2004-08-05 Michael Chastain <mec.gnu@mindspring.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6
AC
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
7a78ae4e 43
2fccf04a 44#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 45#include "coff/internal.h" /* for libcoff.h */
2fccf04a 46#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
47#include "coff/xcoff.h"
48#include "libxcoff.h"
7a78ae4e 49
9aa1e687 50#include "elf-bfd.h"
7a78ae4e 51
6ded7999 52#include "solib-svr4.h"
9aa1e687 53#include "ppc-tdep.h"
7a78ae4e 54
338ef23d 55#include "gdb_assert.h"
a89aa300 56#include "dis-asm.h"
338ef23d 57
61a65099
KB
58#include "trad-frame.h"
59#include "frame-unwind.h"
60#include "frame-base.h"
61
7a78ae4e
ND
62/* If the kernel has to deliver a signal, it pushes a sigcontext
63 structure on the stack and then calls the signal handler, passing
64 the address of the sigcontext in an argument register. Usually
65 the signal handler doesn't save this register, so we have to
66 access the sigcontext structure via an offset from the signal handler
67 frame.
68 The following constants were determined by experimentation on AIX 3.2. */
69#define SIG_FRAME_PC_OFFSET 96
70#define SIG_FRAME_LR_OFFSET 108
71#define SIG_FRAME_FP_OFFSET 284
72
7a78ae4e
ND
73/* To be used by skip_prologue. */
74
75struct rs6000_framedata
76 {
77 int offset; /* total size of frame --- the distance
78 by which we decrement sp to allocate
79 the frame */
80 int saved_gpr; /* smallest # of saved gpr */
81 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 82 int saved_vr; /* smallest # of saved vr */
96ff0de4 83 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
84 int alloca_reg; /* alloca register number (frame ptr) */
85 char frameless; /* true if frameless functions. */
86 char nosavedpc; /* true if pc not saved. */
87 int gpr_offset; /* offset of saved gprs from prev sp */
88 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 89 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 90 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
91 int lr_offset; /* offset of saved lr */
92 int cr_offset; /* offset of saved cr */
6be8bc0c 93 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
94 };
95
96/* Description of a single register. */
97
98struct reg
99 {
100 char *name; /* name of register */
101 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
102 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
103 unsigned char fpr; /* whether register is floating-point */
489461e2 104 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
105 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
106 This is an ISA SPR number, not a GDB
107 register number. */
7a78ae4e
ND
108 };
109
c906108c
SS
110/* Breakpoint shadows for the single step instructions will be kept here. */
111
c5aa993b
JM
112static struct sstep_breaks
113 {
114 /* Address, or 0 if this is not in use. */
115 CORE_ADDR address;
116 /* Shadow contents. */
117 char data[4];
118 }
119stepBreaks[2];
c906108c
SS
120
121/* Hook for determining the TOC address when calling functions in the
122 inferior under AIX. The initialization code in rs6000-nat.c sets
123 this hook to point to find_toc_address. */
124
7a78ae4e
ND
125CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
126
127/* Hook to set the current architecture when starting a child process.
128 rs6000-nat.c sets this. */
129
130void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
131
132/* Static function prototypes */
133
a14ed312
KB
134static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
135 CORE_ADDR safety);
077276e8
KB
136static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
137 struct rs6000_framedata *);
c906108c 138
64b84175
KB
139/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
140int
141altivec_register_p (int regno)
142{
143 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
144 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
145 return 0;
146 else
147 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
148}
149
383f0f5b 150
867e2dc5
JB
151/* Return true if REGNO is an SPE register, false otherwise. */
152int
153spe_register_p (int regno)
154{
155 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
156
157 /* Is it a reference to EV0 -- EV31, and do we have those? */
158 if (tdep->ppc_ev0_regnum >= 0
159 && tdep->ppc_ev31_regnum >= 0
160 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
161 return 1;
162
6ced10dd
JB
163 /* Is it a reference to one of the raw upper GPR halves? */
164 if (tdep->ppc_ev0_upper_regnum >= 0
165 && tdep->ppc_ev0_upper_regnum <= regno
166 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
167 return 1;
168
867e2dc5
JB
169 /* Is it a reference to the 64-bit accumulator, and do we have that? */
170 if (tdep->ppc_acc_regnum >= 0
171 && tdep->ppc_acc_regnum == regno)
172 return 1;
173
174 /* Is it a reference to the SPE floating-point status and control register,
175 and do we have that? */
176 if (tdep->ppc_spefscr_regnum >= 0
177 && tdep->ppc_spefscr_regnum == regno)
178 return 1;
179
180 return 0;
181}
182
183
383f0f5b
JB
184/* Return non-zero if the architecture described by GDBARCH has
185 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
186int
187ppc_floating_point_unit_p (struct gdbarch *gdbarch)
188{
383f0f5b
JB
189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
190
191 return (tdep->ppc_fp0_regnum >= 0
192 && tdep->ppc_fpscr_regnum >= 0);
0a613259 193}
9f643768
JB
194
195static void
196set_sim_regno (int *table, int gdb_regno, int sim_regno)
197{
198 /* Make sure we don't try to assign any given GDB register a sim
199 register number more than once. */
200 gdb_assert (table[gdb_regno] == -1);
201 table[gdb_regno] = sim_regno;
202}
203
204static void
205init_sim_regno_table (struct gdbarch *arch)
206{
207 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
208 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
209 const struct reg *regs = tdep->regs;
210 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
211 int i;
212
213 /* Presume that all registers not explicitly mentioned below are
214 unavailable from the sim. */
215 for (i = 0; i < total_regs; i++)
216 sim_regno[i] = -1;
217
218 /* General-purpose registers. */
219 for (i = 0; i < ppc_num_gprs; i++)
220 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
221
222 /* Floating-point registers. */
223 if (tdep->ppc_fp0_regnum >= 0)
224 for (i = 0; i < ppc_num_fprs; i++)
225 set_sim_regno (sim_regno,
226 tdep->ppc_fp0_regnum + i,
227 sim_ppc_f0_regnum + i);
228 if (tdep->ppc_fpscr_regnum >= 0)
229 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
230
231 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
233 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
234
235 /* Segment registers. */
236 if (tdep->ppc_sr0_regnum >= 0)
237 for (i = 0; i < ppc_num_srs; i++)
238 set_sim_regno (sim_regno,
239 tdep->ppc_sr0_regnum + i,
240 sim_ppc_sr0_regnum + i);
241
242 /* Altivec registers. */
243 if (tdep->ppc_vr0_regnum >= 0)
244 {
245 for (i = 0; i < ppc_num_vrs; i++)
246 set_sim_regno (sim_regno,
247 tdep->ppc_vr0_regnum + i,
248 sim_ppc_vr0_regnum + i);
249
250 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
251 we can treat this more like the other cases. */
252 set_sim_regno (sim_regno,
253 tdep->ppc_vr0_regnum + ppc_num_vrs,
254 sim_ppc_vscr_regnum);
255 }
256 /* vsave is a special-purpose register, so the code below handles it. */
257
258 /* SPE APU (E500) registers. */
259 if (tdep->ppc_ev0_regnum >= 0)
260 for (i = 0; i < ppc_num_gprs; i++)
261 set_sim_regno (sim_regno,
262 tdep->ppc_ev0_regnum + i,
263 sim_ppc_ev0_regnum + i);
6ced10dd
JB
264 if (tdep->ppc_ev0_upper_regnum >= 0)
265 for (i = 0; i < ppc_num_gprs; i++)
266 set_sim_regno (sim_regno,
267 tdep->ppc_ev0_upper_regnum + i,
268 sim_ppc_rh0_regnum + i);
9f643768
JB
269 if (tdep->ppc_acc_regnum >= 0)
270 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
271 /* spefscr is a special-purpose register, so the code below handles it. */
272
273 /* Now handle all special-purpose registers. Verify that they
274 haven't mistakenly been assigned numbers by any of the above
275 code). */
276 for (i = 0; i < total_regs; i++)
277 if (regs[i].spr_num >= 0)
278 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
279
280 /* Drop the initialized array into place. */
281 tdep->sim_regno = sim_regno;
282}
283
284static int
285rs6000_register_sim_regno (int reg)
286{
287 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
288 int sim_regno;
289
290 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
291 sim_regno = tdep->sim_regno[reg];
292
293 if (sim_regno >= 0)
294 return sim_regno;
295 else
296 return LEGACY_SIM_REGNO_IGNORE;
297}
298
d195bc9f
MK
299\f
300
301/* Register set support functions. */
302
303static void
304ppc_supply_reg (struct regcache *regcache, int regnum,
305 const char *regs, size_t offset)
306{
307 if (regnum != -1 && offset != -1)
308 regcache_raw_supply (regcache, regnum, regs + offset);
309}
310
311static void
312ppc_collect_reg (const struct regcache *regcache, int regnum,
313 char *regs, size_t offset)
314{
315 if (regnum != -1 && offset != -1)
316 regcache_raw_collect (regcache, regnum, regs + offset);
317}
318
319/* Supply register REGNUM in the general-purpose register set REGSET
320 from the buffer specified by GREGS and LEN to register cache
321 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
322
323void
324ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
325 int regnum, const void *gregs, size_t len)
326{
327 struct gdbarch *gdbarch = get_regcache_arch (regcache);
328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
329 const struct ppc_reg_offsets *offsets = regset->descr;
330 size_t offset;
331 int i;
332
cdf2c5f5 333 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 334 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 335 i++, offset += 4)
d195bc9f
MK
336 {
337 if (regnum == -1 || regnum == i)
338 ppc_supply_reg (regcache, i, gregs, offset);
339 }
340
341 if (regnum == -1 || regnum == PC_REGNUM)
342 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
343 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
344 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
345 gregs, offsets->ps_offset);
346 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
347 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
348 gregs, offsets->cr_offset);
349 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
350 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
351 gregs, offsets->lr_offset);
352 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
353 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
354 gregs, offsets->ctr_offset);
355 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
356 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
357 gregs, offsets->cr_offset);
358 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
359 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
360}
361
362/* Supply register REGNUM in the floating-point register set REGSET
363 from the buffer specified by FPREGS and LEN to register cache
364 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
365
366void
367ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
368 int regnum, const void *fpregs, size_t len)
369{
370 struct gdbarch *gdbarch = get_regcache_arch (regcache);
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372 const struct ppc_reg_offsets *offsets = regset->descr;
373 size_t offset;
374 int i;
375
383f0f5b
JB
376 gdb_assert (ppc_floating_point_unit_p (gdbarch));
377
d195bc9f 378 offset = offsets->f0_offset;
366f009f
JB
379 for (i = tdep->ppc_fp0_regnum;
380 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
381 i++, offset += 4)
d195bc9f
MK
382 {
383 if (regnum == -1 || regnum == i)
384 ppc_supply_reg (regcache, i, fpregs, offset);
385 }
386
387 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
388 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
389 fpregs, offsets->fpscr_offset);
390}
391
392/* Collect register REGNUM in the general-purpose register set
393 REGSET. from register cache REGCACHE into the buffer specified by
394 GREGS and LEN. If REGNUM is -1, do this for all registers in
395 REGSET. */
396
397void
398ppc_collect_gregset (const struct regset *regset,
399 const struct regcache *regcache,
400 int regnum, void *gregs, size_t len)
401{
402 struct gdbarch *gdbarch = get_regcache_arch (regcache);
403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
404 const struct ppc_reg_offsets *offsets = regset->descr;
405 size_t offset;
406 int i;
407
408 offset = offsets->r0_offset;
cdf2c5f5 409 for (i = tdep->ppc_gp0_regnum;
063715bf 410 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 411 i++, offset += 4)
d195bc9f
MK
412 {
413 if (regnum == -1 || regnum == i)
2e56e9c1 414 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
415 }
416
417 if (regnum == -1 || regnum == PC_REGNUM)
418 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
419 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
420 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
421 gregs, offsets->ps_offset);
422 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
423 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
424 gregs, offsets->cr_offset);
425 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
426 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
427 gregs, offsets->lr_offset);
428 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
429 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
430 gregs, offsets->ctr_offset);
431 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
432 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
433 gregs, offsets->xer_offset);
434 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
435 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
436 gregs, offsets->mq_offset);
437}
438
439/* Collect register REGNUM in the floating-point register set
440 REGSET. from register cache REGCACHE into the buffer specified by
441 FPREGS and LEN. If REGNUM is -1, do this for all registers in
442 REGSET. */
443
444void
445ppc_collect_fpregset (const struct regset *regset,
446 const struct regcache *regcache,
447 int regnum, void *fpregs, size_t len)
448{
449 struct gdbarch *gdbarch = get_regcache_arch (regcache);
450 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
451 const struct ppc_reg_offsets *offsets = regset->descr;
452 size_t offset;
453 int i;
454
383f0f5b
JB
455 gdb_assert (ppc_floating_point_unit_p (gdbarch));
456
d195bc9f 457 offset = offsets->f0_offset;
366f009f
JB
458 for (i = tdep->ppc_fp0_regnum;
459 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
460 i++, offset += 4)
d195bc9f
MK
461 {
462 if (regnum == -1 || regnum == i)
463 ppc_collect_reg (regcache, regnum, fpregs, offset);
464 }
465
466 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
467 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
468 fpregs, offsets->fpscr_offset);
469}
470\f
0a613259 471
7a78ae4e 472/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 473
7a78ae4e
ND
474static CORE_ADDR
475read_memory_addr (CORE_ADDR memaddr, int len)
476{
477 return read_memory_unsigned_integer (memaddr, len);
478}
c906108c 479
7a78ae4e
ND
480static CORE_ADDR
481rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
482{
483 struct rs6000_framedata frame;
077276e8 484 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
485 return pc;
486}
487
488
c906108c
SS
489/* Fill in fi->saved_regs */
490
491struct frame_extra_info
492{
493 /* Functions calling alloca() change the value of the stack
494 pointer. We need to use initial stack pointer (which is saved in
495 r31 by gcc) in such cases. If a compiler emits traceback table,
496 then we should use the alloca register specified in traceback
497 table. FIXME. */
c5aa993b 498 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
499};
500
143985b7 501/* Get the ith function argument for the current function. */
b9362cc7 502static CORE_ADDR
143985b7
AF
503rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
504 struct type *type)
505{
506 CORE_ADDR addr;
7f5f525d 507 get_frame_register (frame, 3 + argi, &addr);
143985b7
AF
508 return addr;
509}
510
c906108c
SS
511/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
512
513static CORE_ADDR
7a78ae4e 514branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
515{
516 CORE_ADDR dest;
517 int immediate;
518 int absolute;
519 int ext_op;
520
521 absolute = (int) ((instr >> 1) & 1);
522
c5aa993b
JM
523 switch (opcode)
524 {
525 case 18:
526 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
527 if (absolute)
528 dest = immediate;
529 else
530 dest = pc + immediate;
531 break;
532
533 case 16:
534 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
535 if (absolute)
536 dest = immediate;
537 else
538 dest = pc + immediate;
539 break;
540
541 case 19:
542 ext_op = (instr >> 1) & 0x3ff;
543
544 if (ext_op == 16) /* br conditional register */
545 {
2188cbdd 546 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
547
548 /* If we are about to return from a signal handler, dest is
549 something like 0x3c90. The current frame is a signal handler
550 caller frame, upon completion of the sigreturn system call
551 execution will return to the saved PC in the frame. */
552 if (dest < TEXT_SEGMENT_BASE)
553 {
554 struct frame_info *fi;
555
556 fi = get_current_frame ();
557 if (fi != NULL)
8b36eed8 558 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 559 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
560 }
561 }
562
563 else if (ext_op == 528) /* br cond to count reg */
564 {
2188cbdd 565 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
566
567 /* If we are about to execute a system call, dest is something
568 like 0x22fc or 0x3b00. Upon completion the system call
569 will return to the address in the link register. */
570 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 571 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
572 }
573 else
574 return -1;
575 break;
c906108c 576
c5aa993b
JM
577 default:
578 return -1;
579 }
c906108c
SS
580 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
581}
582
583
584/* Sequence of bytes for breakpoint instruction. */
585
f4f9705a 586const static unsigned char *
7a78ae4e 587rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 588{
aaab4dba
AC
589 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
590 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 591 *bp_size = 4;
d7449b42 592 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
593 return big_breakpoint;
594 else
595 return little_breakpoint;
596}
597
598
599/* AIX does not support PT_STEP. Simulate it. */
600
601void
379d08a1
AC
602rs6000_software_single_step (enum target_signal signal,
603 int insert_breakpoints_p)
c906108c 604{
7c40d541
KB
605 CORE_ADDR dummy;
606 int breakp_sz;
f4f9705a 607 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
608 int ii, insn;
609 CORE_ADDR loc;
610 CORE_ADDR breaks[2];
611 int opcode;
612
c5aa993b
JM
613 if (insert_breakpoints_p)
614 {
c906108c 615
c5aa993b 616 loc = read_pc ();
c906108c 617
c5aa993b 618 insn = read_memory_integer (loc, 4);
c906108c 619
7c40d541 620 breaks[0] = loc + breakp_sz;
c5aa993b
JM
621 opcode = insn >> 26;
622 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 623
c5aa993b
JM
624 /* Don't put two breakpoints on the same address. */
625 if (breaks[1] == breaks[0])
626 breaks[1] = -1;
c906108c 627
c5aa993b 628 stepBreaks[1].address = 0;
c906108c 629
c5aa993b
JM
630 for (ii = 0; ii < 2; ++ii)
631 {
c906108c 632
c5aa993b
JM
633 /* ignore invalid breakpoint. */
634 if (breaks[ii] == -1)
635 continue;
7c40d541 636 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
637 stepBreaks[ii].address = breaks[ii];
638 }
c906108c 639
c5aa993b
JM
640 }
641 else
642 {
c906108c 643
c5aa993b
JM
644 /* remove step breakpoints. */
645 for (ii = 0; ii < 2; ++ii)
646 if (stepBreaks[ii].address != 0)
7c40d541
KB
647 target_remove_breakpoint (stepBreaks[ii].address,
648 stepBreaks[ii].data);
c5aa993b 649 }
c906108c 650 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 651 /* What errors? {read,write}_memory call error(). */
c906108c
SS
652}
653
654
655/* return pc value after skipping a function prologue and also return
656 information about a function frame.
657
658 in struct rs6000_framedata fdata:
c5aa993b
JM
659 - frameless is TRUE, if function does not have a frame.
660 - nosavedpc is TRUE, if function does not save %pc value in its frame.
661 - offset is the initial size of this stack frame --- the amount by
662 which we decrement the sp to allocate the frame.
663 - saved_gpr is the number of the first saved gpr.
664 - saved_fpr is the number of the first saved fpr.
6be8bc0c 665 - saved_vr is the number of the first saved vr.
96ff0de4 666 - saved_ev is the number of the first saved ev.
c5aa993b
JM
667 - alloca_reg is the number of the register used for alloca() handling.
668 Otherwise -1.
669 - gpr_offset is the offset of the first saved gpr from the previous frame.
670 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 671 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 672 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
673 - lr_offset is the offset of the saved lr
674 - cr_offset is the offset of the saved cr
6be8bc0c 675 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 676 */
c906108c
SS
677
678#define SIGNED_SHORT(x) \
679 ((sizeof (short) == 2) \
680 ? ((int)(short)(x)) \
681 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
682
683#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
684
55d05f3b
KB
685/* Limit the number of skipped non-prologue instructions, as the examining
686 of the prologue is expensive. */
687static int max_skip_non_prologue_insns = 10;
688
689/* Given PC representing the starting address of a function, and
690 LIM_PC which is the (sloppy) limit to which to scan when looking
691 for a prologue, attempt to further refine this limit by using
692 the line data in the symbol table. If successful, a better guess
693 on where the prologue ends is returned, otherwise the previous
694 value of lim_pc is returned. */
634aa483
AC
695
696/* FIXME: cagney/2004-02-14: This function and logic have largely been
697 superseded by skip_prologue_using_sal. */
698
55d05f3b
KB
699static CORE_ADDR
700refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
701{
702 struct symtab_and_line prologue_sal;
703
704 prologue_sal = find_pc_line (pc, 0);
705 if (prologue_sal.line != 0)
706 {
707 int i;
708 CORE_ADDR addr = prologue_sal.end;
709
710 /* Handle the case in which compiler's optimizer/scheduler
711 has moved instructions into the prologue. We scan ahead
712 in the function looking for address ranges whose corresponding
713 line number is less than or equal to the first one that we
714 found for the function. (It can be less than when the
715 scheduler puts a body instruction before the first prologue
716 instruction.) */
717 for (i = 2 * max_skip_non_prologue_insns;
718 i > 0 && (lim_pc == 0 || addr < lim_pc);
719 i--)
720 {
721 struct symtab_and_line sal;
722
723 sal = find_pc_line (addr, 0);
724 if (sal.line == 0)
725 break;
726 if (sal.line <= prologue_sal.line
727 && sal.symtab == prologue_sal.symtab)
728 {
729 prologue_sal = sal;
730 }
731 addr = sal.end;
732 }
733
734 if (lim_pc == 0 || prologue_sal.end < lim_pc)
735 lim_pc = prologue_sal.end;
736 }
737 return lim_pc;
738}
739
773df3e5
JB
740/* Return nonzero if the given instruction OP can be part of the prologue
741 of a function and saves a parameter on the stack. FRAMEP should be
742 set if one of the previous instructions in the function has set the
743 Frame Pointer. */
744
745static int
746store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
747{
748 /* Move parameters from argument registers to temporary register. */
749 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
750 {
751 /* Rx must be scratch register r0. */
752 const int rx_regno = (op >> 16) & 31;
753 /* Ry: Only r3 - r10 are used for parameter passing. */
754 const int ry_regno = GET_SRC_REG (op);
755
756 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
757 {
758 *r0_contains_arg = 1;
759 return 1;
760 }
761 else
762 return 0;
763 }
764
765 /* Save a General Purpose Register on stack. */
766
767 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
768 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
769 {
770 /* Rx: Only r3 - r10 are used for parameter passing. */
771 const int rx_regno = GET_SRC_REG (op);
772
773 return (rx_regno >= 3 && rx_regno <= 10);
774 }
775
776 /* Save a General Purpose Register on stack via the Frame Pointer. */
777
778 if (framep &&
779 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
780 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
781 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
782 {
783 /* Rx: Usually, only r3 - r10 are used for parameter passing.
784 However, the compiler sometimes uses r0 to hold an argument. */
785 const int rx_regno = GET_SRC_REG (op);
786
787 return ((rx_regno >= 3 && rx_regno <= 10)
788 || (rx_regno == 0 && *r0_contains_arg));
789 }
790
791 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
792 {
793 /* Only f2 - f8 are used for parameter passing. */
794 const int src_regno = GET_SRC_REG (op);
795
796 return (src_regno >= 2 && src_regno <= 8);
797 }
798
799 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
800 {
801 /* Only f2 - f8 are used for parameter passing. */
802 const int src_regno = GET_SRC_REG (op);
803
804 return (src_regno >= 2 && src_regno <= 8);
805 }
806
807 /* Not an insn that saves a parameter on stack. */
808 return 0;
809}
55d05f3b 810
7a78ae4e 811static CORE_ADDR
077276e8 812skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
813{
814 CORE_ADDR orig_pc = pc;
55d05f3b 815 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 816 CORE_ADDR li_found_pc = 0;
c906108c
SS
817 char buf[4];
818 unsigned long op;
819 long offset = 0;
6be8bc0c 820 long vr_saved_offset = 0;
482ca3f5
KB
821 int lr_reg = -1;
822 int cr_reg = -1;
6be8bc0c 823 int vr_reg = -1;
96ff0de4
EZ
824 int ev_reg = -1;
825 long ev_offset = 0;
6be8bc0c 826 int vrsave_reg = -1;
c906108c
SS
827 int reg;
828 int framep = 0;
829 int minimal_toc_loaded = 0;
ddb20c56 830 int prev_insn_was_prologue_insn = 1;
55d05f3b 831 int num_skip_non_prologue_insns = 0;
773df3e5 832 int r0_contains_arg = 0;
96ff0de4 833 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 834 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 835
55d05f3b
KB
836 /* Attempt to find the end of the prologue when no limit is specified.
837 Note that refine_prologue_limit() has been written so that it may
838 be used to "refine" the limits of non-zero PC values too, but this
839 is only safe if we 1) trust the line information provided by the
840 compiler and 2) iterate enough to actually find the end of the
841 prologue.
842
843 It may become a good idea at some point (for both performance and
844 accuracy) to unconditionally call refine_prologue_limit(). But,
845 until we can make a clear determination that this is beneficial,
846 we'll play it safe and only use it to obtain a limit when none
847 has been specified. */
848 if (lim_pc == 0)
849 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 850
ddb20c56 851 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
852 fdata->saved_gpr = -1;
853 fdata->saved_fpr = -1;
6be8bc0c 854 fdata->saved_vr = -1;
96ff0de4 855 fdata->saved_ev = -1;
c906108c
SS
856 fdata->alloca_reg = -1;
857 fdata->frameless = 1;
858 fdata->nosavedpc = 1;
859
55d05f3b 860 for (;; pc += 4)
c906108c 861 {
ddb20c56
KB
862 /* Sometimes it isn't clear if an instruction is a prologue
863 instruction or not. When we encounter one of these ambiguous
864 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
865 Otherwise, we'll assume that it really is a prologue instruction. */
866 if (prev_insn_was_prologue_insn)
867 last_prologue_pc = pc;
55d05f3b
KB
868
869 /* Stop scanning if we've hit the limit. */
870 if (lim_pc != 0 && pc >= lim_pc)
871 break;
872
ddb20c56
KB
873 prev_insn_was_prologue_insn = 1;
874
55d05f3b 875 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
876 if (target_read_memory (pc, buf, 4))
877 break;
878 op = extract_signed_integer (buf, 4);
c906108c 879
c5aa993b
JM
880 if ((op & 0xfc1fffff) == 0x7c0802a6)
881 { /* mflr Rx */
43b1ab88
AC
882 /* Since shared library / PIC code, which needs to get its
883 address at runtime, can appear to save more than one link
884 register vis:
885
886 *INDENT-OFF*
887 stwu r1,-304(r1)
888 mflr r3
889 bl 0xff570d0 (blrl)
890 stw r30,296(r1)
891 mflr r30
892 stw r31,300(r1)
893 stw r3,308(r1);
894 ...
895 *INDENT-ON*
896
897 remember just the first one, but skip over additional
898 ones. */
899 if (lr_reg < 0)
900 lr_reg = (op & 0x03e00000);
773df3e5
JB
901 if (lr_reg == 0)
902 r0_contains_arg = 0;
c5aa993b 903 continue;
c5aa993b
JM
904 }
905 else if ((op & 0xfc1fffff) == 0x7c000026)
906 { /* mfcr Rx */
98f08d3d 907 cr_reg = (op & 0x03e00000);
773df3e5
JB
908 if (cr_reg == 0)
909 r0_contains_arg = 0;
c5aa993b 910 continue;
c906108c 911
c906108c 912 }
c5aa993b
JM
913 else if ((op & 0xfc1f0000) == 0xd8010000)
914 { /* stfd Rx,NUM(r1) */
915 reg = GET_SRC_REG (op);
916 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
917 {
918 fdata->saved_fpr = reg;
919 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
920 }
921 continue;
c906108c 922
c5aa993b
JM
923 }
924 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
925 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
926 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
927 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
928 {
929
930 reg = GET_SRC_REG (op);
931 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
932 {
933 fdata->saved_gpr = reg;
7a78ae4e 934 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 935 op &= ~3UL;
c5aa993b
JM
936 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
937 }
938 continue;
c906108c 939
ddb20c56
KB
940 }
941 else if ((op & 0xffff0000) == 0x60000000)
942 {
96ff0de4 943 /* nop */
ddb20c56
KB
944 /* Allow nops in the prologue, but do not consider them to
945 be part of the prologue unless followed by other prologue
946 instructions. */
947 prev_insn_was_prologue_insn = 0;
948 continue;
949
c906108c 950 }
c5aa993b
JM
951 else if ((op & 0xffff0000) == 0x3c000000)
952 { /* addis 0,0,NUM, used
953 for >= 32k frames */
954 fdata->offset = (op & 0x0000ffff) << 16;
955 fdata->frameless = 0;
773df3e5 956 r0_contains_arg = 0;
c5aa993b
JM
957 continue;
958
959 }
960 else if ((op & 0xffff0000) == 0x60000000)
961 { /* ori 0,0,NUM, 2nd ha
962 lf of >= 32k frames */
963 fdata->offset |= (op & 0x0000ffff);
964 fdata->frameless = 0;
773df3e5 965 r0_contains_arg = 0;
c5aa993b
JM
966 continue;
967
968 }
98f08d3d
KB
969 else if (lr_reg != -1 &&
970 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
971 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
972 /* stw Rx, NUM(r1) */
973 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
974 /* stwu Rx, NUM(r1) */
975 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
976 { /* where Rx == lr */
977 fdata->lr_offset = offset;
c5aa993b
JM
978 fdata->nosavedpc = 0;
979 lr_reg = 0;
98f08d3d
KB
980 if ((op & 0xfc000003) == 0xf8000000 || /* std */
981 (op & 0xfc000000) == 0x90000000) /* stw */
982 {
983 /* Does not update r1, so add displacement to lr_offset. */
984 fdata->lr_offset += SIGNED_SHORT (op);
985 }
c5aa993b
JM
986 continue;
987
988 }
98f08d3d
KB
989 else if (cr_reg != -1 &&
990 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
991 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
992 /* stw Rx, NUM(r1) */
993 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
994 /* stwu Rx, NUM(r1) */
995 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
996 { /* where Rx == cr */
997 fdata->cr_offset = offset;
c5aa993b 998 cr_reg = 0;
98f08d3d
KB
999 if ((op & 0xfc000003) == 0xf8000000 ||
1000 (op & 0xfc000000) == 0x90000000)
1001 {
1002 /* Does not update r1, so add displacement to cr_offset. */
1003 fdata->cr_offset += SIGNED_SHORT (op);
1004 }
c5aa993b
JM
1005 continue;
1006
1007 }
1008 else if (op == 0x48000005)
1009 { /* bl .+4 used in
1010 -mrelocatable */
1011 continue;
1012
1013 }
1014 else if (op == 0x48000004)
1015 { /* b .+4 (xlc) */
1016 break;
1017
c5aa993b 1018 }
6be8bc0c
EZ
1019 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1020 in V.4 -mminimal-toc */
c5aa993b
JM
1021 (op & 0xffff0000) == 0x3bde0000)
1022 { /* addi 30,30,foo@l */
1023 continue;
c906108c 1024
c5aa993b
JM
1025 }
1026 else if ((op & 0xfc000001) == 0x48000001)
1027 { /* bl foo,
1028 to save fprs??? */
c906108c 1029
c5aa993b 1030 fdata->frameless = 0;
6be8bc0c
EZ
1031 /* Don't skip over the subroutine call if it is not within
1032 the first three instructions of the prologue. */
c5aa993b
JM
1033 if ((pc - orig_pc) > 8)
1034 break;
1035
1036 op = read_memory_integer (pc + 4, 4);
1037
6be8bc0c
EZ
1038 /* At this point, make sure this is not a trampoline
1039 function (a function that simply calls another functions,
1040 and nothing else). If the next is not a nop, this branch
1041 was part of the function prologue. */
c5aa993b
JM
1042
1043 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1044 break; /* don't skip over
1045 this branch */
1046 continue;
1047
c5aa993b 1048 }
98f08d3d
KB
1049 /* update stack pointer */
1050 else if ((op & 0xfc1f0000) == 0x94010000)
1051 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1052 fdata->frameless = 0;
1053 fdata->offset = SIGNED_SHORT (op);
1054 offset = fdata->offset;
1055 continue;
c5aa993b 1056 }
98f08d3d
KB
1057 else if ((op & 0xfc1f016a) == 0x7c01016e)
1058 { /* stwux rX,r1,rY */
1059 /* no way to figure out what r1 is going to be */
1060 fdata->frameless = 0;
1061 offset = fdata->offset;
1062 continue;
1063 }
1064 else if ((op & 0xfc1f0003) == 0xf8010001)
1065 { /* stdu rX,NUM(r1) */
1066 fdata->frameless = 0;
1067 fdata->offset = SIGNED_SHORT (op & ~3UL);
1068 offset = fdata->offset;
1069 continue;
1070 }
1071 else if ((op & 0xfc1f016a) == 0x7c01016a)
1072 { /* stdux rX,r1,rY */
1073 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1074 fdata->frameless = 0;
1075 offset = fdata->offset;
1076 continue;
c5aa993b 1077 }
98f08d3d
KB
1078 /* Load up minimal toc pointer */
1079 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1080 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 1081 && !minimal_toc_loaded)
98f08d3d 1082 {
c5aa993b
JM
1083 minimal_toc_loaded = 1;
1084 continue;
1085
f6077098
KB
1086 /* move parameters from argument registers to local variable
1087 registers */
1088 }
1089 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1090 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1091 (((op >> 21) & 31) <= 10) &&
96ff0de4 1092 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1093 {
1094 continue;
1095
c5aa993b
JM
1096 /* store parameters in stack */
1097 }
e802b915 1098 /* Move parameters from argument registers to temporary register. */
773df3e5 1099 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1100 {
c5aa993b
JM
1101 continue;
1102
1103 /* Set up frame pointer */
1104 }
1105 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1106 || op == 0x7c3f0b78)
1107 { /* mr r31, r1 */
1108 fdata->frameless = 0;
1109 framep = 1;
6f99cb26 1110 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1111 continue;
1112
1113 /* Another way to set up the frame pointer. */
1114 }
1115 else if ((op & 0xfc1fffff) == 0x38010000)
1116 { /* addi rX, r1, 0x0 */
1117 fdata->frameless = 0;
1118 framep = 1;
6f99cb26
AC
1119 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1120 + ((op & ~0x38010000) >> 21));
c5aa993b 1121 continue;
c5aa993b 1122 }
6be8bc0c
EZ
1123 /* AltiVec related instructions. */
1124 /* Store the vrsave register (spr 256) in another register for
1125 later manipulation, or load a register into the vrsave
1126 register. 2 instructions are used: mfvrsave and
1127 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1128 and mtspr SPR256, Rn. */
1129 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1130 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1131 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1132 {
1133 vrsave_reg = GET_SRC_REG (op);
1134 continue;
1135 }
1136 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1137 {
1138 continue;
1139 }
1140 /* Store the register where vrsave was saved to onto the stack:
1141 rS is the register where vrsave was stored in a previous
1142 instruction. */
1143 /* 100100 sssss 00001 dddddddd dddddddd */
1144 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1145 {
1146 if (vrsave_reg == GET_SRC_REG (op))
1147 {
1148 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1149 vrsave_reg = -1;
1150 }
1151 continue;
1152 }
1153 /* Compute the new value of vrsave, by modifying the register
1154 where vrsave was saved to. */
1155 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1156 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1157 {
1158 continue;
1159 }
1160 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1161 in a pair of insns to save the vector registers on the
1162 stack. */
1163 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1164 /* 001110 01110 00000 iiii iiii iiii iiii */
1165 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1166 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1167 {
773df3e5
JB
1168 if ((op & 0xffff0000) == 0x38000000)
1169 r0_contains_arg = 0;
6be8bc0c
EZ
1170 li_found_pc = pc;
1171 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1172
1173 /* This insn by itself is not part of the prologue, unless
1174 if part of the pair of insns mentioned above. So do not
1175 record this insn as part of the prologue yet. */
1176 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1177 }
1178 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1179 /* 011111 sssss 11111 00000 00111001110 */
1180 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1181 {
1182 if (pc == (li_found_pc + 4))
1183 {
1184 vr_reg = GET_SRC_REG (op);
1185 /* If this is the first vector reg to be saved, or if
1186 it has a lower number than others previously seen,
1187 reupdate the frame info. */
1188 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1189 {
1190 fdata->saved_vr = vr_reg;
1191 fdata->vr_offset = vr_saved_offset + offset;
1192 }
1193 vr_saved_offset = -1;
1194 vr_reg = -1;
1195 li_found_pc = 0;
1196 }
1197 }
1198 /* End AltiVec related instructions. */
96ff0de4
EZ
1199
1200 /* Start BookE related instructions. */
1201 /* Store gen register S at (r31+uimm).
1202 Any register less than r13 is volatile, so we don't care. */
1203 /* 000100 sssss 11111 iiiii 01100100001 */
1204 else if (arch_info->mach == bfd_mach_ppc_e500
1205 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1206 {
1207 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1208 {
1209 unsigned int imm;
1210 ev_reg = GET_SRC_REG (op);
1211 imm = (op >> 11) & 0x1f;
1212 ev_offset = imm * 8;
1213 /* If this is the first vector reg to be saved, or if
1214 it has a lower number than others previously seen,
1215 reupdate the frame info. */
1216 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1217 {
1218 fdata->saved_ev = ev_reg;
1219 fdata->ev_offset = ev_offset + offset;
1220 }
1221 }
1222 continue;
1223 }
1224 /* Store gen register rS at (r1+rB). */
1225 /* 000100 sssss 00001 bbbbb 01100100000 */
1226 else if (arch_info->mach == bfd_mach_ppc_e500
1227 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1228 {
1229 if (pc == (li_found_pc + 4))
1230 {
1231 ev_reg = GET_SRC_REG (op);
1232 /* If this is the first vector reg to be saved, or if
1233 it has a lower number than others previously seen,
1234 reupdate the frame info. */
1235 /* We know the contents of rB from the previous instruction. */
1236 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1237 {
1238 fdata->saved_ev = ev_reg;
1239 fdata->ev_offset = vr_saved_offset + offset;
1240 }
1241 vr_saved_offset = -1;
1242 ev_reg = -1;
1243 li_found_pc = 0;
1244 }
1245 continue;
1246 }
1247 /* Store gen register r31 at (rA+uimm). */
1248 /* 000100 11111 aaaaa iiiii 01100100001 */
1249 else if (arch_info->mach == bfd_mach_ppc_e500
1250 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1251 {
1252 /* Wwe know that the source register is 31 already, but
1253 it can't hurt to compute it. */
1254 ev_reg = GET_SRC_REG (op);
1255 ev_offset = ((op >> 11) & 0x1f) * 8;
1256 /* If this is the first vector reg to be saved, or if
1257 it has a lower number than others previously seen,
1258 reupdate the frame info. */
1259 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1260 {
1261 fdata->saved_ev = ev_reg;
1262 fdata->ev_offset = ev_offset + offset;
1263 }
1264
1265 continue;
1266 }
1267 /* Store gen register S at (r31+r0).
1268 Store param on stack when offset from SP bigger than 4 bytes. */
1269 /* 000100 sssss 11111 00000 01100100000 */
1270 else if (arch_info->mach == bfd_mach_ppc_e500
1271 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1272 {
1273 if (pc == (li_found_pc + 4))
1274 {
1275 if ((op & 0x03e00000) >= 0x01a00000)
1276 {
1277 ev_reg = GET_SRC_REG (op);
1278 /* If this is the first vector reg to be saved, or if
1279 it has a lower number than others previously seen,
1280 reupdate the frame info. */
1281 /* We know the contents of r0 from the previous
1282 instruction. */
1283 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1284 {
1285 fdata->saved_ev = ev_reg;
1286 fdata->ev_offset = vr_saved_offset + offset;
1287 }
1288 ev_reg = -1;
1289 }
1290 vr_saved_offset = -1;
1291 li_found_pc = 0;
1292 continue;
1293 }
1294 }
1295 /* End BookE related instructions. */
1296
c5aa993b
JM
1297 else
1298 {
55d05f3b
KB
1299 /* Not a recognized prologue instruction.
1300 Handle optimizer code motions into the prologue by continuing
1301 the search if we have no valid frame yet or if the return
1302 address is not yet saved in the frame. */
1303 if (fdata->frameless == 0
1304 && (lr_reg == -1 || fdata->nosavedpc == 0))
1305 break;
1306
1307 if (op == 0x4e800020 /* blr */
1308 || op == 0x4e800420) /* bctr */
1309 /* Do not scan past epilogue in frameless functions or
1310 trampolines. */
1311 break;
1312 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1313 /* Never skip branches. */
55d05f3b
KB
1314 break;
1315
1316 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1317 /* Do not scan too many insns, scanning insns is expensive with
1318 remote targets. */
1319 break;
1320
1321 /* Continue scanning. */
1322 prev_insn_was_prologue_insn = 0;
1323 continue;
c5aa993b 1324 }
c906108c
SS
1325 }
1326
1327#if 0
1328/* I have problems with skipping over __main() that I need to address
1329 * sometime. Previously, I used to use misc_function_vector which
1330 * didn't work as well as I wanted to be. -MGO */
1331
1332 /* If the first thing after skipping a prolog is a branch to a function,
1333 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1334 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1335 work before calling a function right after a prologue, thus we can
64366f1c 1336 single out such gcc2 behaviour. */
c906108c 1337
c906108c 1338
c5aa993b
JM
1339 if ((op & 0xfc000001) == 0x48000001)
1340 { /* bl foo, an initializer function? */
1341 op = read_memory_integer (pc + 4, 4);
1342
1343 if (op == 0x4def7b82)
1344 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1345
64366f1c
EZ
1346 /* Check and see if we are in main. If so, skip over this
1347 initializer function as well. */
c906108c 1348
c5aa993b 1349 tmp = find_pc_misc_function (pc);
6314a349
AC
1350 if (tmp >= 0
1351 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1352 return pc + 8;
1353 }
c906108c 1354 }
c906108c 1355#endif /* 0 */
c5aa993b
JM
1356
1357 fdata->offset = -fdata->offset;
ddb20c56 1358 return last_prologue_pc;
c906108c
SS
1359}
1360
1361
1362/*************************************************************************
f6077098 1363 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1364 frames, etc.
1365*************************************************************************/
1366
c906108c 1367
11269d7e
AC
1368/* All the ABI's require 16 byte alignment. */
1369static CORE_ADDR
1370rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1371{
1372 return (addr & -16);
1373}
1374
7a78ae4e 1375/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1376 the first eight words of the argument list (that might be less than
1377 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1378 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1379 passed in fpr's, in addition to that. Rest of the parameters if any
1380 are passed in user stack. There might be cases in which half of the
c906108c
SS
1381 parameter is copied into registers, the other half is pushed into
1382 stack.
1383
7a78ae4e
ND
1384 Stack must be aligned on 64-bit boundaries when synthesizing
1385 function calls.
1386
c906108c
SS
1387 If the function is returning a structure, then the return address is passed
1388 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1389 starting from r4. */
c906108c 1390
7a78ae4e 1391static CORE_ADDR
7d9b040b 1392rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1393 struct regcache *regcache, CORE_ADDR bp_addr,
1394 int nargs, struct value **args, CORE_ADDR sp,
1395 int struct_return, CORE_ADDR struct_addr)
c906108c 1396{
7a41266b 1397 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1398 int ii;
1399 int len = 0;
c5aa993b
JM
1400 int argno; /* current argument number */
1401 int argbytes; /* current argument byte */
1402 char tmp_buffer[50];
1403 int f_argno = 0; /* current floating point argno */
21283beb 1404 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1405 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1406
ea7c478f 1407 struct value *arg = 0;
c906108c
SS
1408 struct type *type;
1409
1410 CORE_ADDR saved_sp;
1411
383f0f5b
JB
1412 /* The calling convention this function implements assumes the
1413 processor has floating-point registers. We shouldn't be using it
1414 on PPC variants that lack them. */
1415 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1416
64366f1c 1417 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1418 Copy them appropriately. */
1419 ii = 0;
1420
1421 /* If the function is returning a `struct', then the first word
1422 (which will be passed in r3) is used for struct return address.
1423 In that case we should advance one word and start from r4
1424 register to copy parameters. */
1425 if (struct_return)
1426 {
1427 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1428 struct_addr);
1429 ii++;
1430 }
c906108c
SS
1431
1432/*
c5aa993b
JM
1433 effectively indirect call... gcc does...
1434
1435 return_val example( float, int);
1436
1437 eabi:
1438 float in fp0, int in r3
1439 offset of stack on overflow 8/16
1440 for varargs, must go by type.
1441 power open:
1442 float in r3&r4, int in r5
1443 offset of stack on overflow different
1444 both:
1445 return in r3 or f0. If no float, must study how gcc emulates floats;
1446 pay attention to arg promotion.
1447 User may have to cast\args to handle promotion correctly
1448 since gdb won't know if prototype supplied or not.
1449 */
c906108c 1450
c5aa993b
JM
1451 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1452 {
3acba339 1453 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1454
1455 arg = args[argno];
1456 type = check_typedef (VALUE_TYPE (arg));
1457 len = TYPE_LENGTH (type);
1458
1459 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1460 {
1461
64366f1c 1462 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1463 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1464 there is no way we would run out of them. */
c5aa993b
JM
1465
1466 if (len > 8)
c2b6b4aa
JB
1467 printf_unfiltered ("Fatal Error: a floating point parameter "
1468 "#%d with a size > 8 is found!\n", argno);
c5aa993b 1469
366f009f
JB
1470 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE
1471 (tdep->ppc_fp0_regnum + 1 + f_argno)],
c5aa993b
JM
1472 VALUE_CONTENTS (arg),
1473 len);
1474 ++f_argno;
1475 }
1476
f6077098 1477 if (len > reg_size)
c5aa993b
JM
1478 {
1479
64366f1c 1480 /* Argument takes more than one register. */
c5aa993b
JM
1481 while (argbytes < len)
1482 {
62700349 1483 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
524d7c18 1484 reg_size);
62700349 1485 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
c5aa993b 1486 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1487 (len - argbytes) > reg_size
1488 ? reg_size : len - argbytes);
1489 ++ii, argbytes += reg_size;
c5aa993b
JM
1490
1491 if (ii >= 8)
1492 goto ran_out_of_registers_for_arguments;
1493 }
1494 argbytes = 0;
1495 --ii;
1496 }
1497 else
64366f1c
EZ
1498 {
1499 /* Argument can fit in one register. No problem. */
d7449b42 1500 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
62700349
AC
1501 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1502 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
f6077098 1503 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1504 }
1505 ++argno;
c906108c 1506 }
c906108c
SS
1507
1508ran_out_of_registers_for_arguments:
1509
7a78ae4e 1510 saved_sp = read_sp ();
cc9836a8 1511
64366f1c 1512 /* Location for 8 parameters are always reserved. */
7a78ae4e 1513 sp -= wordsize * 8;
f6077098 1514
64366f1c 1515 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1516 sp -= wordsize * 6;
f6077098 1517
64366f1c 1518 /* Stack pointer must be quadword aligned. */
7a78ae4e 1519 sp &= -16;
c906108c 1520
64366f1c
EZ
1521 /* If there are more arguments, allocate space for them in
1522 the stack, then push them starting from the ninth one. */
c906108c 1523
c5aa993b
JM
1524 if ((argno < nargs) || argbytes)
1525 {
1526 int space = 0, jj;
c906108c 1527
c5aa993b
JM
1528 if (argbytes)
1529 {
1530 space += ((len - argbytes + 3) & -4);
1531 jj = argno + 1;
1532 }
1533 else
1534 jj = argno;
c906108c 1535
c5aa993b
JM
1536 for (; jj < nargs; ++jj)
1537 {
ea7c478f 1538 struct value *val = args[jj];
c5aa993b
JM
1539 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1540 }
c906108c 1541
64366f1c 1542 /* Add location required for the rest of the parameters. */
f6077098 1543 space = (space + 15) & -16;
c5aa993b 1544 sp -= space;
c906108c 1545
7aea86e6
AC
1546 /* This is another instance we need to be concerned about
1547 securing our stack space. If we write anything underneath %sp
1548 (r1), we might conflict with the kernel who thinks he is free
1549 to use this area. So, update %sp first before doing anything
1550 else. */
1551
1552 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1553
64366f1c
EZ
1554 /* If the last argument copied into the registers didn't fit there
1555 completely, push the rest of it into stack. */
c906108c 1556
c5aa993b
JM
1557 if (argbytes)
1558 {
1559 write_memory (sp + 24 + (ii * 4),
1560 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1561 len - argbytes);
1562 ++argno;
1563 ii += ((len - argbytes + 3) & -4) / 4;
1564 }
c906108c 1565
64366f1c 1566 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1567 for (; argno < nargs; ++argno)
1568 {
c906108c 1569
c5aa993b
JM
1570 arg = args[argno];
1571 type = check_typedef (VALUE_TYPE (arg));
1572 len = TYPE_LENGTH (type);
c906108c
SS
1573
1574
64366f1c
EZ
1575 /* Float types should be passed in fpr's, as well as in the
1576 stack. */
c5aa993b
JM
1577 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1578 {
c906108c 1579
c5aa993b 1580 if (len > 8)
c2b6b4aa
JB
1581 printf_unfiltered ("Fatal Error: a floating point parameter"
1582 " #%d with a size > 8 is found!\n", argno);
c906108c 1583
366f009f
JB
1584 memcpy (&(deprecated_registers
1585 [DEPRECATED_REGISTER_BYTE
1586 (tdep->ppc_fp0_regnum + 1 + f_argno)]),
c5aa993b
JM
1587 VALUE_CONTENTS (arg),
1588 len);
1589 ++f_argno;
1590 }
c906108c 1591
c2b6b4aa
JB
1592 write_memory (sp + 24 + (ii * 4),
1593 (char *) VALUE_CONTENTS (arg),
1594 len);
c5aa993b
JM
1595 ii += ((len + 3) & -4) / 4;
1596 }
c906108c 1597 }
c906108c 1598
69517000 1599 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1600 be set _before_ the corresponding stack space is used. On AIX,
1601 this even applies when the target has been completely stopped!
1602 Not doing this can lead to conflicts with the kernel which thinks
1603 that it still has control over this not-yet-allocated stack
1604 region. */
33a7c2fc
AC
1605 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1606
7aea86e6
AC
1607 /* Set back chain properly. */
1608 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1609 write_memory (sp, tmp_buffer, 4);
1610
e56a0ecc
AC
1611 /* Point the inferior function call's return address at the dummy's
1612 breakpoint. */
1613 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1614
794a477a
AC
1615 /* Set the TOC register, get the value from the objfile reader
1616 which, in turn, gets it from the VMAP table. */
1617 if (rs6000_find_toc_address_hook != NULL)
1618 {
1619 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1620 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1621 }
1622
c906108c
SS
1623 target_store_registers (-1);
1624 return sp;
1625}
c906108c 1626
b9ff3018
AC
1627/* PowerOpen always puts structures in memory. Vectors, which were
1628 added later, do get returned in a register though. */
1629
1630static int
1631rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1632{
1633 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1634 && TYPE_VECTOR (value_type))
1635 return 0;
1636 return 1;
1637}
1638
7a78ae4e
ND
1639static void
1640rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1641{
1642 int offset = 0;
ace1378a 1643 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1644
383f0f5b
JB
1645 /* The calling convention this function implements assumes the
1646 processor has floating-point registers. We shouldn't be using it
1647 on PPC variants that lack them. */
1648 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1649
c5aa993b
JM
1650 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1651 {
c906108c 1652
c5aa993b
JM
1653 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1654 We need to truncate the return value into float size (4 byte) if
64366f1c 1655 necessary. */
c906108c 1656
65951cd9 1657 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
366f009f 1658 (tdep->ppc_fp0_regnum + 1)],
65951cd9
JG
1659 builtin_type_double,
1660 valbuf,
1661 valtype);
c5aa993b 1662 }
ace1378a
EZ
1663 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1664 && TYPE_LENGTH (valtype) == 16
1665 && TYPE_VECTOR (valtype))
1666 {
62700349 1667 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1668 TYPE_LENGTH (valtype));
1669 }
c5aa993b
JM
1670 else
1671 {
1672 /* return value is copied starting from r3. */
d7449b42 1673 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3acba339
AC
1674 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1675 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1676
1677 memcpy (valbuf,
62700349 1678 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1679 TYPE_LENGTH (valtype));
c906108c 1680 }
c906108c
SS
1681}
1682
977adac5
ND
1683/* Return whether handle_inferior_event() should proceed through code
1684 starting at PC in function NAME when stepping.
1685
1686 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1687 handle memory references that are too distant to fit in instructions
1688 generated by the compiler. For example, if 'foo' in the following
1689 instruction:
1690
1691 lwz r9,foo(r2)
1692
1693 is greater than 32767, the linker might replace the lwz with a branch to
1694 somewhere in @FIX1 that does the load in 2 instructions and then branches
1695 back to where execution should continue.
1696
1697 GDB should silently step over @FIX code, just like AIX dbx does.
1698 Unfortunately, the linker uses the "b" instruction for the branches,
1699 meaning that the link register doesn't get set. Therefore, GDB's usual
1700 step_over_function() mechanism won't work.
1701
1702 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1703 in handle_inferior_event() to skip past @FIX code. */
1704
1705int
1706rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1707{
1708 return name && !strncmp (name, "@FIX", 4);
1709}
1710
1711/* Skip code that the user doesn't want to see when stepping:
1712
1713 1. Indirect function calls use a piece of trampoline code to do context
1714 switching, i.e. to set the new TOC table. Skip such code if we are on
1715 its first instruction (as when we have single-stepped to here).
1716
1717 2. Skip shared library trampoline code (which is different from
c906108c 1718 indirect function call trampolines).
977adac5
ND
1719
1720 3. Skip bigtoc fixup code.
1721
c906108c 1722 Result is desired PC to step until, or NULL if we are not in
977adac5 1723 code that should be skipped. */
c906108c
SS
1724
1725CORE_ADDR
7a78ae4e 1726rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1727{
52f0bd74 1728 unsigned int ii, op;
977adac5 1729 int rel;
c906108c 1730 CORE_ADDR solib_target_pc;
977adac5 1731 struct minimal_symbol *msymbol;
c906108c 1732
c5aa993b
JM
1733 static unsigned trampoline_code[] =
1734 {
1735 0x800b0000, /* l r0,0x0(r11) */
1736 0x90410014, /* st r2,0x14(r1) */
1737 0x7c0903a6, /* mtctr r0 */
1738 0x804b0004, /* l r2,0x4(r11) */
1739 0x816b0008, /* l r11,0x8(r11) */
1740 0x4e800420, /* bctr */
1741 0x4e800020, /* br */
1742 0
c906108c
SS
1743 };
1744
977adac5
ND
1745 /* Check for bigtoc fixup code. */
1746 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1747 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1748 {
1749 /* Double-check that the third instruction from PC is relative "b". */
1750 op = read_memory_integer (pc + 8, 4);
1751 if ((op & 0xfc000003) == 0x48000000)
1752 {
1753 /* Extract bits 6-29 as a signed 24-bit relative word address and
1754 add it to the containing PC. */
1755 rel = ((int)(op << 6) >> 6);
1756 return pc + 8 + rel;
1757 }
1758 }
1759
c906108c
SS
1760 /* If pc is in a shared library trampoline, return its target. */
1761 solib_target_pc = find_solib_trampoline_target (pc);
1762 if (solib_target_pc)
1763 return solib_target_pc;
1764
c5aa993b
JM
1765 for (ii = 0; trampoline_code[ii]; ++ii)
1766 {
1767 op = read_memory_integer (pc + (ii * 4), 4);
1768 if (op != trampoline_code[ii])
1769 return 0;
1770 }
1771 ii = read_register (11); /* r11 holds destination addr */
21283beb 1772 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1773 return pc;
1774}
1775
7a78ae4e 1776/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1777 isn't available with that word size, return 0. */
7a78ae4e
ND
1778
1779static int
1780regsize (const struct reg *reg, int wordsize)
1781{
1782 return wordsize == 8 ? reg->sz64 : reg->sz32;
1783}
1784
1785/* Return the name of register number N, or null if no such register exists
64366f1c 1786 in the current architecture. */
7a78ae4e 1787
fa88f677 1788static const char *
7a78ae4e
ND
1789rs6000_register_name (int n)
1790{
21283beb 1791 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1792 const struct reg *reg = tdep->regs + n;
1793
1794 if (!regsize (reg, tdep->wordsize))
1795 return NULL;
1796 return reg->name;
1797}
1798
7a78ae4e
ND
1799/* Return the GDB type object for the "standard" data type
1800 of data in register N. */
1801
1802static struct type *
691d145a 1803rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 1804{
691d145a 1805 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
1806 const struct reg *reg = tdep->regs + n;
1807
1fcc0bb8
EZ
1808 if (reg->fpr)
1809 return builtin_type_double;
1810 else
1811 {
1812 int size = regsize (reg, tdep->wordsize);
1813 switch (size)
1814 {
449a5da4
AC
1815 case 0:
1816 return builtin_type_int0;
1817 case 4:
ed6edd9b 1818 return builtin_type_uint32;
1fcc0bb8 1819 case 8:
c8001721
EZ
1820 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1821 return builtin_type_vec64;
1822 else
ed6edd9b 1823 return builtin_type_uint64;
1fcc0bb8
EZ
1824 break;
1825 case 16:
08cf96df 1826 return builtin_type_vec128;
1fcc0bb8
EZ
1827 break;
1828 default:
449a5da4
AC
1829 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1830 n, size);
1fcc0bb8
EZ
1831 }
1832 }
7a78ae4e
ND
1833}
1834
691d145a 1835/* The register format for RS/6000 floating point registers is always
64366f1c 1836 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1837
1838static int
691d145a 1839rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 1840{
691d145a
JB
1841 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1842
1843 return (reg->fpr
1844 && TYPE_CODE (type) == TYPE_CODE_FLT
1845 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
1846}
1847
7a78ae4e 1848static void
691d145a
JB
1849rs6000_register_to_value (struct frame_info *frame,
1850 int regnum,
1851 struct type *type,
1852 void *to)
7a78ae4e 1853{
691d145a
JB
1854 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1855 char from[MAX_REGISTER_SIZE];
1856
1857 gdb_assert (reg->fpr);
1858 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 1859
691d145a
JB
1860 get_frame_register (frame, regnum, from);
1861 convert_typed_floating (from, builtin_type_double, to, type);
1862}
7a292a7a 1863
7a78ae4e 1864static void
691d145a
JB
1865rs6000_value_to_register (struct frame_info *frame,
1866 int regnum,
1867 struct type *type,
1868 const void *from)
7a78ae4e 1869{
691d145a
JB
1870 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1871 char to[MAX_REGISTER_SIZE];
1872
1873 gdb_assert (reg->fpr);
1874 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1875
1876 convert_typed_floating (from, type, to, builtin_type_double);
1877 put_frame_register (frame, regnum, to);
7a78ae4e 1878}
c906108c 1879
6ced10dd
JB
1880/* Move SPE vector register values between a 64-bit buffer and the two
1881 32-bit raw register halves in a regcache. This function handles
1882 both splitting a 64-bit value into two 32-bit halves, and joining
1883 two halves into a whole 64-bit value, depending on the function
1884 passed as the MOVE argument.
1885
1886 EV_REG must be the number of an SPE evN vector register --- a
1887 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1888 64-bit buffer.
1889
1890 Call MOVE once for each 32-bit half of that register, passing
1891 REGCACHE, the number of the raw register corresponding to that
1892 half, and the address of the appropriate half of BUFFER.
1893
1894 For example, passing 'regcache_raw_read' as the MOVE function will
1895 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1896 'regcache_raw_supply' will supply the contents of BUFFER to the
1897 appropriate pair of raw registers in REGCACHE.
1898
1899 You may need to cast away some 'const' qualifiers when passing
1900 MOVE, since this function can't tell at compile-time which of
1901 REGCACHE or BUFFER is acting as the source of the data. If C had
1902 co-variant type qualifiers, ... */
1903static void
1904e500_move_ev_register (void (*move) (struct regcache *regcache,
1905 int regnum, void *buf),
1906 struct regcache *regcache, int ev_reg,
1907 void *buffer)
1908{
1909 struct gdbarch *arch = get_regcache_arch (regcache);
1910 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1911 int reg_index;
1912 char *byte_buffer = buffer;
1913
1914 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1915 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1916
1917 reg_index = ev_reg - tdep->ppc_ev0_regnum;
1918
1919 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1920 {
1921 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
1922 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
1923 }
1924 else
1925 {
1926 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
1927 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
1928 }
1929}
1930
c8001721
EZ
1931static void
1932e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1933 int reg_nr, void *buffer)
1934{
6ced10dd 1935 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
1936 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1937
6ced10dd
JB
1938 gdb_assert (regcache_arch == gdbarch);
1939
1940 if (tdep->ppc_ev0_regnum <= reg_nr
1941 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1942 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
1943 else
a44bddec
JB
1944 internal_error (__FILE__, __LINE__,
1945 "e500_pseudo_register_read: "
1946 "called on unexpected register '%s' (%d)",
1947 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
1948}
1949
1950static void
1951e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1952 int reg_nr, const void *buffer)
1953{
6ced10dd 1954 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
1955 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1956
6ced10dd
JB
1957 gdb_assert (regcache_arch == gdbarch);
1958
1959 if (tdep->ppc_ev0_regnum <= reg_nr
1960 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1961 e500_move_ev_register ((void (*) (struct regcache *, int, void *))
1962 regcache_raw_write,
1963 regcache, reg_nr, (void *) buffer);
1964 else
a44bddec
JB
1965 internal_error (__FILE__, __LINE__,
1966 "e500_pseudo_register_read: "
1967 "called on unexpected register '%s' (%d)",
1968 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
1969}
1970
1971/* The E500 needs a custom reggroup function: it has anonymous raw
1972 registers, and default_register_reggroup_p assumes that anonymous
1973 registers are not members of any reggroup. */
1974static int
1975e500_register_reggroup_p (struct gdbarch *gdbarch,
1976 int regnum,
1977 struct reggroup *group)
1978{
1979 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1980
1981 /* The save and restore register groups need to include the
1982 upper-half registers, even though they're anonymous. */
1983 if ((group == save_reggroup
1984 || group == restore_reggroup)
1985 && (tdep->ppc_ev0_upper_regnum <= regnum
1986 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
1987 return 1;
1988
1989 /* In all other regards, the default reggroup definition is fine. */
1990 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
1991}
1992
18ed0c4e 1993/* Convert a DBX STABS register number to a GDB register number. */
c8001721 1994static int
18ed0c4e 1995rs6000_stab_reg_to_regnum (int num)
c8001721 1996{
9f744501 1997 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 1998
9f744501
JB
1999 if (0 <= num && num <= 31)
2000 return tdep->ppc_gp0_regnum + num;
2001 else if (32 <= num && num <= 63)
383f0f5b
JB
2002 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2003 specifies registers the architecture doesn't have? Our
2004 callers don't check the value we return. */
366f009f 2005 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2006 else if (77 <= num && num <= 108)
2007 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2008 else if (1200 <= num && num < 1200 + 32)
2009 return tdep->ppc_ev0_regnum + (num - 1200);
2010 else
2011 switch (num)
2012 {
2013 case 64:
2014 return tdep->ppc_mq_regnum;
2015 case 65:
2016 return tdep->ppc_lr_regnum;
2017 case 66:
2018 return tdep->ppc_ctr_regnum;
2019 case 76:
2020 return tdep->ppc_xer_regnum;
2021 case 109:
2022 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2023 case 110:
2024 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2025 case 111:
18ed0c4e 2026 return tdep->ppc_acc_regnum;
867e2dc5 2027 case 112:
18ed0c4e 2028 return tdep->ppc_spefscr_regnum;
9f744501
JB
2029 default:
2030 return num;
2031 }
18ed0c4e 2032}
9f744501 2033
9f744501 2034
18ed0c4e
JB
2035/* Convert a Dwarf 2 register number to a GDB register number. */
2036static int
2037rs6000_dwarf2_reg_to_regnum (int num)
2038{
2039 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2040
18ed0c4e
JB
2041 if (0 <= num && num <= 31)
2042 return tdep->ppc_gp0_regnum + num;
2043 else if (32 <= num && num <= 63)
2044 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2045 specifies registers the architecture doesn't have? Our
2046 callers don't check the value we return. */
2047 return tdep->ppc_fp0_regnum + (num - 32);
2048 else if (1124 <= num && num < 1124 + 32)
2049 return tdep->ppc_vr0_regnum + (num - 1124);
2050 else if (1200 <= num && num < 1200 + 32)
2051 return tdep->ppc_ev0_regnum + (num - 1200);
2052 else
2053 switch (num)
2054 {
2055 case 67:
2056 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2057 case 99:
2058 return tdep->ppc_acc_regnum;
2059 case 100:
2060 return tdep->ppc_mq_regnum;
2061 case 101:
2062 return tdep->ppc_xer_regnum;
2063 case 108:
2064 return tdep->ppc_lr_regnum;
2065 case 109:
2066 return tdep->ppc_ctr_regnum;
2067 case 356:
2068 return tdep->ppc_vrsave_regnum;
2069 case 612:
2070 return tdep->ppc_spefscr_regnum;
2071 default:
2072 return num;
2073 }
2188cbdd
EZ
2074}
2075
18ed0c4e 2076
7a78ae4e 2077static void
a3c001ce
JB
2078rs6000_store_return_value (struct type *type,
2079 struct regcache *regcache,
2080 const void *valbuf)
7a78ae4e 2081{
a3c001ce
JB
2082 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2083 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2084 int regnum = -1;
ace1378a 2085
383f0f5b
JB
2086 /* The calling convention this function implements assumes the
2087 processor has floating-point registers. We shouldn't be using it
2088 on PPC variants that lack them. */
a3c001ce 2089 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 2090
7a78ae4e 2091 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7a78ae4e
ND
2092 /* Floating point values are returned starting from FPR1 and up.
2093 Say a double_double_double type could be returned in
64366f1c 2094 FPR1/FPR2/FPR3 triple. */
a3c001ce 2095 regnum = tdep->ppc_fp0_regnum + 1;
ace1378a
EZ
2096 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2097 {
2098 if (TYPE_LENGTH (type) == 16
2099 && TYPE_VECTOR (type))
a3c001ce
JB
2100 regnum = tdep->ppc_vr0_regnum + 2;
2101 else
a44bddec
JB
2102 internal_error (__FILE__, __LINE__,
2103 "rs6000_store_return_value: "
2104 "unexpected array return type");
ace1378a 2105 }
7a78ae4e 2106 else
64366f1c 2107 /* Everything else is returned in GPR3 and up. */
a3c001ce
JB
2108 regnum = tdep->ppc_gp0_regnum + 3;
2109
2110 {
2111 size_t bytes_written = 0;
2112
2113 while (bytes_written < TYPE_LENGTH (type))
2114 {
2115 /* How much of this value can we write to this register? */
2116 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2117 register_size (gdbarch, regnum));
2118 regcache_cooked_write_part (regcache, regnum,
2119 0, bytes_to_write,
2120 (char *) valbuf + bytes_written);
2121 regnum++;
2122 bytes_written += bytes_to_write;
2123 }
2124 }
7a78ae4e
ND
2125}
2126
a3c001ce 2127
7a78ae4e
ND
2128/* Extract from an array REGBUF containing the (raw) register state
2129 the address in which a function should return its structure value,
2130 as a CORE_ADDR (or an expression that can be used as one). */
2131
2132static CORE_ADDR
11269d7e
AC
2133rs6000_extract_struct_value_address (struct regcache *regcache)
2134{
2135 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2136 function call GDB knows the address of the struct return value
2137 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2138 the current call_function_by_hand() code only saves the most
2139 recent struct address leading to occasional calls. The code
2140 should instead maintain a stack of such addresses (in the dummy
2141 frame object). */
11269d7e
AC
2142 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2143 really got no idea where the return value is being stored. While
2144 r3, on function entry, contained the address it will have since
2145 been reused (scratch) and hence wouldn't be valid */
2146 return 0;
7a78ae4e
ND
2147}
2148
64366f1c 2149/* Hook called when a new child process is started. */
7a78ae4e
ND
2150
2151void
2152rs6000_create_inferior (int pid)
2153{
2154 if (rs6000_set_host_arch_hook)
2155 rs6000_set_host_arch_hook (pid);
c906108c
SS
2156}
2157\f
e2d0e7eb 2158/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2159
2160 Usually a function pointer's representation is simply the address
2161 of the function. On the RS/6000 however, a function pointer is
2162 represented by a pointer to a TOC entry. This TOC entry contains
2163 three words, the first word is the address of the function, the
2164 second word is the TOC pointer (r2), and the third word is the
2165 static chain value. Throughout GDB it is currently assumed that a
2166 function pointer contains the address of the function, which is not
2167 easy to fix. In addition, the conversion of a function address to
2168 a function pointer would require allocation of a TOC entry in the
2169 inferior's memory space, with all its drawbacks. To be able to
2170 call C++ virtual methods in the inferior (which are called via
f517ea4e 2171 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2172 function address from a function pointer. */
2173
f517ea4e
PS
2174/* Return real function address if ADDR (a function pointer) is in the data
2175 space and is therefore a special function pointer. */
c906108c 2176
b9362cc7 2177static CORE_ADDR
e2d0e7eb
AC
2178rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2179 CORE_ADDR addr,
2180 struct target_ops *targ)
c906108c
SS
2181{
2182 struct obj_section *s;
2183
2184 s = find_pc_section (addr);
2185 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2186 return addr;
c906108c 2187
7a78ae4e 2188 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2189 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2190}
c906108c 2191\f
c5aa993b 2192
7a78ae4e 2193/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2194
2195
7a78ae4e
ND
2196/* The arrays here called registers_MUMBLE hold information about available
2197 registers.
c906108c
SS
2198
2199 For each family of PPC variants, I've tried to isolate out the
2200 common registers and put them up front, so that as long as you get
2201 the general family right, GDB will correctly identify the registers
2202 common to that family. The common register sets are:
2203
2204 For the 60x family: hid0 hid1 iabr dabr pir
2205
2206 For the 505 and 860 family: eie eid nri
2207
2208 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2209 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2210 pbu1 pbl2 pbu2
c906108c
SS
2211
2212 Most of these register groups aren't anything formal. I arrived at
2213 them by looking at the registers that occurred in more than one
6f5987a6
KB
2214 processor.
2215
2216 Note: kevinb/2002-04-30: Support for the fpscr register was added
2217 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2218 for Power. For PowerPC, slot 70 was unused and was already in the
2219 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2220 slot 70 was being used for "mq", so the next available slot (71)
2221 was chosen. It would have been nice to be able to make the
2222 register numbers the same across processor cores, but this wasn't
2223 possible without either 1) renumbering some registers for some
2224 processors or 2) assigning fpscr to a really high slot that's
2225 larger than any current register number. Doing (1) is bad because
2226 existing stubs would break. Doing (2) is undesirable because it
2227 would introduce a really large gap between fpscr and the rest of
2228 the registers for most processors. */
7a78ae4e 2229
64366f1c 2230/* Convenience macros for populating register arrays. */
7a78ae4e 2231
64366f1c 2232/* Within another macro, convert S to a string. */
7a78ae4e
ND
2233
2234#define STR(s) #s
2235
2236/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2237 and 64 bits on 64-bit systems. */
13ac140c 2238#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2239
2240/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2241 systems. */
13ac140c 2242#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2243
2244/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2245 systems. */
13ac140c 2246#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2247
1fcc0bb8 2248/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2249 systems. */
13ac140c 2250#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2251
64366f1c 2252/* Return a struct reg defining floating-point register NAME. */
13ac140c 2253#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2254
6ced10dd
JB
2255/* Return a struct reg defining a pseudo register NAME that is 64 bits
2256 long on all systems. */
2257#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2258
2259/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2260 systems and that doesn't exist on 64-bit systems. */
13ac140c 2261#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2262
2263/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2264 systems and that doesn't exist on 32-bit systems. */
13ac140c 2265#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2266
64366f1c 2267/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2268#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2269
6ced10dd
JB
2270/* Return a struct reg defining an anonymous raw register that's 32
2271 bits on all systems. */
2272#define A4 { 0, 4, 4, 0, 0, -1 }
2273
13ac140c
JB
2274/* Return a struct reg defining an SPR named NAME that is 32 bits on
2275 32-bit systems and 64 bits on 64-bit systems. */
2276#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2277
2278/* Return a struct reg defining an SPR named NAME that is 32 bits on
2279 all systems. */
2280#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2281
2282/* Return a struct reg defining an SPR named NAME that is 32 bits on
2283 all systems, and whose SPR number is NUMBER. */
2284#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2285
2286/* Return a struct reg defining an SPR named NAME that's 64 bits on
2287 64-bit systems and that doesn't exist on 32-bit systems. */
2288#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2289
7a78ae4e
ND
2290/* UISA registers common across all architectures, including POWER. */
2291
2292#define COMMON_UISA_REGS \
2293 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2294 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2295 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2296 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2297 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2298 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2299 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2300 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2301 /* 64 */ R(pc), R(ps)
2302
2303/* UISA-level SPRs for PowerPC. */
2304#define PPC_UISA_SPRS \
13ac140c 2305 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2306
c8001721
EZ
2307/* UISA-level SPRs for PowerPC without floating point support. */
2308#define PPC_UISA_NOFP_SPRS \
13ac140c 2309 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2310
7a78ae4e
ND
2311/* Segment registers, for PowerPC. */
2312#define PPC_SEGMENT_REGS \
2313 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2314 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2315 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2316 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2317
2318/* OEA SPRs for PowerPC. */
2319#define PPC_OEA_SPRS \
13ac140c
JB
2320 /* 87 */ S4(pvr), \
2321 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2322 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2323 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2324 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2325 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2326 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2327 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2328 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2329
64366f1c 2330/* AltiVec registers. */
1fcc0bb8
EZ
2331#define PPC_ALTIVEC_REGS \
2332 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2333 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2334 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2335 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2336 /*151*/R4(vscr), R4(vrsave)
2337
c8001721 2338
6ced10dd
JB
2339/* On machines supporting the SPE APU, the general-purpose registers
2340 are 64 bits long. There are SIMD vector instructions to treat them
2341 as pairs of floats, but the rest of the instruction set treats them
2342 as 32-bit registers, and only operates on their lower halves.
2343
2344 In the GDB regcache, we treat their high and low halves as separate
2345 registers. The low halves we present as the general-purpose
2346 registers, and then we have pseudo-registers that stitch together
2347 the upper and lower halves and present them as pseudo-registers. */
2348
2349/* SPE GPR lower halves --- raw registers. */
2350#define PPC_SPE_GP_REGS \
2351 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2352 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2353 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2354 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2355
2356/* SPE GPR upper halves --- anonymous raw registers. */
2357#define PPC_SPE_UPPER_GP_REGS \
2358 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2359 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2360 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2361 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2362
2363/* SPE GPR vector registers --- pseudo registers based on underlying
2364 gprs and the anonymous upper half raw registers. */
2365#define PPC_EV_PSEUDO_REGS \
2366/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2367/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2368/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2369/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2370
7a78ae4e 2371/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2372 user-level SPR's. */
7a78ae4e 2373static const struct reg registers_power[] =
c906108c 2374{
7a78ae4e 2375 COMMON_UISA_REGS,
13ac140c 2376 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2377 /* 71 */ R4(fpscr)
c906108c
SS
2378};
2379
7a78ae4e 2380/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2381 view of the PowerPC. */
7a78ae4e 2382static const struct reg registers_powerpc[] =
c906108c 2383{
7a78ae4e 2384 COMMON_UISA_REGS,
1fcc0bb8
EZ
2385 PPC_UISA_SPRS,
2386 PPC_ALTIVEC_REGS
c906108c
SS
2387};
2388
13ac140c
JB
2389/* IBM PowerPC 403.
2390
2391 Some notes about the "tcr" special-purpose register:
2392 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2393 403's programmable interval timer, fixed interval timer, and
2394 watchdog timer.
2395 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2396 watchdog timer, and nothing else.
2397
2398 Some of the fields are similar between the two, but they're not
2399 compatible with each other. Since the two variants have different
2400 registers, with different numbers, but the same name, we can't
2401 splice the register name to get the SPR number. */
7a78ae4e 2402static const struct reg registers_403[] =
c5aa993b 2403{
7a78ae4e
ND
2404 COMMON_UISA_REGS,
2405 PPC_UISA_SPRS,
2406 PPC_SEGMENT_REGS,
2407 PPC_OEA_SPRS,
13ac140c
JB
2408 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2409 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2410 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2411 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2412 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2413 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2414};
2415
13ac140c
JB
2416/* IBM PowerPC 403GC.
2417 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2418static const struct reg registers_403GC[] =
c5aa993b 2419{
7a78ae4e
ND
2420 COMMON_UISA_REGS,
2421 PPC_UISA_SPRS,
2422 PPC_SEGMENT_REGS,
2423 PPC_OEA_SPRS,
13ac140c
JB
2424 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2425 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2426 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2427 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2428 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2429 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2430 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2431 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2432};
2433
64366f1c 2434/* Motorola PowerPC 505. */
7a78ae4e 2435static const struct reg registers_505[] =
c5aa993b 2436{
7a78ae4e
ND
2437 COMMON_UISA_REGS,
2438 PPC_UISA_SPRS,
2439 PPC_SEGMENT_REGS,
2440 PPC_OEA_SPRS,
13ac140c 2441 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2442};
2443
64366f1c 2444/* Motorola PowerPC 860 or 850. */
7a78ae4e 2445static const struct reg registers_860[] =
c5aa993b 2446{
7a78ae4e
ND
2447 COMMON_UISA_REGS,
2448 PPC_UISA_SPRS,
2449 PPC_SEGMENT_REGS,
2450 PPC_OEA_SPRS,
13ac140c
JB
2451 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2452 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2453 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2454 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2455 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2456 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2457 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2458 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2459 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2460 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2461 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2462 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2463};
2464
7a78ae4e
ND
2465/* Motorola PowerPC 601. Note that the 601 has different register numbers
2466 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2467 register is the stub's problem. */
7a78ae4e 2468static const struct reg registers_601[] =
c5aa993b 2469{
7a78ae4e
ND
2470 COMMON_UISA_REGS,
2471 PPC_UISA_SPRS,
2472 PPC_SEGMENT_REGS,
2473 PPC_OEA_SPRS,
13ac140c
JB
2474 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2475 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2476};
2477
13ac140c
JB
2478/* Motorola PowerPC 602.
2479 See the notes under the 403 about 'tcr'. */
7a78ae4e 2480static const struct reg registers_602[] =
c5aa993b 2481{
7a78ae4e
ND
2482 COMMON_UISA_REGS,
2483 PPC_UISA_SPRS,
2484 PPC_SEGMENT_REGS,
2485 PPC_OEA_SPRS,
13ac140c
JB
2486 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2487 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2488 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2489};
2490
64366f1c 2491/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2492static const struct reg registers_603[] =
c5aa993b 2493{
7a78ae4e
ND
2494 COMMON_UISA_REGS,
2495 PPC_UISA_SPRS,
2496 PPC_SEGMENT_REGS,
2497 PPC_OEA_SPRS,
13ac140c
JB
2498 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2499 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2500 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2501};
2502
64366f1c 2503/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2504static const struct reg registers_604[] =
c5aa993b 2505{
7a78ae4e
ND
2506 COMMON_UISA_REGS,
2507 PPC_UISA_SPRS,
2508 PPC_SEGMENT_REGS,
2509 PPC_OEA_SPRS,
13ac140c
JB
2510 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2511 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2512 /* 127 */ S(sia), S(sda)
c906108c
SS
2513};
2514
64366f1c 2515/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2516static const struct reg registers_750[] =
c5aa993b 2517{
7a78ae4e
ND
2518 COMMON_UISA_REGS,
2519 PPC_UISA_SPRS,
2520 PPC_SEGMENT_REGS,
2521 PPC_OEA_SPRS,
13ac140c
JB
2522 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2523 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2524 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2525 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2526 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2527 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2528};
2529
2530
64366f1c 2531/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2532static const struct reg registers_7400[] =
2533{
2534 /* gpr0-gpr31, fpr0-fpr31 */
2535 COMMON_UISA_REGS,
13c7b1ca 2536 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2537 PPC_UISA_SPRS,
2538 /* sr0-sr15 */
2539 PPC_SEGMENT_REGS,
2540 PPC_OEA_SPRS,
2541 /* vr0-vr31, vrsave, vscr */
2542 PPC_ALTIVEC_REGS
2543 /* FIXME? Add more registers? */
2544};
2545
c8001721
EZ
2546/* Motorola e500. */
2547static const struct reg registers_e500[] =
2548{
6ced10dd
JB
2549 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2550 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2551 /* 64 .. 65 */ R(pc), R(ps),
2552 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2553 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2554 /* NOTE: Add new registers here the end of the raw register
2555 list and just before the first pseudo register. */
6ced10dd 2556 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2557};
2558
c906108c 2559/* Information about a particular processor variant. */
7a78ae4e 2560
c906108c 2561struct variant
c5aa993b
JM
2562 {
2563 /* Name of this variant. */
2564 char *name;
c906108c 2565
c5aa993b
JM
2566 /* English description of the variant. */
2567 char *description;
c906108c 2568
64366f1c 2569 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2570 enum bfd_architecture arch;
2571
64366f1c 2572 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2573 unsigned long mach;
2574
489461e2
EZ
2575 /* Number of real registers. */
2576 int nregs;
2577
2578 /* Number of pseudo registers. */
2579 int npregs;
2580
2581 /* Number of total registers (the sum of nregs and npregs). */
2582 int num_tot_regs;
2583
c5aa993b
JM
2584 /* Table of register names; registers[R] is the name of the register
2585 number R. */
7a78ae4e 2586 const struct reg *regs;
c5aa993b 2587 };
c906108c 2588
489461e2
EZ
2589#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2590
2591static int
2592num_registers (const struct reg *reg_list, int num_tot_regs)
2593{
2594 int i;
2595 int nregs = 0;
2596
2597 for (i = 0; i < num_tot_regs; i++)
2598 if (!reg_list[i].pseudo)
2599 nregs++;
2600
2601 return nregs;
2602}
2603
2604static int
2605num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2606{
2607 int i;
2608 int npregs = 0;
2609
2610 for (i = 0; i < num_tot_regs; i++)
2611 if (reg_list[i].pseudo)
2612 npregs ++;
2613
2614 return npregs;
2615}
c906108c 2616
c906108c
SS
2617/* Information in this table comes from the following web sites:
2618 IBM: http://www.chips.ibm.com:80/products/embedded/
2619 Motorola: http://www.mot.com/SPS/PowerPC/
2620
2621 I'm sure I've got some of the variant descriptions not quite right.
2622 Please report any inaccuracies you find to GDB's maintainer.
2623
2624 If you add entries to this table, please be sure to allow the new
2625 value as an argument to the --with-cpu flag, in configure.in. */
2626
489461e2 2627static struct variant variants[] =
c906108c 2628{
489461e2 2629
7a78ae4e 2630 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2631 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2632 registers_powerpc},
7a78ae4e 2633 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2634 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2635 registers_power},
7a78ae4e 2636 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2637 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2638 registers_403},
7a78ae4e 2639 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2640 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2641 registers_601},
7a78ae4e 2642 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2643 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2644 registers_602},
7a78ae4e 2645 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2646 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2647 registers_603},
7a78ae4e 2648 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2649 604, -1, -1, tot_num_registers (registers_604),
2650 registers_604},
7a78ae4e 2651 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2652 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2653 registers_403GC},
7a78ae4e 2654 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2655 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2656 registers_505},
7a78ae4e 2657 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2658 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2659 registers_860},
7a78ae4e 2660 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2661 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2662 registers_750},
1fcc0bb8 2663 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2664 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2665 registers_7400},
c8001721
EZ
2666 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2667 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2668 registers_e500},
7a78ae4e 2669
5d57ee30
KB
2670 /* 64-bit */
2671 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2672 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2673 registers_powerpc},
7a78ae4e 2674 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2675 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2676 registers_powerpc},
5d57ee30 2677 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2678 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2679 registers_powerpc},
7a78ae4e 2680 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2681 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2682 registers_powerpc},
5d57ee30 2683 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2684 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2685 registers_powerpc},
5d57ee30 2686 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2687 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2688 registers_powerpc},
5d57ee30 2689
64366f1c 2690 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2691 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2692 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2693 registers_power},
7a78ae4e 2694 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2695 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2696 registers_power},
7a78ae4e 2697 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2698 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2699 registers_power},
7a78ae4e 2700
489461e2 2701 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2702};
2703
64366f1c 2704/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2705
2706static void
2707init_variants (void)
2708{
2709 struct variant *v;
2710
2711 for (v = variants; v->name; v++)
2712 {
2713 if (v->nregs == -1)
2714 v->nregs = num_registers (v->regs, v->num_tot_regs);
2715 if (v->npregs == -1)
2716 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2717 }
2718}
c906108c 2719
7a78ae4e 2720/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2721 MACH. If no such variant exists, return null. */
c906108c 2722
7a78ae4e
ND
2723static const struct variant *
2724find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2725{
7a78ae4e 2726 const struct variant *v;
c5aa993b 2727
7a78ae4e
ND
2728 for (v = variants; v->name; v++)
2729 if (arch == v->arch && mach == v->mach)
2730 return v;
c906108c 2731
7a78ae4e 2732 return NULL;
c906108c 2733}
9364a0ef
EZ
2734
2735static int
2736gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2737{
2738 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2739 return print_insn_big_powerpc (memaddr, info);
2740 else
2741 return print_insn_little_powerpc (memaddr, info);
2742}
7a78ae4e 2743\f
61a65099
KB
2744static CORE_ADDR
2745rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2746{
2747 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2748}
2749
2750static struct frame_id
2751rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2752{
2753 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2754 SP_REGNUM),
2755 frame_pc_unwind (next_frame));
2756}
2757
2758struct rs6000_frame_cache
2759{
2760 CORE_ADDR base;
2761 CORE_ADDR initial_sp;
2762 struct trad_frame_saved_reg *saved_regs;
2763};
2764
2765static struct rs6000_frame_cache *
2766rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2767{
2768 struct rs6000_frame_cache *cache;
2769 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2770 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2771 struct rs6000_framedata fdata;
2772 int wordsize = tdep->wordsize;
2773
2774 if ((*this_cache) != NULL)
2775 return (*this_cache);
2776 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2777 (*this_cache) = cache;
2778 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2779
2780 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2781 &fdata);
2782
2783 /* If there were any saved registers, figure out parent's stack
2784 pointer. */
2785 /* The following is true only if the frame doesn't have a call to
2786 alloca(), FIXME. */
2787
2788 if (fdata.saved_fpr == 0
2789 && fdata.saved_gpr == 0
2790 && fdata.saved_vr == 0
2791 && fdata.saved_ev == 0
2792 && fdata.lr_offset == 0
2793 && fdata.cr_offset == 0
2794 && fdata.vr_offset == 0
2795 && fdata.ev_offset == 0)
2796 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2797 else
2798 {
2799 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2800 address of the current frame. Things might be easier if the
2801 ->frame pointed to the outer-most address of the frame. In
2802 the mean time, the address of the prev frame is used as the
2803 base address of this frame. */
2804 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2805 if (!fdata.frameless)
2806 /* Frameless really means stackless. */
2807 cache->base = read_memory_addr (cache->base, wordsize);
2808 }
2809 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2810
2811 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2812 All fpr's from saved_fpr to fp31 are saved. */
2813
2814 if (fdata.saved_fpr >= 0)
2815 {
2816 int i;
2817 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
2818
2819 /* If skip_prologue says floating-point registers were saved,
2820 but the current architecture has no floating-point registers,
2821 then that's strange. But we have no indices to even record
2822 the addresses under, so we just ignore it. */
2823 if (ppc_floating_point_unit_p (gdbarch))
063715bf 2824 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
2825 {
2826 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2827 fpr_addr += 8;
2828 }
61a65099
KB
2829 }
2830
2831 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2832 All gpr's from saved_gpr to gpr31 are saved. */
2833
2834 if (fdata.saved_gpr >= 0)
2835 {
2836 int i;
2837 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 2838 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
2839 {
2840 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2841 gpr_addr += wordsize;
2842 }
2843 }
2844
2845 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2846 All vr's from saved_vr to vr31 are saved. */
2847 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2848 {
2849 if (fdata.saved_vr >= 0)
2850 {
2851 int i;
2852 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2853 for (i = fdata.saved_vr; i < 32; i++)
2854 {
2855 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2856 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2857 }
2858 }
2859 }
2860
2861 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2862 All vr's from saved_ev to ev31 are saved. ????? */
2863 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2864 {
2865 if (fdata.saved_ev >= 0)
2866 {
2867 int i;
2868 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 2869 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
2870 {
2871 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2872 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2873 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2874 }
2875 }
2876 }
2877
2878 /* If != 0, fdata.cr_offset is the offset from the frame that
2879 holds the CR. */
2880 if (fdata.cr_offset != 0)
2881 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2882
2883 /* If != 0, fdata.lr_offset is the offset from the frame that
2884 holds the LR. */
2885 if (fdata.lr_offset != 0)
2886 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2887 /* The PC is found in the link register. */
2888 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2889
2890 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2891 holds the VRSAVE. */
2892 if (fdata.vrsave_offset != 0)
2893 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2894
2895 if (fdata.alloca_reg < 0)
2896 /* If no alloca register used, then fi->frame is the value of the
2897 %sp for this frame, and it is good enough. */
2898 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2899 else
2900 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2901 fdata.alloca_reg);
2902
2903 return cache;
2904}
2905
2906static void
2907rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2908 struct frame_id *this_id)
2909{
2910 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2911 this_cache);
2912 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2913}
2914
2915static void
2916rs6000_frame_prev_register (struct frame_info *next_frame,
2917 void **this_cache,
2918 int regnum, int *optimizedp,
2919 enum lval_type *lvalp, CORE_ADDR *addrp,
2920 int *realnump, void *valuep)
2921{
2922 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2923 this_cache);
1f67027d
AC
2924 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2925 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
2926}
2927
2928static const struct frame_unwind rs6000_frame_unwind =
2929{
2930 NORMAL_FRAME,
2931 rs6000_frame_this_id,
2932 rs6000_frame_prev_register
2933};
2934
2935static const struct frame_unwind *
2936rs6000_frame_sniffer (struct frame_info *next_frame)
2937{
2938 return &rs6000_frame_unwind;
2939}
2940
2941\f
2942
2943static CORE_ADDR
2944rs6000_frame_base_address (struct frame_info *next_frame,
2945 void **this_cache)
2946{
2947 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2948 this_cache);
2949 return info->initial_sp;
2950}
2951
2952static const struct frame_base rs6000_frame_base = {
2953 &rs6000_frame_unwind,
2954 rs6000_frame_base_address,
2955 rs6000_frame_base_address,
2956 rs6000_frame_base_address
2957};
2958
2959static const struct frame_base *
2960rs6000_frame_base_sniffer (struct frame_info *next_frame)
2961{
2962 return &rs6000_frame_base;
2963}
2964
7a78ae4e
ND
2965/* Initialize the current architecture based on INFO. If possible, re-use an
2966 architecture from ARCHES, which is a list of architectures already created
2967 during this debugging session.
c906108c 2968
7a78ae4e 2969 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2970 a binary file. */
c906108c 2971
7a78ae4e
ND
2972static struct gdbarch *
2973rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2974{
2975 struct gdbarch *gdbarch;
2976 struct gdbarch_tdep *tdep;
708ff411 2977 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
2978 struct reg *regs;
2979 const struct variant *v;
2980 enum bfd_architecture arch;
2981 unsigned long mach;
2982 bfd abfd;
7b112f9c 2983 int sysv_abi;
5bf1c677 2984 asection *sect;
7a78ae4e 2985
9aa1e687 2986 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2987 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2988
9aa1e687
KB
2989 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2990 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2991
2992 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2993
e712c1cf 2994 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2995 that, else choose a likely default. */
9aa1e687 2996 if (from_xcoff_exec)
c906108c 2997 {
11ed25ac 2998 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2999 wordsize = 8;
3000 else
3001 wordsize = 4;
c906108c 3002 }
9aa1e687
KB
3003 else if (from_elf_exec)
3004 {
3005 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3006 wordsize = 8;
3007 else
3008 wordsize = 4;
3009 }
c906108c 3010 else
7a78ae4e 3011 {
27b15785
KB
3012 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3013 wordsize = info.bfd_arch_info->bits_per_word /
3014 info.bfd_arch_info->bits_per_byte;
3015 else
3016 wordsize = 4;
7a78ae4e 3017 }
c906108c 3018
64366f1c 3019 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3020 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3021 arches != NULL;
3022 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3023 {
3024 /* Word size in the various PowerPC bfd_arch_info structs isn't
3025 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3026 separate word size check. */
7a78ae4e 3027 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3028 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3029 return arches->gdbarch;
3030 }
c906108c 3031
7a78ae4e
ND
3032 /* None found, create a new architecture from INFO, whose bfd_arch_info
3033 validity depends on the source:
3034 - executable useless
3035 - rs6000_host_arch() good
3036 - core file good
3037 - "set arch" trust blindly
3038 - GDB startup useless but harmless */
c906108c 3039
9aa1e687 3040 if (!from_xcoff_exec)
c906108c 3041 {
b732d07d 3042 arch = info.bfd_arch_info->arch;
7a78ae4e 3043 mach = info.bfd_arch_info->mach;
c906108c 3044 }
7a78ae4e 3045 else
c906108c 3046 {
7a78ae4e 3047 arch = bfd_arch_powerpc;
35cec841 3048 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3049 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3050 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3051 }
3052 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3053 tdep->wordsize = wordsize;
5bf1c677
EZ
3054
3055 /* For e500 executables, the apuinfo section is of help here. Such
3056 section contains the identifier and revision number of each
3057 Application-specific Processing Unit that is present on the
3058 chip. The content of the section is determined by the assembler
3059 which looks at each instruction and determines which unit (and
3060 which version of it) can execute it. In our case we just look for
3061 the existance of the section. */
3062
3063 if (info.abfd)
3064 {
3065 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3066 if (sect)
3067 {
3068 arch = info.bfd_arch_info->arch;
3069 mach = bfd_mach_ppc_e500;
3070 bfd_default_set_arch_mach (&abfd, arch, mach);
3071 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3072 }
3073 }
3074
7a78ae4e 3075 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3076
489461e2
EZ
3077 /* Initialize the number of real and pseudo registers in each variant. */
3078 init_variants ();
3079
64366f1c 3080 /* Choose variant. */
7a78ae4e
ND
3081 v = find_variant_by_arch (arch, mach);
3082 if (!v)
dd47e6fd
EZ
3083 return NULL;
3084
7a78ae4e
ND
3085 tdep->regs = v->regs;
3086
2188cbdd 3087 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3088 tdep->ppc_toc_regnum = 2;
3089 tdep->ppc_ps_regnum = 65;
3090 tdep->ppc_cr_regnum = 66;
3091 tdep->ppc_lr_regnum = 67;
3092 tdep->ppc_ctr_regnum = 68;
3093 tdep->ppc_xer_regnum = 69;
3094 if (v->mach == bfd_mach_ppc_601)
3095 tdep->ppc_mq_regnum = 124;
708ff411 3096 else if (arch == bfd_arch_rs6000)
2188cbdd 3097 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3098 else
3099 tdep->ppc_mq_regnum = -1;
366f009f 3100 tdep->ppc_fp0_regnum = 32;
708ff411 3101 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3102 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3103 tdep->ppc_vr0_regnum = -1;
3104 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3105 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3106 tdep->ppc_ev0_regnum = -1;
3107 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3108 tdep->ppc_acc_regnum = -1;
3109 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3110
c8001721
EZ
3111 set_gdbarch_pc_regnum (gdbarch, 64);
3112 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3113 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
9f643768 3114 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3115 if (sysv_abi && wordsize == 8)
05580c65 3116 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3117 else if (sysv_abi && wordsize == 4)
05580c65 3118 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
3119 else
3120 {
3121 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
a3c001ce 3122 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
afd48b75 3123 }
c8001721 3124
baffbae0
JB
3125 /* Set lr_frame_offset. */
3126 if (wordsize == 8)
3127 tdep->lr_frame_offset = 16;
3128 else if (sysv_abi)
3129 tdep->lr_frame_offset = 4;
3130 else
3131 tdep->lr_frame_offset = 8;
3132
f86a7158
JB
3133 if (v->arch == bfd_arch_rs6000)
3134 tdep->ppc_sr0_regnum = -1;
3135 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3136 switch (v->mach)
3137 {
3138 case bfd_mach_ppc:
412b3060 3139 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3140 tdep->ppc_vr0_regnum = 71;
3141 tdep->ppc_vrsave_regnum = 104;
3142 break;
3143 case bfd_mach_ppc_7400:
3144 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3145 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3146 break;
3147 case bfd_mach_ppc_e500:
c8001721 3148 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3149 tdep->ppc_ev0_upper_regnum = 32;
3150 tdep->ppc_ev0_regnum = 73;
3151 tdep->ppc_ev31_regnum = 104;
3152 tdep->ppc_acc_regnum = 71;
3153 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3154 tdep->ppc_fp0_regnum = -1;
3155 tdep->ppc_fpscr_regnum = -1;
f86a7158 3156 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3157 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3158 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3159 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3160 break;
f86a7158
JB
3161
3162 case bfd_mach_ppc64:
3163 case bfd_mach_ppc_620:
3164 case bfd_mach_ppc_630:
3165 case bfd_mach_ppc_a35:
3166 case bfd_mach_ppc_rs64ii:
3167 case bfd_mach_ppc_rs64iii:
3168 /* These processor's register sets don't have segment registers. */
3169 tdep->ppc_sr0_regnum = -1;
3170 break;
1fcc0bb8 3171 }
f86a7158
JB
3172 else
3173 internal_error (__FILE__, __LINE__,
3174 "rs6000_gdbarch_init: "
3175 "received unexpected BFD 'arch' value");
1fcc0bb8 3176
338ef23d
AC
3177 /* Sanity check on registers. */
3178 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3179
56a6dfb9 3180 /* Select instruction printer. */
708ff411 3181 if (arch == bfd_arch_rs6000)
9364a0ef 3182 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3183 else
9364a0ef 3184 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3185
7a78ae4e 3186 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3187
3188 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3189 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3190 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3191 set_gdbarch_register_type (gdbarch, rs6000_register_type);
7a78ae4e
ND
3192
3193 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3194 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3195 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3196 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3197 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3198 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3199 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3200 if (sysv_abi)
3201 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3202 else
3203 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3204 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3205
11269d7e 3206 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3207 if (sysv_abi && wordsize == 8)
3208 /* PPC64 SYSV. */
3209 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3210 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3211 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3212 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3213 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3214 224. */
3215 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3216
691d145a
JB
3217 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3218 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3219 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3220
18ed0c4e
JB
3221 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3222 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
2ea5f656
KB
3223 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3224 is correct for the SysV ABI when the wordsize is 8, but I'm also
3225 fairly certain that ppc_sysv_abi_push_arguments() will give even
3226 worse results since it only works for 32-bit code. So, for the moment,
3227 we're better off calling rs6000_push_arguments() since it works for
3228 64-bit code. At some point in the future, this matter needs to be
3229 revisited. */
3230 if (sysv_abi && wordsize == 4)
77b2b6d4 3231 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3232 else if (sysv_abi && wordsize == 8)
3233 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3234 else
77b2b6d4 3235 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3236
74055713 3237 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
3238
3239 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3240 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3241 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3242
6066c3de
AC
3243 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3244 for the descriptor and ".FN" for the entry-point -- a user
3245 specifying "break FN" will unexpectedly end up with a breakpoint
3246 on the descriptor and not the function. This architecture method
3247 transforms any breakpoints on descriptors into breakpoints on the
3248 corresponding entry point. */
3249 if (sysv_abi && wordsize == 8)
3250 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3251
7a78ae4e
ND
3252 /* Not sure on this. FIXMEmgo */
3253 set_gdbarch_frame_args_skip (gdbarch, 8);
3254
05580c65 3255 if (!sysv_abi)
b5622e8d 3256 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
8e0662df 3257
15813d3f
AC
3258 if (!sysv_abi)
3259 {
3260 /* Handle RS/6000 function pointers (which are really function
3261 descriptors). */
f517ea4e
PS
3262 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3263 rs6000_convert_from_func_ptr_addr);
9aa1e687 3264 }
7a78ae4e 3265
143985b7
AF
3266 /* Helpers for function argument information. */
3267 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3268
7b112f9c 3269 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3270 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3271
61a65099
KB
3272 switch (info.osabi)
3273 {
3274 case GDB_OSABI_NETBSD_AOUT:
3275 case GDB_OSABI_NETBSD_ELF:
3276 case GDB_OSABI_UNKNOWN:
3277 case GDB_OSABI_LINUX:
3278 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3279 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3280 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3281 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3282 break;
3283 default:
61a65099 3284 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3285
3286 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3287 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3288 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3289 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3290 }
3291
ef5200c1
AC
3292 if (from_xcoff_exec)
3293 {
3294 /* NOTE: jimix/2003-06-09: This test should really check for
3295 GDB_OSABI_AIX when that is defined and becomes
3296 available. (Actually, once things are properly split apart,
3297 the test goes away.) */
3298 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3299 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3300 }
3301
9f643768
JB
3302 init_sim_regno_table (gdbarch);
3303
7a78ae4e 3304 return gdbarch;
c906108c
SS
3305}
3306
7b112f9c
JT
3307static void
3308rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3309{
3310 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3311
3312 if (tdep == NULL)
3313 return;
3314
4be87837 3315 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3316}
3317
1fcc0bb8
EZ
3318static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3319
3320static void
3321rs6000_info_powerpc_command (char *args, int from_tty)
3322{
3323 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3324}
3325
c906108c
SS
3326/* Initialization code. */
3327
a78f21af 3328extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3329
c906108c 3330void
fba45db2 3331_initialize_rs6000_tdep (void)
c906108c 3332{
7b112f9c
JT
3333 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3334 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
3335
3336 /* Add root prefix command for "info powerpc" commands */
3337 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3338 "Various POWERPC info specific commands.",
3339 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 3340}
This page took 0.649033 seconds and 4 git commands to generate.