* x86-64-tdep.h: Tewak comment.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6
AC
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d 50#include "gdb_assert.h"
a89aa300 51#include "dis-asm.h"
338ef23d 52
7a78ae4e
ND
53/* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60#define SIG_FRAME_PC_OFFSET 96
61#define SIG_FRAME_LR_OFFSET 108
62#define SIG_FRAME_FP_OFFSET 284
63
7a78ae4e
ND
64/* To be used by skip_prologue. */
65
66struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 73 int saved_vr; /* smallest # of saved vr */
96ff0de4 74 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 80 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 81 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
6be8bc0c 84 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
85 };
86
87/* Description of a single register. */
88
89struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
489461e2 95 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
96 };
97
c906108c
SS
98/* Breakpoint shadows for the single step instructions will be kept here. */
99
c5aa993b
JM
100static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107stepBreaks[2];
c906108c
SS
108
109/* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
7a78ae4e
ND
113CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115/* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
119
120/* Static function prototypes */
121
a14ed312
KB
122static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
077276e8
KB
124static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
7a78ae4e
ND
126static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 129
64b84175
KB
130/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131int
132altivec_register_p (int regno)
133{
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139}
140
0a613259
AC
141/* Use the architectures FP registers? */
142int
143ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144{
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151}
152
7a78ae4e 153/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 154
7a78ae4e
ND
155static CORE_ADDR
156read_memory_addr (CORE_ADDR memaddr, int len)
157{
158 return read_memory_unsigned_integer (memaddr, len);
159}
c906108c 160
7a78ae4e
ND
161static CORE_ADDR
162rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
163{
164 struct rs6000_framedata frame;
077276e8 165 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
166 return pc;
167}
168
169
c906108c
SS
170/* Fill in fi->saved_regs */
171
172struct frame_extra_info
173{
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
c5aa993b 179 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
180};
181
9aa1e687 182void
7a78ae4e 183rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 184{
c9012c71
AC
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
bdd78e62
AC
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 190 /* We're in get_prev_frame */
c906108c
SS
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
5a203e44 194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
195}
196
7a78ae4e
ND
197/* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
c906108c 202
7a78ae4e
ND
203/* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
9aa1e687 207void
7a78ae4e 208rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
209{
210 frame_get_saved_regs (fi, NULL);
211}
212
7a78ae4e
ND
213static CORE_ADDR
214rs6000_frame_args_address (struct frame_info *fi)
c906108c 215{
c9012c71
AC
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
c906108c
SS
219 else
220 return frame_initial_stack_address (fi);
221}
222
7a78ae4e
ND
223/* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228static CORE_ADDR
229rs6000_saved_pc_after_call (struct frame_info *fi)
230{
2188cbdd 231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 232}
c906108c 233
143985b7 234/* Get the ith function argument for the current function. */
b9362cc7 235static CORE_ADDR
143985b7
AF
236rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238{
239 CORE_ADDR addr;
7f5f525d 240 get_frame_register (frame, 3 + argi, &addr);
143985b7
AF
241 return addr;
242}
243
c906108c
SS
244/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246static CORE_ADDR
7a78ae4e 247branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
248{
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
c5aa993b
JM
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
2188cbdd 279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
8b36eed8 291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 292 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
2188cbdd 298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
305 }
306 else
307 return -1;
308 break;
c906108c 309
c5aa993b
JM
310 default:
311 return -1;
312 }
c906108c
SS
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314}
315
316
317/* Sequence of bytes for breakpoint instruction. */
318
f4f9705a 319const static unsigned char *
7a78ae4e 320rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 321{
aaab4dba
AC
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 324 *bp_size = 4;
d7449b42 325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329}
330
331
332/* AIX does not support PT_STEP. Simulate it. */
333
334void
379d08a1
AC
335rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
c906108c 337{
7c40d541
KB
338 CORE_ADDR dummy;
339 int breakp_sz;
f4f9705a 340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
c5aa993b
JM
346 if (insert_breakpoints_p)
347 {
c906108c 348
c5aa993b 349 loc = read_pc ();
c906108c 350
c5aa993b 351 insn = read_memory_integer (loc, 4);
c906108c 352
7c40d541 353 breaks[0] = loc + breakp_sz;
c5aa993b
JM
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 356
c5aa993b
JM
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
c906108c 360
c5aa993b 361 stepBreaks[1].address = 0;
c906108c 362
c5aa993b
JM
363 for (ii = 0; ii < 2; ++ii)
364 {
c906108c 365
c5aa993b
JM
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
7c40d541 369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
370 stepBreaks[ii].address = breaks[ii];
371 }
c906108c 372
c5aa993b
JM
373 }
374 else
375 {
c906108c 376
c5aa993b
JM
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
7c40d541
KB
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
c5aa993b 382 }
c906108c 383 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 384 /* What errors? {read,write}_memory call error(). */
c906108c
SS
385}
386
387
388/* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
c5aa993b
JM
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
6be8bc0c 398 - saved_vr is the number of the first saved vr.
96ff0de4 399 - saved_ev is the number of the first saved ev.
c5aa993b
JM
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 404 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 405 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
6be8bc0c 408 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 409 */
c906108c
SS
410
411#define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
55d05f3b
KB
418/* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420static int max_skip_non_prologue_insns = 10;
421
422/* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
634aa483
AC
428
429/* FIXME: cagney/2004-02-14: This function and logic have largely been
430 superseded by skip_prologue_using_sal. */
431
55d05f3b
KB
432static CORE_ADDR
433refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
434{
435 struct symtab_and_line prologue_sal;
436
437 prologue_sal = find_pc_line (pc, 0);
438 if (prologue_sal.line != 0)
439 {
440 int i;
441 CORE_ADDR addr = prologue_sal.end;
442
443 /* Handle the case in which compiler's optimizer/scheduler
444 has moved instructions into the prologue. We scan ahead
445 in the function looking for address ranges whose corresponding
446 line number is less than or equal to the first one that we
447 found for the function. (It can be less than when the
448 scheduler puts a body instruction before the first prologue
449 instruction.) */
450 for (i = 2 * max_skip_non_prologue_insns;
451 i > 0 && (lim_pc == 0 || addr < lim_pc);
452 i--)
453 {
454 struct symtab_and_line sal;
455
456 sal = find_pc_line (addr, 0);
457 if (sal.line == 0)
458 break;
459 if (sal.line <= prologue_sal.line
460 && sal.symtab == prologue_sal.symtab)
461 {
462 prologue_sal = sal;
463 }
464 addr = sal.end;
465 }
466
467 if (lim_pc == 0 || prologue_sal.end < lim_pc)
468 lim_pc = prologue_sal.end;
469 }
470 return lim_pc;
471}
472
473
7a78ae4e 474static CORE_ADDR
077276e8 475skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
476{
477 CORE_ADDR orig_pc = pc;
55d05f3b 478 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 479 CORE_ADDR li_found_pc = 0;
c906108c
SS
480 char buf[4];
481 unsigned long op;
482 long offset = 0;
6be8bc0c 483 long vr_saved_offset = 0;
482ca3f5
KB
484 int lr_reg = -1;
485 int cr_reg = -1;
6be8bc0c 486 int vr_reg = -1;
96ff0de4
EZ
487 int ev_reg = -1;
488 long ev_offset = 0;
6be8bc0c 489 int vrsave_reg = -1;
c906108c
SS
490 int reg;
491 int framep = 0;
492 int minimal_toc_loaded = 0;
ddb20c56 493 int prev_insn_was_prologue_insn = 1;
55d05f3b 494 int num_skip_non_prologue_insns = 0;
96ff0de4 495 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 496 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 497
55d05f3b
KB
498 /* Attempt to find the end of the prologue when no limit is specified.
499 Note that refine_prologue_limit() has been written so that it may
500 be used to "refine" the limits of non-zero PC values too, but this
501 is only safe if we 1) trust the line information provided by the
502 compiler and 2) iterate enough to actually find the end of the
503 prologue.
504
505 It may become a good idea at some point (for both performance and
506 accuracy) to unconditionally call refine_prologue_limit(). But,
507 until we can make a clear determination that this is beneficial,
508 we'll play it safe and only use it to obtain a limit when none
509 has been specified. */
510 if (lim_pc == 0)
511 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 512
ddb20c56 513 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
514 fdata->saved_gpr = -1;
515 fdata->saved_fpr = -1;
6be8bc0c 516 fdata->saved_vr = -1;
96ff0de4 517 fdata->saved_ev = -1;
c906108c
SS
518 fdata->alloca_reg = -1;
519 fdata->frameless = 1;
520 fdata->nosavedpc = 1;
521
55d05f3b 522 for (;; pc += 4)
c906108c 523 {
ddb20c56
KB
524 /* Sometimes it isn't clear if an instruction is a prologue
525 instruction or not. When we encounter one of these ambiguous
526 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
527 Otherwise, we'll assume that it really is a prologue instruction. */
528 if (prev_insn_was_prologue_insn)
529 last_prologue_pc = pc;
55d05f3b
KB
530
531 /* Stop scanning if we've hit the limit. */
532 if (lim_pc != 0 && pc >= lim_pc)
533 break;
534
ddb20c56
KB
535 prev_insn_was_prologue_insn = 1;
536
55d05f3b 537 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
538 if (target_read_memory (pc, buf, 4))
539 break;
540 op = extract_signed_integer (buf, 4);
c906108c 541
c5aa993b
JM
542 if ((op & 0xfc1fffff) == 0x7c0802a6)
543 { /* mflr Rx */
98f08d3d 544 lr_reg = (op & 0x03e00000);
c5aa993b 545 continue;
c906108c 546
c5aa993b
JM
547 }
548 else if ((op & 0xfc1fffff) == 0x7c000026)
549 { /* mfcr Rx */
98f08d3d 550 cr_reg = (op & 0x03e00000);
c5aa993b 551 continue;
c906108c 552
c906108c 553 }
c5aa993b
JM
554 else if ((op & 0xfc1f0000) == 0xd8010000)
555 { /* stfd Rx,NUM(r1) */
556 reg = GET_SRC_REG (op);
557 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
558 {
559 fdata->saved_fpr = reg;
560 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
561 }
562 continue;
c906108c 563
c5aa993b
JM
564 }
565 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
566 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
567 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
568 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
569 {
570
571 reg = GET_SRC_REG (op);
572 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
573 {
574 fdata->saved_gpr = reg;
7a78ae4e 575 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 576 op &= ~3UL;
c5aa993b
JM
577 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
578 }
579 continue;
c906108c 580
ddb20c56
KB
581 }
582 else if ((op & 0xffff0000) == 0x60000000)
583 {
96ff0de4 584 /* nop */
ddb20c56
KB
585 /* Allow nops in the prologue, but do not consider them to
586 be part of the prologue unless followed by other prologue
587 instructions. */
588 prev_insn_was_prologue_insn = 0;
589 continue;
590
c906108c 591 }
c5aa993b
JM
592 else if ((op & 0xffff0000) == 0x3c000000)
593 { /* addis 0,0,NUM, used
594 for >= 32k frames */
595 fdata->offset = (op & 0x0000ffff) << 16;
596 fdata->frameless = 0;
597 continue;
598
599 }
600 else if ((op & 0xffff0000) == 0x60000000)
601 { /* ori 0,0,NUM, 2nd ha
602 lf of >= 32k frames */
603 fdata->offset |= (op & 0x0000ffff);
604 fdata->frameless = 0;
605 continue;
606
607 }
98f08d3d
KB
608 else if (lr_reg != -1 &&
609 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
610 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
611 /* stw Rx, NUM(r1) */
612 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
613 /* stwu Rx, NUM(r1) */
614 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
615 { /* where Rx == lr */
616 fdata->lr_offset = offset;
c5aa993b
JM
617 fdata->nosavedpc = 0;
618 lr_reg = 0;
98f08d3d
KB
619 if ((op & 0xfc000003) == 0xf8000000 || /* std */
620 (op & 0xfc000000) == 0x90000000) /* stw */
621 {
622 /* Does not update r1, so add displacement to lr_offset. */
623 fdata->lr_offset += SIGNED_SHORT (op);
624 }
c5aa993b
JM
625 continue;
626
627 }
98f08d3d
KB
628 else if (cr_reg != -1 &&
629 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
630 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
631 /* stw Rx, NUM(r1) */
632 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
633 /* stwu Rx, NUM(r1) */
634 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
635 { /* where Rx == cr */
636 fdata->cr_offset = offset;
c5aa993b 637 cr_reg = 0;
98f08d3d
KB
638 if ((op & 0xfc000003) == 0xf8000000 ||
639 (op & 0xfc000000) == 0x90000000)
640 {
641 /* Does not update r1, so add displacement to cr_offset. */
642 fdata->cr_offset += SIGNED_SHORT (op);
643 }
c5aa993b
JM
644 continue;
645
646 }
647 else if (op == 0x48000005)
648 { /* bl .+4 used in
649 -mrelocatable */
650 continue;
651
652 }
653 else if (op == 0x48000004)
654 { /* b .+4 (xlc) */
655 break;
656
c5aa993b 657 }
6be8bc0c
EZ
658 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
659 in V.4 -mminimal-toc */
c5aa993b
JM
660 (op & 0xffff0000) == 0x3bde0000)
661 { /* addi 30,30,foo@l */
662 continue;
c906108c 663
c5aa993b
JM
664 }
665 else if ((op & 0xfc000001) == 0x48000001)
666 { /* bl foo,
667 to save fprs??? */
c906108c 668
c5aa993b 669 fdata->frameless = 0;
6be8bc0c
EZ
670 /* Don't skip over the subroutine call if it is not within
671 the first three instructions of the prologue. */
c5aa993b
JM
672 if ((pc - orig_pc) > 8)
673 break;
674
675 op = read_memory_integer (pc + 4, 4);
676
6be8bc0c
EZ
677 /* At this point, make sure this is not a trampoline
678 function (a function that simply calls another functions,
679 and nothing else). If the next is not a nop, this branch
680 was part of the function prologue. */
c5aa993b
JM
681
682 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
683 break; /* don't skip over
684 this branch */
685 continue;
686
c5aa993b 687 }
98f08d3d
KB
688 /* update stack pointer */
689 else if ((op & 0xfc1f0000) == 0x94010000)
690 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
691 fdata->frameless = 0;
692 fdata->offset = SIGNED_SHORT (op);
693 offset = fdata->offset;
694 continue;
c5aa993b 695 }
98f08d3d
KB
696 else if ((op & 0xfc1f016a) == 0x7c01016e)
697 { /* stwux rX,r1,rY */
698 /* no way to figure out what r1 is going to be */
699 fdata->frameless = 0;
700 offset = fdata->offset;
701 continue;
702 }
703 else if ((op & 0xfc1f0003) == 0xf8010001)
704 { /* stdu rX,NUM(r1) */
705 fdata->frameless = 0;
706 fdata->offset = SIGNED_SHORT (op & ~3UL);
707 offset = fdata->offset;
708 continue;
709 }
710 else if ((op & 0xfc1f016a) == 0x7c01016a)
711 { /* stdux rX,r1,rY */
712 /* no way to figure out what r1 is going to be */
c5aa993b
JM
713 fdata->frameless = 0;
714 offset = fdata->offset;
715 continue;
c5aa993b 716 }
98f08d3d
KB
717 /* Load up minimal toc pointer */
718 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
719 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 720 && !minimal_toc_loaded)
98f08d3d 721 {
c5aa993b
JM
722 minimal_toc_loaded = 1;
723 continue;
724
f6077098
KB
725 /* move parameters from argument registers to local variable
726 registers */
727 }
728 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
729 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
730 (((op >> 21) & 31) <= 10) &&
96ff0de4 731 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
732 {
733 continue;
734
c5aa993b
JM
735 /* store parameters in stack */
736 }
6be8bc0c 737 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 738 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
739 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
740 {
c5aa993b 741 continue;
c906108c 742
c5aa993b
JM
743 /* store parameters in stack via frame pointer */
744 }
745 else if (framep &&
746 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
747 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
748 (op & 0xfc1f0000) == 0xfc1f0000))
749 { /* frsp, fp?,NUM(r1) */
750 continue;
751
752 /* Set up frame pointer */
753 }
754 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
755 || op == 0x7c3f0b78)
756 { /* mr r31, r1 */
757 fdata->frameless = 0;
758 framep = 1;
6f99cb26 759 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
760 continue;
761
762 /* Another way to set up the frame pointer. */
763 }
764 else if ((op & 0xfc1fffff) == 0x38010000)
765 { /* addi rX, r1, 0x0 */
766 fdata->frameless = 0;
767 framep = 1;
6f99cb26
AC
768 fdata->alloca_reg = (tdep->ppc_gp0_regnum
769 + ((op & ~0x38010000) >> 21));
c5aa993b 770 continue;
c5aa993b 771 }
6be8bc0c
EZ
772 /* AltiVec related instructions. */
773 /* Store the vrsave register (spr 256) in another register for
774 later manipulation, or load a register into the vrsave
775 register. 2 instructions are used: mfvrsave and
776 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
777 and mtspr SPR256, Rn. */
778 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
779 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
780 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
781 {
782 vrsave_reg = GET_SRC_REG (op);
783 continue;
784 }
785 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
786 {
787 continue;
788 }
789 /* Store the register where vrsave was saved to onto the stack:
790 rS is the register where vrsave was stored in a previous
791 instruction. */
792 /* 100100 sssss 00001 dddddddd dddddddd */
793 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
794 {
795 if (vrsave_reg == GET_SRC_REG (op))
796 {
797 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
798 vrsave_reg = -1;
799 }
800 continue;
801 }
802 /* Compute the new value of vrsave, by modifying the register
803 where vrsave was saved to. */
804 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
805 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
806 {
807 continue;
808 }
809 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
810 in a pair of insns to save the vector registers on the
811 stack. */
812 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
813 /* 001110 01110 00000 iiii iiii iiii iiii */
814 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
815 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
816 {
817 li_found_pc = pc;
818 vr_saved_offset = SIGNED_SHORT (op);
819 }
820 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
821 /* 011111 sssss 11111 00000 00111001110 */
822 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
823 {
824 if (pc == (li_found_pc + 4))
825 {
826 vr_reg = GET_SRC_REG (op);
827 /* If this is the first vector reg to be saved, or if
828 it has a lower number than others previously seen,
829 reupdate the frame info. */
830 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
831 {
832 fdata->saved_vr = vr_reg;
833 fdata->vr_offset = vr_saved_offset + offset;
834 }
835 vr_saved_offset = -1;
836 vr_reg = -1;
837 li_found_pc = 0;
838 }
839 }
840 /* End AltiVec related instructions. */
96ff0de4
EZ
841
842 /* Start BookE related instructions. */
843 /* Store gen register S at (r31+uimm).
844 Any register less than r13 is volatile, so we don't care. */
845 /* 000100 sssss 11111 iiiii 01100100001 */
846 else if (arch_info->mach == bfd_mach_ppc_e500
847 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
848 {
849 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
850 {
851 unsigned int imm;
852 ev_reg = GET_SRC_REG (op);
853 imm = (op >> 11) & 0x1f;
854 ev_offset = imm * 8;
855 /* If this is the first vector reg to be saved, or if
856 it has a lower number than others previously seen,
857 reupdate the frame info. */
858 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
859 {
860 fdata->saved_ev = ev_reg;
861 fdata->ev_offset = ev_offset + offset;
862 }
863 }
864 continue;
865 }
866 /* Store gen register rS at (r1+rB). */
867 /* 000100 sssss 00001 bbbbb 01100100000 */
868 else if (arch_info->mach == bfd_mach_ppc_e500
869 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
870 {
871 if (pc == (li_found_pc + 4))
872 {
873 ev_reg = GET_SRC_REG (op);
874 /* If this is the first vector reg to be saved, or if
875 it has a lower number than others previously seen,
876 reupdate the frame info. */
877 /* We know the contents of rB from the previous instruction. */
878 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
879 {
880 fdata->saved_ev = ev_reg;
881 fdata->ev_offset = vr_saved_offset + offset;
882 }
883 vr_saved_offset = -1;
884 ev_reg = -1;
885 li_found_pc = 0;
886 }
887 continue;
888 }
889 /* Store gen register r31 at (rA+uimm). */
890 /* 000100 11111 aaaaa iiiii 01100100001 */
891 else if (arch_info->mach == bfd_mach_ppc_e500
892 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
893 {
894 /* Wwe know that the source register is 31 already, but
895 it can't hurt to compute it. */
896 ev_reg = GET_SRC_REG (op);
897 ev_offset = ((op >> 11) & 0x1f) * 8;
898 /* If this is the first vector reg to be saved, or if
899 it has a lower number than others previously seen,
900 reupdate the frame info. */
901 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
902 {
903 fdata->saved_ev = ev_reg;
904 fdata->ev_offset = ev_offset + offset;
905 }
906
907 continue;
908 }
909 /* Store gen register S at (r31+r0).
910 Store param on stack when offset from SP bigger than 4 bytes. */
911 /* 000100 sssss 11111 00000 01100100000 */
912 else if (arch_info->mach == bfd_mach_ppc_e500
913 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
914 {
915 if (pc == (li_found_pc + 4))
916 {
917 if ((op & 0x03e00000) >= 0x01a00000)
918 {
919 ev_reg = GET_SRC_REG (op);
920 /* If this is the first vector reg to be saved, or if
921 it has a lower number than others previously seen,
922 reupdate the frame info. */
923 /* We know the contents of r0 from the previous
924 instruction. */
925 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
926 {
927 fdata->saved_ev = ev_reg;
928 fdata->ev_offset = vr_saved_offset + offset;
929 }
930 ev_reg = -1;
931 }
932 vr_saved_offset = -1;
933 li_found_pc = 0;
934 continue;
935 }
936 }
937 /* End BookE related instructions. */
938
c5aa993b
JM
939 else
940 {
55d05f3b
KB
941 /* Not a recognized prologue instruction.
942 Handle optimizer code motions into the prologue by continuing
943 the search if we have no valid frame yet or if the return
944 address is not yet saved in the frame. */
945 if (fdata->frameless == 0
946 && (lr_reg == -1 || fdata->nosavedpc == 0))
947 break;
948
949 if (op == 0x4e800020 /* blr */
950 || op == 0x4e800420) /* bctr */
951 /* Do not scan past epilogue in frameless functions or
952 trampolines. */
953 break;
954 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 955 /* Never skip branches. */
55d05f3b
KB
956 break;
957
958 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
959 /* Do not scan too many insns, scanning insns is expensive with
960 remote targets. */
961 break;
962
963 /* Continue scanning. */
964 prev_insn_was_prologue_insn = 0;
965 continue;
c5aa993b 966 }
c906108c
SS
967 }
968
969#if 0
970/* I have problems with skipping over __main() that I need to address
971 * sometime. Previously, I used to use misc_function_vector which
972 * didn't work as well as I wanted to be. -MGO */
973
974 /* If the first thing after skipping a prolog is a branch to a function,
975 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 976 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 977 work before calling a function right after a prologue, thus we can
64366f1c 978 single out such gcc2 behaviour. */
c906108c 979
c906108c 980
c5aa993b
JM
981 if ((op & 0xfc000001) == 0x48000001)
982 { /* bl foo, an initializer function? */
983 op = read_memory_integer (pc + 4, 4);
984
985 if (op == 0x4def7b82)
986 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 987
64366f1c
EZ
988 /* Check and see if we are in main. If so, skip over this
989 initializer function as well. */
c906108c 990
c5aa993b 991 tmp = find_pc_misc_function (pc);
6314a349
AC
992 if (tmp >= 0
993 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
994 return pc + 8;
995 }
c906108c 996 }
c906108c 997#endif /* 0 */
c5aa993b
JM
998
999 fdata->offset = -fdata->offset;
ddb20c56 1000 return last_prologue_pc;
c906108c
SS
1001}
1002
1003
1004/*************************************************************************
f6077098 1005 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1006 frames, etc.
1007*************************************************************************/
1008
c906108c 1009
64366f1c 1010/* Pop the innermost frame, go back to the caller. */
c5aa993b 1011
c906108c 1012static void
7a78ae4e 1013rs6000_pop_frame (void)
c906108c 1014{
470d5666 1015 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
1016 struct rs6000_framedata fdata;
1017 struct frame_info *frame = get_current_frame ();
470d5666 1018 int ii, wordsize;
c906108c
SS
1019
1020 pc = read_pc ();
c193f6ac 1021 sp = get_frame_base (frame);
c906108c 1022
bdd78e62 1023 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
1024 get_frame_base (frame),
1025 get_frame_base (frame)))
c906108c 1026 {
7a78ae4e
ND
1027 generic_pop_dummy_frame ();
1028 flush_cached_frames ();
1029 return;
c906108c
SS
1030 }
1031
1032 /* Make sure that all registers are valid. */
b8b527c5 1033 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
c906108c 1034
64366f1c 1035 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 1036 still in the link register, otherwise walk the frames and retrieve the
64366f1c 1037 saved %pc value in the previous frame. */
c906108c 1038
be41e9f4 1039 addr = get_frame_func (frame);
bdd78e62 1040 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 1041
21283beb 1042 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
1043 if (fdata.frameless)
1044 prev_sp = sp;
1045 else
7a78ae4e 1046 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1047 if (fdata.lr_offset == 0)
2188cbdd 1048 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1049 else
7a78ae4e 1050 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1051
1052 /* reset %pc value. */
1053 write_register (PC_REGNUM, lr);
1054
64366f1c 1055 /* reset register values if any was saved earlier. */
c906108c
SS
1056
1057 if (fdata.saved_gpr != -1)
1058 {
1059 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1060 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1061 {
62700349 1062 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
524d7c18 1063 wordsize);
7a78ae4e 1064 addr += wordsize;
c5aa993b 1065 }
c906108c
SS
1066 }
1067
1068 if (fdata.saved_fpr != -1)
1069 {
1070 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1071 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1072 {
62700349 1073 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1074 addr += 8;
1075 }
c906108c
SS
1076 }
1077
1078 write_register (SP_REGNUM, prev_sp);
1079 target_store_registers (-1);
1080 flush_cached_frames ();
1081}
1082
11269d7e
AC
1083/* All the ABI's require 16 byte alignment. */
1084static CORE_ADDR
1085rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1086{
1087 return (addr & -16);
1088}
1089
7a78ae4e 1090/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1091 the first eight words of the argument list (that might be less than
1092 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1093 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1094 passed in fpr's, in addition to that. Rest of the parameters if any
1095 are passed in user stack. There might be cases in which half of the
c906108c
SS
1096 parameter is copied into registers, the other half is pushed into
1097 stack.
1098
7a78ae4e
ND
1099 Stack must be aligned on 64-bit boundaries when synthesizing
1100 function calls.
1101
c906108c
SS
1102 If the function is returning a structure, then the return address is passed
1103 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1104 starting from r4. */
c906108c 1105
7a78ae4e 1106static CORE_ADDR
77b2b6d4
AC
1107rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1108 struct regcache *regcache, CORE_ADDR bp_addr,
1109 int nargs, struct value **args, CORE_ADDR sp,
1110 int struct_return, CORE_ADDR struct_addr)
c906108c 1111{
7a41266b 1112 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1113 int ii;
1114 int len = 0;
c5aa993b
JM
1115 int argno; /* current argument number */
1116 int argbytes; /* current argument byte */
1117 char tmp_buffer[50];
1118 int f_argno = 0; /* current floating point argno */
21283beb 1119 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1120
ea7c478f 1121 struct value *arg = 0;
c906108c
SS
1122 struct type *type;
1123
1124 CORE_ADDR saved_sp;
1125
64366f1c 1126 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1127 Copy them appropriately. */
1128 ii = 0;
1129
1130 /* If the function is returning a `struct', then the first word
1131 (which will be passed in r3) is used for struct return address.
1132 In that case we should advance one word and start from r4
1133 register to copy parameters. */
1134 if (struct_return)
1135 {
1136 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1137 struct_addr);
1138 ii++;
1139 }
c906108c
SS
1140
1141/*
c5aa993b
JM
1142 effectively indirect call... gcc does...
1143
1144 return_val example( float, int);
1145
1146 eabi:
1147 float in fp0, int in r3
1148 offset of stack on overflow 8/16
1149 for varargs, must go by type.
1150 power open:
1151 float in r3&r4, int in r5
1152 offset of stack on overflow different
1153 both:
1154 return in r3 or f0. If no float, must study how gcc emulates floats;
1155 pay attention to arg promotion.
1156 User may have to cast\args to handle promotion correctly
1157 since gdb won't know if prototype supplied or not.
1158 */
c906108c 1159
c5aa993b
JM
1160 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1161 {
12c266ea 1162 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1163
1164 arg = args[argno];
1165 type = check_typedef (VALUE_TYPE (arg));
1166 len = TYPE_LENGTH (type);
1167
1168 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1169 {
1170
64366f1c 1171 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1172 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1173 there is no way we would run out of them. */
c5aa993b
JM
1174
1175 if (len > 8)
1176 printf_unfiltered (
1177 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1178
62700349 1179 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1180 VALUE_CONTENTS (arg),
1181 len);
1182 ++f_argno;
1183 }
1184
f6077098 1185 if (len > reg_size)
c5aa993b
JM
1186 {
1187
64366f1c 1188 /* Argument takes more than one register. */
c5aa993b
JM
1189 while (argbytes < len)
1190 {
62700349 1191 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
524d7c18 1192 reg_size);
62700349 1193 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
c5aa993b 1194 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1195 (len - argbytes) > reg_size
1196 ? reg_size : len - argbytes);
1197 ++ii, argbytes += reg_size;
c5aa993b
JM
1198
1199 if (ii >= 8)
1200 goto ran_out_of_registers_for_arguments;
1201 }
1202 argbytes = 0;
1203 --ii;
1204 }
1205 else
64366f1c
EZ
1206 {
1207 /* Argument can fit in one register. No problem. */
d7449b42 1208 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
62700349
AC
1209 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1210 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
f6077098 1211 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1212 }
1213 ++argno;
c906108c 1214 }
c906108c
SS
1215
1216ran_out_of_registers_for_arguments:
1217
7a78ae4e 1218 saved_sp = read_sp ();
cc9836a8 1219
64366f1c 1220 /* Location for 8 parameters are always reserved. */
7a78ae4e 1221 sp -= wordsize * 8;
f6077098 1222
64366f1c 1223 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1224 sp -= wordsize * 6;
f6077098 1225
64366f1c 1226 /* Stack pointer must be quadword aligned. */
7a78ae4e 1227 sp &= -16;
c906108c 1228
64366f1c
EZ
1229 /* If there are more arguments, allocate space for them in
1230 the stack, then push them starting from the ninth one. */
c906108c 1231
c5aa993b
JM
1232 if ((argno < nargs) || argbytes)
1233 {
1234 int space = 0, jj;
c906108c 1235
c5aa993b
JM
1236 if (argbytes)
1237 {
1238 space += ((len - argbytes + 3) & -4);
1239 jj = argno + 1;
1240 }
1241 else
1242 jj = argno;
c906108c 1243
c5aa993b
JM
1244 for (; jj < nargs; ++jj)
1245 {
ea7c478f 1246 struct value *val = args[jj];
c5aa993b
JM
1247 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1248 }
c906108c 1249
64366f1c 1250 /* Add location required for the rest of the parameters. */
f6077098 1251 space = (space + 15) & -16;
c5aa993b 1252 sp -= space;
c906108c 1253
7aea86e6
AC
1254 /* This is another instance we need to be concerned about
1255 securing our stack space. If we write anything underneath %sp
1256 (r1), we might conflict with the kernel who thinks he is free
1257 to use this area. So, update %sp first before doing anything
1258 else. */
1259
1260 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1261
64366f1c
EZ
1262 /* If the last argument copied into the registers didn't fit there
1263 completely, push the rest of it into stack. */
c906108c 1264
c5aa993b
JM
1265 if (argbytes)
1266 {
1267 write_memory (sp + 24 + (ii * 4),
1268 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1269 len - argbytes);
1270 ++argno;
1271 ii += ((len - argbytes + 3) & -4) / 4;
1272 }
c906108c 1273
64366f1c 1274 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1275 for (; argno < nargs; ++argno)
1276 {
c906108c 1277
c5aa993b
JM
1278 arg = args[argno];
1279 type = check_typedef (VALUE_TYPE (arg));
1280 len = TYPE_LENGTH (type);
c906108c
SS
1281
1282
64366f1c
EZ
1283 /* Float types should be passed in fpr's, as well as in the
1284 stack. */
c5aa993b
JM
1285 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1286 {
c906108c 1287
c5aa993b
JM
1288 if (len > 8)
1289 printf_unfiltered (
1290 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1291
62700349 1292 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1293 VALUE_CONTENTS (arg),
1294 len);
1295 ++f_argno;
1296 }
c906108c 1297
c5aa993b
JM
1298 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1299 ii += ((len + 3) & -4) / 4;
1300 }
c906108c 1301 }
c906108c 1302
69517000 1303 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1304 be set _before_ the corresponding stack space is used. On AIX,
1305 this even applies when the target has been completely stopped!
1306 Not doing this can lead to conflicts with the kernel which thinks
1307 that it still has control over this not-yet-allocated stack
1308 region. */
33a7c2fc
AC
1309 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1310
7aea86e6
AC
1311 /* Set back chain properly. */
1312 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1313 write_memory (sp, tmp_buffer, 4);
1314
e56a0ecc
AC
1315 /* Point the inferior function call's return address at the dummy's
1316 breakpoint. */
1317 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1318
794a477a
AC
1319 /* Set the TOC register, get the value from the objfile reader
1320 which, in turn, gets it from the VMAP table. */
1321 if (rs6000_find_toc_address_hook != NULL)
1322 {
1323 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1324 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1325 }
1326
c906108c
SS
1327 target_store_registers (-1);
1328 return sp;
1329}
c906108c 1330
b9ff3018
AC
1331/* PowerOpen always puts structures in memory. Vectors, which were
1332 added later, do get returned in a register though. */
1333
1334static int
1335rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1336{
1337 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1338 && TYPE_VECTOR (value_type))
1339 return 0;
1340 return 1;
1341}
1342
7a78ae4e
ND
1343static void
1344rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1345{
1346 int offset = 0;
ace1378a 1347 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1348
c5aa993b
JM
1349 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1350 {
c906108c 1351
c5aa993b
JM
1352 double dd;
1353 float ff;
1354 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1355 We need to truncate the return value into float size (4 byte) if
64366f1c 1356 necessary. */
c906108c 1357
c5aa993b
JM
1358 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1359 memcpy (valbuf,
62700349 1360 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
c5aa993b
JM
1361 TYPE_LENGTH (valtype));
1362 else
1363 { /* float */
62700349 1364 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
c5aa993b
JM
1365 ff = (float) dd;
1366 memcpy (valbuf, &ff, sizeof (float));
1367 }
1368 }
ace1378a
EZ
1369 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1370 && TYPE_LENGTH (valtype) == 16
1371 && TYPE_VECTOR (valtype))
1372 {
62700349 1373 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1374 TYPE_LENGTH (valtype));
1375 }
c5aa993b
JM
1376 else
1377 {
1378 /* return value is copied starting from r3. */
d7449b42 1379 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea
AC
1380 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1381 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1382
1383 memcpy (valbuf,
62700349 1384 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1385 TYPE_LENGTH (valtype));
c906108c 1386 }
c906108c
SS
1387}
1388
977adac5
ND
1389/* Return whether handle_inferior_event() should proceed through code
1390 starting at PC in function NAME when stepping.
1391
1392 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1393 handle memory references that are too distant to fit in instructions
1394 generated by the compiler. For example, if 'foo' in the following
1395 instruction:
1396
1397 lwz r9,foo(r2)
1398
1399 is greater than 32767, the linker might replace the lwz with a branch to
1400 somewhere in @FIX1 that does the load in 2 instructions and then branches
1401 back to where execution should continue.
1402
1403 GDB should silently step over @FIX code, just like AIX dbx does.
1404 Unfortunately, the linker uses the "b" instruction for the branches,
1405 meaning that the link register doesn't get set. Therefore, GDB's usual
1406 step_over_function() mechanism won't work.
1407
1408 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1409 in handle_inferior_event() to skip past @FIX code. */
1410
1411int
1412rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1413{
1414 return name && !strncmp (name, "@FIX", 4);
1415}
1416
1417/* Skip code that the user doesn't want to see when stepping:
1418
1419 1. Indirect function calls use a piece of trampoline code to do context
1420 switching, i.e. to set the new TOC table. Skip such code if we are on
1421 its first instruction (as when we have single-stepped to here).
1422
1423 2. Skip shared library trampoline code (which is different from
c906108c 1424 indirect function call trampolines).
977adac5
ND
1425
1426 3. Skip bigtoc fixup code.
1427
c906108c 1428 Result is desired PC to step until, or NULL if we are not in
977adac5 1429 code that should be skipped. */
c906108c
SS
1430
1431CORE_ADDR
7a78ae4e 1432rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1433{
52f0bd74 1434 unsigned int ii, op;
977adac5 1435 int rel;
c906108c 1436 CORE_ADDR solib_target_pc;
977adac5 1437 struct minimal_symbol *msymbol;
c906108c 1438
c5aa993b
JM
1439 static unsigned trampoline_code[] =
1440 {
1441 0x800b0000, /* l r0,0x0(r11) */
1442 0x90410014, /* st r2,0x14(r1) */
1443 0x7c0903a6, /* mtctr r0 */
1444 0x804b0004, /* l r2,0x4(r11) */
1445 0x816b0008, /* l r11,0x8(r11) */
1446 0x4e800420, /* bctr */
1447 0x4e800020, /* br */
1448 0
c906108c
SS
1449 };
1450
977adac5
ND
1451 /* Check for bigtoc fixup code. */
1452 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1453 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1454 {
1455 /* Double-check that the third instruction from PC is relative "b". */
1456 op = read_memory_integer (pc + 8, 4);
1457 if ((op & 0xfc000003) == 0x48000000)
1458 {
1459 /* Extract bits 6-29 as a signed 24-bit relative word address and
1460 add it to the containing PC. */
1461 rel = ((int)(op << 6) >> 6);
1462 return pc + 8 + rel;
1463 }
1464 }
1465
c906108c
SS
1466 /* If pc is in a shared library trampoline, return its target. */
1467 solib_target_pc = find_solib_trampoline_target (pc);
1468 if (solib_target_pc)
1469 return solib_target_pc;
1470
c5aa993b
JM
1471 for (ii = 0; trampoline_code[ii]; ++ii)
1472 {
1473 op = read_memory_integer (pc + (ii * 4), 4);
1474 if (op != trampoline_code[ii])
1475 return 0;
1476 }
1477 ii = read_register (11); /* r11 holds destination addr */
21283beb 1478 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1479 return pc;
1480}
1481
1482/* Determines whether the function FI has a frame on the stack or not. */
1483
9aa1e687 1484int
c877c8e6 1485rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1486{
1487 CORE_ADDR func_start;
1488 struct rs6000_framedata fdata;
1489
1490 /* Don't even think about framelessness except on the innermost frame
1491 or if the function was interrupted by a signal. */
75e3c1f9
AC
1492 if (get_next_frame (fi) != NULL
1493 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1494 return 0;
c5aa993b 1495
be41e9f4 1496 func_start = get_frame_func (fi);
c906108c
SS
1497
1498 /* If we failed to find the start of the function, it is a mistake
64366f1c 1499 to inspect the instructions. */
c906108c
SS
1500
1501 if (!func_start)
1502 {
1503 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1504 function pointer, normally causing an immediate core dump of the
64366f1c 1505 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1506 of setting up a stack frame. */
bdd78e62 1507 if (get_frame_pc (fi) == 0)
c906108c
SS
1508 return 1;
1509 else
1510 return 0;
1511 }
1512
bdd78e62 1513 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1514 return fdata.frameless;
1515}
1516
64366f1c 1517/* Return the PC saved in a frame. */
c906108c 1518
9aa1e687 1519CORE_ADDR
c877c8e6 1520rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1521{
1522 CORE_ADDR func_start;
1523 struct rs6000_framedata fdata;
21283beb 1524 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1525 int wordsize = tdep->wordsize;
c906108c 1526
5a203e44 1527 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1528 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1529 wordsize);
c906108c 1530
bdd78e62 1531 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1532 get_frame_base (fi),
1533 get_frame_base (fi)))
bdd78e62 1534 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1535 get_frame_base (fi), PC_REGNUM);
c906108c 1536
be41e9f4 1537 func_start = get_frame_func (fi);
c906108c
SS
1538
1539 /* If we failed to find the start of the function, it is a mistake
64366f1c 1540 to inspect the instructions. */
c906108c
SS
1541 if (!func_start)
1542 return 0;
1543
bdd78e62 1544 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1545
75e3c1f9 1546 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1547 {
75e3c1f9 1548 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1549 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1550 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1551 wordsize);
bdd78e62 1552 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1553 /* The link register wasn't saved by this frame and the next
1554 (inner, newer) frame is a dummy. Get the link register
1555 value by unwinding it from that [dummy] frame. */
1556 {
1557 ULONGEST lr;
1558 frame_unwind_unsigned_register (get_next_frame (fi),
1559 tdep->ppc_lr_regnum, &lr);
1560 return lr;
1561 }
c906108c 1562 else
618ce49f
AC
1563 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1564 + tdep->lr_frame_offset,
7a78ae4e 1565 wordsize);
c906108c
SS
1566 }
1567
1568 if (fdata.lr_offset == 0)
2188cbdd 1569 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1570
618ce49f
AC
1571 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1572 wordsize);
c906108c
SS
1573}
1574
1575/* If saved registers of frame FI are not known yet, read and cache them.
1576 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1577 in which case the framedata are read. */
1578
1579static void
7a78ae4e 1580frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1581{
c5aa993b 1582 CORE_ADDR frame_addr;
c906108c 1583 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1584 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1585 int wordsize = tdep->wordsize;
c906108c 1586
1b1d3794 1587 if (deprecated_get_frame_saved_regs (fi))
c906108c 1588 return;
c5aa993b 1589
c906108c
SS
1590 if (fdatap == NULL)
1591 {
1592 fdatap = &work_fdata;
be41e9f4 1593 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
c906108c
SS
1594 }
1595
1596 frame_saved_regs_zalloc (fi);
1597
1598 /* If there were any saved registers, figure out parent's stack
64366f1c 1599 pointer. */
c906108c 1600 /* The following is true only if the frame doesn't have a call to
64366f1c 1601 alloca(), FIXME. */
c906108c 1602
6be8bc0c
EZ
1603 if (fdatap->saved_fpr == 0
1604 && fdatap->saved_gpr == 0
1605 && fdatap->saved_vr == 0
96ff0de4 1606 && fdatap->saved_ev == 0
6be8bc0c
EZ
1607 && fdatap->lr_offset == 0
1608 && fdatap->cr_offset == 0
96ff0de4
EZ
1609 && fdatap->vr_offset == 0
1610 && fdatap->ev_offset == 0)
c906108c 1611 frame_addr = 0;
c906108c 1612 else
bf75c8c1
AC
1613 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1614 address of the current frame. Things might be easier if the
1615 ->frame pointed to the outer-most address of the frame. In the
1616 mean time, the address of the prev frame is used as the base
1617 address of this frame. */
618ce49f 1618 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1619
c906108c
SS
1620 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1621 All fpr's from saved_fpr to fp31 are saved. */
1622
1623 if (fdatap->saved_fpr >= 0)
1624 {
1625 int i;
7a78ae4e 1626 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1627 for (i = fdatap->saved_fpr; i < 32; i++)
1628 {
1b1d3794 1629 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1630 fpr_addr += 8;
c906108c
SS
1631 }
1632 }
1633
1634 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1635 All gpr's from saved_gpr to gpr31 are saved. */
1636
1637 if (fdatap->saved_gpr >= 0)
1638 {
1639 int i;
7a78ae4e 1640 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1641 for (i = fdatap->saved_gpr; i < 32; i++)
1642 {
1b1d3794 1643 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
7a78ae4e 1644 gpr_addr += wordsize;
c906108c
SS
1645 }
1646 }
1647
6be8bc0c
EZ
1648 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1649 All vr's from saved_vr to vr31 are saved. */
1650 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1651 {
1652 if (fdatap->saved_vr >= 0)
1653 {
1654 int i;
1655 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1656 for (i = fdatap->saved_vr; i < 32; i++)
1657 {
1b1d3794 1658 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
12c266ea 1659 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
6be8bc0c
EZ
1660 }
1661 }
1662 }
1663
96ff0de4
EZ
1664 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1665 All vr's from saved_ev to ev31 are saved. ????? */
1666 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1667 {
1668 if (fdatap->saved_ev >= 0)
1669 {
1670 int i;
1671 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1672 for (i = fdatap->saved_ev; i < 32; i++)
1673 {
1b1d3794
AC
1674 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1675 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
12c266ea 1676 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
96ff0de4
EZ
1677 }
1678 }
1679 }
1680
c906108c
SS
1681 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1682 the CR. */
1683 if (fdatap->cr_offset != 0)
1b1d3794 1684 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1685
1686 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1687 the LR. */
1688 if (fdatap->lr_offset != 0)
1b1d3794 1689 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1690
1691 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1692 the VRSAVE. */
1693 if (fdatap->vrsave_offset != 0)
1b1d3794 1694 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1695}
1696
1697/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1698 was first allocated. For functions calling alloca(), it might be saved in
1699 an alloca register. */
c906108c
SS
1700
1701static CORE_ADDR
7a78ae4e 1702frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1703{
1704 CORE_ADDR tmpaddr;
1705 struct rs6000_framedata fdata;
1706 struct frame_info *callee_fi;
1707
64366f1c
EZ
1708 /* If the initial stack pointer (frame address) of this frame is known,
1709 just return it. */
c906108c 1710
c9012c71
AC
1711 if (get_frame_extra_info (fi)->initial_sp)
1712 return get_frame_extra_info (fi)->initial_sp;
c906108c 1713
64366f1c 1714 /* Find out if this function is using an alloca register. */
c906108c 1715
be41e9f4 1716 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
c906108c 1717
64366f1c
EZ
1718 /* If saved registers of this frame are not known yet, read and
1719 cache them. */
c906108c 1720
1b1d3794 1721 if (!deprecated_get_frame_saved_regs (fi))
c906108c
SS
1722 frame_get_saved_regs (fi, &fdata);
1723
1724 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1725 this frame, and it is good enough. */
c906108c
SS
1726
1727 if (fdata.alloca_reg < 0)
1728 {
c9012c71
AC
1729 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1730 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1731 }
1732
953836b2
AC
1733 /* There is an alloca register, use its value, in the current frame,
1734 as the initial stack pointer. */
1735 {
d9d9c31f 1736 char tmpbuf[MAX_REGISTER_SIZE];
953836b2
AC
1737 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1738 {
c9012c71 1739 get_frame_extra_info (fi)->initial_sp
953836b2 1740 = extract_unsigned_integer (tmpbuf,
12c266ea 1741 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
953836b2
AC
1742 }
1743 else
1744 /* NOTE: cagney/2002-04-17: At present the only time
1745 frame_register_read will fail is when the register isn't
1746 available. If that does happen, use the frame. */
c9012c71 1747 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1748 }
c9012c71 1749 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1750}
1751
7a78ae4e
ND
1752/* Describe the pointer in each stack frame to the previous stack frame
1753 (its caller). */
1754
618ce49f
AC
1755/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1756 the frame's chain-pointer. */
7a78ae4e
ND
1757
1758/* In the case of the RS/6000, the frame's nominal address
1759 is the address of a 4-byte word containing the calling frame's address. */
1760
9aa1e687 1761CORE_ADDR
7a78ae4e 1762rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1763{
7a78ae4e 1764 CORE_ADDR fp, fpp, lr;
21283beb 1765 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1766
bdd78e62 1767 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1768 get_frame_base (thisframe),
1769 get_frame_base (thisframe)))
9f3b7f07
AC
1770 /* A dummy frame always correctly chains back to the previous
1771 frame. */
8b36eed8 1772 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1773
627b3ba2 1774 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
bdd78e62 1775 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1776 return 0;
1777
5a203e44 1778 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1779 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1780 wordsize);
75e3c1f9
AC
1781 else if (get_next_frame (thisframe) != NULL
1782 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
19772a2c
AC
1783 && (DEPRECATED_FRAMELESS_FUNCTION_INVOCATION_P ()
1784 && DEPRECATED_FRAMELESS_FUNCTION_INVOCATION (thisframe)))
c906108c
SS
1785 /* A frameless function interrupted by a signal did not change the
1786 frame pointer. */
c193f6ac 1787 fp = get_frame_base (thisframe);
c906108c 1788 else
8b36eed8 1789 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1790 return fp;
1791}
1792
1793/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1794 isn't available with that word size, return 0. */
7a78ae4e
ND
1795
1796static int
1797regsize (const struct reg *reg, int wordsize)
1798{
1799 return wordsize == 8 ? reg->sz64 : reg->sz32;
1800}
1801
1802/* Return the name of register number N, or null if no such register exists
64366f1c 1803 in the current architecture. */
7a78ae4e 1804
fa88f677 1805static const char *
7a78ae4e
ND
1806rs6000_register_name (int n)
1807{
21283beb 1808 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1809 const struct reg *reg = tdep->regs + n;
1810
1811 if (!regsize (reg, tdep->wordsize))
1812 return NULL;
1813 return reg->name;
1814}
1815
1816/* Index within `registers' of the first byte of the space for
1817 register N. */
1818
1819static int
1820rs6000_register_byte (int n)
1821{
21283beb 1822 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1823}
1824
1825/* Return the number of bytes of storage in the actual machine representation
64366f1c 1826 for register N if that register is available, else return 0. */
7a78ae4e
ND
1827
1828static int
1829rs6000_register_raw_size (int n)
1830{
21283beb 1831 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1832 const struct reg *reg = tdep->regs + n;
1833 return regsize (reg, tdep->wordsize);
1834}
1835
7a78ae4e
ND
1836/* Return the GDB type object for the "standard" data type
1837 of data in register N. */
1838
1839static struct type *
fba45db2 1840rs6000_register_virtual_type (int n)
7a78ae4e 1841{
21283beb 1842 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1843 const struct reg *reg = tdep->regs + n;
1844
1fcc0bb8
EZ
1845 if (reg->fpr)
1846 return builtin_type_double;
1847 else
1848 {
1849 int size = regsize (reg, tdep->wordsize);
1850 switch (size)
1851 {
449a5da4
AC
1852 case 0:
1853 return builtin_type_int0;
1854 case 4:
1855 return builtin_type_int32;
1fcc0bb8 1856 case 8:
c8001721
EZ
1857 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1858 return builtin_type_vec64;
1859 else
1860 return builtin_type_int64;
1fcc0bb8
EZ
1861 break;
1862 case 16:
08cf96df 1863 return builtin_type_vec128;
1fcc0bb8
EZ
1864 break;
1865 default:
449a5da4
AC
1866 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1867 n, size);
1fcc0bb8
EZ
1868 }
1869 }
7a78ae4e
ND
1870}
1871
7a78ae4e
ND
1872/* Return whether register N requires conversion when moving from raw format
1873 to virtual format.
1874
1875 The register format for RS/6000 floating point registers is always
64366f1c 1876 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1877
1878static int
1879rs6000_register_convertible (int n)
1880{
21283beb 1881 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1882 return reg->fpr;
1883}
1884
1885/* Convert data from raw format for register N in buffer FROM
64366f1c 1886 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1887
1888static void
1889rs6000_register_convert_to_virtual (int n, struct type *type,
1890 char *from, char *to)
1891{
12c266ea 1892 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a292a7a 1893 {
12c266ea 1894 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
f1908289 1895 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1896 }
1897 else
12c266ea 1898 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e
ND
1899}
1900
1901/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1902 to raw format for register N in buffer TO. */
7a292a7a 1903
7a78ae4e
ND
1904static void
1905rs6000_register_convert_to_raw (struct type *type, int n,
781a750d 1906 const char *from, char *to)
7a78ae4e 1907{
12c266ea 1908 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a78ae4e 1909 {
f1908289 1910 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
12c266ea 1911 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
7a292a7a 1912 }
7a78ae4e 1913 else
12c266ea 1914 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e 1915}
c906108c 1916
c8001721
EZ
1917static void
1918e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1919 int reg_nr, void *buffer)
1920{
1921 int base_regnum;
1922 int offset = 0;
d9d9c31f 1923 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1924 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1925
1926 if (reg_nr >= tdep->ppc_gp0_regnum
1927 && reg_nr <= tdep->ppc_gplast_regnum)
1928 {
1929 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1930
1931 /* Build the value in the provided buffer. */
1932 /* Read the raw register of which this one is the lower portion. */
1933 regcache_raw_read (regcache, base_regnum, temp_buffer);
1934 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1935 offset = 4;
1936 memcpy ((char *) buffer, temp_buffer + offset, 4);
1937 }
1938}
1939
1940static void
1941e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1942 int reg_nr, const void *buffer)
1943{
1944 int base_regnum;
1945 int offset = 0;
d9d9c31f 1946 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1947 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1948
1949 if (reg_nr >= tdep->ppc_gp0_regnum
1950 && reg_nr <= tdep->ppc_gplast_regnum)
1951 {
1952 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1953 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1954 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1955 offset = 4;
1956
1957 /* Let's read the value of the base register into a temporary
1958 buffer, so that overwriting the last four bytes with the new
1959 value of the pseudo will leave the upper 4 bytes unchanged. */
1960 regcache_raw_read (regcache, base_regnum, temp_buffer);
1961
1962 /* Write as an 8 byte quantity. */
1963 memcpy (temp_buffer + offset, (char *) buffer, 4);
1964 regcache_raw_write (regcache, base_regnum, temp_buffer);
1965 }
1966}
1967
1968/* Convert a dwarf2 register number to a gdb REGNUM. */
1969static int
1970e500_dwarf2_reg_to_regnum (int num)
1971{
1972 int regnum;
1973 if (0 <= num && num <= 31)
1974 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1975 else
1976 return num;
1977}
1978
2188cbdd 1979/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1980 REGNUM. */
2188cbdd
EZ
1981static int
1982rs6000_stab_reg_to_regnum (int num)
1983{
1984 int regnum;
1985 switch (num)
1986 {
1987 case 64:
1988 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1989 break;
1990 case 65:
1991 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1992 break;
1993 case 66:
1994 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1995 break;
1996 case 76:
1997 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1998 break;
1999 default:
2000 regnum = num;
2001 break;
2002 }
2003 return regnum;
2004}
2005
7a78ae4e
ND
2006static void
2007rs6000_store_return_value (struct type *type, char *valbuf)
2008{
ace1378a
EZ
2009 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2010
7a78ae4e
ND
2011 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2012
2013 /* Floating point values are returned starting from FPR1 and up.
2014 Say a double_double_double type could be returned in
64366f1c 2015 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2016
62700349 2017 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
73937e03 2018 TYPE_LENGTH (type));
ace1378a
EZ
2019 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2020 {
2021 if (TYPE_LENGTH (type) == 16
2022 && TYPE_VECTOR (type))
62700349 2023 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
73937e03 2024 valbuf, TYPE_LENGTH (type));
ace1378a 2025 }
7a78ae4e 2026 else
64366f1c 2027 /* Everything else is returned in GPR3 and up. */
62700349 2028 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
73937e03 2029 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2030}
2031
2032/* Extract from an array REGBUF containing the (raw) register state
2033 the address in which a function should return its structure value,
2034 as a CORE_ADDR (or an expression that can be used as one). */
2035
2036static CORE_ADDR
11269d7e
AC
2037rs6000_extract_struct_value_address (struct regcache *regcache)
2038{
2039 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2040 function call GDB knows the address of the struct return value
2041 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2042 the current call_function_by_hand() code only saves the most
2043 recent struct address leading to occasional calls. The code
2044 should instead maintain a stack of such addresses (in the dummy
2045 frame object). */
11269d7e
AC
2046 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2047 really got no idea where the return value is being stored. While
2048 r3, on function entry, contained the address it will have since
2049 been reused (scratch) and hence wouldn't be valid */
2050 return 0;
7a78ae4e
ND
2051}
2052
64366f1c 2053/* Hook called when a new child process is started. */
7a78ae4e
ND
2054
2055void
2056rs6000_create_inferior (int pid)
2057{
2058 if (rs6000_set_host_arch_hook)
2059 rs6000_set_host_arch_hook (pid);
c906108c
SS
2060}
2061\f
e2d0e7eb 2062/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2063
2064 Usually a function pointer's representation is simply the address
2065 of the function. On the RS/6000 however, a function pointer is
2066 represented by a pointer to a TOC entry. This TOC entry contains
2067 three words, the first word is the address of the function, the
2068 second word is the TOC pointer (r2), and the third word is the
2069 static chain value. Throughout GDB it is currently assumed that a
2070 function pointer contains the address of the function, which is not
2071 easy to fix. In addition, the conversion of a function address to
2072 a function pointer would require allocation of a TOC entry in the
2073 inferior's memory space, with all its drawbacks. To be able to
2074 call C++ virtual methods in the inferior (which are called via
f517ea4e 2075 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2076 function address from a function pointer. */
2077
f517ea4e
PS
2078/* Return real function address if ADDR (a function pointer) is in the data
2079 space and is therefore a special function pointer. */
c906108c 2080
b9362cc7 2081static CORE_ADDR
e2d0e7eb
AC
2082rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2083 CORE_ADDR addr,
2084 struct target_ops *targ)
c906108c
SS
2085{
2086 struct obj_section *s;
2087
2088 s = find_pc_section (addr);
2089 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2090 return addr;
c906108c 2091
7a78ae4e 2092 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2093 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2094}
c906108c 2095\f
c5aa993b 2096
7a78ae4e 2097/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2098
2099
7a78ae4e
ND
2100/* The arrays here called registers_MUMBLE hold information about available
2101 registers.
c906108c
SS
2102
2103 For each family of PPC variants, I've tried to isolate out the
2104 common registers and put them up front, so that as long as you get
2105 the general family right, GDB will correctly identify the registers
2106 common to that family. The common register sets are:
2107
2108 For the 60x family: hid0 hid1 iabr dabr pir
2109
2110 For the 505 and 860 family: eie eid nri
2111
2112 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2113 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2114 pbu1 pbl2 pbu2
c906108c
SS
2115
2116 Most of these register groups aren't anything formal. I arrived at
2117 them by looking at the registers that occurred in more than one
6f5987a6
KB
2118 processor.
2119
2120 Note: kevinb/2002-04-30: Support for the fpscr register was added
2121 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2122 for Power. For PowerPC, slot 70 was unused and was already in the
2123 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2124 slot 70 was being used for "mq", so the next available slot (71)
2125 was chosen. It would have been nice to be able to make the
2126 register numbers the same across processor cores, but this wasn't
2127 possible without either 1) renumbering some registers for some
2128 processors or 2) assigning fpscr to a really high slot that's
2129 larger than any current register number. Doing (1) is bad because
2130 existing stubs would break. Doing (2) is undesirable because it
2131 would introduce a really large gap between fpscr and the rest of
2132 the registers for most processors. */
7a78ae4e 2133
64366f1c 2134/* Convenience macros for populating register arrays. */
7a78ae4e 2135
64366f1c 2136/* Within another macro, convert S to a string. */
7a78ae4e
ND
2137
2138#define STR(s) #s
2139
2140/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2141 and 64 bits on 64-bit systems. */
489461e2 2142#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2143
2144/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2145 systems. */
489461e2 2146#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2147
2148/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2149 systems. */
489461e2 2150#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2151
1fcc0bb8 2152/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2153 systems. */
489461e2 2154#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2155
64366f1c 2156/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2157#define F(name) { STR(name), 8, 8, 1, 0 }
2158
64366f1c 2159/* Return a struct reg defining a pseudo register NAME. */
489461e2 2160#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2161
2162/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2163 systems and that doesn't exist on 64-bit systems. */
489461e2 2164#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2165
2166/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2167 systems and that doesn't exist on 32-bit systems. */
489461e2 2168#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2169
64366f1c 2170/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2171#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2172
2173/* UISA registers common across all architectures, including POWER. */
2174
2175#define COMMON_UISA_REGS \
2176 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2177 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2178 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2179 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2180 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2181 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2182 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2183 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2184 /* 64 */ R(pc), R(ps)
2185
ebeac11a
EZ
2186#define COMMON_UISA_NOFP_REGS \
2187 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2188 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2189 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2190 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2191 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2192 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2193 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2194 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2195 /* 64 */ R(pc), R(ps)
2196
7a78ae4e
ND
2197/* UISA-level SPRs for PowerPC. */
2198#define PPC_UISA_SPRS \
e3f36dbd 2199 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2200
c8001721
EZ
2201/* UISA-level SPRs for PowerPC without floating point support. */
2202#define PPC_UISA_NOFP_SPRS \
2203 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2204
7a78ae4e
ND
2205/* Segment registers, for PowerPC. */
2206#define PPC_SEGMENT_REGS \
2207 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2208 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2209 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2210 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2211
2212/* OEA SPRs for PowerPC. */
2213#define PPC_OEA_SPRS \
2214 /* 87 */ R4(pvr), \
2215 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2216 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2217 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2218 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2219 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2220 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2221 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2222 /* 116 */ R4(dec), R(dabr), R4(ear)
2223
64366f1c 2224/* AltiVec registers. */
1fcc0bb8
EZ
2225#define PPC_ALTIVEC_REGS \
2226 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2227 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2228 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2229 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2230 /*151*/R4(vscr), R4(vrsave)
2231
c8001721
EZ
2232/* Vectors of hi-lo general purpose registers. */
2233#define PPC_EV_REGS \
2234 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2235 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2236 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2237 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2238
2239/* Lower half of the EV registers. */
2240#define PPC_GPRS_PSEUDO_REGS \
2241 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2242 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2243 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2244 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2245
7a78ae4e 2246/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2247 user-level SPR's. */
7a78ae4e 2248static const struct reg registers_power[] =
c906108c 2249{
7a78ae4e 2250 COMMON_UISA_REGS,
e3f36dbd
KB
2251 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2252 /* 71 */ R4(fpscr)
c906108c
SS
2253};
2254
7a78ae4e 2255/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2256 view of the PowerPC. */
7a78ae4e 2257static const struct reg registers_powerpc[] =
c906108c 2258{
7a78ae4e 2259 COMMON_UISA_REGS,
1fcc0bb8
EZ
2260 PPC_UISA_SPRS,
2261 PPC_ALTIVEC_REGS
c906108c
SS
2262};
2263
ebeac11a
EZ
2264/* PowerPC UISA - a PPC processor as viewed by user-level
2265 code, but without floating point registers. */
2266static const struct reg registers_powerpc_nofp[] =
2267{
2268 COMMON_UISA_NOFP_REGS,
2269 PPC_UISA_SPRS
2270};
2271
64366f1c 2272/* IBM PowerPC 403. */
7a78ae4e 2273static const struct reg registers_403[] =
c5aa993b 2274{
7a78ae4e
ND
2275 COMMON_UISA_REGS,
2276 PPC_UISA_SPRS,
2277 PPC_SEGMENT_REGS,
2278 PPC_OEA_SPRS,
2279 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2280 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2281 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2282 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2283 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2284 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2285};
2286
64366f1c 2287/* IBM PowerPC 403GC. */
7a78ae4e 2288static const struct reg registers_403GC[] =
c5aa993b 2289{
7a78ae4e
ND
2290 COMMON_UISA_REGS,
2291 PPC_UISA_SPRS,
2292 PPC_SEGMENT_REGS,
2293 PPC_OEA_SPRS,
2294 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2295 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2296 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2297 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2298 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2299 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2300 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2301 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2302};
2303
64366f1c 2304/* Motorola PowerPC 505. */
7a78ae4e 2305static const struct reg registers_505[] =
c5aa993b 2306{
7a78ae4e
ND
2307 COMMON_UISA_REGS,
2308 PPC_UISA_SPRS,
2309 PPC_SEGMENT_REGS,
2310 PPC_OEA_SPRS,
2311 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2312};
2313
64366f1c 2314/* Motorola PowerPC 860 or 850. */
7a78ae4e 2315static const struct reg registers_860[] =
c5aa993b 2316{
7a78ae4e
ND
2317 COMMON_UISA_REGS,
2318 PPC_UISA_SPRS,
2319 PPC_SEGMENT_REGS,
2320 PPC_OEA_SPRS,
2321 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2322 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2323 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2324 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2325 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2326 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2327 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2328 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2329 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2330 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2331 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2332 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2333};
2334
7a78ae4e
ND
2335/* Motorola PowerPC 601. Note that the 601 has different register numbers
2336 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2337 register is the stub's problem. */
7a78ae4e 2338static const struct reg registers_601[] =
c5aa993b 2339{
7a78ae4e
ND
2340 COMMON_UISA_REGS,
2341 PPC_UISA_SPRS,
2342 PPC_SEGMENT_REGS,
2343 PPC_OEA_SPRS,
2344 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2345 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2346};
2347
64366f1c 2348/* Motorola PowerPC 602. */
7a78ae4e 2349static const struct reg registers_602[] =
c5aa993b 2350{
7a78ae4e
ND
2351 COMMON_UISA_REGS,
2352 PPC_UISA_SPRS,
2353 PPC_SEGMENT_REGS,
2354 PPC_OEA_SPRS,
2355 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2356 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2357 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2358};
2359
64366f1c 2360/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2361static const struct reg registers_603[] =
c5aa993b 2362{
7a78ae4e
ND
2363 COMMON_UISA_REGS,
2364 PPC_UISA_SPRS,
2365 PPC_SEGMENT_REGS,
2366 PPC_OEA_SPRS,
2367 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2368 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2369 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2370};
2371
64366f1c 2372/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2373static const struct reg registers_604[] =
c5aa993b 2374{
7a78ae4e
ND
2375 COMMON_UISA_REGS,
2376 PPC_UISA_SPRS,
2377 PPC_SEGMENT_REGS,
2378 PPC_OEA_SPRS,
2379 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2380 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2381 /* 127 */ R(sia), R(sda)
c906108c
SS
2382};
2383
64366f1c 2384/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2385static const struct reg registers_750[] =
c5aa993b 2386{
7a78ae4e
ND
2387 COMMON_UISA_REGS,
2388 PPC_UISA_SPRS,
2389 PPC_SEGMENT_REGS,
2390 PPC_OEA_SPRS,
2391 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2392 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2393 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2394 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2395 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2396 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2397};
2398
2399
64366f1c 2400/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2401static const struct reg registers_7400[] =
2402{
2403 /* gpr0-gpr31, fpr0-fpr31 */
2404 COMMON_UISA_REGS,
2405 /* ctr, xre, lr, cr */
2406 PPC_UISA_SPRS,
2407 /* sr0-sr15 */
2408 PPC_SEGMENT_REGS,
2409 PPC_OEA_SPRS,
2410 /* vr0-vr31, vrsave, vscr */
2411 PPC_ALTIVEC_REGS
2412 /* FIXME? Add more registers? */
2413};
2414
c8001721
EZ
2415/* Motorola e500. */
2416static const struct reg registers_e500[] =
2417{
2418 R(pc), R(ps),
2419 /* cr, lr, ctr, xer, "" */
2420 PPC_UISA_NOFP_SPRS,
2421 /* 7...38 */
2422 PPC_EV_REGS,
338ef23d
AC
2423 R8(acc), R(spefscr),
2424 /* NOTE: Add new registers here the end of the raw register
2425 list and just before the first pseudo register. */
c8001721
EZ
2426 /* 39...70 */
2427 PPC_GPRS_PSEUDO_REGS
2428};
2429
c906108c 2430/* Information about a particular processor variant. */
7a78ae4e 2431
c906108c 2432struct variant
c5aa993b
JM
2433 {
2434 /* Name of this variant. */
2435 char *name;
c906108c 2436
c5aa993b
JM
2437 /* English description of the variant. */
2438 char *description;
c906108c 2439
64366f1c 2440 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2441 enum bfd_architecture arch;
2442
64366f1c 2443 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2444 unsigned long mach;
2445
489461e2
EZ
2446 /* Number of real registers. */
2447 int nregs;
2448
2449 /* Number of pseudo registers. */
2450 int npregs;
2451
2452 /* Number of total registers (the sum of nregs and npregs). */
2453 int num_tot_regs;
2454
c5aa993b
JM
2455 /* Table of register names; registers[R] is the name of the register
2456 number R. */
7a78ae4e 2457 const struct reg *regs;
c5aa993b 2458 };
c906108c 2459
489461e2
EZ
2460#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2461
2462static int
2463num_registers (const struct reg *reg_list, int num_tot_regs)
2464{
2465 int i;
2466 int nregs = 0;
2467
2468 for (i = 0; i < num_tot_regs; i++)
2469 if (!reg_list[i].pseudo)
2470 nregs++;
2471
2472 return nregs;
2473}
2474
2475static int
2476num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2477{
2478 int i;
2479 int npregs = 0;
2480
2481 for (i = 0; i < num_tot_regs; i++)
2482 if (reg_list[i].pseudo)
2483 npregs ++;
2484
2485 return npregs;
2486}
c906108c 2487
c906108c
SS
2488/* Information in this table comes from the following web sites:
2489 IBM: http://www.chips.ibm.com:80/products/embedded/
2490 Motorola: http://www.mot.com/SPS/PowerPC/
2491
2492 I'm sure I've got some of the variant descriptions not quite right.
2493 Please report any inaccuracies you find to GDB's maintainer.
2494
2495 If you add entries to this table, please be sure to allow the new
2496 value as an argument to the --with-cpu flag, in configure.in. */
2497
489461e2 2498static struct variant variants[] =
c906108c 2499{
489461e2 2500
7a78ae4e 2501 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2502 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2503 registers_powerpc},
7a78ae4e 2504 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2505 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2506 registers_power},
7a78ae4e 2507 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2508 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2509 registers_403},
7a78ae4e 2510 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2511 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2512 registers_601},
7a78ae4e 2513 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2514 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2515 registers_602},
7a78ae4e 2516 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2517 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2518 registers_603},
7a78ae4e 2519 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2520 604, -1, -1, tot_num_registers (registers_604),
2521 registers_604},
7a78ae4e 2522 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2523 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2524 registers_403GC},
7a78ae4e 2525 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2526 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2527 registers_505},
7a78ae4e 2528 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2529 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2530 registers_860},
7a78ae4e 2531 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2532 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2533 registers_750},
1fcc0bb8 2534 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2535 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2536 registers_7400},
c8001721
EZ
2537 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2538 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2539 registers_e500},
7a78ae4e 2540
5d57ee30
KB
2541 /* 64-bit */
2542 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2543 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2544 registers_powerpc},
7a78ae4e 2545 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2546 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2547 registers_powerpc},
5d57ee30 2548 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2549 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2550 registers_powerpc},
7a78ae4e 2551 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2552 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2553 registers_powerpc},
5d57ee30 2554 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2555 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2556 registers_powerpc},
5d57ee30 2557 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2558 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2559 registers_powerpc},
5d57ee30 2560
64366f1c 2561 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2562 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2563 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2564 registers_power},
7a78ae4e 2565 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2566 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2567 registers_power},
7a78ae4e 2568 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2569 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2570 registers_power},
7a78ae4e 2571
489461e2 2572 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2573};
2574
64366f1c 2575/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2576
2577static void
2578init_variants (void)
2579{
2580 struct variant *v;
2581
2582 for (v = variants; v->name; v++)
2583 {
2584 if (v->nregs == -1)
2585 v->nregs = num_registers (v->regs, v->num_tot_regs);
2586 if (v->npregs == -1)
2587 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2588 }
2589}
c906108c 2590
7a78ae4e 2591/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2592 MACH. If no such variant exists, return null. */
c906108c 2593
7a78ae4e
ND
2594static const struct variant *
2595find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2596{
7a78ae4e 2597 const struct variant *v;
c5aa993b 2598
7a78ae4e
ND
2599 for (v = variants; v->name; v++)
2600 if (arch == v->arch && mach == v->mach)
2601 return v;
c906108c 2602
7a78ae4e 2603 return NULL;
c906108c 2604}
9364a0ef
EZ
2605
2606static int
2607gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2608{
2609 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2610 return print_insn_big_powerpc (memaddr, info);
2611 else
2612 return print_insn_little_powerpc (memaddr, info);
2613}
7a78ae4e 2614\f
7a78ae4e
ND
2615/* Initialize the current architecture based on INFO. If possible, re-use an
2616 architecture from ARCHES, which is a list of architectures already created
2617 during this debugging session.
c906108c 2618
7a78ae4e 2619 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2620 a binary file. */
c906108c 2621
7a78ae4e
ND
2622static struct gdbarch *
2623rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2624{
2625 struct gdbarch *gdbarch;
2626 struct gdbarch_tdep *tdep;
9aa1e687 2627 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2628 struct reg *regs;
2629 const struct variant *v;
2630 enum bfd_architecture arch;
2631 unsigned long mach;
2632 bfd abfd;
7b112f9c 2633 int sysv_abi;
5bf1c677 2634 asection *sect;
7a78ae4e 2635
9aa1e687 2636 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2637 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2638
9aa1e687
KB
2639 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2640 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2641
2642 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2643
e712c1cf 2644 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2645 that, else choose a likely default. */
9aa1e687 2646 if (from_xcoff_exec)
c906108c 2647 {
11ed25ac 2648 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2649 wordsize = 8;
2650 else
2651 wordsize = 4;
c906108c 2652 }
9aa1e687
KB
2653 else if (from_elf_exec)
2654 {
2655 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2656 wordsize = 8;
2657 else
2658 wordsize = 4;
2659 }
c906108c 2660 else
7a78ae4e 2661 {
27b15785
KB
2662 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2663 wordsize = info.bfd_arch_info->bits_per_word /
2664 info.bfd_arch_info->bits_per_byte;
2665 else
2666 wordsize = 4;
7a78ae4e 2667 }
c906108c 2668
64366f1c 2669 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2670 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2671 arches != NULL;
2672 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2673 {
2674 /* Word size in the various PowerPC bfd_arch_info structs isn't
2675 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2676 separate word size check. */
7a78ae4e 2677 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2678 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2679 return arches->gdbarch;
2680 }
c906108c 2681
7a78ae4e
ND
2682 /* None found, create a new architecture from INFO, whose bfd_arch_info
2683 validity depends on the source:
2684 - executable useless
2685 - rs6000_host_arch() good
2686 - core file good
2687 - "set arch" trust blindly
2688 - GDB startup useless but harmless */
c906108c 2689
9aa1e687 2690 if (!from_xcoff_exec)
c906108c 2691 {
b732d07d 2692 arch = info.bfd_arch_info->arch;
7a78ae4e 2693 mach = info.bfd_arch_info->mach;
c906108c 2694 }
7a78ae4e 2695 else
c906108c 2696 {
7a78ae4e 2697 arch = bfd_arch_powerpc;
35cec841 2698 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2699 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2700 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2701 }
2702 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2703 tdep->wordsize = wordsize;
5bf1c677
EZ
2704
2705 /* For e500 executables, the apuinfo section is of help here. Such
2706 section contains the identifier and revision number of each
2707 Application-specific Processing Unit that is present on the
2708 chip. The content of the section is determined by the assembler
2709 which looks at each instruction and determines which unit (and
2710 which version of it) can execute it. In our case we just look for
2711 the existance of the section. */
2712
2713 if (info.abfd)
2714 {
2715 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2716 if (sect)
2717 {
2718 arch = info.bfd_arch_info->arch;
2719 mach = bfd_mach_ppc_e500;
2720 bfd_default_set_arch_mach (&abfd, arch, mach);
2721 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2722 }
2723 }
2724
7a78ae4e
ND
2725 gdbarch = gdbarch_alloc (&info, tdep);
2726 power = arch == bfd_arch_rs6000;
2727
489461e2
EZ
2728 /* Initialize the number of real and pseudo registers in each variant. */
2729 init_variants ();
2730
64366f1c 2731 /* Choose variant. */
7a78ae4e
ND
2732 v = find_variant_by_arch (arch, mach);
2733 if (!v)
dd47e6fd
EZ
2734 return NULL;
2735
7a78ae4e
ND
2736 tdep->regs = v->regs;
2737
2188cbdd
EZ
2738 tdep->ppc_gp0_regnum = 0;
2739 tdep->ppc_gplast_regnum = 31;
2740 tdep->ppc_toc_regnum = 2;
2741 tdep->ppc_ps_regnum = 65;
2742 tdep->ppc_cr_regnum = 66;
2743 tdep->ppc_lr_regnum = 67;
2744 tdep->ppc_ctr_regnum = 68;
2745 tdep->ppc_xer_regnum = 69;
2746 if (v->mach == bfd_mach_ppc_601)
2747 tdep->ppc_mq_regnum = 124;
e3f36dbd 2748 else if (power)
2188cbdd 2749 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2750 else
2751 tdep->ppc_mq_regnum = -1;
2752 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2753
c8001721
EZ
2754 set_gdbarch_pc_regnum (gdbarch, 64);
2755 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2756 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
afd48b75 2757 if (sysv_abi && wordsize == 8)
05580c65 2758 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 2759 else if (sysv_abi && wordsize == 4)
05580c65 2760 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
2761 else
2762 {
2763 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2764 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2765 }
c8001721 2766
1fcc0bb8
EZ
2767 if (v->arch == bfd_arch_powerpc)
2768 switch (v->mach)
2769 {
2770 case bfd_mach_ppc:
2771 tdep->ppc_vr0_regnum = 71;
2772 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2773 tdep->ppc_ev0_regnum = -1;
2774 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2775 break;
2776 case bfd_mach_ppc_7400:
2777 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2778 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2779 tdep->ppc_ev0_regnum = -1;
2780 tdep->ppc_ev31_regnum = -1;
2781 break;
2782 case bfd_mach_ppc_e500:
338ef23d
AC
2783 tdep->ppc_gp0_regnum = 41;
2784 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2785 tdep->ppc_toc_regnum = -1;
2786 tdep->ppc_ps_regnum = 1;
2787 tdep->ppc_cr_regnum = 2;
2788 tdep->ppc_lr_regnum = 3;
2789 tdep->ppc_ctr_regnum = 4;
2790 tdep->ppc_xer_regnum = 5;
2791 tdep->ppc_ev0_regnum = 7;
2792 tdep->ppc_ev31_regnum = 38;
2793 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2794 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2795 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2796 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2797 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2798 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
1fcc0bb8
EZ
2799 break;
2800 default:
2801 tdep->ppc_vr0_regnum = -1;
2802 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2803 tdep->ppc_ev0_regnum = -1;
2804 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2805 break;
2806 }
2807
338ef23d
AC
2808 /* Sanity check on registers. */
2809 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2810
a88376a3
KB
2811 /* Set lr_frame_offset. */
2812 if (wordsize == 8)
2813 tdep->lr_frame_offset = 16;
2814 else if (sysv_abi)
2815 tdep->lr_frame_offset = 4;
2816 else
2817 tdep->lr_frame_offset = 8;
2818
2819 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2820 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2821 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2822 {
2823 tdep->regoff[i] = off;
2824 off += regsize (v->regs + i, wordsize);
c906108c
SS
2825 }
2826
56a6dfb9
KB
2827 /* Select instruction printer. */
2828 if (arch == power)
9364a0ef 2829 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2830 else
9364a0ef 2831 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2832
7a78ae4e 2833 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
2834
2835 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2836 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2837 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2838 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2839 set_gdbarch_deprecated_register_bytes (gdbarch, off);
9c04cab7
AC
2840 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2841 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
9c04cab7 2842 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
7a78ae4e
ND
2843
2844 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2845 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2846 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2847 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2848 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2849 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2850 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2851 if (sysv_abi)
2852 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2853 else
2854 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2855 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2856
11269d7e 2857 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
2858 if (sysv_abi && wordsize == 8)
2859 /* PPC64 SYSV. */
2860 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2861 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
2862 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2863 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2864 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2865 224. */
2866 set_gdbarch_frame_red_zone_size (gdbarch, 224);
a59fe496 2867 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e 2868 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e 2869
781a750d
AC
2870 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2871 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2872 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2873 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2874 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2875 is correct for the SysV ABI when the wordsize is 8, but I'm also
2876 fairly certain that ppc_sysv_abi_push_arguments() will give even
2877 worse results since it only works for 32-bit code. So, for the moment,
2878 we're better off calling rs6000_push_arguments() since it works for
2879 64-bit code. At some point in the future, this matter needs to be
2880 revisited. */
2881 if (sysv_abi && wordsize == 4)
77b2b6d4 2882 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
2883 else if (sysv_abi && wordsize == 8)
2884 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 2885 else
77b2b6d4 2886 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 2887
74055713 2888 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2889 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2890
2891 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2892 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
2893 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2894
6066c3de
AC
2895 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2896 for the descriptor and ".FN" for the entry-point -- a user
2897 specifying "break FN" will unexpectedly end up with a breakpoint
2898 on the descriptor and not the function. This architecture method
2899 transforms any breakpoints on descriptors into breakpoints on the
2900 corresponding entry point. */
2901 if (sysv_abi && wordsize == 8)
2902 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2903
7a78ae4e
ND
2904 /* Not sure on this. FIXMEmgo */
2905 set_gdbarch_frame_args_skip (gdbarch, 8);
2906
05580c65 2907 if (!sysv_abi)
7b112f9c 2908 set_gdbarch_use_struct_convention (gdbarch,
b9ff3018 2909 rs6000_use_struct_convention);
8e0662df 2910
19772a2c 2911 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, rs6000_frameless_function_invocation);
618ce49f 2912 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2913 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2914
f30ee0bc 2915 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2916 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2917
15813d3f
AC
2918 if (!sysv_abi)
2919 {
2920 /* Handle RS/6000 function pointers (which are really function
2921 descriptors). */
f517ea4e
PS
2922 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2923 rs6000_convert_from_func_ptr_addr);
9aa1e687 2924 }
42efa47a
AC
2925 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2926 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
6913c89a 2927 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
7a78ae4e 2928
143985b7
AF
2929 /* Helpers for function argument information. */
2930 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2931
7b112f9c 2932 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2933 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2934
ef5200c1
AC
2935 if (from_xcoff_exec)
2936 {
2937 /* NOTE: jimix/2003-06-09: This test should really check for
2938 GDB_OSABI_AIX when that is defined and becomes
2939 available. (Actually, once things are properly split apart,
2940 the test goes away.) */
2941 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2942 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2943 }
2944
7a78ae4e 2945 return gdbarch;
c906108c
SS
2946}
2947
7b112f9c
JT
2948static void
2949rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2950{
2951 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2952
2953 if (tdep == NULL)
2954 return;
2955
4be87837 2956 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2957}
2958
1fcc0bb8
EZ
2959static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2960
2961static void
2962rs6000_info_powerpc_command (char *args, int from_tty)
2963{
2964 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2965}
2966
c906108c
SS
2967/* Initialization code. */
2968
a78f21af 2969extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 2970
c906108c 2971void
fba45db2 2972_initialize_rs6000_tdep (void)
c906108c 2973{
7b112f9c
JT
2974 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2975 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2976
2977 /* Add root prefix command for "info powerpc" commands */
2978 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2979 "Various POWERPC info specific commands.",
2980 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2981}
This page took 0.666323 seconds and 4 git commands to generate.