PR binutils/1437
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6
AC
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
0fd88904 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
7aea86e6 5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
7a78ae4e 43
2fccf04a 44#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 45#include "coff/internal.h" /* for libcoff.h */
2fccf04a 46#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
47#include "coff/xcoff.h"
48#include "libxcoff.h"
7a78ae4e 49
9aa1e687 50#include "elf-bfd.h"
7a78ae4e 51
6ded7999 52#include "solib-svr4.h"
9aa1e687 53#include "ppc-tdep.h"
7a78ae4e 54
338ef23d 55#include "gdb_assert.h"
a89aa300 56#include "dis-asm.h"
338ef23d 57
61a65099
KB
58#include "trad-frame.h"
59#include "frame-unwind.h"
60#include "frame-base.h"
61
c44ca51c
AC
62#include "reggroups.h"
63
7a78ae4e
ND
64/* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71#define SIG_FRAME_PC_OFFSET 96
72#define SIG_FRAME_LR_OFFSET 108
73#define SIG_FRAME_FP_OFFSET 284
74
7a78ae4e
ND
75/* To be used by skip_prologue. */
76
77struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 84 int saved_vr; /* smallest # of saved vr */
96ff0de4 85 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 91 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 92 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
6be8bc0c 95 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
96 };
97
98/* Description of a single register. */
99
100struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
105 unsigned char fpr; /* whether register is floating-point */
489461e2 106 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
7a78ae4e
ND
110 };
111
c906108c
SS
112/* Breakpoint shadows for the single step instructions will be kept here. */
113
c5aa993b 114static struct sstep_breaks
50fd1280
AC
115{
116 /* Address, or 0 if this is not in use. */
117 CORE_ADDR address;
118 /* Shadow contents. */
119 gdb_byte data[4];
120}
c5aa993b 121stepBreaks[2];
c906108c
SS
122
123/* Hook for determining the TOC address when calling functions in the
124 inferior under AIX. The initialization code in rs6000-nat.c sets
125 this hook to point to find_toc_address. */
126
7a78ae4e
ND
127CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
128
129/* Hook to set the current architecture when starting a child process.
130 rs6000-nat.c sets this. */
131
132void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
133
134/* Static function prototypes */
135
a14ed312
KB
136static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
137 CORE_ADDR safety);
077276e8
KB
138static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
139 struct rs6000_framedata *);
c906108c 140
64b84175
KB
141/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
142int
143altivec_register_p (int regno)
144{
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
147 return 0;
148 else
149 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
150}
151
383f0f5b 152
867e2dc5
JB
153/* Return true if REGNO is an SPE register, false otherwise. */
154int
155spe_register_p (int regno)
156{
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
158
159 /* Is it a reference to EV0 -- EV31, and do we have those? */
160 if (tdep->ppc_ev0_regnum >= 0
161 && tdep->ppc_ev31_regnum >= 0
162 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
163 return 1;
164
6ced10dd
JB
165 /* Is it a reference to one of the raw upper GPR halves? */
166 if (tdep->ppc_ev0_upper_regnum >= 0
167 && tdep->ppc_ev0_upper_regnum <= regno
168 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
169 return 1;
170
867e2dc5
JB
171 /* Is it a reference to the 64-bit accumulator, and do we have that? */
172 if (tdep->ppc_acc_regnum >= 0
173 && tdep->ppc_acc_regnum == regno)
174 return 1;
175
176 /* Is it a reference to the SPE floating-point status and control register,
177 and do we have that? */
178 if (tdep->ppc_spefscr_regnum >= 0
179 && tdep->ppc_spefscr_regnum == regno)
180 return 1;
181
182 return 0;
183}
184
185
383f0f5b
JB
186/* Return non-zero if the architecture described by GDBARCH has
187 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
188int
189ppc_floating_point_unit_p (struct gdbarch *gdbarch)
190{
383f0f5b
JB
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 return (tdep->ppc_fp0_regnum >= 0
194 && tdep->ppc_fpscr_regnum >= 0);
0a613259 195}
9f643768 196
09991fa0
JB
197
198/* Check that TABLE[GDB_REGNO] is not already initialized, and then
199 set it to SIM_REGNO.
200
201 This is a helper function for init_sim_regno_table, constructing
202 the table mapping GDB register numbers to sim register numbers; we
203 initialize every element in that table to -1 before we start
204 filling it in. */
9f643768
JB
205static void
206set_sim_regno (int *table, int gdb_regno, int sim_regno)
207{
208 /* Make sure we don't try to assign any given GDB register a sim
209 register number more than once. */
210 gdb_assert (table[gdb_regno] == -1);
211 table[gdb_regno] = sim_regno;
212}
213
09991fa0
JB
214
215/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
216 numbers to simulator register numbers, based on the values placed
217 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
218static void
219init_sim_regno_table (struct gdbarch *arch)
220{
221 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
222 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
223 const struct reg *regs = tdep->regs;
224 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
225 int i;
226
227 /* Presume that all registers not explicitly mentioned below are
228 unavailable from the sim. */
229 for (i = 0; i < total_regs; i++)
230 sim_regno[i] = -1;
231
232 /* General-purpose registers. */
233 for (i = 0; i < ppc_num_gprs; i++)
234 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
235
236 /* Floating-point registers. */
237 if (tdep->ppc_fp0_regnum >= 0)
238 for (i = 0; i < ppc_num_fprs; i++)
239 set_sim_regno (sim_regno,
240 tdep->ppc_fp0_regnum + i,
241 sim_ppc_f0_regnum + i);
242 if (tdep->ppc_fpscr_regnum >= 0)
243 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
244
245 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
246 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
247 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
248
249 /* Segment registers. */
250 if (tdep->ppc_sr0_regnum >= 0)
251 for (i = 0; i < ppc_num_srs; i++)
252 set_sim_regno (sim_regno,
253 tdep->ppc_sr0_regnum + i,
254 sim_ppc_sr0_regnum + i);
255
256 /* Altivec registers. */
257 if (tdep->ppc_vr0_regnum >= 0)
258 {
259 for (i = 0; i < ppc_num_vrs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_vr0_regnum + i,
262 sim_ppc_vr0_regnum + i);
263
264 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
265 we can treat this more like the other cases. */
266 set_sim_regno (sim_regno,
267 tdep->ppc_vr0_regnum + ppc_num_vrs,
268 sim_ppc_vscr_regnum);
269 }
270 /* vsave is a special-purpose register, so the code below handles it. */
271
272 /* SPE APU (E500) registers. */
273 if (tdep->ppc_ev0_regnum >= 0)
274 for (i = 0; i < ppc_num_gprs; i++)
275 set_sim_regno (sim_regno,
276 tdep->ppc_ev0_regnum + i,
277 sim_ppc_ev0_regnum + i);
6ced10dd
JB
278 if (tdep->ppc_ev0_upper_regnum >= 0)
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno,
281 tdep->ppc_ev0_upper_regnum + i,
282 sim_ppc_rh0_regnum + i);
9f643768
JB
283 if (tdep->ppc_acc_regnum >= 0)
284 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
285 /* spefscr is a special-purpose register, so the code below handles it. */
286
287 /* Now handle all special-purpose registers. Verify that they
288 haven't mistakenly been assigned numbers by any of the above
289 code). */
290 for (i = 0; i < total_regs; i++)
291 if (regs[i].spr_num >= 0)
292 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
293
294 /* Drop the initialized array into place. */
295 tdep->sim_regno = sim_regno;
296}
297
09991fa0
JB
298
299/* Given a GDB register number REG, return the corresponding SIM
300 register number. */
9f643768
JB
301static int
302rs6000_register_sim_regno (int reg)
303{
304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
305 int sim_regno;
306
307 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
308 sim_regno = tdep->sim_regno[reg];
309
310 if (sim_regno >= 0)
311 return sim_regno;
312 else
313 return LEGACY_SIM_REGNO_IGNORE;
314}
315
d195bc9f
MK
316\f
317
318/* Register set support functions. */
319
320static void
321ppc_supply_reg (struct regcache *regcache, int regnum,
50fd1280 322 const gdb_byte *regs, size_t offset)
d195bc9f
MK
323{
324 if (regnum != -1 && offset != -1)
325 regcache_raw_supply (regcache, regnum, regs + offset);
326}
327
328static void
329ppc_collect_reg (const struct regcache *regcache, int regnum,
50fd1280 330 gdb_byte *regs, size_t offset)
d195bc9f
MK
331{
332 if (regnum != -1 && offset != -1)
333 regcache_raw_collect (regcache, regnum, regs + offset);
334}
335
336/* Supply register REGNUM in the general-purpose register set REGSET
337 from the buffer specified by GREGS and LEN to register cache
338 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
339
340void
341ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
342 int regnum, const void *gregs, size_t len)
343{
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 const struct ppc_reg_offsets *offsets = regset->descr;
347 size_t offset;
348 int i;
349
cdf2c5f5 350 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 351 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 352 i++, offset += 4)
d195bc9f
MK
353 {
354 if (regnum == -1 || regnum == i)
355 ppc_supply_reg (regcache, i, gregs, offset);
356 }
357
358 if (regnum == -1 || regnum == PC_REGNUM)
359 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
360 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
362 gregs, offsets->ps_offset);
363 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
365 gregs, offsets->cr_offset);
366 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
367 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
368 gregs, offsets->lr_offset);
369 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
370 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
371 gregs, offsets->ctr_offset);
372 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
373 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
374 gregs, offsets->cr_offset);
375 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
376 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
377}
378
379/* Supply register REGNUM in the floating-point register set REGSET
380 from the buffer specified by FPREGS and LEN to register cache
381 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
382
383void
384ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
385 int regnum, const void *fpregs, size_t len)
386{
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
389 const struct ppc_reg_offsets *offsets = regset->descr;
390 size_t offset;
391 int i;
392
383f0f5b
JB
393 gdb_assert (ppc_floating_point_unit_p (gdbarch));
394
d195bc9f 395 offset = offsets->f0_offset;
366f009f
JB
396 for (i = tdep->ppc_fp0_regnum;
397 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 398 i++, offset += 8)
d195bc9f
MK
399 {
400 if (regnum == -1 || regnum == i)
401 ppc_supply_reg (regcache, i, fpregs, offset);
402 }
403
404 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
405 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
406 fpregs, offsets->fpscr_offset);
407}
408
409/* Collect register REGNUM in the general-purpose register set
410 REGSET. from register cache REGCACHE into the buffer specified by
411 GREGS and LEN. If REGNUM is -1, do this for all registers in
412 REGSET. */
413
414void
415ppc_collect_gregset (const struct regset *regset,
416 const struct regcache *regcache,
417 int regnum, void *gregs, size_t len)
418{
419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 const struct ppc_reg_offsets *offsets = regset->descr;
422 size_t offset;
423 int i;
424
425 offset = offsets->r0_offset;
cdf2c5f5 426 for (i = tdep->ppc_gp0_regnum;
063715bf 427 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 428 i++, offset += 4)
d195bc9f
MK
429 {
430 if (regnum == -1 || regnum == i)
2e56e9c1 431 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
432 }
433
434 if (regnum == -1 || regnum == PC_REGNUM)
435 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
436 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
438 gregs, offsets->ps_offset);
439 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
440 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset);
442 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
443 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
444 gregs, offsets->lr_offset);
445 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
446 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
447 gregs, offsets->ctr_offset);
448 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
449 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
450 gregs, offsets->xer_offset);
451 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
452 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
453 gregs, offsets->mq_offset);
454}
455
456/* Collect register REGNUM in the floating-point register set
457 REGSET. from register cache REGCACHE into the buffer specified by
458 FPREGS and LEN. If REGNUM is -1, do this for all registers in
459 REGSET. */
460
461void
462ppc_collect_fpregset (const struct regset *regset,
463 const struct regcache *regcache,
464 int regnum, void *fpregs, size_t len)
465{
466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468 const struct ppc_reg_offsets *offsets = regset->descr;
469 size_t offset;
470 int i;
471
383f0f5b
JB
472 gdb_assert (ppc_floating_point_unit_p (gdbarch));
473
d195bc9f 474 offset = offsets->f0_offset;
366f009f
JB
475 for (i = tdep->ppc_fp0_regnum;
476 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 477 i++, offset += 8)
d195bc9f
MK
478 {
479 if (regnum == -1 || regnum == i)
bdbcb8b4 480 ppc_collect_reg (regcache, i, fpregs, offset);
d195bc9f
MK
481 }
482
483 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
484 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
485 fpregs, offsets->fpscr_offset);
486}
487\f
0a613259 488
7a78ae4e 489/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 490
7a78ae4e
ND
491static CORE_ADDR
492read_memory_addr (CORE_ADDR memaddr, int len)
493{
494 return read_memory_unsigned_integer (memaddr, len);
495}
c906108c 496
7a78ae4e
ND
497static CORE_ADDR
498rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
499{
500 struct rs6000_framedata frame;
077276e8 501 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
502 return pc;
503}
504
505
c906108c
SS
506/* Fill in fi->saved_regs */
507
508struct frame_extra_info
509{
510 /* Functions calling alloca() change the value of the stack
511 pointer. We need to use initial stack pointer (which is saved in
512 r31 by gcc) in such cases. If a compiler emits traceback table,
513 then we should use the alloca register specified in traceback
514 table. FIXME. */
c5aa993b 515 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
516};
517
143985b7 518/* Get the ith function argument for the current function. */
b9362cc7 519static CORE_ADDR
143985b7
AF
520rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
521 struct type *type)
522{
50fd1280 523 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
524}
525
c906108c
SS
526/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
527
528static CORE_ADDR
7a78ae4e 529branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
530{
531 CORE_ADDR dest;
532 int immediate;
533 int absolute;
534 int ext_op;
535
536 absolute = (int) ((instr >> 1) & 1);
537
c5aa993b
JM
538 switch (opcode)
539 {
540 case 18:
541 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
542 if (absolute)
543 dest = immediate;
544 else
545 dest = pc + immediate;
546 break;
547
548 case 16:
549 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
550 if (absolute)
551 dest = immediate;
552 else
553 dest = pc + immediate;
554 break;
555
556 case 19:
557 ext_op = (instr >> 1) & 0x3ff;
558
559 if (ext_op == 16) /* br conditional register */
560 {
2188cbdd 561 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
562
563 /* If we are about to return from a signal handler, dest is
564 something like 0x3c90. The current frame is a signal handler
565 caller frame, upon completion of the sigreturn system call
566 execution will return to the saved PC in the frame. */
567 if (dest < TEXT_SEGMENT_BASE)
568 {
569 struct frame_info *fi;
570
571 fi = get_current_frame ();
572 if (fi != NULL)
8b36eed8 573 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 574 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
575 }
576 }
577
578 else if (ext_op == 528) /* br cond to count reg */
579 {
2188cbdd 580 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
581
582 /* If we are about to execute a system call, dest is something
583 like 0x22fc or 0x3b00. Upon completion the system call
584 will return to the address in the link register. */
585 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 586 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
587 }
588 else
589 return -1;
590 break;
c906108c 591
c5aa993b
JM
592 default:
593 return -1;
594 }
c906108c
SS
595 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
596}
597
598
599/* Sequence of bytes for breakpoint instruction. */
600
f4f9705a 601const static unsigned char *
7a78ae4e 602rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 603{
aaab4dba
AC
604 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
605 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 606 *bp_size = 4;
d7449b42 607 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
608 return big_breakpoint;
609 else
610 return little_breakpoint;
611}
612
613
614/* AIX does not support PT_STEP. Simulate it. */
615
616void
379d08a1
AC
617rs6000_software_single_step (enum target_signal signal,
618 int insert_breakpoints_p)
c906108c 619{
7c40d541
KB
620 CORE_ADDR dummy;
621 int breakp_sz;
50fd1280 622 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
623 int ii, insn;
624 CORE_ADDR loc;
625 CORE_ADDR breaks[2];
626 int opcode;
627
c5aa993b
JM
628 if (insert_breakpoints_p)
629 {
c906108c 630
c5aa993b 631 loc = read_pc ();
c906108c 632
c5aa993b 633 insn = read_memory_integer (loc, 4);
c906108c 634
7c40d541 635 breaks[0] = loc + breakp_sz;
c5aa993b
JM
636 opcode = insn >> 26;
637 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 638
c5aa993b
JM
639 /* Don't put two breakpoints on the same address. */
640 if (breaks[1] == breaks[0])
641 breaks[1] = -1;
c906108c 642
c5aa993b 643 stepBreaks[1].address = 0;
c906108c 644
c5aa993b
JM
645 for (ii = 0; ii < 2; ++ii)
646 {
c906108c 647
c5aa993b
JM
648 /* ignore invalid breakpoint. */
649 if (breaks[ii] == -1)
650 continue;
7c40d541 651 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
652 stepBreaks[ii].address = breaks[ii];
653 }
c906108c 654
c5aa993b
JM
655 }
656 else
657 {
c906108c 658
c5aa993b
JM
659 /* remove step breakpoints. */
660 for (ii = 0; ii < 2; ++ii)
661 if (stepBreaks[ii].address != 0)
7c40d541
KB
662 target_remove_breakpoint (stepBreaks[ii].address,
663 stepBreaks[ii].data);
c5aa993b 664 }
c906108c 665 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 666 /* What errors? {read,write}_memory call error(). */
c906108c
SS
667}
668
669
670/* return pc value after skipping a function prologue and also return
671 information about a function frame.
672
673 in struct rs6000_framedata fdata:
c5aa993b
JM
674 - frameless is TRUE, if function does not have a frame.
675 - nosavedpc is TRUE, if function does not save %pc value in its frame.
676 - offset is the initial size of this stack frame --- the amount by
677 which we decrement the sp to allocate the frame.
678 - saved_gpr is the number of the first saved gpr.
679 - saved_fpr is the number of the first saved fpr.
6be8bc0c 680 - saved_vr is the number of the first saved vr.
96ff0de4 681 - saved_ev is the number of the first saved ev.
c5aa993b
JM
682 - alloca_reg is the number of the register used for alloca() handling.
683 Otherwise -1.
684 - gpr_offset is the offset of the first saved gpr from the previous frame.
685 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 686 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 687 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
688 - lr_offset is the offset of the saved lr
689 - cr_offset is the offset of the saved cr
6be8bc0c 690 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 691 */
c906108c
SS
692
693#define SIGNED_SHORT(x) \
694 ((sizeof (short) == 2) \
695 ? ((int)(short)(x)) \
696 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
697
698#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
699
55d05f3b
KB
700/* Limit the number of skipped non-prologue instructions, as the examining
701 of the prologue is expensive. */
702static int max_skip_non_prologue_insns = 10;
703
704/* Given PC representing the starting address of a function, and
705 LIM_PC which is the (sloppy) limit to which to scan when looking
706 for a prologue, attempt to further refine this limit by using
707 the line data in the symbol table. If successful, a better guess
708 on where the prologue ends is returned, otherwise the previous
709 value of lim_pc is returned. */
634aa483
AC
710
711/* FIXME: cagney/2004-02-14: This function and logic have largely been
712 superseded by skip_prologue_using_sal. */
713
55d05f3b
KB
714static CORE_ADDR
715refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
716{
717 struct symtab_and_line prologue_sal;
718
719 prologue_sal = find_pc_line (pc, 0);
720 if (prologue_sal.line != 0)
721 {
722 int i;
723 CORE_ADDR addr = prologue_sal.end;
724
725 /* Handle the case in which compiler's optimizer/scheduler
726 has moved instructions into the prologue. We scan ahead
727 in the function looking for address ranges whose corresponding
728 line number is less than or equal to the first one that we
729 found for the function. (It can be less than when the
730 scheduler puts a body instruction before the first prologue
731 instruction.) */
732 for (i = 2 * max_skip_non_prologue_insns;
733 i > 0 && (lim_pc == 0 || addr < lim_pc);
734 i--)
735 {
736 struct symtab_and_line sal;
737
738 sal = find_pc_line (addr, 0);
739 if (sal.line == 0)
740 break;
741 if (sal.line <= prologue_sal.line
742 && sal.symtab == prologue_sal.symtab)
743 {
744 prologue_sal = sal;
745 }
746 addr = sal.end;
747 }
748
749 if (lim_pc == 0 || prologue_sal.end < lim_pc)
750 lim_pc = prologue_sal.end;
751 }
752 return lim_pc;
753}
754
773df3e5
JB
755/* Return nonzero if the given instruction OP can be part of the prologue
756 of a function and saves a parameter on the stack. FRAMEP should be
757 set if one of the previous instructions in the function has set the
758 Frame Pointer. */
759
760static int
761store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
762{
763 /* Move parameters from argument registers to temporary register. */
764 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
765 {
766 /* Rx must be scratch register r0. */
767 const int rx_regno = (op >> 16) & 31;
768 /* Ry: Only r3 - r10 are used for parameter passing. */
769 const int ry_regno = GET_SRC_REG (op);
770
771 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
772 {
773 *r0_contains_arg = 1;
774 return 1;
775 }
776 else
777 return 0;
778 }
779
780 /* Save a General Purpose Register on stack. */
781
782 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
783 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
784 {
785 /* Rx: Only r3 - r10 are used for parameter passing. */
786 const int rx_regno = GET_SRC_REG (op);
787
788 return (rx_regno >= 3 && rx_regno <= 10);
789 }
790
791 /* Save a General Purpose Register on stack via the Frame Pointer. */
792
793 if (framep &&
794 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
795 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
796 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
797 {
798 /* Rx: Usually, only r3 - r10 are used for parameter passing.
799 However, the compiler sometimes uses r0 to hold an argument. */
800 const int rx_regno = GET_SRC_REG (op);
801
802 return ((rx_regno >= 3 && rx_regno <= 10)
803 || (rx_regno == 0 && *r0_contains_arg));
804 }
805
806 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
807 {
808 /* Only f2 - f8 are used for parameter passing. */
809 const int src_regno = GET_SRC_REG (op);
810
811 return (src_regno >= 2 && src_regno <= 8);
812 }
813
814 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
815 {
816 /* Only f2 - f8 are used for parameter passing. */
817 const int src_regno = GET_SRC_REG (op);
818
819 return (src_regno >= 2 && src_regno <= 8);
820 }
821
822 /* Not an insn that saves a parameter on stack. */
823 return 0;
824}
55d05f3b 825
7a78ae4e 826static CORE_ADDR
077276e8 827skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
828{
829 CORE_ADDR orig_pc = pc;
55d05f3b 830 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 831 CORE_ADDR li_found_pc = 0;
50fd1280 832 gdb_byte buf[4];
c906108c
SS
833 unsigned long op;
834 long offset = 0;
6be8bc0c 835 long vr_saved_offset = 0;
482ca3f5
KB
836 int lr_reg = -1;
837 int cr_reg = -1;
6be8bc0c 838 int vr_reg = -1;
96ff0de4
EZ
839 int ev_reg = -1;
840 long ev_offset = 0;
6be8bc0c 841 int vrsave_reg = -1;
c906108c
SS
842 int reg;
843 int framep = 0;
844 int minimal_toc_loaded = 0;
ddb20c56 845 int prev_insn_was_prologue_insn = 1;
55d05f3b 846 int num_skip_non_prologue_insns = 0;
773df3e5 847 int r0_contains_arg = 0;
96ff0de4 848 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 850
55d05f3b
KB
851 /* Attempt to find the end of the prologue when no limit is specified.
852 Note that refine_prologue_limit() has been written so that it may
853 be used to "refine" the limits of non-zero PC values too, but this
854 is only safe if we 1) trust the line information provided by the
855 compiler and 2) iterate enough to actually find the end of the
856 prologue.
857
858 It may become a good idea at some point (for both performance and
859 accuracy) to unconditionally call refine_prologue_limit(). But,
860 until we can make a clear determination that this is beneficial,
861 we'll play it safe and only use it to obtain a limit when none
862 has been specified. */
863 if (lim_pc == 0)
864 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 865
ddb20c56 866 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
867 fdata->saved_gpr = -1;
868 fdata->saved_fpr = -1;
6be8bc0c 869 fdata->saved_vr = -1;
96ff0de4 870 fdata->saved_ev = -1;
c906108c
SS
871 fdata->alloca_reg = -1;
872 fdata->frameless = 1;
873 fdata->nosavedpc = 1;
874
55d05f3b 875 for (;; pc += 4)
c906108c 876 {
ddb20c56
KB
877 /* Sometimes it isn't clear if an instruction is a prologue
878 instruction or not. When we encounter one of these ambiguous
879 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
880 Otherwise, we'll assume that it really is a prologue instruction. */
881 if (prev_insn_was_prologue_insn)
882 last_prologue_pc = pc;
55d05f3b
KB
883
884 /* Stop scanning if we've hit the limit. */
885 if (lim_pc != 0 && pc >= lim_pc)
886 break;
887
ddb20c56
KB
888 prev_insn_was_prologue_insn = 1;
889
55d05f3b 890 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
891 if (target_read_memory (pc, buf, 4))
892 break;
893 op = extract_signed_integer (buf, 4);
c906108c 894
c5aa993b
JM
895 if ((op & 0xfc1fffff) == 0x7c0802a6)
896 { /* mflr Rx */
43b1ab88
AC
897 /* Since shared library / PIC code, which needs to get its
898 address at runtime, can appear to save more than one link
899 register vis:
900
901 *INDENT-OFF*
902 stwu r1,-304(r1)
903 mflr r3
904 bl 0xff570d0 (blrl)
905 stw r30,296(r1)
906 mflr r30
907 stw r31,300(r1)
908 stw r3,308(r1);
909 ...
910 *INDENT-ON*
911
912 remember just the first one, but skip over additional
913 ones. */
914 if (lr_reg < 0)
915 lr_reg = (op & 0x03e00000);
773df3e5
JB
916 if (lr_reg == 0)
917 r0_contains_arg = 0;
c5aa993b 918 continue;
c5aa993b
JM
919 }
920 else if ((op & 0xfc1fffff) == 0x7c000026)
921 { /* mfcr Rx */
98f08d3d 922 cr_reg = (op & 0x03e00000);
773df3e5
JB
923 if (cr_reg == 0)
924 r0_contains_arg = 0;
c5aa993b 925 continue;
c906108c 926
c906108c 927 }
c5aa993b
JM
928 else if ((op & 0xfc1f0000) == 0xd8010000)
929 { /* stfd Rx,NUM(r1) */
930 reg = GET_SRC_REG (op);
931 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
932 {
933 fdata->saved_fpr = reg;
934 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
935 }
936 continue;
c906108c 937
c5aa993b
JM
938 }
939 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
940 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
941 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
942 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
943 {
944
945 reg = GET_SRC_REG (op);
946 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
947 {
948 fdata->saved_gpr = reg;
7a78ae4e 949 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 950 op &= ~3UL;
c5aa993b
JM
951 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
952 }
953 continue;
c906108c 954
ddb20c56
KB
955 }
956 else if ((op & 0xffff0000) == 0x60000000)
957 {
96ff0de4 958 /* nop */
ddb20c56
KB
959 /* Allow nops in the prologue, but do not consider them to
960 be part of the prologue unless followed by other prologue
961 instructions. */
962 prev_insn_was_prologue_insn = 0;
963 continue;
964
c906108c 965 }
c5aa993b
JM
966 else if ((op & 0xffff0000) == 0x3c000000)
967 { /* addis 0,0,NUM, used
968 for >= 32k frames */
969 fdata->offset = (op & 0x0000ffff) << 16;
970 fdata->frameless = 0;
773df3e5 971 r0_contains_arg = 0;
c5aa993b
JM
972 continue;
973
974 }
975 else if ((op & 0xffff0000) == 0x60000000)
976 { /* ori 0,0,NUM, 2nd ha
977 lf of >= 32k frames */
978 fdata->offset |= (op & 0x0000ffff);
979 fdata->frameless = 0;
773df3e5 980 r0_contains_arg = 0;
c5aa993b
JM
981 continue;
982
983 }
be723e22 984 else if (lr_reg >= 0 &&
98f08d3d
KB
985 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
986 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
987 /* stw Rx, NUM(r1) */
988 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
989 /* stwu Rx, NUM(r1) */
990 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
991 { /* where Rx == lr */
992 fdata->lr_offset = offset;
c5aa993b 993 fdata->nosavedpc = 0;
be723e22
MS
994 /* Invalidate lr_reg, but don't set it to -1.
995 That would mean that it had never been set. */
996 lr_reg = -2;
98f08d3d
KB
997 if ((op & 0xfc000003) == 0xf8000000 || /* std */
998 (op & 0xfc000000) == 0x90000000) /* stw */
999 {
1000 /* Does not update r1, so add displacement to lr_offset. */
1001 fdata->lr_offset += SIGNED_SHORT (op);
1002 }
c5aa993b
JM
1003 continue;
1004
1005 }
be723e22 1006 else if (cr_reg >= 0 &&
98f08d3d
KB
1007 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1008 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1009 /* stw Rx, NUM(r1) */
1010 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1011 /* stwu Rx, NUM(r1) */
1012 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1013 { /* where Rx == cr */
1014 fdata->cr_offset = offset;
be723e22
MS
1015 /* Invalidate cr_reg, but don't set it to -1.
1016 That would mean that it had never been set. */
1017 cr_reg = -2;
98f08d3d
KB
1018 if ((op & 0xfc000003) == 0xf8000000 ||
1019 (op & 0xfc000000) == 0x90000000)
1020 {
1021 /* Does not update r1, so add displacement to cr_offset. */
1022 fdata->cr_offset += SIGNED_SHORT (op);
1023 }
c5aa993b
JM
1024 continue;
1025
1026 }
1027 else if (op == 0x48000005)
1028 { /* bl .+4 used in
1029 -mrelocatable */
1030 continue;
1031
1032 }
1033 else if (op == 0x48000004)
1034 { /* b .+4 (xlc) */
1035 break;
1036
c5aa993b 1037 }
6be8bc0c
EZ
1038 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1039 in V.4 -mminimal-toc */
c5aa993b
JM
1040 (op & 0xffff0000) == 0x3bde0000)
1041 { /* addi 30,30,foo@l */
1042 continue;
c906108c 1043
c5aa993b
JM
1044 }
1045 else if ((op & 0xfc000001) == 0x48000001)
1046 { /* bl foo,
1047 to save fprs??? */
c906108c 1048
c5aa993b 1049 fdata->frameless = 0;
6be8bc0c 1050 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1051 the first three instructions of the prologue and either
1052 we have no line table information or the line info tells
1053 us that the subroutine call is not part of the line
1054 associated with the prologue. */
c5aa993b 1055 if ((pc - orig_pc) > 8)
ebd98106
FF
1056 {
1057 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1058 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1059
1060 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1061 break;
1062 }
c5aa993b
JM
1063
1064 op = read_memory_integer (pc + 4, 4);
1065
6be8bc0c
EZ
1066 /* At this point, make sure this is not a trampoline
1067 function (a function that simply calls another functions,
1068 and nothing else). If the next is not a nop, this branch
1069 was part of the function prologue. */
c5aa993b
JM
1070
1071 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1072 break; /* don't skip over
1073 this branch */
1074 continue;
1075
c5aa993b 1076 }
98f08d3d
KB
1077 /* update stack pointer */
1078 else if ((op & 0xfc1f0000) == 0x94010000)
1079 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1080 fdata->frameless = 0;
1081 fdata->offset = SIGNED_SHORT (op);
1082 offset = fdata->offset;
1083 continue;
c5aa993b 1084 }
98f08d3d
KB
1085 else if ((op & 0xfc1f016a) == 0x7c01016e)
1086 { /* stwux rX,r1,rY */
1087 /* no way to figure out what r1 is going to be */
1088 fdata->frameless = 0;
1089 offset = fdata->offset;
1090 continue;
1091 }
1092 else if ((op & 0xfc1f0003) == 0xf8010001)
1093 { /* stdu rX,NUM(r1) */
1094 fdata->frameless = 0;
1095 fdata->offset = SIGNED_SHORT (op & ~3UL);
1096 offset = fdata->offset;
1097 continue;
1098 }
1099 else if ((op & 0xfc1f016a) == 0x7c01016a)
1100 { /* stdux rX,r1,rY */
1101 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1102 fdata->frameless = 0;
1103 offset = fdata->offset;
1104 continue;
c5aa993b 1105 }
98f08d3d
KB
1106 /* Load up minimal toc pointer */
1107 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1108 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 1109 && !minimal_toc_loaded)
98f08d3d 1110 {
c5aa993b
JM
1111 minimal_toc_loaded = 1;
1112 continue;
1113
f6077098
KB
1114 /* move parameters from argument registers to local variable
1115 registers */
1116 }
1117 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1118 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1119 (((op >> 21) & 31) <= 10) &&
96ff0de4 1120 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1121 {
1122 continue;
1123
c5aa993b
JM
1124 /* store parameters in stack */
1125 }
e802b915 1126 /* Move parameters from argument registers to temporary register. */
773df3e5 1127 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1128 {
c5aa993b
JM
1129 continue;
1130
1131 /* Set up frame pointer */
1132 }
1133 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1134 || op == 0x7c3f0b78)
1135 { /* mr r31, r1 */
1136 fdata->frameless = 0;
1137 framep = 1;
6f99cb26 1138 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1139 continue;
1140
1141 /* Another way to set up the frame pointer. */
1142 }
1143 else if ((op & 0xfc1fffff) == 0x38010000)
1144 { /* addi rX, r1, 0x0 */
1145 fdata->frameless = 0;
1146 framep = 1;
6f99cb26
AC
1147 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1148 + ((op & ~0x38010000) >> 21));
c5aa993b 1149 continue;
c5aa993b 1150 }
6be8bc0c
EZ
1151 /* AltiVec related instructions. */
1152 /* Store the vrsave register (spr 256) in another register for
1153 later manipulation, or load a register into the vrsave
1154 register. 2 instructions are used: mfvrsave and
1155 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1156 and mtspr SPR256, Rn. */
1157 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1158 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1159 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1160 {
1161 vrsave_reg = GET_SRC_REG (op);
1162 continue;
1163 }
1164 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1165 {
1166 continue;
1167 }
1168 /* Store the register where vrsave was saved to onto the stack:
1169 rS is the register where vrsave was stored in a previous
1170 instruction. */
1171 /* 100100 sssss 00001 dddddddd dddddddd */
1172 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1173 {
1174 if (vrsave_reg == GET_SRC_REG (op))
1175 {
1176 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1177 vrsave_reg = -1;
1178 }
1179 continue;
1180 }
1181 /* Compute the new value of vrsave, by modifying the register
1182 where vrsave was saved to. */
1183 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1184 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1185 {
1186 continue;
1187 }
1188 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1189 in a pair of insns to save the vector registers on the
1190 stack. */
1191 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1192 /* 001110 01110 00000 iiii iiii iiii iiii */
1193 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1194 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1195 {
773df3e5
JB
1196 if ((op & 0xffff0000) == 0x38000000)
1197 r0_contains_arg = 0;
6be8bc0c
EZ
1198 li_found_pc = pc;
1199 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1200
1201 /* This insn by itself is not part of the prologue, unless
1202 if part of the pair of insns mentioned above. So do not
1203 record this insn as part of the prologue yet. */
1204 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1205 }
1206 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1207 /* 011111 sssss 11111 00000 00111001110 */
1208 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1209 {
1210 if (pc == (li_found_pc + 4))
1211 {
1212 vr_reg = GET_SRC_REG (op);
1213 /* If this is the first vector reg to be saved, or if
1214 it has a lower number than others previously seen,
1215 reupdate the frame info. */
1216 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1217 {
1218 fdata->saved_vr = vr_reg;
1219 fdata->vr_offset = vr_saved_offset + offset;
1220 }
1221 vr_saved_offset = -1;
1222 vr_reg = -1;
1223 li_found_pc = 0;
1224 }
1225 }
1226 /* End AltiVec related instructions. */
96ff0de4
EZ
1227
1228 /* Start BookE related instructions. */
1229 /* Store gen register S at (r31+uimm).
1230 Any register less than r13 is volatile, so we don't care. */
1231 /* 000100 sssss 11111 iiiii 01100100001 */
1232 else if (arch_info->mach == bfd_mach_ppc_e500
1233 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1234 {
1235 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1236 {
1237 unsigned int imm;
1238 ev_reg = GET_SRC_REG (op);
1239 imm = (op >> 11) & 0x1f;
1240 ev_offset = imm * 8;
1241 /* If this is the first vector reg to be saved, or if
1242 it has a lower number than others previously seen,
1243 reupdate the frame info. */
1244 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1245 {
1246 fdata->saved_ev = ev_reg;
1247 fdata->ev_offset = ev_offset + offset;
1248 }
1249 }
1250 continue;
1251 }
1252 /* Store gen register rS at (r1+rB). */
1253 /* 000100 sssss 00001 bbbbb 01100100000 */
1254 else if (arch_info->mach == bfd_mach_ppc_e500
1255 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1256 {
1257 if (pc == (li_found_pc + 4))
1258 {
1259 ev_reg = GET_SRC_REG (op);
1260 /* If this is the first vector reg to be saved, or if
1261 it has a lower number than others previously seen,
1262 reupdate the frame info. */
1263 /* We know the contents of rB from the previous instruction. */
1264 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1265 {
1266 fdata->saved_ev = ev_reg;
1267 fdata->ev_offset = vr_saved_offset + offset;
1268 }
1269 vr_saved_offset = -1;
1270 ev_reg = -1;
1271 li_found_pc = 0;
1272 }
1273 continue;
1274 }
1275 /* Store gen register r31 at (rA+uimm). */
1276 /* 000100 11111 aaaaa iiiii 01100100001 */
1277 else if (arch_info->mach == bfd_mach_ppc_e500
1278 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1279 {
1280 /* Wwe know that the source register is 31 already, but
1281 it can't hurt to compute it. */
1282 ev_reg = GET_SRC_REG (op);
1283 ev_offset = ((op >> 11) & 0x1f) * 8;
1284 /* If this is the first vector reg to be saved, or if
1285 it has a lower number than others previously seen,
1286 reupdate the frame info. */
1287 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1288 {
1289 fdata->saved_ev = ev_reg;
1290 fdata->ev_offset = ev_offset + offset;
1291 }
1292
1293 continue;
1294 }
1295 /* Store gen register S at (r31+r0).
1296 Store param on stack when offset from SP bigger than 4 bytes. */
1297 /* 000100 sssss 11111 00000 01100100000 */
1298 else if (arch_info->mach == bfd_mach_ppc_e500
1299 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1300 {
1301 if (pc == (li_found_pc + 4))
1302 {
1303 if ((op & 0x03e00000) >= 0x01a00000)
1304 {
1305 ev_reg = GET_SRC_REG (op);
1306 /* If this is the first vector reg to be saved, or if
1307 it has a lower number than others previously seen,
1308 reupdate the frame info. */
1309 /* We know the contents of r0 from the previous
1310 instruction. */
1311 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1312 {
1313 fdata->saved_ev = ev_reg;
1314 fdata->ev_offset = vr_saved_offset + offset;
1315 }
1316 ev_reg = -1;
1317 }
1318 vr_saved_offset = -1;
1319 li_found_pc = 0;
1320 continue;
1321 }
1322 }
1323 /* End BookE related instructions. */
1324
c5aa993b
JM
1325 else
1326 {
55d05f3b
KB
1327 /* Not a recognized prologue instruction.
1328 Handle optimizer code motions into the prologue by continuing
1329 the search if we have no valid frame yet or if the return
1330 address is not yet saved in the frame. */
1331 if (fdata->frameless == 0
1332 && (lr_reg == -1 || fdata->nosavedpc == 0))
1333 break;
1334
1335 if (op == 0x4e800020 /* blr */
1336 || op == 0x4e800420) /* bctr */
1337 /* Do not scan past epilogue in frameless functions or
1338 trampolines. */
1339 break;
1340 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1341 /* Never skip branches. */
55d05f3b
KB
1342 break;
1343
1344 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1345 /* Do not scan too many insns, scanning insns is expensive with
1346 remote targets. */
1347 break;
1348
1349 /* Continue scanning. */
1350 prev_insn_was_prologue_insn = 0;
1351 continue;
c5aa993b 1352 }
c906108c
SS
1353 }
1354
1355#if 0
1356/* I have problems with skipping over __main() that I need to address
1357 * sometime. Previously, I used to use misc_function_vector which
1358 * didn't work as well as I wanted to be. -MGO */
1359
1360 /* If the first thing after skipping a prolog is a branch to a function,
1361 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1362 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1363 work before calling a function right after a prologue, thus we can
64366f1c 1364 single out such gcc2 behaviour. */
c906108c 1365
c906108c 1366
c5aa993b
JM
1367 if ((op & 0xfc000001) == 0x48000001)
1368 { /* bl foo, an initializer function? */
1369 op = read_memory_integer (pc + 4, 4);
1370
1371 if (op == 0x4def7b82)
1372 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1373
64366f1c
EZ
1374 /* Check and see if we are in main. If so, skip over this
1375 initializer function as well. */
c906108c 1376
c5aa993b 1377 tmp = find_pc_misc_function (pc);
6314a349
AC
1378 if (tmp >= 0
1379 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1380 return pc + 8;
1381 }
c906108c 1382 }
c906108c 1383#endif /* 0 */
c5aa993b
JM
1384
1385 fdata->offset = -fdata->offset;
ddb20c56 1386 return last_prologue_pc;
c906108c
SS
1387}
1388
1389
1390/*************************************************************************
f6077098 1391 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1392 frames, etc.
1393*************************************************************************/
1394
c906108c 1395
11269d7e
AC
1396/* All the ABI's require 16 byte alignment. */
1397static CORE_ADDR
1398rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1399{
1400 return (addr & -16);
1401}
1402
7a78ae4e 1403/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1404 the first eight words of the argument list (that might be less than
1405 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1406 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1407 passed in fpr's, in addition to that. Rest of the parameters if any
1408 are passed in user stack. There might be cases in which half of the
c906108c
SS
1409 parameter is copied into registers, the other half is pushed into
1410 stack.
1411
7a78ae4e
ND
1412 Stack must be aligned on 64-bit boundaries when synthesizing
1413 function calls.
1414
c906108c
SS
1415 If the function is returning a structure, then the return address is passed
1416 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1417 starting from r4. */
c906108c 1418
7a78ae4e 1419static CORE_ADDR
7d9b040b 1420rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1421 struct regcache *regcache, CORE_ADDR bp_addr,
1422 int nargs, struct value **args, CORE_ADDR sp,
1423 int struct_return, CORE_ADDR struct_addr)
c906108c 1424{
7a41266b 1425 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1426 int ii;
1427 int len = 0;
c5aa993b
JM
1428 int argno; /* current argument number */
1429 int argbytes; /* current argument byte */
50fd1280 1430 gdb_byte tmp_buffer[50];
c5aa993b 1431 int f_argno = 0; /* current floating point argno */
21283beb 1432 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1433 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1434
ea7c478f 1435 struct value *arg = 0;
c906108c
SS
1436 struct type *type;
1437
1438 CORE_ADDR saved_sp;
1439
383f0f5b
JB
1440 /* The calling convention this function implements assumes the
1441 processor has floating-point registers. We shouldn't be using it
1442 on PPC variants that lack them. */
1443 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1444
64366f1c 1445 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1446 Copy them appropriately. */
1447 ii = 0;
1448
1449 /* If the function is returning a `struct', then the first word
1450 (which will be passed in r3) is used for struct return address.
1451 In that case we should advance one word and start from r4
1452 register to copy parameters. */
1453 if (struct_return)
1454 {
1455 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1456 struct_addr);
1457 ii++;
1458 }
c906108c
SS
1459
1460/*
c5aa993b
JM
1461 effectively indirect call... gcc does...
1462
1463 return_val example( float, int);
1464
1465 eabi:
1466 float in fp0, int in r3
1467 offset of stack on overflow 8/16
1468 for varargs, must go by type.
1469 power open:
1470 float in r3&r4, int in r5
1471 offset of stack on overflow different
1472 both:
1473 return in r3 or f0. If no float, must study how gcc emulates floats;
1474 pay attention to arg promotion.
1475 User may have to cast\args to handle promotion correctly
1476 since gdb won't know if prototype supplied or not.
1477 */
c906108c 1478
c5aa993b
JM
1479 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1480 {
3acba339 1481 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1482
1483 arg = args[argno];
df407dfe 1484 type = check_typedef (value_type (arg));
c5aa993b
JM
1485 len = TYPE_LENGTH (type);
1486
1487 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1488 {
1489
64366f1c 1490 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1491 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1492 there is no way we would run out of them. */
c5aa993b 1493
9f335945
KB
1494 gdb_assert (len <= 8);
1495
1496 regcache_cooked_write (regcache,
1497 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1498 value_contents (arg));
c5aa993b
JM
1499 ++f_argno;
1500 }
1501
f6077098 1502 if (len > reg_size)
c5aa993b
JM
1503 {
1504
64366f1c 1505 /* Argument takes more than one register. */
c5aa993b
JM
1506 while (argbytes < len)
1507 {
50fd1280 1508 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1509 memset (word, 0, reg_size);
1510 memcpy (word,
0fd88904 1511 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1512 (len - argbytes) > reg_size
1513 ? reg_size : len - argbytes);
9f335945
KB
1514 regcache_cooked_write (regcache,
1515 tdep->ppc_gp0_regnum + 3 + ii,
1516 word);
f6077098 1517 ++ii, argbytes += reg_size;
c5aa993b
JM
1518
1519 if (ii >= 8)
1520 goto ran_out_of_registers_for_arguments;
1521 }
1522 argbytes = 0;
1523 --ii;
1524 }
1525 else
64366f1c
EZ
1526 {
1527 /* Argument can fit in one register. No problem. */
d7449b42 1528 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1529 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1530
1531 memset (word, 0, reg_size);
0fd88904 1532 memcpy (word, value_contents (arg), len);
9f335945 1533 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1534 }
1535 ++argno;
c906108c 1536 }
c906108c
SS
1537
1538ran_out_of_registers_for_arguments:
1539
7a78ae4e 1540 saved_sp = read_sp ();
cc9836a8 1541
64366f1c 1542 /* Location for 8 parameters are always reserved. */
7a78ae4e 1543 sp -= wordsize * 8;
f6077098 1544
64366f1c 1545 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1546 sp -= wordsize * 6;
f6077098 1547
64366f1c 1548 /* Stack pointer must be quadword aligned. */
7a78ae4e 1549 sp &= -16;
c906108c 1550
64366f1c
EZ
1551 /* If there are more arguments, allocate space for them in
1552 the stack, then push them starting from the ninth one. */
c906108c 1553
c5aa993b
JM
1554 if ((argno < nargs) || argbytes)
1555 {
1556 int space = 0, jj;
c906108c 1557
c5aa993b
JM
1558 if (argbytes)
1559 {
1560 space += ((len - argbytes + 3) & -4);
1561 jj = argno + 1;
1562 }
1563 else
1564 jj = argno;
c906108c 1565
c5aa993b
JM
1566 for (; jj < nargs; ++jj)
1567 {
ea7c478f 1568 struct value *val = args[jj];
df407dfe 1569 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1570 }
c906108c 1571
64366f1c 1572 /* Add location required for the rest of the parameters. */
f6077098 1573 space = (space + 15) & -16;
c5aa993b 1574 sp -= space;
c906108c 1575
7aea86e6
AC
1576 /* This is another instance we need to be concerned about
1577 securing our stack space. If we write anything underneath %sp
1578 (r1), we might conflict with the kernel who thinks he is free
1579 to use this area. So, update %sp first before doing anything
1580 else. */
1581
1582 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1583
64366f1c
EZ
1584 /* If the last argument copied into the registers didn't fit there
1585 completely, push the rest of it into stack. */
c906108c 1586
c5aa993b
JM
1587 if (argbytes)
1588 {
1589 write_memory (sp + 24 + (ii * 4),
50fd1280 1590 value_contents (arg) + argbytes,
c5aa993b
JM
1591 len - argbytes);
1592 ++argno;
1593 ii += ((len - argbytes + 3) & -4) / 4;
1594 }
c906108c 1595
64366f1c 1596 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1597 for (; argno < nargs; ++argno)
1598 {
c906108c 1599
c5aa993b 1600 arg = args[argno];
df407dfe 1601 type = check_typedef (value_type (arg));
c5aa993b 1602 len = TYPE_LENGTH (type);
c906108c
SS
1603
1604
64366f1c
EZ
1605 /* Float types should be passed in fpr's, as well as in the
1606 stack. */
c5aa993b
JM
1607 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1608 {
c906108c 1609
9f335945 1610 gdb_assert (len <= 8);
c906108c 1611
9f335945
KB
1612 regcache_cooked_write (regcache,
1613 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1614 value_contents (arg));
c5aa993b
JM
1615 ++f_argno;
1616 }
c906108c 1617
50fd1280 1618 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1619 ii += ((len + 3) & -4) / 4;
1620 }
c906108c 1621 }
c906108c 1622
69517000 1623 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1624 be set _before_ the corresponding stack space is used. On AIX,
1625 this even applies when the target has been completely stopped!
1626 Not doing this can lead to conflicts with the kernel which thinks
1627 that it still has control over this not-yet-allocated stack
1628 region. */
33a7c2fc
AC
1629 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1630
7aea86e6 1631 /* Set back chain properly. */
8ba0209f
AM
1632 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1633 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 1634
e56a0ecc
AC
1635 /* Point the inferior function call's return address at the dummy's
1636 breakpoint. */
1637 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1638
794a477a
AC
1639 /* Set the TOC register, get the value from the objfile reader
1640 which, in turn, gets it from the VMAP table. */
1641 if (rs6000_find_toc_address_hook != NULL)
1642 {
1643 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1644 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1645 }
1646
c906108c
SS
1647 target_store_registers (-1);
1648 return sp;
1649}
c906108c 1650
b9ff3018
AC
1651/* PowerOpen always puts structures in memory. Vectors, which were
1652 added later, do get returned in a register though. */
1653
1654static int
1655rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1656{
1657 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1658 && TYPE_VECTOR (value_type))
1659 return 0;
1660 return 1;
1661}
1662
7a78ae4e 1663static void
50fd1280
AC
1664rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
1665 gdb_byte *valbuf)
c906108c
SS
1666{
1667 int offset = 0;
ace1378a 1668 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1669
383f0f5b
JB
1670 /* The calling convention this function implements assumes the
1671 processor has floating-point registers. We shouldn't be using it
1672 on PPC variants that lack them. */
1673 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1674
c5aa993b
JM
1675 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1676 {
c906108c 1677
c5aa993b
JM
1678 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1679 We need to truncate the return value into float size (4 byte) if
64366f1c 1680 necessary. */
c906108c 1681
65951cd9 1682 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
366f009f 1683 (tdep->ppc_fp0_regnum + 1)],
65951cd9
JG
1684 builtin_type_double,
1685 valbuf,
1686 valtype);
c5aa993b 1687 }
ace1378a
EZ
1688 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1689 && TYPE_LENGTH (valtype) == 16
1690 && TYPE_VECTOR (valtype))
1691 {
62700349 1692 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1693 TYPE_LENGTH (valtype));
1694 }
c5aa993b
JM
1695 else
1696 {
1697 /* return value is copied starting from r3. */
d7449b42 1698 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3acba339
AC
1699 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1700 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1701
1702 memcpy (valbuf,
62700349 1703 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1704 TYPE_LENGTH (valtype));
c906108c 1705 }
c906108c
SS
1706}
1707
977adac5
ND
1708/* Return whether handle_inferior_event() should proceed through code
1709 starting at PC in function NAME when stepping.
1710
1711 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1712 handle memory references that are too distant to fit in instructions
1713 generated by the compiler. For example, if 'foo' in the following
1714 instruction:
1715
1716 lwz r9,foo(r2)
1717
1718 is greater than 32767, the linker might replace the lwz with a branch to
1719 somewhere in @FIX1 that does the load in 2 instructions and then branches
1720 back to where execution should continue.
1721
1722 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1723 Unfortunately, the linker uses the "b" instruction for the
1724 branches, meaning that the link register doesn't get set.
1725 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1726
2ec664f5
MS
1727 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1728 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1729 @FIX code. */
977adac5
ND
1730
1731int
1732rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1733{
1734 return name && !strncmp (name, "@FIX", 4);
1735}
1736
1737/* Skip code that the user doesn't want to see when stepping:
1738
1739 1. Indirect function calls use a piece of trampoline code to do context
1740 switching, i.e. to set the new TOC table. Skip such code if we are on
1741 its first instruction (as when we have single-stepped to here).
1742
1743 2. Skip shared library trampoline code (which is different from
c906108c 1744 indirect function call trampolines).
977adac5
ND
1745
1746 3. Skip bigtoc fixup code.
1747
c906108c 1748 Result is desired PC to step until, or NULL if we are not in
977adac5 1749 code that should be skipped. */
c906108c
SS
1750
1751CORE_ADDR
7a78ae4e 1752rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1753{
52f0bd74 1754 unsigned int ii, op;
977adac5 1755 int rel;
c906108c 1756 CORE_ADDR solib_target_pc;
977adac5 1757 struct minimal_symbol *msymbol;
c906108c 1758
c5aa993b
JM
1759 static unsigned trampoline_code[] =
1760 {
1761 0x800b0000, /* l r0,0x0(r11) */
1762 0x90410014, /* st r2,0x14(r1) */
1763 0x7c0903a6, /* mtctr r0 */
1764 0x804b0004, /* l r2,0x4(r11) */
1765 0x816b0008, /* l r11,0x8(r11) */
1766 0x4e800420, /* bctr */
1767 0x4e800020, /* br */
1768 0
c906108c
SS
1769 };
1770
977adac5
ND
1771 /* Check for bigtoc fixup code. */
1772 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1773 if (msymbol
1774 && rs6000_in_solib_return_trampoline (pc,
1775 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1776 {
1777 /* Double-check that the third instruction from PC is relative "b". */
1778 op = read_memory_integer (pc + 8, 4);
1779 if ((op & 0xfc000003) == 0x48000000)
1780 {
1781 /* Extract bits 6-29 as a signed 24-bit relative word address and
1782 add it to the containing PC. */
1783 rel = ((int)(op << 6) >> 6);
1784 return pc + 8 + rel;
1785 }
1786 }
1787
c906108c
SS
1788 /* If pc is in a shared library trampoline, return its target. */
1789 solib_target_pc = find_solib_trampoline_target (pc);
1790 if (solib_target_pc)
1791 return solib_target_pc;
1792
c5aa993b
JM
1793 for (ii = 0; trampoline_code[ii]; ++ii)
1794 {
1795 op = read_memory_integer (pc + (ii * 4), 4);
1796 if (op != trampoline_code[ii])
1797 return 0;
1798 }
1799 ii = read_register (11); /* r11 holds destination addr */
21283beb 1800 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1801 return pc;
1802}
1803
7a78ae4e 1804/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1805 isn't available with that word size, return 0. */
7a78ae4e
ND
1806
1807static int
1808regsize (const struct reg *reg, int wordsize)
1809{
1810 return wordsize == 8 ? reg->sz64 : reg->sz32;
1811}
1812
1813/* Return the name of register number N, or null if no such register exists
64366f1c 1814 in the current architecture. */
7a78ae4e 1815
fa88f677 1816static const char *
7a78ae4e
ND
1817rs6000_register_name (int n)
1818{
21283beb 1819 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1820 const struct reg *reg = tdep->regs + n;
1821
1822 if (!regsize (reg, tdep->wordsize))
1823 return NULL;
1824 return reg->name;
1825}
1826
7a78ae4e
ND
1827/* Return the GDB type object for the "standard" data type
1828 of data in register N. */
1829
1830static struct type *
691d145a 1831rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 1832{
691d145a 1833 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
1834 const struct reg *reg = tdep->regs + n;
1835
1fcc0bb8
EZ
1836 if (reg->fpr)
1837 return builtin_type_double;
1838 else
1839 {
1840 int size = regsize (reg, tdep->wordsize);
1841 switch (size)
1842 {
449a5da4
AC
1843 case 0:
1844 return builtin_type_int0;
1845 case 4:
ed6edd9b 1846 return builtin_type_uint32;
1fcc0bb8 1847 case 8:
c8001721
EZ
1848 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1849 return builtin_type_vec64;
1850 else
ed6edd9b 1851 return builtin_type_uint64;
1fcc0bb8
EZ
1852 break;
1853 case 16:
08cf96df 1854 return builtin_type_vec128;
1fcc0bb8
EZ
1855 break;
1856 default:
e2e0b3e5 1857 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 1858 n, size);
1fcc0bb8
EZ
1859 }
1860 }
7a78ae4e
ND
1861}
1862
c44ca51c
AC
1863/* Is REGNUM a member of REGGROUP? */
1864static int
1865rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1866 struct reggroup *group)
1867{
1868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1869 int float_p;
1870 int vector_p;
1871 int general_p;
1872
1873 if (REGISTER_NAME (regnum) == NULL
1874 || *REGISTER_NAME (regnum) == '\0')
1875 return 0;
1876 if (group == all_reggroup)
1877 return 1;
1878
1879 float_p = (regnum == tdep->ppc_fpscr_regnum
1880 || (regnum >= tdep->ppc_fp0_regnum
1881 && regnum < tdep->ppc_fp0_regnum + 32));
1882 if (group == float_reggroup)
1883 return float_p;
1884
826d5376
PG
1885 vector_p = ((tdep->ppc_vr0_regnum >= 0
1886 && regnum >= tdep->ppc_vr0_regnum
c44ca51c 1887 && regnum < tdep->ppc_vr0_regnum + 32)
826d5376
PG
1888 || (tdep->ppc_ev0_regnum >= 0
1889 && regnum >= tdep->ppc_ev0_regnum
c44ca51c
AC
1890 && regnum < tdep->ppc_ev0_regnum + 32)
1891 || regnum == tdep->ppc_vrsave_regnum
1892 || regnum == tdep->ppc_acc_regnum
1893 || regnum == tdep->ppc_spefscr_regnum);
1894 if (group == vector_reggroup)
1895 return vector_p;
1896
1897 /* Note that PS aka MSR isn't included - it's a system register (and
1898 besides, due to GCC's CFI foobar you do not want to restore
1899 it). */
1900 general_p = ((regnum >= tdep->ppc_gp0_regnum
1901 && regnum < tdep->ppc_gp0_regnum + 32)
1902 || regnum == tdep->ppc_toc_regnum
1903 || regnum == tdep->ppc_cr_regnum
1904 || regnum == tdep->ppc_lr_regnum
1905 || regnum == tdep->ppc_ctr_regnum
1906 || regnum == tdep->ppc_xer_regnum
1907 || regnum == PC_REGNUM);
1908 if (group == general_reggroup)
1909 return general_p;
1910
1911 if (group == save_reggroup || group == restore_reggroup)
1912 return general_p || vector_p || float_p;
1913
1914 return 0;
1915}
1916
691d145a 1917/* The register format for RS/6000 floating point registers is always
64366f1c 1918 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1919
1920static int
691d145a 1921rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 1922{
691d145a
JB
1923 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1924
1925 return (reg->fpr
1926 && TYPE_CODE (type) == TYPE_CODE_FLT
1927 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
1928}
1929
7a78ae4e 1930static void
691d145a
JB
1931rs6000_register_to_value (struct frame_info *frame,
1932 int regnum,
1933 struct type *type,
50fd1280 1934 gdb_byte *to)
7a78ae4e 1935{
691d145a 1936 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 1937 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
1938
1939 gdb_assert (reg->fpr);
1940 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 1941
691d145a
JB
1942 get_frame_register (frame, regnum, from);
1943 convert_typed_floating (from, builtin_type_double, to, type);
1944}
7a292a7a 1945
7a78ae4e 1946static void
691d145a
JB
1947rs6000_value_to_register (struct frame_info *frame,
1948 int regnum,
1949 struct type *type,
50fd1280 1950 const gdb_byte *from)
7a78ae4e 1951{
691d145a 1952 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 1953 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
1954
1955 gdb_assert (reg->fpr);
1956 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1957
1958 convert_typed_floating (from, type, to, builtin_type_double);
1959 put_frame_register (frame, regnum, to);
7a78ae4e 1960}
c906108c 1961
6ced10dd
JB
1962/* Move SPE vector register values between a 64-bit buffer and the two
1963 32-bit raw register halves in a regcache. This function handles
1964 both splitting a 64-bit value into two 32-bit halves, and joining
1965 two halves into a whole 64-bit value, depending on the function
1966 passed as the MOVE argument.
1967
1968 EV_REG must be the number of an SPE evN vector register --- a
1969 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1970 64-bit buffer.
1971
1972 Call MOVE once for each 32-bit half of that register, passing
1973 REGCACHE, the number of the raw register corresponding to that
1974 half, and the address of the appropriate half of BUFFER.
1975
1976 For example, passing 'regcache_raw_read' as the MOVE function will
1977 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1978 'regcache_raw_supply' will supply the contents of BUFFER to the
1979 appropriate pair of raw registers in REGCACHE.
1980
1981 You may need to cast away some 'const' qualifiers when passing
1982 MOVE, since this function can't tell at compile-time which of
1983 REGCACHE or BUFFER is acting as the source of the data. If C had
1984 co-variant type qualifiers, ... */
1985static void
1986e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 1987 int regnum, gdb_byte *buf),
6ced10dd 1988 struct regcache *regcache, int ev_reg,
50fd1280 1989 gdb_byte *buffer)
6ced10dd
JB
1990{
1991 struct gdbarch *arch = get_regcache_arch (regcache);
1992 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1993 int reg_index;
50fd1280 1994 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
1995
1996 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1997 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1998
1999 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2000
2001 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2002 {
2003 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2004 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2005 }
2006 else
2007 {
2008 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2009 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2010 }
2011}
2012
c8001721
EZ
2013static void
2014e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2015 int reg_nr, gdb_byte *buffer)
c8001721 2016{
6ced10dd 2017 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2019
6ced10dd
JB
2020 gdb_assert (regcache_arch == gdbarch);
2021
2022 if (tdep->ppc_ev0_regnum <= reg_nr
2023 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2024 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2025 else
a44bddec 2026 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2027 _("e500_pseudo_register_read: "
2028 "called on unexpected register '%s' (%d)"),
a44bddec 2029 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2030}
2031
2032static void
2033e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2034 int reg_nr, const gdb_byte *buffer)
c8001721 2035{
6ced10dd 2036 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2037 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2038
6ced10dd
JB
2039 gdb_assert (regcache_arch == gdbarch);
2040
2041 if (tdep->ppc_ev0_regnum <= reg_nr
2042 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2043 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2044 regcache_raw_write,
50fd1280 2045 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2046 else
a44bddec 2047 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2048 _("e500_pseudo_register_read: "
2049 "called on unexpected register '%s' (%d)"),
a44bddec 2050 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2051}
2052
2053/* The E500 needs a custom reggroup function: it has anonymous raw
2054 registers, and default_register_reggroup_p assumes that anonymous
2055 registers are not members of any reggroup. */
2056static int
2057e500_register_reggroup_p (struct gdbarch *gdbarch,
2058 int regnum,
2059 struct reggroup *group)
2060{
2061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2062
2063 /* The save and restore register groups need to include the
2064 upper-half registers, even though they're anonymous. */
2065 if ((group == save_reggroup
2066 || group == restore_reggroup)
2067 && (tdep->ppc_ev0_upper_regnum <= regnum
2068 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2069 return 1;
2070
2071 /* In all other regards, the default reggroup definition is fine. */
2072 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2073}
2074
18ed0c4e 2075/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2076static int
18ed0c4e 2077rs6000_stab_reg_to_regnum (int num)
c8001721 2078{
9f744501 2079 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2080
9f744501
JB
2081 if (0 <= num && num <= 31)
2082 return tdep->ppc_gp0_regnum + num;
2083 else if (32 <= num && num <= 63)
383f0f5b
JB
2084 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2085 specifies registers the architecture doesn't have? Our
2086 callers don't check the value we return. */
366f009f 2087 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2088 else if (77 <= num && num <= 108)
2089 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2090 else if (1200 <= num && num < 1200 + 32)
2091 return tdep->ppc_ev0_regnum + (num - 1200);
2092 else
2093 switch (num)
2094 {
2095 case 64:
2096 return tdep->ppc_mq_regnum;
2097 case 65:
2098 return tdep->ppc_lr_regnum;
2099 case 66:
2100 return tdep->ppc_ctr_regnum;
2101 case 76:
2102 return tdep->ppc_xer_regnum;
2103 case 109:
2104 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2105 case 110:
2106 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2107 case 111:
18ed0c4e 2108 return tdep->ppc_acc_regnum;
867e2dc5 2109 case 112:
18ed0c4e 2110 return tdep->ppc_spefscr_regnum;
9f744501
JB
2111 default:
2112 return num;
2113 }
18ed0c4e 2114}
9f744501 2115
9f744501 2116
18ed0c4e
JB
2117/* Convert a Dwarf 2 register number to a GDB register number. */
2118static int
2119rs6000_dwarf2_reg_to_regnum (int num)
2120{
2121 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2122
18ed0c4e
JB
2123 if (0 <= num && num <= 31)
2124 return tdep->ppc_gp0_regnum + num;
2125 else if (32 <= num && num <= 63)
2126 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2127 specifies registers the architecture doesn't have? Our
2128 callers don't check the value we return. */
2129 return tdep->ppc_fp0_regnum + (num - 32);
2130 else if (1124 <= num && num < 1124 + 32)
2131 return tdep->ppc_vr0_regnum + (num - 1124);
2132 else if (1200 <= num && num < 1200 + 32)
2133 return tdep->ppc_ev0_regnum + (num - 1200);
2134 else
2135 switch (num)
2136 {
2137 case 67:
2138 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2139 case 99:
2140 return tdep->ppc_acc_regnum;
2141 case 100:
2142 return tdep->ppc_mq_regnum;
2143 case 101:
2144 return tdep->ppc_xer_regnum;
2145 case 108:
2146 return tdep->ppc_lr_regnum;
2147 case 109:
2148 return tdep->ppc_ctr_regnum;
2149 case 356:
2150 return tdep->ppc_vrsave_regnum;
2151 case 612:
2152 return tdep->ppc_spefscr_regnum;
2153 default:
2154 return num;
2155 }
2188cbdd
EZ
2156}
2157
18ed0c4e 2158
7a78ae4e 2159static void
a3c001ce
JB
2160rs6000_store_return_value (struct type *type,
2161 struct regcache *regcache,
50fd1280 2162 const gdb_byte *valbuf)
7a78ae4e 2163{
a3c001ce
JB
2164 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2166 int regnum = -1;
ace1378a 2167
383f0f5b
JB
2168 /* The calling convention this function implements assumes the
2169 processor has floating-point registers. We shouldn't be using it
2170 on PPC variants that lack them. */
a3c001ce 2171 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 2172
7a78ae4e 2173 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7a78ae4e
ND
2174 /* Floating point values are returned starting from FPR1 and up.
2175 Say a double_double_double type could be returned in
64366f1c 2176 FPR1/FPR2/FPR3 triple. */
a3c001ce 2177 regnum = tdep->ppc_fp0_regnum + 1;
ace1378a
EZ
2178 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2179 {
2180 if (TYPE_LENGTH (type) == 16
2181 && TYPE_VECTOR (type))
a3c001ce
JB
2182 regnum = tdep->ppc_vr0_regnum + 2;
2183 else
a44bddec 2184 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2185 _("rs6000_store_return_value: "
2186 "unexpected array return type"));
ace1378a 2187 }
7a78ae4e 2188 else
64366f1c 2189 /* Everything else is returned in GPR3 and up. */
a3c001ce
JB
2190 regnum = tdep->ppc_gp0_regnum + 3;
2191
2192 {
2193 size_t bytes_written = 0;
2194
2195 while (bytes_written < TYPE_LENGTH (type))
2196 {
2197 /* How much of this value can we write to this register? */
2198 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2199 register_size (gdbarch, regnum));
2200 regcache_cooked_write_part (regcache, regnum,
2201 0, bytes_to_write,
50fd1280 2202 valbuf + bytes_written);
a3c001ce
JB
2203 regnum++;
2204 bytes_written += bytes_to_write;
2205 }
2206 }
7a78ae4e
ND
2207}
2208
a3c001ce 2209
7a78ae4e
ND
2210/* Extract from an array REGBUF containing the (raw) register state
2211 the address in which a function should return its structure value,
2212 as a CORE_ADDR (or an expression that can be used as one). */
2213
2214static CORE_ADDR
11269d7e
AC
2215rs6000_extract_struct_value_address (struct regcache *regcache)
2216{
2217 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2218 function call GDB knows the address of the struct return value
2219 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2220 the current call_function_by_hand() code only saves the most
2221 recent struct address leading to occasional calls. The code
2222 should instead maintain a stack of such addresses (in the dummy
2223 frame object). */
11269d7e
AC
2224 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2225 really got no idea where the return value is being stored. While
2226 r3, on function entry, contained the address it will have since
2227 been reused (scratch) and hence wouldn't be valid */
2228 return 0;
7a78ae4e
ND
2229}
2230
64366f1c 2231/* Hook called when a new child process is started. */
7a78ae4e
ND
2232
2233void
2234rs6000_create_inferior (int pid)
2235{
2236 if (rs6000_set_host_arch_hook)
2237 rs6000_set_host_arch_hook (pid);
c906108c
SS
2238}
2239\f
e2d0e7eb 2240/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2241
2242 Usually a function pointer's representation is simply the address
2243 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2244 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2245 three words, the first word is the address of the function, the
2246 second word is the TOC pointer (r2), and the third word is the
2247 static chain value. Throughout GDB it is currently assumed that a
2248 function pointer contains the address of the function, which is not
2249 easy to fix. In addition, the conversion of a function address to
8ba0209f 2250 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2251 inferior's memory space, with all its drawbacks. To be able to
2252 call C++ virtual methods in the inferior (which are called via
f517ea4e 2253 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2254 function address from a function pointer. */
2255
f517ea4e
PS
2256/* Return real function address if ADDR (a function pointer) is in the data
2257 space and is therefore a special function pointer. */
c906108c 2258
b9362cc7 2259static CORE_ADDR
e2d0e7eb
AC
2260rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2261 CORE_ADDR addr,
2262 struct target_ops *targ)
c906108c
SS
2263{
2264 struct obj_section *s;
2265
2266 s = find_pc_section (addr);
2267 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2268 return addr;
c906108c 2269
7a78ae4e 2270 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2271 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2272}
c906108c 2273\f
c5aa993b 2274
7a78ae4e 2275/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2276
2277
7a78ae4e
ND
2278/* The arrays here called registers_MUMBLE hold information about available
2279 registers.
c906108c
SS
2280
2281 For each family of PPC variants, I've tried to isolate out the
2282 common registers and put them up front, so that as long as you get
2283 the general family right, GDB will correctly identify the registers
2284 common to that family. The common register sets are:
2285
2286 For the 60x family: hid0 hid1 iabr dabr pir
2287
2288 For the 505 and 860 family: eie eid nri
2289
2290 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2291 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2292 pbu1 pbl2 pbu2
c906108c
SS
2293
2294 Most of these register groups aren't anything formal. I arrived at
2295 them by looking at the registers that occurred in more than one
6f5987a6
KB
2296 processor.
2297
2298 Note: kevinb/2002-04-30: Support for the fpscr register was added
2299 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2300 for Power. For PowerPC, slot 70 was unused and was already in the
2301 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2302 slot 70 was being used for "mq", so the next available slot (71)
2303 was chosen. It would have been nice to be able to make the
2304 register numbers the same across processor cores, but this wasn't
2305 possible without either 1) renumbering some registers for some
2306 processors or 2) assigning fpscr to a really high slot that's
2307 larger than any current register number. Doing (1) is bad because
2308 existing stubs would break. Doing (2) is undesirable because it
2309 would introduce a really large gap between fpscr and the rest of
2310 the registers for most processors. */
7a78ae4e 2311
64366f1c 2312/* Convenience macros for populating register arrays. */
7a78ae4e 2313
64366f1c 2314/* Within another macro, convert S to a string. */
7a78ae4e
ND
2315
2316#define STR(s) #s
2317
2318/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2319 and 64 bits on 64-bit systems. */
13ac140c 2320#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2321
2322/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2323 systems. */
13ac140c 2324#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2325
2326/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2327 systems. */
13ac140c 2328#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2329
1fcc0bb8 2330/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2331 systems. */
13ac140c 2332#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2333
64366f1c 2334/* Return a struct reg defining floating-point register NAME. */
13ac140c 2335#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2336
6ced10dd
JB
2337/* Return a struct reg defining a pseudo register NAME that is 64 bits
2338 long on all systems. */
2339#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2340
2341/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2342 systems and that doesn't exist on 64-bit systems. */
13ac140c 2343#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2344
2345/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2346 systems and that doesn't exist on 32-bit systems. */
13ac140c 2347#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2348
64366f1c 2349/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2350#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2351
6ced10dd
JB
2352/* Return a struct reg defining an anonymous raw register that's 32
2353 bits on all systems. */
2354#define A4 { 0, 4, 4, 0, 0, -1 }
2355
13ac140c
JB
2356/* Return a struct reg defining an SPR named NAME that is 32 bits on
2357 32-bit systems and 64 bits on 64-bit systems. */
2358#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2359
2360/* Return a struct reg defining an SPR named NAME that is 32 bits on
2361 all systems. */
2362#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2363
2364/* Return a struct reg defining an SPR named NAME that is 32 bits on
2365 all systems, and whose SPR number is NUMBER. */
2366#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2367
2368/* Return a struct reg defining an SPR named NAME that's 64 bits on
2369 64-bit systems and that doesn't exist on 32-bit systems. */
2370#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2371
7a78ae4e
ND
2372/* UISA registers common across all architectures, including POWER. */
2373
2374#define COMMON_UISA_REGS \
2375 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2376 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2377 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2378 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2379 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2380 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2381 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2382 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2383 /* 64 */ R(pc), R(ps)
2384
2385/* UISA-level SPRs for PowerPC. */
2386#define PPC_UISA_SPRS \
13ac140c 2387 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2388
c8001721
EZ
2389/* UISA-level SPRs for PowerPC without floating point support. */
2390#define PPC_UISA_NOFP_SPRS \
13ac140c 2391 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2392
7a78ae4e
ND
2393/* Segment registers, for PowerPC. */
2394#define PPC_SEGMENT_REGS \
2395 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2396 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2397 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2398 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2399
2400/* OEA SPRs for PowerPC. */
2401#define PPC_OEA_SPRS \
13ac140c
JB
2402 /* 87 */ S4(pvr), \
2403 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2404 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2405 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2406 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2407 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2408 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2409 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2410 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2411
64366f1c 2412/* AltiVec registers. */
1fcc0bb8
EZ
2413#define PPC_ALTIVEC_REGS \
2414 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2415 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2416 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2417 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2418 /*151*/R4(vscr), R4(vrsave)
2419
c8001721 2420
6ced10dd
JB
2421/* On machines supporting the SPE APU, the general-purpose registers
2422 are 64 bits long. There are SIMD vector instructions to treat them
2423 as pairs of floats, but the rest of the instruction set treats them
2424 as 32-bit registers, and only operates on their lower halves.
2425
2426 In the GDB regcache, we treat their high and low halves as separate
2427 registers. The low halves we present as the general-purpose
2428 registers, and then we have pseudo-registers that stitch together
2429 the upper and lower halves and present them as pseudo-registers. */
2430
2431/* SPE GPR lower halves --- raw registers. */
2432#define PPC_SPE_GP_REGS \
2433 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2434 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2435 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2436 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2437
2438/* SPE GPR upper halves --- anonymous raw registers. */
2439#define PPC_SPE_UPPER_GP_REGS \
2440 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2441 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2442 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2443 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2444
2445/* SPE GPR vector registers --- pseudo registers based on underlying
2446 gprs and the anonymous upper half raw registers. */
2447#define PPC_EV_PSEUDO_REGS \
2448/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2449/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2450/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2451/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2452
7a78ae4e 2453/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2454 user-level SPR's. */
7a78ae4e 2455static const struct reg registers_power[] =
c906108c 2456{
7a78ae4e 2457 COMMON_UISA_REGS,
13ac140c 2458 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2459 /* 71 */ R4(fpscr)
c906108c
SS
2460};
2461
7a78ae4e 2462/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2463 view of the PowerPC. */
7a78ae4e 2464static const struct reg registers_powerpc[] =
c906108c 2465{
7a78ae4e 2466 COMMON_UISA_REGS,
1fcc0bb8
EZ
2467 PPC_UISA_SPRS,
2468 PPC_ALTIVEC_REGS
c906108c
SS
2469};
2470
13ac140c
JB
2471/* IBM PowerPC 403.
2472
2473 Some notes about the "tcr" special-purpose register:
2474 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2475 403's programmable interval timer, fixed interval timer, and
2476 watchdog timer.
2477 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2478 watchdog timer, and nothing else.
2479
2480 Some of the fields are similar between the two, but they're not
2481 compatible with each other. Since the two variants have different
2482 registers, with different numbers, but the same name, we can't
2483 splice the register name to get the SPR number. */
7a78ae4e 2484static const struct reg registers_403[] =
c5aa993b 2485{
7a78ae4e
ND
2486 COMMON_UISA_REGS,
2487 PPC_UISA_SPRS,
2488 PPC_SEGMENT_REGS,
2489 PPC_OEA_SPRS,
13ac140c
JB
2490 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2491 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2492 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2493 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2494 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2495 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2496};
2497
13ac140c
JB
2498/* IBM PowerPC 403GC.
2499 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2500static const struct reg registers_403GC[] =
c5aa993b 2501{
7a78ae4e
ND
2502 COMMON_UISA_REGS,
2503 PPC_UISA_SPRS,
2504 PPC_SEGMENT_REGS,
2505 PPC_OEA_SPRS,
13ac140c
JB
2506 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2507 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2508 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2509 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2510 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2511 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2512 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2513 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2514};
2515
64366f1c 2516/* Motorola PowerPC 505. */
7a78ae4e 2517static const struct reg registers_505[] =
c5aa993b 2518{
7a78ae4e
ND
2519 COMMON_UISA_REGS,
2520 PPC_UISA_SPRS,
2521 PPC_SEGMENT_REGS,
2522 PPC_OEA_SPRS,
13ac140c 2523 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2524};
2525
64366f1c 2526/* Motorola PowerPC 860 or 850. */
7a78ae4e 2527static const struct reg registers_860[] =
c5aa993b 2528{
7a78ae4e
ND
2529 COMMON_UISA_REGS,
2530 PPC_UISA_SPRS,
2531 PPC_SEGMENT_REGS,
2532 PPC_OEA_SPRS,
13ac140c
JB
2533 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2534 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2535 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2536 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2537 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2538 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2539 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2540 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2541 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2542 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2543 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2544 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2545};
2546
7a78ae4e
ND
2547/* Motorola PowerPC 601. Note that the 601 has different register numbers
2548 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2549 register is the stub's problem. */
7a78ae4e 2550static const struct reg registers_601[] =
c5aa993b 2551{
7a78ae4e
ND
2552 COMMON_UISA_REGS,
2553 PPC_UISA_SPRS,
2554 PPC_SEGMENT_REGS,
2555 PPC_OEA_SPRS,
13ac140c
JB
2556 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2557 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2558};
2559
13ac140c
JB
2560/* Motorola PowerPC 602.
2561 See the notes under the 403 about 'tcr'. */
7a78ae4e 2562static const struct reg registers_602[] =
c5aa993b 2563{
7a78ae4e
ND
2564 COMMON_UISA_REGS,
2565 PPC_UISA_SPRS,
2566 PPC_SEGMENT_REGS,
2567 PPC_OEA_SPRS,
13ac140c
JB
2568 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2569 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2570 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2571};
2572
64366f1c 2573/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2574static const struct reg registers_603[] =
c5aa993b 2575{
7a78ae4e
ND
2576 COMMON_UISA_REGS,
2577 PPC_UISA_SPRS,
2578 PPC_SEGMENT_REGS,
2579 PPC_OEA_SPRS,
13ac140c
JB
2580 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2581 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2582 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2583};
2584
64366f1c 2585/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2586static const struct reg registers_604[] =
c5aa993b 2587{
7a78ae4e
ND
2588 COMMON_UISA_REGS,
2589 PPC_UISA_SPRS,
2590 PPC_SEGMENT_REGS,
2591 PPC_OEA_SPRS,
13ac140c
JB
2592 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2593 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2594 /* 127 */ S(sia), S(sda)
c906108c
SS
2595};
2596
64366f1c 2597/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2598static const struct reg registers_750[] =
c5aa993b 2599{
7a78ae4e
ND
2600 COMMON_UISA_REGS,
2601 PPC_UISA_SPRS,
2602 PPC_SEGMENT_REGS,
2603 PPC_OEA_SPRS,
13ac140c
JB
2604 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2605 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2606 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2607 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2608 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2609 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2610};
2611
2612
64366f1c 2613/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2614static const struct reg registers_7400[] =
2615{
2616 /* gpr0-gpr31, fpr0-fpr31 */
2617 COMMON_UISA_REGS,
13c7b1ca 2618 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2619 PPC_UISA_SPRS,
2620 /* sr0-sr15 */
2621 PPC_SEGMENT_REGS,
2622 PPC_OEA_SPRS,
2623 /* vr0-vr31, vrsave, vscr */
2624 PPC_ALTIVEC_REGS
2625 /* FIXME? Add more registers? */
2626};
2627
c8001721
EZ
2628/* Motorola e500. */
2629static const struct reg registers_e500[] =
2630{
6ced10dd
JB
2631 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2632 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2633 /* 64 .. 65 */ R(pc), R(ps),
2634 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2635 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2636 /* NOTE: Add new registers here the end of the raw register
2637 list and just before the first pseudo register. */
6ced10dd 2638 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2639};
2640
c906108c 2641/* Information about a particular processor variant. */
7a78ae4e 2642
c906108c 2643struct variant
c5aa993b
JM
2644 {
2645 /* Name of this variant. */
2646 char *name;
c906108c 2647
c5aa993b
JM
2648 /* English description of the variant. */
2649 char *description;
c906108c 2650
64366f1c 2651 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2652 enum bfd_architecture arch;
2653
64366f1c 2654 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2655 unsigned long mach;
2656
489461e2
EZ
2657 /* Number of real registers. */
2658 int nregs;
2659
2660 /* Number of pseudo registers. */
2661 int npregs;
2662
2663 /* Number of total registers (the sum of nregs and npregs). */
2664 int num_tot_regs;
2665
c5aa993b
JM
2666 /* Table of register names; registers[R] is the name of the register
2667 number R. */
7a78ae4e 2668 const struct reg *regs;
c5aa993b 2669 };
c906108c 2670
489461e2
EZ
2671#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2672
2673static int
2674num_registers (const struct reg *reg_list, int num_tot_regs)
2675{
2676 int i;
2677 int nregs = 0;
2678
2679 for (i = 0; i < num_tot_regs; i++)
2680 if (!reg_list[i].pseudo)
2681 nregs++;
2682
2683 return nregs;
2684}
2685
2686static int
2687num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2688{
2689 int i;
2690 int npregs = 0;
2691
2692 for (i = 0; i < num_tot_regs; i++)
2693 if (reg_list[i].pseudo)
2694 npregs ++;
2695
2696 return npregs;
2697}
c906108c 2698
c906108c
SS
2699/* Information in this table comes from the following web sites:
2700 IBM: http://www.chips.ibm.com:80/products/embedded/
2701 Motorola: http://www.mot.com/SPS/PowerPC/
2702
2703 I'm sure I've got some of the variant descriptions not quite right.
2704 Please report any inaccuracies you find to GDB's maintainer.
2705
2706 If you add entries to this table, please be sure to allow the new
2707 value as an argument to the --with-cpu flag, in configure.in. */
2708
489461e2 2709static struct variant variants[] =
c906108c 2710{
489461e2 2711
7a78ae4e 2712 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2713 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2714 registers_powerpc},
7a78ae4e 2715 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2716 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2717 registers_power},
7a78ae4e 2718 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2719 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2720 registers_403},
7a78ae4e 2721 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2722 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2723 registers_601},
7a78ae4e 2724 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2725 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2726 registers_602},
7a78ae4e 2727 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2728 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2729 registers_603},
7a78ae4e 2730 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2731 604, -1, -1, tot_num_registers (registers_604),
2732 registers_604},
7a78ae4e 2733 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2734 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2735 registers_403GC},
7a78ae4e 2736 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2737 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2738 registers_505},
7a78ae4e 2739 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2740 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2741 registers_860},
7a78ae4e 2742 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2743 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2744 registers_750},
1fcc0bb8 2745 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2746 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2747 registers_7400},
c8001721
EZ
2748 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2749 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2750 registers_e500},
7a78ae4e 2751
5d57ee30
KB
2752 /* 64-bit */
2753 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2754 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2755 registers_powerpc},
7a78ae4e 2756 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2757 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2758 registers_powerpc},
5d57ee30 2759 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2760 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2761 registers_powerpc},
7a78ae4e 2762 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2763 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2764 registers_powerpc},
5d57ee30 2765 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2766 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2767 registers_powerpc},
5d57ee30 2768 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2769 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2770 registers_powerpc},
5d57ee30 2771
64366f1c 2772 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2773 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2774 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2775 registers_power},
7a78ae4e 2776 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2777 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2778 registers_power},
7a78ae4e 2779 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2780 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2781 registers_power},
7a78ae4e 2782
489461e2 2783 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2784};
2785
64366f1c 2786/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2787
2788static void
2789init_variants (void)
2790{
2791 struct variant *v;
2792
2793 for (v = variants; v->name; v++)
2794 {
2795 if (v->nregs == -1)
2796 v->nregs = num_registers (v->regs, v->num_tot_regs);
2797 if (v->npregs == -1)
2798 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2799 }
2800}
c906108c 2801
7a78ae4e 2802/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2803 MACH. If no such variant exists, return null. */
c906108c 2804
7a78ae4e
ND
2805static const struct variant *
2806find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2807{
7a78ae4e 2808 const struct variant *v;
c5aa993b 2809
7a78ae4e
ND
2810 for (v = variants; v->name; v++)
2811 if (arch == v->arch && mach == v->mach)
2812 return v;
c906108c 2813
7a78ae4e 2814 return NULL;
c906108c 2815}
9364a0ef
EZ
2816
2817static int
2818gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2819{
2820 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2821 return print_insn_big_powerpc (memaddr, info);
2822 else
2823 return print_insn_little_powerpc (memaddr, info);
2824}
7a78ae4e 2825\f
61a65099
KB
2826static CORE_ADDR
2827rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2828{
2829 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2830}
2831
2832static struct frame_id
2833rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2834{
2835 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2836 SP_REGNUM),
2837 frame_pc_unwind (next_frame));
2838}
2839
2840struct rs6000_frame_cache
2841{
2842 CORE_ADDR base;
2843 CORE_ADDR initial_sp;
2844 struct trad_frame_saved_reg *saved_regs;
2845};
2846
2847static struct rs6000_frame_cache *
2848rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2849{
2850 struct rs6000_frame_cache *cache;
2851 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2852 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2853 struct rs6000_framedata fdata;
2854 int wordsize = tdep->wordsize;
e10b1c4c 2855 CORE_ADDR func, pc;
61a65099
KB
2856
2857 if ((*this_cache) != NULL)
2858 return (*this_cache);
2859 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2860 (*this_cache) = cache;
2861 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2862
e10b1c4c
DJ
2863 func = frame_func_unwind (next_frame);
2864 pc = frame_pc_unwind (next_frame);
2865 skip_prologue (func, pc, &fdata);
2866
2867 /* Figure out the parent's stack pointer. */
2868
2869 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2870 address of the current frame. Things might be easier if the
2871 ->frame pointed to the outer-most address of the frame. In
2872 the mean time, the address of the prev frame is used as the
2873 base address of this frame. */
2874 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2875
2876 /* If the function appears to be frameless, check a couple of likely
2877 indicators that we have simply failed to find the frame setup.
2878 Two common cases of this are missing symbols (i.e.
2879 frame_func_unwind returns the wrong address or 0), and assembly
2880 stubs which have a fast exit path but set up a frame on the slow
2881 path.
2882
2883 If the LR appears to return to this function, then presume that
2884 we have an ABI compliant frame that we failed to find. */
2885 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 2886 {
e10b1c4c
DJ
2887 CORE_ADDR saved_lr;
2888 int make_frame = 0;
2889
2890 saved_lr = frame_unwind_register_unsigned (next_frame,
2891 tdep->ppc_lr_regnum);
2892 if (func == 0 && saved_lr == pc)
2893 make_frame = 1;
2894 else if (func != 0)
2895 {
2896 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
2897 if (func == saved_func)
2898 make_frame = 1;
2899 }
2900
2901 if (make_frame)
2902 {
2903 fdata.frameless = 0;
2904 fdata.lr_offset = wordsize;
2905 }
61a65099 2906 }
e10b1c4c
DJ
2907
2908 if (!fdata.frameless)
2909 /* Frameless really means stackless. */
2910 cache->base = read_memory_addr (cache->base, wordsize);
2911
61a65099
KB
2912 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2913
2914 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2915 All fpr's from saved_fpr to fp31 are saved. */
2916
2917 if (fdata.saved_fpr >= 0)
2918 {
2919 int i;
2920 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
2921
2922 /* If skip_prologue says floating-point registers were saved,
2923 but the current architecture has no floating-point registers,
2924 then that's strange. But we have no indices to even record
2925 the addresses under, so we just ignore it. */
2926 if (ppc_floating_point_unit_p (gdbarch))
063715bf 2927 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
2928 {
2929 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2930 fpr_addr += 8;
2931 }
61a65099
KB
2932 }
2933
2934 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2935 All gpr's from saved_gpr to gpr31 are saved. */
2936
2937 if (fdata.saved_gpr >= 0)
2938 {
2939 int i;
2940 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 2941 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
2942 {
2943 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2944 gpr_addr += wordsize;
2945 }
2946 }
2947
2948 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2949 All vr's from saved_vr to vr31 are saved. */
2950 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2951 {
2952 if (fdata.saved_vr >= 0)
2953 {
2954 int i;
2955 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2956 for (i = fdata.saved_vr; i < 32; i++)
2957 {
2958 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2959 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2960 }
2961 }
2962 }
2963
2964 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2965 All vr's from saved_ev to ev31 are saved. ????? */
2966 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2967 {
2968 if (fdata.saved_ev >= 0)
2969 {
2970 int i;
2971 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 2972 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
2973 {
2974 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2975 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2976 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2977 }
2978 }
2979 }
2980
2981 /* If != 0, fdata.cr_offset is the offset from the frame that
2982 holds the CR. */
2983 if (fdata.cr_offset != 0)
2984 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2985
2986 /* If != 0, fdata.lr_offset is the offset from the frame that
2987 holds the LR. */
2988 if (fdata.lr_offset != 0)
2989 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2990 /* The PC is found in the link register. */
2991 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2992
2993 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2994 holds the VRSAVE. */
2995 if (fdata.vrsave_offset != 0)
2996 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2997
2998 if (fdata.alloca_reg < 0)
2999 /* If no alloca register used, then fi->frame is the value of the
3000 %sp for this frame, and it is good enough. */
3001 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3002 else
3003 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3004 fdata.alloca_reg);
3005
3006 return cache;
3007}
3008
3009static void
3010rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3011 struct frame_id *this_id)
3012{
3013 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3014 this_cache);
3015 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
3016}
3017
3018static void
3019rs6000_frame_prev_register (struct frame_info *next_frame,
3020 void **this_cache,
3021 int regnum, int *optimizedp,
3022 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3023 int *realnump, gdb_byte *valuep)
61a65099
KB
3024{
3025 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3026 this_cache);
1f67027d
AC
3027 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3028 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3029}
3030
3031static const struct frame_unwind rs6000_frame_unwind =
3032{
3033 NORMAL_FRAME,
3034 rs6000_frame_this_id,
3035 rs6000_frame_prev_register
3036};
3037
3038static const struct frame_unwind *
3039rs6000_frame_sniffer (struct frame_info *next_frame)
3040{
3041 return &rs6000_frame_unwind;
3042}
3043
3044\f
3045
3046static CORE_ADDR
3047rs6000_frame_base_address (struct frame_info *next_frame,
3048 void **this_cache)
3049{
3050 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3051 this_cache);
3052 return info->initial_sp;
3053}
3054
3055static const struct frame_base rs6000_frame_base = {
3056 &rs6000_frame_unwind,
3057 rs6000_frame_base_address,
3058 rs6000_frame_base_address,
3059 rs6000_frame_base_address
3060};
3061
3062static const struct frame_base *
3063rs6000_frame_base_sniffer (struct frame_info *next_frame)
3064{
3065 return &rs6000_frame_base;
3066}
3067
7a78ae4e
ND
3068/* Initialize the current architecture based on INFO. If possible, re-use an
3069 architecture from ARCHES, which is a list of architectures already created
3070 during this debugging session.
c906108c 3071
7a78ae4e 3072 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3073 a binary file. */
c906108c 3074
7a78ae4e
ND
3075static struct gdbarch *
3076rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3077{
3078 struct gdbarch *gdbarch;
3079 struct gdbarch_tdep *tdep;
708ff411 3080 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3081 struct reg *regs;
3082 const struct variant *v;
3083 enum bfd_architecture arch;
3084 unsigned long mach;
3085 bfd abfd;
7b112f9c 3086 int sysv_abi;
5bf1c677 3087 asection *sect;
7a78ae4e 3088
9aa1e687 3089 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3090 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3091
9aa1e687
KB
3092 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3093 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3094
3095 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3096
e712c1cf 3097 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3098 that, else choose a likely default. */
9aa1e687 3099 if (from_xcoff_exec)
c906108c 3100 {
11ed25ac 3101 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3102 wordsize = 8;
3103 else
3104 wordsize = 4;
c906108c 3105 }
9aa1e687
KB
3106 else if (from_elf_exec)
3107 {
3108 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3109 wordsize = 8;
3110 else
3111 wordsize = 4;
3112 }
c906108c 3113 else
7a78ae4e 3114 {
27b15785
KB
3115 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3116 wordsize = info.bfd_arch_info->bits_per_word /
3117 info.bfd_arch_info->bits_per_byte;
3118 else
3119 wordsize = 4;
7a78ae4e 3120 }
c906108c 3121
64366f1c 3122 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3123 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3124 arches != NULL;
3125 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3126 {
3127 /* Word size in the various PowerPC bfd_arch_info structs isn't
3128 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3129 separate word size check. */
7a78ae4e 3130 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3131 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3132 return arches->gdbarch;
3133 }
c906108c 3134
7a78ae4e
ND
3135 /* None found, create a new architecture from INFO, whose bfd_arch_info
3136 validity depends on the source:
3137 - executable useless
3138 - rs6000_host_arch() good
3139 - core file good
3140 - "set arch" trust blindly
3141 - GDB startup useless but harmless */
c906108c 3142
9aa1e687 3143 if (!from_xcoff_exec)
c906108c 3144 {
b732d07d 3145 arch = info.bfd_arch_info->arch;
7a78ae4e 3146 mach = info.bfd_arch_info->mach;
c906108c 3147 }
7a78ae4e 3148 else
c906108c 3149 {
7a78ae4e 3150 arch = bfd_arch_powerpc;
35cec841 3151 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3152 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3153 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3154 }
3155 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3156 tdep->wordsize = wordsize;
5bf1c677
EZ
3157
3158 /* For e500 executables, the apuinfo section is of help here. Such
3159 section contains the identifier and revision number of each
3160 Application-specific Processing Unit that is present on the
3161 chip. The content of the section is determined by the assembler
3162 which looks at each instruction and determines which unit (and
3163 which version of it) can execute it. In our case we just look for
3164 the existance of the section. */
3165
3166 if (info.abfd)
3167 {
3168 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3169 if (sect)
3170 {
3171 arch = info.bfd_arch_info->arch;
3172 mach = bfd_mach_ppc_e500;
3173 bfd_default_set_arch_mach (&abfd, arch, mach);
3174 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3175 }
3176 }
3177
7a78ae4e 3178 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3179
489461e2
EZ
3180 /* Initialize the number of real and pseudo registers in each variant. */
3181 init_variants ();
3182
64366f1c 3183 /* Choose variant. */
7a78ae4e
ND
3184 v = find_variant_by_arch (arch, mach);
3185 if (!v)
dd47e6fd
EZ
3186 return NULL;
3187
7a78ae4e
ND
3188 tdep->regs = v->regs;
3189
2188cbdd 3190 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3191 tdep->ppc_toc_regnum = 2;
3192 tdep->ppc_ps_regnum = 65;
3193 tdep->ppc_cr_regnum = 66;
3194 tdep->ppc_lr_regnum = 67;
3195 tdep->ppc_ctr_regnum = 68;
3196 tdep->ppc_xer_regnum = 69;
3197 if (v->mach == bfd_mach_ppc_601)
3198 tdep->ppc_mq_regnum = 124;
708ff411 3199 else if (arch == bfd_arch_rs6000)
2188cbdd 3200 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3201 else
3202 tdep->ppc_mq_regnum = -1;
366f009f 3203 tdep->ppc_fp0_regnum = 32;
708ff411 3204 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3205 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3206 tdep->ppc_vr0_regnum = -1;
3207 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3208 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3209 tdep->ppc_ev0_regnum = -1;
3210 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3211 tdep->ppc_acc_regnum = -1;
3212 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3213
c8001721
EZ
3214 set_gdbarch_pc_regnum (gdbarch, 64);
3215 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3216 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
9f643768 3217 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3218 if (sysv_abi && wordsize == 8)
05580c65 3219 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3220 else if (sysv_abi && wordsize == 4)
05580c65 3221 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
3222 else
3223 {
3224 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
a3c001ce 3225 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
afd48b75 3226 }
c8001721 3227
baffbae0
JB
3228 /* Set lr_frame_offset. */
3229 if (wordsize == 8)
3230 tdep->lr_frame_offset = 16;
3231 else if (sysv_abi)
3232 tdep->lr_frame_offset = 4;
3233 else
3234 tdep->lr_frame_offset = 8;
3235
f86a7158
JB
3236 if (v->arch == bfd_arch_rs6000)
3237 tdep->ppc_sr0_regnum = -1;
3238 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3239 switch (v->mach)
3240 {
3241 case bfd_mach_ppc:
412b3060 3242 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3243 tdep->ppc_vr0_regnum = 71;
3244 tdep->ppc_vrsave_regnum = 104;
3245 break;
3246 case bfd_mach_ppc_7400:
3247 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3248 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3249 break;
3250 case bfd_mach_ppc_e500:
c8001721 3251 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3252 tdep->ppc_ev0_upper_regnum = 32;
3253 tdep->ppc_ev0_regnum = 73;
3254 tdep->ppc_ev31_regnum = 104;
3255 tdep->ppc_acc_regnum = 71;
3256 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3257 tdep->ppc_fp0_regnum = -1;
3258 tdep->ppc_fpscr_regnum = -1;
f86a7158 3259 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3260 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3261 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3262 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3263 break;
f86a7158
JB
3264
3265 case bfd_mach_ppc64:
3266 case bfd_mach_ppc_620:
3267 case bfd_mach_ppc_630:
3268 case bfd_mach_ppc_a35:
3269 case bfd_mach_ppc_rs64ii:
3270 case bfd_mach_ppc_rs64iii:
3271 /* These processor's register sets don't have segment registers. */
3272 tdep->ppc_sr0_regnum = -1;
3273 break;
1fcc0bb8 3274 }
f86a7158
JB
3275 else
3276 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3277 _("rs6000_gdbarch_init: "
3278 "received unexpected BFD 'arch' value"));
1fcc0bb8 3279
338ef23d
AC
3280 /* Sanity check on registers. */
3281 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3282
56a6dfb9 3283 /* Select instruction printer. */
708ff411 3284 if (arch == bfd_arch_rs6000)
9364a0ef 3285 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3286 else
9364a0ef 3287 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3288
7a78ae4e 3289 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3290
3291 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3292 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3293 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3294 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3295 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3296
3297 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3298 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3299 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3300 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3301 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3302 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3303 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3304 if (sysv_abi)
3305 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3306 else
3307 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3308 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3309
11269d7e 3310 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3311 if (sysv_abi && wordsize == 8)
3312 /* PPC64 SYSV. */
3313 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3314 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3315 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3316 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3317 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3318 224. */
3319 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3320
691d145a
JB
3321 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3322 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3323 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3324
18ed0c4e
JB
3325 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3326 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
2ea5f656
KB
3327 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3328 is correct for the SysV ABI when the wordsize is 8, but I'm also
3329 fairly certain that ppc_sysv_abi_push_arguments() will give even
3330 worse results since it only works for 32-bit code. So, for the moment,
3331 we're better off calling rs6000_push_arguments() since it works for
3332 64-bit code. At some point in the future, this matter needs to be
3333 revisited. */
3334 if (sysv_abi && wordsize == 4)
77b2b6d4 3335 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3336 else if (sysv_abi && wordsize == 8)
3337 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3338 else
77b2b6d4 3339 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3340
74055713 3341 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
3342
3343 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3344 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3345 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3346
6066c3de
AC
3347 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3348 for the descriptor and ".FN" for the entry-point -- a user
3349 specifying "break FN" will unexpectedly end up with a breakpoint
3350 on the descriptor and not the function. This architecture method
3351 transforms any breakpoints on descriptors into breakpoints on the
3352 corresponding entry point. */
3353 if (sysv_abi && wordsize == 8)
3354 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3355
7a78ae4e
ND
3356 /* Not sure on this. FIXMEmgo */
3357 set_gdbarch_frame_args_skip (gdbarch, 8);
3358
05580c65 3359 if (!sysv_abi)
b5622e8d 3360 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
8e0662df 3361
15813d3f
AC
3362 if (!sysv_abi)
3363 {
3364 /* Handle RS/6000 function pointers (which are really function
3365 descriptors). */
f517ea4e
PS
3366 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3367 rs6000_convert_from_func_ptr_addr);
9aa1e687 3368 }
7a78ae4e 3369
143985b7
AF
3370 /* Helpers for function argument information. */
3371 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3372
7b112f9c 3373 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3374 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3375
61a65099
KB
3376 switch (info.osabi)
3377 {
3378 case GDB_OSABI_NETBSD_AOUT:
3379 case GDB_OSABI_NETBSD_ELF:
3380 case GDB_OSABI_UNKNOWN:
3381 case GDB_OSABI_LINUX:
3382 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3383 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3384 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3385 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3386 break;
3387 default:
61a65099 3388 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3389
3390 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3391 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3392 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3393 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3394 }
3395
ef5200c1
AC
3396 if (from_xcoff_exec)
3397 {
3398 /* NOTE: jimix/2003-06-09: This test should really check for
3399 GDB_OSABI_AIX when that is defined and becomes
3400 available. (Actually, once things are properly split apart,
3401 the test goes away.) */
3402 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3403 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3404 }
3405
9f643768
JB
3406 init_sim_regno_table (gdbarch);
3407
7a78ae4e 3408 return gdbarch;
c906108c
SS
3409}
3410
7b112f9c
JT
3411static void
3412rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3413{
3414 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3415
3416 if (tdep == NULL)
3417 return;
3418
4be87837 3419 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3420}
3421
1fcc0bb8
EZ
3422static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3423
3424static void
3425rs6000_info_powerpc_command (char *args, int from_tty)
3426{
3427 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3428}
3429
c906108c
SS
3430/* Initialization code. */
3431
a78f21af 3432extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3433
c906108c 3434void
fba45db2 3435_initialize_rs6000_tdep (void)
c906108c 3436{
7b112f9c
JT
3437 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3438 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
c906108c 3439}
This page took 0.847575 seconds and 4 git commands to generate.