2003-10-08 Roland McGrath <roland@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d 50#include "gdb_assert.h"
a89aa300 51#include "dis-asm.h"
338ef23d 52
7a78ae4e
ND
53/* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60#define SIG_FRAME_PC_OFFSET 96
61#define SIG_FRAME_LR_OFFSET 108
62#define SIG_FRAME_FP_OFFSET 284
63
7a78ae4e
ND
64/* To be used by skip_prologue. */
65
66struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 73 int saved_vr; /* smallest # of saved vr */
96ff0de4 74 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 80 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 81 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
6be8bc0c 84 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
85 };
86
87/* Description of a single register. */
88
89struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
489461e2 95 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
96 };
97
c906108c
SS
98/* Breakpoint shadows for the single step instructions will be kept here. */
99
c5aa993b
JM
100static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107stepBreaks[2];
c906108c
SS
108
109/* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
7a78ae4e
ND
113CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115/* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
119
120/* Static function prototypes */
121
a14ed312
KB
122static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
077276e8
KB
124static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
7a78ae4e
ND
126static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 129
64b84175
KB
130/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131int
132altivec_register_p (int regno)
133{
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139}
140
0a613259
AC
141/* Use the architectures FP registers? */
142int
143ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144{
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151}
152
7a78ae4e 153/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 154
7a78ae4e
ND
155static CORE_ADDR
156read_memory_addr (CORE_ADDR memaddr, int len)
157{
158 return read_memory_unsigned_integer (memaddr, len);
159}
c906108c 160
7a78ae4e
ND
161static CORE_ADDR
162rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
163{
164 struct rs6000_framedata frame;
077276e8 165 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
166 return pc;
167}
168
169
c906108c
SS
170/* Fill in fi->saved_regs */
171
172struct frame_extra_info
173{
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
c5aa993b 179 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
180};
181
9aa1e687 182void
7a78ae4e 183rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 184{
c9012c71
AC
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
bdd78e62
AC
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 190 /* We're in get_prev_frame */
c906108c
SS
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
5a203e44 194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
195}
196
7a78ae4e
ND
197/* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
c906108c 202
7a78ae4e
ND
203/* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
9aa1e687 207void
7a78ae4e 208rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
209{
210 frame_get_saved_regs (fi, NULL);
211}
212
7a78ae4e
ND
213static CORE_ADDR
214rs6000_frame_args_address (struct frame_info *fi)
c906108c 215{
c9012c71
AC
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
c906108c
SS
219 else
220 return frame_initial_stack_address (fi);
221}
222
7a78ae4e
ND
223/* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228static CORE_ADDR
229rs6000_saved_pc_after_call (struct frame_info *fi)
230{
2188cbdd 231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 232}
c906108c 233
143985b7 234/* Get the ith function argument for the current function. */
b9362cc7 235static CORE_ADDR
143985b7
AF
236rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238{
239 CORE_ADDR addr;
7f5f525d 240 get_frame_register (frame, 3 + argi, &addr);
143985b7
AF
241 return addr;
242}
243
c906108c
SS
244/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246static CORE_ADDR
7a78ae4e 247branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
248{
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
c5aa993b
JM
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
2188cbdd 279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
8b36eed8 291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 292 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
2188cbdd 298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
305 }
306 else
307 return -1;
308 break;
c906108c 309
c5aa993b
JM
310 default:
311 return -1;
312 }
c906108c
SS
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314}
315
316
317/* Sequence of bytes for breakpoint instruction. */
318
f4f9705a 319const static unsigned char *
7a78ae4e 320rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 321{
aaab4dba
AC
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 324 *bp_size = 4;
d7449b42 325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329}
330
331
332/* AIX does not support PT_STEP. Simulate it. */
333
334void
379d08a1
AC
335rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
c906108c 337{
7c40d541
KB
338 CORE_ADDR dummy;
339 int breakp_sz;
f4f9705a 340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
c5aa993b
JM
346 if (insert_breakpoints_p)
347 {
c906108c 348
c5aa993b 349 loc = read_pc ();
c906108c 350
c5aa993b 351 insn = read_memory_integer (loc, 4);
c906108c 352
7c40d541 353 breaks[0] = loc + breakp_sz;
c5aa993b
JM
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 356
c5aa993b
JM
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
c906108c 360
c5aa993b 361 stepBreaks[1].address = 0;
c906108c 362
c5aa993b
JM
363 for (ii = 0; ii < 2; ++ii)
364 {
c906108c 365
c5aa993b
JM
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
7c40d541 369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
370 stepBreaks[ii].address = breaks[ii];
371 }
c906108c 372
c5aa993b
JM
373 }
374 else
375 {
c906108c 376
c5aa993b
JM
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
7c40d541
KB
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
c5aa993b 382 }
c906108c 383 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 384 /* What errors? {read,write}_memory call error(). */
c906108c
SS
385}
386
387
388/* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
c5aa993b
JM
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
6be8bc0c 398 - saved_vr is the number of the first saved vr.
96ff0de4 399 - saved_ev is the number of the first saved ev.
c5aa993b
JM
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 404 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 405 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
6be8bc0c 408 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 409 */
c906108c
SS
410
411#define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
55d05f3b
KB
418/* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420static int max_skip_non_prologue_insns = 10;
421
422/* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428static CORE_ADDR
429refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430{
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467}
468
469
7a78ae4e 470static CORE_ADDR
077276e8 471skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
472{
473 CORE_ADDR orig_pc = pc;
55d05f3b 474 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 475 CORE_ADDR li_found_pc = 0;
c906108c
SS
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
6be8bc0c 479 long vr_saved_offset = 0;
482ca3f5
KB
480 int lr_reg = -1;
481 int cr_reg = -1;
6be8bc0c 482 int vr_reg = -1;
96ff0de4
EZ
483 int ev_reg = -1;
484 long ev_offset = 0;
6be8bc0c 485 int vrsave_reg = -1;
c906108c
SS
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
ddb20c56 489 int prev_insn_was_prologue_insn = 1;
55d05f3b 490 int num_skip_non_prologue_insns = 0;
96ff0de4 491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 493
55d05f3b
KB
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 508
ddb20c56 509 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
6be8bc0c 512 fdata->saved_vr = -1;
96ff0de4 513 fdata->saved_ev = -1;
c906108c
SS
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
55d05f3b 518 for (;; pc += 4)
c906108c 519 {
ddb20c56
KB
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
55d05f3b
KB
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
ddb20c56
KB
531 prev_insn_was_prologue_insn = 1;
532
55d05f3b 533 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
c906108c 537
c5aa993b
JM
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
98f08d3d 540 lr_reg = (op & 0x03e00000);
c5aa993b 541 continue;
c906108c 542
c5aa993b
JM
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
98f08d3d 546 cr_reg = (op & 0x03e00000);
c5aa993b 547 continue;
c906108c 548
c906108c 549 }
c5aa993b
JM
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
c906108c 559
c5aa993b
JM
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
7a78ae4e 571 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 572 op &= ~3UL;
c5aa993b
JM
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
c906108c 576
ddb20c56
KB
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
96ff0de4 580 /* nop */
ddb20c56
KB
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
c906108c 587 }
c5aa993b
JM
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
98f08d3d
KB
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
c5aa993b
JM
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
98f08d3d
KB
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
c5aa993b
JM
621 continue;
622
623 }
98f08d3d
KB
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
c5aa993b 633 cr_reg = 0;
98f08d3d
KB
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
c5aa993b
JM
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
c5aa993b 653 }
6be8bc0c
EZ
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
c5aa993b
JM
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
c906108c 659
c5aa993b
JM
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
c906108c 664
c5aa993b 665 fdata->frameless = 0;
6be8bc0c
EZ
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
c5aa993b
JM
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
6be8bc0c
EZ
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
c5aa993b
JM
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
c5aa993b 683 }
98f08d3d
KB
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
c5aa993b 691 }
98f08d3d
KB
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
c5aa993b
JM
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
c5aa993b 712 }
98f08d3d
KB
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 716 && !minimal_toc_loaded)
98f08d3d 717 {
c5aa993b
JM
718 minimal_toc_loaded = 1;
719 continue;
720
f6077098
KB
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
96ff0de4 727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
728 {
729 continue;
730
c5aa993b
JM
731 /* store parameters in stack */
732 }
6be8bc0c 733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
c5aa993b 737 continue;
c906108c 738
c5aa993b
JM
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
6f99cb26 755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
6f99cb26
AC
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
c5aa993b 766 continue;
c5aa993b 767 }
6be8bc0c
EZ
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
96ff0de4
EZ
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
c5aa993b
JM
935 else
936 {
55d05f3b
KB
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 951 /* Never skip branches. */
55d05f3b
KB
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
c5aa993b 962 }
c906108c
SS
963 }
964
965#if 0
966/* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 972 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 973 work before calling a function right after a prologue, thus we can
64366f1c 974 single out such gcc2 behaviour. */
c906108c 975
c906108c 976
c5aa993b
JM
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 983
64366f1c
EZ
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
c906108c 986
c5aa993b 987 tmp = find_pc_misc_function (pc);
51cc5b07 988 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
989 return pc + 8;
990 }
c906108c 991 }
c906108c 992#endif /* 0 */
c5aa993b
JM
993
994 fdata->offset = -fdata->offset;
ddb20c56 995 return last_prologue_pc;
c906108c
SS
996}
997
998
999/*************************************************************************
f6077098 1000 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1001 frames, etc.
1002*************************************************************************/
1003
c906108c 1004
64366f1c 1005/* Pop the innermost frame, go back to the caller. */
c5aa993b 1006
c906108c 1007static void
7a78ae4e 1008rs6000_pop_frame (void)
c906108c 1009{
470d5666 1010 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
1011 struct rs6000_framedata fdata;
1012 struct frame_info *frame = get_current_frame ();
470d5666 1013 int ii, wordsize;
c906108c
SS
1014
1015 pc = read_pc ();
c193f6ac 1016 sp = get_frame_base (frame);
c906108c 1017
bdd78e62 1018 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
1019 get_frame_base (frame),
1020 get_frame_base (frame)))
c906108c 1021 {
7a78ae4e
ND
1022 generic_pop_dummy_frame ();
1023 flush_cached_frames ();
1024 return;
c906108c
SS
1025 }
1026
1027 /* Make sure that all registers are valid. */
b8b527c5 1028 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
c906108c 1029
64366f1c 1030 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 1031 still in the link register, otherwise walk the frames and retrieve the
64366f1c 1032 saved %pc value in the previous frame. */
c906108c 1033
be41e9f4 1034 addr = get_frame_func (frame);
bdd78e62 1035 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 1036
21283beb 1037 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
1038 if (fdata.frameless)
1039 prev_sp = sp;
1040 else
7a78ae4e 1041 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1042 if (fdata.lr_offset == 0)
2188cbdd 1043 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1044 else
7a78ae4e 1045 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1046
1047 /* reset %pc value. */
1048 write_register (PC_REGNUM, lr);
1049
64366f1c 1050 /* reset register values if any was saved earlier. */
c906108c
SS
1051
1052 if (fdata.saved_gpr != -1)
1053 {
1054 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1055 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1056 {
62700349 1057 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
524d7c18 1058 wordsize);
7a78ae4e 1059 addr += wordsize;
c5aa993b 1060 }
c906108c
SS
1061 }
1062
1063 if (fdata.saved_fpr != -1)
1064 {
1065 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1066 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1067 {
62700349 1068 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1069 addr += 8;
1070 }
c906108c
SS
1071 }
1072
1073 write_register (SP_REGNUM, prev_sp);
1074 target_store_registers (-1);
1075 flush_cached_frames ();
1076}
1077
11269d7e
AC
1078/* All the ABI's require 16 byte alignment. */
1079static CORE_ADDR
1080rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1081{
1082 return (addr & -16);
1083}
1084
7a78ae4e 1085/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1086 the first eight words of the argument list (that might be less than
1087 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1088 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1089 passed in fpr's, in addition to that. Rest of the parameters if any
1090 are passed in user stack. There might be cases in which half of the
c906108c
SS
1091 parameter is copied into registers, the other half is pushed into
1092 stack.
1093
7a78ae4e
ND
1094 Stack must be aligned on 64-bit boundaries when synthesizing
1095 function calls.
1096
c906108c
SS
1097 If the function is returning a structure, then the return address is passed
1098 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1099 starting from r4. */
c906108c 1100
7a78ae4e 1101static CORE_ADDR
77b2b6d4
AC
1102rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1103 struct regcache *regcache, CORE_ADDR bp_addr,
1104 int nargs, struct value **args, CORE_ADDR sp,
1105 int struct_return, CORE_ADDR struct_addr)
c906108c 1106{
7a41266b 1107 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1108 int ii;
1109 int len = 0;
c5aa993b
JM
1110 int argno; /* current argument number */
1111 int argbytes; /* current argument byte */
1112 char tmp_buffer[50];
1113 int f_argno = 0; /* current floating point argno */
21283beb 1114 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1115
ea7c478f 1116 struct value *arg = 0;
c906108c
SS
1117 struct type *type;
1118
1119 CORE_ADDR saved_sp;
1120
64366f1c 1121 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1122 Copy them appropriately. */
1123 ii = 0;
1124
1125 /* If the function is returning a `struct', then the first word
1126 (which will be passed in r3) is used for struct return address.
1127 In that case we should advance one word and start from r4
1128 register to copy parameters. */
1129 if (struct_return)
1130 {
1131 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1132 struct_addr);
1133 ii++;
1134 }
c906108c
SS
1135
1136/*
c5aa993b
JM
1137 effectively indirect call... gcc does...
1138
1139 return_val example( float, int);
1140
1141 eabi:
1142 float in fp0, int in r3
1143 offset of stack on overflow 8/16
1144 for varargs, must go by type.
1145 power open:
1146 float in r3&r4, int in r5
1147 offset of stack on overflow different
1148 both:
1149 return in r3 or f0. If no float, must study how gcc emulates floats;
1150 pay attention to arg promotion.
1151 User may have to cast\args to handle promotion correctly
1152 since gdb won't know if prototype supplied or not.
1153 */
c906108c 1154
c5aa993b
JM
1155 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1156 {
12c266ea 1157 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1158
1159 arg = args[argno];
1160 type = check_typedef (VALUE_TYPE (arg));
1161 len = TYPE_LENGTH (type);
1162
1163 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1164 {
1165
64366f1c 1166 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1167 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1168 there is no way we would run out of them. */
c5aa993b
JM
1169
1170 if (len > 8)
1171 printf_unfiltered (
1172 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1173
62700349 1174 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1175 VALUE_CONTENTS (arg),
1176 len);
1177 ++f_argno;
1178 }
1179
f6077098 1180 if (len > reg_size)
c5aa993b
JM
1181 {
1182
64366f1c 1183 /* Argument takes more than one register. */
c5aa993b
JM
1184 while (argbytes < len)
1185 {
62700349 1186 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
524d7c18 1187 reg_size);
62700349 1188 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
c5aa993b 1189 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1190 (len - argbytes) > reg_size
1191 ? reg_size : len - argbytes);
1192 ++ii, argbytes += reg_size;
c5aa993b
JM
1193
1194 if (ii >= 8)
1195 goto ran_out_of_registers_for_arguments;
1196 }
1197 argbytes = 0;
1198 --ii;
1199 }
1200 else
64366f1c
EZ
1201 {
1202 /* Argument can fit in one register. No problem. */
d7449b42 1203 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
62700349
AC
1204 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1205 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
f6077098 1206 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1207 }
1208 ++argno;
c906108c 1209 }
c906108c
SS
1210
1211ran_out_of_registers_for_arguments:
1212
7a78ae4e 1213 saved_sp = read_sp ();
cc9836a8 1214
64366f1c 1215 /* Location for 8 parameters are always reserved. */
7a78ae4e 1216 sp -= wordsize * 8;
f6077098 1217
64366f1c 1218 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1219 sp -= wordsize * 6;
f6077098 1220
64366f1c 1221 /* Stack pointer must be quadword aligned. */
7a78ae4e 1222 sp &= -16;
c906108c 1223
64366f1c
EZ
1224 /* If there are more arguments, allocate space for them in
1225 the stack, then push them starting from the ninth one. */
c906108c 1226
c5aa993b
JM
1227 if ((argno < nargs) || argbytes)
1228 {
1229 int space = 0, jj;
c906108c 1230
c5aa993b
JM
1231 if (argbytes)
1232 {
1233 space += ((len - argbytes + 3) & -4);
1234 jj = argno + 1;
1235 }
1236 else
1237 jj = argno;
c906108c 1238
c5aa993b
JM
1239 for (; jj < nargs; ++jj)
1240 {
ea7c478f 1241 struct value *val = args[jj];
c5aa993b
JM
1242 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1243 }
c906108c 1244
64366f1c 1245 /* Add location required for the rest of the parameters. */
f6077098 1246 space = (space + 15) & -16;
c5aa993b 1247 sp -= space;
c906108c 1248
64366f1c
EZ
1249 /* If the last argument copied into the registers didn't fit there
1250 completely, push the rest of it into stack. */
c906108c 1251
c5aa993b
JM
1252 if (argbytes)
1253 {
1254 write_memory (sp + 24 + (ii * 4),
1255 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1256 len - argbytes);
1257 ++argno;
1258 ii += ((len - argbytes + 3) & -4) / 4;
1259 }
c906108c 1260
64366f1c 1261 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1262 for (; argno < nargs; ++argno)
1263 {
c906108c 1264
c5aa993b
JM
1265 arg = args[argno];
1266 type = check_typedef (VALUE_TYPE (arg));
1267 len = TYPE_LENGTH (type);
c906108c
SS
1268
1269
64366f1c
EZ
1270 /* Float types should be passed in fpr's, as well as in the
1271 stack. */
c5aa993b
JM
1272 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1273 {
c906108c 1274
c5aa993b
JM
1275 if (len > 8)
1276 printf_unfiltered (
1277 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1278
62700349 1279 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1280 VALUE_CONTENTS (arg),
1281 len);
1282 ++f_argno;
1283 }
c906108c 1284
c5aa993b
JM
1285 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1286 ii += ((len + 3) & -4) / 4;
1287 }
c906108c 1288 }
c906108c 1289
c906108c 1290 /* set back chain properly */
fbd9dcd3 1291 store_unsigned_integer (tmp_buffer, 4, saved_sp);
c906108c
SS
1292 write_memory (sp, tmp_buffer, 4);
1293
69517000 1294 /* Set the stack pointer. According to the ABI, the SP is meant to
33a7c2fc 1295 be set _before_ the corresponding stack space is used. No need
69517000
AC
1296 for that here though - the target has been completely stopped -
1297 it isn't possible for an exception handler to stomp on the stack. */
33a7c2fc
AC
1298 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1299
e56a0ecc
AC
1300 /* Point the inferior function call's return address at the dummy's
1301 breakpoint. */
1302 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1303
794a477a
AC
1304 /* Set the TOC register, get the value from the objfile reader
1305 which, in turn, gets it from the VMAP table. */
1306 if (rs6000_find_toc_address_hook != NULL)
1307 {
1308 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1309 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1310 }
1311
c906108c
SS
1312 target_store_registers (-1);
1313 return sp;
1314}
c906108c 1315
b9ff3018
AC
1316/* PowerOpen always puts structures in memory. Vectors, which were
1317 added later, do get returned in a register though. */
1318
1319static int
1320rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1321{
1322 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1323 && TYPE_VECTOR (value_type))
1324 return 0;
1325 return 1;
1326}
1327
7a78ae4e
ND
1328static void
1329rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1330{
1331 int offset = 0;
ace1378a 1332 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1333
c5aa993b
JM
1334 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1335 {
c906108c 1336
c5aa993b
JM
1337 double dd;
1338 float ff;
1339 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1340 We need to truncate the return value into float size (4 byte) if
64366f1c 1341 necessary. */
c906108c 1342
c5aa993b
JM
1343 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1344 memcpy (valbuf,
62700349 1345 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
c5aa993b
JM
1346 TYPE_LENGTH (valtype));
1347 else
1348 { /* float */
62700349 1349 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
c5aa993b
JM
1350 ff = (float) dd;
1351 memcpy (valbuf, &ff, sizeof (float));
1352 }
1353 }
ace1378a
EZ
1354 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1355 && TYPE_LENGTH (valtype) == 16
1356 && TYPE_VECTOR (valtype))
1357 {
62700349 1358 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1359 TYPE_LENGTH (valtype));
1360 }
c5aa993b
JM
1361 else
1362 {
1363 /* return value is copied starting from r3. */
d7449b42 1364 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea
AC
1365 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1366 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1367
1368 memcpy (valbuf,
62700349 1369 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1370 TYPE_LENGTH (valtype));
c906108c 1371 }
c906108c
SS
1372}
1373
977adac5
ND
1374/* Return whether handle_inferior_event() should proceed through code
1375 starting at PC in function NAME when stepping.
1376
1377 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1378 handle memory references that are too distant to fit in instructions
1379 generated by the compiler. For example, if 'foo' in the following
1380 instruction:
1381
1382 lwz r9,foo(r2)
1383
1384 is greater than 32767, the linker might replace the lwz with a branch to
1385 somewhere in @FIX1 that does the load in 2 instructions and then branches
1386 back to where execution should continue.
1387
1388 GDB should silently step over @FIX code, just like AIX dbx does.
1389 Unfortunately, the linker uses the "b" instruction for the branches,
1390 meaning that the link register doesn't get set. Therefore, GDB's usual
1391 step_over_function() mechanism won't work.
1392
1393 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1394 in handle_inferior_event() to skip past @FIX code. */
1395
1396int
1397rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1398{
1399 return name && !strncmp (name, "@FIX", 4);
1400}
1401
1402/* Skip code that the user doesn't want to see when stepping:
1403
1404 1. Indirect function calls use a piece of trampoline code to do context
1405 switching, i.e. to set the new TOC table. Skip such code if we are on
1406 its first instruction (as when we have single-stepped to here).
1407
1408 2. Skip shared library trampoline code (which is different from
c906108c 1409 indirect function call trampolines).
977adac5
ND
1410
1411 3. Skip bigtoc fixup code.
1412
c906108c 1413 Result is desired PC to step until, or NULL if we are not in
977adac5 1414 code that should be skipped. */
c906108c
SS
1415
1416CORE_ADDR
7a78ae4e 1417rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1418{
52f0bd74 1419 unsigned int ii, op;
977adac5 1420 int rel;
c906108c 1421 CORE_ADDR solib_target_pc;
977adac5 1422 struct minimal_symbol *msymbol;
c906108c 1423
c5aa993b
JM
1424 static unsigned trampoline_code[] =
1425 {
1426 0x800b0000, /* l r0,0x0(r11) */
1427 0x90410014, /* st r2,0x14(r1) */
1428 0x7c0903a6, /* mtctr r0 */
1429 0x804b0004, /* l r2,0x4(r11) */
1430 0x816b0008, /* l r11,0x8(r11) */
1431 0x4e800420, /* bctr */
1432 0x4e800020, /* br */
1433 0
c906108c
SS
1434 };
1435
977adac5
ND
1436 /* Check for bigtoc fixup code. */
1437 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1438 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1439 {
1440 /* Double-check that the third instruction from PC is relative "b". */
1441 op = read_memory_integer (pc + 8, 4);
1442 if ((op & 0xfc000003) == 0x48000000)
1443 {
1444 /* Extract bits 6-29 as a signed 24-bit relative word address and
1445 add it to the containing PC. */
1446 rel = ((int)(op << 6) >> 6);
1447 return pc + 8 + rel;
1448 }
1449 }
1450
c906108c
SS
1451 /* If pc is in a shared library trampoline, return its target. */
1452 solib_target_pc = find_solib_trampoline_target (pc);
1453 if (solib_target_pc)
1454 return solib_target_pc;
1455
c5aa993b
JM
1456 for (ii = 0; trampoline_code[ii]; ++ii)
1457 {
1458 op = read_memory_integer (pc + (ii * 4), 4);
1459 if (op != trampoline_code[ii])
1460 return 0;
1461 }
1462 ii = read_register (11); /* r11 holds destination addr */
21283beb 1463 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1464 return pc;
1465}
1466
1467/* Determines whether the function FI has a frame on the stack or not. */
1468
9aa1e687 1469int
c877c8e6 1470rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1471{
1472 CORE_ADDR func_start;
1473 struct rs6000_framedata fdata;
1474
1475 /* Don't even think about framelessness except on the innermost frame
1476 or if the function was interrupted by a signal. */
75e3c1f9
AC
1477 if (get_next_frame (fi) != NULL
1478 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1479 return 0;
c5aa993b 1480
be41e9f4 1481 func_start = get_frame_func (fi);
c906108c
SS
1482
1483 /* If we failed to find the start of the function, it is a mistake
64366f1c 1484 to inspect the instructions. */
c906108c
SS
1485
1486 if (!func_start)
1487 {
1488 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1489 function pointer, normally causing an immediate core dump of the
64366f1c 1490 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1491 of setting up a stack frame. */
bdd78e62 1492 if (get_frame_pc (fi) == 0)
c906108c
SS
1493 return 1;
1494 else
1495 return 0;
1496 }
1497
bdd78e62 1498 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1499 return fdata.frameless;
1500}
1501
64366f1c 1502/* Return the PC saved in a frame. */
c906108c 1503
9aa1e687 1504CORE_ADDR
c877c8e6 1505rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1506{
1507 CORE_ADDR func_start;
1508 struct rs6000_framedata fdata;
21283beb 1509 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1510 int wordsize = tdep->wordsize;
c906108c 1511
5a203e44 1512 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1513 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1514 wordsize);
c906108c 1515
bdd78e62 1516 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1517 get_frame_base (fi),
1518 get_frame_base (fi)))
bdd78e62 1519 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1520 get_frame_base (fi), PC_REGNUM);
c906108c 1521
be41e9f4 1522 func_start = get_frame_func (fi);
c906108c
SS
1523
1524 /* If we failed to find the start of the function, it is a mistake
64366f1c 1525 to inspect the instructions. */
c906108c
SS
1526 if (!func_start)
1527 return 0;
1528
bdd78e62 1529 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1530
75e3c1f9 1531 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1532 {
75e3c1f9 1533 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1534 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1535 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1536 wordsize);
bdd78e62 1537 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1538 /* The link register wasn't saved by this frame and the next
1539 (inner, newer) frame is a dummy. Get the link register
1540 value by unwinding it from that [dummy] frame. */
1541 {
1542 ULONGEST lr;
1543 frame_unwind_unsigned_register (get_next_frame (fi),
1544 tdep->ppc_lr_regnum, &lr);
1545 return lr;
1546 }
c906108c 1547 else
618ce49f
AC
1548 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1549 + tdep->lr_frame_offset,
7a78ae4e 1550 wordsize);
c906108c
SS
1551 }
1552
1553 if (fdata.lr_offset == 0)
2188cbdd 1554 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1555
618ce49f
AC
1556 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1557 wordsize);
c906108c
SS
1558}
1559
1560/* If saved registers of frame FI are not known yet, read and cache them.
1561 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1562 in which case the framedata are read. */
1563
1564static void
7a78ae4e 1565frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1566{
c5aa993b 1567 CORE_ADDR frame_addr;
c906108c 1568 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1569 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1570 int wordsize = tdep->wordsize;
c906108c 1571
1b1d3794 1572 if (deprecated_get_frame_saved_regs (fi))
c906108c 1573 return;
c5aa993b 1574
c906108c
SS
1575 if (fdatap == NULL)
1576 {
1577 fdatap = &work_fdata;
be41e9f4 1578 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
c906108c
SS
1579 }
1580
1581 frame_saved_regs_zalloc (fi);
1582
1583 /* If there were any saved registers, figure out parent's stack
64366f1c 1584 pointer. */
c906108c 1585 /* The following is true only if the frame doesn't have a call to
64366f1c 1586 alloca(), FIXME. */
c906108c 1587
6be8bc0c
EZ
1588 if (fdatap->saved_fpr == 0
1589 && fdatap->saved_gpr == 0
1590 && fdatap->saved_vr == 0
96ff0de4 1591 && fdatap->saved_ev == 0
6be8bc0c
EZ
1592 && fdatap->lr_offset == 0
1593 && fdatap->cr_offset == 0
96ff0de4
EZ
1594 && fdatap->vr_offset == 0
1595 && fdatap->ev_offset == 0)
c906108c 1596 frame_addr = 0;
c906108c 1597 else
bf75c8c1
AC
1598 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1599 address of the current frame. Things might be easier if the
1600 ->frame pointed to the outer-most address of the frame. In the
1601 mean time, the address of the prev frame is used as the base
1602 address of this frame. */
618ce49f 1603 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1604
c906108c
SS
1605 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1606 All fpr's from saved_fpr to fp31 are saved. */
1607
1608 if (fdatap->saved_fpr >= 0)
1609 {
1610 int i;
7a78ae4e 1611 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1612 for (i = fdatap->saved_fpr; i < 32; i++)
1613 {
1b1d3794 1614 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1615 fpr_addr += 8;
c906108c
SS
1616 }
1617 }
1618
1619 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1620 All gpr's from saved_gpr to gpr31 are saved. */
1621
1622 if (fdatap->saved_gpr >= 0)
1623 {
1624 int i;
7a78ae4e 1625 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1626 for (i = fdatap->saved_gpr; i < 32; i++)
1627 {
1b1d3794 1628 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
7a78ae4e 1629 gpr_addr += wordsize;
c906108c
SS
1630 }
1631 }
1632
6be8bc0c
EZ
1633 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1634 All vr's from saved_vr to vr31 are saved. */
1635 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1636 {
1637 if (fdatap->saved_vr >= 0)
1638 {
1639 int i;
1640 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1641 for (i = fdatap->saved_vr; i < 32; i++)
1642 {
1b1d3794 1643 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
12c266ea 1644 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
6be8bc0c
EZ
1645 }
1646 }
1647 }
1648
96ff0de4
EZ
1649 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1650 All vr's from saved_ev to ev31 are saved. ????? */
1651 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1652 {
1653 if (fdatap->saved_ev >= 0)
1654 {
1655 int i;
1656 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1657 for (i = fdatap->saved_ev; i < 32; i++)
1658 {
1b1d3794
AC
1659 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1660 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
12c266ea 1661 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
96ff0de4
EZ
1662 }
1663 }
1664 }
1665
c906108c
SS
1666 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1667 the CR. */
1668 if (fdatap->cr_offset != 0)
1b1d3794 1669 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1670
1671 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1672 the LR. */
1673 if (fdatap->lr_offset != 0)
1b1d3794 1674 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1675
1676 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1677 the VRSAVE. */
1678 if (fdatap->vrsave_offset != 0)
1b1d3794 1679 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1680}
1681
1682/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1683 was first allocated. For functions calling alloca(), it might be saved in
1684 an alloca register. */
c906108c
SS
1685
1686static CORE_ADDR
7a78ae4e 1687frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1688{
1689 CORE_ADDR tmpaddr;
1690 struct rs6000_framedata fdata;
1691 struct frame_info *callee_fi;
1692
64366f1c
EZ
1693 /* If the initial stack pointer (frame address) of this frame is known,
1694 just return it. */
c906108c 1695
c9012c71
AC
1696 if (get_frame_extra_info (fi)->initial_sp)
1697 return get_frame_extra_info (fi)->initial_sp;
c906108c 1698
64366f1c 1699 /* Find out if this function is using an alloca register. */
c906108c 1700
be41e9f4 1701 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
c906108c 1702
64366f1c
EZ
1703 /* If saved registers of this frame are not known yet, read and
1704 cache them. */
c906108c 1705
1b1d3794 1706 if (!deprecated_get_frame_saved_regs (fi))
c906108c
SS
1707 frame_get_saved_regs (fi, &fdata);
1708
1709 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1710 this frame, and it is good enough. */
c906108c
SS
1711
1712 if (fdata.alloca_reg < 0)
1713 {
c9012c71
AC
1714 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1715 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1716 }
1717
953836b2
AC
1718 /* There is an alloca register, use its value, in the current frame,
1719 as the initial stack pointer. */
1720 {
d9d9c31f 1721 char tmpbuf[MAX_REGISTER_SIZE];
953836b2
AC
1722 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1723 {
c9012c71 1724 get_frame_extra_info (fi)->initial_sp
953836b2 1725 = extract_unsigned_integer (tmpbuf,
12c266ea 1726 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
953836b2
AC
1727 }
1728 else
1729 /* NOTE: cagney/2002-04-17: At present the only time
1730 frame_register_read will fail is when the register isn't
1731 available. If that does happen, use the frame. */
c9012c71 1732 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1733 }
c9012c71 1734 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1735}
1736
7a78ae4e
ND
1737/* Describe the pointer in each stack frame to the previous stack frame
1738 (its caller). */
1739
618ce49f
AC
1740/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1741 the frame's chain-pointer. */
7a78ae4e
ND
1742
1743/* In the case of the RS/6000, the frame's nominal address
1744 is the address of a 4-byte word containing the calling frame's address. */
1745
9aa1e687 1746CORE_ADDR
7a78ae4e 1747rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1748{
7a78ae4e 1749 CORE_ADDR fp, fpp, lr;
21283beb 1750 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1751
bdd78e62 1752 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1753 get_frame_base (thisframe),
1754 get_frame_base (thisframe)))
9f3b7f07
AC
1755 /* A dummy frame always correctly chains back to the previous
1756 frame. */
8b36eed8 1757 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1758
627b3ba2 1759 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
bdd78e62 1760 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1761 return 0;
1762
5a203e44 1763 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1764 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1765 wordsize);
75e3c1f9
AC
1766 else if (get_next_frame (thisframe) != NULL
1767 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1768 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1769 /* A frameless function interrupted by a signal did not change the
1770 frame pointer. */
c193f6ac 1771 fp = get_frame_base (thisframe);
c906108c 1772 else
8b36eed8 1773 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1774 return fp;
1775}
1776
1777/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1778 isn't available with that word size, return 0. */
7a78ae4e
ND
1779
1780static int
1781regsize (const struct reg *reg, int wordsize)
1782{
1783 return wordsize == 8 ? reg->sz64 : reg->sz32;
1784}
1785
1786/* Return the name of register number N, or null if no such register exists
64366f1c 1787 in the current architecture. */
7a78ae4e 1788
fa88f677 1789static const char *
7a78ae4e
ND
1790rs6000_register_name (int n)
1791{
21283beb 1792 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1793 const struct reg *reg = tdep->regs + n;
1794
1795 if (!regsize (reg, tdep->wordsize))
1796 return NULL;
1797 return reg->name;
1798}
1799
1800/* Index within `registers' of the first byte of the space for
1801 register N. */
1802
1803static int
1804rs6000_register_byte (int n)
1805{
21283beb 1806 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1807}
1808
1809/* Return the number of bytes of storage in the actual machine representation
64366f1c 1810 for register N if that register is available, else return 0. */
7a78ae4e
ND
1811
1812static int
1813rs6000_register_raw_size (int n)
1814{
21283beb 1815 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1816 const struct reg *reg = tdep->regs + n;
1817 return regsize (reg, tdep->wordsize);
1818}
1819
7a78ae4e
ND
1820/* Return the GDB type object for the "standard" data type
1821 of data in register N. */
1822
1823static struct type *
fba45db2 1824rs6000_register_virtual_type (int n)
7a78ae4e 1825{
21283beb 1826 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1827 const struct reg *reg = tdep->regs + n;
1828
1fcc0bb8
EZ
1829 if (reg->fpr)
1830 return builtin_type_double;
1831 else
1832 {
1833 int size = regsize (reg, tdep->wordsize);
1834 switch (size)
1835 {
449a5da4
AC
1836 case 0:
1837 return builtin_type_int0;
1838 case 4:
1839 return builtin_type_int32;
1fcc0bb8 1840 case 8:
c8001721
EZ
1841 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1842 return builtin_type_vec64;
1843 else
1844 return builtin_type_int64;
1fcc0bb8
EZ
1845 break;
1846 case 16:
08cf96df 1847 return builtin_type_vec128;
1fcc0bb8
EZ
1848 break;
1849 default:
449a5da4
AC
1850 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1851 n, size);
1fcc0bb8
EZ
1852 }
1853 }
7a78ae4e
ND
1854}
1855
7a78ae4e
ND
1856/* Return whether register N requires conversion when moving from raw format
1857 to virtual format.
1858
1859 The register format for RS/6000 floating point registers is always
64366f1c 1860 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1861
1862static int
1863rs6000_register_convertible (int n)
1864{
21283beb 1865 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1866 return reg->fpr;
1867}
1868
1869/* Convert data from raw format for register N in buffer FROM
64366f1c 1870 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1871
1872static void
1873rs6000_register_convert_to_virtual (int n, struct type *type,
1874 char *from, char *to)
1875{
12c266ea 1876 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a292a7a 1877 {
12c266ea 1878 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
f1908289 1879 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1880 }
1881 else
12c266ea 1882 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e
ND
1883}
1884
1885/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1886 to raw format for register N in buffer TO. */
7a292a7a 1887
7a78ae4e
ND
1888static void
1889rs6000_register_convert_to_raw (struct type *type, int n,
781a750d 1890 const char *from, char *to)
7a78ae4e 1891{
12c266ea 1892 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a78ae4e 1893 {
f1908289 1894 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
12c266ea 1895 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
7a292a7a 1896 }
7a78ae4e 1897 else
12c266ea 1898 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e 1899}
c906108c 1900
c8001721
EZ
1901static void
1902e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1903 int reg_nr, void *buffer)
1904{
1905 int base_regnum;
1906 int offset = 0;
d9d9c31f 1907 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1909
1910 if (reg_nr >= tdep->ppc_gp0_regnum
1911 && reg_nr <= tdep->ppc_gplast_regnum)
1912 {
1913 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1914
1915 /* Build the value in the provided buffer. */
1916 /* Read the raw register of which this one is the lower portion. */
1917 regcache_raw_read (regcache, base_regnum, temp_buffer);
1918 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1919 offset = 4;
1920 memcpy ((char *) buffer, temp_buffer + offset, 4);
1921 }
1922}
1923
1924static void
1925e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1926 int reg_nr, const void *buffer)
1927{
1928 int base_regnum;
1929 int offset = 0;
d9d9c31f 1930 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1931 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1932
1933 if (reg_nr >= tdep->ppc_gp0_regnum
1934 && reg_nr <= tdep->ppc_gplast_regnum)
1935 {
1936 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1937 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1938 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1939 offset = 4;
1940
1941 /* Let's read the value of the base register into a temporary
1942 buffer, so that overwriting the last four bytes with the new
1943 value of the pseudo will leave the upper 4 bytes unchanged. */
1944 regcache_raw_read (regcache, base_regnum, temp_buffer);
1945
1946 /* Write as an 8 byte quantity. */
1947 memcpy (temp_buffer + offset, (char *) buffer, 4);
1948 regcache_raw_write (regcache, base_regnum, temp_buffer);
1949 }
1950}
1951
1952/* Convert a dwarf2 register number to a gdb REGNUM. */
1953static int
1954e500_dwarf2_reg_to_regnum (int num)
1955{
1956 int regnum;
1957 if (0 <= num && num <= 31)
1958 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1959 else
1960 return num;
1961}
1962
2188cbdd 1963/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1964 REGNUM. */
2188cbdd
EZ
1965static int
1966rs6000_stab_reg_to_regnum (int num)
1967{
1968 int regnum;
1969 switch (num)
1970 {
1971 case 64:
1972 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1973 break;
1974 case 65:
1975 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1976 break;
1977 case 66:
1978 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1979 break;
1980 case 76:
1981 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1982 break;
1983 default:
1984 regnum = num;
1985 break;
1986 }
1987 return regnum;
1988}
1989
7a78ae4e
ND
1990static void
1991rs6000_store_return_value (struct type *type, char *valbuf)
1992{
ace1378a
EZ
1993 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1994
7a78ae4e
ND
1995 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1996
1997 /* Floating point values are returned starting from FPR1 and up.
1998 Say a double_double_double type could be returned in
64366f1c 1999 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2000
62700349 2001 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
73937e03 2002 TYPE_LENGTH (type));
ace1378a
EZ
2003 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2004 {
2005 if (TYPE_LENGTH (type) == 16
2006 && TYPE_VECTOR (type))
62700349 2007 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
73937e03 2008 valbuf, TYPE_LENGTH (type));
ace1378a 2009 }
7a78ae4e 2010 else
64366f1c 2011 /* Everything else is returned in GPR3 and up. */
62700349 2012 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
73937e03 2013 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2014}
2015
2016/* Extract from an array REGBUF containing the (raw) register state
2017 the address in which a function should return its structure value,
2018 as a CORE_ADDR (or an expression that can be used as one). */
2019
2020static CORE_ADDR
11269d7e
AC
2021rs6000_extract_struct_value_address (struct regcache *regcache)
2022{
2023 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2024 function call GDB knows the address of the struct return value
2025 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2026 the current call_function_by_hand() code only saves the most
2027 recent struct address leading to occasional calls. The code
2028 should instead maintain a stack of such addresses (in the dummy
2029 frame object). */
11269d7e
AC
2030 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2031 really got no idea where the return value is being stored. While
2032 r3, on function entry, contained the address it will have since
2033 been reused (scratch) and hence wouldn't be valid */
2034 return 0;
7a78ae4e
ND
2035}
2036
2037/* Return whether PC is in a dummy function call.
2038
2039 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2040 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2041
2042static int
2043rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2044{
2045 return sp < pc && pc < fp;
2046}
2047
64366f1c 2048/* Hook called when a new child process is started. */
7a78ae4e
ND
2049
2050void
2051rs6000_create_inferior (int pid)
2052{
2053 if (rs6000_set_host_arch_hook)
2054 rs6000_set_host_arch_hook (pid);
c906108c
SS
2055}
2056\f
7a78ae4e
ND
2057/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2058
2059 Usually a function pointer's representation is simply the address
2060 of the function. On the RS/6000 however, a function pointer is
2061 represented by a pointer to a TOC entry. This TOC entry contains
2062 three words, the first word is the address of the function, the
2063 second word is the TOC pointer (r2), and the third word is the
2064 static chain value. Throughout GDB it is currently assumed that a
2065 function pointer contains the address of the function, which is not
2066 easy to fix. In addition, the conversion of a function address to
2067 a function pointer would require allocation of a TOC entry in the
2068 inferior's memory space, with all its drawbacks. To be able to
2069 call C++ virtual methods in the inferior (which are called via
f517ea4e 2070 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2071 function address from a function pointer. */
2072
f517ea4e
PS
2073/* Return real function address if ADDR (a function pointer) is in the data
2074 space and is therefore a special function pointer. */
c906108c 2075
b9362cc7 2076static CORE_ADDR
7a78ae4e 2077rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2078{
2079 struct obj_section *s;
2080
2081 s = find_pc_section (addr);
2082 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2083 return addr;
c906108c 2084
7a78ae4e 2085 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2086 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2087}
c906108c 2088\f
c5aa993b 2089
7a78ae4e 2090/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2091
2092
7a78ae4e
ND
2093/* The arrays here called registers_MUMBLE hold information about available
2094 registers.
c906108c
SS
2095
2096 For each family of PPC variants, I've tried to isolate out the
2097 common registers and put them up front, so that as long as you get
2098 the general family right, GDB will correctly identify the registers
2099 common to that family. The common register sets are:
2100
2101 For the 60x family: hid0 hid1 iabr dabr pir
2102
2103 For the 505 and 860 family: eie eid nri
2104
2105 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2106 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2107 pbu1 pbl2 pbu2
c906108c
SS
2108
2109 Most of these register groups aren't anything formal. I arrived at
2110 them by looking at the registers that occurred in more than one
6f5987a6
KB
2111 processor.
2112
2113 Note: kevinb/2002-04-30: Support for the fpscr register was added
2114 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2115 for Power. For PowerPC, slot 70 was unused and was already in the
2116 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2117 slot 70 was being used for "mq", so the next available slot (71)
2118 was chosen. It would have been nice to be able to make the
2119 register numbers the same across processor cores, but this wasn't
2120 possible without either 1) renumbering some registers for some
2121 processors or 2) assigning fpscr to a really high slot that's
2122 larger than any current register number. Doing (1) is bad because
2123 existing stubs would break. Doing (2) is undesirable because it
2124 would introduce a really large gap between fpscr and the rest of
2125 the registers for most processors. */
7a78ae4e 2126
64366f1c 2127/* Convenience macros for populating register arrays. */
7a78ae4e 2128
64366f1c 2129/* Within another macro, convert S to a string. */
7a78ae4e
ND
2130
2131#define STR(s) #s
2132
2133/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2134 and 64 bits on 64-bit systems. */
489461e2 2135#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2136
2137/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2138 systems. */
489461e2 2139#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2140
2141/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2142 systems. */
489461e2 2143#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2144
1fcc0bb8 2145/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2146 systems. */
489461e2 2147#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2148
64366f1c 2149/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2150#define F(name) { STR(name), 8, 8, 1, 0 }
2151
64366f1c 2152/* Return a struct reg defining a pseudo register NAME. */
489461e2 2153#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2154
2155/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2156 systems and that doesn't exist on 64-bit systems. */
489461e2 2157#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2158
2159/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2160 systems and that doesn't exist on 32-bit systems. */
489461e2 2161#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2162
64366f1c 2163/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2164#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2165
2166/* UISA registers common across all architectures, including POWER. */
2167
2168#define COMMON_UISA_REGS \
2169 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2170 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2171 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2172 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2173 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2174 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2175 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2176 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2177 /* 64 */ R(pc), R(ps)
2178
ebeac11a
EZ
2179#define COMMON_UISA_NOFP_REGS \
2180 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2181 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2182 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2183 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2184 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2185 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2186 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2187 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2188 /* 64 */ R(pc), R(ps)
2189
7a78ae4e
ND
2190/* UISA-level SPRs for PowerPC. */
2191#define PPC_UISA_SPRS \
e3f36dbd 2192 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2193
c8001721
EZ
2194/* UISA-level SPRs for PowerPC without floating point support. */
2195#define PPC_UISA_NOFP_SPRS \
2196 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2197
7a78ae4e
ND
2198/* Segment registers, for PowerPC. */
2199#define PPC_SEGMENT_REGS \
2200 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2201 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2202 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2203 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2204
2205/* OEA SPRs for PowerPC. */
2206#define PPC_OEA_SPRS \
2207 /* 87 */ R4(pvr), \
2208 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2209 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2210 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2211 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2212 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2213 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2214 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2215 /* 116 */ R4(dec), R(dabr), R4(ear)
2216
64366f1c 2217/* AltiVec registers. */
1fcc0bb8
EZ
2218#define PPC_ALTIVEC_REGS \
2219 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2220 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2221 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2222 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2223 /*151*/R4(vscr), R4(vrsave)
2224
c8001721
EZ
2225/* Vectors of hi-lo general purpose registers. */
2226#define PPC_EV_REGS \
2227 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2228 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2229 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2230 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2231
2232/* Lower half of the EV registers. */
2233#define PPC_GPRS_PSEUDO_REGS \
2234 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2235 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2236 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2237 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2238
7a78ae4e 2239/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2240 user-level SPR's. */
7a78ae4e 2241static const struct reg registers_power[] =
c906108c 2242{
7a78ae4e 2243 COMMON_UISA_REGS,
e3f36dbd
KB
2244 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2245 /* 71 */ R4(fpscr)
c906108c
SS
2246};
2247
7a78ae4e 2248/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2249 view of the PowerPC. */
7a78ae4e 2250static const struct reg registers_powerpc[] =
c906108c 2251{
7a78ae4e 2252 COMMON_UISA_REGS,
1fcc0bb8
EZ
2253 PPC_UISA_SPRS,
2254 PPC_ALTIVEC_REGS
c906108c
SS
2255};
2256
ebeac11a
EZ
2257/* PowerPC UISA - a PPC processor as viewed by user-level
2258 code, but without floating point registers. */
2259static const struct reg registers_powerpc_nofp[] =
2260{
2261 COMMON_UISA_NOFP_REGS,
2262 PPC_UISA_SPRS
2263};
2264
64366f1c 2265/* IBM PowerPC 403. */
7a78ae4e 2266static const struct reg registers_403[] =
c5aa993b 2267{
7a78ae4e
ND
2268 COMMON_UISA_REGS,
2269 PPC_UISA_SPRS,
2270 PPC_SEGMENT_REGS,
2271 PPC_OEA_SPRS,
2272 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2273 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2274 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2275 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2276 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2277 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2278};
2279
64366f1c 2280/* IBM PowerPC 403GC. */
7a78ae4e 2281static const struct reg registers_403GC[] =
c5aa993b 2282{
7a78ae4e
ND
2283 COMMON_UISA_REGS,
2284 PPC_UISA_SPRS,
2285 PPC_SEGMENT_REGS,
2286 PPC_OEA_SPRS,
2287 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2288 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2289 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2290 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2291 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2292 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2293 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2294 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2295};
2296
64366f1c 2297/* Motorola PowerPC 505. */
7a78ae4e 2298static const struct reg registers_505[] =
c5aa993b 2299{
7a78ae4e
ND
2300 COMMON_UISA_REGS,
2301 PPC_UISA_SPRS,
2302 PPC_SEGMENT_REGS,
2303 PPC_OEA_SPRS,
2304 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2305};
2306
64366f1c 2307/* Motorola PowerPC 860 or 850. */
7a78ae4e 2308static const struct reg registers_860[] =
c5aa993b 2309{
7a78ae4e
ND
2310 COMMON_UISA_REGS,
2311 PPC_UISA_SPRS,
2312 PPC_SEGMENT_REGS,
2313 PPC_OEA_SPRS,
2314 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2315 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2316 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2317 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2318 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2319 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2320 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2321 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2322 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2323 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2324 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2325 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2326};
2327
7a78ae4e
ND
2328/* Motorola PowerPC 601. Note that the 601 has different register numbers
2329 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2330 register is the stub's problem. */
7a78ae4e 2331static const struct reg registers_601[] =
c5aa993b 2332{
7a78ae4e
ND
2333 COMMON_UISA_REGS,
2334 PPC_UISA_SPRS,
2335 PPC_SEGMENT_REGS,
2336 PPC_OEA_SPRS,
2337 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2338 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2339};
2340
64366f1c 2341/* Motorola PowerPC 602. */
7a78ae4e 2342static const struct reg registers_602[] =
c5aa993b 2343{
7a78ae4e
ND
2344 COMMON_UISA_REGS,
2345 PPC_UISA_SPRS,
2346 PPC_SEGMENT_REGS,
2347 PPC_OEA_SPRS,
2348 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2349 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2350 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2351};
2352
64366f1c 2353/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2354static const struct reg registers_603[] =
c5aa993b 2355{
7a78ae4e
ND
2356 COMMON_UISA_REGS,
2357 PPC_UISA_SPRS,
2358 PPC_SEGMENT_REGS,
2359 PPC_OEA_SPRS,
2360 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2361 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2362 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2363};
2364
64366f1c 2365/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2366static const struct reg registers_604[] =
c5aa993b 2367{
7a78ae4e
ND
2368 COMMON_UISA_REGS,
2369 PPC_UISA_SPRS,
2370 PPC_SEGMENT_REGS,
2371 PPC_OEA_SPRS,
2372 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2373 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2374 /* 127 */ R(sia), R(sda)
c906108c
SS
2375};
2376
64366f1c 2377/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2378static const struct reg registers_750[] =
c5aa993b 2379{
7a78ae4e
ND
2380 COMMON_UISA_REGS,
2381 PPC_UISA_SPRS,
2382 PPC_SEGMENT_REGS,
2383 PPC_OEA_SPRS,
2384 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2385 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2386 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2387 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2388 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2389 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2390};
2391
2392
64366f1c 2393/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2394static const struct reg registers_7400[] =
2395{
2396 /* gpr0-gpr31, fpr0-fpr31 */
2397 COMMON_UISA_REGS,
2398 /* ctr, xre, lr, cr */
2399 PPC_UISA_SPRS,
2400 /* sr0-sr15 */
2401 PPC_SEGMENT_REGS,
2402 PPC_OEA_SPRS,
2403 /* vr0-vr31, vrsave, vscr */
2404 PPC_ALTIVEC_REGS
2405 /* FIXME? Add more registers? */
2406};
2407
c8001721
EZ
2408/* Motorola e500. */
2409static const struct reg registers_e500[] =
2410{
2411 R(pc), R(ps),
2412 /* cr, lr, ctr, xer, "" */
2413 PPC_UISA_NOFP_SPRS,
2414 /* 7...38 */
2415 PPC_EV_REGS,
338ef23d
AC
2416 R8(acc), R(spefscr),
2417 /* NOTE: Add new registers here the end of the raw register
2418 list and just before the first pseudo register. */
c8001721
EZ
2419 /* 39...70 */
2420 PPC_GPRS_PSEUDO_REGS
2421};
2422
c906108c 2423/* Information about a particular processor variant. */
7a78ae4e 2424
c906108c 2425struct variant
c5aa993b
JM
2426 {
2427 /* Name of this variant. */
2428 char *name;
c906108c 2429
c5aa993b
JM
2430 /* English description of the variant. */
2431 char *description;
c906108c 2432
64366f1c 2433 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2434 enum bfd_architecture arch;
2435
64366f1c 2436 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2437 unsigned long mach;
2438
489461e2
EZ
2439 /* Number of real registers. */
2440 int nregs;
2441
2442 /* Number of pseudo registers. */
2443 int npregs;
2444
2445 /* Number of total registers (the sum of nregs and npregs). */
2446 int num_tot_regs;
2447
c5aa993b
JM
2448 /* Table of register names; registers[R] is the name of the register
2449 number R. */
7a78ae4e 2450 const struct reg *regs;
c5aa993b 2451 };
c906108c 2452
489461e2
EZ
2453#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2454
2455static int
2456num_registers (const struct reg *reg_list, int num_tot_regs)
2457{
2458 int i;
2459 int nregs = 0;
2460
2461 for (i = 0; i < num_tot_regs; i++)
2462 if (!reg_list[i].pseudo)
2463 nregs++;
2464
2465 return nregs;
2466}
2467
2468static int
2469num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2470{
2471 int i;
2472 int npregs = 0;
2473
2474 for (i = 0; i < num_tot_regs; i++)
2475 if (reg_list[i].pseudo)
2476 npregs ++;
2477
2478 return npregs;
2479}
c906108c 2480
c906108c
SS
2481/* Information in this table comes from the following web sites:
2482 IBM: http://www.chips.ibm.com:80/products/embedded/
2483 Motorola: http://www.mot.com/SPS/PowerPC/
2484
2485 I'm sure I've got some of the variant descriptions not quite right.
2486 Please report any inaccuracies you find to GDB's maintainer.
2487
2488 If you add entries to this table, please be sure to allow the new
2489 value as an argument to the --with-cpu flag, in configure.in. */
2490
489461e2 2491static struct variant variants[] =
c906108c 2492{
489461e2 2493
7a78ae4e 2494 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2495 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2496 registers_powerpc},
7a78ae4e 2497 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2498 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2499 registers_power},
7a78ae4e 2500 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2501 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2502 registers_403},
7a78ae4e 2503 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2504 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2505 registers_601},
7a78ae4e 2506 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2507 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2508 registers_602},
7a78ae4e 2509 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2510 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2511 registers_603},
7a78ae4e 2512 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2513 604, -1, -1, tot_num_registers (registers_604),
2514 registers_604},
7a78ae4e 2515 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2516 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2517 registers_403GC},
7a78ae4e 2518 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2519 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2520 registers_505},
7a78ae4e 2521 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2522 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2523 registers_860},
7a78ae4e 2524 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2525 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2526 registers_750},
1fcc0bb8 2527 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2528 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2529 registers_7400},
c8001721
EZ
2530 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2531 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2532 registers_e500},
7a78ae4e 2533
5d57ee30
KB
2534 /* 64-bit */
2535 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2536 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2537 registers_powerpc},
7a78ae4e 2538 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2539 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2540 registers_powerpc},
5d57ee30 2541 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2542 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2543 registers_powerpc},
7a78ae4e 2544 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2545 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2546 registers_powerpc},
5d57ee30 2547 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2548 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2549 registers_powerpc},
5d57ee30 2550 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2551 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2552 registers_powerpc},
5d57ee30 2553
64366f1c 2554 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2555 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2556 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2557 registers_power},
7a78ae4e 2558 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2559 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2560 registers_power},
7a78ae4e 2561 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2562 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2563 registers_power},
7a78ae4e 2564
489461e2 2565 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2566};
2567
64366f1c 2568/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2569
2570static void
2571init_variants (void)
2572{
2573 struct variant *v;
2574
2575 for (v = variants; v->name; v++)
2576 {
2577 if (v->nregs == -1)
2578 v->nregs = num_registers (v->regs, v->num_tot_regs);
2579 if (v->npregs == -1)
2580 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2581 }
2582}
c906108c 2583
7a78ae4e 2584/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2585 MACH. If no such variant exists, return null. */
c906108c 2586
7a78ae4e
ND
2587static const struct variant *
2588find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2589{
7a78ae4e 2590 const struct variant *v;
c5aa993b 2591
7a78ae4e
ND
2592 for (v = variants; v->name; v++)
2593 if (arch == v->arch && mach == v->mach)
2594 return v;
c906108c 2595
7a78ae4e 2596 return NULL;
c906108c 2597}
9364a0ef
EZ
2598
2599static int
2600gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2601{
2602 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2603 return print_insn_big_powerpc (memaddr, info);
2604 else
2605 return print_insn_little_powerpc (memaddr, info);
2606}
7a78ae4e 2607\f
7a78ae4e
ND
2608/* Initialize the current architecture based on INFO. If possible, re-use an
2609 architecture from ARCHES, which is a list of architectures already created
2610 during this debugging session.
c906108c 2611
7a78ae4e 2612 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2613 a binary file. */
c906108c 2614
7a78ae4e
ND
2615static struct gdbarch *
2616rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2617{
2618 struct gdbarch *gdbarch;
2619 struct gdbarch_tdep *tdep;
9aa1e687 2620 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2621 struct reg *regs;
2622 const struct variant *v;
2623 enum bfd_architecture arch;
2624 unsigned long mach;
2625 bfd abfd;
7b112f9c 2626 int sysv_abi;
5bf1c677 2627 asection *sect;
7a78ae4e 2628
9aa1e687 2629 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2630 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2631
9aa1e687
KB
2632 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2633 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2634
2635 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2636
e712c1cf 2637 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2638 that, else choose a likely default. */
9aa1e687 2639 if (from_xcoff_exec)
c906108c 2640 {
11ed25ac 2641 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2642 wordsize = 8;
2643 else
2644 wordsize = 4;
c906108c 2645 }
9aa1e687
KB
2646 else if (from_elf_exec)
2647 {
2648 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2649 wordsize = 8;
2650 else
2651 wordsize = 4;
2652 }
c906108c 2653 else
7a78ae4e 2654 {
27b15785
KB
2655 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2656 wordsize = info.bfd_arch_info->bits_per_word /
2657 info.bfd_arch_info->bits_per_byte;
2658 else
2659 wordsize = 4;
7a78ae4e 2660 }
c906108c 2661
64366f1c 2662 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2663 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2664 arches != NULL;
2665 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2666 {
2667 /* Word size in the various PowerPC bfd_arch_info structs isn't
2668 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2669 separate word size check. */
7a78ae4e 2670 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2671 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2672 return arches->gdbarch;
2673 }
c906108c 2674
7a78ae4e
ND
2675 /* None found, create a new architecture from INFO, whose bfd_arch_info
2676 validity depends on the source:
2677 - executable useless
2678 - rs6000_host_arch() good
2679 - core file good
2680 - "set arch" trust blindly
2681 - GDB startup useless but harmless */
c906108c 2682
9aa1e687 2683 if (!from_xcoff_exec)
c906108c 2684 {
b732d07d 2685 arch = info.bfd_arch_info->arch;
7a78ae4e 2686 mach = info.bfd_arch_info->mach;
c906108c 2687 }
7a78ae4e 2688 else
c906108c 2689 {
7a78ae4e 2690 arch = bfd_arch_powerpc;
35cec841 2691 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2692 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2693 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2694 }
2695 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2696 tdep->wordsize = wordsize;
5bf1c677
EZ
2697
2698 /* For e500 executables, the apuinfo section is of help here. Such
2699 section contains the identifier and revision number of each
2700 Application-specific Processing Unit that is present on the
2701 chip. The content of the section is determined by the assembler
2702 which looks at each instruction and determines which unit (and
2703 which version of it) can execute it. In our case we just look for
2704 the existance of the section. */
2705
2706 if (info.abfd)
2707 {
2708 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2709 if (sect)
2710 {
2711 arch = info.bfd_arch_info->arch;
2712 mach = bfd_mach_ppc_e500;
2713 bfd_default_set_arch_mach (&abfd, arch, mach);
2714 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2715 }
2716 }
2717
7a78ae4e
ND
2718 gdbarch = gdbarch_alloc (&info, tdep);
2719 power = arch == bfd_arch_rs6000;
2720
489461e2
EZ
2721 /* Initialize the number of real and pseudo registers in each variant. */
2722 init_variants ();
2723
64366f1c 2724 /* Choose variant. */
7a78ae4e
ND
2725 v = find_variant_by_arch (arch, mach);
2726 if (!v)
dd47e6fd
EZ
2727 return NULL;
2728
7a78ae4e
ND
2729 tdep->regs = v->regs;
2730
2188cbdd
EZ
2731 tdep->ppc_gp0_regnum = 0;
2732 tdep->ppc_gplast_regnum = 31;
2733 tdep->ppc_toc_regnum = 2;
2734 tdep->ppc_ps_regnum = 65;
2735 tdep->ppc_cr_regnum = 66;
2736 tdep->ppc_lr_regnum = 67;
2737 tdep->ppc_ctr_regnum = 68;
2738 tdep->ppc_xer_regnum = 69;
2739 if (v->mach == bfd_mach_ppc_601)
2740 tdep->ppc_mq_regnum = 124;
e3f36dbd 2741 else if (power)
2188cbdd 2742 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2743 else
2744 tdep->ppc_mq_regnum = -1;
2745 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2746
c8001721
EZ
2747 set_gdbarch_pc_regnum (gdbarch, 64);
2748 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2749 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
afd48b75
AC
2750 if (sysv_abi && wordsize == 8)
2751 {
2752 set_gdbarch_extract_return_value (gdbarch, ppc64_sysv_abi_extract_return_value);
2753 set_gdbarch_store_return_value (gdbarch, ppc64_sysv_abi_store_return_value);
2754 }
e754ae69
AC
2755 else if (sysv_abi && wordsize == 4)
2756 {
2757 set_gdbarch_extract_return_value (gdbarch, ppc_sysv_abi_extract_return_value);
2758 set_gdbarch_store_return_value (gdbarch, ppc_sysv_abi_store_return_value);
2759 }
afd48b75
AC
2760 else
2761 {
2762 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2763 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2764 }
c8001721 2765
1fcc0bb8
EZ
2766 if (v->arch == bfd_arch_powerpc)
2767 switch (v->mach)
2768 {
2769 case bfd_mach_ppc:
2770 tdep->ppc_vr0_regnum = 71;
2771 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2772 tdep->ppc_ev0_regnum = -1;
2773 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2774 break;
2775 case bfd_mach_ppc_7400:
2776 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2777 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2778 tdep->ppc_ev0_regnum = -1;
2779 tdep->ppc_ev31_regnum = -1;
2780 break;
2781 case bfd_mach_ppc_e500:
338ef23d
AC
2782 tdep->ppc_gp0_regnum = 41;
2783 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2784 tdep->ppc_toc_regnum = -1;
2785 tdep->ppc_ps_regnum = 1;
2786 tdep->ppc_cr_regnum = 2;
2787 tdep->ppc_lr_regnum = 3;
2788 tdep->ppc_ctr_regnum = 4;
2789 tdep->ppc_xer_regnum = 5;
2790 tdep->ppc_ev0_regnum = 7;
2791 tdep->ppc_ev31_regnum = 38;
2792 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2793 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2794 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2795 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2796 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2797 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
1fcc0bb8
EZ
2798 break;
2799 default:
2800 tdep->ppc_vr0_regnum = -1;
2801 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2802 tdep->ppc_ev0_regnum = -1;
2803 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2804 break;
2805 }
2806
338ef23d
AC
2807 /* Sanity check on registers. */
2808 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2809
a88376a3
KB
2810 /* Set lr_frame_offset. */
2811 if (wordsize == 8)
2812 tdep->lr_frame_offset = 16;
2813 else if (sysv_abi)
2814 tdep->lr_frame_offset = 4;
2815 else
2816 tdep->lr_frame_offset = 8;
2817
2818 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2819 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2820 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2821 {
2822 tdep->regoff[i] = off;
2823 off += regsize (v->regs + i, wordsize);
c906108c
SS
2824 }
2825
56a6dfb9
KB
2826 /* Select instruction printer. */
2827 if (arch == power)
9364a0ef 2828 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2829 else
9364a0ef 2830 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2831
7a78ae4e 2832 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
2833
2834 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2835 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2836 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2837 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2838 set_gdbarch_deprecated_register_bytes (gdbarch, off);
9c04cab7
AC
2839 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2840 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
9c04cab7 2841 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
7a78ae4e
ND
2842
2843 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2844 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2845 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2846 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2847 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2848 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2849 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2850 if (sysv_abi)
2851 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2852 else
2853 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2854 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2855
11269d7e 2856 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
2857 if (sysv_abi && wordsize == 8)
2858 /* PPC64 SYSV. */
2859 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2860 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
2861 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2862 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2863 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2864 224. */
2865 set_gdbarch_frame_red_zone_size (gdbarch, 224);
a59fe496 2866 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e 2867 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e 2868
781a750d
AC
2869 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2870 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2871 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2872 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2873 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2874 is correct for the SysV ABI when the wordsize is 8, but I'm also
2875 fairly certain that ppc_sysv_abi_push_arguments() will give even
2876 worse results since it only works for 32-bit code. So, for the moment,
2877 we're better off calling rs6000_push_arguments() since it works for
2878 64-bit code. At some point in the future, this matter needs to be
2879 revisited. */
2880 if (sysv_abi && wordsize == 4)
77b2b6d4 2881 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
2882 else if (sysv_abi && wordsize == 8)
2883 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 2884 else
77b2b6d4 2885 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 2886
11269d7e 2887 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2888 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2889
2890 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2891 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2892 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2893 set_gdbarch_function_start_offset (gdbarch, 0);
2894 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2895
2896 /* Not sure on this. FIXMEmgo */
2897 set_gdbarch_frame_args_skip (gdbarch, 8);
2898
afd48b75 2899 if (sysv_abi && wordsize == 4)
7b112f9c
JT
2900 set_gdbarch_use_struct_convention (gdbarch,
2901 ppc_sysv_abi_use_struct_convention);
afd48b75
AC
2902 else if (sysv_abi && wordsize == 8)
2903 set_gdbarch_use_struct_convention (gdbarch, ppc64_sysv_abi_use_struct_convention);
8e0662df 2904 else
7b112f9c 2905 set_gdbarch_use_struct_convention (gdbarch,
b9ff3018 2906 rs6000_use_struct_convention);
8e0662df 2907
7b112f9c
JT
2908 set_gdbarch_frameless_function_invocation (gdbarch,
2909 rs6000_frameless_function_invocation);
618ce49f 2910 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2911 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2912
f30ee0bc 2913 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2914 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2915
15813d3f
AC
2916 if (!sysv_abi)
2917 {
2918 /* Handle RS/6000 function pointers (which are really function
2919 descriptors). */
f517ea4e
PS
2920 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2921 rs6000_convert_from_func_ptr_addr);
9aa1e687 2922 }
42efa47a
AC
2923 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2924 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
6913c89a 2925 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
7a78ae4e 2926
143985b7
AF
2927 /* Helpers for function argument information. */
2928 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2929
7b112f9c 2930 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2931 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2932
ef5200c1
AC
2933 if (from_xcoff_exec)
2934 {
2935 /* NOTE: jimix/2003-06-09: This test should really check for
2936 GDB_OSABI_AIX when that is defined and becomes
2937 available. (Actually, once things are properly split apart,
2938 the test goes away.) */
2939 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2940 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2941 }
2942
7a78ae4e 2943 return gdbarch;
c906108c
SS
2944}
2945
7b112f9c
JT
2946static void
2947rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2948{
2949 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2950
2951 if (tdep == NULL)
2952 return;
2953
4be87837 2954 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2955}
2956
1fcc0bb8
EZ
2957static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2958
2959static void
2960rs6000_info_powerpc_command (char *args, int from_tty)
2961{
2962 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2963}
2964
c906108c
SS
2965/* Initialization code. */
2966
a78f21af 2967extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 2968
c906108c 2969void
fba45db2 2970_initialize_rs6000_tdep (void)
c906108c 2971{
7b112f9c
JT
2972 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2973 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2974
2975 /* Add root prefix command for "info powerpc" commands */
2976 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2977 "Various POWERPC info specific commands.",
2978 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2979}
This page took 0.574981 seconds and 4 git commands to generate.