Fix crash when a variable object being deleted
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
6aba47ca
DJ
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
721d14ba 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "frame.h"
24#include "inferior.h"
25#include "symtab.h"
26#include "target.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
c906108c 29#include "objfiles.h"
7a78ae4e 30#include "arch-utils.h"
4e052eda 31#include "regcache.h"
d195bc9f 32#include "regset.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
1fcc0bb8 35#include "parser-defs.h"
4be87837 36#include "osabi.h"
7d9b040b 37#include "infcall.h"
9f643768
JB
38#include "sim-regno.h"
39#include "gdb/sim-ppc.h"
6ced10dd 40#include "reggroups.h"
4fc771b8 41#include "dwarf2-frame.h"
7cc46491
DJ
42#include "target-descriptions.h"
43#include "user-regs.h"
7a78ae4e 44
2fccf04a 45#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 46#include "coff/internal.h" /* for libcoff.h */
2fccf04a 47#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
48#include "coff/xcoff.h"
49#include "libxcoff.h"
7a78ae4e 50
9aa1e687 51#include "elf-bfd.h"
55eddb0f 52#include "elf/ppc.h"
7a78ae4e 53
6ded7999 54#include "solib-svr4.h"
9aa1e687 55#include "ppc-tdep.h"
7a78ae4e 56
338ef23d 57#include "gdb_assert.h"
a89aa300 58#include "dis-asm.h"
338ef23d 59
61a65099
KB
60#include "trad-frame.h"
61#include "frame-unwind.h"
62#include "frame-base.h"
63
1f82754b 64#include "rs6000-tdep.h"
c44ca51c 65
7cc46491
DJ
66#include "features/rs6000/powerpc-32.c"
67#include "features/rs6000/powerpc-403.c"
68#include "features/rs6000/powerpc-403gc.c"
69#include "features/rs6000/powerpc-505.c"
70#include "features/rs6000/powerpc-601.c"
71#include "features/rs6000/powerpc-602.c"
72#include "features/rs6000/powerpc-603.c"
73#include "features/rs6000/powerpc-604.c"
74#include "features/rs6000/powerpc-64.c"
75#include "features/rs6000/powerpc-7400.c"
76#include "features/rs6000/powerpc-750.c"
77#include "features/rs6000/powerpc-860.c"
78#include "features/rs6000/powerpc-e500.c"
79#include "features/rs6000/rs6000.c"
80
55eddb0f
DJ
81/* The list of available "set powerpc ..." and "show powerpc ..."
82 commands. */
83static struct cmd_list_element *setpowerpccmdlist = NULL;
84static struct cmd_list_element *showpowerpccmdlist = NULL;
85
86static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
87
88/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
89static const char *powerpc_vector_strings[] =
90{
91 "auto",
92 "generic",
93 "altivec",
94 "spe",
95 NULL
96};
97
98/* A variable that can be configured by the user. */
99static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
100static const char *powerpc_vector_abi_string = "auto";
101
7a78ae4e
ND
102/* If the kernel has to deliver a signal, it pushes a sigcontext
103 structure on the stack and then calls the signal handler, passing
104 the address of the sigcontext in an argument register. Usually
105 the signal handler doesn't save this register, so we have to
106 access the sigcontext structure via an offset from the signal handler
107 frame.
108 The following constants were determined by experimentation on AIX 3.2. */
109#define SIG_FRAME_PC_OFFSET 96
110#define SIG_FRAME_LR_OFFSET 108
111#define SIG_FRAME_FP_OFFSET 284
112
7a78ae4e
ND
113/* To be used by skip_prologue. */
114
115struct rs6000_framedata
116 {
117 int offset; /* total size of frame --- the distance
118 by which we decrement sp to allocate
119 the frame */
120 int saved_gpr; /* smallest # of saved gpr */
121 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 122 int saved_vr; /* smallest # of saved vr */
96ff0de4 123 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
124 int alloca_reg; /* alloca register number (frame ptr) */
125 char frameless; /* true if frameless functions. */
126 char nosavedpc; /* true if pc not saved. */
127 int gpr_offset; /* offset of saved gprs from prev sp */
128 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 129 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 130 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
131 int lr_offset; /* offset of saved lr */
132 int cr_offset; /* offset of saved cr */
6be8bc0c 133 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
134 };
135
136/* Description of a single register. */
137
138struct reg
139 {
140 char *name; /* name of register */
0bcc32ae
JB
141 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
142 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
7a78ae4e 143 unsigned char fpr; /* whether register is floating-point */
489461e2 144 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
145 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
146 This is an ISA SPR number, not a GDB
147 register number. */
7a78ae4e
ND
148 };
149
c906108c
SS
150/* Hook for determining the TOC address when calling functions in the
151 inferior under AIX. The initialization code in rs6000-nat.c sets
152 this hook to point to find_toc_address. */
153
7a78ae4e
ND
154CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
155
c906108c
SS
156/* Static function prototypes */
157
0b1b3e42
UW
158static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
159 int instr, CORE_ADDR pc, CORE_ADDR safety);
077276e8
KB
160static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
161 struct rs6000_framedata *);
c906108c 162
64b84175
KB
163/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
164int
165altivec_register_p (int regno)
166{
167 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
168 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
169 return 0;
170 else
171 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
172}
173
383f0f5b 174
867e2dc5
JB
175/* Return true if REGNO is an SPE register, false otherwise. */
176int
177spe_register_p (int regno)
178{
179 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
180
181 /* Is it a reference to EV0 -- EV31, and do we have those? */
182 if (tdep->ppc_ev0_regnum >= 0
183 && tdep->ppc_ev31_regnum >= 0
184 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
185 return 1;
186
6ced10dd
JB
187 /* Is it a reference to one of the raw upper GPR halves? */
188 if (tdep->ppc_ev0_upper_regnum >= 0
189 && tdep->ppc_ev0_upper_regnum <= regno
190 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
191 return 1;
192
867e2dc5
JB
193 /* Is it a reference to the 64-bit accumulator, and do we have that? */
194 if (tdep->ppc_acc_regnum >= 0
195 && tdep->ppc_acc_regnum == regno)
196 return 1;
197
198 /* Is it a reference to the SPE floating-point status and control register,
199 and do we have that? */
200 if (tdep->ppc_spefscr_regnum >= 0
201 && tdep->ppc_spefscr_regnum == regno)
202 return 1;
203
204 return 0;
205}
206
207
383f0f5b
JB
208/* Return non-zero if the architecture described by GDBARCH has
209 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
210int
211ppc_floating_point_unit_p (struct gdbarch *gdbarch)
212{
383f0f5b
JB
213 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
214
215 return (tdep->ppc_fp0_regnum >= 0
216 && tdep->ppc_fpscr_regnum >= 0);
0a613259 217}
9f643768 218
06caf7d2
CES
219/* Return non-zero if the architecture described by GDBARCH has
220 Altivec registers (vr0 --- vr31, vrsave and vscr). */
221int
222ppc_altivec_support_p (struct gdbarch *gdbarch)
223{
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225
226 return (tdep->ppc_vr0_regnum >= 0
227 && tdep->ppc_vrsave_regnum >= 0);
228}
09991fa0
JB
229
230/* Check that TABLE[GDB_REGNO] is not already initialized, and then
231 set it to SIM_REGNO.
232
233 This is a helper function for init_sim_regno_table, constructing
234 the table mapping GDB register numbers to sim register numbers; we
235 initialize every element in that table to -1 before we start
236 filling it in. */
9f643768
JB
237static void
238set_sim_regno (int *table, int gdb_regno, int sim_regno)
239{
240 /* Make sure we don't try to assign any given GDB register a sim
241 register number more than once. */
242 gdb_assert (table[gdb_regno] == -1);
243 table[gdb_regno] = sim_regno;
244}
245
09991fa0
JB
246
247/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
248 numbers to simulator register numbers, based on the values placed
249 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
250static void
251init_sim_regno_table (struct gdbarch *arch)
252{
253 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
7cc46491 254 int total_regs = gdbarch_num_regs (arch);
9f643768
JB
255 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
256 int i;
7cc46491
DJ
257 static const char *const segment_regs[] = {
258 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
259 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
260 };
9f643768
JB
261
262 /* Presume that all registers not explicitly mentioned below are
263 unavailable from the sim. */
264 for (i = 0; i < total_regs; i++)
265 sim_regno[i] = -1;
266
267 /* General-purpose registers. */
268 for (i = 0; i < ppc_num_gprs; i++)
269 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
270
271 /* Floating-point registers. */
272 if (tdep->ppc_fp0_regnum >= 0)
273 for (i = 0; i < ppc_num_fprs; i++)
274 set_sim_regno (sim_regno,
275 tdep->ppc_fp0_regnum + i,
276 sim_ppc_f0_regnum + i);
277 if (tdep->ppc_fpscr_regnum >= 0)
278 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
279
280 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
281 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
282 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
283
284 /* Segment registers. */
7cc46491
DJ
285 for (i = 0; i < ppc_num_srs; i++)
286 {
287 int gdb_regno;
288
289 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
290 if (gdb_regno >= 0)
291 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
292 }
9f643768
JB
293
294 /* Altivec registers. */
295 if (tdep->ppc_vr0_regnum >= 0)
296 {
297 for (i = 0; i < ppc_num_vrs; i++)
298 set_sim_regno (sim_regno,
299 tdep->ppc_vr0_regnum + i,
300 sim_ppc_vr0_regnum + i);
301
302 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
303 we can treat this more like the other cases. */
304 set_sim_regno (sim_regno,
305 tdep->ppc_vr0_regnum + ppc_num_vrs,
306 sim_ppc_vscr_regnum);
307 }
308 /* vsave is a special-purpose register, so the code below handles it. */
309
310 /* SPE APU (E500) registers. */
6ced10dd
JB
311 if (tdep->ppc_ev0_upper_regnum >= 0)
312 for (i = 0; i < ppc_num_gprs; i++)
313 set_sim_regno (sim_regno,
314 tdep->ppc_ev0_upper_regnum + i,
315 sim_ppc_rh0_regnum + i);
9f643768
JB
316 if (tdep->ppc_acc_regnum >= 0)
317 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
318 /* spefscr is a special-purpose register, so the code below handles it. */
319
7cc46491 320#ifdef WITH_SIM
9f643768
JB
321 /* Now handle all special-purpose registers. Verify that they
322 haven't mistakenly been assigned numbers by any of the above
7cc46491
DJ
323 code. */
324 for (i = 0; i < sim_ppc_num_sprs; i++)
325 {
326 const char *spr_name = sim_spr_register_name (i);
327 int gdb_regno = -1;
328
329 if (spr_name != NULL)
330 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
331
332 if (gdb_regno != -1)
333 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
334 }
335#endif
9f643768
JB
336
337 /* Drop the initialized array into place. */
338 tdep->sim_regno = sim_regno;
339}
340
09991fa0
JB
341
342/* Given a GDB register number REG, return the corresponding SIM
343 register number. */
9f643768
JB
344static int
345rs6000_register_sim_regno (int reg)
346{
347 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
348 int sim_regno;
349
7cc46491
DJ
350 if (tdep->sim_regno == NULL)
351 init_sim_regno_table (current_gdbarch);
352
f57d151a
UW
353 gdb_assert (0 <= reg
354 && reg <= gdbarch_num_regs (current_gdbarch)
355 + gdbarch_num_pseudo_regs (current_gdbarch));
9f643768
JB
356 sim_regno = tdep->sim_regno[reg];
357
358 if (sim_regno >= 0)
359 return sim_regno;
360 else
361 return LEGACY_SIM_REGNO_IGNORE;
362}
363
d195bc9f
MK
364\f
365
366/* Register set support functions. */
367
f2db237a
AM
368/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
369 Write the register to REGCACHE. */
370
d195bc9f
MK
371static void
372ppc_supply_reg (struct regcache *regcache, int regnum,
f2db237a 373 const gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
374{
375 if (regnum != -1 && offset != -1)
f2db237a
AM
376 {
377 if (regsize > 4)
378 {
379 struct gdbarch *gdbarch = get_regcache_arch (regcache);
380 int gdb_regsize = register_size (gdbarch, regnum);
381 if (gdb_regsize < regsize
382 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
383 offset += regsize - gdb_regsize;
384 }
385 regcache_raw_supply (regcache, regnum, regs + offset);
386 }
d195bc9f
MK
387}
388
f2db237a
AM
389/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
390 in a field REGSIZE wide. Zero pad as necessary. */
391
d195bc9f
MK
392static void
393ppc_collect_reg (const struct regcache *regcache, int regnum,
f2db237a 394 gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
395{
396 if (regnum != -1 && offset != -1)
f2db237a
AM
397 {
398 if (regsize > 4)
399 {
400 struct gdbarch *gdbarch = get_regcache_arch (regcache);
401 int gdb_regsize = register_size (gdbarch, regnum);
402 if (gdb_regsize < regsize)
403 {
404 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
405 {
406 memset (regs + offset, 0, regsize - gdb_regsize);
407 offset += regsize - gdb_regsize;
408 }
409 else
410 memset (regs + offset + regsize - gdb_regsize, 0,
411 regsize - gdb_regsize);
412 }
413 }
414 regcache_raw_collect (regcache, regnum, regs + offset);
415 }
d195bc9f
MK
416}
417
f2db237a
AM
418static int
419ppc_greg_offset (struct gdbarch *gdbarch,
420 struct gdbarch_tdep *tdep,
421 const struct ppc_reg_offsets *offsets,
422 int regnum,
423 int *regsize)
424{
425 *regsize = offsets->gpr_size;
426 if (regnum >= tdep->ppc_gp0_regnum
427 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
428 return (offsets->r0_offset
429 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
430
431 if (regnum == gdbarch_pc_regnum (gdbarch))
432 return offsets->pc_offset;
433
434 if (regnum == tdep->ppc_ps_regnum)
435 return offsets->ps_offset;
436
437 if (regnum == tdep->ppc_lr_regnum)
438 return offsets->lr_offset;
439
440 if (regnum == tdep->ppc_ctr_regnum)
441 return offsets->ctr_offset;
442
443 *regsize = offsets->xr_size;
444 if (regnum == tdep->ppc_cr_regnum)
445 return offsets->cr_offset;
446
447 if (regnum == tdep->ppc_xer_regnum)
448 return offsets->xer_offset;
449
450 if (regnum == tdep->ppc_mq_regnum)
451 return offsets->mq_offset;
452
453 return -1;
454}
455
456static int
457ppc_fpreg_offset (struct gdbarch_tdep *tdep,
458 const struct ppc_reg_offsets *offsets,
459 int regnum)
460{
461 if (regnum >= tdep->ppc_fp0_regnum
462 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
463 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
464
465 if (regnum == tdep->ppc_fpscr_regnum)
466 return offsets->fpscr_offset;
467
468 return -1;
469}
470
06caf7d2
CES
471static int
472ppc_vrreg_offset (struct gdbarch_tdep *tdep,
473 const struct ppc_reg_offsets *offsets,
474 int regnum)
475{
476 if (regnum >= tdep->ppc_vr0_regnum
477 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
478 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
479
480 if (regnum == tdep->ppc_vrsave_regnum - 1)
481 return offsets->vscr_offset;
482
483 if (regnum == tdep->ppc_vrsave_regnum)
484 return offsets->vrsave_offset;
485
486 return -1;
487}
488
d195bc9f
MK
489/* Supply register REGNUM in the general-purpose register set REGSET
490 from the buffer specified by GREGS and LEN to register cache
491 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
492
493void
494ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
495 int regnum, const void *gregs, size_t len)
496{
497 struct gdbarch *gdbarch = get_regcache_arch (regcache);
498 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
499 const struct ppc_reg_offsets *offsets = regset->descr;
500 size_t offset;
f2db237a 501 int regsize;
d195bc9f 502
f2db237a 503 if (regnum == -1)
d195bc9f 504 {
f2db237a
AM
505 int i;
506 int gpr_size = offsets->gpr_size;
507
508 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
509 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
510 i++, offset += gpr_size)
511 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
512
513 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
514 gregs, offsets->pc_offset, gpr_size);
515 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
516 gregs, offsets->ps_offset, gpr_size);
517 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
518 gregs, offsets->lr_offset, gpr_size);
519 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
520 gregs, offsets->ctr_offset, gpr_size);
521 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
522 gregs, offsets->cr_offset, offsets->xr_size);
523 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
524 gregs, offsets->xer_offset, offsets->xr_size);
525 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
526 gregs, offsets->mq_offset, offsets->xr_size);
527 return;
d195bc9f
MK
528 }
529
f2db237a
AM
530 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
531 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
d195bc9f
MK
532}
533
534/* Supply register REGNUM in the floating-point register set REGSET
535 from the buffer specified by FPREGS and LEN to register cache
536 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
537
538void
539ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
540 int regnum, const void *fpregs, size_t len)
541{
542 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
543 struct gdbarch_tdep *tdep;
544 const struct ppc_reg_offsets *offsets;
d195bc9f 545 size_t offset;
d195bc9f 546
f2db237a
AM
547 if (!ppc_floating_point_unit_p (gdbarch))
548 return;
383f0f5b 549
f2db237a
AM
550 tdep = gdbarch_tdep (gdbarch);
551 offsets = regset->descr;
552 if (regnum == -1)
d195bc9f 553 {
f2db237a
AM
554 int i;
555
556 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
557 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
558 i++, offset += 8)
559 ppc_supply_reg (regcache, i, fpregs, offset, 8);
560
561 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
562 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
563 return;
d195bc9f
MK
564 }
565
f2db237a
AM
566 offset = ppc_fpreg_offset (tdep, offsets, regnum);
567 ppc_supply_reg (regcache, regnum, fpregs, offset,
568 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
569}
570
06caf7d2
CES
571/* Supply register REGNUM in the Altivec register set REGSET
572 from the buffer specified by VRREGS and LEN to register cache
573 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
574
575void
576ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
577 int regnum, const void *vrregs, size_t len)
578{
579 struct gdbarch *gdbarch = get_regcache_arch (regcache);
580 struct gdbarch_tdep *tdep;
581 const struct ppc_reg_offsets *offsets;
582 size_t offset;
583
584 if (!ppc_altivec_support_p (gdbarch))
585 return;
586
587 tdep = gdbarch_tdep (gdbarch);
588 offsets = regset->descr;
589 if (regnum == -1)
590 {
591 int i;
592
593 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
594 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
595 i++, offset += 16)
596 ppc_supply_reg (regcache, i, vrregs, offset, 16);
597
598 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
599 vrregs, offsets->vscr_offset, 4);
600
601 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
602 vrregs, offsets->vrsave_offset, 4);
603 return;
604 }
605
606 offset = ppc_vrreg_offset (tdep, offsets, regnum);
607 if (regnum != tdep->ppc_vrsave_regnum
608 && regnum != tdep->ppc_vrsave_regnum - 1)
609 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
610 else
611 ppc_supply_reg (regcache, regnum,
612 vrregs, offset, 4);
613}
614
d195bc9f 615/* Collect register REGNUM in the general-purpose register set
f2db237a 616 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
617 GREGS and LEN. If REGNUM is -1, do this for all registers in
618 REGSET. */
619
620void
621ppc_collect_gregset (const struct regset *regset,
622 const struct regcache *regcache,
623 int regnum, void *gregs, size_t len)
624{
625 struct gdbarch *gdbarch = get_regcache_arch (regcache);
626 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
627 const struct ppc_reg_offsets *offsets = regset->descr;
628 size_t offset;
f2db237a 629 int regsize;
d195bc9f 630
f2db237a 631 if (regnum == -1)
d195bc9f 632 {
f2db237a
AM
633 int i;
634 int gpr_size = offsets->gpr_size;
635
636 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
637 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
638 i++, offset += gpr_size)
639 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
640
641 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
642 gregs, offsets->pc_offset, gpr_size);
643 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
644 gregs, offsets->ps_offset, gpr_size);
645 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
646 gregs, offsets->lr_offset, gpr_size);
647 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
648 gregs, offsets->ctr_offset, gpr_size);
649 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
650 gregs, offsets->cr_offset, offsets->xr_size);
651 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
652 gregs, offsets->xer_offset, offsets->xr_size);
653 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
654 gregs, offsets->mq_offset, offsets->xr_size);
655 return;
d195bc9f
MK
656 }
657
f2db237a
AM
658 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
659 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
d195bc9f
MK
660}
661
662/* Collect register REGNUM in the floating-point register set
f2db237a 663 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
664 FPREGS and LEN. If REGNUM is -1, do this for all registers in
665 REGSET. */
666
667void
668ppc_collect_fpregset (const struct regset *regset,
669 const struct regcache *regcache,
670 int regnum, void *fpregs, size_t len)
671{
672 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
673 struct gdbarch_tdep *tdep;
674 const struct ppc_reg_offsets *offsets;
d195bc9f 675 size_t offset;
d195bc9f 676
f2db237a
AM
677 if (!ppc_floating_point_unit_p (gdbarch))
678 return;
383f0f5b 679
f2db237a
AM
680 tdep = gdbarch_tdep (gdbarch);
681 offsets = regset->descr;
682 if (regnum == -1)
d195bc9f 683 {
f2db237a
AM
684 int i;
685
686 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
687 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
688 i++, offset += 8)
689 ppc_collect_reg (regcache, i, fpregs, offset, 8);
690
691 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
692 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
693 return;
d195bc9f
MK
694 }
695
f2db237a
AM
696 offset = ppc_fpreg_offset (tdep, offsets, regnum);
697 ppc_collect_reg (regcache, regnum, fpregs, offset,
698 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f 699}
06caf7d2
CES
700
701/* Collect register REGNUM in the Altivec register set
702 REGSET from register cache REGCACHE into the buffer specified by
703 VRREGS and LEN. If REGNUM is -1, do this for all registers in
704 REGSET. */
705
706void
707ppc_collect_vrregset (const struct regset *regset,
708 const struct regcache *regcache,
709 int regnum, void *vrregs, size_t len)
710{
711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
712 struct gdbarch_tdep *tdep;
713 const struct ppc_reg_offsets *offsets;
714 size_t offset;
715
716 if (!ppc_altivec_support_p (gdbarch))
717 return;
718
719 tdep = gdbarch_tdep (gdbarch);
720 offsets = regset->descr;
721 if (regnum == -1)
722 {
723 int i;
724
725 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
726 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
727 i++, offset += 16)
728 ppc_collect_reg (regcache, i, vrregs, offset, 16);
729
730 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
731 vrregs, offsets->vscr_offset, 4);
732
733 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
734 vrregs, offsets->vrsave_offset, 4);
735 return;
736 }
737
738 offset = ppc_vrreg_offset (tdep, offsets, regnum);
739 if (regnum != tdep->ppc_vrsave_regnum
740 && regnum != tdep->ppc_vrsave_regnum - 1)
741 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
742 else
743 ppc_collect_reg (regcache, regnum,
744 vrregs, offset, 4);
745}
d195bc9f 746\f
0a613259 747
7a78ae4e 748/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 749
7a78ae4e
ND
750static CORE_ADDR
751read_memory_addr (CORE_ADDR memaddr, int len)
752{
753 return read_memory_unsigned_integer (memaddr, len);
754}
c906108c 755
7a78ae4e
ND
756static CORE_ADDR
757rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
758{
759 struct rs6000_framedata frame;
4e463ff5
DJ
760 CORE_ADDR limit_pc, func_addr;
761
762 /* See if we can determine the end of the prologue via the symbol table.
763 If so, then return either PC, or the PC after the prologue, whichever
764 is greater. */
765 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
766 {
767 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
768 if (post_prologue_pc != 0)
769 return max (pc, post_prologue_pc);
770 }
771
772 /* Can't determine prologue from the symbol table, need to examine
773 instructions. */
774
775 /* Find an upper limit on the function prologue using the debug
776 information. If the debug information could not be used to provide
777 that bound, then use an arbitrary large number as the upper bound. */
778 limit_pc = skip_prologue_using_sal (pc);
779 if (limit_pc == 0)
780 limit_pc = pc + 100; /* Magic. */
781
782 pc = skip_prologue (pc, limit_pc, &frame);
b83266a0
SS
783 return pc;
784}
785
0d1243d9
PG
786static int
787insn_changes_sp_or_jumps (unsigned long insn)
788{
789 int opcode = (insn >> 26) & 0x03f;
790 int sd = (insn >> 21) & 0x01f;
791 int a = (insn >> 16) & 0x01f;
792 int subcode = (insn >> 1) & 0x3ff;
793
794 /* Changes the stack pointer. */
795
796 /* NOTE: There are many ways to change the value of a given register.
797 The ways below are those used when the register is R1, the SP,
798 in a funtion's epilogue. */
799
800 if (opcode == 31 && subcode == 444 && a == 1)
801 return 1; /* mr R1,Rn */
802 if (opcode == 14 && sd == 1)
803 return 1; /* addi R1,Rn,simm */
804 if (opcode == 58 && sd == 1)
805 return 1; /* ld R1,ds(Rn) */
806
807 /* Transfers control. */
808
809 if (opcode == 18)
810 return 1; /* b */
811 if (opcode == 16)
812 return 1; /* bc */
813 if (opcode == 19 && subcode == 16)
814 return 1; /* bclr */
815 if (opcode == 19 && subcode == 528)
816 return 1; /* bcctr */
817
818 return 0;
819}
820
821/* Return true if we are in the function's epilogue, i.e. after the
822 instruction that destroyed the function's stack frame.
823
824 1) scan forward from the point of execution:
825 a) If you find an instruction that modifies the stack pointer
826 or transfers control (except a return), execution is not in
827 an epilogue, return.
828 b) Stop scanning if you find a return instruction or reach the
829 end of the function or reach the hard limit for the size of
830 an epilogue.
831 2) scan backward from the point of execution:
832 a) If you find an instruction that modifies the stack pointer,
833 execution *is* in an epilogue, return.
834 b) Stop scanning if you reach an instruction that transfers
835 control or the beginning of the function or reach the hard
836 limit for the size of an epilogue. */
837
838static int
839rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
840{
841 bfd_byte insn_buf[PPC_INSN_SIZE];
842 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
843 unsigned long insn;
844 struct frame_info *curfrm;
845
846 /* Find the search limits based on function boundaries and hard limit. */
847
848 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
849 return 0;
850
851 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
852 if (epilogue_start < func_start) epilogue_start = func_start;
853
854 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
855 if (epilogue_end > func_end) epilogue_end = func_end;
856
857 curfrm = get_current_frame ();
858
859 /* Scan forward until next 'blr'. */
860
861 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
862 {
863 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
864 return 0;
4e463ff5 865 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
866 if (insn == 0x4e800020)
867 break;
868 if (insn_changes_sp_or_jumps (insn))
869 return 0;
870 }
871
872 /* Scan backward until adjustment to stack pointer (R1). */
873
874 for (scan_pc = pc - PPC_INSN_SIZE;
875 scan_pc >= epilogue_start;
876 scan_pc -= PPC_INSN_SIZE)
877 {
878 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
879 return 0;
4e463ff5 880 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
881 if (insn_changes_sp_or_jumps (insn))
882 return 1;
883 }
884
885 return 0;
886}
887
143985b7 888/* Get the ith function argument for the current function. */
b9362cc7 889static CORE_ADDR
143985b7
AF
890rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
891 struct type *type)
892{
50fd1280 893 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
894}
895
c906108c
SS
896/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
897
898static CORE_ADDR
0b1b3e42
UW
899branch_dest (struct frame_info *frame, int opcode, int instr,
900 CORE_ADDR pc, CORE_ADDR safety)
c906108c 901{
0b1b3e42 902 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
c906108c
SS
903 CORE_ADDR dest;
904 int immediate;
905 int absolute;
906 int ext_op;
907
908 absolute = (int) ((instr >> 1) & 1);
909
c5aa993b
JM
910 switch (opcode)
911 {
912 case 18:
913 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
914 if (absolute)
915 dest = immediate;
916 else
917 dest = pc + immediate;
918 break;
919
920 case 16:
921 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
922 if (absolute)
923 dest = immediate;
924 else
925 dest = pc + immediate;
926 break;
927
928 case 19:
929 ext_op = (instr >> 1) & 0x3ff;
930
931 if (ext_op == 16) /* br conditional register */
932 {
0b1b3e42 933 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
c5aa993b
JM
934
935 /* If we are about to return from a signal handler, dest is
936 something like 0x3c90. The current frame is a signal handler
937 caller frame, upon completion of the sigreturn system call
938 execution will return to the saved PC in the frame. */
0b1b3e42
UW
939 if (dest < tdep->text_segment_base)
940 dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
941 tdep->wordsize);
c5aa993b
JM
942 }
943
944 else if (ext_op == 528) /* br cond to count reg */
945 {
0b1b3e42 946 dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
c5aa993b
JM
947
948 /* If we are about to execute a system call, dest is something
949 like 0x22fc or 0x3b00. Upon completion the system call
950 will return to the address in the link register. */
0b1b3e42
UW
951 if (dest < tdep->text_segment_base)
952 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
c5aa993b
JM
953 }
954 else
955 return -1;
956 break;
c906108c 957
c5aa993b
JM
958 default:
959 return -1;
960 }
0b1b3e42 961 return (dest < tdep->text_segment_base) ? safety : dest;
c906108c
SS
962}
963
964
965/* Sequence of bytes for breakpoint instruction. */
966
f4f9705a 967const static unsigned char *
67d57894
MD
968rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
969 int *bp_size)
c906108c 970{
aaab4dba
AC
971 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
972 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 973 *bp_size = 4;
67d57894 974 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
975 return big_breakpoint;
976 else
977 return little_breakpoint;
978}
979
980
ce5eab59
UW
981/* Instruction masks used during single-stepping of atomic sequences. */
982#define LWARX_MASK 0xfc0007fe
983#define LWARX_INSTRUCTION 0x7c000028
984#define LDARX_INSTRUCTION 0x7c0000A8
985#define STWCX_MASK 0xfc0007ff
986#define STWCX_INSTRUCTION 0x7c00012d
987#define STDCX_INSTRUCTION 0x7c0001ad
988#define BC_MASK 0xfc000000
989#define BC_INSTRUCTION 0x40000000
990
991/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
992 instruction and ending with a STWCX/STDCX instruction. If such a sequence
993 is found, attempt to step through it. A breakpoint is placed at the end of
994 the sequence. */
995
996static int
0b1b3e42 997deal_with_atomic_sequence (struct frame_info *frame)
ce5eab59 998{
0b1b3e42 999 CORE_ADDR pc = get_frame_pc (frame);
ce5eab59
UW
1000 CORE_ADDR breaks[2] = {-1, -1};
1001 CORE_ADDR loc = pc;
1002 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
24d45690 1003 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
ce5eab59
UW
1004 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
1005 int insn_count;
1006 int index;
1007 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1008 const int atomic_sequence_length = 16; /* Instruction sequence length. */
24d45690 1009 int opcode; /* Branch instruction's OPcode. */
ce5eab59
UW
1010 int bc_insn_count = 0; /* Conditional branch instruction count. */
1011
1012 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1013 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1014 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1015 return 0;
1016
1017 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1018 instructions. */
1019 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1020 {
1021 loc += PPC_INSN_SIZE;
1022 insn = read_memory_integer (loc, PPC_INSN_SIZE);
1023
1024 /* Assume that there is at most one conditional branch in the atomic
1025 sequence. If a conditional branch is found, put a breakpoint in
1026 its destination address. */
1027 if ((insn & BC_MASK) == BC_INSTRUCTION)
1028 {
1029 if (bc_insn_count >= 1)
1030 return 0; /* More than one conditional branch found, fallback
1031 to the standard single-step code. */
1032
24d45690 1033 opcode = insn >> 26;
0b1b3e42 1034 branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
ce5eab59
UW
1035
1036 if (branch_bp != -1)
1037 {
1038 breaks[1] = branch_bp;
1039 bc_insn_count++;
1040 last_breakpoint++;
1041 }
1042 }
1043
1044 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1045 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1046 break;
1047 }
1048
1049 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1050 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1051 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1052 return 0;
1053
24d45690 1054 closing_insn = loc;
ce5eab59
UW
1055 loc += PPC_INSN_SIZE;
1056 insn = read_memory_integer (loc, PPC_INSN_SIZE);
1057
1058 /* Insert a breakpoint right after the end of the atomic sequence. */
1059 breaks[0] = loc;
1060
24d45690
UW
1061 /* Check for duplicated breakpoints. Check also for a breakpoint
1062 placed (branch instruction's destination) at the stwcx/stdcx
1063 instruction, this resets the reservation and take us back to the
1064 lwarx/ldarx instruction at the beginning of the atomic sequence. */
1065 if (last_breakpoint && ((breaks[1] == breaks[0])
1066 || (breaks[1] == closing_insn)))
ce5eab59
UW
1067 last_breakpoint = 0;
1068
1069 /* Effectively inserts the breakpoints. */
1070 for (index = 0; index <= last_breakpoint; index++)
1071 insert_single_step_breakpoint (breaks[index]);
1072
1073 return 1;
1074}
1075
1076/* AIX does not support PT_STEP. Simulate it. */
c906108c 1077
e6590a1b 1078int
0b1b3e42 1079rs6000_software_single_step (struct frame_info *frame)
c906108c 1080{
7c40d541
KB
1081 CORE_ADDR dummy;
1082 int breakp_sz;
67d57894
MD
1083 const gdb_byte *breakp
1084 = rs6000_breakpoint_from_pc (get_frame_arch (frame), &dummy, &breakp_sz);
c906108c
SS
1085 int ii, insn;
1086 CORE_ADDR loc;
1087 CORE_ADDR breaks[2];
1088 int opcode;
1089
0b1b3e42 1090 loc = get_frame_pc (frame);
c906108c 1091
e0cd558a 1092 insn = read_memory_integer (loc, 4);
c906108c 1093
0b1b3e42 1094 if (deal_with_atomic_sequence (frame))
ce5eab59
UW
1095 return 1;
1096
e0cd558a
UW
1097 breaks[0] = loc + breakp_sz;
1098 opcode = insn >> 26;
0b1b3e42 1099 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
c906108c 1100
e0cd558a
UW
1101 /* Don't put two breakpoints on the same address. */
1102 if (breaks[1] == breaks[0])
1103 breaks[1] = -1;
c906108c 1104
e0cd558a
UW
1105 for (ii = 0; ii < 2; ++ii)
1106 {
1107 /* ignore invalid breakpoint. */
1108 if (breaks[ii] == -1)
1109 continue;
1110 insert_single_step_breakpoint (breaks[ii]);
c5aa993b 1111 }
c906108c 1112
c906108c 1113 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 1114 /* What errors? {read,write}_memory call error(). */
e6590a1b 1115 return 1;
c906108c
SS
1116}
1117
1118
c906108c
SS
1119#define SIGNED_SHORT(x) \
1120 ((sizeof (short) == 2) \
1121 ? ((int)(short)(x)) \
1122 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1123
1124#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1125
55d05f3b
KB
1126/* Limit the number of skipped non-prologue instructions, as the examining
1127 of the prologue is expensive. */
1128static int max_skip_non_prologue_insns = 10;
1129
773df3e5
JB
1130/* Return nonzero if the given instruction OP can be part of the prologue
1131 of a function and saves a parameter on the stack. FRAMEP should be
1132 set if one of the previous instructions in the function has set the
1133 Frame Pointer. */
1134
1135static int
1136store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1137{
1138 /* Move parameters from argument registers to temporary register. */
1139 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1140 {
1141 /* Rx must be scratch register r0. */
1142 const int rx_regno = (op >> 16) & 31;
1143 /* Ry: Only r3 - r10 are used for parameter passing. */
1144 const int ry_regno = GET_SRC_REG (op);
1145
1146 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1147 {
1148 *r0_contains_arg = 1;
1149 return 1;
1150 }
1151 else
1152 return 0;
1153 }
1154
1155 /* Save a General Purpose Register on stack. */
1156
1157 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1158 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1159 {
1160 /* Rx: Only r3 - r10 are used for parameter passing. */
1161 const int rx_regno = GET_SRC_REG (op);
1162
1163 return (rx_regno >= 3 && rx_regno <= 10);
1164 }
1165
1166 /* Save a General Purpose Register on stack via the Frame Pointer. */
1167
1168 if (framep &&
1169 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1170 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1171 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1172 {
1173 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1174 However, the compiler sometimes uses r0 to hold an argument. */
1175 const int rx_regno = GET_SRC_REG (op);
1176
1177 return ((rx_regno >= 3 && rx_regno <= 10)
1178 || (rx_regno == 0 && *r0_contains_arg));
1179 }
1180
1181 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1182 {
1183 /* Only f2 - f8 are used for parameter passing. */
1184 const int src_regno = GET_SRC_REG (op);
1185
1186 return (src_regno >= 2 && src_regno <= 8);
1187 }
1188
1189 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1190 {
1191 /* Only f2 - f8 are used for parameter passing. */
1192 const int src_regno = GET_SRC_REG (op);
1193
1194 return (src_regno >= 2 && src_regno <= 8);
1195 }
1196
1197 /* Not an insn that saves a parameter on stack. */
1198 return 0;
1199}
55d05f3b 1200
3c77c82a
DJ
1201/* Assuming that INSN is a "bl" instruction located at PC, return
1202 nonzero if the destination of the branch is a "blrl" instruction.
1203
1204 This sequence is sometimes found in certain function prologues.
1205 It allows the function to load the LR register with a value that
1206 they can use to access PIC data using PC-relative offsets. */
1207
1208static int
1209bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
1210{
0b1b3e42
UW
1211 CORE_ADDR dest;
1212 int immediate;
1213 int absolute;
3c77c82a
DJ
1214 int dest_insn;
1215
0b1b3e42
UW
1216 absolute = (int) ((insn >> 1) & 1);
1217 immediate = ((insn & ~3) << 6) >> 6;
1218 if (absolute)
1219 dest = immediate;
1220 else
1221 dest = pc + immediate;
1222
3c77c82a
DJ
1223 dest_insn = read_memory_integer (dest, 4);
1224 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1225 return 1;
1226
1227 return 0;
1228}
1229
6a16c029
TJB
1230/* return pc value after skipping a function prologue and also return
1231 information about a function frame.
1232
1233 in struct rs6000_framedata fdata:
1234 - frameless is TRUE, if function does not have a frame.
1235 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1236 - offset is the initial size of this stack frame --- the amount by
1237 which we decrement the sp to allocate the frame.
1238 - saved_gpr is the number of the first saved gpr.
1239 - saved_fpr is the number of the first saved fpr.
1240 - saved_vr is the number of the first saved vr.
1241 - saved_ev is the number of the first saved ev.
1242 - alloca_reg is the number of the register used for alloca() handling.
1243 Otherwise -1.
1244 - gpr_offset is the offset of the first saved gpr from the previous frame.
1245 - fpr_offset is the offset of the first saved fpr from the previous frame.
1246 - vr_offset is the offset of the first saved vr from the previous frame.
1247 - ev_offset is the offset of the first saved ev from the previous frame.
1248 - lr_offset is the offset of the saved lr
1249 - cr_offset is the offset of the saved cr
1250 - vrsave_offset is the offset of the saved vrsave register
1251 */
1252
7a78ae4e 1253static CORE_ADDR
077276e8 1254skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
1255{
1256 CORE_ADDR orig_pc = pc;
55d05f3b 1257 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 1258 CORE_ADDR li_found_pc = 0;
50fd1280 1259 gdb_byte buf[4];
c906108c
SS
1260 unsigned long op;
1261 long offset = 0;
6be8bc0c 1262 long vr_saved_offset = 0;
482ca3f5
KB
1263 int lr_reg = -1;
1264 int cr_reg = -1;
6be8bc0c 1265 int vr_reg = -1;
96ff0de4
EZ
1266 int ev_reg = -1;
1267 long ev_offset = 0;
6be8bc0c 1268 int vrsave_reg = -1;
c906108c
SS
1269 int reg;
1270 int framep = 0;
1271 int minimal_toc_loaded = 0;
ddb20c56 1272 int prev_insn_was_prologue_insn = 1;
55d05f3b 1273 int num_skip_non_prologue_insns = 0;
773df3e5 1274 int r0_contains_arg = 0;
96ff0de4 1275 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 1276 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1277
ddb20c56 1278 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1279 fdata->saved_gpr = -1;
1280 fdata->saved_fpr = -1;
6be8bc0c 1281 fdata->saved_vr = -1;
96ff0de4 1282 fdata->saved_ev = -1;
c906108c
SS
1283 fdata->alloca_reg = -1;
1284 fdata->frameless = 1;
1285 fdata->nosavedpc = 1;
1286
55d05f3b 1287 for (;; pc += 4)
c906108c 1288 {
ddb20c56
KB
1289 /* Sometimes it isn't clear if an instruction is a prologue
1290 instruction or not. When we encounter one of these ambiguous
1291 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1292 Otherwise, we'll assume that it really is a prologue instruction. */
1293 if (prev_insn_was_prologue_insn)
1294 last_prologue_pc = pc;
55d05f3b
KB
1295
1296 /* Stop scanning if we've hit the limit. */
4e463ff5 1297 if (pc >= lim_pc)
55d05f3b
KB
1298 break;
1299
ddb20c56
KB
1300 prev_insn_was_prologue_insn = 1;
1301
55d05f3b 1302 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1303 if (target_read_memory (pc, buf, 4))
1304 break;
4e463ff5 1305 op = extract_unsigned_integer (buf, 4);
c906108c 1306
c5aa993b
JM
1307 if ((op & 0xfc1fffff) == 0x7c0802a6)
1308 { /* mflr Rx */
43b1ab88
AC
1309 /* Since shared library / PIC code, which needs to get its
1310 address at runtime, can appear to save more than one link
1311 register vis:
1312
1313 *INDENT-OFF*
1314 stwu r1,-304(r1)
1315 mflr r3
1316 bl 0xff570d0 (blrl)
1317 stw r30,296(r1)
1318 mflr r30
1319 stw r31,300(r1)
1320 stw r3,308(r1);
1321 ...
1322 *INDENT-ON*
1323
1324 remember just the first one, but skip over additional
1325 ones. */
721d14ba 1326 if (lr_reg == -1)
43b1ab88 1327 lr_reg = (op & 0x03e00000);
773df3e5
JB
1328 if (lr_reg == 0)
1329 r0_contains_arg = 0;
c5aa993b 1330 continue;
c5aa993b
JM
1331 }
1332 else if ((op & 0xfc1fffff) == 0x7c000026)
1333 { /* mfcr Rx */
98f08d3d 1334 cr_reg = (op & 0x03e00000);
773df3e5
JB
1335 if (cr_reg == 0)
1336 r0_contains_arg = 0;
c5aa993b 1337 continue;
c906108c 1338
c906108c 1339 }
c5aa993b
JM
1340 else if ((op & 0xfc1f0000) == 0xd8010000)
1341 { /* stfd Rx,NUM(r1) */
1342 reg = GET_SRC_REG (op);
1343 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1344 {
1345 fdata->saved_fpr = reg;
1346 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1347 }
1348 continue;
c906108c 1349
c5aa993b
JM
1350 }
1351 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1352 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1353 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1354 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1355 {
1356
1357 reg = GET_SRC_REG (op);
1358 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1359 {
1360 fdata->saved_gpr = reg;
7a78ae4e 1361 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1362 op &= ~3UL;
c5aa993b
JM
1363 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1364 }
1365 continue;
c906108c 1366
ddb20c56
KB
1367 }
1368 else if ((op & 0xffff0000) == 0x60000000)
1369 {
96ff0de4 1370 /* nop */
ddb20c56
KB
1371 /* Allow nops in the prologue, but do not consider them to
1372 be part of the prologue unless followed by other prologue
1373 instructions. */
1374 prev_insn_was_prologue_insn = 0;
1375 continue;
1376
c906108c 1377 }
c5aa993b
JM
1378 else if ((op & 0xffff0000) == 0x3c000000)
1379 { /* addis 0,0,NUM, used
1380 for >= 32k frames */
1381 fdata->offset = (op & 0x0000ffff) << 16;
1382 fdata->frameless = 0;
773df3e5 1383 r0_contains_arg = 0;
c5aa993b
JM
1384 continue;
1385
1386 }
1387 else if ((op & 0xffff0000) == 0x60000000)
1388 { /* ori 0,0,NUM, 2nd ha
1389 lf of >= 32k frames */
1390 fdata->offset |= (op & 0x0000ffff);
1391 fdata->frameless = 0;
773df3e5 1392 r0_contains_arg = 0;
c5aa993b
JM
1393 continue;
1394
1395 }
be723e22 1396 else if (lr_reg >= 0 &&
98f08d3d
KB
1397 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1398 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1399 /* stw Rx, NUM(r1) */
1400 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1401 /* stwu Rx, NUM(r1) */
1402 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1403 { /* where Rx == lr */
1404 fdata->lr_offset = offset;
c5aa993b 1405 fdata->nosavedpc = 0;
be723e22
MS
1406 /* Invalidate lr_reg, but don't set it to -1.
1407 That would mean that it had never been set. */
1408 lr_reg = -2;
98f08d3d
KB
1409 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1410 (op & 0xfc000000) == 0x90000000) /* stw */
1411 {
1412 /* Does not update r1, so add displacement to lr_offset. */
1413 fdata->lr_offset += SIGNED_SHORT (op);
1414 }
c5aa993b
JM
1415 continue;
1416
1417 }
be723e22 1418 else if (cr_reg >= 0 &&
98f08d3d
KB
1419 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1420 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1421 /* stw Rx, NUM(r1) */
1422 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1423 /* stwu Rx, NUM(r1) */
1424 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1425 { /* where Rx == cr */
1426 fdata->cr_offset = offset;
be723e22
MS
1427 /* Invalidate cr_reg, but don't set it to -1.
1428 That would mean that it had never been set. */
1429 cr_reg = -2;
98f08d3d
KB
1430 if ((op & 0xfc000003) == 0xf8000000 ||
1431 (op & 0xfc000000) == 0x90000000)
1432 {
1433 /* Does not update r1, so add displacement to cr_offset. */
1434 fdata->cr_offset += SIGNED_SHORT (op);
1435 }
c5aa993b
JM
1436 continue;
1437
1438 }
721d14ba
DJ
1439 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1440 {
1441 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1442 prediction bits. If the LR has already been saved, we can
1443 skip it. */
1444 continue;
1445 }
c5aa993b
JM
1446 else if (op == 0x48000005)
1447 { /* bl .+4 used in
1448 -mrelocatable */
1449 continue;
1450
1451 }
1452 else if (op == 0x48000004)
1453 { /* b .+4 (xlc) */
1454 break;
1455
c5aa993b 1456 }
6be8bc0c
EZ
1457 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1458 in V.4 -mminimal-toc */
c5aa993b
JM
1459 (op & 0xffff0000) == 0x3bde0000)
1460 { /* addi 30,30,foo@l */
1461 continue;
c906108c 1462
c5aa993b
JM
1463 }
1464 else if ((op & 0xfc000001) == 0x48000001)
1465 { /* bl foo,
1466 to save fprs??? */
c906108c 1467
c5aa993b 1468 fdata->frameless = 0;
3c77c82a
DJ
1469
1470 /* If the return address has already been saved, we can skip
1471 calls to blrl (for PIC). */
1472 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1473 continue;
1474
6be8bc0c 1475 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1476 the first three instructions of the prologue and either
1477 we have no line table information or the line info tells
1478 us that the subroutine call is not part of the line
1479 associated with the prologue. */
c5aa993b 1480 if ((pc - orig_pc) > 8)
ebd98106
FF
1481 {
1482 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1483 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1484
1485 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1486 break;
1487 }
c5aa993b
JM
1488
1489 op = read_memory_integer (pc + 4, 4);
1490
6be8bc0c
EZ
1491 /* At this point, make sure this is not a trampoline
1492 function (a function that simply calls another functions,
1493 and nothing else). If the next is not a nop, this branch
1494 was part of the function prologue. */
c5aa993b
JM
1495
1496 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1497 break; /* don't skip over
1498 this branch */
1499 continue;
1500
c5aa993b 1501 }
98f08d3d
KB
1502 /* update stack pointer */
1503 else if ((op & 0xfc1f0000) == 0x94010000)
1504 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1505 fdata->frameless = 0;
1506 fdata->offset = SIGNED_SHORT (op);
1507 offset = fdata->offset;
1508 continue;
c5aa993b 1509 }
98f08d3d
KB
1510 else if ((op & 0xfc1f016a) == 0x7c01016e)
1511 { /* stwux rX,r1,rY */
1512 /* no way to figure out what r1 is going to be */
1513 fdata->frameless = 0;
1514 offset = fdata->offset;
1515 continue;
1516 }
1517 else if ((op & 0xfc1f0003) == 0xf8010001)
1518 { /* stdu rX,NUM(r1) */
1519 fdata->frameless = 0;
1520 fdata->offset = SIGNED_SHORT (op & ~3UL);
1521 offset = fdata->offset;
1522 continue;
1523 }
1524 else if ((op & 0xfc1f016a) == 0x7c01016a)
1525 { /* stdux rX,r1,rY */
1526 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1527 fdata->frameless = 0;
1528 offset = fdata->offset;
1529 continue;
c5aa993b 1530 }
7313566f
FF
1531 else if ((op & 0xffff0000) == 0x38210000)
1532 { /* addi r1,r1,SIMM */
1533 fdata->frameless = 0;
1534 fdata->offset += SIGNED_SHORT (op);
1535 offset = fdata->offset;
1536 continue;
1537 }
4e463ff5
DJ
1538 /* Load up minimal toc pointer. Do not treat an epilogue restore
1539 of r31 as a minimal TOC load. */
98f08d3d
KB
1540 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1541 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1542 && !framep
c5aa993b 1543 && !minimal_toc_loaded)
98f08d3d 1544 {
c5aa993b
JM
1545 minimal_toc_loaded = 1;
1546 continue;
1547
f6077098
KB
1548 /* move parameters from argument registers to local variable
1549 registers */
1550 }
1551 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1552 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1553 (((op >> 21) & 31) <= 10) &&
96ff0de4 1554 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1555 {
1556 continue;
1557
c5aa993b
JM
1558 /* store parameters in stack */
1559 }
e802b915 1560 /* Move parameters from argument registers to temporary register. */
773df3e5 1561 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1562 {
c5aa993b
JM
1563 continue;
1564
1565 /* Set up frame pointer */
1566 }
1567 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1568 || op == 0x7c3f0b78)
1569 { /* mr r31, r1 */
1570 fdata->frameless = 0;
1571 framep = 1;
6f99cb26 1572 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1573 continue;
1574
1575 /* Another way to set up the frame pointer. */
1576 }
1577 else if ((op & 0xfc1fffff) == 0x38010000)
1578 { /* addi rX, r1, 0x0 */
1579 fdata->frameless = 0;
1580 framep = 1;
6f99cb26
AC
1581 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1582 + ((op & ~0x38010000) >> 21));
c5aa993b 1583 continue;
c5aa993b 1584 }
6be8bc0c
EZ
1585 /* AltiVec related instructions. */
1586 /* Store the vrsave register (spr 256) in another register for
1587 later manipulation, or load a register into the vrsave
1588 register. 2 instructions are used: mfvrsave and
1589 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1590 and mtspr SPR256, Rn. */
1591 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1592 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1593 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1594 {
1595 vrsave_reg = GET_SRC_REG (op);
1596 continue;
1597 }
1598 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1599 {
1600 continue;
1601 }
1602 /* Store the register where vrsave was saved to onto the stack:
1603 rS is the register where vrsave was stored in a previous
1604 instruction. */
1605 /* 100100 sssss 00001 dddddddd dddddddd */
1606 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1607 {
1608 if (vrsave_reg == GET_SRC_REG (op))
1609 {
1610 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1611 vrsave_reg = -1;
1612 }
1613 continue;
1614 }
1615 /* Compute the new value of vrsave, by modifying the register
1616 where vrsave was saved to. */
1617 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1618 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1619 {
1620 continue;
1621 }
1622 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1623 in a pair of insns to save the vector registers on the
1624 stack. */
1625 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1626 /* 001110 01110 00000 iiii iiii iiii iiii */
1627 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1628 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1629 {
773df3e5
JB
1630 if ((op & 0xffff0000) == 0x38000000)
1631 r0_contains_arg = 0;
6be8bc0c
EZ
1632 li_found_pc = pc;
1633 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1634
1635 /* This insn by itself is not part of the prologue, unless
1636 if part of the pair of insns mentioned above. So do not
1637 record this insn as part of the prologue yet. */
1638 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1639 }
1640 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1641 /* 011111 sssss 11111 00000 00111001110 */
1642 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1643 {
1644 if (pc == (li_found_pc + 4))
1645 {
1646 vr_reg = GET_SRC_REG (op);
1647 /* If this is the first vector reg to be saved, or if
1648 it has a lower number than others previously seen,
1649 reupdate the frame info. */
1650 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1651 {
1652 fdata->saved_vr = vr_reg;
1653 fdata->vr_offset = vr_saved_offset + offset;
1654 }
1655 vr_saved_offset = -1;
1656 vr_reg = -1;
1657 li_found_pc = 0;
1658 }
1659 }
1660 /* End AltiVec related instructions. */
96ff0de4
EZ
1661
1662 /* Start BookE related instructions. */
1663 /* Store gen register S at (r31+uimm).
1664 Any register less than r13 is volatile, so we don't care. */
1665 /* 000100 sssss 11111 iiiii 01100100001 */
1666 else if (arch_info->mach == bfd_mach_ppc_e500
1667 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1668 {
1669 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1670 {
1671 unsigned int imm;
1672 ev_reg = GET_SRC_REG (op);
1673 imm = (op >> 11) & 0x1f;
1674 ev_offset = imm * 8;
1675 /* If this is the first vector reg to be saved, or if
1676 it has a lower number than others previously seen,
1677 reupdate the frame info. */
1678 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1679 {
1680 fdata->saved_ev = ev_reg;
1681 fdata->ev_offset = ev_offset + offset;
1682 }
1683 }
1684 continue;
1685 }
1686 /* Store gen register rS at (r1+rB). */
1687 /* 000100 sssss 00001 bbbbb 01100100000 */
1688 else if (arch_info->mach == bfd_mach_ppc_e500
1689 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1690 {
1691 if (pc == (li_found_pc + 4))
1692 {
1693 ev_reg = GET_SRC_REG (op);
1694 /* If this is the first vector reg to be saved, or if
1695 it has a lower number than others previously seen,
1696 reupdate the frame info. */
1697 /* We know the contents of rB from the previous instruction. */
1698 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1699 {
1700 fdata->saved_ev = ev_reg;
1701 fdata->ev_offset = vr_saved_offset + offset;
1702 }
1703 vr_saved_offset = -1;
1704 ev_reg = -1;
1705 li_found_pc = 0;
1706 }
1707 continue;
1708 }
1709 /* Store gen register r31 at (rA+uimm). */
1710 /* 000100 11111 aaaaa iiiii 01100100001 */
1711 else if (arch_info->mach == bfd_mach_ppc_e500
1712 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1713 {
1714 /* Wwe know that the source register is 31 already, but
1715 it can't hurt to compute it. */
1716 ev_reg = GET_SRC_REG (op);
1717 ev_offset = ((op >> 11) & 0x1f) * 8;
1718 /* If this is the first vector reg to be saved, or if
1719 it has a lower number than others previously seen,
1720 reupdate the frame info. */
1721 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1722 {
1723 fdata->saved_ev = ev_reg;
1724 fdata->ev_offset = ev_offset + offset;
1725 }
1726
1727 continue;
1728 }
1729 /* Store gen register S at (r31+r0).
1730 Store param on stack when offset from SP bigger than 4 bytes. */
1731 /* 000100 sssss 11111 00000 01100100000 */
1732 else if (arch_info->mach == bfd_mach_ppc_e500
1733 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1734 {
1735 if (pc == (li_found_pc + 4))
1736 {
1737 if ((op & 0x03e00000) >= 0x01a00000)
1738 {
1739 ev_reg = GET_SRC_REG (op);
1740 /* If this is the first vector reg to be saved, or if
1741 it has a lower number than others previously seen,
1742 reupdate the frame info. */
1743 /* We know the contents of r0 from the previous
1744 instruction. */
1745 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1746 {
1747 fdata->saved_ev = ev_reg;
1748 fdata->ev_offset = vr_saved_offset + offset;
1749 }
1750 ev_reg = -1;
1751 }
1752 vr_saved_offset = -1;
1753 li_found_pc = 0;
1754 continue;
1755 }
1756 }
1757 /* End BookE related instructions. */
1758
c5aa993b
JM
1759 else
1760 {
55d05f3b
KB
1761 /* Not a recognized prologue instruction.
1762 Handle optimizer code motions into the prologue by continuing
1763 the search if we have no valid frame yet or if the return
1764 address is not yet saved in the frame. */
4e463ff5 1765 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
55d05f3b
KB
1766 break;
1767
1768 if (op == 0x4e800020 /* blr */
1769 || op == 0x4e800420) /* bctr */
1770 /* Do not scan past epilogue in frameless functions or
1771 trampolines. */
1772 break;
1773 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1774 /* Never skip branches. */
55d05f3b
KB
1775 break;
1776
1777 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1778 /* Do not scan too many insns, scanning insns is expensive with
1779 remote targets. */
1780 break;
1781
1782 /* Continue scanning. */
1783 prev_insn_was_prologue_insn = 0;
1784 continue;
c5aa993b 1785 }
c906108c
SS
1786 }
1787
1788#if 0
1789/* I have problems with skipping over __main() that I need to address
1790 * sometime. Previously, I used to use misc_function_vector which
1791 * didn't work as well as I wanted to be. -MGO */
1792
1793 /* If the first thing after skipping a prolog is a branch to a function,
1794 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1795 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1796 work before calling a function right after a prologue, thus we can
64366f1c 1797 single out such gcc2 behaviour. */
c906108c 1798
c906108c 1799
c5aa993b
JM
1800 if ((op & 0xfc000001) == 0x48000001)
1801 { /* bl foo, an initializer function? */
1802 op = read_memory_integer (pc + 4, 4);
1803
1804 if (op == 0x4def7b82)
1805 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1806
64366f1c
EZ
1807 /* Check and see if we are in main. If so, skip over this
1808 initializer function as well. */
c906108c 1809
c5aa993b 1810 tmp = find_pc_misc_function (pc);
6314a349
AC
1811 if (tmp >= 0
1812 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1813 return pc + 8;
1814 }
c906108c 1815 }
c906108c 1816#endif /* 0 */
c5aa993b
JM
1817
1818 fdata->offset = -fdata->offset;
ddb20c56 1819 return last_prologue_pc;
c906108c
SS
1820}
1821
1822
1823/*************************************************************************
f6077098 1824 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1825 frames, etc.
1826*************************************************************************/
1827
c906108c 1828
11269d7e
AC
1829/* All the ABI's require 16 byte alignment. */
1830static CORE_ADDR
1831rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1832{
1833 return (addr & -16);
1834}
1835
7a78ae4e 1836/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1837 the first eight words of the argument list (that might be less than
1838 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1839 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1840 passed in fpr's, in addition to that. Rest of the parameters if any
1841 are passed in user stack. There might be cases in which half of the
c906108c
SS
1842 parameter is copied into registers, the other half is pushed into
1843 stack.
1844
7a78ae4e
ND
1845 Stack must be aligned on 64-bit boundaries when synthesizing
1846 function calls.
1847
c906108c
SS
1848 If the function is returning a structure, then the return address is passed
1849 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1850 starting from r4. */
c906108c 1851
7a78ae4e 1852static CORE_ADDR
7d9b040b 1853rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1854 struct regcache *regcache, CORE_ADDR bp_addr,
1855 int nargs, struct value **args, CORE_ADDR sp,
1856 int struct_return, CORE_ADDR struct_addr)
c906108c 1857{
8b164abb 1858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c906108c
SS
1859 int ii;
1860 int len = 0;
c5aa993b
JM
1861 int argno; /* current argument number */
1862 int argbytes; /* current argument byte */
50fd1280 1863 gdb_byte tmp_buffer[50];
c5aa993b 1864 int f_argno = 0; /* current floating point argno */
8b164abb 1865 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
7d9b040b 1866 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1867
ea7c478f 1868 struct value *arg = 0;
c906108c
SS
1869 struct type *type;
1870
fb4443d8 1871 ULONGEST saved_sp;
c906108c 1872
383f0f5b
JB
1873 /* The calling convention this function implements assumes the
1874 processor has floating-point registers. We shouldn't be using it
1875 on PPC variants that lack them. */
8b164abb 1876 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 1877
64366f1c 1878 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1879 Copy them appropriately. */
1880 ii = 0;
1881
1882 /* If the function is returning a `struct', then the first word
1883 (which will be passed in r3) is used for struct return address.
1884 In that case we should advance one word and start from r4
1885 register to copy parameters. */
1886 if (struct_return)
1887 {
1888 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1889 struct_addr);
1890 ii++;
1891 }
c906108c
SS
1892
1893/*
c5aa993b
JM
1894 effectively indirect call... gcc does...
1895
1896 return_val example( float, int);
1897
1898 eabi:
1899 float in fp0, int in r3
1900 offset of stack on overflow 8/16
1901 for varargs, must go by type.
1902 power open:
1903 float in r3&r4, int in r5
1904 offset of stack on overflow different
1905 both:
1906 return in r3 or f0. If no float, must study how gcc emulates floats;
1907 pay attention to arg promotion.
1908 User may have to cast\args to handle promotion correctly
1909 since gdb won't know if prototype supplied or not.
1910 */
c906108c 1911
c5aa993b
JM
1912 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1913 {
8b164abb 1914 int reg_size = register_size (gdbarch, ii + 3);
c5aa993b
JM
1915
1916 arg = args[argno];
df407dfe 1917 type = check_typedef (value_type (arg));
c5aa993b
JM
1918 len = TYPE_LENGTH (type);
1919
1920 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1921 {
1922
64366f1c 1923 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1924 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1925 there is no way we would run out of them. */
c5aa993b 1926
9f335945
KB
1927 gdb_assert (len <= 8);
1928
1929 regcache_cooked_write (regcache,
1930 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1931 value_contents (arg));
c5aa993b
JM
1932 ++f_argno;
1933 }
1934
f6077098 1935 if (len > reg_size)
c5aa993b
JM
1936 {
1937
64366f1c 1938 /* Argument takes more than one register. */
c5aa993b
JM
1939 while (argbytes < len)
1940 {
50fd1280 1941 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1942 memset (word, 0, reg_size);
1943 memcpy (word,
0fd88904 1944 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1945 (len - argbytes) > reg_size
1946 ? reg_size : len - argbytes);
9f335945
KB
1947 regcache_cooked_write (regcache,
1948 tdep->ppc_gp0_regnum + 3 + ii,
1949 word);
f6077098 1950 ++ii, argbytes += reg_size;
c5aa993b
JM
1951
1952 if (ii >= 8)
1953 goto ran_out_of_registers_for_arguments;
1954 }
1955 argbytes = 0;
1956 --ii;
1957 }
1958 else
64366f1c
EZ
1959 {
1960 /* Argument can fit in one register. No problem. */
8b164abb 1961 int adj = gdbarch_byte_order (gdbarch)
4c6b5505 1962 == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1963 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1964
1965 memset (word, 0, reg_size);
0fd88904 1966 memcpy (word, value_contents (arg), len);
9f335945 1967 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1968 }
1969 ++argno;
c906108c 1970 }
c906108c
SS
1971
1972ran_out_of_registers_for_arguments:
1973
3e8c568d 1974 regcache_cooked_read_unsigned (regcache,
8b164abb 1975 gdbarch_sp_regnum (gdbarch),
3e8c568d 1976 &saved_sp);
cc9836a8 1977
64366f1c 1978 /* Location for 8 parameters are always reserved. */
7a78ae4e 1979 sp -= wordsize * 8;
f6077098 1980
64366f1c 1981 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1982 sp -= wordsize * 6;
f6077098 1983
64366f1c 1984 /* Stack pointer must be quadword aligned. */
7a78ae4e 1985 sp &= -16;
c906108c 1986
64366f1c
EZ
1987 /* If there are more arguments, allocate space for them in
1988 the stack, then push them starting from the ninth one. */
c906108c 1989
c5aa993b
JM
1990 if ((argno < nargs) || argbytes)
1991 {
1992 int space = 0, jj;
c906108c 1993
c5aa993b
JM
1994 if (argbytes)
1995 {
1996 space += ((len - argbytes + 3) & -4);
1997 jj = argno + 1;
1998 }
1999 else
2000 jj = argno;
c906108c 2001
c5aa993b
JM
2002 for (; jj < nargs; ++jj)
2003 {
ea7c478f 2004 struct value *val = args[jj];
df407dfe 2005 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 2006 }
c906108c 2007
64366f1c 2008 /* Add location required for the rest of the parameters. */
f6077098 2009 space = (space + 15) & -16;
c5aa993b 2010 sp -= space;
c906108c 2011
7aea86e6
AC
2012 /* This is another instance we need to be concerned about
2013 securing our stack space. If we write anything underneath %sp
2014 (r1), we might conflict with the kernel who thinks he is free
2015 to use this area. So, update %sp first before doing anything
2016 else. */
2017
3e8c568d 2018 regcache_raw_write_signed (regcache,
8b164abb 2019 gdbarch_sp_regnum (gdbarch), sp);
7aea86e6 2020
64366f1c
EZ
2021 /* If the last argument copied into the registers didn't fit there
2022 completely, push the rest of it into stack. */
c906108c 2023
c5aa993b
JM
2024 if (argbytes)
2025 {
2026 write_memory (sp + 24 + (ii * 4),
50fd1280 2027 value_contents (arg) + argbytes,
c5aa993b
JM
2028 len - argbytes);
2029 ++argno;
2030 ii += ((len - argbytes + 3) & -4) / 4;
2031 }
c906108c 2032
64366f1c 2033 /* Push the rest of the arguments into stack. */
c5aa993b
JM
2034 for (; argno < nargs; ++argno)
2035 {
c906108c 2036
c5aa993b 2037 arg = args[argno];
df407dfe 2038 type = check_typedef (value_type (arg));
c5aa993b 2039 len = TYPE_LENGTH (type);
c906108c
SS
2040
2041
64366f1c
EZ
2042 /* Float types should be passed in fpr's, as well as in the
2043 stack. */
c5aa993b
JM
2044 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
2045 {
c906108c 2046
9f335945 2047 gdb_assert (len <= 8);
c906108c 2048
9f335945
KB
2049 regcache_cooked_write (regcache,
2050 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 2051 value_contents (arg));
c5aa993b
JM
2052 ++f_argno;
2053 }
c906108c 2054
50fd1280 2055 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
2056 ii += ((len + 3) & -4) / 4;
2057 }
c906108c 2058 }
c906108c 2059
69517000 2060 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
2061 be set _before_ the corresponding stack space is used. On AIX,
2062 this even applies when the target has been completely stopped!
2063 Not doing this can lead to conflicts with the kernel which thinks
2064 that it still has control over this not-yet-allocated stack
2065 region. */
8b164abb 2066 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
33a7c2fc 2067
7aea86e6 2068 /* Set back chain properly. */
8ba0209f
AM
2069 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
2070 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 2071
e56a0ecc
AC
2072 /* Point the inferior function call's return address at the dummy's
2073 breakpoint. */
2074 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
2075
794a477a
AC
2076 /* Set the TOC register, get the value from the objfile reader
2077 which, in turn, gets it from the VMAP table. */
2078 if (rs6000_find_toc_address_hook != NULL)
2079 {
2080 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
2081 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
2082 }
2083
56be3814 2084 target_store_registers (regcache, -1);
c906108c
SS
2085 return sp;
2086}
c906108c 2087
d217aaed
MK
2088static enum return_value_convention
2089rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
2090 struct regcache *regcache, gdb_byte *readbuf,
2091 const gdb_byte *writebuf)
c906108c 2092{
8b164abb 2093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d217aaed 2094 gdb_byte buf[8];
c906108c 2095
383f0f5b
JB
2096 /* The calling convention this function implements assumes the
2097 processor has floating-point registers. We shouldn't be using it
d217aaed 2098 on PowerPC variants that lack them. */
8b164abb 2099 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 2100
d217aaed
MK
2101 /* AltiVec extension: Functions that declare a vector data type as a
2102 return value place that return value in VR2. */
2103 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
2104 && TYPE_LENGTH (valtype) == 16)
c5aa993b 2105 {
d217aaed
MK
2106 if (readbuf)
2107 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
2108 if (writebuf)
2109 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
c906108c 2110
d217aaed 2111 return RETURN_VALUE_REGISTER_CONVENTION;
c5aa993b 2112 }
d217aaed
MK
2113
2114 /* If the called subprogram returns an aggregate, there exists an
2115 implicit first argument, whose value is the address of a caller-
2116 allocated buffer into which the callee is assumed to store its
2117 return value. All explicit parameters are appropriately
2118 relabeled. */
2119 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2120 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2121 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2122 return RETURN_VALUE_STRUCT_CONVENTION;
2123
2124 /* Scalar floating-point values are returned in FPR1 for float or
2125 double, and in FPR1:FPR2 for quadword precision. Fortran
2126 complex*8 and complex*16 are returned in FPR1:FPR2, and
2127 complex*32 is returned in FPR1:FPR4. */
2128 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
2129 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
2130 {
2131 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
2132 gdb_byte regval[8];
2133
2134 /* FIXME: kettenis/2007-01-01: Add support for quadword
2135 precision and complex. */
2136
2137 if (readbuf)
2138 {
2139 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
2140 convert_typed_floating (regval, regtype, readbuf, valtype);
2141 }
2142 if (writebuf)
2143 {
2144 convert_typed_floating (writebuf, valtype, regval, regtype);
2145 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
2146 }
2147
2148 return RETURN_VALUE_REGISTER_CONVENTION;
2149 }
2150
2151 /* Values of the types int, long, short, pointer, and char (length
2152 is less than or equal to four bytes), as well as bit values of
2153 lengths less than or equal to 32 bits, must be returned right
2154 justified in GPR3 with signed values sign extended and unsigned
2155 values zero extended, as necessary. */
2156 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
ace1378a 2157 {
d217aaed
MK
2158 if (readbuf)
2159 {
2160 ULONGEST regval;
2161
2162 /* For reading we don't have to worry about sign extension. */
2163 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
2164 &regval);
2165 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
2166 }
2167 if (writebuf)
2168 {
2169 /* For writing, use unpack_long since that should handle any
2170 required sign extension. */
2171 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
2172 unpack_long (valtype, writebuf));
2173 }
2174
2175 return RETURN_VALUE_REGISTER_CONVENTION;
ace1378a 2176 }
d217aaed
MK
2177
2178 /* Eight-byte non-floating-point scalar values must be returned in
2179 GPR3:GPR4. */
2180
2181 if (TYPE_LENGTH (valtype) == 8)
c5aa993b 2182 {
d217aaed
MK
2183 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
2184 gdb_assert (tdep->wordsize == 4);
2185
2186 if (readbuf)
2187 {
2188 gdb_byte regval[8];
2189
2190 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
2191 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
2192 regval + 4);
2193 memcpy (readbuf, regval, 8);
2194 }
2195 if (writebuf)
2196 {
2197 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
2198 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
2199 writebuf + 4);
2200 }
2201
2202 return RETURN_VALUE_REGISTER_CONVENTION;
c906108c 2203 }
d217aaed
MK
2204
2205 return RETURN_VALUE_STRUCT_CONVENTION;
c906108c
SS
2206}
2207
977adac5
ND
2208/* Return whether handle_inferior_event() should proceed through code
2209 starting at PC in function NAME when stepping.
2210
2211 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2212 handle memory references that are too distant to fit in instructions
2213 generated by the compiler. For example, if 'foo' in the following
2214 instruction:
2215
2216 lwz r9,foo(r2)
2217
2218 is greater than 32767, the linker might replace the lwz with a branch to
2219 somewhere in @FIX1 that does the load in 2 instructions and then branches
2220 back to where execution should continue.
2221
2222 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
2223 Unfortunately, the linker uses the "b" instruction for the
2224 branches, meaning that the link register doesn't get set.
2225 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 2226
e76f05fa
UW
2227 Instead, use the gdbarch_skip_trampoline_code and
2228 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 2229 @FIX code. */
977adac5
ND
2230
2231int
2232rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
2233{
2234 return name && !strncmp (name, "@FIX", 4);
2235}
2236
2237/* Skip code that the user doesn't want to see when stepping:
2238
2239 1. Indirect function calls use a piece of trampoline code to do context
2240 switching, i.e. to set the new TOC table. Skip such code if we are on
2241 its first instruction (as when we have single-stepped to here).
2242
2243 2. Skip shared library trampoline code (which is different from
c906108c 2244 indirect function call trampolines).
977adac5
ND
2245
2246 3. Skip bigtoc fixup code.
2247
c906108c 2248 Result is desired PC to step until, or NULL if we are not in
977adac5 2249 code that should be skipped. */
c906108c
SS
2250
2251CORE_ADDR
52f729a7 2252rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 2253{
52f0bd74 2254 unsigned int ii, op;
977adac5 2255 int rel;
c906108c 2256 CORE_ADDR solib_target_pc;
977adac5 2257 struct minimal_symbol *msymbol;
c906108c 2258
c5aa993b
JM
2259 static unsigned trampoline_code[] =
2260 {
2261 0x800b0000, /* l r0,0x0(r11) */
2262 0x90410014, /* st r2,0x14(r1) */
2263 0x7c0903a6, /* mtctr r0 */
2264 0x804b0004, /* l r2,0x4(r11) */
2265 0x816b0008, /* l r11,0x8(r11) */
2266 0x4e800420, /* bctr */
2267 0x4e800020, /* br */
2268 0
c906108c
SS
2269 };
2270
977adac5
ND
2271 /* Check for bigtoc fixup code. */
2272 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
2273 if (msymbol
2274 && rs6000_in_solib_return_trampoline (pc,
2275 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
2276 {
2277 /* Double-check that the third instruction from PC is relative "b". */
2278 op = read_memory_integer (pc + 8, 4);
2279 if ((op & 0xfc000003) == 0x48000000)
2280 {
2281 /* Extract bits 6-29 as a signed 24-bit relative word address and
2282 add it to the containing PC. */
2283 rel = ((int)(op << 6) >> 6);
2284 return pc + 8 + rel;
2285 }
2286 }
2287
c906108c 2288 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2289 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2290 if (solib_target_pc)
2291 return solib_target_pc;
2292
c5aa993b
JM
2293 for (ii = 0; trampoline_code[ii]; ++ii)
2294 {
2295 op = read_memory_integer (pc + (ii * 4), 4);
2296 if (op != trampoline_code[ii])
2297 return 0;
2298 }
52f729a7 2299 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
8b164abb
UW
2300 pc = read_memory_addr (ii,
2301 gdbarch_tdep (get_frame_arch (frame))->wordsize); /* (r11) value */
c906108c
SS
2302 return pc;
2303}
2304
794ac428
UW
2305/* ISA-specific vector types. */
2306
2307static struct type *
2308rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2309{
2310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2311
2312 if (!tdep->ppc_builtin_type_vec64)
2313 {
2314 /* The type we're building is this: */
2315#if 0
2316 union __gdb_builtin_type_vec64
2317 {
2318 int64_t uint64;
2319 float v2_float[2];
2320 int32_t v2_int32[2];
2321 int16_t v4_int16[4];
2322 int8_t v8_int8[8];
2323 };
2324#endif
2325
2326 struct type *t;
2327
2328 t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2329 append_composite_type_field (t, "uint64", builtin_type_int64);
2330 append_composite_type_field (t, "v2_float",
2331 init_vector_type (builtin_type_float, 2));
2332 append_composite_type_field (t, "v2_int32",
2333 init_vector_type (builtin_type_int32, 2));
2334 append_composite_type_field (t, "v4_int16",
2335 init_vector_type (builtin_type_int16, 4));
2336 append_composite_type_field (t, "v8_int8",
2337 init_vector_type (builtin_type_int8, 8));
2338
2339 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2340 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2341 tdep->ppc_builtin_type_vec64 = t;
2342 }
2343
2344 return tdep->ppc_builtin_type_vec64;
2345}
2346
7a78ae4e 2347/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 2348 isn't available with that word size, return 0. */
7a78ae4e
ND
2349
2350static int
2351regsize (const struct reg *reg, int wordsize)
2352{
2353 return wordsize == 8 ? reg->sz64 : reg->sz32;
2354}
2355
7cc46491
DJ
2356/* Return the name of register number REGNO, or the empty string if it
2357 is an anonymous register. */
7a78ae4e 2358
fa88f677 2359static const char *
d93859e2 2360rs6000_register_name (struct gdbarch *gdbarch, int regno)
7a78ae4e 2361{
d93859e2 2362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2363
7cc46491
DJ
2364 /* The upper half "registers" have names in the XML description,
2365 but we present only the low GPRs and the full 64-bit registers
2366 to the user. */
2367 if (tdep->ppc_ev0_upper_regnum >= 0
2368 && tdep->ppc_ev0_upper_regnum <= regno
2369 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2370 return "";
2371
2372 /* Check if the SPE pseudo registers are available. */
2373 if (tdep->ppc_ev0_regnum >= 0
2374 && tdep->ppc_ev0_regnum <= regno
2375 && regno < tdep->ppc_ev0_regnum + ppc_num_gprs)
2376 {
2377 static const char *const spe_regnames[] = {
2378 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2379 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2380 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2381 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2382 };
2383 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2384 }
2385
d93859e2 2386 return tdesc_register_name (gdbarch, regno);
7a78ae4e
ND
2387}
2388
7cc46491
DJ
2389/* Return the GDB type object for the "standard" data type of data in
2390 register N. */
7a78ae4e
ND
2391
2392static struct type *
7cc46491 2393rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
7a78ae4e 2394{
691d145a 2395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2396
7cc46491
DJ
2397 /* These are the only pseudo-registers we support. */
2398 gdb_assert (tdep->ppc_ev0_regnum >= 0
2399 && regnum >= tdep->ppc_ev0_regnum
2400 && regnum < tdep->ppc_ev0_regnum + 32);
2401
2402 return rs6000_builtin_type_vec64 (gdbarch);
7a78ae4e
ND
2403}
2404
c44ca51c
AC
2405/* Is REGNUM a member of REGGROUP? */
2406static int
7cc46491
DJ
2407rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2408 struct reggroup *group)
c44ca51c
AC
2409{
2410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c44ca51c 2411
7cc46491
DJ
2412 /* These are the only pseudo-registers we support. */
2413 gdb_assert (tdep->ppc_ev0_regnum >= 0
2414 && regnum >= tdep->ppc_ev0_regnum
2415 && regnum < tdep->ppc_ev0_regnum + 32);
c44ca51c 2416
7cc46491
DJ
2417 if (group == all_reggroup || group == vector_reggroup)
2418 return 1;
2419 else
2420 return 0;
c44ca51c
AC
2421}
2422
691d145a 2423/* The register format for RS/6000 floating point registers is always
64366f1c 2424 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2425
2426static int
691d145a 2427rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 2428{
7cc46491
DJ
2429 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2430
2431 return (tdep->ppc_fp0_regnum >= 0
2432 && regnum >= tdep->ppc_fp0_regnum
2433 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2434 && TYPE_CODE (type) == TYPE_CODE_FLT
2435 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
2436}
2437
7a78ae4e 2438static void
691d145a
JB
2439rs6000_register_to_value (struct frame_info *frame,
2440 int regnum,
2441 struct type *type,
50fd1280 2442 gdb_byte *to)
7a78ae4e 2443{
50fd1280 2444 gdb_byte from[MAX_REGISTER_SIZE];
691d145a 2445
691d145a 2446 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2447
691d145a
JB
2448 get_frame_register (frame, regnum, from);
2449 convert_typed_floating (from, builtin_type_double, to, type);
2450}
7a292a7a 2451
7a78ae4e 2452static void
691d145a
JB
2453rs6000_value_to_register (struct frame_info *frame,
2454 int regnum,
2455 struct type *type,
50fd1280 2456 const gdb_byte *from)
7a78ae4e 2457{
50fd1280 2458 gdb_byte to[MAX_REGISTER_SIZE];
691d145a 2459
691d145a
JB
2460 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2461
2462 convert_typed_floating (from, type, to, builtin_type_double);
2463 put_frame_register (frame, regnum, to);
7a78ae4e 2464}
c906108c 2465
6ced10dd
JB
2466/* Move SPE vector register values between a 64-bit buffer and the two
2467 32-bit raw register halves in a regcache. This function handles
2468 both splitting a 64-bit value into two 32-bit halves, and joining
2469 two halves into a whole 64-bit value, depending on the function
2470 passed as the MOVE argument.
2471
2472 EV_REG must be the number of an SPE evN vector register --- a
2473 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2474 64-bit buffer.
2475
2476 Call MOVE once for each 32-bit half of that register, passing
2477 REGCACHE, the number of the raw register corresponding to that
2478 half, and the address of the appropriate half of BUFFER.
2479
2480 For example, passing 'regcache_raw_read' as the MOVE function will
2481 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2482 'regcache_raw_supply' will supply the contents of BUFFER to the
2483 appropriate pair of raw registers in REGCACHE.
2484
2485 You may need to cast away some 'const' qualifiers when passing
2486 MOVE, since this function can't tell at compile-time which of
2487 REGCACHE or BUFFER is acting as the source of the data. If C had
2488 co-variant type qualifiers, ... */
2489static void
2490e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 2491 int regnum, gdb_byte *buf),
6ced10dd 2492 struct regcache *regcache, int ev_reg,
50fd1280 2493 gdb_byte *buffer)
6ced10dd
JB
2494{
2495 struct gdbarch *arch = get_regcache_arch (regcache);
2496 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2497 int reg_index;
50fd1280 2498 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
2499
2500 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2501 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2502
2503 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2504
8b164abb 2505 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
6ced10dd
JB
2506 {
2507 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2508 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2509 }
2510 else
2511 {
2512 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2513 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2514 }
2515}
2516
c8001721
EZ
2517static void
2518e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2519 int reg_nr, gdb_byte *buffer)
c8001721 2520{
6ced10dd 2521 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2522 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2523
6ced10dd
JB
2524 gdb_assert (regcache_arch == gdbarch);
2525
2526 if (tdep->ppc_ev0_regnum <= reg_nr
2527 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2528 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2529 else
a44bddec 2530 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2531 _("e500_pseudo_register_read: "
2532 "called on unexpected register '%s' (%d)"),
a44bddec 2533 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2534}
2535
2536static void
2537e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2538 int reg_nr, const gdb_byte *buffer)
c8001721 2539{
6ced10dd 2540 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2541 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2542
6ced10dd
JB
2543 gdb_assert (regcache_arch == gdbarch);
2544
2545 if (tdep->ppc_ev0_regnum <= reg_nr
2546 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2547 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2548 regcache_raw_write,
50fd1280 2549 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2550 else
a44bddec 2551 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2552 _("e500_pseudo_register_read: "
2553 "called on unexpected register '%s' (%d)"),
a44bddec 2554 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2555}
2556
18ed0c4e 2557/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2558static int
18ed0c4e 2559rs6000_stab_reg_to_regnum (int num)
c8001721 2560{
9f744501 2561 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2562
9f744501
JB
2563 if (0 <= num && num <= 31)
2564 return tdep->ppc_gp0_regnum + num;
2565 else if (32 <= num && num <= 63)
383f0f5b
JB
2566 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2567 specifies registers the architecture doesn't have? Our
2568 callers don't check the value we return. */
366f009f 2569 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2570 else if (77 <= num && num <= 108)
2571 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2572 else if (1200 <= num && num < 1200 + 32)
2573 return tdep->ppc_ev0_regnum + (num - 1200);
2574 else
2575 switch (num)
2576 {
2577 case 64:
2578 return tdep->ppc_mq_regnum;
2579 case 65:
2580 return tdep->ppc_lr_regnum;
2581 case 66:
2582 return tdep->ppc_ctr_regnum;
2583 case 76:
2584 return tdep->ppc_xer_regnum;
2585 case 109:
2586 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2587 case 110:
2588 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2589 case 111:
18ed0c4e 2590 return tdep->ppc_acc_regnum;
867e2dc5 2591 case 112:
18ed0c4e 2592 return tdep->ppc_spefscr_regnum;
9f744501
JB
2593 default:
2594 return num;
2595 }
18ed0c4e 2596}
9f744501 2597
9f744501 2598
18ed0c4e
JB
2599/* Convert a Dwarf 2 register number to a GDB register number. */
2600static int
2601rs6000_dwarf2_reg_to_regnum (int num)
2602{
2603 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2604
18ed0c4e
JB
2605 if (0 <= num && num <= 31)
2606 return tdep->ppc_gp0_regnum + num;
2607 else if (32 <= num && num <= 63)
2608 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2609 specifies registers the architecture doesn't have? Our
2610 callers don't check the value we return. */
2611 return tdep->ppc_fp0_regnum + (num - 32);
2612 else if (1124 <= num && num < 1124 + 32)
2613 return tdep->ppc_vr0_regnum + (num - 1124);
2614 else if (1200 <= num && num < 1200 + 32)
2615 return tdep->ppc_ev0_regnum + (num - 1200);
2616 else
2617 switch (num)
2618 {
a489f789
AS
2619 case 64:
2620 return tdep->ppc_cr_regnum;
18ed0c4e
JB
2621 case 67:
2622 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2623 case 99:
2624 return tdep->ppc_acc_regnum;
2625 case 100:
2626 return tdep->ppc_mq_regnum;
2627 case 101:
2628 return tdep->ppc_xer_regnum;
2629 case 108:
2630 return tdep->ppc_lr_regnum;
2631 case 109:
2632 return tdep->ppc_ctr_regnum;
2633 case 356:
2634 return tdep->ppc_vrsave_regnum;
2635 case 612:
2636 return tdep->ppc_spefscr_regnum;
2637 default:
2638 return num;
2639 }
2188cbdd
EZ
2640}
2641
4fc771b8
DJ
2642/* Translate a .eh_frame register to DWARF register, or adjust a
2643 .debug_frame register. */
2644
2645static int
2646rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2647{
2648 /* GCC releases before 3.4 use GCC internal register numbering in
2649 .debug_frame (and .debug_info, et cetera). The numbering is
2650 different from the standard SysV numbering for everything except
2651 for GPRs and FPRs. We can not detect this problem in most cases
2652 - to get accurate debug info for variables living in lr, ctr, v0,
2653 et cetera, use a newer version of GCC. But we must detect
2654 one important case - lr is in column 65 in .debug_frame output,
2655 instead of 108.
2656
2657 GCC 3.4, and the "hammer" branch, have a related problem. They
2658 record lr register saves in .debug_frame as 108, but still record
2659 the return column as 65. We fix that up too.
2660
2661 We can do this because 65 is assigned to fpsr, and GCC never
2662 generates debug info referring to it. To add support for
2663 handwritten debug info that restores fpsr, we would need to add a
2664 producer version check to this. */
2665 if (!eh_frame_p)
2666 {
2667 if (num == 65)
2668 return 108;
2669 else
2670 return num;
2671 }
2672
2673 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2674 internal register numbering; translate that to the standard DWARF2
2675 register numbering. */
2676 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2677 return num;
2678 else if (68 <= num && num <= 75) /* cr0-cr8 */
2679 return num - 68 + 86;
2680 else if (77 <= num && num <= 108) /* vr0-vr31 */
2681 return num - 77 + 1124;
2682 else
2683 switch (num)
2684 {
2685 case 64: /* mq */
2686 return 100;
2687 case 65: /* lr */
2688 return 108;
2689 case 66: /* ctr */
2690 return 109;
2691 case 76: /* xer */
2692 return 101;
2693 case 109: /* vrsave */
2694 return 356;
2695 case 110: /* vscr */
2696 return 67;
2697 case 111: /* spe_acc */
2698 return 99;
2699 case 112: /* spefscr */
2700 return 612;
2701 default:
2702 return num;
2703 }
2704}
c906108c 2705\f
e2d0e7eb 2706/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2707
2708 Usually a function pointer's representation is simply the address
2709 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2710 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2711 three words, the first word is the address of the function, the
2712 second word is the TOC pointer (r2), and the third word is the
2713 static chain value. Throughout GDB it is currently assumed that a
2714 function pointer contains the address of the function, which is not
2715 easy to fix. In addition, the conversion of a function address to
8ba0209f 2716 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2717 inferior's memory space, with all its drawbacks. To be able to
2718 call C++ virtual methods in the inferior (which are called via
f517ea4e 2719 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2720 function address from a function pointer. */
2721
f517ea4e
PS
2722/* Return real function address if ADDR (a function pointer) is in the data
2723 space and is therefore a special function pointer. */
c906108c 2724
b9362cc7 2725static CORE_ADDR
e2d0e7eb
AC
2726rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2727 CORE_ADDR addr,
2728 struct target_ops *targ)
c906108c
SS
2729{
2730 struct obj_section *s;
2731
2732 s = find_pc_section (addr);
2733 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2734 return addr;
c906108c 2735
7a78ae4e 2736 /* ADDR is in the data space, so it's a special function pointer. */
7f68ac27 2737 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
c906108c 2738}
c906108c 2739\f
c5aa993b 2740
7a78ae4e 2741/* Handling the various POWER/PowerPC variants. */
c906108c 2742
c906108c 2743/* Information about a particular processor variant. */
7a78ae4e 2744
c906108c 2745struct variant
c5aa993b
JM
2746 {
2747 /* Name of this variant. */
2748 char *name;
c906108c 2749
c5aa993b
JM
2750 /* English description of the variant. */
2751 char *description;
c906108c 2752
64366f1c 2753 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2754 enum bfd_architecture arch;
2755
64366f1c 2756 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2757 unsigned long mach;
2758
7cc46491
DJ
2759 /* Target description for this variant. */
2760 struct target_desc **tdesc;
c5aa993b 2761 };
c906108c 2762
489461e2 2763static struct variant variants[] =
c906108c 2764{
7a78ae4e 2765 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
7cc46491 2766 bfd_mach_ppc, &tdesc_powerpc_32},
7a78ae4e 2767 {"power", "POWER user-level", bfd_arch_rs6000,
7cc46491 2768 bfd_mach_rs6k, &tdesc_rs6000},
7a78ae4e 2769 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
7cc46491 2770 bfd_mach_ppc_403, &tdesc_powerpc_403},
7a78ae4e 2771 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
7cc46491 2772 bfd_mach_ppc_601, &tdesc_powerpc_601},
7a78ae4e 2773 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
7cc46491 2774 bfd_mach_ppc_602, &tdesc_powerpc_602},
7a78ae4e 2775 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
7cc46491 2776 bfd_mach_ppc_603, &tdesc_powerpc_603},
7a78ae4e 2777 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
7cc46491 2778 604, &tdesc_powerpc_604},
7a78ae4e 2779 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
7cc46491 2780 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
7a78ae4e 2781 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
7cc46491 2782 bfd_mach_ppc_505, &tdesc_powerpc_505},
7a78ae4e 2783 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
7cc46491 2784 bfd_mach_ppc_860, &tdesc_powerpc_860},
7a78ae4e 2785 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
7cc46491 2786 bfd_mach_ppc_750, &tdesc_powerpc_750},
1fcc0bb8 2787 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
7cc46491 2788 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
c8001721 2789 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
7cc46491 2790 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
7a78ae4e 2791
5d57ee30
KB
2792 /* 64-bit */
2793 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
7cc46491 2794 bfd_mach_ppc64, &tdesc_powerpc_64},
7a78ae4e 2795 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
7cc46491 2796 bfd_mach_ppc_620, &tdesc_powerpc_64},
5d57ee30 2797 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
7cc46491 2798 bfd_mach_ppc_630, &tdesc_powerpc_64},
7a78ae4e 2799 {"a35", "PowerPC A35", bfd_arch_powerpc,
7cc46491 2800 bfd_mach_ppc_a35, &tdesc_powerpc_64},
5d57ee30 2801 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
7cc46491 2802 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
5d57ee30 2803 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
7cc46491 2804 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
5d57ee30 2805
64366f1c 2806 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2807 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
7cc46491 2808 bfd_mach_rs6k_rs1, &tdesc_rs6000},
7a78ae4e 2809 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
7cc46491 2810 bfd_mach_rs6k_rsc, &tdesc_rs6000},
7a78ae4e 2811 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
7cc46491 2812 bfd_mach_rs6k_rs2, &tdesc_rs6000},
7a78ae4e 2813
7cc46491 2814 {0, 0, 0, 0, 0}
c906108c
SS
2815};
2816
7a78ae4e 2817/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2818 MACH. If no such variant exists, return null. */
c906108c 2819
7a78ae4e
ND
2820static const struct variant *
2821find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2822{
7a78ae4e 2823 const struct variant *v;
c5aa993b 2824
7a78ae4e
ND
2825 for (v = variants; v->name; v++)
2826 if (arch == v->arch && mach == v->mach)
2827 return v;
c906108c 2828
7a78ae4e 2829 return NULL;
c906108c 2830}
9364a0ef
EZ
2831
2832static int
2833gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2834{
ee4f0f76
DJ
2835 if (!info->disassembler_options)
2836 info->disassembler_options = "any";
2837
4c6b5505 2838 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
9364a0ef
EZ
2839 return print_insn_big_powerpc (memaddr, info);
2840 else
2841 return print_insn_little_powerpc (memaddr, info);
2842}
7a78ae4e 2843\f
61a65099
KB
2844static CORE_ADDR
2845rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2846{
3e8c568d 2847 return frame_unwind_register_unsigned (next_frame,
8b164abb 2848 gdbarch_pc_regnum (gdbarch));
61a65099
KB
2849}
2850
2851static struct frame_id
2852rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2853{
3e8c568d 2854 return frame_id_build (frame_unwind_register_unsigned
8b164abb 2855 (next_frame, gdbarch_sp_regnum (gdbarch)),
3e8c568d 2856 frame_pc_unwind (next_frame));
61a65099
KB
2857}
2858
2859struct rs6000_frame_cache
2860{
2861 CORE_ADDR base;
2862 CORE_ADDR initial_sp;
2863 struct trad_frame_saved_reg *saved_regs;
2864};
2865
2866static struct rs6000_frame_cache *
2867rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2868{
2869 struct rs6000_frame_cache *cache;
2870 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2871 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2872 struct rs6000_framedata fdata;
2873 int wordsize = tdep->wordsize;
e10b1c4c 2874 CORE_ADDR func, pc;
61a65099
KB
2875
2876 if ((*this_cache) != NULL)
2877 return (*this_cache);
2878 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2879 (*this_cache) = cache;
2880 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2881
93d42b30 2882 func = frame_func_unwind (next_frame, NORMAL_FRAME);
e10b1c4c
DJ
2883 pc = frame_pc_unwind (next_frame);
2884 skip_prologue (func, pc, &fdata);
2885
2886 /* Figure out the parent's stack pointer. */
2887
2888 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2889 address of the current frame. Things might be easier if the
2890 ->frame pointed to the outer-most address of the frame. In
2891 the mean time, the address of the prev frame is used as the
2892 base address of this frame. */
3e8c568d 2893 cache->base = frame_unwind_register_unsigned
8b164abb 2894 (next_frame, gdbarch_sp_regnum (gdbarch));
e10b1c4c
DJ
2895
2896 /* If the function appears to be frameless, check a couple of likely
2897 indicators that we have simply failed to find the frame setup.
2898 Two common cases of this are missing symbols (i.e.
2899 frame_func_unwind returns the wrong address or 0), and assembly
2900 stubs which have a fast exit path but set up a frame on the slow
2901 path.
2902
2903 If the LR appears to return to this function, then presume that
2904 we have an ABI compliant frame that we failed to find. */
2905 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 2906 {
e10b1c4c
DJ
2907 CORE_ADDR saved_lr;
2908 int make_frame = 0;
2909
2910 saved_lr = frame_unwind_register_unsigned (next_frame,
2911 tdep->ppc_lr_regnum);
2912 if (func == 0 && saved_lr == pc)
2913 make_frame = 1;
2914 else if (func != 0)
2915 {
2916 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
2917 if (func == saved_func)
2918 make_frame = 1;
2919 }
2920
2921 if (make_frame)
2922 {
2923 fdata.frameless = 0;
de6a76fd 2924 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 2925 }
61a65099 2926 }
e10b1c4c
DJ
2927
2928 if (!fdata.frameless)
2929 /* Frameless really means stackless. */
2930 cache->base = read_memory_addr (cache->base, wordsize);
2931
3e8c568d 2932 trad_frame_set_value (cache->saved_regs,
8b164abb 2933 gdbarch_sp_regnum (gdbarch), cache->base);
61a65099
KB
2934
2935 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2936 All fpr's from saved_fpr to fp31 are saved. */
2937
2938 if (fdata.saved_fpr >= 0)
2939 {
2940 int i;
2941 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
2942
2943 /* If skip_prologue says floating-point registers were saved,
2944 but the current architecture has no floating-point registers,
2945 then that's strange. But we have no indices to even record
2946 the addresses under, so we just ignore it. */
2947 if (ppc_floating_point_unit_p (gdbarch))
063715bf 2948 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
2949 {
2950 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2951 fpr_addr += 8;
2952 }
61a65099
KB
2953 }
2954
2955 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2956 All gpr's from saved_gpr to gpr31 are saved. */
2957
2958 if (fdata.saved_gpr >= 0)
2959 {
2960 int i;
2961 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 2962 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
2963 {
2964 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2965 gpr_addr += wordsize;
2966 }
2967 }
2968
2969 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2970 All vr's from saved_vr to vr31 are saved. */
2971 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2972 {
2973 if (fdata.saved_vr >= 0)
2974 {
2975 int i;
2976 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2977 for (i = fdata.saved_vr; i < 32; i++)
2978 {
2979 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2980 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2981 }
2982 }
2983 }
2984
2985 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2986 All vr's from saved_ev to ev31 are saved. ????? */
2987 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2988 {
2989 if (fdata.saved_ev >= 0)
2990 {
2991 int i;
2992 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 2993 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
2994 {
2995 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2996 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2997 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2998 }
2999 }
3000 }
3001
3002 /* If != 0, fdata.cr_offset is the offset from the frame that
3003 holds the CR. */
3004 if (fdata.cr_offset != 0)
3005 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3006
3007 /* If != 0, fdata.lr_offset is the offset from the frame that
3008 holds the LR. */
3009 if (fdata.lr_offset != 0)
3010 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3011 /* The PC is found in the link register. */
8b164abb 3012 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3e8c568d 3013 cache->saved_regs[tdep->ppc_lr_regnum];
61a65099
KB
3014
3015 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3016 holds the VRSAVE. */
3017 if (fdata.vrsave_offset != 0)
3018 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3019
3020 if (fdata.alloca_reg < 0)
3021 /* If no alloca register used, then fi->frame is the value of the
3022 %sp for this frame, and it is good enough. */
3e8c568d 3023 cache->initial_sp = frame_unwind_register_unsigned
8b164abb 3024 (next_frame, gdbarch_sp_regnum (gdbarch));
61a65099
KB
3025 else
3026 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3027 fdata.alloca_reg);
3028
3029 return cache;
3030}
3031
3032static void
3033rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3034 struct frame_id *this_id)
3035{
3036 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3037 this_cache);
93d42b30
DJ
3038 (*this_id) = frame_id_build (info->base,
3039 frame_func_unwind (next_frame, NORMAL_FRAME));
61a65099
KB
3040}
3041
3042static void
3043rs6000_frame_prev_register (struct frame_info *next_frame,
3044 void **this_cache,
3045 int regnum, int *optimizedp,
3046 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3047 int *realnump, gdb_byte *valuep)
61a65099
KB
3048{
3049 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3050 this_cache);
1f67027d
AC
3051 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3052 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3053}
3054
3055static const struct frame_unwind rs6000_frame_unwind =
3056{
3057 NORMAL_FRAME,
3058 rs6000_frame_this_id,
3059 rs6000_frame_prev_register
3060};
3061
3062static const struct frame_unwind *
3063rs6000_frame_sniffer (struct frame_info *next_frame)
3064{
3065 return &rs6000_frame_unwind;
3066}
3067
3068\f
3069
3070static CORE_ADDR
3071rs6000_frame_base_address (struct frame_info *next_frame,
3072 void **this_cache)
3073{
3074 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3075 this_cache);
3076 return info->initial_sp;
3077}
3078
3079static const struct frame_base rs6000_frame_base = {
3080 &rs6000_frame_unwind,
3081 rs6000_frame_base_address,
3082 rs6000_frame_base_address,
3083 rs6000_frame_base_address
3084};
3085
3086static const struct frame_base *
3087rs6000_frame_base_sniffer (struct frame_info *next_frame)
3088{
3089 return &rs6000_frame_base;
3090}
3091
9274a07c
LM
3092/* DWARF-2 frame support. Used to handle the detection of
3093 clobbered registers during function calls. */
3094
3095static void
3096ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3097 struct dwarf2_frame_state_reg *reg,
3098 struct frame_info *next_frame)
3099{
3100 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3101
3102 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3103 non-volatile registers. We will use the same code for both. */
3104
3105 /* Call-saved GP registers. */
3106 if ((regnum >= tdep->ppc_gp0_regnum + 14
3107 && regnum <= tdep->ppc_gp0_regnum + 31)
3108 || (regnum == tdep->ppc_gp0_regnum + 1))
3109 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3110
3111 /* Call-clobbered GP registers. */
3112 if ((regnum >= tdep->ppc_gp0_regnum + 3
3113 && regnum <= tdep->ppc_gp0_regnum + 12)
3114 || (regnum == tdep->ppc_gp0_regnum))
3115 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3116
3117 /* Deal with FP registers, if supported. */
3118 if (tdep->ppc_fp0_regnum >= 0)
3119 {
3120 /* Call-saved FP registers. */
3121 if ((regnum >= tdep->ppc_fp0_regnum + 14
3122 && regnum <= tdep->ppc_fp0_regnum + 31))
3123 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3124
3125 /* Call-clobbered FP registers. */
3126 if ((regnum >= tdep->ppc_fp0_regnum
3127 && regnum <= tdep->ppc_fp0_regnum + 13))
3128 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3129 }
3130
3131 /* Deal with ALTIVEC registers, if supported. */
3132 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3133 {
3134 /* Call-saved Altivec registers. */
3135 if ((regnum >= tdep->ppc_vr0_regnum + 20
3136 && regnum <= tdep->ppc_vr0_regnum + 31)
3137 || regnum == tdep->ppc_vrsave_regnum)
3138 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3139
3140 /* Call-clobbered Altivec registers. */
3141 if ((regnum >= tdep->ppc_vr0_regnum
3142 && regnum <= tdep->ppc_vr0_regnum + 19))
3143 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3144 }
3145
3146 /* Handle PC register and Stack Pointer correctly. */
3147 if (regnum == gdbarch_pc_regnum (current_gdbarch))
3148 reg->how = DWARF2_FRAME_REG_RA;
3149 else if (regnum == gdbarch_sp_regnum (current_gdbarch))
3150 reg->how = DWARF2_FRAME_REG_CFA;
3151}
3152
3153
7a78ae4e
ND
3154/* Initialize the current architecture based on INFO. If possible, re-use an
3155 architecture from ARCHES, which is a list of architectures already created
3156 during this debugging session.
c906108c 3157
7a78ae4e 3158 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3159 a binary file. */
c906108c 3160
7a78ae4e
ND
3161static struct gdbarch *
3162rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3163{
3164 struct gdbarch *gdbarch;
3165 struct gdbarch_tdep *tdep;
7cc46491 3166 int wordsize, from_xcoff_exec, from_elf_exec;
7a78ae4e
ND
3167 enum bfd_architecture arch;
3168 unsigned long mach;
3169 bfd abfd;
7b112f9c 3170 int sysv_abi;
5bf1c677 3171 asection *sect;
55eddb0f
DJ
3172 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3173 int soft_float;
3174 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
7cc46491
DJ
3175 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0;
3176 int tdesc_wordsize = -1;
3177 const struct target_desc *tdesc = info.target_desc;
3178 struct tdesc_arch_data *tdesc_data = NULL;
3179 int num_sprs = 0;
7a78ae4e 3180
9aa1e687 3181 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3182 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3183
9aa1e687
KB
3184 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3185 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3186
3187 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3188
e712c1cf 3189 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3190 that, else choose a likely default. */
9aa1e687 3191 if (from_xcoff_exec)
c906108c 3192 {
11ed25ac 3193 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3194 wordsize = 8;
3195 else
3196 wordsize = 4;
c906108c 3197 }
9aa1e687
KB
3198 else if (from_elf_exec)
3199 {
3200 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3201 wordsize = 8;
3202 else
3203 wordsize = 4;
3204 }
7cc46491
DJ
3205 else if (tdesc_has_registers (tdesc))
3206 wordsize = -1;
c906108c 3207 else
7a78ae4e 3208 {
27b15785
KB
3209 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3210 wordsize = info.bfd_arch_info->bits_per_word /
3211 info.bfd_arch_info->bits_per_byte;
3212 else
3213 wordsize = 4;
7a78ae4e 3214 }
c906108c 3215
9aa1e687 3216 if (!from_xcoff_exec)
c906108c 3217 {
b732d07d 3218 arch = info.bfd_arch_info->arch;
7a78ae4e 3219 mach = info.bfd_arch_info->mach;
c906108c 3220 }
7a78ae4e 3221 else
c906108c 3222 {
7a78ae4e 3223 arch = bfd_arch_powerpc;
35cec841 3224 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3225 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3226 mach = info.bfd_arch_info->mach;
7a78ae4e 3227 }
5bf1c677
EZ
3228
3229 /* For e500 executables, the apuinfo section is of help here. Such
3230 section contains the identifier and revision number of each
3231 Application-specific Processing Unit that is present on the
3232 chip. The content of the section is determined by the assembler
3233 which looks at each instruction and determines which unit (and
3234 which version of it) can execute it. In our case we just look for
3235 the existance of the section. */
3236
3237 if (info.abfd)
3238 {
3239 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3240 if (sect)
3241 {
3242 arch = info.bfd_arch_info->arch;
3243 mach = bfd_mach_ppc_e500;
3244 bfd_default_set_arch_mach (&abfd, arch, mach);
3245 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3246 }
3247 }
3248
7cc46491
DJ
3249 /* Find a default target description which describes our register
3250 layout, if we do not already have one. */
3251 if (! tdesc_has_registers (tdesc))
3252 {
3253 const struct variant *v;
3254
3255 /* Choose variant. */
3256 v = find_variant_by_arch (arch, mach);
3257 if (!v)
3258 return NULL;
3259
3260 tdesc = *v->tdesc;
3261 }
3262
3263 gdb_assert (tdesc_has_registers (tdesc));
3264
3265 /* Check any target description for validity. */
3266 if (tdesc_has_registers (tdesc))
3267 {
3268 static const char *const gprs[] = {
3269 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3270 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3271 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3272 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3273 };
3274 static const char *const segment_regs[] = {
3275 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3276 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3277 };
3278 const struct tdesc_feature *feature;
3279 int i, valid_p;
3280 static const char *const msr_names[] = { "msr", "ps" };
3281 static const char *const cr_names[] = { "cr", "cnd" };
3282 static const char *const ctr_names[] = { "ctr", "cnt" };
3283
3284 feature = tdesc_find_feature (tdesc,
3285 "org.gnu.gdb.power.core");
3286 if (feature == NULL)
3287 return NULL;
3288
3289 tdesc_data = tdesc_data_alloc ();
3290
3291 valid_p = 1;
3292 for (i = 0; i < ppc_num_gprs; i++)
3293 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3294 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3295 "pc");
3296 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3297 "lr");
3298 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3299 "xer");
3300
3301 /* Allow alternate names for these registers, to accomodate GDB's
3302 historic naming. */
3303 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3304 PPC_MSR_REGNUM, msr_names);
3305 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3306 PPC_CR_REGNUM, cr_names);
3307 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3308 PPC_CTR_REGNUM, ctr_names);
3309
3310 if (!valid_p)
3311 {
3312 tdesc_data_cleanup (tdesc_data);
3313 return NULL;
3314 }
3315
3316 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3317 "mq");
3318
3319 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3320 if (wordsize == -1)
3321 wordsize = tdesc_wordsize;
3322
3323 feature = tdesc_find_feature (tdesc,
3324 "org.gnu.gdb.power.fpu");
3325 if (feature != NULL)
3326 {
3327 static const char *const fprs[] = {
3328 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3329 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3330 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3331 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3332 };
3333 valid_p = 1;
3334 for (i = 0; i < ppc_num_fprs; i++)
3335 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3336 PPC_F0_REGNUM + i, fprs[i]);
3337 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3338 PPC_FPSCR_REGNUM, "fpscr");
3339
3340 if (!valid_p)
3341 {
3342 tdesc_data_cleanup (tdesc_data);
3343 return NULL;
3344 }
3345 have_fpu = 1;
3346 }
3347 else
3348 have_fpu = 0;
3349
3350 feature = tdesc_find_feature (tdesc,
3351 "org.gnu.gdb.power.altivec");
3352 if (feature != NULL)
3353 {
3354 static const char *const vector_regs[] = {
3355 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3356 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3357 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3358 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3359 };
3360
3361 valid_p = 1;
3362 for (i = 0; i < ppc_num_gprs; i++)
3363 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3364 PPC_VR0_REGNUM + i,
3365 vector_regs[i]);
3366 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3367 PPC_VSCR_REGNUM, "vscr");
3368 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3369 PPC_VRSAVE_REGNUM, "vrsave");
3370
3371 if (have_spe || !valid_p)
3372 {
3373 tdesc_data_cleanup (tdesc_data);
3374 return NULL;
3375 }
3376 have_altivec = 1;
3377 }
3378 else
3379 have_altivec = 0;
3380
3381 /* On machines supporting the SPE APU, the general-purpose registers
3382 are 64 bits long. There are SIMD vector instructions to treat them
3383 as pairs of floats, but the rest of the instruction set treats them
3384 as 32-bit registers, and only operates on their lower halves.
3385
3386 In the GDB regcache, we treat their high and low halves as separate
3387 registers. The low halves we present as the general-purpose
3388 registers, and then we have pseudo-registers that stitch together
3389 the upper and lower halves and present them as pseudo-registers.
3390
3391 Thus, the target description is expected to supply the upper
3392 halves separately. */
3393
3394 feature = tdesc_find_feature (tdesc,
3395 "org.gnu.gdb.power.spe");
3396 if (feature != NULL)
3397 {
3398 static const char *const upper_spe[] = {
3399 "ev0h", "ev1h", "ev2h", "ev3h",
3400 "ev4h", "ev5h", "ev6h", "ev7h",
3401 "ev8h", "ev9h", "ev10h", "ev11h",
3402 "ev12h", "ev13h", "ev14h", "ev15h",
3403 "ev16h", "ev17h", "ev18h", "ev19h",
3404 "ev20h", "ev21h", "ev22h", "ev23h",
3405 "ev24h", "ev25h", "ev26h", "ev27h",
3406 "ev28h", "ev29h", "ev30h", "ev31h"
3407 };
3408
3409 valid_p = 1;
3410 for (i = 0; i < ppc_num_gprs; i++)
3411 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3412 PPC_SPE_UPPER_GP0_REGNUM + i,
3413 upper_spe[i]);
3414 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3415 PPC_SPE_ACC_REGNUM, "acc");
3416 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3417 PPC_SPE_FSCR_REGNUM, "spefscr");
3418
3419 if (have_mq || have_fpu || !valid_p)
3420 {
3421 tdesc_data_cleanup (tdesc_data);
3422 return NULL;
3423 }
3424 have_spe = 1;
3425 }
3426 else
3427 have_spe = 0;
3428 }
3429
3430 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3431 complain for a 32-bit binary on a 64-bit target; we do not yet
3432 support that. For instance, the 32-bit ABI routines expect
3433 32-bit GPRs.
3434
3435 As long as there isn't an explicit target description, we'll
3436 choose one based on the BFD architecture and get a word size
3437 matching the binary (probably powerpc:common or
3438 powerpc:common64). So there is only trouble if a 64-bit target
3439 supplies a 64-bit description while debugging a 32-bit
3440 binary. */
3441 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3442 {
3443 tdesc_data_cleanup (tdesc_data);
3444 return NULL;
3445 }
3446
55eddb0f
DJ
3447#ifdef HAVE_ELF
3448 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3449 {
3450 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3451 Tag_GNU_Power_ABI_FP))
3452 {
3453 case 1:
3454 soft_float_flag = AUTO_BOOLEAN_FALSE;
3455 break;
3456 case 2:
3457 soft_float_flag = AUTO_BOOLEAN_TRUE;
3458 break;
3459 default:
3460 break;
3461 }
3462 }
3463
3464 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3465 {
3466 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3467 Tag_GNU_Power_ABI_Vector))
3468 {
3469 case 1:
3470 vector_abi = POWERPC_VEC_GENERIC;
3471 break;
3472 case 2:
3473 vector_abi = POWERPC_VEC_ALTIVEC;
3474 break;
3475 case 3:
3476 vector_abi = POWERPC_VEC_SPE;
3477 break;
3478 default:
3479 break;
3480 }
3481 }
3482#endif
3483
3484 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3485 soft_float = 1;
3486 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3487 soft_float = 0;
3488 else
3489 soft_float = !have_fpu;
3490
3491 /* If we have a hard float binary or setting but no floating point
3492 registers, downgrade to soft float anyway. We're still somewhat
3493 useful in this scenario. */
3494 if (!soft_float && !have_fpu)
3495 soft_float = 1;
3496
3497 /* Similarly for vector registers. */
3498 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3499 vector_abi = POWERPC_VEC_GENERIC;
3500
3501 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3502 vector_abi = POWERPC_VEC_GENERIC;
3503
3504 if (vector_abi == POWERPC_VEC_AUTO)
3505 {
3506 if (have_altivec)
3507 vector_abi = POWERPC_VEC_ALTIVEC;
3508 else if (have_spe)
3509 vector_abi = POWERPC_VEC_SPE;
3510 else
3511 vector_abi = POWERPC_VEC_GENERIC;
3512 }
3513
3514 /* Do not limit the vector ABI based on available hardware, since we
3515 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3516
7cc46491
DJ
3517 /* Find a candidate among extant architectures. */
3518 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3519 arches != NULL;
3520 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3521 {
3522 /* Word size in the various PowerPC bfd_arch_info structs isn't
3523 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3524 separate word size check. */
3525 tdep = gdbarch_tdep (arches->gdbarch);
55eddb0f
DJ
3526 if (tdep && tdep->soft_float != soft_float)
3527 continue;
3528 if (tdep && tdep->vector_abi != vector_abi)
3529 continue;
7cc46491
DJ
3530 if (tdep && tdep->wordsize == wordsize)
3531 {
3532 if (tdesc_data != NULL)
3533 tdesc_data_cleanup (tdesc_data);
3534 return arches->gdbarch;
3535 }
3536 }
3537
3538 /* None found, create a new architecture from INFO, whose bfd_arch_info
3539 validity depends on the source:
3540 - executable useless
3541 - rs6000_host_arch() good
3542 - core file good
3543 - "set arch" trust blindly
3544 - GDB startup useless but harmless */
3545
3546 tdep = XCALLOC (1, struct gdbarch_tdep);
3547 tdep->wordsize = wordsize;
55eddb0f
DJ
3548 tdep->soft_float = soft_float;
3549 tdep->vector_abi = vector_abi;
7cc46491 3550
7a78ae4e 3551 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3552
7cc46491
DJ
3553 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3554 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3555 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3556 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3557 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3558 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3559 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3560 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3561
3562 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3563 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
3564 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3565 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3566 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3567 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3568 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3569
3570 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3571 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3572 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3573 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
9f643768 3574 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7cc46491
DJ
3575
3576 /* The XML specification for PowerPC sensibly calls the MSR "msr".
3577 GDB traditionally called it "ps", though, so let GDB add an
3578 alias. */
3579 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3580
afd48b75 3581 if (sysv_abi && wordsize == 8)
05580c65 3582 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3583 else if (sysv_abi && wordsize == 4)
05580c65 3584 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75 3585 else
d217aaed 3586 set_gdbarch_return_value (gdbarch, rs6000_return_value);
c8001721 3587
baffbae0
JB
3588 /* Set lr_frame_offset. */
3589 if (wordsize == 8)
3590 tdep->lr_frame_offset = 16;
3591 else if (sysv_abi)
3592 tdep->lr_frame_offset = 4;
3593 else
3594 tdep->lr_frame_offset = 8;
3595
7cc46491
DJ
3596 if (have_spe)
3597 {
3598 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3599 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3600 }
1fcc0bb8 3601
e0d24f8d
WZ
3602 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3603
56a6dfb9 3604 /* Select instruction printer. */
708ff411 3605 if (arch == bfd_arch_rs6000)
9364a0ef 3606 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3607 else
9364a0ef 3608 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3609
7cc46491
DJ
3610 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS + num_sprs);
3611 set_gdbarch_num_pseudo_regs (gdbarch, have_spe ? 32 : 0);
7a78ae4e
ND
3612
3613 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3614 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3615 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3616 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3617 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3618 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3619 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3620 if (sysv_abi)
3621 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3622 else
3623 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3624 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3625
11269d7e 3626 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3627 if (sysv_abi && wordsize == 8)
3628 /* PPC64 SYSV. */
3629 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3630 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3631 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3632 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3633 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3634 224. */
3635 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3636
691d145a
JB
3637 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3638 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3639 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3640
18ed0c4e
JB
3641 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3642 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 3643
2ea5f656 3644 if (sysv_abi && wordsize == 4)
77b2b6d4 3645 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3646 else if (sysv_abi && wordsize == 8)
3647 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3648 else
77b2b6d4 3649 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3650
7a78ae4e 3651 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
0d1243d9
PG
3652 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3653
7a78ae4e 3654 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3655 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3656
203c3895
UW
3657 /* The value of symbols of type N_SO and N_FUN maybe null when
3658 it shouldn't be. */
3659 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
3660
ce5eab59
UW
3661 /* Handles single stepping of atomic sequences. */
3662 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3663
6066c3de
AC
3664 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3665 for the descriptor and ".FN" for the entry-point -- a user
3666 specifying "break FN" will unexpectedly end up with a breakpoint
3667 on the descriptor and not the function. This architecture method
3668 transforms any breakpoints on descriptors into breakpoints on the
3669 corresponding entry point. */
3670 if (sysv_abi && wordsize == 8)
3671 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3672
7a78ae4e
ND
3673 /* Not sure on this. FIXMEmgo */
3674 set_gdbarch_frame_args_skip (gdbarch, 8);
3675
15813d3f
AC
3676 if (!sysv_abi)
3677 {
3678 /* Handle RS/6000 function pointers (which are really function
3679 descriptors). */
f517ea4e
PS
3680 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3681 rs6000_convert_from_func_ptr_addr);
9aa1e687 3682 }
7a78ae4e 3683
143985b7
AF
3684 /* Helpers for function argument information. */
3685 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3686
6f7f3f0d
UW
3687 /* Trampoline. */
3688 set_gdbarch_in_solib_return_trampoline
3689 (gdbarch, rs6000_in_solib_return_trampoline);
3690 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3691
4fc771b8
DJ
3692 /* Hook in the DWARF CFI frame unwinder. */
3693 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3694 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3695
9274a07c
LM
3696 /* Frame handling. */
3697 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
3698
7b112f9c 3699 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3700 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3701
61a65099
KB
3702 switch (info.osabi)
3703 {
f5aecab8 3704 case GDB_OSABI_LINUX:
61a65099
KB
3705 case GDB_OSABI_NETBSD_AOUT:
3706 case GDB_OSABI_NETBSD_ELF:
3707 case GDB_OSABI_UNKNOWN:
61a65099
KB
3708 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3709 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3710 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3711 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3712 break;
3713 default:
61a65099 3714 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3715
3716 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3717 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3718 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3719 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3720 }
3721
7cc46491
DJ
3722 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
3723 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3724 rs6000_pseudo_register_reggroup_p);
3725 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3726
3727 /* Override the normal target description method to make the SPE upper
3728 halves anonymous. */
3729 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3730
3731 /* Recording the numbering of pseudo registers. */
3732 tdep->ppc_ev0_regnum = have_spe ? gdbarch_num_regs (gdbarch) : -1;
3733 tdep->ppc_ev31_regnum = have_spe ? tdep->ppc_ev0_regnum + 31 : -1;
9f643768 3734
7a78ae4e 3735 return gdbarch;
c906108c
SS
3736}
3737
7b112f9c 3738static void
8b164abb 3739rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7b112f9c 3740{
8b164abb 3741 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7b112f9c
JT
3742
3743 if (tdep == NULL)
3744 return;
3745
4be87837 3746 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3747}
3748
55eddb0f
DJ
3749/* PowerPC-specific commands. */
3750
3751static void
3752set_powerpc_command (char *args, int from_tty)
3753{
3754 printf_unfiltered (_("\
3755\"set powerpc\" must be followed by an appropriate subcommand.\n"));
3756 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
3757}
3758
3759static void
3760show_powerpc_command (char *args, int from_tty)
3761{
3762 cmd_show_list (showpowerpccmdlist, from_tty, "");
3763}
3764
3765static void
3766powerpc_set_soft_float (char *args, int from_tty,
3767 struct cmd_list_element *c)
3768{
3769 struct gdbarch_info info;
3770
3771 /* Update the architecture. */
3772 gdbarch_info_init (&info);
3773 if (!gdbarch_update_p (info))
3774 internal_error (__FILE__, __LINE__, "could not update architecture");
3775}
3776
3777static void
3778powerpc_set_vector_abi (char *args, int from_tty,
3779 struct cmd_list_element *c)
3780{
3781 struct gdbarch_info info;
3782 enum powerpc_vector_abi vector_abi;
3783
3784 for (vector_abi = POWERPC_VEC_AUTO;
3785 vector_abi != POWERPC_VEC_LAST;
3786 vector_abi++)
3787 if (strcmp (powerpc_vector_abi_string,
3788 powerpc_vector_strings[vector_abi]) == 0)
3789 {
3790 powerpc_vector_abi_global = vector_abi;
3791 break;
3792 }
3793
3794 if (vector_abi == POWERPC_VEC_LAST)
3795 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
3796 powerpc_vector_abi_string);
3797
3798 /* Update the architecture. */
3799 gdbarch_info_init (&info);
3800 if (!gdbarch_update_p (info))
3801 internal_error (__FILE__, __LINE__, "could not update architecture");
3802}
3803
c906108c
SS
3804/* Initialization code. */
3805
a78f21af 3806extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3807
c906108c 3808void
fba45db2 3809_initialize_rs6000_tdep (void)
c906108c 3810{
7b112f9c
JT
3811 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3812 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7cc46491
DJ
3813
3814 /* Initialize the standard target descriptions. */
3815 initialize_tdesc_powerpc_32 ();
3816 initialize_tdesc_powerpc_403 ();
3817 initialize_tdesc_powerpc_403gc ();
3818 initialize_tdesc_powerpc_505 ();
3819 initialize_tdesc_powerpc_601 ();
3820 initialize_tdesc_powerpc_602 ();
3821 initialize_tdesc_powerpc_603 ();
3822 initialize_tdesc_powerpc_604 ();
3823 initialize_tdesc_powerpc_64 ();
3824 initialize_tdesc_powerpc_7400 ();
3825 initialize_tdesc_powerpc_750 ();
3826 initialize_tdesc_powerpc_860 ();
3827 initialize_tdesc_powerpc_e500 ();
3828 initialize_tdesc_rs6000 ();
55eddb0f
DJ
3829
3830 /* Add root prefix command for all "set powerpc"/"show powerpc"
3831 commands. */
3832 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
3833 _("Various PowerPC-specific commands."),
3834 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
3835
3836 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
3837 _("Various PowerPC-specific commands."),
3838 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
3839
3840 /* Add a command to allow the user to force the ABI. */
3841 add_setshow_auto_boolean_cmd ("soft-float", class_support,
3842 &powerpc_soft_float_global,
3843 _("Set whether to use a soft-float ABI."),
3844 _("Show whether to use a soft-float ABI."),
3845 NULL,
3846 powerpc_set_soft_float, NULL,
3847 &setpowerpccmdlist, &showpowerpccmdlist);
3848
3849 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
3850 &powerpc_vector_abi_string,
3851 _("Set the vector ABI."),
3852 _("Show the vector ABI."),
3853 NULL, powerpc_set_vector_abi, NULL,
3854 &setpowerpccmdlist, &showpowerpccmdlist);
c906108c 3855}
This page took 0.972215 seconds and 4 git commands to generate.