
3379 }
3380 }
3381
3382 /* If != 0, fdata.cr_offset is the offset from the frame that
3383 holds the CR. */
3384 if (fdata.cr_offset != 0)
3385 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3386
3387 /* If != 0, fdata.lr_offset is the offset from the frame that
3388 holds the LR. */
3389 if (fdata.lr_offset != 0)
3390 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3391 /* The PC is found in the link register. */
8b164abb 3392 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3e8c568d 3393 cache->saved_regs[tdep->ppc_lr_regnum];
61a65099
KB
3394
3395 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3396 holds the VRSAVE. */
3397 if (fdata.vrsave_offset != 0)
3398 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3399
3400 if (fdata.alloca_reg < 0)
3401 /* If no alloca register used, then fi->frame is the value of the
3402 %sp for this frame, and it is good enough. */
3e8c568d 3403 cache->initial_sp = frame_unwind_register_unsigned
8b164abb 3404 (next_frame, gdbarch_sp_regnum (gdbarch));
61a65099
KB
3405 else
3406 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3407 fdata.alloca_reg);
3408
3409 return cache;
3410}
3411
3412static void
3413rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3414 struct frame_id *this_id)
3415{
3416 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3417 this_cache);
93d42b30
DJ
3418 (*this_id) = frame_id_build (info->base,
3419 frame_func_unwind (next_frame, NORMAL_FRAME));
61a65099
KB
3420}
3421
3422static void
3423rs6000_frame_prev_register (struct frame_info *next_frame,
3424 void **this_cache,
3425 int regnum, int *optimizedp,
3426 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3427 int *realnump, gdb_byte *valuep)
61a65099
KB
3428{
3429 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3430 this_cache);
1f67027d
AC
3431 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3432 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3433}
3434
3435static const struct frame_unwind rs6000_frame_unwind =
3436{
3437 NORMAL_FRAME,
3438 rs6000_frame_this_id,
3439 rs6000_frame_prev_register
3440};
3441
3442static const struct frame_unwind *
3443rs6000_frame_sniffer (struct frame_info *next_frame)
3444{
3445 return &rs6000_frame_unwind;
3446}
3447
3448\f
3449
3450static CORE_ADDR
3451rs6000_frame_base_address (struct frame_info *next_frame,
3452 void **this_cache)
3453{
3454 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3455 this_cache);
3456 return info->initial_sp;
3457}
3458
3459static const struct frame_base rs6000_frame_base = {
3460 &rs6000_frame_unwind,
3461 rs6000_frame_base_address,
3462 rs6000_frame_base_address,
3463 rs6000_frame_base_address
3464};
3465
3466static const struct frame_base *
3467rs6000_frame_base_sniffer (struct frame_info *next_frame)
3468{
3469 return &rs6000_frame_base;
3470}
3471
7a78ae4e
ND
3472/* Initialize the current architecture based on INFO. If possible, re-use an
3473 architecture from ARCHES, which is a list of architectures already created
3474 during this debugging session.
c906108c 3475
7a78ae4e 3476 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3477 a binary file. */
c906108c 3478
7a78ae4e
ND
3479static struct gdbarch *
3480rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3481{
3482 struct gdbarch *gdbarch;
3483 struct gdbarch_tdep *tdep;
708ff411 3484 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3485 struct reg *regs;
3486 const struct variant *v;
3487 enum bfd_architecture arch;
3488 unsigned long mach;
3489 bfd abfd;
7b112f9c 3490 int sysv_abi;
5bf1c677 3491 asection *sect;
7a78ae4e 3492
9aa1e687 3493 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3494 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3495
9aa1e687
KB
3496 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3497 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3498
3499 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3500
e712c1cf 3501 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3502 that, else choose a likely default. */
9aa1e687 3503 if (from_xcoff_exec)
c906108c 3504 {
11ed25ac 3505 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3506 wordsize = 8;
3507 else
3508 wordsize = 4;
c906108c 3509 }
9aa1e687
KB
3510 else if (from_elf_exec)
3511 {
3512 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3513 wordsize = 8;
3514 else
3515 wordsize = 4;
3516 }
c906108c 3517 else
7a78ae4e 3518 {
27b15785
KB
3519 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3520 wordsize = info.bfd_arch_info->bits_per_word /
3521 info.bfd_arch_info->bits_per_byte;
3522 else
3523 wordsize = 4;
7a78ae4e 3524 }
c906108c 3525
13c0b536 3526 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3527 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3528 arches != NULL;
3529 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3530 {
3531 /* Word size in the various PowerPC bfd_arch_info structs isn't
3532 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3533 separate word size check. */
7a78ae4e 3534 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3535 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3536 return arches->gdbarch;
3537 }
c906108c 3538
7a78ae4e
ND
3539 /* None found, create a new architecture from INFO, whose bfd_arch_info
3540 validity depends on the source:
3541 - executable useless
3542 - rs6000_host_arch() good
3543 - core file good
3544 - "set arch" trust blindly
3545 - GDB startup useless but harmless */
c906108c 3546
9aa1e687 3547 if (!from_xcoff_exec)
c906108c 3548 {
b732d07d 3549 arch = info.bfd_arch_info->arch;
7a78ae4e 3550 mach = info.bfd_arch_info->mach;
c906108c 3551 }
7a78ae4e 3552 else
c906108c 3553 {
7a78ae4e 3554 arch = bfd_arch_powerpc;
35cec841 3555 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3556 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3557 mach = info.bfd_arch_info->mach;
7a78ae4e 3558 }
794ac428 3559 tdep = XCALLOC (1, struct gdbarch_tdep);
7a78ae4e 3560 tdep->wordsize = wordsize;
5bf1c677
EZ
3561
3562 /* For e500 executables, the apuinfo section is of help here. Such
3563 section contains the identifier and revision number of each
3564 Application-specific Processing Unit that is present on the
3565 chip. The content of the section is determined by the assembler
3566 which looks at each instruction and determines which unit (and
3567 which version of it) can execute it. In our case we just look for
3568 the existance of the section. */
3569
3570 if (info.abfd)
3571 {
3572 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3573 if (sect)
3574 {
3575 arch = info.bfd_arch_info->arch;
3576 mach = bfd_mach_ppc_e500;
3577 bfd_default_set_arch_mach (&abfd, arch, mach);
3578 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3579 }
3580 }
3581
7a78ae4e 3582 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3583
489461e2
EZ
3584 /* Initialize the number of real and pseudo registers in each variant. */
3585 init_variants ();
3586
64366f1c 3587 /* Choose variant. */
7a78ae4e
ND
3588 v = find_variant_by_arch (arch, mach);
3589 if (!v)
dd47e6fd
EZ
3590 return NULL;
3591
7a78ae4e
ND
3592 tdep->regs = v->regs;
3593
2188cbdd 3594 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3595 tdep->ppc_toc_regnum = 2;
3596 tdep->ppc_ps_regnum = 65;
3597 tdep->ppc_cr_regnum = 66;
3598 tdep->ppc_lr_regnum = 67;
3599 tdep->ppc_ctr_regnum = 68;
3600 tdep->ppc_xer_regnum = 69;
3601 if (v->mach == bfd_mach_ppc_601)
3602 tdep->ppc_mq_regnum = 124;
708ff411 3603 else if (arch == bfd_arch_rs6000)
2188cbdd 3604 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3605 else
3606 tdep->ppc_mq_regnum = -1;
366f009f 3607 tdep->ppc_fp0_regnum = 32;
708ff411 3608 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3609 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3610 tdep->ppc_vr0_regnum = -1;
3611 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3612 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3613 tdep->ppc_ev0_regnum = -1;
3614 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3615 tdep->ppc_acc_regnum = -1;
3616 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3617
c8001721
EZ
3618 set_gdbarch_pc_regnum (gdbarch, 64);
3619 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3620 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
6f7f3f0d 3621 set_gdbarch_fp0_regnum (gdbarch, 32);
9f643768 3622 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3623 if (sysv_abi && wordsize == 8)
05580c65 3624 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3625 else if (sysv_abi && wordsize == 4)
05580c65 3626 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75 3627 else
d217aaed 3628 set_gdbarch_return_value (gdbarch, rs6000_return_value);
c8001721 3629
baffbae0
JB
3630 /* Set lr_frame_offset. */
3631 if (wordsize == 8)
3632 tdep->lr_frame_offset = 16;
3633 else if (sysv_abi)
3634 tdep->lr_frame_offset = 4;
3635 else
3636 tdep->lr_frame_offset = 8;
3637
f86a7158
JB
3638 if (v->arch == bfd_arch_rs6000)
3639 tdep->ppc_sr0_regnum = -1;
3640 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3641 switch (v->mach)
3642 {
3643 case bfd_mach_ppc:
412b3060 3644 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3645 tdep->ppc_vr0_regnum = 71;
3646 tdep->ppc_vrsave_regnum = 104;
3647 break;
3648 case bfd_mach_ppc_7400:
3649 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3650 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3651 break;
3652 case bfd_mach_ppc_e500:
c8001721 3653 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3654 tdep->ppc_ev0_upper_regnum = 32;
3655 tdep->ppc_ev0_regnum = 73;
3656 tdep->ppc_ev31_regnum = 104;
3657 tdep->ppc_acc_regnum = 71;
3658 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3659 tdep->ppc_fp0_regnum = -1;
3660 tdep->ppc_fpscr_regnum = -1;
f86a7158 3661 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3662 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3663 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3664 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3665 break;
f86a7158
JB
3666
3667 case bfd_mach_ppc64:
3668 case bfd_mach_ppc_620:
3669 case bfd_mach_ppc_630:
3670 case bfd_mach_ppc_a35:
3671 case bfd_mach_ppc_rs64ii:
3672 case bfd_mach_ppc_rs64iii:
3673 /* These processor's register sets don't have segment registers. */
3674 tdep->ppc_sr0_regnum = -1;
3675 break;
1fcc0bb8 3676 }
f86a7158
JB
3677 else
3678 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3679 _("rs6000_gdbarch_init: "
3680 "received unexpected BFD 'arch' value"));
1fcc0bb8 3681
e0d24f8d
WZ
3682 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3683
338ef23d
AC
3684 /* Sanity check on registers. */
3685 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3686
56a6dfb9 3687 /* Select instruction printer. */
708ff411 3688 if (arch == bfd_arch_rs6000)
9364a0ef 3689 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3690 else
9364a0ef 3691 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3692
7a78ae4e 3693 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3694 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3695 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3696 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3697 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3698
3699 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3700 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3701 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3702 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3703 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3704 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3705 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3706 if (sysv_abi)
3707 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3708 else
3709 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3710 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3711
11269d7e 3712 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3713 if (sysv_abi && wordsize == 8)
3714 /* PPC64 SYSV. */
3715 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3716 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3717 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3718 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3719 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3720 224. */
3721 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3722
691d145a
JB
3723 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3724 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3725 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3726
18ed0c4e
JB
3727 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3728 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 3729
2ea5f656 3730 if (sysv_abi && wordsize == 4)
77b2b6d4 3731 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3732 else if (sysv_abi && wordsize == 8)
3733 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3734 else
77b2b6d4 3735 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3736
7a78ae4e 3737 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
0d1243d9
PG
3738 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3739
7a78ae4e 3740 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3741 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3742
ce5eab59
UW
3743 /* Handles single stepping of atomic sequences. */
3744 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3745
6066c3de
AC
3746 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3747 for the descriptor and ".FN" for the entry-point -- a user
3748 specifying "break FN" will unexpectedly end up with a breakpoint
3749 on the descriptor and not the function. This architecture method
3750 transforms any breakpoints on descriptors into breakpoints on the
3751 corresponding entry point. */
3752 if (sysv_abi && wordsize == 8)
3753 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3754
7a78ae4e
ND
3755 /* Not sure on this. FIXMEmgo */
3756 set_gdbarch_frame_args_skip (gdbarch, 8);
3757
15813d3f
AC
3758 if (!sysv_abi)
3759 {
3760 /* Handle RS/6000 function pointers (which are really function
3761 descriptors). */
f517ea4e
PS
3762 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3763 rs6000_convert_from_func_ptr_addr);
9aa1e687 3764 }
7a78ae4e 3765
143985b7
AF
3766 /* Helpers for function argument information. */
3767 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3768
6f7f3f0d
UW
3769 /* Trampoline. */
3770 set_gdbarch_in_solib_return_trampoline
3771 (gdbarch, rs6000_in_solib_return_trampoline);
3772 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3773
4fc771b8
DJ
3774 /* Hook in the DWARF CFI frame unwinder. */
3775 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3776 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3777
7b112f9c 3778 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3779 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3780
61a65099
KB
3781 switch (info.osabi)
3782 {
f5aecab8
PG
3783 case GDB_OSABI_LINUX:
3784 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3785 have altivec registers. If not, ptrace will fail the first time it's
3786 called to access one and will not be called again. This wart will
3787 be removed when Daniel Jacobowitz's proposal for autodetecting target
3788 registers is implemented. */
3789 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3790 {
3791 tdep->ppc_vr0_regnum = 71;
3792 tdep->ppc_vrsave_regnum = 104;
3793 }
3794 /* Fall Thru */
61a65099
KB
3795 case GDB_OSABI_NETBSD_AOUT:
3796 case GDB_OSABI_NETBSD_ELF:
3797 case GDB_OSABI_UNKNOWN:
61a65099
KB
3798 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3799 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3800 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3801 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3802 break;
3803 default:
61a65099 3804 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3805
3806 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3807 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3808 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3809 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3810 }
3811
9f643768
JB
3812 init_sim_regno_table (gdbarch);
3813
7a78ae4e 3814 return gdbarch;
c906108c
SS
3815}
3816
7b112f9c 3817static void
8b164abb 3818rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7b112f9c 3819{
8b164abb 3820 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7b112f9c
JT
3821
3822 if (tdep == NULL)
3823 return;
3824
4be87837 3825 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3826}
3827
c906108c
SS
3828/* Initialization code. */
3829
a78f21af 3830extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3831
c906108c 3832void
fba45db2 3833_initialize_rs6000_tdep (void)
c906108c 3834{
7b112f9c
JT
3835 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3836 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
c906108c 3837}
This page took 1.007087 seconds and 4 git commands to generate.