remote: one struct remote_state per struct remote_target
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include "symtab.h"
25#include "target.h"
26#include "gdbcore.h"
27#include "gdbcmd.h"
c906108c 28#include "objfiles.h"
7a78ae4e 29#include "arch-utils.h"
4e052eda 30#include "regcache.h"
d195bc9f 31#include "regset.h"
3b2ca824 32#include "target-float.h"
fd0407d6 33#include "value.h"
1fcc0bb8 34#include "parser-defs.h"
4be87837 35#include "osabi.h"
7d9b040b 36#include "infcall.h"
9f643768
JB
37#include "sim-regno.h"
38#include "gdb/sim-ppc.h"
6ced10dd 39#include "reggroups.h"
4fc771b8 40#include "dwarf2-frame.h"
7cc46491
DJ
41#include "target-descriptions.h"
42#include "user-regs.h"
b4cdae6f
WW
43#include "record-full.h"
44#include "auxv.h"
7a78ae4e 45
7a78ae4e 46#include "coff/internal.h" /* for libcoff.h */
2fccf04a 47#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
48#include "coff/xcoff.h"
49#include "libxcoff.h"
7a78ae4e 50
9aa1e687 51#include "elf-bfd.h"
55eddb0f 52#include "elf/ppc.h"
cd453cd0 53#include "elf/ppc64.h"
7a78ae4e 54
6ded7999 55#include "solib-svr4.h"
9aa1e687 56#include "ppc-tdep.h"
debb1f09 57#include "ppc-ravenscar-thread.h"
7a78ae4e 58
a89aa300 59#include "dis-asm.h"
338ef23d 60
61a65099
KB
61#include "trad-frame.h"
62#include "frame-unwind.h"
63#include "frame-base.h"
64
a67914de
MK
65#include "ax.h"
66#include "ax-gdb.h"
325fac50 67#include <algorithm>
a67914de 68
7cc46491 69#include "features/rs6000/powerpc-32.c"
7284e1be 70#include "features/rs6000/powerpc-altivec32.c"
604c2f83 71#include "features/rs6000/powerpc-vsx32.c"
7cc46491
DJ
72#include "features/rs6000/powerpc-403.c"
73#include "features/rs6000/powerpc-403gc.c"
4d09ffea 74#include "features/rs6000/powerpc-405.c"
7cc46491
DJ
75#include "features/rs6000/powerpc-505.c"
76#include "features/rs6000/powerpc-601.c"
77#include "features/rs6000/powerpc-602.c"
78#include "features/rs6000/powerpc-603.c"
79#include "features/rs6000/powerpc-604.c"
80#include "features/rs6000/powerpc-64.c"
7284e1be 81#include "features/rs6000/powerpc-altivec64.c"
604c2f83 82#include "features/rs6000/powerpc-vsx64.c"
7cc46491
DJ
83#include "features/rs6000/powerpc-7400.c"
84#include "features/rs6000/powerpc-750.c"
85#include "features/rs6000/powerpc-860.c"
86#include "features/rs6000/powerpc-e500.c"
87#include "features/rs6000/rs6000.c"
88
5a9e69ba
TJB
89/* Determine if regnum is an SPE pseudo-register. */
90#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
f949c649
TJB
94/* Determine if regnum is a decimal float pseudo-register. */
95#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
604c2f83
LM
99/* Determine if regnum is a POWER7 VSX register. */
100#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_vsr0_regnum \
102 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
103
104/* Determine if regnum is a POWER7 Extended FP register. */
105#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
106 && (regnum) >= (tdep)->ppc_efpr0_regnum \
d9492458 107 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
604c2f83 108
65b48a81
PB
109/* Holds the current set of options to be passed to the disassembler. */
110static char *powerpc_disassembler_options;
111
55eddb0f
DJ
112/* The list of available "set powerpc ..." and "show powerpc ..."
113 commands. */
114static struct cmd_list_element *setpowerpccmdlist = NULL;
115static struct cmd_list_element *showpowerpccmdlist = NULL;
116
117static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
118
119/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
40478521 120static const char *const powerpc_vector_strings[] =
55eddb0f
DJ
121{
122 "auto",
123 "generic",
124 "altivec",
125 "spe",
126 NULL
127};
128
129/* A variable that can be configured by the user. */
130static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
131static const char *powerpc_vector_abi_string = "auto";
132
0df8b418 133/* To be used by skip_prologue. */
7a78ae4e
ND
134
135struct rs6000_framedata
136 {
137 int offset; /* total size of frame --- the distance
138 by which we decrement sp to allocate
139 the frame */
140 int saved_gpr; /* smallest # of saved gpr */
46a9b8ed 141 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
7a78ae4e 142 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 143 int saved_vr; /* smallest # of saved vr */
96ff0de4 144 int saved_ev; /* smallest # of saved ev */
7a78ae4e 145 int alloca_reg; /* alloca register number (frame ptr) */
0df8b418
MS
146 char frameless; /* true if frameless functions. */
147 char nosavedpc; /* true if pc not saved. */
46a9b8ed 148 char used_bl; /* true if link register clobbered */
7a78ae4e
ND
149 int gpr_offset; /* offset of saved gprs from prev sp */
150 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 151 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 152 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e 153 int lr_offset; /* offset of saved lr */
46a9b8ed 154 int lr_register; /* register of saved lr, if trustworthy */
7a78ae4e 155 int cr_offset; /* offset of saved cr */
6be8bc0c 156 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
157 };
158
c906108c 159
604c2f83
LM
160/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
161int
162vsx_register_p (struct gdbarch *gdbarch, int regno)
163{
164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
165 if (tdep->ppc_vsr0_regnum < 0)
166 return 0;
167 else
168 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
169 <= tdep->ppc_vsr0_upper_regnum + 31);
170}
171
64b84175
KB
172/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
173int
be8626e0 174altivec_register_p (struct gdbarch *gdbarch, int regno)
64b84175 175{
be8626e0 176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
64b84175
KB
177 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
178 return 0;
179 else
180 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
181}
182
383f0f5b 183
867e2dc5
JB
184/* Return true if REGNO is an SPE register, false otherwise. */
185int
be8626e0 186spe_register_p (struct gdbarch *gdbarch, int regno)
867e2dc5 187{
be8626e0 188 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
867e2dc5
JB
189
190 /* Is it a reference to EV0 -- EV31, and do we have those? */
5a9e69ba 191 if (IS_SPE_PSEUDOREG (tdep, regno))
867e2dc5
JB
192 return 1;
193
6ced10dd
JB
194 /* Is it a reference to one of the raw upper GPR halves? */
195 if (tdep->ppc_ev0_upper_regnum >= 0
196 && tdep->ppc_ev0_upper_regnum <= regno
197 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
198 return 1;
199
867e2dc5
JB
200 /* Is it a reference to the 64-bit accumulator, and do we have that? */
201 if (tdep->ppc_acc_regnum >= 0
202 && tdep->ppc_acc_regnum == regno)
203 return 1;
204
205 /* Is it a reference to the SPE floating-point status and control register,
206 and do we have that? */
207 if (tdep->ppc_spefscr_regnum >= 0
208 && tdep->ppc_spefscr_regnum == regno)
209 return 1;
210
211 return 0;
212}
213
214
383f0f5b
JB
215/* Return non-zero if the architecture described by GDBARCH has
216 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
217int
218ppc_floating_point_unit_p (struct gdbarch *gdbarch)
219{
383f0f5b
JB
220 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
221
222 return (tdep->ppc_fp0_regnum >= 0
223 && tdep->ppc_fpscr_regnum >= 0);
0a613259 224}
9f643768 225
06caf7d2
CES
226/* Return non-zero if the architecture described by GDBARCH has
227 Altivec registers (vr0 --- vr31, vrsave and vscr). */
228int
229ppc_altivec_support_p (struct gdbarch *gdbarch)
230{
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232
233 return (tdep->ppc_vr0_regnum >= 0
234 && tdep->ppc_vrsave_regnum >= 0);
235}
09991fa0
JB
236
237/* Check that TABLE[GDB_REGNO] is not already initialized, and then
238 set it to SIM_REGNO.
239
240 This is a helper function for init_sim_regno_table, constructing
241 the table mapping GDB register numbers to sim register numbers; we
242 initialize every element in that table to -1 before we start
243 filling it in. */
9f643768
JB
244static void
245set_sim_regno (int *table, int gdb_regno, int sim_regno)
246{
247 /* Make sure we don't try to assign any given GDB register a sim
248 register number more than once. */
249 gdb_assert (table[gdb_regno] == -1);
250 table[gdb_regno] = sim_regno;
251}
252
09991fa0
JB
253
254/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
255 numbers to simulator register numbers, based on the values placed
256 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
257static void
258init_sim_regno_table (struct gdbarch *arch)
259{
260 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
7cc46491 261 int total_regs = gdbarch_num_regs (arch);
9f643768
JB
262 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
263 int i;
7cc46491
DJ
264 static const char *const segment_regs[] = {
265 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
266 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
267 };
9f643768
JB
268
269 /* Presume that all registers not explicitly mentioned below are
270 unavailable from the sim. */
271 for (i = 0; i < total_regs; i++)
272 sim_regno[i] = -1;
273
274 /* General-purpose registers. */
275 for (i = 0; i < ppc_num_gprs; i++)
276 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
277
278 /* Floating-point registers. */
279 if (tdep->ppc_fp0_regnum >= 0)
280 for (i = 0; i < ppc_num_fprs; i++)
281 set_sim_regno (sim_regno,
282 tdep->ppc_fp0_regnum + i,
283 sim_ppc_f0_regnum + i);
284 if (tdep->ppc_fpscr_regnum >= 0)
285 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
286
287 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
288 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
289 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
290
291 /* Segment registers. */
7cc46491
DJ
292 for (i = 0; i < ppc_num_srs; i++)
293 {
294 int gdb_regno;
295
296 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
297 if (gdb_regno >= 0)
298 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
299 }
9f643768
JB
300
301 /* Altivec registers. */
302 if (tdep->ppc_vr0_regnum >= 0)
303 {
304 for (i = 0; i < ppc_num_vrs; i++)
305 set_sim_regno (sim_regno,
306 tdep->ppc_vr0_regnum + i,
307 sim_ppc_vr0_regnum + i);
308
309 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
310 we can treat this more like the other cases. */
311 set_sim_regno (sim_regno,
312 tdep->ppc_vr0_regnum + ppc_num_vrs,
313 sim_ppc_vscr_regnum);
314 }
315 /* vsave is a special-purpose register, so the code below handles it. */
316
317 /* SPE APU (E500) registers. */
6ced10dd
JB
318 if (tdep->ppc_ev0_upper_regnum >= 0)
319 for (i = 0; i < ppc_num_gprs; i++)
320 set_sim_regno (sim_regno,
321 tdep->ppc_ev0_upper_regnum + i,
322 sim_ppc_rh0_regnum + i);
9f643768
JB
323 if (tdep->ppc_acc_regnum >= 0)
324 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
325 /* spefscr is a special-purpose register, so the code below handles it. */
326
976102cd 327#ifdef WITH_PPC_SIM
9f643768
JB
328 /* Now handle all special-purpose registers. Verify that they
329 haven't mistakenly been assigned numbers by any of the above
7cc46491
DJ
330 code. */
331 for (i = 0; i < sim_ppc_num_sprs; i++)
332 {
333 const char *spr_name = sim_spr_register_name (i);
334 int gdb_regno = -1;
335
336 if (spr_name != NULL)
337 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
338
339 if (gdb_regno != -1)
340 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
341 }
342#endif
9f643768
JB
343
344 /* Drop the initialized array into place. */
345 tdep->sim_regno = sim_regno;
346}
347
09991fa0
JB
348
349/* Given a GDB register number REG, return the corresponding SIM
350 register number. */
9f643768 351static int
e7faf938 352rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
9f643768 353{
e7faf938 354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f643768
JB
355 int sim_regno;
356
7cc46491 357 if (tdep->sim_regno == NULL)
e7faf938 358 init_sim_regno_table (gdbarch);
7cc46491 359
f57d151a 360 gdb_assert (0 <= reg
e7faf938
MD
361 && reg <= gdbarch_num_regs (gdbarch)
362 + gdbarch_num_pseudo_regs (gdbarch));
9f643768
JB
363 sim_regno = tdep->sim_regno[reg];
364
365 if (sim_regno >= 0)
366 return sim_regno;
367 else
368 return LEGACY_SIM_REGNO_IGNORE;
369}
370
d195bc9f
MK
371\f
372
373/* Register set support functions. */
374
f2db237a
AM
375/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
376 Write the register to REGCACHE. */
377
7284e1be 378void
d195bc9f 379ppc_supply_reg (struct regcache *regcache, int regnum,
f2db237a 380 const gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
381{
382 if (regnum != -1 && offset != -1)
f2db237a
AM
383 {
384 if (regsize > 4)
385 {
ac7936df 386 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
387 int gdb_regsize = register_size (gdbarch, regnum);
388 if (gdb_regsize < regsize
389 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
390 offset += regsize - gdb_regsize;
391 }
392 regcache_raw_supply (regcache, regnum, regs + offset);
393 }
d195bc9f
MK
394}
395
f2db237a
AM
396/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
397 in a field REGSIZE wide. Zero pad as necessary. */
398
7284e1be 399void
d195bc9f 400ppc_collect_reg (const struct regcache *regcache, int regnum,
f2db237a 401 gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
402{
403 if (regnum != -1 && offset != -1)
f2db237a
AM
404 {
405 if (regsize > 4)
406 {
ac7936df 407 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
408 int gdb_regsize = register_size (gdbarch, regnum);
409 if (gdb_regsize < regsize)
410 {
411 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
412 {
413 memset (regs + offset, 0, regsize - gdb_regsize);
414 offset += regsize - gdb_regsize;
415 }
416 else
417 memset (regs + offset + regsize - gdb_regsize, 0,
418 regsize - gdb_regsize);
419 }
420 }
421 regcache_raw_collect (regcache, regnum, regs + offset);
422 }
d195bc9f
MK
423}
424
f2db237a
AM
425static int
426ppc_greg_offset (struct gdbarch *gdbarch,
427 struct gdbarch_tdep *tdep,
428 const struct ppc_reg_offsets *offsets,
429 int regnum,
430 int *regsize)
431{
432 *regsize = offsets->gpr_size;
433 if (regnum >= tdep->ppc_gp0_regnum
434 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
435 return (offsets->r0_offset
436 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
437
438 if (regnum == gdbarch_pc_regnum (gdbarch))
439 return offsets->pc_offset;
440
441 if (regnum == tdep->ppc_ps_regnum)
442 return offsets->ps_offset;
443
444 if (regnum == tdep->ppc_lr_regnum)
445 return offsets->lr_offset;
446
447 if (regnum == tdep->ppc_ctr_regnum)
448 return offsets->ctr_offset;
449
450 *regsize = offsets->xr_size;
451 if (regnum == tdep->ppc_cr_regnum)
452 return offsets->cr_offset;
453
454 if (regnum == tdep->ppc_xer_regnum)
455 return offsets->xer_offset;
456
457 if (regnum == tdep->ppc_mq_regnum)
458 return offsets->mq_offset;
459
460 return -1;
461}
462
463static int
464ppc_fpreg_offset (struct gdbarch_tdep *tdep,
465 const struct ppc_reg_offsets *offsets,
466 int regnum)
467{
468 if (regnum >= tdep->ppc_fp0_regnum
469 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
470 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
471
472 if (regnum == tdep->ppc_fpscr_regnum)
473 return offsets->fpscr_offset;
474
475 return -1;
476}
477
d195bc9f
MK
478/* Supply register REGNUM in the general-purpose register set REGSET
479 from the buffer specified by GREGS and LEN to register cache
480 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
481
482void
483ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
484 int regnum, const void *gregs, size_t len)
485{
ac7936df 486 struct gdbarch *gdbarch = regcache->arch ();
d195bc9f 487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
488 const struct ppc_reg_offsets *offsets
489 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 490 size_t offset;
f2db237a 491 int regsize;
d195bc9f 492
f2db237a 493 if (regnum == -1)
d195bc9f 494 {
f2db237a
AM
495 int i;
496 int gpr_size = offsets->gpr_size;
497
498 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
499 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
500 i++, offset += gpr_size)
19ba03f4
SM
501 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
502 gpr_size);
f2db237a
AM
503
504 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 505 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 506 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 507 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 508 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 509 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 510 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 511 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 512 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
513 (const gdb_byte *) gregs, offsets->cr_offset,
514 offsets->xr_size);
f2db237a 515 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
516 (const gdb_byte *) gregs, offsets->xer_offset,
517 offsets->xr_size);
f2db237a 518 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
519 (const gdb_byte *) gregs, offsets->mq_offset,
520 offsets->xr_size);
f2db237a 521 return;
d195bc9f
MK
522 }
523
f2db237a 524 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 525 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
526}
527
528/* Supply register REGNUM in the floating-point register set REGSET
529 from the buffer specified by FPREGS and LEN to register cache
530 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
531
532void
533ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
534 int regnum, const void *fpregs, size_t len)
535{
ac7936df 536 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
537 struct gdbarch_tdep *tdep;
538 const struct ppc_reg_offsets *offsets;
d195bc9f 539 size_t offset;
d195bc9f 540
f2db237a
AM
541 if (!ppc_floating_point_unit_p (gdbarch))
542 return;
383f0f5b 543
f2db237a 544 tdep = gdbarch_tdep (gdbarch);
19ba03f4 545 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 546 if (regnum == -1)
d195bc9f 547 {
f2db237a
AM
548 int i;
549
550 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
551 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
552 i++, offset += 8)
19ba03f4 553 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
f2db237a
AM
554
555 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
556 (const gdb_byte *) fpregs, offsets->fpscr_offset,
557 offsets->fpscr_size);
f2db237a 558 return;
d195bc9f
MK
559 }
560
f2db237a 561 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 562 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
f2db237a 563 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
564}
565
566/* Collect register REGNUM in the general-purpose register set
f2db237a 567 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
568 GREGS and LEN. If REGNUM is -1, do this for all registers in
569 REGSET. */
570
571void
572ppc_collect_gregset (const struct regset *regset,
573 const struct regcache *regcache,
574 int regnum, void *gregs, size_t len)
575{
ac7936df 576 struct gdbarch *gdbarch = regcache->arch ();
d195bc9f 577 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
578 const struct ppc_reg_offsets *offsets
579 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 580 size_t offset;
f2db237a 581 int regsize;
d195bc9f 582
f2db237a 583 if (regnum == -1)
d195bc9f 584 {
f2db237a
AM
585 int i;
586 int gpr_size = offsets->gpr_size;
587
588 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
589 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
590 i++, offset += gpr_size)
19ba03f4 591 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
f2db237a
AM
592
593 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 594 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 595 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 596 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 597 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 598 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 599 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 600 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 601 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
602 (gdb_byte *) gregs, offsets->cr_offset,
603 offsets->xr_size);
f2db237a 604 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
605 (gdb_byte *) gregs, offsets->xer_offset,
606 offsets->xr_size);
f2db237a 607 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
608 (gdb_byte *) gregs, offsets->mq_offset,
609 offsets->xr_size);
f2db237a 610 return;
d195bc9f
MK
611 }
612
f2db237a 613 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 614 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
615}
616
617/* Collect register REGNUM in the floating-point register set
f2db237a 618 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
619 FPREGS and LEN. If REGNUM is -1, do this for all registers in
620 REGSET. */
621
622void
623ppc_collect_fpregset (const struct regset *regset,
624 const struct regcache *regcache,
625 int regnum, void *fpregs, size_t len)
626{
ac7936df 627 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
628 struct gdbarch_tdep *tdep;
629 const struct ppc_reg_offsets *offsets;
d195bc9f 630 size_t offset;
d195bc9f 631
f2db237a
AM
632 if (!ppc_floating_point_unit_p (gdbarch))
633 return;
383f0f5b 634
f2db237a 635 tdep = gdbarch_tdep (gdbarch);
19ba03f4 636 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 637 if (regnum == -1)
d195bc9f 638 {
f2db237a
AM
639 int i;
640
641 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
642 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
643 i++, offset += 8)
19ba03f4 644 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
f2db237a
AM
645
646 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
647 (gdb_byte *) fpregs, offsets->fpscr_offset,
648 offsets->fpscr_size);
f2db237a 649 return;
d195bc9f
MK
650 }
651
f2db237a 652 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 653 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
f2db237a 654 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f 655}
06caf7d2 656
0d1243d9
PG
657static int
658insn_changes_sp_or_jumps (unsigned long insn)
659{
660 int opcode = (insn >> 26) & 0x03f;
661 int sd = (insn >> 21) & 0x01f;
662 int a = (insn >> 16) & 0x01f;
663 int subcode = (insn >> 1) & 0x3ff;
664
665 /* Changes the stack pointer. */
666
667 /* NOTE: There are many ways to change the value of a given register.
668 The ways below are those used when the register is R1, the SP,
669 in a funtion's epilogue. */
670
671 if (opcode == 31 && subcode == 444 && a == 1)
672 return 1; /* mr R1,Rn */
673 if (opcode == 14 && sd == 1)
674 return 1; /* addi R1,Rn,simm */
675 if (opcode == 58 && sd == 1)
676 return 1; /* ld R1,ds(Rn) */
677
678 /* Transfers control. */
679
680 if (opcode == 18)
681 return 1; /* b */
682 if (opcode == 16)
683 return 1; /* bc */
684 if (opcode == 19 && subcode == 16)
685 return 1; /* bclr */
686 if (opcode == 19 && subcode == 528)
687 return 1; /* bcctr */
688
689 return 0;
690}
691
692/* Return true if we are in the function's epilogue, i.e. after the
693 instruction that destroyed the function's stack frame.
694
695 1) scan forward from the point of execution:
696 a) If you find an instruction that modifies the stack pointer
697 or transfers control (except a return), execution is not in
698 an epilogue, return.
699 b) Stop scanning if you find a return instruction or reach the
700 end of the function or reach the hard limit for the size of
701 an epilogue.
702 2) scan backward from the point of execution:
703 a) If you find an instruction that modifies the stack pointer,
704 execution *is* in an epilogue, return.
705 b) Stop scanning if you reach an instruction that transfers
706 control or the beginning of the function or reach the hard
707 limit for the size of an epilogue. */
708
709static int
2608dbf8
WW
710rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
711 struct gdbarch *gdbarch, CORE_ADDR pc)
0d1243d9 712{
46a9b8ed 713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 714 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0d1243d9
PG
715 bfd_byte insn_buf[PPC_INSN_SIZE];
716 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
717 unsigned long insn;
0d1243d9
PG
718
719 /* Find the search limits based on function boundaries and hard limit. */
720
721 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
722 return 0;
723
724 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
725 if (epilogue_start < func_start) epilogue_start = func_start;
726
727 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
728 if (epilogue_end > func_end) epilogue_end = func_end;
729
0d1243d9
PG
730 /* Scan forward until next 'blr'. */
731
732 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
733 {
734 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
735 return 0;
e17a4113 736 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9
PG
737 if (insn == 0x4e800020)
738 break;
46a9b8ed
DJ
739 /* Assume a bctr is a tail call unless it points strictly within
740 this function. */
741 if (insn == 0x4e800420)
742 {
743 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
744 tdep->ppc_ctr_regnum);
745 if (ctr > func_start && ctr < func_end)
746 return 0;
747 else
748 break;
749 }
0d1243d9
PG
750 if (insn_changes_sp_or_jumps (insn))
751 return 0;
752 }
753
754 /* Scan backward until adjustment to stack pointer (R1). */
755
756 for (scan_pc = pc - PPC_INSN_SIZE;
757 scan_pc >= epilogue_start;
758 scan_pc -= PPC_INSN_SIZE)
759 {
760 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
761 return 0;
e17a4113 762 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9
PG
763 if (insn_changes_sp_or_jumps (insn))
764 return 1;
765 }
766
767 return 0;
768}
769
c9cf6e20 770/* Implement the stack_frame_destroyed_p gdbarch method. */
2608dbf8
WW
771
772static int
c9cf6e20 773rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2608dbf8
WW
774{
775 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
776 gdbarch, pc);
777}
778
143985b7 779/* Get the ith function argument for the current function. */
b9362cc7 780static CORE_ADDR
143985b7
AF
781rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
782 struct type *type)
783{
50fd1280 784 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
785}
786
c906108c
SS
787/* Sequence of bytes for breakpoint instruction. */
788
04180708
YQ
789constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
790constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
d19280ad 791
04180708
YQ
792typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
793 rs6000_breakpoint;
c906108c 794
f74c6cad
LM
795/* Instruction masks for displaced stepping. */
796#define BRANCH_MASK 0xfc000000
797#define BP_MASK 0xFC0007FE
798#define B_INSN 0x48000000
799#define BC_INSN 0x40000000
800#define BXL_INSN 0x4c000000
801#define BP_INSN 0x7C000008
802
7f03bd92
PA
803/* Instruction masks used during single-stepping of atomic
804 sequences. */
2039d74e 805#define LOAD_AND_RESERVE_MASK 0xfc0007fe
7f03bd92
PA
806#define LWARX_INSTRUCTION 0x7c000028
807#define LDARX_INSTRUCTION 0x7c0000A8
2039d74e
EBM
808#define LBARX_INSTRUCTION 0x7c000068
809#define LHARX_INSTRUCTION 0x7c0000e8
810#define LQARX_INSTRUCTION 0x7c000228
811#define STORE_CONDITIONAL_MASK 0xfc0007ff
7f03bd92
PA
812#define STWCX_INSTRUCTION 0x7c00012d
813#define STDCX_INSTRUCTION 0x7c0001ad
2039d74e
EBM
814#define STBCX_INSTRUCTION 0x7c00056d
815#define STHCX_INSTRUCTION 0x7c0005ad
816#define STQCX_INSTRUCTION 0x7c00016d
817
818/* Check if insn is one of the Load And Reserve instructions used for atomic
819 sequences. */
820#define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
821 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
822 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
823 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
824 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
825/* Check if insn is one of the Store Conditional instructions used for atomic
826 sequences. */
827#define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
828 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
829 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
830 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
831 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
7f03bd92 832
cfba9872
SM
833typedef buf_displaced_step_closure ppc_displaced_step_closure;
834
c2508e90 835/* We can't displaced step atomic sequences. */
7f03bd92
PA
836
837static struct displaced_step_closure *
838ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
839 CORE_ADDR from, CORE_ADDR to,
840 struct regcache *regs)
841{
842 size_t len = gdbarch_max_insn_length (gdbarch);
cfba9872
SM
843 std::unique_ptr<ppc_displaced_step_closure> closure
844 (new ppc_displaced_step_closure (len));
845 gdb_byte *buf = closure->buf.data ();
7f03bd92
PA
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847 int insn;
848
849 read_memory (from, buf, len);
850
851 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
852
2039d74e
EBM
853 /* Assume all atomic sequences start with a Load and Reserve instruction. */
854 if (IS_LOAD_AND_RESERVE_INSN (insn))
7f03bd92
PA
855 {
856 if (debug_displaced)
857 {
858 fprintf_unfiltered (gdb_stdlog,
859 "displaced: can't displaced step "
860 "atomic sequence at %s\n",
861 paddress (gdbarch, from));
862 }
cfba9872 863
7f03bd92
PA
864 return NULL;
865 }
866
867 write_memory (to, buf, len);
868
869 if (debug_displaced)
870 {
871 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
872 paddress (gdbarch, from), paddress (gdbarch, to));
873 displaced_step_dump_bytes (gdb_stdlog, buf, len);
874 }
875
cfba9872 876 return closure.release ();
7f03bd92
PA
877}
878
f74c6cad
LM
879/* Fix up the state of registers and memory after having single-stepped
880 a displaced instruction. */
63807e1d 881static void
f74c6cad 882ppc_displaced_step_fixup (struct gdbarch *gdbarch,
cfba9872 883 struct displaced_step_closure *closure_,
63807e1d
PA
884 CORE_ADDR from, CORE_ADDR to,
885 struct regcache *regs)
f74c6cad 886{
e17a4113 887 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7f03bd92 888 /* Our closure is a copy of the instruction. */
cfba9872
SM
889 ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_;
890 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
891 PPC_INSN_SIZE, byte_order);
f74c6cad
LM
892 ULONGEST opcode = 0;
893 /* Offset for non PC-relative instructions. */
894 LONGEST offset = PPC_INSN_SIZE;
895
896 opcode = insn & BRANCH_MASK;
897
898 if (debug_displaced)
899 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
900 "displaced: (ppc) fixup (%s, %s)\n",
901 paddress (gdbarch, from), paddress (gdbarch, to));
f74c6cad
LM
902
903
904 /* Handle PC-relative branch instructions. */
905 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
906 {
a4fafde3 907 ULONGEST current_pc;
f74c6cad
LM
908
909 /* Read the current PC value after the instruction has been executed
910 in a displaced location. Calculate the offset to be applied to the
911 original PC value before the displaced stepping. */
912 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
913 &current_pc);
914 offset = current_pc - to;
915
916 if (opcode != BXL_INSN)
917 {
918 /* Check for AA bit indicating whether this is an absolute
919 addressing or PC-relative (1: absolute, 0: relative). */
920 if (!(insn & 0x2))
921 {
922 /* PC-relative addressing is being used in the branch. */
923 if (debug_displaced)
924 fprintf_unfiltered
925 (gdb_stdlog,
5af949e3
UW
926 "displaced: (ppc) branch instruction: %s\n"
927 "displaced: (ppc) adjusted PC from %s to %s\n",
928 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
929 paddress (gdbarch, from + offset));
f74c6cad 930
0df8b418
MS
931 regcache_cooked_write_unsigned (regs,
932 gdbarch_pc_regnum (gdbarch),
f74c6cad
LM
933 from + offset);
934 }
935 }
936 else
937 {
938 /* If we're here, it means we have a branch to LR or CTR. If the
939 branch was taken, the offset is probably greater than 4 (the next
940 instruction), so it's safe to assume that an offset of 4 means we
941 did not take the branch. */
942 if (offset == PPC_INSN_SIZE)
943 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
944 from + PPC_INSN_SIZE);
945 }
946
947 /* Check for LK bit indicating whether we should set the link
948 register to point to the next instruction
949 (1: Set, 0: Don't set). */
950 if (insn & 0x1)
951 {
952 /* Link register needs to be set to the next instruction's PC. */
953 regcache_cooked_write_unsigned (regs,
954 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
955 from + PPC_INSN_SIZE);
956 if (debug_displaced)
957 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
958 "displaced: (ppc) adjusted LR to %s\n",
959 paddress (gdbarch, from + PPC_INSN_SIZE));
f74c6cad
LM
960
961 }
962 }
963 /* Check for breakpoints in the inferior. If we've found one, place the PC
964 right at the breakpoint instruction. */
965 else if ((insn & BP_MASK) == BP_INSN)
966 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
967 else
968 /* Handle any other instructions that do not fit in the categories above. */
969 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
970 from + offset);
971}
c906108c 972
99e40580
UW
973/* Always use hardware single-stepping to execute the
974 displaced instruction. */
975static int
976ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
977 struct displaced_step_closure *closure)
978{
979 return 1;
980}
981
2039d74e
EBM
982/* Checks for an atomic sequence of instructions beginning with a
983 Load And Reserve instruction and ending with a Store Conditional
984 instruction. If such a sequence is found, attempt to step through it.
985 A breakpoint is placed at the end of the sequence. */
a0ff9e1a 986std::vector<CORE_ADDR>
f5ea389a 987ppc_deal_with_atomic_sequence (struct regcache *regcache)
ce5eab59 988{
ac7936df 989 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 990 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
41e26ad3 991 CORE_ADDR pc = regcache_read_pc (regcache);
ce5eab59
UW
992 CORE_ADDR breaks[2] = {-1, -1};
993 CORE_ADDR loc = pc;
24d45690 994 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
e17a4113 995 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
996 int insn_count;
997 int index;
998 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
999 const int atomic_sequence_length = 16; /* Instruction sequence length. */
ce5eab59
UW
1000 int bc_insn_count = 0; /* Conditional branch instruction count. */
1001
2039d74e
EBM
1002 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1003 if (!IS_LOAD_AND_RESERVE_INSN (insn))
a0ff9e1a 1004 return {};
ce5eab59
UW
1005
1006 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1007 instructions. */
1008 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1009 {
1010 loc += PPC_INSN_SIZE;
e17a4113 1011 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1012
1013 /* Assume that there is at most one conditional branch in the atomic
1014 sequence. If a conditional branch is found, put a breakpoint in
1015 its destination address. */
f74c6cad 1016 if ((insn & BRANCH_MASK) == BC_INSN)
ce5eab59 1017 {
a3769e0c
AM
1018 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1019 int absolute = insn & 2;
4a7622d1 1020
ce5eab59 1021 if (bc_insn_count >= 1)
a0ff9e1a
SM
1022 return {}; /* More than one conditional branch found, fallback
1023 to the standard single-step code. */
4a7622d1
UW
1024
1025 if (absolute)
1026 breaks[1] = immediate;
1027 else
a3769e0c 1028 breaks[1] = loc + immediate;
4a7622d1
UW
1029
1030 bc_insn_count++;
1031 last_breakpoint++;
ce5eab59
UW
1032 }
1033
2039d74e 1034 if (IS_STORE_CONDITIONAL_INSN (insn))
ce5eab59
UW
1035 break;
1036 }
1037
2039d74e
EBM
1038 /* Assume that the atomic sequence ends with a Store Conditional
1039 instruction. */
1040 if (!IS_STORE_CONDITIONAL_INSN (insn))
a0ff9e1a 1041 return {};
ce5eab59 1042
24d45690 1043 closing_insn = loc;
ce5eab59 1044 loc += PPC_INSN_SIZE;
ce5eab59
UW
1045
1046 /* Insert a breakpoint right after the end of the atomic sequence. */
1047 breaks[0] = loc;
1048
24d45690 1049 /* Check for duplicated breakpoints. Check also for a breakpoint
a3769e0c
AM
1050 placed (branch instruction's destination) anywhere in sequence. */
1051 if (last_breakpoint
1052 && (breaks[1] == breaks[0]
1053 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
ce5eab59
UW
1054 last_breakpoint = 0;
1055
a0ff9e1a
SM
1056 std::vector<CORE_ADDR> next_pcs;
1057
ce5eab59 1058 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 1059 next_pcs.push_back (breaks[index]);
ce5eab59 1060
93f9a11f 1061 return next_pcs;
ce5eab59
UW
1062}
1063
c906108c 1064
c906108c
SS
1065#define SIGNED_SHORT(x) \
1066 ((sizeof (short) == 2) \
1067 ? ((int)(short)(x)) \
1068 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1069
1070#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1071
55d05f3b
KB
1072/* Limit the number of skipped non-prologue instructions, as the examining
1073 of the prologue is expensive. */
1074static int max_skip_non_prologue_insns = 10;
1075
773df3e5
JB
1076/* Return nonzero if the given instruction OP can be part of the prologue
1077 of a function and saves a parameter on the stack. FRAMEP should be
1078 set if one of the previous instructions in the function has set the
1079 Frame Pointer. */
1080
1081static int
1082store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1083{
1084 /* Move parameters from argument registers to temporary register. */
1085 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1086 {
1087 /* Rx must be scratch register r0. */
1088 const int rx_regno = (op >> 16) & 31;
1089 /* Ry: Only r3 - r10 are used for parameter passing. */
1090 const int ry_regno = GET_SRC_REG (op);
1091
1092 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1093 {
1094 *r0_contains_arg = 1;
1095 return 1;
1096 }
1097 else
1098 return 0;
1099 }
1100
1101 /* Save a General Purpose Register on stack. */
1102
1103 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1104 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1105 {
1106 /* Rx: Only r3 - r10 are used for parameter passing. */
1107 const int rx_regno = GET_SRC_REG (op);
1108
1109 return (rx_regno >= 3 && rx_regno <= 10);
1110 }
1111
1112 /* Save a General Purpose Register on stack via the Frame Pointer. */
1113
1114 if (framep &&
1115 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1116 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1117 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1118 {
1119 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1120 However, the compiler sometimes uses r0 to hold an argument. */
1121 const int rx_regno = GET_SRC_REG (op);
1122
1123 return ((rx_regno >= 3 && rx_regno <= 10)
1124 || (rx_regno == 0 && *r0_contains_arg));
1125 }
1126
1127 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1128 {
1129 /* Only f2 - f8 are used for parameter passing. */
1130 const int src_regno = GET_SRC_REG (op);
1131
1132 return (src_regno >= 2 && src_regno <= 8);
1133 }
1134
1135 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1136 {
1137 /* Only f2 - f8 are used for parameter passing. */
1138 const int src_regno = GET_SRC_REG (op);
1139
1140 return (src_regno >= 2 && src_regno <= 8);
1141 }
1142
1143 /* Not an insn that saves a parameter on stack. */
1144 return 0;
1145}
55d05f3b 1146
3c77c82a
DJ
1147/* Assuming that INSN is a "bl" instruction located at PC, return
1148 nonzero if the destination of the branch is a "blrl" instruction.
1149
1150 This sequence is sometimes found in certain function prologues.
1151 It allows the function to load the LR register with a value that
1152 they can use to access PIC data using PC-relative offsets. */
1153
1154static int
e17a4113 1155bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
3c77c82a 1156{
0b1b3e42
UW
1157 CORE_ADDR dest;
1158 int immediate;
1159 int absolute;
3c77c82a
DJ
1160 int dest_insn;
1161
0b1b3e42
UW
1162 absolute = (int) ((insn >> 1) & 1);
1163 immediate = ((insn & ~3) << 6) >> 6;
1164 if (absolute)
1165 dest = immediate;
1166 else
1167 dest = pc + immediate;
1168
e17a4113 1169 dest_insn = read_memory_integer (dest, 4, byte_order);
3c77c82a
DJ
1170 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1171 return 1;
1172
1173 return 0;
1174}
1175
dd6d677f
PFC
1176/* Return true if OP is a stw or std instruction with
1177 register operands RS and RA and any immediate offset.
1178
1179 If WITH_UPDATE is true, also return true if OP is
1180 a stwu or stdu instruction with the same operands.
1181
1182 Return false otherwise.
1183 */
1184static bool
1185store_insn_p (unsigned long op, unsigned long rs,
1186 unsigned long ra, bool with_update)
1187{
1188 rs = rs << 21;
1189 ra = ra << 16;
1190
1191 if (/* std RS, SIMM(RA) */
1192 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1193 /* stw RS, SIMM(RA) */
1194 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1195 return true;
1196
1197 if (with_update)
1198 {
1199 if (/* stdu RS, SIMM(RA) */
1200 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1201 /* stwu RS, SIMM(RA) */
1202 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1203 return true;
1204 }
1205
1206 return false;
1207}
1208
0df8b418 1209/* Masks for decoding a branch-and-link (bl) instruction.
8ab3d180
KB
1210
1211 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1212 The former is anded with the opcode in question; if the result of
1213 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1214 question is a ``bl'' instruction.
1215
1216 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1217 the branch displacement. */
1218
1219#define BL_MASK 0xfc000001
1220#define BL_INSTRUCTION 0x48000001
1221#define BL_DISPLACEMENT_MASK 0x03fffffc
1222
de9f48f0 1223static unsigned long
e17a4113 1224rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
de9f48f0 1225{
e17a4113 1226 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
de9f48f0
JG
1227 gdb_byte buf[4];
1228 unsigned long op;
1229
1230 /* Fetch the instruction and convert it to an integer. */
1231 if (target_read_memory (pc, buf, 4))
1232 return 0;
e17a4113 1233 op = extract_unsigned_integer (buf, 4, byte_order);
de9f48f0
JG
1234
1235 return op;
1236}
1237
1238/* GCC generates several well-known sequences of instructions at the begining
1239 of each function prologue when compiling with -fstack-check. If one of
1240 such sequences starts at START_PC, then return the address of the
1241 instruction immediately past this sequence. Otherwise, return START_PC. */
1242
1243static CORE_ADDR
e17a4113 1244rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
de9f48f0
JG
1245{
1246 CORE_ADDR pc = start_pc;
e17a4113 1247 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1248
1249 /* First possible sequence: A small number of probes.
1250 stw 0, -<some immediate>(1)
0df8b418 1251 [repeat this instruction any (small) number of times]. */
de9f48f0
JG
1252
1253 if ((op & 0xffff0000) == 0x90010000)
1254 {
1255 while ((op & 0xffff0000) == 0x90010000)
1256 {
1257 pc = pc + 4;
e17a4113 1258 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1259 }
1260 return pc;
1261 }
1262
1263 /* Second sequence: A probing loop.
1264 addi 12,1,-<some immediate>
1265 lis 0,-<some immediate>
1266 [possibly ori 0,0,<some immediate>]
1267 add 0,12,0
1268 cmpw 0,12,0
1269 beq 0,<disp>
1270 addi 12,12,-<some immediate>
1271 stw 0,0(12)
1272 b <disp>
0df8b418 1273 [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0
JG
1274
1275 while (1)
1276 {
1277 /* addi 12,1,-<some immediate> */
1278 if ((op & 0xffff0000) != 0x39810000)
1279 break;
1280
1281 /* lis 0,-<some immediate> */
1282 pc = pc + 4;
e17a4113 1283 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1284 if ((op & 0xffff0000) != 0x3c000000)
1285 break;
1286
1287 pc = pc + 4;
e17a4113 1288 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1289 /* [possibly ori 0,0,<some immediate>] */
1290 if ((op & 0xffff0000) == 0x60000000)
1291 {
1292 pc = pc + 4;
e17a4113 1293 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1294 }
1295 /* add 0,12,0 */
1296 if (op != 0x7c0c0214)
1297 break;
1298
1299 /* cmpw 0,12,0 */
1300 pc = pc + 4;
e17a4113 1301 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1302 if (op != 0x7c0c0000)
1303 break;
1304
1305 /* beq 0,<disp> */
1306 pc = pc + 4;
e17a4113 1307 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1308 if ((op & 0xff9f0001) != 0x41820000)
1309 break;
1310
1311 /* addi 12,12,-<some immediate> */
1312 pc = pc + 4;
e17a4113 1313 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1314 if ((op & 0xffff0000) != 0x398c0000)
1315 break;
1316
1317 /* stw 0,0(12) */
1318 pc = pc + 4;
e17a4113 1319 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1320 if (op != 0x900c0000)
1321 break;
1322
1323 /* b <disp> */
1324 pc = pc + 4;
e17a4113 1325 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1326 if ((op & 0xfc000001) != 0x48000000)
1327 break;
1328
0df8b418 1329 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0 1330 pc = pc + 4;
e17a4113 1331 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1332 if ((op & 0xffff0000) == 0x900c0000)
1333 {
1334 pc = pc + 4;
e17a4113 1335 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1336 }
1337
1338 /* We found a valid stack-check sequence, return the new PC. */
1339 return pc;
1340 }
1341
1342 /* Third sequence: No probe; instead, a comparizon between the stack size
1343 limit (saved in a run-time global variable) and the current stack
1344 pointer:
1345
1346 addi 0,1,-<some immediate>
1347 lis 12,__gnat_stack_limit@ha
1348 lwz 12,__gnat_stack_limit@l(12)
1349 twllt 0,12
1350
1351 or, with a small variant in the case of a bigger stack frame:
1352 addis 0,1,<some immediate>
1353 addic 0,0,-<some immediate>
1354 lis 12,__gnat_stack_limit@ha
1355 lwz 12,__gnat_stack_limit@l(12)
1356 twllt 0,12
1357 */
1358 while (1)
1359 {
1360 /* addi 0,1,-<some immediate> */
1361 if ((op & 0xffff0000) != 0x38010000)
1362 {
1363 /* small stack frame variant not recognized; try the
1364 big stack frame variant: */
1365
1366 /* addis 0,1,<some immediate> */
1367 if ((op & 0xffff0000) != 0x3c010000)
1368 break;
1369
1370 /* addic 0,0,-<some immediate> */
1371 pc = pc + 4;
e17a4113 1372 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1373 if ((op & 0xffff0000) != 0x30000000)
1374 break;
1375 }
1376
1377 /* lis 12,<some immediate> */
1378 pc = pc + 4;
e17a4113 1379 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1380 if ((op & 0xffff0000) != 0x3d800000)
1381 break;
1382
1383 /* lwz 12,<some immediate>(12) */
1384 pc = pc + 4;
e17a4113 1385 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1386 if ((op & 0xffff0000) != 0x818c0000)
1387 break;
1388
1389 /* twllt 0,12 */
1390 pc = pc + 4;
e17a4113 1391 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1392 if ((op & 0xfffffffe) != 0x7c406008)
1393 break;
1394
1395 /* We found a valid stack-check sequence, return the new PC. */
1396 return pc;
1397 }
1398
1399 /* No stack check code in our prologue, return the start_pc. */
1400 return start_pc;
1401}
1402
6a16c029
TJB
1403/* return pc value after skipping a function prologue and also return
1404 information about a function frame.
1405
1406 in struct rs6000_framedata fdata:
1407 - frameless is TRUE, if function does not have a frame.
1408 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1409 - offset is the initial size of this stack frame --- the amount by
1410 which we decrement the sp to allocate the frame.
1411 - saved_gpr is the number of the first saved gpr.
1412 - saved_fpr is the number of the first saved fpr.
1413 - saved_vr is the number of the first saved vr.
1414 - saved_ev is the number of the first saved ev.
1415 - alloca_reg is the number of the register used for alloca() handling.
1416 Otherwise -1.
1417 - gpr_offset is the offset of the first saved gpr from the previous frame.
1418 - fpr_offset is the offset of the first saved fpr from the previous frame.
1419 - vr_offset is the offset of the first saved vr from the previous frame.
1420 - ev_offset is the offset of the first saved ev from the previous frame.
1421 - lr_offset is the offset of the saved lr
1422 - cr_offset is the offset of the saved cr
0df8b418 1423 - vrsave_offset is the offset of the saved vrsave register. */
6a16c029 1424
7a78ae4e 1425static CORE_ADDR
be8626e0
MD
1426skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1427 struct rs6000_framedata *fdata)
c906108c
SS
1428{
1429 CORE_ADDR orig_pc = pc;
55d05f3b 1430 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 1431 CORE_ADDR li_found_pc = 0;
50fd1280 1432 gdb_byte buf[4];
c906108c
SS
1433 unsigned long op;
1434 long offset = 0;
dd6d677f 1435 long alloca_reg_offset = 0;
6be8bc0c 1436 long vr_saved_offset = 0;
482ca3f5
KB
1437 int lr_reg = -1;
1438 int cr_reg = -1;
6be8bc0c 1439 int vr_reg = -1;
96ff0de4
EZ
1440 int ev_reg = -1;
1441 long ev_offset = 0;
6be8bc0c 1442 int vrsave_reg = -1;
c906108c
SS
1443 int reg;
1444 int framep = 0;
1445 int minimal_toc_loaded = 0;
ddb20c56 1446 int prev_insn_was_prologue_insn = 1;
55d05f3b 1447 int num_skip_non_prologue_insns = 0;
773df3e5 1448 int r0_contains_arg = 0;
be8626e0
MD
1449 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1450 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1451 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 1452
ddb20c56 1453 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1454 fdata->saved_gpr = -1;
1455 fdata->saved_fpr = -1;
6be8bc0c 1456 fdata->saved_vr = -1;
96ff0de4 1457 fdata->saved_ev = -1;
c906108c
SS
1458 fdata->alloca_reg = -1;
1459 fdata->frameless = 1;
1460 fdata->nosavedpc = 1;
46a9b8ed 1461 fdata->lr_register = -1;
c906108c 1462
e17a4113 1463 pc = rs6000_skip_stack_check (gdbarch, pc);
de9f48f0
JG
1464 if (pc >= lim_pc)
1465 pc = lim_pc;
1466
55d05f3b 1467 for (;; pc += 4)
c906108c 1468 {
ddb20c56
KB
1469 /* Sometimes it isn't clear if an instruction is a prologue
1470 instruction or not. When we encounter one of these ambiguous
1471 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
0df8b418 1472 Otherwise, we'll assume that it really is a prologue instruction. */
ddb20c56
KB
1473 if (prev_insn_was_prologue_insn)
1474 last_prologue_pc = pc;
55d05f3b
KB
1475
1476 /* Stop scanning if we've hit the limit. */
4e463ff5 1477 if (pc >= lim_pc)
55d05f3b
KB
1478 break;
1479
ddb20c56
KB
1480 prev_insn_was_prologue_insn = 1;
1481
55d05f3b 1482 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1483 if (target_read_memory (pc, buf, 4))
1484 break;
e17a4113 1485 op = extract_unsigned_integer (buf, 4, byte_order);
c906108c 1486
c5aa993b
JM
1487 if ((op & 0xfc1fffff) == 0x7c0802a6)
1488 { /* mflr Rx */
43b1ab88
AC
1489 /* Since shared library / PIC code, which needs to get its
1490 address at runtime, can appear to save more than one link
1491 register vis:
1492
1493 *INDENT-OFF*
1494 stwu r1,-304(r1)
1495 mflr r3
1496 bl 0xff570d0 (blrl)
1497 stw r30,296(r1)
1498 mflr r30
1499 stw r31,300(r1)
1500 stw r3,308(r1);
1501 ...
1502 *INDENT-ON*
1503
1504 remember just the first one, but skip over additional
1505 ones. */
721d14ba 1506 if (lr_reg == -1)
dd6d677f 1507 lr_reg = (op & 0x03e00000) >> 21;
773df3e5
JB
1508 if (lr_reg == 0)
1509 r0_contains_arg = 0;
c5aa993b 1510 continue;
c5aa993b
JM
1511 }
1512 else if ((op & 0xfc1fffff) == 0x7c000026)
1513 { /* mfcr Rx */
dd6d677f 1514 cr_reg = (op & 0x03e00000) >> 21;
773df3e5
JB
1515 if (cr_reg == 0)
1516 r0_contains_arg = 0;
c5aa993b 1517 continue;
c906108c 1518
c906108c 1519 }
c5aa993b
JM
1520 else if ((op & 0xfc1f0000) == 0xd8010000)
1521 { /* stfd Rx,NUM(r1) */
1522 reg = GET_SRC_REG (op);
1523 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1524 {
1525 fdata->saved_fpr = reg;
1526 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1527 }
1528 continue;
c906108c 1529
c5aa993b
JM
1530 }
1531 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1532 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1533 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1534 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1535 {
1536
1537 reg = GET_SRC_REG (op);
46a9b8ed
DJ
1538 if ((op & 0xfc1f0000) == 0xbc010000)
1539 fdata->gpr_mask |= ~((1U << reg) - 1);
1540 else
1541 fdata->gpr_mask |= 1U << reg;
c5aa993b
JM
1542 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1543 {
1544 fdata->saved_gpr = reg;
7a78ae4e 1545 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1546 op &= ~3UL;
c5aa993b
JM
1547 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1548 }
1549 continue;
c906108c 1550
ddb20c56 1551 }
ef1bc9e7
AM
1552 else if ((op & 0xffff0000) == 0x3c4c0000
1553 || (op & 0xffff0000) == 0x3c400000
1554 || (op & 0xffff0000) == 0x38420000)
1555 {
1556 /* . 0: addis 2,12,.TOC.-0b@ha
1557 . addi 2,2,.TOC.-0b@l
1558 or
1559 . lis 2,.TOC.@ha
1560 . addi 2,2,.TOC.@l
1561 used by ELFv2 global entry points to set up r2. */
1562 continue;
1563 }
1564 else if (op == 0x60000000)
ddb20c56 1565 {
96ff0de4 1566 /* nop */
ddb20c56
KB
1567 /* Allow nops in the prologue, but do not consider them to
1568 be part of the prologue unless followed by other prologue
0df8b418 1569 instructions. */
ddb20c56
KB
1570 prev_insn_was_prologue_insn = 0;
1571 continue;
1572
c906108c 1573 }
c5aa993b 1574 else if ((op & 0xffff0000) == 0x3c000000)
ef1bc9e7 1575 { /* addis 0,0,NUM, used for >= 32k frames */
c5aa993b
JM
1576 fdata->offset = (op & 0x0000ffff) << 16;
1577 fdata->frameless = 0;
773df3e5 1578 r0_contains_arg = 0;
c5aa993b
JM
1579 continue;
1580
1581 }
1582 else if ((op & 0xffff0000) == 0x60000000)
ef1bc9e7 1583 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
c5aa993b
JM
1584 fdata->offset |= (op & 0x0000ffff);
1585 fdata->frameless = 0;
773df3e5 1586 r0_contains_arg = 0;
c5aa993b
JM
1587 continue;
1588
1589 }
be723e22 1590 else if (lr_reg >= 0 &&
dd6d677f
PFC
1591 ((store_insn_p (op, lr_reg, 1, true)) ||
1592 (framep &&
1593 (store_insn_p (op, lr_reg,
1594 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1595 false)))))
1596 {
1597 if (store_insn_p (op, lr_reg, 1, true))
1598 fdata->lr_offset = offset;
1599 else /* LR save through frame pointer. */
1600 fdata->lr_offset = alloca_reg_offset;
1601
c5aa993b 1602 fdata->nosavedpc = 0;
be723e22
MS
1603 /* Invalidate lr_reg, but don't set it to -1.
1604 That would mean that it had never been set. */
1605 lr_reg = -2;
98f08d3d
KB
1606 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1607 (op & 0xfc000000) == 0x90000000) /* stw */
1608 {
1609 /* Does not update r1, so add displacement to lr_offset. */
1610 fdata->lr_offset += SIGNED_SHORT (op);
1611 }
c5aa993b
JM
1612 continue;
1613
1614 }
be723e22 1615 else if (cr_reg >= 0 &&
dd6d677f
PFC
1616 (store_insn_p (op, cr_reg, 1, true)))
1617 {
98f08d3d 1618 fdata->cr_offset = offset;
be723e22
MS
1619 /* Invalidate cr_reg, but don't set it to -1.
1620 That would mean that it had never been set. */
1621 cr_reg = -2;
98f08d3d
KB
1622 if ((op & 0xfc000003) == 0xf8000000 ||
1623 (op & 0xfc000000) == 0x90000000)
1624 {
1625 /* Does not update r1, so add displacement to cr_offset. */
1626 fdata->cr_offset += SIGNED_SHORT (op);
1627 }
c5aa993b
JM
1628 continue;
1629
1630 }
721d14ba
DJ
1631 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1632 {
1633 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1634 prediction bits. If the LR has already been saved, we can
1635 skip it. */
1636 continue;
1637 }
c5aa993b
JM
1638 else if (op == 0x48000005)
1639 { /* bl .+4 used in
1640 -mrelocatable */
46a9b8ed 1641 fdata->used_bl = 1;
c5aa993b
JM
1642 continue;
1643
1644 }
1645 else if (op == 0x48000004)
1646 { /* b .+4 (xlc) */
1647 break;
1648
c5aa993b 1649 }
6be8bc0c
EZ
1650 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1651 in V.4 -mminimal-toc */
c5aa993b
JM
1652 (op & 0xffff0000) == 0x3bde0000)
1653 { /* addi 30,30,foo@l */
1654 continue;
c906108c 1655
c5aa993b
JM
1656 }
1657 else if ((op & 0xfc000001) == 0x48000001)
1658 { /* bl foo,
0df8b418 1659 to save fprs??? */
c906108c 1660
c5aa993b 1661 fdata->frameless = 0;
3c77c82a
DJ
1662
1663 /* If the return address has already been saved, we can skip
1664 calls to blrl (for PIC). */
e17a4113 1665 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
46a9b8ed
DJ
1666 {
1667 fdata->used_bl = 1;
1668 continue;
1669 }
3c77c82a 1670
6be8bc0c 1671 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1672 the first three instructions of the prologue and either
1673 we have no line table information or the line info tells
1674 us that the subroutine call is not part of the line
1675 associated with the prologue. */
c5aa993b 1676 if ((pc - orig_pc) > 8)
ebd98106
FF
1677 {
1678 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1679 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1680
0df8b418
MS
1681 if ((prologue_sal.line == 0)
1682 || (prologue_sal.line != this_sal.line))
ebd98106
FF
1683 break;
1684 }
c5aa993b 1685
e17a4113 1686 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b 1687
6be8bc0c
EZ
1688 /* At this point, make sure this is not a trampoline
1689 function (a function that simply calls another functions,
1690 and nothing else). If the next is not a nop, this branch
0df8b418 1691 was part of the function prologue. */
c5aa993b
JM
1692
1693 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
0df8b418
MS
1694 break; /* Don't skip over
1695 this branch. */
c5aa993b 1696
46a9b8ed
DJ
1697 fdata->used_bl = 1;
1698 continue;
c5aa993b 1699 }
98f08d3d
KB
1700 /* update stack pointer */
1701 else if ((op & 0xfc1f0000) == 0x94010000)
1702 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1703 fdata->frameless = 0;
1704 fdata->offset = SIGNED_SHORT (op);
1705 offset = fdata->offset;
1706 continue;
c5aa993b 1707 }
7a8f494c
PFC
1708 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1709 { /* stwux rX,r1,rY || stdux rX,r1,rY */
0df8b418 1710 /* No way to figure out what r1 is going to be. */
98f08d3d
KB
1711 fdata->frameless = 0;
1712 offset = fdata->offset;
1713 continue;
1714 }
1715 else if ((op & 0xfc1f0003) == 0xf8010001)
1716 { /* stdu rX,NUM(r1) */
1717 fdata->frameless = 0;
1718 fdata->offset = SIGNED_SHORT (op & ~3UL);
1719 offset = fdata->offset;
1720 continue;
1721 }
7313566f
FF
1722 else if ((op & 0xffff0000) == 0x38210000)
1723 { /* addi r1,r1,SIMM */
1724 fdata->frameless = 0;
1725 fdata->offset += SIGNED_SHORT (op);
1726 offset = fdata->offset;
1727 continue;
1728 }
4e463ff5
DJ
1729 /* Load up minimal toc pointer. Do not treat an epilogue restore
1730 of r31 as a minimal TOC load. */
0df8b418
MS
1731 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1732 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1733 && !framep
c5aa993b 1734 && !minimal_toc_loaded)
98f08d3d 1735 {
c5aa993b
JM
1736 minimal_toc_loaded = 1;
1737 continue;
1738
f6077098
KB
1739 /* move parameters from argument registers to local variable
1740 registers */
1741 }
1742 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1743 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1744 (((op >> 21) & 31) <= 10) &&
0df8b418
MS
1745 ((long) ((op >> 16) & 31)
1746 >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1747 {
1748 continue;
1749
c5aa993b
JM
1750 /* store parameters in stack */
1751 }
e802b915 1752 /* Move parameters from argument registers to temporary register. */
773df3e5 1753 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1754 {
c5aa993b
JM
1755 continue;
1756
1757 /* Set up frame pointer */
1758 }
76219d77
JB
1759 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1760 {
1761 fdata->frameless = 0;
1762 framep = 1;
1763 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
dd6d677f 1764 alloca_reg_offset = offset;
76219d77
JB
1765 continue;
1766
1767 /* Another way to set up the frame pointer. */
1768 }
c5aa993b
JM
1769 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1770 || op == 0x7c3f0b78)
1771 { /* mr r31, r1 */
1772 fdata->frameless = 0;
1773 framep = 1;
6f99cb26 1774 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
dd6d677f 1775 alloca_reg_offset = offset;
c5aa993b
JM
1776 continue;
1777
1778 /* Another way to set up the frame pointer. */
1779 }
1780 else if ((op & 0xfc1fffff) == 0x38010000)
1781 { /* addi rX, r1, 0x0 */
1782 fdata->frameless = 0;
1783 framep = 1;
6f99cb26
AC
1784 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1785 + ((op & ~0x38010000) >> 21));
dd6d677f 1786 alloca_reg_offset = offset;
c5aa993b 1787 continue;
c5aa993b 1788 }
6be8bc0c
EZ
1789 /* AltiVec related instructions. */
1790 /* Store the vrsave register (spr 256) in another register for
1791 later manipulation, or load a register into the vrsave
1792 register. 2 instructions are used: mfvrsave and
1793 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1794 and mtspr SPR256, Rn. */
1795 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1796 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1797 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1798 {
1799 vrsave_reg = GET_SRC_REG (op);
1800 continue;
1801 }
1802 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1803 {
1804 continue;
1805 }
1806 /* Store the register where vrsave was saved to onto the stack:
1807 rS is the register where vrsave was stored in a previous
1808 instruction. */
1809 /* 100100 sssss 00001 dddddddd dddddddd */
1810 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1811 {
1812 if (vrsave_reg == GET_SRC_REG (op))
1813 {
1814 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1815 vrsave_reg = -1;
1816 }
1817 continue;
1818 }
1819 /* Compute the new value of vrsave, by modifying the register
1820 where vrsave was saved to. */
1821 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1822 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1823 {
1824 continue;
1825 }
1826 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1827 in a pair of insns to save the vector registers on the
1828 stack. */
1829 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1830 /* 001110 01110 00000 iiii iiii iiii iiii */
1831 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1832 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1833 {
773df3e5
JB
1834 if ((op & 0xffff0000) == 0x38000000)
1835 r0_contains_arg = 0;
6be8bc0c
EZ
1836 li_found_pc = pc;
1837 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1838
1839 /* This insn by itself is not part of the prologue, unless
0df8b418 1840 if part of the pair of insns mentioned above. So do not
773df3e5
JB
1841 record this insn as part of the prologue yet. */
1842 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1843 }
1844 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1845 /* 011111 sssss 11111 00000 00111001110 */
1846 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1847 {
1848 if (pc == (li_found_pc + 4))
1849 {
1850 vr_reg = GET_SRC_REG (op);
1851 /* If this is the first vector reg to be saved, or if
1852 it has a lower number than others previously seen,
1853 reupdate the frame info. */
1854 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1855 {
1856 fdata->saved_vr = vr_reg;
1857 fdata->vr_offset = vr_saved_offset + offset;
1858 }
1859 vr_saved_offset = -1;
1860 vr_reg = -1;
1861 li_found_pc = 0;
1862 }
1863 }
1864 /* End AltiVec related instructions. */
96ff0de4
EZ
1865
1866 /* Start BookE related instructions. */
1867 /* Store gen register S at (r31+uimm).
1868 Any register less than r13 is volatile, so we don't care. */
1869 /* 000100 sssss 11111 iiiii 01100100001 */
1870 else if (arch_info->mach == bfd_mach_ppc_e500
1871 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1872 {
1873 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1874 {
1875 unsigned int imm;
1876 ev_reg = GET_SRC_REG (op);
1877 imm = (op >> 11) & 0x1f;
1878 ev_offset = imm * 8;
1879 /* If this is the first vector reg to be saved, or if
1880 it has a lower number than others previously seen,
1881 reupdate the frame info. */
1882 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1883 {
1884 fdata->saved_ev = ev_reg;
1885 fdata->ev_offset = ev_offset + offset;
1886 }
1887 }
1888 continue;
1889 }
1890 /* Store gen register rS at (r1+rB). */
1891 /* 000100 sssss 00001 bbbbb 01100100000 */
1892 else if (arch_info->mach == bfd_mach_ppc_e500
1893 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1894 {
1895 if (pc == (li_found_pc + 4))
1896 {
1897 ev_reg = GET_SRC_REG (op);
1898 /* If this is the first vector reg to be saved, or if
1899 it has a lower number than others previously seen,
1900 reupdate the frame info. */
1901 /* We know the contents of rB from the previous instruction. */
1902 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1903 {
1904 fdata->saved_ev = ev_reg;
1905 fdata->ev_offset = vr_saved_offset + offset;
1906 }
1907 vr_saved_offset = -1;
1908 ev_reg = -1;
1909 li_found_pc = 0;
1910 }
1911 continue;
1912 }
1913 /* Store gen register r31 at (rA+uimm). */
1914 /* 000100 11111 aaaaa iiiii 01100100001 */
1915 else if (arch_info->mach == bfd_mach_ppc_e500
1916 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1917 {
1918 /* Wwe know that the source register is 31 already, but
1919 it can't hurt to compute it. */
1920 ev_reg = GET_SRC_REG (op);
1921 ev_offset = ((op >> 11) & 0x1f) * 8;
1922 /* If this is the first vector reg to be saved, or if
1923 it has a lower number than others previously seen,
1924 reupdate the frame info. */
1925 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1926 {
1927 fdata->saved_ev = ev_reg;
1928 fdata->ev_offset = ev_offset + offset;
1929 }
1930
1931 continue;
1932 }
1933 /* Store gen register S at (r31+r0).
1934 Store param on stack when offset from SP bigger than 4 bytes. */
1935 /* 000100 sssss 11111 00000 01100100000 */
1936 else if (arch_info->mach == bfd_mach_ppc_e500
1937 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1938 {
1939 if (pc == (li_found_pc + 4))
1940 {
1941 if ((op & 0x03e00000) >= 0x01a00000)
1942 {
1943 ev_reg = GET_SRC_REG (op);
1944 /* If this is the first vector reg to be saved, or if
1945 it has a lower number than others previously seen,
1946 reupdate the frame info. */
1947 /* We know the contents of r0 from the previous
1948 instruction. */
1949 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1950 {
1951 fdata->saved_ev = ev_reg;
1952 fdata->ev_offset = vr_saved_offset + offset;
1953 }
1954 ev_reg = -1;
1955 }
1956 vr_saved_offset = -1;
1957 li_found_pc = 0;
1958 continue;
1959 }
1960 }
1961 /* End BookE related instructions. */
1962
c5aa993b
JM
1963 else
1964 {
46a9b8ed
DJ
1965 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
1966
55d05f3b
KB
1967 /* Not a recognized prologue instruction.
1968 Handle optimizer code motions into the prologue by continuing
1969 the search if we have no valid frame yet or if the return
46a9b8ed
DJ
1970 address is not yet saved in the frame. Also skip instructions
1971 if some of the GPRs expected to be saved are not yet saved. */
1972 if (fdata->frameless == 0 && fdata->nosavedpc == 0
1973 && (fdata->gpr_mask & all_mask) == all_mask)
55d05f3b
KB
1974 break;
1975
1976 if (op == 0x4e800020 /* blr */
1977 || op == 0x4e800420) /* bctr */
1978 /* Do not scan past epilogue in frameless functions or
1979 trampolines. */
1980 break;
1981 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1982 /* Never skip branches. */
55d05f3b
KB
1983 break;
1984
1985 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1986 /* Do not scan too many insns, scanning insns is expensive with
1987 remote targets. */
1988 break;
1989
1990 /* Continue scanning. */
1991 prev_insn_was_prologue_insn = 0;
1992 continue;
c5aa993b 1993 }
c906108c
SS
1994 }
1995
1996#if 0
1997/* I have problems with skipping over __main() that I need to address
0df8b418 1998 * sometime. Previously, I used to use misc_function_vector which
c906108c
SS
1999 * didn't work as well as I wanted to be. -MGO */
2000
2001 /* If the first thing after skipping a prolog is a branch to a function,
2002 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 2003 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 2004 work before calling a function right after a prologue, thus we can
64366f1c 2005 single out such gcc2 behaviour. */
c906108c 2006
c906108c 2007
c5aa993b 2008 if ((op & 0xfc000001) == 0x48000001)
0df8b418 2009 { /* bl foo, an initializer function? */
e17a4113 2010 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b
JM
2011
2012 if (op == 0x4def7b82)
2013 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 2014
64366f1c
EZ
2015 /* Check and see if we are in main. If so, skip over this
2016 initializer function as well. */
c906108c 2017
c5aa993b 2018 tmp = find_pc_misc_function (pc);
6314a349
AC
2019 if (tmp >= 0
2020 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
2021 return pc + 8;
2022 }
c906108c 2023 }
c906108c 2024#endif /* 0 */
c5aa993b 2025
46a9b8ed 2026 if (pc == lim_pc && lr_reg >= 0)
dd6d677f 2027 fdata->lr_register = lr_reg;
46a9b8ed 2028
c5aa993b 2029 fdata->offset = -fdata->offset;
ddb20c56 2030 return last_prologue_pc;
c906108c
SS
2031}
2032
7a78ae4e 2033static CORE_ADDR
4a7622d1 2034rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2035{
4a7622d1 2036 struct rs6000_framedata frame;
e3acb115 2037 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
c906108c 2038
4a7622d1
UW
2039 /* See if we can determine the end of the prologue via the symbol table.
2040 If so, then return either PC, or the PC after the prologue, whichever
2041 is greater. */
e3acb115 2042 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
c5aa993b 2043 {
d80b854b
UW
2044 CORE_ADDR post_prologue_pc
2045 = skip_prologue_using_sal (gdbarch, func_addr);
4a7622d1 2046 if (post_prologue_pc != 0)
325fac50 2047 return std::max (pc, post_prologue_pc);
c906108c 2048 }
c906108c 2049
4a7622d1
UW
2050 /* Can't determine prologue from the symbol table, need to examine
2051 instructions. */
c906108c 2052
4a7622d1
UW
2053 /* Find an upper limit on the function prologue using the debug
2054 information. If the debug information could not be used to provide
2055 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 2056 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4a7622d1
UW
2057 if (limit_pc == 0)
2058 limit_pc = pc + 100; /* Magic. */
794a477a 2059
e3acb115
JB
2060 /* Do not allow limit_pc to be past the function end, if we know
2061 where that end is... */
2062 if (func_end_addr && limit_pc > func_end_addr)
2063 limit_pc = func_end_addr;
2064
4a7622d1
UW
2065 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2066 return pc;
c906108c 2067}
c906108c 2068
8ab3d180
KB
2069/* When compiling for EABI, some versions of GCC emit a call to __eabi
2070 in the prologue of main().
2071
2072 The function below examines the code pointed at by PC and checks to
2073 see if it corresponds to a call to __eabi. If so, it returns the
2074 address of the instruction following that call. Otherwise, it simply
2075 returns PC. */
2076
63807e1d 2077static CORE_ADDR
8ab3d180
KB
2078rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2079{
e17a4113 2080 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8ab3d180
KB
2081 gdb_byte buf[4];
2082 unsigned long op;
2083
2084 if (target_read_memory (pc, buf, 4))
2085 return pc;
e17a4113 2086 op = extract_unsigned_integer (buf, 4, byte_order);
8ab3d180
KB
2087
2088 if ((op & BL_MASK) == BL_INSTRUCTION)
2089 {
2090 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2091 CORE_ADDR call_dest = pc + 4 + displ;
7cbd4a93 2092 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
8ab3d180
KB
2093
2094 /* We check for ___eabi (three leading underscores) in addition
2095 to __eabi in case the GCC option "-fleading-underscore" was
2096 used to compile the program. */
7cbd4a93 2097 if (s.minsym != NULL
efd66ac6
TT
2098 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2099 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2100 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
8ab3d180
KB
2101 pc += 4;
2102 }
2103 return pc;
2104}
383f0f5b 2105
4a7622d1
UW
2106/* All the ABI's require 16 byte alignment. */
2107static CORE_ADDR
2108rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2109{
2110 return (addr & -16);
c906108c
SS
2111}
2112
977adac5
ND
2113/* Return whether handle_inferior_event() should proceed through code
2114 starting at PC in function NAME when stepping.
2115
2116 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2117 handle memory references that are too distant to fit in instructions
2118 generated by the compiler. For example, if 'foo' in the following
2119 instruction:
2120
2121 lwz r9,foo(r2)
2122
2123 is greater than 32767, the linker might replace the lwz with a branch to
2124 somewhere in @FIX1 that does the load in 2 instructions and then branches
2125 back to where execution should continue.
2126
2127 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
2128 Unfortunately, the linker uses the "b" instruction for the
2129 branches, meaning that the link register doesn't get set.
2130 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 2131
e76f05fa
UW
2132 Instead, use the gdbarch_skip_trampoline_code and
2133 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 2134 @FIX code. */
977adac5 2135
63807e1d 2136static int
e17a4113 2137rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2c02bd72 2138 CORE_ADDR pc, const char *name)
977adac5 2139{
61012eef 2140 return name && startswith (name, "@FIX");
977adac5
ND
2141}
2142
2143/* Skip code that the user doesn't want to see when stepping:
2144
2145 1. Indirect function calls use a piece of trampoline code to do context
2146 switching, i.e. to set the new TOC table. Skip such code if we are on
2147 its first instruction (as when we have single-stepped to here).
2148
2149 2. Skip shared library trampoline code (which is different from
c906108c 2150 indirect function call trampolines).
977adac5
ND
2151
2152 3. Skip bigtoc fixup code.
2153
c906108c 2154 Result is desired PC to step until, or NULL if we are not in
977adac5 2155 code that should be skipped. */
c906108c 2156
63807e1d 2157static CORE_ADDR
52f729a7 2158rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 2159{
e17a4113
UW
2160 struct gdbarch *gdbarch = get_frame_arch (frame);
2161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2162 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
52f0bd74 2163 unsigned int ii, op;
977adac5 2164 int rel;
c906108c 2165 CORE_ADDR solib_target_pc;
7cbd4a93 2166 struct bound_minimal_symbol msymbol;
c906108c 2167
c5aa993b
JM
2168 static unsigned trampoline_code[] =
2169 {
2170 0x800b0000, /* l r0,0x0(r11) */
2171 0x90410014, /* st r2,0x14(r1) */
2172 0x7c0903a6, /* mtctr r0 */
2173 0x804b0004, /* l r2,0x4(r11) */
2174 0x816b0008, /* l r11,0x8(r11) */
2175 0x4e800420, /* bctr */
2176 0x4e800020, /* br */
2177 0
c906108c
SS
2178 };
2179
977adac5
ND
2180 /* Check for bigtoc fixup code. */
2181 msymbol = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 2182 if (msymbol.minsym
e17a4113 2183 && rs6000_in_solib_return_trampoline (gdbarch, pc,
efd66ac6 2184 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
977adac5
ND
2185 {
2186 /* Double-check that the third instruction from PC is relative "b". */
e17a4113 2187 op = read_memory_integer (pc + 8, 4, byte_order);
977adac5
ND
2188 if ((op & 0xfc000003) == 0x48000000)
2189 {
2190 /* Extract bits 6-29 as a signed 24-bit relative word address and
2191 add it to the containing PC. */
2192 rel = ((int)(op << 6) >> 6);
2193 return pc + 8 + rel;
2194 }
2195 }
2196
c906108c 2197 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2198 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2199 if (solib_target_pc)
2200 return solib_target_pc;
2201
c5aa993b
JM
2202 for (ii = 0; trampoline_code[ii]; ++ii)
2203 {
e17a4113 2204 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
c5aa993b
JM
2205 if (op != trampoline_code[ii])
2206 return 0;
2207 }
0df8b418
MS
2208 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2209 addr. */
e17a4113 2210 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
c906108c
SS
2211 return pc;
2212}
2213
794ac428
UW
2214/* ISA-specific vector types. */
2215
2216static struct type *
2217rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2218{
2219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2220
2221 if (!tdep->ppc_builtin_type_vec64)
2222 {
df4df182
UW
2223 const struct builtin_type *bt = builtin_type (gdbarch);
2224
794ac428
UW
2225 /* The type we're building is this: */
2226#if 0
2227 union __gdb_builtin_type_vec64
2228 {
2229 int64_t uint64;
2230 float v2_float[2];
2231 int32_t v2_int32[2];
2232 int16_t v4_int16[4];
2233 int8_t v8_int8[8];
2234 };
2235#endif
2236
2237 struct type *t;
2238
e9bb382b
UW
2239 t = arch_composite_type (gdbarch,
2240 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
df4df182 2241 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2242 append_composite_type_field (t, "v2_float",
df4df182 2243 init_vector_type (bt->builtin_float, 2));
794ac428 2244 append_composite_type_field (t, "v2_int32",
df4df182 2245 init_vector_type (bt->builtin_int32, 2));
794ac428 2246 append_composite_type_field (t, "v4_int16",
df4df182 2247 init_vector_type (bt->builtin_int16, 4));
794ac428 2248 append_composite_type_field (t, "v8_int8",
df4df182 2249 init_vector_type (bt->builtin_int8, 8));
794ac428 2250
876cecd0 2251 TYPE_VECTOR (t) = 1;
794ac428
UW
2252 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2253 tdep->ppc_builtin_type_vec64 = t;
2254 }
2255
2256 return tdep->ppc_builtin_type_vec64;
2257}
2258
604c2f83
LM
2259/* Vector 128 type. */
2260
2261static struct type *
2262rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2263{
2264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2265
2266 if (!tdep->ppc_builtin_type_vec128)
2267 {
df4df182
UW
2268 const struct builtin_type *bt = builtin_type (gdbarch);
2269
604c2f83
LM
2270 /* The type we're building is this
2271
2272 type = union __ppc_builtin_type_vec128 {
2273 uint128_t uint128;
db9f5df8 2274 double v2_double[2];
604c2f83
LM
2275 float v4_float[4];
2276 int32_t v4_int32[4];
2277 int16_t v8_int16[8];
2278 int8_t v16_int8[16];
2279 }
2280 */
2281
2282 struct type *t;
2283
e9bb382b
UW
2284 t = arch_composite_type (gdbarch,
2285 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 2286 append_composite_type_field (t, "uint128", bt->builtin_uint128);
db9f5df8
UW
2287 append_composite_type_field (t, "v2_double",
2288 init_vector_type (bt->builtin_double, 2));
604c2f83 2289 append_composite_type_field (t, "v4_float",
df4df182 2290 init_vector_type (bt->builtin_float, 4));
604c2f83 2291 append_composite_type_field (t, "v4_int32",
df4df182 2292 init_vector_type (bt->builtin_int32, 4));
604c2f83 2293 append_composite_type_field (t, "v8_int16",
df4df182 2294 init_vector_type (bt->builtin_int16, 8));
604c2f83 2295 append_composite_type_field (t, "v16_int8",
df4df182 2296 init_vector_type (bt->builtin_int8, 16));
604c2f83 2297
803e1097 2298 TYPE_VECTOR (t) = 1;
604c2f83
LM
2299 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2300 tdep->ppc_builtin_type_vec128 = t;
2301 }
2302
2303 return tdep->ppc_builtin_type_vec128;
2304}
2305
7cc46491
DJ
2306/* Return the name of register number REGNO, or the empty string if it
2307 is an anonymous register. */
7a78ae4e 2308
fa88f677 2309static const char *
d93859e2 2310rs6000_register_name (struct gdbarch *gdbarch, int regno)
7a78ae4e 2311{
d93859e2 2312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2313
7cc46491
DJ
2314 /* The upper half "registers" have names in the XML description,
2315 but we present only the low GPRs and the full 64-bit registers
2316 to the user. */
2317 if (tdep->ppc_ev0_upper_regnum >= 0
2318 && tdep->ppc_ev0_upper_regnum <= regno
2319 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2320 return "";
2321
604c2f83
LM
2322 /* Hide the upper halves of the vs0~vs31 registers. */
2323 if (tdep->ppc_vsr0_regnum >= 0
2324 && tdep->ppc_vsr0_upper_regnum <= regno
2325 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2326 return "";
2327
7cc46491 2328 /* Check if the SPE pseudo registers are available. */
5a9e69ba 2329 if (IS_SPE_PSEUDOREG (tdep, regno))
7cc46491
DJ
2330 {
2331 static const char *const spe_regnames[] = {
2332 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2333 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2334 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2335 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2336 };
2337 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2338 }
2339
f949c649
TJB
2340 /* Check if the decimal128 pseudo-registers are available. */
2341 if (IS_DFP_PSEUDOREG (tdep, regno))
2342 {
2343 static const char *const dfp128_regnames[] = {
2344 "dl0", "dl1", "dl2", "dl3",
2345 "dl4", "dl5", "dl6", "dl7",
2346 "dl8", "dl9", "dl10", "dl11",
2347 "dl12", "dl13", "dl14", "dl15"
2348 };
2349 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2350 }
2351
604c2f83
LM
2352 /* Check if this is a VSX pseudo-register. */
2353 if (IS_VSX_PSEUDOREG (tdep, regno))
2354 {
2355 static const char *const vsx_regnames[] = {
2356 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2357 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2358 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2359 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2360 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2361 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2362 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2363 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2364 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2365 };
2366 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2367 }
2368
2369 /* Check if the this is a Extended FP pseudo-register. */
2370 if (IS_EFP_PSEUDOREG (tdep, regno))
2371 {
2372 static const char *const efpr_regnames[] = {
2373 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2374 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2375 "f46", "f47", "f48", "f49", "f50", "f51",
2376 "f52", "f53", "f54", "f55", "f56", "f57",
2377 "f58", "f59", "f60", "f61", "f62", "f63"
2378 };
2379 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2380 }
2381
d93859e2 2382 return tdesc_register_name (gdbarch, regno);
7a78ae4e
ND
2383}
2384
7cc46491
DJ
2385/* Return the GDB type object for the "standard" data type of data in
2386 register N. */
7a78ae4e
ND
2387
2388static struct type *
7cc46491 2389rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
7a78ae4e 2390{
691d145a 2391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2392
7cc46491 2393 /* These are the only pseudo-registers we support. */
f949c649 2394 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
604c2f83
LM
2395 || IS_DFP_PSEUDOREG (tdep, regnum)
2396 || IS_VSX_PSEUDOREG (tdep, regnum)
2397 || IS_EFP_PSEUDOREG (tdep, regnum));
7cc46491 2398
f949c649
TJB
2399 /* These are the e500 pseudo-registers. */
2400 if (IS_SPE_PSEUDOREG (tdep, regnum))
2401 return rs6000_builtin_type_vec64 (gdbarch);
604c2f83
LM
2402 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2403 /* PPC decimal128 pseudo-registers. */
f949c649 2404 return builtin_type (gdbarch)->builtin_declong;
604c2f83
LM
2405 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2406 /* POWER7 VSX pseudo-registers. */
2407 return rs6000_builtin_type_vec128 (gdbarch);
2408 else
2409 /* POWER7 Extended FP pseudo-registers. */
2410 return builtin_type (gdbarch)->builtin_double;
7a78ae4e
ND
2411}
2412
c44ca51c
AC
2413/* Is REGNUM a member of REGGROUP? */
2414static int
7cc46491
DJ
2415rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2416 struct reggroup *group)
c44ca51c
AC
2417{
2418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c44ca51c 2419
7cc46491 2420 /* These are the only pseudo-registers we support. */
f949c649 2421 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
604c2f83
LM
2422 || IS_DFP_PSEUDOREG (tdep, regnum)
2423 || IS_VSX_PSEUDOREG (tdep, regnum)
2424 || IS_EFP_PSEUDOREG (tdep, regnum));
c44ca51c 2425
604c2f83
LM
2426 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2427 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
f949c649 2428 return group == all_reggroup || group == vector_reggroup;
7cc46491 2429 else
604c2f83 2430 /* PPC decimal128 or Extended FP pseudo-registers. */
f949c649 2431 return group == all_reggroup || group == float_reggroup;
c44ca51c
AC
2432}
2433
691d145a 2434/* The register format for RS/6000 floating point registers is always
64366f1c 2435 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2436
2437static int
0abe36f5
MD
2438rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2439 struct type *type)
7a78ae4e 2440{
0abe36f5 2441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7cc46491
DJ
2442
2443 return (tdep->ppc_fp0_regnum >= 0
2444 && regnum >= tdep->ppc_fp0_regnum
2445 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2446 && TYPE_CODE (type) == TYPE_CODE_FLT
0dfff4cb
UW
2447 && TYPE_LENGTH (type)
2448 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
7a78ae4e
ND
2449}
2450
8dccd430 2451static int
691d145a
JB
2452rs6000_register_to_value (struct frame_info *frame,
2453 int regnum,
2454 struct type *type,
8dccd430
PA
2455 gdb_byte *to,
2456 int *optimizedp, int *unavailablep)
7a78ae4e 2457{
0dfff4cb 2458 struct gdbarch *gdbarch = get_frame_arch (frame);
0f068fb5 2459 gdb_byte from[PPC_MAX_REGISTER_SIZE];
691d145a 2460
691d145a 2461 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2462
8dccd430
PA
2463 if (!get_frame_register_bytes (frame, regnum, 0,
2464 register_size (gdbarch, regnum),
2465 from, optimizedp, unavailablep))
2466 return 0;
2467
3b2ca824
UW
2468 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2469 to, type);
8dccd430
PA
2470 *optimizedp = *unavailablep = 0;
2471 return 1;
691d145a 2472}
7a292a7a 2473
7a78ae4e 2474static void
691d145a
JB
2475rs6000_value_to_register (struct frame_info *frame,
2476 int regnum,
2477 struct type *type,
50fd1280 2478 const gdb_byte *from)
7a78ae4e 2479{
0dfff4cb 2480 struct gdbarch *gdbarch = get_frame_arch (frame);
0f068fb5 2481 gdb_byte to[PPC_MAX_REGISTER_SIZE];
691d145a 2482
691d145a
JB
2483 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2484
3b2ca824
UW
2485 target_float_convert (from, type,
2486 to, builtin_type (gdbarch)->builtin_double);
691d145a 2487 put_frame_register (frame, regnum, to);
7a78ae4e 2488}
c906108c 2489
05d1431c
PA
2490 /* The type of a function that moves the value of REG between CACHE
2491 or BUF --- in either direction. */
2492typedef enum register_status (*move_ev_register_func) (struct regcache *,
2493 int, void *);
2494
6ced10dd
JB
2495/* Move SPE vector register values between a 64-bit buffer and the two
2496 32-bit raw register halves in a regcache. This function handles
2497 both splitting a 64-bit value into two 32-bit halves, and joining
2498 two halves into a whole 64-bit value, depending on the function
2499 passed as the MOVE argument.
2500
2501 EV_REG must be the number of an SPE evN vector register --- a
2502 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2503 64-bit buffer.
2504
2505 Call MOVE once for each 32-bit half of that register, passing
2506 REGCACHE, the number of the raw register corresponding to that
2507 half, and the address of the appropriate half of BUFFER.
2508
2509 For example, passing 'regcache_raw_read' as the MOVE function will
2510 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2511 'regcache_raw_supply' will supply the contents of BUFFER to the
2512 appropriate pair of raw registers in REGCACHE.
2513
2514 You may need to cast away some 'const' qualifiers when passing
2515 MOVE, since this function can't tell at compile-time which of
2516 REGCACHE or BUFFER is acting as the source of the data. If C had
2517 co-variant type qualifiers, ... */
05d1431c
PA
2518
2519static enum register_status
2520e500_move_ev_register (move_ev_register_func move,
2521 struct regcache *regcache, int ev_reg, void *buffer)
6ced10dd 2522{
ac7936df 2523 struct gdbarch *arch = regcache->arch ();
6ced10dd
JB
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2525 int reg_index;
19ba03f4 2526 gdb_byte *byte_buffer = (gdb_byte *) buffer;
05d1431c 2527 enum register_status status;
6ced10dd 2528
5a9e69ba 2529 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
6ced10dd
JB
2530
2531 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2532
8b164abb 2533 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
6ced10dd 2534 {
05d1431c
PA
2535 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2536 byte_buffer);
2537 if (status == REG_VALID)
2538 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2539 byte_buffer + 4);
6ced10dd
JB
2540 }
2541 else
2542 {
05d1431c
PA
2543 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2544 if (status == REG_VALID)
2545 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2546 byte_buffer + 4);
6ced10dd 2547 }
05d1431c
PA
2548
2549 return status;
6ced10dd
JB
2550}
2551
05d1431c
PA
2552static enum register_status
2553do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2554{
19ba03f4 2555 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
05d1431c
PA
2556
2557 return REG_VALID;
2558}
2559
2560static enum register_status
849d0ba8
YQ
2561e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2562 int ev_reg, gdb_byte *buffer)
f949c649 2563{
849d0ba8
YQ
2564 struct gdbarch *arch = regcache->arch ();
2565 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2566 int reg_index;
2567 enum register_status status;
2568
2569 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2570
2571 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2572
2573 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2574 {
2575 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2576 buffer);
2577 if (status == REG_VALID)
2578 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2579 buffer + 4);
2580 }
2581 else
2582 {
2583 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2584 if (status == REG_VALID)
2585 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2586 buffer + 4);
2587 }
2588
2589 return status;
2590
f949c649
TJB
2591}
2592
2593static void
2594e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2595 int reg_nr, const gdb_byte *buffer)
2596{
05d1431c
PA
2597 e500_move_ev_register (do_regcache_raw_write, regcache,
2598 reg_nr, (void *) buffer);
f949c649
TJB
2599}
2600
604c2f83 2601/* Read method for DFP pseudo-registers. */
05d1431c 2602static enum register_status
849d0ba8 2603dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
f949c649
TJB
2604 int reg_nr, gdb_byte *buffer)
2605{
2606 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2607 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
05d1431c 2608 enum register_status status;
f949c649
TJB
2609
2610 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2611 {
2612 /* Read two FP registers to form a whole dl register. */
03f50fc8
YQ
2613 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2614 2 * reg_index, buffer);
05d1431c 2615 if (status == REG_VALID)
03f50fc8
YQ
2616 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2617 2 * reg_index + 1, buffer + 8);
f949c649
TJB
2618 }
2619 else
2620 {
03f50fc8
YQ
2621 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2622 2 * reg_index + 1, buffer);
05d1431c 2623 if (status == REG_VALID)
03f50fc8
YQ
2624 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2625 2 * reg_index, buffer + 8);
f949c649 2626 }
05d1431c
PA
2627
2628 return status;
f949c649
TJB
2629}
2630
604c2f83 2631/* Write method for DFP pseudo-registers. */
f949c649 2632static void
604c2f83 2633dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2634 int reg_nr, const gdb_byte *buffer)
2635{
2636 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2637 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2638
2639 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2640 {
2641 /* Write each half of the dl register into a separate
2642 FP register. */
2643 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2644 2 * reg_index, buffer);
2645 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2646 2 * reg_index + 1, buffer + 8);
2647 }
2648 else
2649 {
2650 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2651 2 * reg_index + 1, buffer);
f949c649 2652 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2653 2 * reg_index, buffer + 8);
f949c649
TJB
2654 }
2655}
2656
604c2f83 2657/* Read method for POWER7 VSX pseudo-registers. */
05d1431c 2658static enum register_status
849d0ba8 2659vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
604c2f83
LM
2660 int reg_nr, gdb_byte *buffer)
2661{
2662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2663 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
05d1431c 2664 enum register_status status;
604c2f83
LM
2665
2666 /* Read the portion that overlaps the VMX registers. */
2667 if (reg_index > 31)
03f50fc8
YQ
2668 status = regcache->raw_read (tdep->ppc_vr0_regnum +
2669 reg_index - 32, buffer);
604c2f83
LM
2670 else
2671 /* Read the portion that overlaps the FPR registers. */
2672 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2673 {
03f50fc8
YQ
2674 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2675 reg_index, buffer);
05d1431c 2676 if (status == REG_VALID)
03f50fc8
YQ
2677 status = regcache->raw_read (tdep->ppc_vsr0_upper_regnum +
2678 reg_index, buffer + 8);
604c2f83
LM
2679 }
2680 else
2681 {
03f50fc8
YQ
2682 status = regcache->raw_read (tdep->ppc_fp0_regnum +
2683 reg_index, buffer + 8);
05d1431c 2684 if (status == REG_VALID)
03f50fc8
YQ
2685 status = regcache->raw_read (tdep->ppc_vsr0_upper_regnum +
2686 reg_index, buffer);
604c2f83 2687 }
05d1431c
PA
2688
2689 return status;
604c2f83
LM
2690}
2691
2692/* Write method for POWER7 VSX pseudo-registers. */
2693static void
2694vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2695 int reg_nr, const gdb_byte *buffer)
2696{
2697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2698 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2699
2700 /* Write the portion that overlaps the VMX registers. */
2701 if (reg_index > 31)
2702 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2703 reg_index - 32, buffer);
2704 else
2705 /* Write the portion that overlaps the FPR registers. */
2706 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2707 {
2708 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2709 reg_index, buffer);
2710 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2711 reg_index, buffer + 8);
2712 }
2713 else
2714 {
2715 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2716 reg_index, buffer + 8);
2717 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2718 reg_index, buffer);
2719 }
2720}
2721
2722/* Read method for POWER7 Extended FP pseudo-registers. */
05d1431c 2723static enum register_status
849d0ba8 2724efpr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
604c2f83
LM
2725 int reg_nr, gdb_byte *buffer)
2726{
2727 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2728 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
084ee545 2729 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2730
d9492458 2731 /* Read the portion that overlaps the VMX register. */
849d0ba8
YQ
2732 return regcache->raw_read_part (tdep->ppc_vr0_regnum + reg_index,
2733 offset, register_size (gdbarch, reg_nr),
2734 buffer);
604c2f83
LM
2735}
2736
2737/* Write method for POWER7 Extended FP pseudo-registers. */
2738static void
2739efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2740 int reg_nr, const gdb_byte *buffer)
2741{
2742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2743 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
084ee545 2744 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2745
d9492458 2746 /* Write the portion that overlaps the VMX register. */
084ee545
UW
2747 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2748 offset, register_size (gdbarch, reg_nr),
2749 buffer);
604c2f83
LM
2750}
2751
05d1431c 2752static enum register_status
0df8b418 2753rs6000_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 2754 readable_regcache *regcache,
f949c649 2755 int reg_nr, gdb_byte *buffer)
c8001721 2756{
ac7936df 2757 struct gdbarch *regcache_arch = regcache->arch ();
c8001721
EZ
2758 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2759
6ced10dd 2760 gdb_assert (regcache_arch == gdbarch);
f949c649 2761
5a9e69ba 2762 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
05d1431c 2763 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
f949c649 2764 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
05d1431c 2765 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
604c2f83 2766 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
05d1431c 2767 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
604c2f83 2768 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
05d1431c 2769 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6ced10dd 2770 else
a44bddec 2771 internal_error (__FILE__, __LINE__,
f949c649
TJB
2772 _("rs6000_pseudo_register_read: "
2773 "called on unexpected register '%s' (%d)"),
2774 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2775}
2776
2777static void
f949c649
TJB
2778rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2779 struct regcache *regcache,
2780 int reg_nr, const gdb_byte *buffer)
c8001721 2781{
ac7936df 2782 struct gdbarch *regcache_arch = regcache->arch ();
c8001721
EZ
2783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2784
6ced10dd 2785 gdb_assert (regcache_arch == gdbarch);
f949c649 2786
5a9e69ba 2787 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
f949c649
TJB
2788 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2789 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
604c2f83
LM
2790 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2791 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2792 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2793 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2794 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6ced10dd 2795 else
a44bddec 2796 internal_error (__FILE__, __LINE__,
f949c649
TJB
2797 _("rs6000_pseudo_register_write: "
2798 "called on unexpected register '%s' (%d)"),
2799 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2800}
2801
2a2fa07b
MK
2802static int
2803rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2804 struct agent_expr *ax, int reg_nr)
2805{
2806 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2807 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2808 {
2809 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
2810 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
2811 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
2812 }
2813 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2814 {
2815 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2816 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
2817 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
2818 }
2819 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2820 {
2821 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2822 if (reg_index > 31)
2823 {
2824 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
2825 }
2826 else
2827 {
2828 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
2829 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
2830 }
2831 }
2832 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2833 {
2834 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2835 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
2836 }
2837 else
2838 internal_error (__FILE__, __LINE__,
2839 _("rs6000_pseudo_register_collect: "
2840 "called on unexpected register '%s' (%d)"),
2841 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2842 return 0;
2843}
2844
2845
a67914de
MK
2846static void
2847rs6000_gen_return_address (struct gdbarch *gdbarch,
2848 struct agent_expr *ax, struct axs_value *value,
2849 CORE_ADDR scope)
2850{
2851 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2852 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
2853 value->kind = axs_lvalue_register;
2854 value->u.reg = tdep->ppc_lr_regnum;
2855}
2856
2857
18ed0c4e 2858/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2859static int
d3f73121 2860rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
c8001721 2861{
d3f73121 2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c8001721 2863
9f744501
JB
2864 if (0 <= num && num <= 31)
2865 return tdep->ppc_gp0_regnum + num;
2866 else if (32 <= num && num <= 63)
383f0f5b
JB
2867 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2868 specifies registers the architecture doesn't have? Our
2869 callers don't check the value we return. */
366f009f 2870 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2871 else if (77 <= num && num <= 108)
2872 return tdep->ppc_vr0_regnum + (num - 77);
9f744501 2873 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 2874 return tdep->ppc_ev0_upper_regnum + (num - 1200);
9f744501
JB
2875 else
2876 switch (num)
2877 {
2878 case 64:
2879 return tdep->ppc_mq_regnum;
2880 case 65:
2881 return tdep->ppc_lr_regnum;
2882 case 66:
2883 return tdep->ppc_ctr_regnum;
2884 case 76:
2885 return tdep->ppc_xer_regnum;
2886 case 109:
2887 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2888 case 110:
2889 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2890 case 111:
18ed0c4e 2891 return tdep->ppc_acc_regnum;
867e2dc5 2892 case 112:
18ed0c4e 2893 return tdep->ppc_spefscr_regnum;
9f744501
JB
2894 default:
2895 return num;
2896 }
18ed0c4e 2897}
9f744501 2898
9f744501 2899
18ed0c4e
JB
2900/* Convert a Dwarf 2 register number to a GDB register number. */
2901static int
d3f73121 2902rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
18ed0c4e 2903{
d3f73121 2904 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f744501 2905
18ed0c4e
JB
2906 if (0 <= num && num <= 31)
2907 return tdep->ppc_gp0_regnum + num;
2908 else if (32 <= num && num <= 63)
2909 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2910 specifies registers the architecture doesn't have? Our
2911 callers don't check the value we return. */
2912 return tdep->ppc_fp0_regnum + (num - 32);
2913 else if (1124 <= num && num < 1124 + 32)
2914 return tdep->ppc_vr0_regnum + (num - 1124);
2915 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 2916 return tdep->ppc_ev0_upper_regnum + (num - 1200);
18ed0c4e
JB
2917 else
2918 switch (num)
2919 {
a489f789
AS
2920 case 64:
2921 return tdep->ppc_cr_regnum;
18ed0c4e
JB
2922 case 67:
2923 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2924 case 99:
2925 return tdep->ppc_acc_regnum;
2926 case 100:
2927 return tdep->ppc_mq_regnum;
2928 case 101:
2929 return tdep->ppc_xer_regnum;
2930 case 108:
2931 return tdep->ppc_lr_regnum;
2932 case 109:
2933 return tdep->ppc_ctr_regnum;
2934 case 356:
2935 return tdep->ppc_vrsave_regnum;
2936 case 612:
2937 return tdep->ppc_spefscr_regnum;
2938 default:
2939 return num;
2940 }
2188cbdd
EZ
2941}
2942
4fc771b8
DJ
2943/* Translate a .eh_frame register to DWARF register, or adjust a
2944 .debug_frame register. */
2945
2946static int
2947rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2948{
2949 /* GCC releases before 3.4 use GCC internal register numbering in
2950 .debug_frame (and .debug_info, et cetera). The numbering is
2951 different from the standard SysV numbering for everything except
2952 for GPRs and FPRs. We can not detect this problem in most cases
2953 - to get accurate debug info for variables living in lr, ctr, v0,
2954 et cetera, use a newer version of GCC. But we must detect
2955 one important case - lr is in column 65 in .debug_frame output,
2956 instead of 108.
2957
2958 GCC 3.4, and the "hammer" branch, have a related problem. They
2959 record lr register saves in .debug_frame as 108, but still record
2960 the return column as 65. We fix that up too.
2961
2962 We can do this because 65 is assigned to fpsr, and GCC never
2963 generates debug info referring to it. To add support for
2964 handwritten debug info that restores fpsr, we would need to add a
2965 producer version check to this. */
2966 if (!eh_frame_p)
2967 {
2968 if (num == 65)
2969 return 108;
2970 else
2971 return num;
2972 }
2973
2974 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2975 internal register numbering; translate that to the standard DWARF2
2976 register numbering. */
2977 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2978 return num;
2979 else if (68 <= num && num <= 75) /* cr0-cr8 */
2980 return num - 68 + 86;
2981 else if (77 <= num && num <= 108) /* vr0-vr31 */
2982 return num - 77 + 1124;
2983 else
2984 switch (num)
2985 {
2986 case 64: /* mq */
2987 return 100;
2988 case 65: /* lr */
2989 return 108;
2990 case 66: /* ctr */
2991 return 109;
2992 case 76: /* xer */
2993 return 101;
2994 case 109: /* vrsave */
2995 return 356;
2996 case 110: /* vscr */
2997 return 67;
2998 case 111: /* spe_acc */
2999 return 99;
3000 case 112: /* spefscr */
3001 return 612;
3002 default:
3003 return num;
3004 }
3005}
c906108c 3006\f
c5aa993b 3007
7a78ae4e 3008/* Handling the various POWER/PowerPC variants. */
c906108c 3009
c906108c 3010/* Information about a particular processor variant. */
7a78ae4e 3011
c906108c 3012struct variant
c5aa993b
JM
3013 {
3014 /* Name of this variant. */
a121b7c1 3015 const char *name;
c906108c 3016
c5aa993b 3017 /* English description of the variant. */
a121b7c1 3018 const char *description;
c906108c 3019
64366f1c 3020 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
3021 enum bfd_architecture arch;
3022
64366f1c 3023 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
3024 unsigned long mach;
3025
7cc46491
DJ
3026 /* Target description for this variant. */
3027 struct target_desc **tdesc;
c5aa993b 3028 };
c906108c 3029
489461e2 3030static struct variant variants[] =
c906108c 3031{
7a78ae4e 3032 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
7284e1be 3033 bfd_mach_ppc, &tdesc_powerpc_altivec32},
7a78ae4e 3034 {"power", "POWER user-level", bfd_arch_rs6000,
7cc46491 3035 bfd_mach_rs6k, &tdesc_rs6000},
7a78ae4e 3036 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
7cc46491 3037 bfd_mach_ppc_403, &tdesc_powerpc_403},
4d09ffea
MS
3038 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3039 bfd_mach_ppc_405, &tdesc_powerpc_405},
7a78ae4e 3040 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
7cc46491 3041 bfd_mach_ppc_601, &tdesc_powerpc_601},
7a78ae4e 3042 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
7cc46491 3043 bfd_mach_ppc_602, &tdesc_powerpc_602},
7a78ae4e 3044 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
7cc46491 3045 bfd_mach_ppc_603, &tdesc_powerpc_603},
7a78ae4e 3046 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
7cc46491 3047 604, &tdesc_powerpc_604},
7a78ae4e 3048 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
7cc46491 3049 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
7a78ae4e 3050 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
7cc46491 3051 bfd_mach_ppc_505, &tdesc_powerpc_505},
7a78ae4e 3052 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
7cc46491 3053 bfd_mach_ppc_860, &tdesc_powerpc_860},
7a78ae4e 3054 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
7cc46491 3055 bfd_mach_ppc_750, &tdesc_powerpc_750},
1fcc0bb8 3056 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
7cc46491 3057 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
c8001721 3058 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
7cc46491 3059 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
7a78ae4e 3060
5d57ee30
KB
3061 /* 64-bit */
3062 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
7284e1be 3063 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
7a78ae4e 3064 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
7cc46491 3065 bfd_mach_ppc_620, &tdesc_powerpc_64},
5d57ee30 3066 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
7cc46491 3067 bfd_mach_ppc_630, &tdesc_powerpc_64},
7a78ae4e 3068 {"a35", "PowerPC A35", bfd_arch_powerpc,
7cc46491 3069 bfd_mach_ppc_a35, &tdesc_powerpc_64},
5d57ee30 3070 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
7cc46491 3071 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
5d57ee30 3072 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
7cc46491 3073 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
5d57ee30 3074
64366f1c 3075 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 3076 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
7cc46491 3077 bfd_mach_rs6k_rs1, &tdesc_rs6000},
7a78ae4e 3078 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
7cc46491 3079 bfd_mach_rs6k_rsc, &tdesc_rs6000},
7a78ae4e 3080 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
7cc46491 3081 bfd_mach_rs6k_rs2, &tdesc_rs6000},
7a78ae4e 3082
3e45d68b 3083 {0, 0, (enum bfd_architecture) 0, 0, 0}
c906108c
SS
3084};
3085
7a78ae4e 3086/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 3087 MACH. If no such variant exists, return null. */
c906108c 3088
7a78ae4e
ND
3089static const struct variant *
3090find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 3091{
7a78ae4e 3092 const struct variant *v;
c5aa993b 3093
7a78ae4e
ND
3094 for (v = variants; v->name; v++)
3095 if (arch == v->arch && mach == v->mach)
3096 return v;
c906108c 3097
7a78ae4e 3098 return NULL;
c906108c 3099}
9364a0ef 3100
7a78ae4e 3101\f
61a65099
KB
3102static CORE_ADDR
3103rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3104{
3e8c568d 3105 return frame_unwind_register_unsigned (next_frame,
8b164abb 3106 gdbarch_pc_regnum (gdbarch));
61a65099
KB
3107}
3108
3109static struct frame_id
1af5d7ce 3110rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
61a65099 3111{
1af5d7ce
UW
3112 return frame_id_build (get_frame_register_unsigned
3113 (this_frame, gdbarch_sp_regnum (gdbarch)),
3114 get_frame_pc (this_frame));
61a65099
KB
3115}
3116
3117struct rs6000_frame_cache
3118{
3119 CORE_ADDR base;
3120 CORE_ADDR initial_sp;
3121 struct trad_frame_saved_reg *saved_regs;
50ae56ec
WW
3122
3123 /* Set BASE_P to true if this frame cache is properly initialized.
3124 Otherwise set to false because some registers or memory cannot
3125 collected. */
3126 int base_p;
3127 /* Cache PC for building unavailable frame. */
3128 CORE_ADDR pc;
61a65099
KB
3129};
3130
3131static struct rs6000_frame_cache *
1af5d7ce 3132rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
61a65099
KB
3133{
3134 struct rs6000_frame_cache *cache;
1af5d7ce 3135 struct gdbarch *gdbarch = get_frame_arch (this_frame);
61a65099 3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 3137 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61a65099
KB
3138 struct rs6000_framedata fdata;
3139 int wordsize = tdep->wordsize;
338435ef 3140 CORE_ADDR func = 0, pc = 0;
61a65099
KB
3141
3142 if ((*this_cache) != NULL)
19ba03f4 3143 return (struct rs6000_frame_cache *) (*this_cache);
61a65099
KB
3144 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3145 (*this_cache) = cache;
50ae56ec 3146 cache->pc = 0;
1af5d7ce 3147 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61a65099 3148
50ae56ec
WW
3149 TRY
3150 {
3151 func = get_frame_func (this_frame);
3152 cache->pc = func;
3153 pc = get_frame_pc (this_frame);
3154 skip_prologue (gdbarch, func, pc, &fdata);
3155
3156 /* Figure out the parent's stack pointer. */
3157
3158 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3159 address of the current frame. Things might be easier if the
3160 ->frame pointed to the outer-most address of the frame. In
3161 the mean time, the address of the prev frame is used as the
3162 base address of this frame. */
3163 cache->base = get_frame_register_unsigned
3164 (this_frame, gdbarch_sp_regnum (gdbarch));
3165 }
3166 CATCH (ex, RETURN_MASK_ERROR)
3167 {
3168 if (ex.error != NOT_AVAILABLE_ERROR)
3169 throw_exception (ex);
1ed0c2a4 3170 return (struct rs6000_frame_cache *) (*this_cache);
50ae56ec
WW
3171 }
3172 END_CATCH
e10b1c4c
DJ
3173
3174 /* If the function appears to be frameless, check a couple of likely
3175 indicators that we have simply failed to find the frame setup.
3176 Two common cases of this are missing symbols (i.e.
ef02daa9 3177 get_frame_func returns the wrong address or 0), and assembly
e10b1c4c
DJ
3178 stubs which have a fast exit path but set up a frame on the slow
3179 path.
3180
3181 If the LR appears to return to this function, then presume that
3182 we have an ABI compliant frame that we failed to find. */
3183 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3184 {
e10b1c4c
DJ
3185 CORE_ADDR saved_lr;
3186 int make_frame = 0;
3187
1af5d7ce 3188 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
e10b1c4c
DJ
3189 if (func == 0 && saved_lr == pc)
3190 make_frame = 1;
3191 else if (func != 0)
3192 {
3193 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3194 if (func == saved_func)
3195 make_frame = 1;
3196 }
3197
3198 if (make_frame)
3199 {
3200 fdata.frameless = 0;
de6a76fd 3201 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3202 }
61a65099 3203 }
e10b1c4c
DJ
3204
3205 if (!fdata.frameless)
9d9bf2df
EBM
3206 {
3207 /* Frameless really means stackless. */
cc2c4da8 3208 ULONGEST backchain;
9d9bf2df 3209
cc2c4da8
MK
3210 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3211 byte_order, &backchain))
9d9bf2df
EBM
3212 cache->base = (CORE_ADDR) backchain;
3213 }
e10b1c4c 3214
3e8c568d 3215 trad_frame_set_value (cache->saved_regs,
8b164abb 3216 gdbarch_sp_regnum (gdbarch), cache->base);
61a65099
KB
3217
3218 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3219 All fpr's from saved_fpr to fp31 are saved. */
3220
3221 if (fdata.saved_fpr >= 0)
3222 {
3223 int i;
3224 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3225
3226 /* If skip_prologue says floating-point registers were saved,
3227 but the current architecture has no floating-point registers,
3228 then that's strange. But we have no indices to even record
3229 the addresses under, so we just ignore it. */
3230 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3231 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3232 {
3233 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3234 fpr_addr += 8;
3235 }
61a65099
KB
3236 }
3237
3238 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
46a9b8ed
DJ
3239 All gpr's from saved_gpr to gpr31 are saved (except during the
3240 prologue). */
61a65099
KB
3241
3242 if (fdata.saved_gpr >= 0)
3243 {
3244 int i;
3245 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3246 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099 3247 {
46a9b8ed
DJ
3248 if (fdata.gpr_mask & (1U << i))
3249 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
61a65099
KB
3250 gpr_addr += wordsize;
3251 }
3252 }
3253
3254 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3255 All vr's from saved_vr to vr31 are saved. */
3256 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3257 {
3258 if (fdata.saved_vr >= 0)
3259 {
3260 int i;
3261 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3262 for (i = fdata.saved_vr; i < 32; i++)
3263 {
3264 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3265 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3266 }
3267 }
3268 }
3269
3270 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
0df8b418 3271 All vr's from saved_ev to ev31 are saved. ????? */
5a9e69ba 3272 if (tdep->ppc_ev0_regnum != -1)
61a65099
KB
3273 {
3274 if (fdata.saved_ev >= 0)
3275 {
3276 int i;
3277 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
dea80df0
MR
3278 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3279
063715bf 3280 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3281 {
3282 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
dea80df0 3283 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
61a65099 3284 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
dea80df0 3285 }
61a65099
KB
3286 }
3287 }
3288
3289 /* If != 0, fdata.cr_offset is the offset from the frame that
3290 holds the CR. */
3291 if (fdata.cr_offset != 0)
0df8b418
MS
3292 cache->saved_regs[tdep->ppc_cr_regnum].addr
3293 = cache->base + fdata.cr_offset;
61a65099
KB
3294
3295 /* If != 0, fdata.lr_offset is the offset from the frame that
3296 holds the LR. */
3297 if (fdata.lr_offset != 0)
0df8b418
MS
3298 cache->saved_regs[tdep->ppc_lr_regnum].addr
3299 = cache->base + fdata.lr_offset;
46a9b8ed
DJ
3300 else if (fdata.lr_register != -1)
3301 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
61a65099 3302 /* The PC is found in the link register. */
8b164abb 3303 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3e8c568d 3304 cache->saved_regs[tdep->ppc_lr_regnum];
61a65099
KB
3305
3306 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3307 holds the VRSAVE. */
3308 if (fdata.vrsave_offset != 0)
0df8b418
MS
3309 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3310 = cache->base + fdata.vrsave_offset;
61a65099
KB
3311
3312 if (fdata.alloca_reg < 0)
3313 /* If no alloca register used, then fi->frame is the value of the
3314 %sp for this frame, and it is good enough. */
1af5d7ce
UW
3315 cache->initial_sp
3316 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
61a65099 3317 else
1af5d7ce
UW
3318 cache->initial_sp
3319 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
61a65099 3320
50ae56ec 3321 cache->base_p = 1;
61a65099
KB
3322 return cache;
3323}
3324
3325static void
1af5d7ce 3326rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
61a65099
KB
3327 struct frame_id *this_id)
3328{
1af5d7ce 3329 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3330 this_cache);
50ae56ec
WW
3331
3332 if (!info->base_p)
3333 {
3334 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3335 return;
3336 }
3337
5b197912
UW
3338 /* This marks the outermost frame. */
3339 if (info->base == 0)
3340 return;
3341
1af5d7ce 3342 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
61a65099
KB
3343}
3344
1af5d7ce
UW
3345static struct value *
3346rs6000_frame_prev_register (struct frame_info *this_frame,
3347 void **this_cache, int regnum)
61a65099 3348{
1af5d7ce 3349 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3350 this_cache);
1af5d7ce 3351 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61a65099
KB
3352}
3353
3354static const struct frame_unwind rs6000_frame_unwind =
3355{
3356 NORMAL_FRAME,
8fbca658 3357 default_frame_unwind_stop_reason,
61a65099 3358 rs6000_frame_this_id,
1af5d7ce
UW
3359 rs6000_frame_prev_register,
3360 NULL,
3361 default_frame_sniffer
61a65099 3362};
2608dbf8 3363
ddeca1df
WW
3364/* Allocate and initialize a frame cache for an epilogue frame.
3365 SP is restored and prev-PC is stored in LR. */
3366
2608dbf8
WW
3367static struct rs6000_frame_cache *
3368rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3369{
2608dbf8
WW
3370 struct rs6000_frame_cache *cache;
3371 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2608dbf8
WW
3373
3374 if (*this_cache)
19ba03f4 3375 return (struct rs6000_frame_cache *) *this_cache;
2608dbf8
WW
3376
3377 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3378 (*this_cache) = cache;
3379 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3380
492d29ea 3381 TRY
2608dbf8
WW
3382 {
3383 /* At this point the stack looks as if we just entered the
3384 function, and the return address is stored in LR. */
3385 CORE_ADDR sp, lr;
3386
3387 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3388 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3389
3390 cache->base = sp;
3391 cache->initial_sp = sp;
3392
3393 trad_frame_set_value (cache->saved_regs,
3394 gdbarch_pc_regnum (gdbarch), lr);
3395 }
492d29ea 3396 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
3397 {
3398 if (ex.error != NOT_AVAILABLE_ERROR)
3399 throw_exception (ex);
3400 }
492d29ea 3401 END_CATCH
2608dbf8
WW
3402
3403 return cache;
3404}
3405
ddeca1df
WW
3406/* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3407 Return the frame ID of an epilogue frame. */
3408
2608dbf8
WW
3409static void
3410rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3411 void **this_cache, struct frame_id *this_id)
3412{
3413 CORE_ADDR pc;
3414 struct rs6000_frame_cache *info =
3415 rs6000_epilogue_frame_cache (this_frame, this_cache);
3416
3417 pc = get_frame_func (this_frame);
3418 if (info->base == 0)
3419 (*this_id) = frame_id_build_unavailable_stack (pc);
3420 else
3421 (*this_id) = frame_id_build (info->base, pc);
3422}
3423
ddeca1df
WW
3424/* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3425 Return the register value of REGNUM in previous frame. */
3426
2608dbf8
WW
3427static struct value *
3428rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3429 void **this_cache, int regnum)
3430{
3431 struct rs6000_frame_cache *info =
3432 rs6000_epilogue_frame_cache (this_frame, this_cache);
3433 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3434}
3435
ddeca1df
WW
3436/* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3437 Check whether this an epilogue frame. */
3438
2608dbf8
WW
3439static int
3440rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3441 struct frame_info *this_frame,
3442 void **this_prologue_cache)
3443{
3444 if (frame_relative_level (this_frame) == 0)
3445 return rs6000_in_function_epilogue_frame_p (this_frame,
3446 get_frame_arch (this_frame),
3447 get_frame_pc (this_frame));
3448 else
3449 return 0;
3450}
3451
ddeca1df
WW
3452/* Frame unwinder for epilogue frame. This is required for reverse step-over
3453 a function without debug information. */
3454
2608dbf8
WW
3455static const struct frame_unwind rs6000_epilogue_frame_unwind =
3456{
3457 NORMAL_FRAME,
3458 default_frame_unwind_stop_reason,
3459 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3460 NULL,
3461 rs6000_epilogue_frame_sniffer
3462};
61a65099
KB
3463\f
3464
3465static CORE_ADDR
1af5d7ce 3466rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
61a65099 3467{
1af5d7ce 3468 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099
KB
3469 this_cache);
3470 return info->initial_sp;
3471}
3472
3473static const struct frame_base rs6000_frame_base = {
3474 &rs6000_frame_unwind,
3475 rs6000_frame_base_address,
3476 rs6000_frame_base_address,
3477 rs6000_frame_base_address
3478};
3479
3480static const struct frame_base *
1af5d7ce 3481rs6000_frame_base_sniffer (struct frame_info *this_frame)
61a65099
KB
3482{
3483 return &rs6000_frame_base;
3484}
3485
9274a07c
LM
3486/* DWARF-2 frame support. Used to handle the detection of
3487 clobbered registers during function calls. */
3488
3489static void
3490ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3491 struct dwarf2_frame_state_reg *reg,
4a4e5149 3492 struct frame_info *this_frame)
9274a07c
LM
3493{
3494 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3495
3496 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3497 non-volatile registers. We will use the same code for both. */
3498
3499 /* Call-saved GP registers. */
3500 if ((regnum >= tdep->ppc_gp0_regnum + 14
3501 && regnum <= tdep->ppc_gp0_regnum + 31)
3502 || (regnum == tdep->ppc_gp0_regnum + 1))
3503 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3504
3505 /* Call-clobbered GP registers. */
3506 if ((regnum >= tdep->ppc_gp0_regnum + 3
3507 && regnum <= tdep->ppc_gp0_regnum + 12)
3508 || (regnum == tdep->ppc_gp0_regnum))
3509 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3510
3511 /* Deal with FP registers, if supported. */
3512 if (tdep->ppc_fp0_regnum >= 0)
3513 {
3514 /* Call-saved FP registers. */
3515 if ((regnum >= tdep->ppc_fp0_regnum + 14
3516 && regnum <= tdep->ppc_fp0_regnum + 31))
3517 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3518
3519 /* Call-clobbered FP registers. */
3520 if ((regnum >= tdep->ppc_fp0_regnum
3521 && regnum <= tdep->ppc_fp0_regnum + 13))
3522 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3523 }
3524
3525 /* Deal with ALTIVEC registers, if supported. */
3526 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3527 {
3528 /* Call-saved Altivec registers. */
3529 if ((regnum >= tdep->ppc_vr0_regnum + 20
3530 && regnum <= tdep->ppc_vr0_regnum + 31)
3531 || regnum == tdep->ppc_vrsave_regnum)
3532 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3533
3534 /* Call-clobbered Altivec registers. */
3535 if ((regnum >= tdep->ppc_vr0_regnum
3536 && regnum <= tdep->ppc_vr0_regnum + 19))
3537 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3538 }
3539
3540 /* Handle PC register and Stack Pointer correctly. */
40a6adc1 3541 if (regnum == gdbarch_pc_regnum (gdbarch))
9274a07c 3542 reg->how = DWARF2_FRAME_REG_RA;
40a6adc1 3543 else if (regnum == gdbarch_sp_regnum (gdbarch))
9274a07c
LM
3544 reg->how = DWARF2_FRAME_REG_CFA;
3545}
3546
3547
74af9197
NF
3548/* Return true if a .gnu_attributes section exists in BFD and it
3549 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3550 section exists in BFD and it indicates that SPE extensions are in
3551 use. Check the .gnu.attributes section first, as the binary might be
3552 compiled for SPE, but not actually using SPE instructions. */
3553
3554static int
3555bfd_uses_spe_extensions (bfd *abfd)
3556{
3557 asection *sect;
3558 gdb_byte *contents = NULL;
3559 bfd_size_type size;
3560 gdb_byte *ptr;
3561 int success = 0;
3562 int vector_abi;
3563
3564 if (!abfd)
3565 return 0;
3566
50a99728 3567#ifdef HAVE_ELF
74af9197
NF
3568 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3569 could be using the SPE vector abi without actually using any spe
3570 bits whatsoever. But it's close enough for now. */
3571 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3572 Tag_GNU_Power_ABI_Vector);
3573 if (vector_abi == 3)
3574 return 1;
50a99728 3575#endif
74af9197
NF
3576
3577 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3578 if (!sect)
3579 return 0;
3580
3581 size = bfd_get_section_size (sect);
224c3ddb 3582 contents = (gdb_byte *) xmalloc (size);
74af9197
NF
3583 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3584 {
3585 xfree (contents);
3586 return 0;
3587 }
3588
3589 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3590
3591 struct {
3592 uint32 name_len;
3593 uint32 data_len;
3594 uint32 type;
3595 char name[name_len rounded up to 4-byte alignment];
3596 char data[data_len];
3597 };
3598
3599 Technically, there's only supposed to be one such structure in a
3600 given apuinfo section, but the linker is not always vigilant about
3601 merging apuinfo sections from input files. Just go ahead and parse
3602 them all, exiting early when we discover the binary uses SPE
3603 insns.
3604
3605 It's not specified in what endianness the information in this
3606 section is stored. Assume that it's the endianness of the BFD. */
3607 ptr = contents;
3608 while (1)
3609 {
3610 unsigned int name_len;
3611 unsigned int data_len;
3612 unsigned int type;
3613
3614 /* If we can't read the first three fields, we're done. */
3615 if (size < 12)
3616 break;
3617
3618 name_len = bfd_get_32 (abfd, ptr);
3619 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3620 data_len = bfd_get_32 (abfd, ptr + 4);
3621 type = bfd_get_32 (abfd, ptr + 8);
3622 ptr += 12;
3623
3624 /* The name must be "APUinfo\0". */
3625 if (name_len != 8
3626 && strcmp ((const char *) ptr, "APUinfo") != 0)
3627 break;
3628 ptr += name_len;
3629
3630 /* The type must be 2. */
3631 if (type != 2)
3632 break;
3633
3634 /* The data is stored as a series of uint32. The upper half of
3635 each uint32 indicates the particular APU used and the lower
3636 half indicates the revision of that APU. We just care about
3637 the upper half. */
3638
3639 /* Not 4-byte quantities. */
3640 if (data_len & 3U)
3641 break;
3642
3643 while (data_len)
3644 {
3645 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3646 unsigned int apu = apuinfo >> 16;
3647 ptr += 4;
3648 data_len -= 4;
3649
3650 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3651 either. */
3652 if (apu == 0x100 || apu == 0x101)
3653 {
3654 success = 1;
3655 data_len = 0;
3656 }
3657 }
3658
3659 if (success)
3660 break;
3661 }
3662
3663 xfree (contents);
3664 return success;
3665}
3666
b4cdae6f
WW
3667/* These are macros for parsing instruction fields (I.1.6.28) */
3668
3669#define PPC_FIELD(value, from, len) \
3670 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3671#define PPC_SEXT(v, bs) \
3672 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3673 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3674 - ((CORE_ADDR) 1 << ((bs) - 1)))
3675#define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3676#define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3677#define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3678#define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3679#define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3680#define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3681#define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3682#define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3683#define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3684#define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3685 | (PPC_FIELD (insn, 16, 5) << 5))
3686#define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3687#define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3688#define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3689#define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
6ec2b213 3690#define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
b4cdae6f
WW
3691#define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3692#define PPC_OE(insn) PPC_BIT (insn, 21)
3693#define PPC_RC(insn) PPC_BIT (insn, 31)
3694#define PPC_Rc(insn) PPC_BIT (insn, 21)
3695#define PPC_LK(insn) PPC_BIT (insn, 31)
3696#define PPC_TX(insn) PPC_BIT (insn, 31)
3697#define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3698
3699#define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3700#define PPC_XER_NB(xer) (xer & 0x7f)
3701
ddeca1df
WW
3702/* Record Vector-Scalar Registers.
3703 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3704 Otherwise, it's just a VR register. Record them accordingly. */
b4cdae6f
WW
3705
3706static int
3707ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3708{
3709 if (vsr < 0 || vsr >= 64)
3710 return -1;
3711
3712 if (vsr >= 32)
3713 {
3714 if (tdep->ppc_vr0_regnum >= 0)
3715 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3716 }
3717 else
3718 {
3719 if (tdep->ppc_fp0_regnum >= 0)
3720 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3721 if (tdep->ppc_vsr0_upper_regnum >= 0)
3722 record_full_arch_list_add_reg (regcache,
3723 tdep->ppc_vsr0_upper_regnum + vsr);
3724 }
3725
3726 return 0;
3727}
3728
ddeca1df
WW
3729/* Parse and record instructions primary opcode-4 at ADDR.
3730 Return 0 if successful. */
b4cdae6f
WW
3731
3732static int
3733ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
ddeca1df 3734 CORE_ADDR addr, uint32_t insn)
b4cdae6f
WW
3735{
3736 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3737 int ext = PPC_FIELD (insn, 21, 11);
6ec2b213 3738 int vra = PPC_FIELD (insn, 11, 5);
b4cdae6f
WW
3739
3740 switch (ext & 0x3f)
3741 {
3742 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3743 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3744 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3745 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3746 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3747 /* FALL-THROUGH */
3748 case 42: /* Vector Select */
3749 case 43: /* Vector Permute */
6ec2b213 3750 case 59: /* Vector Permute Right-indexed */
b4cdae6f
WW
3751 case 44: /* Vector Shift Left Double by Octet Immediate */
3752 case 45: /* Vector Permute and Exclusive-OR */
3753 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3754 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3755 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3756 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3757 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
6ec2b213 3758 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
b4cdae6f
WW
3759 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3760 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3761 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3762 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3763 case 46: /* Vector Multiply-Add Single-Precision */
3764 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3765 record_full_arch_list_add_reg (regcache,
3766 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3767 return 0;
6ec2b213
EBM
3768
3769 case 48: /* Multiply-Add High Doubleword */
3770 case 49: /* Multiply-Add High Doubleword Unsigned */
3771 case 51: /* Multiply-Add Low Doubleword */
3772 record_full_arch_list_add_reg (regcache,
3773 tdep->ppc_gp0_regnum + PPC_RT (insn));
3774 return 0;
b4cdae6f
WW
3775 }
3776
3777 switch ((ext & 0x1ff))
3778 {
6ec2b213
EBM
3779 case 385:
3780 if (vra != 0 /* Decimal Convert To Signed Quadword */
3781 && vra != 2 /* Decimal Convert From Signed Quadword */
3782 && vra != 4 /* Decimal Convert To Zoned */
3783 && vra != 5 /* Decimal Convert To National */
3784 && vra != 6 /* Decimal Convert From Zoned */
3785 && vra != 7 /* Decimal Convert From National */
3786 && vra != 31) /* Decimal Set Sign */
3787 break;
e3829d13 3788 /* Fall through. */
b4cdae6f
WW
3789 /* 5.16 Decimal Integer Arithmetic Instructions */
3790 case 1: /* Decimal Add Modulo */
3791 case 65: /* Decimal Subtract Modulo */
3792
6ec2b213
EBM
3793 case 193: /* Decimal Shift */
3794 case 129: /* Decimal Unsigned Shift */
3795 case 449: /* Decimal Shift and Round */
3796
3797 case 257: /* Decimal Truncate */
3798 case 321: /* Decimal Unsigned Truncate */
3799
b4cdae6f
WW
3800 /* Bit-21 should be set. */
3801 if (!PPC_BIT (insn, 21))
3802 break;
3803
3804 record_full_arch_list_add_reg (regcache,
3805 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3806 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3807 return 0;
3808 }
3809
3810 /* Bit-21 is used for RC */
3811 switch (ext & 0x3ff)
3812 {
3813 case 6: /* Vector Compare Equal To Unsigned Byte */
3814 case 70: /* Vector Compare Equal To Unsigned Halfword */
3815 case 134: /* Vector Compare Equal To Unsigned Word */
3816 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3817 case 774: /* Vector Compare Greater Than Signed Byte */
3818 case 838: /* Vector Compare Greater Than Signed Halfword */
3819 case 902: /* Vector Compare Greater Than Signed Word */
3820 case 967: /* Vector Compare Greater Than Signed Doubleword */
3821 case 518: /* Vector Compare Greater Than Unsigned Byte */
3822 case 646: /* Vector Compare Greater Than Unsigned Word */
3823 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3824 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3825 case 966: /* Vector Compare Bounds Single-Precision */
3826 case 198: /* Vector Compare Equal To Single-Precision */
3827 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3828 case 710: /* Vector Compare Greater Than Single-Precision */
6ec2b213
EBM
3829 case 7: /* Vector Compare Not Equal Byte */
3830 case 71: /* Vector Compare Not Equal Halfword */
3831 case 135: /* Vector Compare Not Equal Word */
3832 case 263: /* Vector Compare Not Equal or Zero Byte */
3833 case 327: /* Vector Compare Not Equal or Zero Halfword */
3834 case 391: /* Vector Compare Not Equal or Zero Word */
b4cdae6f
WW
3835 if (PPC_Rc (insn))
3836 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3837 record_full_arch_list_add_reg (regcache,
3838 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3839 return 0;
3840 }
3841
6ec2b213
EBM
3842 if (ext == 1538)
3843 {
3844 switch (vra)
3845 {
3846 case 0: /* Vector Count Leading Zero Least-Significant Bits
3847 Byte */
3848 case 1: /* Vector Count Trailing Zero Least-Significant Bits
3849 Byte */
3850 record_full_arch_list_add_reg (regcache,
3851 tdep->ppc_gp0_regnum + PPC_RT (insn));
3852 return 0;
3853
3854 case 6: /* Vector Negate Word */
3855 case 7: /* Vector Negate Doubleword */
3856 case 8: /* Vector Parity Byte Word */
3857 case 9: /* Vector Parity Byte Doubleword */
3858 case 10: /* Vector Parity Byte Quadword */
3859 case 16: /* Vector Extend Sign Byte To Word */
3860 case 17: /* Vector Extend Sign Halfword To Word */
3861 case 24: /* Vector Extend Sign Byte To Doubleword */
3862 case 25: /* Vector Extend Sign Halfword To Doubleword */
3863 case 26: /* Vector Extend Sign Word To Doubleword */
3864 case 28: /* Vector Count Trailing Zeros Byte */
3865 case 29: /* Vector Count Trailing Zeros Halfword */
3866 case 30: /* Vector Count Trailing Zeros Word */
3867 case 31: /* Vector Count Trailing Zeros Doubleword */
3868 record_full_arch_list_add_reg (regcache,
3869 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3870 return 0;
3871 }
3872 }
3873
b4cdae6f
WW
3874 switch (ext)
3875 {
3876 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
3877 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
3878 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
3879 case 334: /* Vector Pack Signed Word Unsigned Saturate */
3880 case 398: /* Vector Pack Signed Halfword Signed Saturate */
3881 case 462: /* Vector Pack Signed Word Signed Saturate */
3882 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
3883 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
3884 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
3885 case 512: /* Vector Add Unsigned Byte Saturate */
3886 case 576: /* Vector Add Unsigned Halfword Saturate */
3887 case 640: /* Vector Add Unsigned Word Saturate */
3888 case 768: /* Vector Add Signed Byte Saturate */
3889 case 832: /* Vector Add Signed Halfword Saturate */
3890 case 896: /* Vector Add Signed Word Saturate */
3891 case 1536: /* Vector Subtract Unsigned Byte Saturate */
3892 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
3893 case 1664: /* Vector Subtract Unsigned Word Saturate */
3894 case 1792: /* Vector Subtract Signed Byte Saturate */
3895 case 1856: /* Vector Subtract Signed Halfword Saturate */
3896 case 1920: /* Vector Subtract Signed Word Saturate */
3897
3898 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
3899 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
3900 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
3901 case 1672: /* Vector Sum across Half Signed Word Saturate */
3902 case 1928: /* Vector Sum across Signed Word Saturate */
3903 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
3904 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
3905 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3906 /* FALL-THROUGH */
3907 case 12: /* Vector Merge High Byte */
3908 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
3909 case 76: /* Vector Merge High Halfword */
3910 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
3911 case 140: /* Vector Merge High Word */
3912 case 268: /* Vector Merge Low Byte */
3913 case 332: /* Vector Merge Low Halfword */
3914 case 396: /* Vector Merge Low Word */
3915 case 526: /* Vector Unpack High Signed Byte */
3916 case 590: /* Vector Unpack High Signed Halfword */
3917 case 654: /* Vector Unpack Low Signed Byte */
3918 case 718: /* Vector Unpack Low Signed Halfword */
3919 case 782: /* Vector Pack Pixel */
3920 case 846: /* Vector Unpack High Pixel */
3921 case 974: /* Vector Unpack Low Pixel */
3922 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
3923 case 1614: /* Vector Unpack High Signed Word */
3924 case 1676: /* Vector Merge Odd Word */
3925 case 1742: /* Vector Unpack Low Signed Word */
3926 case 1932: /* Vector Merge Even Word */
3927 case 524: /* Vector Splat Byte */
3928 case 588: /* Vector Splat Halfword */
3929 case 652: /* Vector Splat Word */
3930 case 780: /* Vector Splat Immediate Signed Byte */
3931 case 844: /* Vector Splat Immediate Signed Halfword */
3932 case 908: /* Vector Splat Immediate Signed Word */
3933 case 452: /* Vector Shift Left */
3934 case 708: /* Vector Shift Right */
3935 case 1036: /* Vector Shift Left by Octet */
3936 case 1100: /* Vector Shift Right by Octet */
3937 case 0: /* Vector Add Unsigned Byte Modulo */
3938 case 64: /* Vector Add Unsigned Halfword Modulo */
3939 case 128: /* Vector Add Unsigned Word Modulo */
3940 case 192: /* Vector Add Unsigned Doubleword Modulo */
3941 case 256: /* Vector Add Unsigned Quadword Modulo */
3942 case 320: /* Vector Add & write Carry Unsigned Quadword */
3943 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
3944 case 8: /* Vector Multiply Odd Unsigned Byte */
3945 case 72: /* Vector Multiply Odd Unsigned Halfword */
3946 case 136: /* Vector Multiply Odd Unsigned Word */
3947 case 264: /* Vector Multiply Odd Signed Byte */
3948 case 328: /* Vector Multiply Odd Signed Halfword */
3949 case 392: /* Vector Multiply Odd Signed Word */
3950 case 520: /* Vector Multiply Even Unsigned Byte */
3951 case 584: /* Vector Multiply Even Unsigned Halfword */
3952 case 648: /* Vector Multiply Even Unsigned Word */
3953 case 776: /* Vector Multiply Even Signed Byte */
3954 case 840: /* Vector Multiply Even Signed Halfword */
3955 case 904: /* Vector Multiply Even Signed Word */
3956 case 137: /* Vector Multiply Unsigned Word Modulo */
3957 case 1024: /* Vector Subtract Unsigned Byte Modulo */
3958 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
3959 case 1152: /* Vector Subtract Unsigned Word Modulo */
3960 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
3961 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
3962 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
3963 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
3964 case 1282: /* Vector Average Signed Byte */
3965 case 1346: /* Vector Average Signed Halfword */
3966 case 1410: /* Vector Average Signed Word */
3967 case 1026: /* Vector Average Unsigned Byte */
3968 case 1090: /* Vector Average Unsigned Halfword */
3969 case 1154: /* Vector Average Unsigned Word */
3970 case 258: /* Vector Maximum Signed Byte */
3971 case 322: /* Vector Maximum Signed Halfword */
3972 case 386: /* Vector Maximum Signed Word */
3973 case 450: /* Vector Maximum Signed Doubleword */
3974 case 2: /* Vector Maximum Unsigned Byte */
3975 case 66: /* Vector Maximum Unsigned Halfword */
3976 case 130: /* Vector Maximum Unsigned Word */
3977 case 194: /* Vector Maximum Unsigned Doubleword */
3978 case 770: /* Vector Minimum Signed Byte */
3979 case 834: /* Vector Minimum Signed Halfword */
3980 case 898: /* Vector Minimum Signed Word */
3981 case 962: /* Vector Minimum Signed Doubleword */
3982 case 514: /* Vector Minimum Unsigned Byte */
3983 case 578: /* Vector Minimum Unsigned Halfword */
3984 case 642: /* Vector Minimum Unsigned Word */
3985 case 706: /* Vector Minimum Unsigned Doubleword */
3986 case 1028: /* Vector Logical AND */
3987 case 1668: /* Vector Logical Equivalent */
3988 case 1092: /* Vector Logical AND with Complement */
3989 case 1412: /* Vector Logical NAND */
3990 case 1348: /* Vector Logical OR with Complement */
3991 case 1156: /* Vector Logical OR */
3992 case 1284: /* Vector Logical NOR */
3993 case 1220: /* Vector Logical XOR */
3994 case 4: /* Vector Rotate Left Byte */
3995 case 132: /* Vector Rotate Left Word VX-form */
3996 case 68: /* Vector Rotate Left Halfword */
3997 case 196: /* Vector Rotate Left Doubleword */
3998 case 260: /* Vector Shift Left Byte */
3999 case 388: /* Vector Shift Left Word */
4000 case 324: /* Vector Shift Left Halfword */
4001 case 1476: /* Vector Shift Left Doubleword */
4002 case 516: /* Vector Shift Right Byte */
4003 case 644: /* Vector Shift Right Word */
4004 case 580: /* Vector Shift Right Halfword */
4005 case 1732: /* Vector Shift Right Doubleword */
4006 case 772: /* Vector Shift Right Algebraic Byte */
4007 case 900: /* Vector Shift Right Algebraic Word */
4008 case 836: /* Vector Shift Right Algebraic Halfword */
4009 case 964: /* Vector Shift Right Algebraic Doubleword */
4010 case 10: /* Vector Add Single-Precision */
4011 case 74: /* Vector Subtract Single-Precision */
4012 case 1034: /* Vector Maximum Single-Precision */
4013 case 1098: /* Vector Minimum Single-Precision */
4014 case 842: /* Vector Convert From Signed Fixed-Point Word */
4015 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4016 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4017 case 522: /* Vector Round to Single-Precision Integer Nearest */
4018 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4019 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4020 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4021 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4022 case 266: /* Vector Reciprocal Estimate Single-Precision */
4023 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4024 case 1288: /* Vector AES Cipher */
4025 case 1289: /* Vector AES Cipher Last */
4026 case 1352: /* Vector AES Inverse Cipher */
4027 case 1353: /* Vector AES Inverse Cipher Last */
4028 case 1480: /* Vector AES SubBytes */
4029 case 1730: /* Vector SHA-512 Sigma Doubleword */
4030 case 1666: /* Vector SHA-256 Sigma Word */
4031 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4032 case 1160: /* Vector Polynomial Multiply-Sum Word */
4033 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4034 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4035 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4036 case 1794: /* Vector Count Leading Zeros Byte */
4037 case 1858: /* Vector Count Leading Zeros Halfword */
4038 case 1922: /* Vector Count Leading Zeros Word */
4039 case 1986: /* Vector Count Leading Zeros Doubleword */
4040 case 1795: /* Vector Population Count Byte */
4041 case 1859: /* Vector Population Count Halfword */
4042 case 1923: /* Vector Population Count Word */
4043 case 1987: /* Vector Population Count Doubleword */
4044 case 1356: /* Vector Bit Permute Quadword */
6ec2b213
EBM
4045 case 1484: /* Vector Bit Permute Doubleword */
4046 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4047 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4048 Quadword */
4049 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4050 case 65: /* Vector Multiply-by-10 Extended & write Carry
4051 Unsigned Quadword */
4052 case 1027: /* Vector Absolute Difference Unsigned Byte */
4053 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4054 case 1155: /* Vector Absolute Difference Unsigned Word */
4055 case 1796: /* Vector Shift Right Variable */
4056 case 1860: /* Vector Shift Left Variable */
4057 case 133: /* Vector Rotate Left Word then Mask Insert */
4058 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4059 case 389: /* Vector Rotate Left Word then AND with Mask */
4060 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4061 case 525: /* Vector Extract Unsigned Byte */
4062 case 589: /* Vector Extract Unsigned Halfword */
4063 case 653: /* Vector Extract Unsigned Word */
4064 case 717: /* Vector Extract Doubleword */
4065 case 781: /* Vector Insert Byte */
4066 case 845: /* Vector Insert Halfword */
4067 case 909: /* Vector Insert Word */
4068 case 973: /* Vector Insert Doubleword */
b4cdae6f
WW
4069 record_full_arch_list_add_reg (regcache,
4070 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4071 return 0;
4072
6ec2b213
EBM
4073 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4074 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4075 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4076 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4077 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4078 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4079 record_full_arch_list_add_reg (regcache,
4080 tdep->ppc_gp0_regnum + PPC_RT (insn));
4081 return 0;
4082
b4cdae6f
WW
4083 case 1604: /* Move To Vector Status and Control Register */
4084 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4085 return 0;
4086 case 1540: /* Move From Vector Status and Control Register */
4087 record_full_arch_list_add_reg (regcache,
4088 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4089 return 0;
6ec2b213
EBM
4090 case 833: /* Decimal Copy Sign */
4091 record_full_arch_list_add_reg (regcache,
4092 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4093 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4094 return 0;
b4cdae6f
WW
4095 }
4096
810c1026
WW
4097 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4098 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4099 return -1;
4100}
4101
ddeca1df
WW
4102/* Parse and record instructions of primary opcode-19 at ADDR.
4103 Return 0 if successful. */
b4cdae6f
WW
4104
4105static int
4106ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4107 CORE_ADDR addr, uint32_t insn)
4108{
4109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4110 int ext = PPC_EXTOP (insn);
4111
6ec2b213
EBM
4112 switch (ext & 0x01f)
4113 {
4114 case 2: /* Add PC Immediate Shifted */
4115 record_full_arch_list_add_reg (regcache,
4116 tdep->ppc_gp0_regnum + PPC_RT (insn));
4117 return 0;
4118 }
4119
b4cdae6f
WW
4120 switch (ext)
4121 {
4122 case 0: /* Move Condition Register Field */
4123 case 33: /* Condition Register NOR */
4124 case 129: /* Condition Register AND with Complement */
4125 case 193: /* Condition Register XOR */
4126 case 225: /* Condition Register NAND */
4127 case 257: /* Condition Register AND */
4128 case 289: /* Condition Register Equivalent */
4129 case 417: /* Condition Register OR with Complement */
4130 case 449: /* Condition Register OR */
4131 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4132 return 0;
4133
4134 case 16: /* Branch Conditional */
4135 case 560: /* Branch Conditional to Branch Target Address Register */
4136 if ((PPC_BO (insn) & 0x4) == 0)
4137 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4138 /* FALL-THROUGH */
4139 case 528: /* Branch Conditional to Count Register */
4140 if (PPC_LK (insn))
4141 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4142 return 0;
4143
4144 case 150: /* Instruction Synchronize */
4145 /* Do nothing. */
4146 return 0;
4147 }
4148
810c1026
WW
4149 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4150 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4151 return -1;
4152}
4153
ddeca1df
WW
4154/* Parse and record instructions of primary opcode-31 at ADDR.
4155 Return 0 if successful. */
b4cdae6f
WW
4156
4157static int
4158ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4159 CORE_ADDR addr, uint32_t insn)
4160{
4161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4162 int ext = PPC_EXTOP (insn);
4163 int tmp, nr, nb, i;
4164 CORE_ADDR at_dcsz, ea = 0;
4165 ULONGEST rb, ra, xer;
4166 int size = 0;
4167
4168 /* These instructions have OE bit. */
4169 switch (ext & 0x1ff)
4170 {
4171 /* These write RT and XER. Update CR if RC is set. */
4172 case 8: /* Subtract from carrying */
4173 case 10: /* Add carrying */
4174 case 136: /* Subtract from extended */
4175 case 138: /* Add extended */
4176 case 200: /* Subtract from zero extended */
4177 case 202: /* Add to zero extended */
4178 case 232: /* Subtract from minus one extended */
4179 case 234: /* Add to minus one extended */
4180 /* CA is always altered, but SO/OV are only altered when OE=1.
4181 In any case, XER is always altered. */
4182 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4183 if (PPC_RC (insn))
4184 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4185 record_full_arch_list_add_reg (regcache,
4186 tdep->ppc_gp0_regnum + PPC_RT (insn));
4187 return 0;
4188
4189 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4190 case 40: /* Subtract from */
4191 case 104: /* Negate */
4192 case 233: /* Multiply low doubleword */
4193 case 235: /* Multiply low word */
4194 case 266: /* Add */
4195 case 393: /* Divide Doubleword Extended Unsigned */
4196 case 395: /* Divide Word Extended Unsigned */
4197 case 425: /* Divide Doubleword Extended */
4198 case 427: /* Divide Word Extended */
4199 case 457: /* Divide Doubleword Unsigned */
4200 case 459: /* Divide Word Unsigned */
4201 case 489: /* Divide Doubleword */
4202 case 491: /* Divide Word */
4203 if (PPC_OE (insn))
4204 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4205 /* FALL-THROUGH */
4206 case 9: /* Multiply High Doubleword Unsigned */
4207 case 11: /* Multiply High Word Unsigned */
4208 case 73: /* Multiply High Doubleword */
4209 case 75: /* Multiply High Word */
4210 if (PPC_RC (insn))
4211 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4212 record_full_arch_list_add_reg (regcache,
4213 tdep->ppc_gp0_regnum + PPC_RT (insn));
4214 return 0;
4215 }
4216
4217 if ((ext & 0x1f) == 15)
4218 {
4219 /* Integer Select. bit[16:20] is used for BC. */
4220 record_full_arch_list_add_reg (regcache,
4221 tdep->ppc_gp0_regnum + PPC_RT (insn));
4222 return 0;
4223 }
4224
6ec2b213
EBM
4225 if ((ext & 0xff) == 170)
4226 {
4227 /* Add Extended using alternate carry bits */
4228 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4229 record_full_arch_list_add_reg (regcache,
4230 tdep->ppc_gp0_regnum + PPC_RT (insn));
4231 return 0;
4232 }
4233
b4cdae6f
WW
4234 switch (ext)
4235 {
4236 case 78: /* Determine Leftmost Zero Byte */
4237 if (PPC_RC (insn))
4238 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4239 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4240 record_full_arch_list_add_reg (regcache,
4241 tdep->ppc_gp0_regnum + PPC_RT (insn));
4242 return 0;
4243
4244 /* These only write RT. */
4245 case 19: /* Move from condition register */
4246 /* Move From One Condition Register Field */
4247 case 74: /* Add and Generate Sixes */
4248 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4249 case 302: /* Move From Branch History Rolling Buffer */
4250 case 339: /* Move From Special Purpose Register */
4251 case 371: /* Move From Time Base [Phased-Out] */
6ec2b213
EBM
4252 case 309: /* Load Doubleword Monitored Indexed */
4253 case 128: /* Set Boolean */
4254 case 755: /* Deliver A Random Number */
b4cdae6f
WW
4255 record_full_arch_list_add_reg (regcache,
4256 tdep->ppc_gp0_regnum + PPC_RT (insn));
4257 return 0;
4258
4259 /* These only write to RA. */
4260 case 51: /* Move From VSR Doubleword */
4261 case 115: /* Move From VSR Word and Zero */
4262 case 122: /* Population count bytes */
4263 case 378: /* Population count words */
4264 case 506: /* Population count doublewords */
4265 case 154: /* Parity Word */
4266 case 186: /* Parity Doubleword */
4267 case 252: /* Bit Permute Doubleword */
4268 case 282: /* Convert Declets To Binary Coded Decimal */
4269 case 314: /* Convert Binary Coded Decimal To Declets */
4270 case 508: /* Compare bytes */
6ec2b213 4271 case 307: /* Move From VSR Lower Doubleword */
b4cdae6f
WW
4272 record_full_arch_list_add_reg (regcache,
4273 tdep->ppc_gp0_regnum + PPC_RA (insn));
4274 return 0;
4275
4276 /* These write CR and optional RA. */
4277 case 792: /* Shift Right Algebraic Word */
4278 case 794: /* Shift Right Algebraic Doubleword */
4279 case 824: /* Shift Right Algebraic Word Immediate */
4280 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4281 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4282 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4283 record_full_arch_list_add_reg (regcache,
4284 tdep->ppc_gp0_regnum + PPC_RA (insn));
4285 /* FALL-THROUGH */
4286 case 0: /* Compare */
4287 case 32: /* Compare logical */
4288 case 144: /* Move To Condition Register Fields */
4289 /* Move To One Condition Register Field */
6ec2b213
EBM
4290 case 192: /* Compare Ranged Byte */
4291 case 224: /* Compare Equal Byte */
4292 case 576: /* Move XER to CR Extended */
4293 case 902: /* Paste (should always fail due to single-stepping and
4294 the memory location might not be accessible, so
4295 record only CR) */
b4cdae6f
WW
4296 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4297 return 0;
4298
4299 /* These write to RT. Update RA if 'update indexed.' */
4300 case 53: /* Load Doubleword with Update Indexed */
4301 case 119: /* Load Byte and Zero with Update Indexed */
4302 case 311: /* Load Halfword and Zero with Update Indexed */
4303 case 55: /* Load Word and Zero with Update Indexed */
4304 case 375: /* Load Halfword Algebraic with Update Indexed */
4305 case 373: /* Load Word Algebraic with Update Indexed */
4306 record_full_arch_list_add_reg (regcache,
4307 tdep->ppc_gp0_regnum + PPC_RA (insn));
4308 /* FALL-THROUGH */
4309 case 21: /* Load Doubleword Indexed */
4310 case 52: /* Load Byte And Reserve Indexed */
4311 case 116: /* Load Halfword And Reserve Indexed */
4312 case 20: /* Load Word And Reserve Indexed */
4313 case 84: /* Load Doubleword And Reserve Indexed */
4314 case 87: /* Load Byte and Zero Indexed */
4315 case 279: /* Load Halfword and Zero Indexed */
4316 case 23: /* Load Word and Zero Indexed */
4317 case 343: /* Load Halfword Algebraic Indexed */
4318 case 341: /* Load Word Algebraic Indexed */
4319 case 790: /* Load Halfword Byte-Reverse Indexed */
4320 case 534: /* Load Word Byte-Reverse Indexed */
4321 case 532: /* Load Doubleword Byte-Reverse Indexed */
6ec2b213
EBM
4322 case 582: /* Load Word Atomic */
4323 case 614: /* Load Doubleword Atomic */
4324 case 265: /* Modulo Unsigned Doubleword */
4325 case 777: /* Modulo Signed Doubleword */
4326 case 267: /* Modulo Unsigned Word */
4327 case 779: /* Modulo Signed Word */
b4cdae6f
WW
4328 record_full_arch_list_add_reg (regcache,
4329 tdep->ppc_gp0_regnum + PPC_RT (insn));
4330 return 0;
4331
4332 case 597: /* Load String Word Immediate */
4333 case 533: /* Load String Word Indexed */
4334 if (ext == 597)
4335 {
4336 nr = PPC_NB (insn);
4337 if (nr == 0)
4338 nr = 32;
4339 }
4340 else
4341 {
4342 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4343 nr = PPC_XER_NB (xer);
4344 }
4345
4346 nr = (nr + 3) >> 2;
4347
4348 /* If n=0, the contents of register RT are undefined. */
4349 if (nr == 0)
4350 nr = 1;
4351
4352 for (i = 0; i < nr; i++)
4353 record_full_arch_list_add_reg (regcache,
4354 tdep->ppc_gp0_regnum
4355 + ((PPC_RT (insn) + i) & 0x1f));
4356 return 0;
4357
4358 case 276: /* Load Quadword And Reserve Indexed */
4359 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4360 record_full_arch_list_add_reg (regcache, tmp);
4361 record_full_arch_list_add_reg (regcache, tmp + 1);
4362 return 0;
4363
4364 /* These write VRT. */
4365 case 6: /* Load Vector for Shift Left Indexed */
4366 case 38: /* Load Vector for Shift Right Indexed */
4367 case 7: /* Load Vector Element Byte Indexed */
4368 case 39: /* Load Vector Element Halfword Indexed */
4369 case 71: /* Load Vector Element Word Indexed */
4370 case 103: /* Load Vector Indexed */
4371 case 359: /* Load Vector Indexed LRU */
4372 record_full_arch_list_add_reg (regcache,
4373 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4374 return 0;
4375
4376 /* These write FRT. Update RA if 'update indexed.' */
4377 case 567: /* Load Floating-Point Single with Update Indexed */
4378 case 631: /* Load Floating-Point Double with Update Indexed */
4379 record_full_arch_list_add_reg (regcache,
4380 tdep->ppc_gp0_regnum + PPC_RA (insn));
4381 /* FALL-THROUGH */
4382 case 535: /* Load Floating-Point Single Indexed */
4383 case 599: /* Load Floating-Point Double Indexed */
4384 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4385 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4386 record_full_arch_list_add_reg (regcache,
4387 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4388 return 0;
4389
4390 case 791: /* Load Floating-Point Double Pair Indexed */
4391 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4392 record_full_arch_list_add_reg (regcache, tmp);
4393 record_full_arch_list_add_reg (regcache, tmp + 1);
4394 return 0;
4395
4396 case 179: /* Move To VSR Doubleword */
4397 case 211: /* Move To VSR Word Algebraic */
4398 case 243: /* Move To VSR Word and Zero */
4399 case 588: /* Load VSX Scalar Doubleword Indexed */
4400 case 524: /* Load VSX Scalar Single-Precision Indexed */
4401 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4402 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4403 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4404 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4405 case 780: /* Load VSX Vector Word*4 Indexed */
6ec2b213
EBM
4406 case 268: /* Load VSX Vector Indexed */
4407 case 364: /* Load VSX Vector Word & Splat Indexed */
4408 case 812: /* Load VSX Vector Halfword*8 Indexed */
4409 case 876: /* Load VSX Vector Byte*16 Indexed */
4410 case 269: /* Load VSX Vector with Length */
4411 case 301: /* Load VSX Vector Left-justified with Length */
4412 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4413 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4414 case 403: /* Move To VSR Word & Splat */
4415 case 435: /* Move To VSR Double Doubleword */
b4cdae6f
WW
4416 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4417 return 0;
4418
4419 /* These write RA. Update CR if RC is set. */
4420 case 24: /* Shift Left Word */
4421 case 26: /* Count Leading Zeros Word */
4422 case 27: /* Shift Left Doubleword */
4423 case 28: /* AND */
4424 case 58: /* Count Leading Zeros Doubleword */
4425 case 60: /* AND with Complement */
4426 case 124: /* NOR */
4427 case 284: /* Equivalent */
4428 case 316: /* XOR */
4429 case 476: /* NAND */
4430 case 412: /* OR with Complement */
4431 case 444: /* OR */
4432 case 536: /* Shift Right Word */
4433 case 539: /* Shift Right Doubleword */
4434 case 922: /* Extend Sign Halfword */
4435 case 954: /* Extend Sign Byte */
4436 case 986: /* Extend Sign Word */
6ec2b213
EBM
4437 case 538: /* Count Trailing Zeros Word */
4438 case 570: /* Count Trailing Zeros Doubleword */
4439 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4440 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
b4cdae6f
WW
4441 if (PPC_RC (insn))
4442 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4443 record_full_arch_list_add_reg (regcache,
4444 tdep->ppc_gp0_regnum + PPC_RA (insn));
4445 return 0;
4446
4447 /* Store memory. */
4448 case 181: /* Store Doubleword with Update Indexed */
4449 case 183: /* Store Word with Update Indexed */
4450 case 247: /* Store Byte with Update Indexed */
4451 case 439: /* Store Half Word with Update Indexed */
4452 case 695: /* Store Floating-Point Single with Update Indexed */
4453 case 759: /* Store Floating-Point Double with Update Indexed */
4454 record_full_arch_list_add_reg (regcache,
4455 tdep->ppc_gp0_regnum + PPC_RA (insn));
4456 /* FALL-THROUGH */
4457 case 135: /* Store Vector Element Byte Indexed */
4458 case 167: /* Store Vector Element Halfword Indexed */
4459 case 199: /* Store Vector Element Word Indexed */
4460 case 231: /* Store Vector Indexed */
4461 case 487: /* Store Vector Indexed LRU */
4462 case 716: /* Store VSX Scalar Doubleword Indexed */
4463 case 140: /* Store VSX Scalar as Integer Word Indexed */
4464 case 652: /* Store VSX Scalar Single-Precision Indexed */
4465 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4466 case 908: /* Store VSX Vector Word*4 Indexed */
4467 case 149: /* Store Doubleword Indexed */
4468 case 151: /* Store Word Indexed */
4469 case 215: /* Store Byte Indexed */
4470 case 407: /* Store Half Word Indexed */
4471 case 694: /* Store Byte Conditional Indexed */
4472 case 726: /* Store Halfword Conditional Indexed */
4473 case 150: /* Store Word Conditional Indexed */
4474 case 214: /* Store Doubleword Conditional Indexed */
4475 case 182: /* Store Quadword Conditional Indexed */
4476 case 662: /* Store Word Byte-Reverse Indexed */
4477 case 918: /* Store Halfword Byte-Reverse Indexed */
4478 case 660: /* Store Doubleword Byte-Reverse Indexed */
4479 case 663: /* Store Floating-Point Single Indexed */
4480 case 727: /* Store Floating-Point Double Indexed */
4481 case 919: /* Store Floating-Point Double Pair Indexed */
4482 case 983: /* Store Floating-Point as Integer Word Indexed */
6ec2b213
EBM
4483 case 396: /* Store VSX Vector Indexed */
4484 case 940: /* Store VSX Vector Halfword*8 Indexed */
4485 case 1004: /* Store VSX Vector Byte*16 Indexed */
4486 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4487 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4488 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4489 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4490
4491 ra = 0;
4492 if (PPC_RA (insn) != 0)
4493 regcache_raw_read_unsigned (regcache,
4494 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4495 regcache_raw_read_unsigned (regcache,
4496 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4497 ea = ra + rb;
4498
4499 switch (ext)
4500 {
4501 case 183: /* Store Word with Update Indexed */
4502 case 199: /* Store Vector Element Word Indexed */
4503 case 140: /* Store VSX Scalar as Integer Word Indexed */
4504 case 652: /* Store VSX Scalar Single-Precision Indexed */
4505 case 151: /* Store Word Indexed */
4506 case 150: /* Store Word Conditional Indexed */
4507 case 662: /* Store Word Byte-Reverse Indexed */
4508 case 663: /* Store Floating-Point Single Indexed */
4509 case 695: /* Store Floating-Point Single with Update Indexed */
4510 case 983: /* Store Floating-Point as Integer Word Indexed */
4511 size = 4;
4512 break;
4513 case 247: /* Store Byte with Update Indexed */
4514 case 135: /* Store Vector Element Byte Indexed */
4515 case 215: /* Store Byte Indexed */
4516 case 694: /* Store Byte Conditional Indexed */
6ec2b213 4517 case 909: /* Store VSX Scalar as Integer Byte Indexed */
b4cdae6f
WW
4518 size = 1;
4519 break;
4520 case 439: /* Store Halfword with Update Indexed */
4521 case 167: /* Store Vector Element Halfword Indexed */
4522 case 407: /* Store Halfword Indexed */
4523 case 726: /* Store Halfword Conditional Indexed */
4524 case 918: /* Store Halfword Byte-Reverse Indexed */
6ec2b213 4525 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4526 size = 2;
4527 break;
4528 case 181: /* Store Doubleword with Update Indexed */
4529 case 716: /* Store VSX Scalar Doubleword Indexed */
4530 case 149: /* Store Doubleword Indexed */
4531 case 214: /* Store Doubleword Conditional Indexed */
4532 case 660: /* Store Doubleword Byte-Reverse Indexed */
4533 case 727: /* Store Floating-Point Double Indexed */
4534 case 759: /* Store Floating-Point Double with Update Indexed */
4535 size = 8;
4536 break;
4537 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4538 case 908: /* Store VSX Vector Word*4 Indexed */
4539 case 182: /* Store Quadword Conditional Indexed */
4540 case 231: /* Store Vector Indexed */
4541 case 487: /* Store Vector Indexed LRU */
4542 case 919: /* Store Floating-Point Double Pair Indexed */
6ec2b213
EBM
4543 case 396: /* Store VSX Vector Indexed */
4544 case 940: /* Store VSX Vector Halfword*8 Indexed */
4545 case 1004: /* Store VSX Vector Byte*16 Indexed */
b4cdae6f
WW
4546 size = 16;
4547 break;
4548 default:
4549 gdb_assert (0);
4550 }
4551
4552 /* Align address for Store Vector instructions. */
4553 switch (ext)
4554 {
4555 case 167: /* Store Vector Element Halfword Indexed */
4556 addr = addr & ~0x1ULL;
4557 break;
4558
4559 case 199: /* Store Vector Element Word Indexed */
4560 addr = addr & ~0x3ULL;
4561 break;
4562
4563 case 231: /* Store Vector Indexed */
4564 case 487: /* Store Vector Indexed LRU */
4565 addr = addr & ~0xfULL;
4566 break;
4567 }
4568
4569 record_full_arch_list_add_mem (addr, size);
4570 return 0;
4571
6ec2b213
EBM
4572 case 397: /* Store VSX Vector with Length */
4573 case 429: /* Store VSX Vector Left-justified with Length */
de678454 4574 ra = 0;
6ec2b213
EBM
4575 if (PPC_RA (insn) != 0)
4576 regcache_raw_read_unsigned (regcache,
de678454
EBM
4577 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4578 ea = ra;
6ec2b213
EBM
4579 regcache_raw_read_unsigned (regcache,
4580 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4581 /* Store up to 16 bytes. */
4582 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4583 if (nb > 0)
4584 record_full_arch_list_add_mem (ea, nb);
4585 return 0;
4586
4587 case 710: /* Store Word Atomic */
4588 case 742: /* Store Doubleword Atomic */
de678454 4589 ra = 0;
6ec2b213
EBM
4590 if (PPC_RA (insn) != 0)
4591 regcache_raw_read_unsigned (regcache,
de678454
EBM
4592 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4593 ea = ra;
6ec2b213
EBM
4594 switch (ext)
4595 {
4596 case 710: /* Store Word Atomic */
4597 size = 8;
4598 break;
4599 case 742: /* Store Doubleword Atomic */
4600 size = 16;
4601 break;
4602 default:
4603 gdb_assert (0);
4604 }
4605 record_full_arch_list_add_mem (ea, size);
4606 return 0;
4607
b4cdae6f
WW
4608 case 725: /* Store String Word Immediate */
4609 ra = 0;
4610 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4611 regcache_raw_read_unsigned (regcache,
4612 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4613 ea += ra;
4614
4615 nb = PPC_NB (insn);
4616 if (nb == 0)
4617 nb = 32;
4618
4619 record_full_arch_list_add_mem (ea, nb);
4620
4621 return 0;
4622
4623 case 661: /* Store String Word Indexed */
4624 ra = 0;
4625 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4626 regcache_raw_read_unsigned (regcache,
4627 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4628 ea += ra;
4629
4630 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4631 nb = PPC_XER_NB (xer);
4632
4633 if (nb != 0)
4634 {
9f7efd5b
EBM
4635 regcache_raw_read_unsigned (regcache,
4636 tdep->ppc_gp0_regnum + PPC_RB (insn),
4637 &rb);
b4cdae6f
WW
4638 ea += rb;
4639 record_full_arch_list_add_mem (ea, nb);
4640 }
4641
4642 return 0;
4643
4644 case 467: /* Move To Special Purpose Register */
4645 switch (PPC_SPR (insn))
4646 {
4647 case 1: /* XER */
4648 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4649 return 0;
4650 case 8: /* LR */
4651 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4652 return 0;
4653 case 9: /* CTR */
4654 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4655 return 0;
4656 case 256: /* VRSAVE */
4657 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4658 return 0;
4659 }
4660
4661 goto UNKNOWN_OP;
4662
4663 case 147: /* Move To Split Little Endian */
4664 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4665 return 0;
4666
4667 case 512: /* Move to Condition Register from XER */
4668 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4669 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4670 return 0;
4671
4672 case 4: /* Trap Word */
4673 case 68: /* Trap Doubleword */
4674 case 430: /* Clear BHRB */
4675 case 598: /* Synchronize */
4676 case 62: /* Wait for Interrupt */
6ec2b213 4677 case 30: /* Wait */
b4cdae6f
WW
4678 case 22: /* Instruction Cache Block Touch */
4679 case 854: /* Enforce In-order Execution of I/O */
4680 case 246: /* Data Cache Block Touch for Store */
4681 case 54: /* Data Cache Block Store */
4682 case 86: /* Data Cache Block Flush */
4683 case 278: /* Data Cache Block Touch */
4684 case 758: /* Data Cache Block Allocate */
4685 case 982: /* Instruction Cache Block Invalidate */
6ec2b213
EBM
4686 case 774: /* Copy */
4687 case 838: /* CP_Abort */
b4cdae6f
WW
4688 return 0;
4689
4690 case 654: /* Transaction Begin */
4691 case 686: /* Transaction End */
b4cdae6f
WW
4692 case 750: /* Transaction Suspend or Resume */
4693 case 782: /* Transaction Abort Word Conditional */
4694 case 814: /* Transaction Abort Doubleword Conditional */
4695 case 846: /* Transaction Abort Word Conditional Immediate */
4696 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4697 case 910: /* Transaction Abort */
d44c67f3
EBM
4698 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4699 /* FALL-THROUGH */
4700 case 718: /* Transaction Check */
4701 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4702 return 0;
b4cdae6f
WW
4703
4704 case 1014: /* Data Cache Block set to Zero */
f6ac5f3d 4705 if (target_auxv_search (target_stack, AT_DCACHEBSIZE, &at_dcsz) <= 0
b4cdae6f
WW
4706 || at_dcsz == 0)
4707 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4708
bec734b2 4709 ra = 0;
b4cdae6f
WW
4710 if (PPC_RA (insn) != 0)
4711 regcache_raw_read_unsigned (regcache,
4712 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4713 regcache_raw_read_unsigned (regcache,
4714 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4715 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4716 record_full_arch_list_add_mem (ea, at_dcsz);
4717 return 0;
4718 }
4719
4720UNKNOWN_OP:
810c1026
WW
4721 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4722 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4723 return -1;
4724}
4725
ddeca1df
WW
4726/* Parse and record instructions of primary opcode-59 at ADDR.
4727 Return 0 if successful. */
b4cdae6f
WW
4728
4729static int
4730ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4731 CORE_ADDR addr, uint32_t insn)
4732{
4733 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4734 int ext = PPC_EXTOP (insn);
4735
4736 switch (ext & 0x1f)
4737 {
4738 case 18: /* Floating Divide */
4739 case 20: /* Floating Subtract */
4740 case 21: /* Floating Add */
4741 case 22: /* Floating Square Root */
4742 case 24: /* Floating Reciprocal Estimate */
4743 case 25: /* Floating Multiply */
4744 case 26: /* Floating Reciprocal Square Root Estimate */
4745 case 28: /* Floating Multiply-Subtract */
4746 case 29: /* Floating Multiply-Add */
4747 case 30: /* Floating Negative Multiply-Subtract */
4748 case 31: /* Floating Negative Multiply-Add */
4749 record_full_arch_list_add_reg (regcache,
4750 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4751 if (PPC_RC (insn))
4752 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4753 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4754
4755 return 0;
4756 }
4757
4758 switch (ext)
4759 {
4760 case 2: /* DFP Add */
4761 case 3: /* DFP Quantize */
4762 case 34: /* DFP Multiply */
4763 case 35: /* DFP Reround */
4764 case 67: /* DFP Quantize Immediate */
4765 case 99: /* DFP Round To FP Integer With Inexact */
4766 case 227: /* DFP Round To FP Integer Without Inexact */
4767 case 258: /* DFP Convert To DFP Long! */
4768 case 290: /* DFP Convert To Fixed */
4769 case 514: /* DFP Subtract */
4770 case 546: /* DFP Divide */
4771 case 770: /* DFP Round To DFP Short! */
4772 case 802: /* DFP Convert From Fixed */
4773 case 834: /* DFP Encode BCD To DPD */
4774 if (PPC_RC (insn))
4775 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4776 record_full_arch_list_add_reg (regcache,
4777 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4778 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4779 return 0;
4780
4781 case 130: /* DFP Compare Ordered */
4782 case 162: /* DFP Test Exponent */
4783 case 194: /* DFP Test Data Class */
4784 case 226: /* DFP Test Data Group */
4785 case 642: /* DFP Compare Unordered */
4786 case 674: /* DFP Test Significance */
6ec2b213 4787 case 675: /* DFP Test Significance Immediate */
b4cdae6f
WW
4788 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4789 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4790 return 0;
4791
4792 case 66: /* DFP Shift Significand Left Immediate */
4793 case 98: /* DFP Shift Significand Right Immediate */
4794 case 322: /* DFP Decode DPD To BCD */
4795 case 354: /* DFP Extract Biased Exponent */
4796 case 866: /* DFP Insert Biased Exponent */
4797 record_full_arch_list_add_reg (regcache,
4798 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4799 if (PPC_RC (insn))
4800 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4801 return 0;
4802
4803 case 846: /* Floating Convert From Integer Doubleword Single */
4804 case 974: /* Floating Convert From Integer Doubleword Unsigned
4805 Single */
4806 record_full_arch_list_add_reg (regcache,
4807 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4808 if (PPC_RC (insn))
4809 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4810 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4811
4812 return 0;
4813 }
4814
810c1026
WW
4815 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4816 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4817 return -1;
4818}
4819
ddeca1df
WW
4820/* Parse and record instructions of primary opcode-60 at ADDR.
4821 Return 0 if successful. */
b4cdae6f
WW
4822
4823static int
4824ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4825 CORE_ADDR addr, uint32_t insn)
4826{
4827 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4828 int ext = PPC_EXTOP (insn);
b4cdae6f
WW
4829
4830 switch (ext >> 2)
4831 {
4832 case 0: /* VSX Scalar Add Single-Precision */
4833 case 32: /* VSX Scalar Add Double-Precision */
4834 case 24: /* VSX Scalar Divide Single-Precision */
4835 case 56: /* VSX Scalar Divide Double-Precision */
4836 case 176: /* VSX Scalar Copy Sign Double-Precision */
4837 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4838 case 41: /* ditto */
4839 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4840 case 9: /* ditto */
4841 case 160: /* VSX Scalar Maximum Double-Precision */
4842 case 168: /* VSX Scalar Minimum Double-Precision */
4843 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4844 case 57: /* ditto */
4845 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4846 case 25: /* ditto */
4847 case 48: /* VSX Scalar Multiply Double-Precision */
4848 case 16: /* VSX Scalar Multiply Single-Precision */
4849 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4850 case 169: /* ditto */
4851 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4852 case 137: /* ditto */
4853 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4854 case 185: /* ditto */
4855 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4856 case 153: /* ditto */
4857 case 40: /* VSX Scalar Subtract Double-Precision */
4858 case 8: /* VSX Scalar Subtract Single-Precision */
4859 case 96: /* VSX Vector Add Double-Precision */
4860 case 64: /* VSX Vector Add Single-Precision */
4861 case 120: /* VSX Vector Divide Double-Precision */
4862 case 88: /* VSX Vector Divide Single-Precision */
4863 case 97: /* VSX Vector Multiply-Add Double-Precision */
4864 case 105: /* ditto */
4865 case 65: /* VSX Vector Multiply-Add Single-Precision */
4866 case 73: /* ditto */
4867 case 224: /* VSX Vector Maximum Double-Precision */
4868 case 192: /* VSX Vector Maximum Single-Precision */
4869 case 232: /* VSX Vector Minimum Double-Precision */
4870 case 200: /* VSX Vector Minimum Single-Precision */
4871 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
4872 case 121: /* ditto */
4873 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
4874 case 89: /* ditto */
4875 case 112: /* VSX Vector Multiply Double-Precision */
4876 case 80: /* VSX Vector Multiply Single-Precision */
4877 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
4878 case 233: /* ditto */
4879 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
4880 case 201: /* ditto */
4881 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
4882 case 249: /* ditto */
4883 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
4884 case 217: /* ditto */
4885 case 104: /* VSX Vector Subtract Double-Precision */
4886 case 72: /* VSX Vector Subtract Single-Precision */
6ec2b213
EBM
4887 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
4888 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
4889 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
4890 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
4891 case 3: /* VSX Scalar Compare Equal Double-Precision */
4892 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
4893 case 19: /* VSX Scalar Compare Greater Than or Equal
4894 Double-Precision */
b4cdae6f 4895 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 4896 /* FALL-THROUGH */
b4cdae6f
WW
4897 case 240: /* VSX Vector Copy Sign Double-Precision */
4898 case 208: /* VSX Vector Copy Sign Single-Precision */
4899 case 130: /* VSX Logical AND */
4900 case 138: /* VSX Logical AND with Complement */
4901 case 186: /* VSX Logical Equivalence */
4902 case 178: /* VSX Logical NAND */
4903 case 170: /* VSX Logical OR with Complement */
4904 case 162: /* VSX Logical NOR */
4905 case 146: /* VSX Logical OR */
4906 case 154: /* VSX Logical XOR */
4907 case 18: /* VSX Merge High Word */
4908 case 50: /* VSX Merge Low Word */
4909 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
4910 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
4911 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
4912 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
4913 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
4914 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
4915 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
4916 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
6ec2b213
EBM
4917 case 216: /* VSX Vector Insert Exponent Single-Precision */
4918 case 248: /* VSX Vector Insert Exponent Double-Precision */
4919 case 26: /* VSX Vector Permute */
4920 case 58: /* VSX Vector Permute Right-indexed */
4921 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
4922 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
4923 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
4924 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
b4cdae6f
WW
4925 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4926 return 0;
4927
4928 case 61: /* VSX Scalar Test for software Divide Double-Precision */
4929 case 125: /* VSX Vector Test for software Divide Double-Precision */
4930 case 93: /* VSX Vector Test for software Divide Single-Precision */
4931 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4932 return 0;
4933
4934 case 35: /* VSX Scalar Compare Unordered Double-Precision */
4935 case 43: /* VSX Scalar Compare Ordered Double-Precision */
6ec2b213 4936 case 59: /* VSX Scalar Compare Exponents Double-Precision */
b4cdae6f
WW
4937 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4938 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4939 return 0;
4940 }
4941
4942 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
4943 {
4944 case 99: /* VSX Vector Compare Equal To Double-Precision */
4945 case 67: /* VSX Vector Compare Equal To Single-Precision */
4946 case 115: /* VSX Vector Compare Greater Than or
4947 Equal To Double-Precision */
4948 case 83: /* VSX Vector Compare Greater Than or
4949 Equal To Single-Precision */
4950 case 107: /* VSX Vector Compare Greater Than Double-Precision */
4951 case 75: /* VSX Vector Compare Greater Than Single-Precision */
4952 if (PPC_Rc (insn))
4953 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4954 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4955 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4956 return 0;
4957 }
4958
4959 switch (ext >> 1)
4960 {
4961 case 265: /* VSX Scalar round Double-Precision to
4962 Single-Precision and Convert to
4963 Single-Precision format */
4964 case 344: /* VSX Scalar truncate Double-Precision to
4965 Integer and Convert to Signed Integer
4966 Doubleword format with Saturate */
4967 case 88: /* VSX Scalar truncate Double-Precision to
4968 Integer and Convert to Signed Integer Word
4969 Format with Saturate */
4970 case 328: /* VSX Scalar truncate Double-Precision integer
4971 and Convert to Unsigned Integer Doubleword
4972 Format with Saturate */
4973 case 72: /* VSX Scalar truncate Double-Precision to
4974 Integer and Convert to Unsigned Integer Word
4975 Format with Saturate */
4976 case 329: /* VSX Scalar Convert Single-Precision to
4977 Double-Precision format */
4978 case 376: /* VSX Scalar Convert Signed Integer
4979 Doubleword to floating-point format and
4980 Round to Double-Precision format */
4981 case 312: /* VSX Scalar Convert Signed Integer
4982 Doubleword to floating-point format and
4983 round to Single-Precision */
4984 case 360: /* VSX Scalar Convert Unsigned Integer
4985 Doubleword to floating-point format and
4986 Round to Double-Precision format */
4987 case 296: /* VSX Scalar Convert Unsigned Integer
4988 Doubleword to floating-point format and
4989 Round to Single-Precision */
4990 case 73: /* VSX Scalar Round to Double-Precision Integer
4991 Using Round to Nearest Away */
4992 case 107: /* VSX Scalar Round to Double-Precision Integer
4993 Exact using Current rounding mode */
4994 case 121: /* VSX Scalar Round to Double-Precision Integer
4995 Using Round toward -Infinity */
4996 case 105: /* VSX Scalar Round to Double-Precision Integer
4997 Using Round toward +Infinity */
4998 case 89: /* VSX Scalar Round to Double-Precision Integer
4999 Using Round toward Zero */
5000 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5001 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5002 case 281: /* VSX Scalar Round to Single-Precision */
5003 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5004 Double-Precision */
5005 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5006 Single-Precision */
5007 case 75: /* VSX Scalar Square Root Double-Precision */
5008 case 11: /* VSX Scalar Square Root Single-Precision */
5009 case 393: /* VSX Vector round Double-Precision to
5010 Single-Precision and Convert to
5011 Single-Precision format */
5012 case 472: /* VSX Vector truncate Double-Precision to
5013 Integer and Convert to Signed Integer
5014 Doubleword format with Saturate */
5015 case 216: /* VSX Vector truncate Double-Precision to
5016 Integer and Convert to Signed Integer Word
5017 Format with Saturate */
5018 case 456: /* VSX Vector truncate Double-Precision to
5019 Integer and Convert to Unsigned Integer
5020 Doubleword format with Saturate */
5021 case 200: /* VSX Vector truncate Double-Precision to
5022 Integer and Convert to Unsigned Integer Word
5023 Format with Saturate */
5024 case 457: /* VSX Vector Convert Single-Precision to
5025 Double-Precision format */
5026 case 408: /* VSX Vector truncate Single-Precision to
5027 Integer and Convert to Signed Integer
5028 Doubleword format with Saturate */
5029 case 152: /* VSX Vector truncate Single-Precision to
5030 Integer and Convert to Signed Integer Word
5031 Format with Saturate */
5032 case 392: /* VSX Vector truncate Single-Precision to
5033 Integer and Convert to Unsigned Integer
5034 Doubleword format with Saturate */
5035 case 136: /* VSX Vector truncate Single-Precision to
5036 Integer and Convert to Unsigned Integer Word
5037 Format with Saturate */
5038 case 504: /* VSX Vector Convert and round Signed Integer
5039 Doubleword to Double-Precision format */
5040 case 440: /* VSX Vector Convert and round Signed Integer
5041 Doubleword to Single-Precision format */
5042 case 248: /* VSX Vector Convert Signed Integer Word to
5043 Double-Precision format */
5044 case 184: /* VSX Vector Convert and round Signed Integer
5045 Word to Single-Precision format */
5046 case 488: /* VSX Vector Convert and round Unsigned
5047 Integer Doubleword to Double-Precision format */
5048 case 424: /* VSX Vector Convert and round Unsigned
5049 Integer Doubleword to Single-Precision format */
5050 case 232: /* VSX Vector Convert and round Unsigned
5051 Integer Word to Double-Precision format */
5052 case 168: /* VSX Vector Convert and round Unsigned
5053 Integer Word to Single-Precision format */
5054 case 201: /* VSX Vector Round to Double-Precision
5055 Integer using round to Nearest Away */
5056 case 235: /* VSX Vector Round to Double-Precision
5057 Integer Exact using Current rounding mode */
5058 case 249: /* VSX Vector Round to Double-Precision
5059 Integer using round toward -Infinity */
5060 case 233: /* VSX Vector Round to Double-Precision
5061 Integer using round toward +Infinity */
5062 case 217: /* VSX Vector Round to Double-Precision
5063 Integer using round toward Zero */
5064 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5065 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5066 case 137: /* VSX Vector Round to Single-Precision Integer
5067 Using Round to Nearest Away */
5068 case 171: /* VSX Vector Round to Single-Precision Integer
5069 Exact Using Current rounding mode */
5070 case 185: /* VSX Vector Round to Single-Precision Integer
5071 Using Round toward -Infinity */
5072 case 169: /* VSX Vector Round to Single-Precision Integer
5073 Using Round toward +Infinity */
5074 case 153: /* VSX Vector Round to Single-Precision Integer
5075 Using round toward Zero */
5076 case 202: /* VSX Vector Reciprocal Square Root Estimate
5077 Double-Precision */
5078 case 138: /* VSX Vector Reciprocal Square Root Estimate
5079 Single-Precision */
5080 case 203: /* VSX Vector Square Root Double-Precision */
5081 case 139: /* VSX Vector Square Root Single-Precision */
5082 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 5083 /* FALL-THROUGH */
b4cdae6f
WW
5084 case 345: /* VSX Scalar Absolute Value Double-Precision */
5085 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5086 Vector Single-Precision format Non-signalling */
5087 case 331: /* VSX Scalar Convert Single-Precision to
5088 Double-Precision format Non-signalling */
5089 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5090 case 377: /* VSX Scalar Negate Double-Precision */
5091 case 473: /* VSX Vector Absolute Value Double-Precision */
5092 case 409: /* VSX Vector Absolute Value Single-Precision */
5093 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5094 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5095 case 505: /* VSX Vector Negate Double-Precision */
5096 case 441: /* VSX Vector Negate Single-Precision */
5097 case 164: /* VSX Splat Word */
6ec2b213
EBM
5098 case 165: /* VSX Vector Extract Unsigned Word */
5099 case 181: /* VSX Vector Insert Word */
b4cdae6f
WW
5100 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5101 return 0;
5102
6ec2b213
EBM
5103 case 298: /* VSX Scalar Test Data Class Single-Precision */
5104 case 362: /* VSX Scalar Test Data Class Double-Precision */
5105 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5106 /* FALL-THROUGH */
b4cdae6f
WW
5107 case 106: /* VSX Scalar Test for software Square Root
5108 Double-Precision */
5109 case 234: /* VSX Vector Test for software Square Root
5110 Double-Precision */
5111 case 170: /* VSX Vector Test for software Square Root
5112 Single-Precision */
5113 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5114 return 0;
6ec2b213
EBM
5115
5116 case 347:
5117 switch (PPC_FIELD (insn, 11, 5))
5118 {
5119 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5120 case 1: /* VSX Scalar Extract Significand Double-Precision */
5121 record_full_arch_list_add_reg (regcache,
5122 tdep->ppc_gp0_regnum + PPC_RT (insn));
5123 return 0;
5124 case 16: /* VSX Scalar Convert Half-Precision format to
5125 Double-Precision format */
5126 case 17: /* VSX Scalar round & Convert Double-Precision format
5127 to Half-Precision format */
5128 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5129 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5130 return 0;
5131 }
5132 break;
5133
5134 case 475:
5135 switch (PPC_FIELD (insn, 11, 5))
5136 {
5137 case 24: /* VSX Vector Convert Half-Precision format to
5138 Single-Precision format */
5139 case 25: /* VSX Vector round and Convert Single-Precision format
5140 to Half-Precision format */
5141 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5142 /* FALL-THROUGH */
5143 case 0: /* VSX Vector Extract Exponent Double-Precision */
5144 case 1: /* VSX Vector Extract Significand Double-Precision */
5145 case 7: /* VSX Vector Byte-Reverse Halfword */
5146 case 8: /* VSX Vector Extract Exponent Single-Precision */
5147 case 9: /* VSX Vector Extract Significand Single-Precision */
5148 case 15: /* VSX Vector Byte-Reverse Word */
5149 case 23: /* VSX Vector Byte-Reverse Doubleword */
5150 case 31: /* VSX Vector Byte-Reverse Quadword */
5151 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5152 return 0;
5153 }
5154 break;
5155 }
5156
5157 switch (ext)
5158 {
5159 case 360: /* VSX Vector Splat Immediate Byte */
5160 if (PPC_FIELD (insn, 11, 2) == 0)
5161 {
5162 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5163 return 0;
5164 }
5165 break;
5166 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5167 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5168 return 0;
b4cdae6f
WW
5169 }
5170
5171 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5172 {
5173 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5174 return 0;
5175 }
5176
810c1026
WW
5177 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5178 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5179 return -1;
5180}
5181
6ec2b213
EBM
5182/* Parse and record instructions of primary opcode-61 at ADDR.
5183 Return 0 if successful. */
5184
5185static int
5186ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5187 CORE_ADDR addr, uint32_t insn)
5188{
5189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5190 ULONGEST ea = 0;
5191 int size;
5192
5193 switch (insn & 0x3)
5194 {
5195 case 0: /* Store Floating-Point Double Pair */
5196 case 2: /* Store VSX Scalar Doubleword */
5197 case 3: /* Store VSX Scalar Single */
5198 if (PPC_RA (insn) != 0)
5199 regcache_raw_read_unsigned (regcache,
5200 tdep->ppc_gp0_regnum + PPC_RA (insn),
5201 &ea);
5202 ea += PPC_DS (insn) << 2;
5203 switch (insn & 0x3)
5204 {
5205 case 0: /* Store Floating-Point Double Pair */
5206 size = 16;
5207 break;
5208 case 2: /* Store VSX Scalar Doubleword */
5209 size = 8;
5210 break;
5211 case 3: /* Store VSX Scalar Single */
5212 size = 4;
5213 break;
5214 default:
5215 gdb_assert (0);
5216 }
5217 record_full_arch_list_add_mem (ea, size);
5218 return 0;
5219 }
5220
5221 switch (insn & 0x7)
5222 {
5223 case 1: /* Load VSX Vector */
5224 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5225 return 0;
5226 case 5: /* Store VSX Vector */
5227 if (PPC_RA (insn) != 0)
5228 regcache_raw_read_unsigned (regcache,
5229 tdep->ppc_gp0_regnum + PPC_RA (insn),
5230 &ea);
5231 ea += PPC_DQ (insn) << 4;
5232 record_full_arch_list_add_mem (ea, 16);
5233 return 0;
5234 }
5235
5236 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5237 "at %s.\n", insn, paddress (gdbarch, addr));
5238 return -1;
5239}
5240
ddeca1df
WW
5241/* Parse and record instructions of primary opcode-63 at ADDR.
5242 Return 0 if successful. */
b4cdae6f
WW
5243
5244static int
5245ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5246 CORE_ADDR addr, uint32_t insn)
5247{
5248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5249 int ext = PPC_EXTOP (insn);
5250 int tmp;
5251
5252 switch (ext & 0x1f)
5253 {
5254 case 18: /* Floating Divide */
5255 case 20: /* Floating Subtract */
5256 case 21: /* Floating Add */
5257 case 22: /* Floating Square Root */
5258 case 24: /* Floating Reciprocal Estimate */
5259 case 25: /* Floating Multiply */
5260 case 26: /* Floating Reciprocal Square Root Estimate */
5261 case 28: /* Floating Multiply-Subtract */
5262 case 29: /* Floating Multiply-Add */
5263 case 30: /* Floating Negative Multiply-Subtract */
5264 case 31: /* Floating Negative Multiply-Add */
5265 record_full_arch_list_add_reg (regcache,
5266 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5267 if (PPC_RC (insn))
5268 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5269 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5270 return 0;
5271
5272 case 23: /* Floating Select */
5273 record_full_arch_list_add_reg (regcache,
5274 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5275 if (PPC_RC (insn))
5276 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
8aabe2e2 5277 return 0;
b4cdae6f
WW
5278 }
5279
6ec2b213
EBM
5280 switch (ext & 0xff)
5281 {
5282 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5283 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5284 Precision */
5285 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5286 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5287 return 0;
5288 }
5289
b4cdae6f
WW
5290 switch (ext)
5291 {
5292 case 2: /* DFP Add Quad */
5293 case 3: /* DFP Quantize Quad */
5294 case 34: /* DFP Multiply Quad */
5295 case 35: /* DFP Reround Quad */
5296 case 67: /* DFP Quantize Immediate Quad */
5297 case 99: /* DFP Round To FP Integer With Inexact Quad */
5298 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5299 case 258: /* DFP Convert To DFP Extended Quad */
5300 case 514: /* DFP Subtract Quad */
5301 case 546: /* DFP Divide Quad */
5302 case 770: /* DFP Round To DFP Long Quad */
5303 case 802: /* DFP Convert From Fixed Quad */
5304 case 834: /* DFP Encode BCD To DPD Quad */
5305 if (PPC_RC (insn))
5306 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5307 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5308 record_full_arch_list_add_reg (regcache, tmp);
5309 record_full_arch_list_add_reg (regcache, tmp + 1);
5310 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5311 return 0;
5312
5313 case 130: /* DFP Compare Ordered Quad */
5314 case 162: /* DFP Test Exponent Quad */
5315 case 194: /* DFP Test Data Class Quad */
5316 case 226: /* DFP Test Data Group Quad */
5317 case 642: /* DFP Compare Unordered Quad */
5318 case 674: /* DFP Test Significance Quad */
6ec2b213 5319 case 675: /* DFP Test Significance Immediate Quad */
b4cdae6f
WW
5320 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5321 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5322 return 0;
5323
5324 case 66: /* DFP Shift Significand Left Immediate Quad */
5325 case 98: /* DFP Shift Significand Right Immediate Quad */
5326 case 322: /* DFP Decode DPD To BCD Quad */
5327 case 866: /* DFP Insert Biased Exponent Quad */
5328 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5329 record_full_arch_list_add_reg (regcache, tmp);
5330 record_full_arch_list_add_reg (regcache, tmp + 1);
5331 if (PPC_RC (insn))
5332 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5333 return 0;
5334
5335 case 290: /* DFP Convert To Fixed Quad */
5336 record_full_arch_list_add_reg (regcache,
5337 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5338 if (PPC_RC (insn))
5339 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5340 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5341 return 0;
b4cdae6f
WW
5342
5343 case 354: /* DFP Extract Biased Exponent Quad */
5344 record_full_arch_list_add_reg (regcache,
5345 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5346 if (PPC_RC (insn))
5347 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5348 return 0;
5349
5350 case 12: /* Floating Round to Single-Precision */
5351 case 14: /* Floating Convert To Integer Word */
5352 case 15: /* Floating Convert To Integer Word
5353 with round toward Zero */
5354 case 142: /* Floating Convert To Integer Word Unsigned */
5355 case 143: /* Floating Convert To Integer Word Unsigned
5356 with round toward Zero */
5357 case 392: /* Floating Round to Integer Nearest */
5358 case 424: /* Floating Round to Integer Toward Zero */
5359 case 456: /* Floating Round to Integer Plus */
5360 case 488: /* Floating Round to Integer Minus */
5361 case 814: /* Floating Convert To Integer Doubleword */
5362 case 815: /* Floating Convert To Integer Doubleword
5363 with round toward Zero */
5364 case 846: /* Floating Convert From Integer Doubleword */
5365 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5366 case 943: /* Floating Convert To Integer Doubleword Unsigned
5367 with round toward Zero */
5368 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5369 record_full_arch_list_add_reg (regcache,
5370 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5371 if (PPC_RC (insn))
5372 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5373 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5374 return 0;
5375
6ec2b213
EBM
5376 case 583:
5377 switch (PPC_FIELD (insn, 11, 5))
5378 {
5379 case 1: /* Move From FPSCR & Clear Enables */
5380 case 20: /* Move From FPSCR Control & set DRN */
5381 case 21: /* Move From FPSCR Control & set DRN Immediate */
5382 case 22: /* Move From FPSCR Control & set RN */
5383 case 23: /* Move From FPSCR Control & set RN Immediate */
5384 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
e3829d13 5385 /* Fall through. */
6ec2b213
EBM
5386 case 0: /* Move From FPSCR */
5387 case 24: /* Move From FPSCR Lightweight */
5388 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5389 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5390 record_full_arch_list_add_reg (regcache,
5391 tdep->ppc_fp0_regnum
5392 + PPC_FRT (insn));
5393 return 0;
5394 }
5395 break;
5396
b4cdae6f
WW
5397 case 8: /* Floating Copy Sign */
5398 case 40: /* Floating Negate */
5399 case 72: /* Floating Move Register */
5400 case 136: /* Floating Negative Absolute Value */
5401 case 264: /* Floating Absolute Value */
5402 record_full_arch_list_add_reg (regcache,
5403 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5404 if (PPC_RC (insn))
5405 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5406 return 0;
5407
5408 case 838: /* Floating Merge Odd Word */
5409 case 966: /* Floating Merge Even Word */
5410 record_full_arch_list_add_reg (regcache,
5411 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5412 return 0;
5413
5414 case 38: /* Move To FPSCR Bit 1 */
5415 case 70: /* Move To FPSCR Bit 0 */
5416 case 134: /* Move To FPSCR Field Immediate */
5417 case 711: /* Move To FPSCR Fields */
5418 if (PPC_RC (insn))
5419 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5420 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5421 return 0;
b4cdae6f
WW
5422
5423 case 0: /* Floating Compare Unordered */
5424 case 32: /* Floating Compare Ordered */
5425 case 64: /* Move to Condition Register from FPSCR */
6ec2b213
EBM
5426 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5427 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5428 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5429 case 708: /* VSX Scalar Test Data Class Quad-Precision */
b4cdae6f
WW
5430 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5431 /* FALL-THROUGH */
5432 case 128: /* Floating Test for software Divide */
5433 case 160: /* Floating Test for software Square Root */
5434 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5435 return 0;
5436
6ec2b213
EBM
5437 case 4: /* VSX Scalar Add Quad-Precision */
5438 case 36: /* VSX Scalar Multiply Quad-Precision */
5439 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5440 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5441 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5442 case 484: /* VSX Scalar Negative Multiply-Subtract
5443 Quad-Precision */
5444 case 516: /* VSX Scalar Subtract Quad-Precision */
5445 case 548: /* VSX Scalar Divide Quad-Precision */
5446 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5447 /* FALL-THROUGH */
5448 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5449 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5450 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5451 return 0;
5452
5453 case 804:
5454 switch (PPC_FIELD (insn, 11, 5))
5455 {
5456 case 27: /* VSX Scalar Square Root Quad-Precision */
5457 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5458 /* FALL-THROUGH */
5459 case 0: /* VSX Scalar Absolute Quad-Precision */
5460 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5461 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5462 case 16: /* VSX Scalar Negate Quad-Precision */
5463 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5464 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5465 return 0;
5466 }
5467 break;
5468
5469 case 836:
5470 switch (PPC_FIELD (insn, 11, 5))
5471 {
5472 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5473 to Unsigned Word format */
5474 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5475 Quad-Precision format */
5476 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5477 to Signed Word format */
5478 case 10: /* VSX Scalar Convert Signed Doubleword format to
5479 Quad-Precision format */
5480 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5481 to Unsigned Doubleword format */
5482 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5483 Double-Precision format */
5484 case 22: /* VSX Scalar Convert Double-Precision format to
5485 Quad-Precision format */
5486 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5487 to Signed Doubleword format */
5488 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5489 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5490 return 0;
5491 }
b4cdae6f
WW
5492 }
5493
810c1026 5494 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6ec2b213 5495 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5496 return -1;
5497}
5498
5499/* Parse the current instruction and record the values of the registers and
5500 memory that will be changed in current instruction to "record_arch_list".
5501 Return -1 if something wrong. */
5502
5503int
5504ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5505 CORE_ADDR addr)
5506{
5507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5508 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5509 uint32_t insn;
5510 int op6, tmp, i;
5511
5512 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5513 op6 = PPC_OP6 (insn);
5514
5515 switch (op6)
5516 {
5517 case 2: /* Trap Doubleword Immediate */
5518 case 3: /* Trap Word Immediate */
5519 /* Do nothing. */
5520 break;
5521
5522 case 4:
5523 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5524 return -1;
5525 break;
5526
5527 case 17: /* System call */
5528 if (PPC_LEV (insn) != 0)
5529 goto UNKNOWN_OP;
5530
5531 if (tdep->ppc_syscall_record != NULL)
5532 {
5533 if (tdep->ppc_syscall_record (regcache) != 0)
5534 return -1;
5535 }
5536 else
5537 {
5538 printf_unfiltered (_("no syscall record support\n"));
5539 return -1;
5540 }
5541 break;
5542
5543 case 7: /* Multiply Low Immediate */
5544 record_full_arch_list_add_reg (regcache,
5545 tdep->ppc_gp0_regnum + PPC_RT (insn));
5546 break;
5547
5548 case 8: /* Subtract From Immediate Carrying */
5549 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5550 record_full_arch_list_add_reg (regcache,
5551 tdep->ppc_gp0_regnum + PPC_RT (insn));
5552 break;
5553
5554 case 10: /* Compare Logical Immediate */
5555 case 11: /* Compare Immediate */
5556 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5557 break;
5558
5559 case 13: /* Add Immediate Carrying and Record */
5560 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5561 /* FALL-THROUGH */
5562 case 12: /* Add Immediate Carrying */
5563 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5564 /* FALL-THROUGH */
5565 case 14: /* Add Immediate */
5566 case 15: /* Add Immediate Shifted */
5567 record_full_arch_list_add_reg (regcache,
5568 tdep->ppc_gp0_regnum + PPC_RT (insn));
5569 break;
5570
5571 case 16: /* Branch Conditional */
5572 if ((PPC_BO (insn) & 0x4) == 0)
5573 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5574 /* FALL-THROUGH */
5575 case 18: /* Branch */
5576 if (PPC_LK (insn))
5577 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5578 break;
5579
5580 case 19:
5581 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5582 return -1;
5583 break;
5584
5585 case 20: /* Rotate Left Word Immediate then Mask Insert */
5586 case 21: /* Rotate Left Word Immediate then AND with Mask */
5587 case 23: /* Rotate Left Word then AND with Mask */
5588 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5589 /* Rotate Left Doubleword Immediate then Clear Right */
5590 /* Rotate Left Doubleword Immediate then Clear */
5591 /* Rotate Left Doubleword then Clear Left */
5592 /* Rotate Left Doubleword then Clear Right */
5593 /* Rotate Left Doubleword Immediate then Mask Insert */
5594 if (PPC_RC (insn))
5595 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5596 record_full_arch_list_add_reg (regcache,
5597 tdep->ppc_gp0_regnum + PPC_RA (insn));
5598 break;
5599
5600 case 28: /* AND Immediate */
5601 case 29: /* AND Immediate Shifted */
5602 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5603 /* FALL-THROUGH */
5604 case 24: /* OR Immediate */
5605 case 25: /* OR Immediate Shifted */
5606 case 26: /* XOR Immediate */
5607 case 27: /* XOR Immediate Shifted */
5608 record_full_arch_list_add_reg (regcache,
5609 tdep->ppc_gp0_regnum + PPC_RA (insn));
5610 break;
5611
5612 case 31:
5613 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5614 return -1;
5615 break;
5616
5617 case 33: /* Load Word and Zero with Update */
5618 case 35: /* Load Byte and Zero with Update */
5619 case 41: /* Load Halfword and Zero with Update */
5620 case 43: /* Load Halfword Algebraic with Update */
5621 record_full_arch_list_add_reg (regcache,
5622 tdep->ppc_gp0_regnum + PPC_RA (insn));
5623 /* FALL-THROUGH */
5624 case 32: /* Load Word and Zero */
5625 case 34: /* Load Byte and Zero */
5626 case 40: /* Load Halfword and Zero */
5627 case 42: /* Load Halfword Algebraic */
5628 record_full_arch_list_add_reg (regcache,
5629 tdep->ppc_gp0_regnum + PPC_RT (insn));
5630 break;
5631
5632 case 46: /* Load Multiple Word */
5633 for (i = PPC_RT (insn); i < 32; i++)
5634 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5635 break;
5636
5637 case 56: /* Load Quadword */
5638 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5639 record_full_arch_list_add_reg (regcache, tmp);
5640 record_full_arch_list_add_reg (regcache, tmp + 1);
5641 break;
5642
5643 case 49: /* Load Floating-Point Single with Update */
5644 case 51: /* Load Floating-Point Double with Update */
5645 record_full_arch_list_add_reg (regcache,
5646 tdep->ppc_gp0_regnum + PPC_RA (insn));
5647 /* FALL-THROUGH */
5648 case 48: /* Load Floating-Point Single */
5649 case 50: /* Load Floating-Point Double */
5650 record_full_arch_list_add_reg (regcache,
5651 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5652 break;
5653
5654 case 47: /* Store Multiple Word */
5655 {
5656 ULONGEST addr = 0;
5657
5658 if (PPC_RA (insn) != 0)
5659 regcache_raw_read_unsigned (regcache,
5660 tdep->ppc_gp0_regnum + PPC_RA (insn),
5661 &addr);
5662
5663 addr += PPC_D (insn);
5664 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5665 }
5666 break;
5667
5668 case 37: /* Store Word with Update */
5669 case 39: /* Store Byte with Update */
5670 case 45: /* Store Halfword with Update */
5671 case 53: /* Store Floating-Point Single with Update */
5672 case 55: /* Store Floating-Point Double with Update */
5673 record_full_arch_list_add_reg (regcache,
5674 tdep->ppc_gp0_regnum + PPC_RA (insn));
5675 /* FALL-THROUGH */
5676 case 36: /* Store Word */
5677 case 38: /* Store Byte */
5678 case 44: /* Store Halfword */
5679 case 52: /* Store Floating-Point Single */
5680 case 54: /* Store Floating-Point Double */
5681 {
5682 ULONGEST addr = 0;
5683 int size = -1;
5684
5685 if (PPC_RA (insn) != 0)
5686 regcache_raw_read_unsigned (regcache,
5687 tdep->ppc_gp0_regnum + PPC_RA (insn),
5688 &addr);
5689 addr += PPC_D (insn);
5690
5691 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5692 size = 4;
5693 else if (op6 == 54 || op6 == 55)
5694 size = 8;
5695 else if (op6 == 44 || op6 == 45)
5696 size = 2;
5697 else if (op6 == 38 || op6 == 39)
5698 size = 1;
5699 else
5700 gdb_assert (0);
5701
5702 record_full_arch_list_add_mem (addr, size);
5703 }
5704 break;
5705
6ec2b213
EBM
5706 case 57:
5707 switch (insn & 0x3)
5708 {
5709 case 0: /* Load Floating-Point Double Pair */
5710 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5711 record_full_arch_list_add_reg (regcache, tmp);
5712 record_full_arch_list_add_reg (regcache, tmp + 1);
5713 break;
5714 case 2: /* Load VSX Scalar Doubleword */
5715 case 3: /* Load VSX Scalar Single */
5716 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5717 break;
5718 default:
5719 goto UNKNOWN_OP;
5720 }
b4cdae6f
WW
5721 break;
5722
5723 case 58: /* Load Doubleword */
5724 /* Load Doubleword with Update */
5725 /* Load Word Algebraic */
5726 if (PPC_FIELD (insn, 30, 2) > 2)
5727 goto UNKNOWN_OP;
5728
5729 record_full_arch_list_add_reg (regcache,
5730 tdep->ppc_gp0_regnum + PPC_RT (insn));
5731 if (PPC_BIT (insn, 31))
5732 record_full_arch_list_add_reg (regcache,
5733 tdep->ppc_gp0_regnum + PPC_RA (insn));
5734 break;
5735
5736 case 59:
5737 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5738 return -1;
5739 break;
5740
5741 case 60:
5742 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5743 return -1;
5744 break;
5745
6ec2b213
EBM
5746 case 61:
5747 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
5748 return -1;
5749 break;
5750
b4cdae6f
WW
5751 case 62: /* Store Doubleword */
5752 /* Store Doubleword with Update */
5753 /* Store Quadword with Update */
5754 {
5755 ULONGEST addr = 0;
5756 int size;
5757 int sub2 = PPC_FIELD (insn, 30, 2);
5758
6ec2b213 5759 if (sub2 > 2)
b4cdae6f
WW
5760 goto UNKNOWN_OP;
5761
5762 if (PPC_RA (insn) != 0)
5763 regcache_raw_read_unsigned (regcache,
5764 tdep->ppc_gp0_regnum + PPC_RA (insn),
5765 &addr);
5766
6ec2b213 5767 size = (sub2 == 2) ? 16 : 8;
b4cdae6f
WW
5768
5769 addr += PPC_DS (insn) << 2;
5770 record_full_arch_list_add_mem (addr, size);
5771
5772 if (op6 == 62 && sub2 == 1)
5773 record_full_arch_list_add_reg (regcache,
5774 tdep->ppc_gp0_regnum +
5775 PPC_RA (insn));
5776
5777 break;
5778 }
5779
5780 case 63:
5781 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5782 return -1;
5783 break;
5784
5785 default:
5786UNKNOWN_OP:
810c1026
WW
5787 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5788 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
b4cdae6f
WW
5789 return -1;
5790 }
5791
5792 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5793 return -1;
5794 if (record_full_arch_list_add_end ())
5795 return -1;
5796 return 0;
5797}
5798
7a78ae4e
ND
5799/* Initialize the current architecture based on INFO. If possible, re-use an
5800 architecture from ARCHES, which is a list of architectures already created
5801 during this debugging session.
c906108c 5802
7a78ae4e 5803 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 5804 a binary file. */
c906108c 5805
7a78ae4e
ND
5806static struct gdbarch *
5807rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5808{
5809 struct gdbarch *gdbarch;
5810 struct gdbarch_tdep *tdep;
7cc46491 5811 int wordsize, from_xcoff_exec, from_elf_exec;
7a78ae4e
ND
5812 enum bfd_architecture arch;
5813 unsigned long mach;
5814 bfd abfd;
55eddb0f
DJ
5815 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5816 int soft_float;
ed0f4273 5817 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
55eddb0f 5818 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
cd453cd0 5819 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
604c2f83
LM
5820 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5821 have_vsx = 0;
7cc46491
DJ
5822 int tdesc_wordsize = -1;
5823 const struct target_desc *tdesc = info.target_desc;
5824 struct tdesc_arch_data *tdesc_data = NULL;
f949c649 5825 int num_pseudoregs = 0;
604c2f83 5826 int cur_reg;
7a78ae4e 5827
f4d9bade
UW
5828 /* INFO may refer to a binary that is not of the PowerPC architecture,
5829 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5830 In this case, we must not attempt to infer properties of the (PowerPC
5831 side) of the target system from properties of that executable. Trust
5832 the target description instead. */
5833 if (info.abfd
5834 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5835 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5836 info.abfd = NULL;
5837
9aa1e687 5838 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
5839 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5840
9aa1e687
KB
5841 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5842 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5843
e712c1cf 5844 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 5845 that, else choose a likely default. */
9aa1e687 5846 if (from_xcoff_exec)
c906108c 5847 {
11ed25ac 5848 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
5849 wordsize = 8;
5850 else
5851 wordsize = 4;
c906108c 5852 }
9aa1e687
KB
5853 else if (from_elf_exec)
5854 {
5855 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5856 wordsize = 8;
5857 else
5858 wordsize = 4;
5859 }
7cc46491
DJ
5860 else if (tdesc_has_registers (tdesc))
5861 wordsize = -1;
c906108c 5862 else
7a78ae4e 5863 {
27b15785 5864 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
16d8013c
JB
5865 wordsize = (info.bfd_arch_info->bits_per_word
5866 / info.bfd_arch_info->bits_per_byte);
27b15785
KB
5867 else
5868 wordsize = 4;
7a78ae4e 5869 }
c906108c 5870
475bbd17
JB
5871 /* Get the architecture and machine from the BFD. */
5872 arch = info.bfd_arch_info->arch;
5873 mach = info.bfd_arch_info->mach;
5bf1c677
EZ
5874
5875 /* For e500 executables, the apuinfo section is of help here. Such
5876 section contains the identifier and revision number of each
5877 Application-specific Processing Unit that is present on the
5878 chip. The content of the section is determined by the assembler
5879 which looks at each instruction and determines which unit (and
74af9197
NF
5880 which version of it) can execute it. Grovel through the section
5881 looking for relevant e500 APUs. */
5bf1c677 5882
74af9197 5883 if (bfd_uses_spe_extensions (info.abfd))
5bf1c677 5884 {
74af9197
NF
5885 arch = info.bfd_arch_info->arch;
5886 mach = bfd_mach_ppc_e500;
5887 bfd_default_set_arch_mach (&abfd, arch, mach);
5888 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5bf1c677
EZ
5889 }
5890
7cc46491
DJ
5891 /* Find a default target description which describes our register
5892 layout, if we do not already have one. */
5893 if (! tdesc_has_registers (tdesc))
5894 {
5895 const struct variant *v;
5896
5897 /* Choose variant. */
5898 v = find_variant_by_arch (arch, mach);
5899 if (!v)
5900 return NULL;
5901
5902 tdesc = *v->tdesc;
5903 }
5904
5905 gdb_assert (tdesc_has_registers (tdesc));
5906
5907 /* Check any target description for validity. */
5908 if (tdesc_has_registers (tdesc))
5909 {
5910 static const char *const gprs[] = {
5911 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5912 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5913 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5914 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5915 };
7cc46491
DJ
5916 const struct tdesc_feature *feature;
5917 int i, valid_p;
5918 static const char *const msr_names[] = { "msr", "ps" };
5919 static const char *const cr_names[] = { "cr", "cnd" };
5920 static const char *const ctr_names[] = { "ctr", "cnt" };
5921
5922 feature = tdesc_find_feature (tdesc,
5923 "org.gnu.gdb.power.core");
5924 if (feature == NULL)
5925 return NULL;
5926
5927 tdesc_data = tdesc_data_alloc ();
5928
5929 valid_p = 1;
5930 for (i = 0; i < ppc_num_gprs; i++)
5931 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
5932 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
5933 "pc");
5934 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
5935 "lr");
5936 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
5937 "xer");
5938
5939 /* Allow alternate names for these registers, to accomodate GDB's
5940 historic naming. */
5941 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5942 PPC_MSR_REGNUM, msr_names);
5943 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5944 PPC_CR_REGNUM, cr_names);
5945 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5946 PPC_CTR_REGNUM, ctr_names);
5947
5948 if (!valid_p)
5949 {
5950 tdesc_data_cleanup (tdesc_data);
5951 return NULL;
5952 }
5953
5954 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
5955 "mq");
5956
5957 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
5958 if (wordsize == -1)
5959 wordsize = tdesc_wordsize;
5960
5961 feature = tdesc_find_feature (tdesc,
5962 "org.gnu.gdb.power.fpu");
5963 if (feature != NULL)
5964 {
5965 static const char *const fprs[] = {
5966 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5967 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5968 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5969 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
5970 };
5971 valid_p = 1;
5972 for (i = 0; i < ppc_num_fprs; i++)
5973 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5974 PPC_F0_REGNUM + i, fprs[i]);
5975 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5976 PPC_FPSCR_REGNUM, "fpscr");
5977
5978 if (!valid_p)
5979 {
5980 tdesc_data_cleanup (tdesc_data);
5981 return NULL;
5982 }
5983 have_fpu = 1;
0fb2aaa1
PFC
5984
5985 /* The fpscr register was expanded in isa 2.05 to 64 bits
5986 along with the addition of the decimal floating point
5987 facility. */
5988 if (tdesc_register_size (feature, "fpscr") > 32)
5989 have_dfp = 1;
7cc46491
DJ
5990 }
5991 else
5992 have_fpu = 0;
5993
5994 feature = tdesc_find_feature (tdesc,
5995 "org.gnu.gdb.power.altivec");
5996 if (feature != NULL)
5997 {
5998 static const char *const vector_regs[] = {
5999 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6000 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6001 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6002 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6003 };
6004
6005 valid_p = 1;
6006 for (i = 0; i < ppc_num_gprs; i++)
6007 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6008 PPC_VR0_REGNUM + i,
6009 vector_regs[i]);
6010 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6011 PPC_VSCR_REGNUM, "vscr");
6012 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6013 PPC_VRSAVE_REGNUM, "vrsave");
6014
6015 if (have_spe || !valid_p)
6016 {
6017 tdesc_data_cleanup (tdesc_data);
6018 return NULL;
6019 }
6020 have_altivec = 1;
6021 }
6022 else
6023 have_altivec = 0;
6024
604c2f83
LM
6025 /* Check for POWER7 VSX registers support. */
6026 feature = tdesc_find_feature (tdesc,
6027 "org.gnu.gdb.power.vsx");
6028
6029 if (feature != NULL)
6030 {
6031 static const char *const vsx_regs[] = {
6032 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6033 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6034 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6035 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6036 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6037 "vs30h", "vs31h"
6038 };
6039
6040 valid_p = 1;
6041
6042 for (i = 0; i < ppc_num_vshrs; i++)
6043 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6044 PPC_VSR0_UPPER_REGNUM + i,
6045 vsx_regs[i]);
6046 if (!valid_p)
6047 {
6048 tdesc_data_cleanup (tdesc_data);
6049 return NULL;
6050 }
6051
6052 have_vsx = 1;
6053 }
6054 else
6055 have_vsx = 0;
6056
7cc46491
DJ
6057 /* On machines supporting the SPE APU, the general-purpose registers
6058 are 64 bits long. There are SIMD vector instructions to treat them
6059 as pairs of floats, but the rest of the instruction set treats them
6060 as 32-bit registers, and only operates on their lower halves.
6061
6062 In the GDB regcache, we treat their high and low halves as separate
6063 registers. The low halves we present as the general-purpose
6064 registers, and then we have pseudo-registers that stitch together
6065 the upper and lower halves and present them as pseudo-registers.
6066
6067 Thus, the target description is expected to supply the upper
6068 halves separately. */
6069
6070 feature = tdesc_find_feature (tdesc,
6071 "org.gnu.gdb.power.spe");
6072 if (feature != NULL)
6073 {
6074 static const char *const upper_spe[] = {
6075 "ev0h", "ev1h", "ev2h", "ev3h",
6076 "ev4h", "ev5h", "ev6h", "ev7h",
6077 "ev8h", "ev9h", "ev10h", "ev11h",
6078 "ev12h", "ev13h", "ev14h", "ev15h",
6079 "ev16h", "ev17h", "ev18h", "ev19h",
6080 "ev20h", "ev21h", "ev22h", "ev23h",
6081 "ev24h", "ev25h", "ev26h", "ev27h",
6082 "ev28h", "ev29h", "ev30h", "ev31h"
6083 };
6084
6085 valid_p = 1;
6086 for (i = 0; i < ppc_num_gprs; i++)
6087 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6088 PPC_SPE_UPPER_GP0_REGNUM + i,
6089 upper_spe[i]);
6090 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6091 PPC_SPE_ACC_REGNUM, "acc");
6092 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6093 PPC_SPE_FSCR_REGNUM, "spefscr");
6094
6095 if (have_mq || have_fpu || !valid_p)
6096 {
6097 tdesc_data_cleanup (tdesc_data);
6098 return NULL;
6099 }
6100 have_spe = 1;
6101 }
6102 else
6103 have_spe = 0;
6104 }
6105
6106 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6107 complain for a 32-bit binary on a 64-bit target; we do not yet
6108 support that. For instance, the 32-bit ABI routines expect
6109 32-bit GPRs.
6110
6111 As long as there isn't an explicit target description, we'll
6112 choose one based on the BFD architecture and get a word size
6113 matching the binary (probably powerpc:common or
6114 powerpc:common64). So there is only trouble if a 64-bit target
6115 supplies a 64-bit description while debugging a 32-bit
6116 binary. */
6117 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6118 {
6119 tdesc_data_cleanup (tdesc_data);
6120 return NULL;
6121 }
6122
55eddb0f 6123#ifdef HAVE_ELF
cd453cd0
UW
6124 if (from_elf_exec)
6125 {
6126 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6127 {
6128 case 1:
6129 elf_abi = POWERPC_ELF_V1;
6130 break;
6131 case 2:
6132 elf_abi = POWERPC_ELF_V2;
6133 break;
6134 default:
6135 break;
6136 }
6137 }
6138
55eddb0f
DJ
6139 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6140 {
6141 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
ed0f4273 6142 Tag_GNU_Power_ABI_FP) & 3)
55eddb0f
DJ
6143 {
6144 case 1:
6145 soft_float_flag = AUTO_BOOLEAN_FALSE;
6146 break;
6147 case 2:
6148 soft_float_flag = AUTO_BOOLEAN_TRUE;
6149 break;
6150 default:
6151 break;
6152 }
6153 }
6154
ed0f4273
UW
6155 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6156 {
6157 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6158 Tag_GNU_Power_ABI_FP) >> 2)
6159 {
6160 case 1:
6161 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6162 break;
6163 case 3:
6164 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6165 break;
6166 default:
6167 break;
6168 }
6169 }
6170
55eddb0f
DJ
6171 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6172 {
6173 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6174 Tag_GNU_Power_ABI_Vector))
6175 {
6176 case 1:
6177 vector_abi = POWERPC_VEC_GENERIC;
6178 break;
6179 case 2:
6180 vector_abi = POWERPC_VEC_ALTIVEC;
6181 break;
6182 case 3:
6183 vector_abi = POWERPC_VEC_SPE;
6184 break;
6185 default:
6186 break;
6187 }
6188 }
6189#endif
6190
cd453cd0
UW
6191 /* At this point, the only supported ELF-based 64-bit little-endian
6192 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6193 default. All other supported ELF-based operating systems use the
6194 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6195 e.g. because we run a legacy binary, or have attached to a process
6196 and have not found any associated binary file, set the default
6197 according to this heuristic. */
6198 if (elf_abi == POWERPC_ELF_AUTO)
6199 {
6200 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6201 elf_abi = POWERPC_ELF_V2;
6202 else
6203 elf_abi = POWERPC_ELF_V1;
6204 }
6205
55eddb0f
DJ
6206 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6207 soft_float = 1;
6208 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6209 soft_float = 0;
6210 else
6211 soft_float = !have_fpu;
6212
6213 /* If we have a hard float binary or setting but no floating point
6214 registers, downgrade to soft float anyway. We're still somewhat
6215 useful in this scenario. */
6216 if (!soft_float && !have_fpu)
6217 soft_float = 1;
6218
6219 /* Similarly for vector registers. */
6220 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6221 vector_abi = POWERPC_VEC_GENERIC;
6222
6223 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6224 vector_abi = POWERPC_VEC_GENERIC;
6225
6226 if (vector_abi == POWERPC_VEC_AUTO)
6227 {
6228 if (have_altivec)
6229 vector_abi = POWERPC_VEC_ALTIVEC;
6230 else if (have_spe)
6231 vector_abi = POWERPC_VEC_SPE;
6232 else
6233 vector_abi = POWERPC_VEC_GENERIC;
6234 }
6235
6236 /* Do not limit the vector ABI based on available hardware, since we
6237 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6238
7cc46491
DJ
6239 /* Find a candidate among extant architectures. */
6240 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6241 arches != NULL;
6242 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6243 {
6244 /* Word size in the various PowerPC bfd_arch_info structs isn't
6245 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6246 separate word size check. */
6247 tdep = gdbarch_tdep (arches->gdbarch);
cd453cd0
UW
6248 if (tdep && tdep->elf_abi != elf_abi)
6249 continue;
55eddb0f
DJ
6250 if (tdep && tdep->soft_float != soft_float)
6251 continue;
ed0f4273
UW
6252 if (tdep && tdep->long_double_abi != long_double_abi)
6253 continue;
55eddb0f
DJ
6254 if (tdep && tdep->vector_abi != vector_abi)
6255 continue;
7cc46491
DJ
6256 if (tdep && tdep->wordsize == wordsize)
6257 {
6258 if (tdesc_data != NULL)
6259 tdesc_data_cleanup (tdesc_data);
6260 return arches->gdbarch;
6261 }
6262 }
6263
6264 /* None found, create a new architecture from INFO, whose bfd_arch_info
6265 validity depends on the source:
6266 - executable useless
6267 - rs6000_host_arch() good
6268 - core file good
6269 - "set arch" trust blindly
6270 - GDB startup useless but harmless */
6271
fc270c35 6272 tdep = XCNEW (struct gdbarch_tdep);
7cc46491 6273 tdep->wordsize = wordsize;
cd453cd0 6274 tdep->elf_abi = elf_abi;
55eddb0f 6275 tdep->soft_float = soft_float;
ed0f4273 6276 tdep->long_double_abi = long_double_abi;
55eddb0f 6277 tdep->vector_abi = vector_abi;
7cc46491 6278
7a78ae4e 6279 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 6280
7cc46491
DJ
6281 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6282 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6283 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6284 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6285 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6286 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6287 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6288 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6289
6290 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6291 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
604c2f83 6292 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
7cc46491
DJ
6293 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6294 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6295 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6296 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6297 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6298
6299 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6300 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
7cc46491 6301 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
9f643768 6302 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7cc46491
DJ
6303
6304 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6305 GDB traditionally called it "ps", though, so let GDB add an
6306 alias. */
6307 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6308
4a7622d1 6309 if (wordsize == 8)
05580c65 6310 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
afd48b75 6311 else
4a7622d1 6312 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
c8001721 6313
baffbae0
JB
6314 /* Set lr_frame_offset. */
6315 if (wordsize == 8)
6316 tdep->lr_frame_offset = 16;
baffbae0 6317 else
4a7622d1 6318 tdep->lr_frame_offset = 4;
baffbae0 6319
604c2f83 6320 if (have_spe || have_dfp || have_vsx)
7cc46491 6321 {
f949c649 6322 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
0df8b418
MS
6323 set_gdbarch_pseudo_register_write (gdbarch,
6324 rs6000_pseudo_register_write);
2a2fa07b
MK
6325 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6326 rs6000_ax_pseudo_register_collect);
7cc46491 6327 }
1fcc0bb8 6328
a67914de
MK
6329 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6330
e0d24f8d
WZ
6331 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6332
5a9e69ba 6333 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
f949c649
TJB
6334
6335 if (have_spe)
6336 num_pseudoregs += 32;
6337 if (have_dfp)
6338 num_pseudoregs += 16;
604c2f83
LM
6339 if (have_vsx)
6340 /* Include both VSX and Extended FP registers. */
6341 num_pseudoregs += 96;
f949c649
TJB
6342
6343 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7a78ae4e
ND
6344
6345 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6346 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6347 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6348 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6349 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6350 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6351 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4a7622d1 6352 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4e409299 6353 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 6354
11269d7e 6355 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4a7622d1 6356 if (wordsize == 8)
8b148df9
AC
6357 /* PPC64 SYSV. */
6358 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7a78ae4e 6359
691d145a
JB
6360 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6361 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6362 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6363
18ed0c4e
JB
6364 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6365 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 6366
4a7622d1 6367 if (wordsize == 4)
77b2b6d4 6368 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4a7622d1 6369 else if (wordsize == 8)
8be9034a 6370 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7a78ae4e 6371
7a78ae4e 6372 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
c9cf6e20 6373 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
8ab3d180 6374 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
0d1243d9 6375
7a78ae4e 6376 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
6377
6378 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
6379 rs6000_breakpoint::kind_from_pc);
6380 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
6381 rs6000_breakpoint::bp_from_kind);
7a78ae4e 6382
203c3895 6383 /* The value of symbols of type N_SO and N_FUN maybe null when
0df8b418 6384 it shouldn't be. */
203c3895
UW
6385 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6386
ce5eab59 6387 /* Handles single stepping of atomic sequences. */
4a7622d1 6388 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
ce5eab59 6389
0df8b418 6390 /* Not sure on this. FIXMEmgo */
7a78ae4e
ND
6391 set_gdbarch_frame_args_skip (gdbarch, 8);
6392
143985b7
AF
6393 /* Helpers for function argument information. */
6394 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6395
6f7f3f0d
UW
6396 /* Trampoline. */
6397 set_gdbarch_in_solib_return_trampoline
6398 (gdbarch, rs6000_in_solib_return_trampoline);
6399 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6400
4fc771b8 6401 /* Hook in the DWARF CFI frame unwinder. */
1af5d7ce 6402 dwarf2_append_unwinders (gdbarch);
4fc771b8
DJ
6403 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6404
9274a07c
LM
6405 /* Frame handling. */
6406 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6407
2454a024
UW
6408 /* Setup displaced stepping. */
6409 set_gdbarch_displaced_step_copy_insn (gdbarch,
7f03bd92 6410 ppc_displaced_step_copy_insn);
99e40580
UW
6411 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6412 ppc_displaced_step_hw_singlestep);
2454a024 6413 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
2454a024
UW
6414 set_gdbarch_displaced_step_location (gdbarch,
6415 displaced_step_at_entry_point);
6416
6417 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6418
7b112f9c 6419 /* Hook in ABI-specific overrides, if they have been registered. */
8a4c2d24 6420 info.target_desc = tdesc;
0dba2a6c 6421 info.tdesc_data = tdesc_data;
4be87837 6422 gdbarch_init_osabi (info, gdbarch);
7b112f9c 6423
61a65099
KB
6424 switch (info.osabi)
6425 {
f5aecab8 6426 case GDB_OSABI_LINUX:
1736a7bd 6427 case GDB_OSABI_NETBSD:
61a65099 6428 case GDB_OSABI_UNKNOWN:
61a65099 6429 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2608dbf8 6430 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce
UW
6431 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6432 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
61a65099
KB
6433 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6434 break;
6435 default:
61a65099 6436 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
6437
6438 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2608dbf8 6439 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce
UW
6440 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6441 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
81332287 6442 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
6443 }
6444
7cc46491
DJ
6445 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6446 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6447 rs6000_pseudo_register_reggroup_p);
6448 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6449
6450 /* Override the normal target description method to make the SPE upper
6451 halves anonymous. */
6452 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6453
604c2f83
LM
6454 /* Choose register numbers for all supported pseudo-registers. */
6455 tdep->ppc_ev0_regnum = -1;
6456 tdep->ppc_dl0_regnum = -1;
6457 tdep->ppc_vsr0_regnum = -1;
6458 tdep->ppc_efpr0_regnum = -1;
9f643768 6459
604c2f83
LM
6460 cur_reg = gdbarch_num_regs (gdbarch);
6461
6462 if (have_spe)
6463 {
6464 tdep->ppc_ev0_regnum = cur_reg;
6465 cur_reg += 32;
6466 }
6467 if (have_dfp)
6468 {
6469 tdep->ppc_dl0_regnum = cur_reg;
6470 cur_reg += 16;
6471 }
6472 if (have_vsx)
6473 {
6474 tdep->ppc_vsr0_regnum = cur_reg;
6475 cur_reg += 64;
6476 tdep->ppc_efpr0_regnum = cur_reg;
6477 cur_reg += 32;
6478 }
f949c649 6479
604c2f83
LM
6480 gdb_assert (gdbarch_num_regs (gdbarch)
6481 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
f949c649 6482
debb1f09
JB
6483 /* Register the ravenscar_arch_ops. */
6484 if (mach == bfd_mach_ppc_e500)
6485 register_e500_ravenscar_ops (gdbarch);
6486 else
6487 register_ppc_ravenscar_ops (gdbarch);
6488
65b48a81
PB
6489 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
6490 set_gdbarch_valid_disassembler_options (gdbarch,
6491 disassembler_options_powerpc ());
6492
7a78ae4e 6493 return gdbarch;
c906108c
SS
6494}
6495
7b112f9c 6496static void
8b164abb 6497rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7b112f9c 6498{
8b164abb 6499 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7b112f9c
JT
6500
6501 if (tdep == NULL)
6502 return;
6503
4be87837 6504 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
6505}
6506
55eddb0f
DJ
6507/* PowerPC-specific commands. */
6508
6509static void
981a3fb3 6510set_powerpc_command (const char *args, int from_tty)
55eddb0f
DJ
6511{
6512 printf_unfiltered (_("\
6513\"set powerpc\" must be followed by an appropriate subcommand.\n"));
6514 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6515}
6516
6517static void
981a3fb3 6518show_powerpc_command (const char *args, int from_tty)
55eddb0f
DJ
6519{
6520 cmd_show_list (showpowerpccmdlist, from_tty, "");
6521}
6522
6523static void
eb4c3f4a 6524powerpc_set_soft_float (const char *args, int from_tty,
55eddb0f
DJ
6525 struct cmd_list_element *c)
6526{
6527 struct gdbarch_info info;
6528
6529 /* Update the architecture. */
6530 gdbarch_info_init (&info);
6531 if (!gdbarch_update_p (info))
9b20d036 6532 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
6533}
6534
6535static void
eb4c3f4a 6536powerpc_set_vector_abi (const char *args, int from_tty,
55eddb0f
DJ
6537 struct cmd_list_element *c)
6538{
6539 struct gdbarch_info info;
570dc176 6540 int vector_abi;
55eddb0f
DJ
6541
6542 for (vector_abi = POWERPC_VEC_AUTO;
6543 vector_abi != POWERPC_VEC_LAST;
6544 vector_abi++)
6545 if (strcmp (powerpc_vector_abi_string,
6546 powerpc_vector_strings[vector_abi]) == 0)
6547 {
aead7601 6548 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
55eddb0f
DJ
6549 break;
6550 }
6551
6552 if (vector_abi == POWERPC_VEC_LAST)
6553 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6554 powerpc_vector_abi_string);
6555
6556 /* Update the architecture. */
6557 gdbarch_info_init (&info);
6558 if (!gdbarch_update_p (info))
9b20d036 6559 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
6560}
6561
e09342b5
TJB
6562/* Show the current setting of the exact watchpoints flag. */
6563
6564static void
6565show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6566 struct cmd_list_element *c,
6567 const char *value)
6568{
6569 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6570}
6571
845d4708 6572/* Read a PPC instruction from memory. */
d78489bf
AT
6573
6574static unsigned int
845d4708 6575read_insn (struct frame_info *frame, CORE_ADDR pc)
d78489bf 6576{
845d4708
AM
6577 struct gdbarch *gdbarch = get_frame_arch (frame);
6578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6579
6580 return read_memory_unsigned_integer (pc, 4, byte_order);
d78489bf
AT
6581}
6582
6583/* Return non-zero if the instructions at PC match the series
6584 described in PATTERN, or zero otherwise. PATTERN is an array of
6585 'struct ppc_insn_pattern' objects, terminated by an entry whose
6586 mask is zero.
6587
7433498b 6588 When the match is successful, fill INSNS[i] with what PATTERN[i]
d78489bf 6589 matched. If PATTERN[i] is optional, and the instruction wasn't
7433498b
AM
6590 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
6591 INSNS should have as many elements as PATTERN, minus the terminator.
6592 Note that, if PATTERN contains optional instructions which aren't
6593 present in memory, then INSNS will have holes, so INSNS[i] isn't
6594 necessarily the i'th instruction in memory. */
d78489bf
AT
6595
6596int
845d4708 6597ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7433498b 6598 const struct ppc_insn_pattern *pattern,
845d4708 6599 unsigned int *insns)
d78489bf
AT
6600{
6601 int i;
845d4708 6602 unsigned int insn;
d78489bf 6603
845d4708 6604 for (i = 0, insn = 0; pattern[i].mask; i++)
d78489bf 6605 {
845d4708
AM
6606 if (insn == 0)
6607 insn = read_insn (frame, pc);
6608 insns[i] = 0;
6609 if ((insn & pattern[i].mask) == pattern[i].data)
6610 {
6611 insns[i] = insn;
6612 pc += 4;
6613 insn = 0;
6614 }
6615 else if (!pattern[i].optional)
d78489bf
AT
6616 return 0;
6617 }
6618
6619 return 1;
6620}
6621
6622/* Return the 'd' field of the d-form instruction INSN, properly
6623 sign-extended. */
6624
6625CORE_ADDR
6626ppc_insn_d_field (unsigned int insn)
6627{
6628 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6629}
6630
6631/* Return the 'ds' field of the ds-form instruction INSN, with the two
6632 zero bits concatenated at the right, and properly
6633 sign-extended. */
6634
6635CORE_ADDR
6636ppc_insn_ds_field (unsigned int insn)
6637{
6638 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6639}
6640
c906108c
SS
6641/* Initialization code. */
6642
6643void
fba45db2 6644_initialize_rs6000_tdep (void)
c906108c 6645{
7b112f9c
JT
6646 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6647 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7cc46491
DJ
6648
6649 /* Initialize the standard target descriptions. */
6650 initialize_tdesc_powerpc_32 ();
7284e1be 6651 initialize_tdesc_powerpc_altivec32 ();
604c2f83 6652 initialize_tdesc_powerpc_vsx32 ();
7cc46491
DJ
6653 initialize_tdesc_powerpc_403 ();
6654 initialize_tdesc_powerpc_403gc ();
4d09ffea 6655 initialize_tdesc_powerpc_405 ();
7cc46491
DJ
6656 initialize_tdesc_powerpc_505 ();
6657 initialize_tdesc_powerpc_601 ();
6658 initialize_tdesc_powerpc_602 ();
6659 initialize_tdesc_powerpc_603 ();
6660 initialize_tdesc_powerpc_604 ();
6661 initialize_tdesc_powerpc_64 ();
7284e1be 6662 initialize_tdesc_powerpc_altivec64 ();
604c2f83 6663 initialize_tdesc_powerpc_vsx64 ();
7cc46491
DJ
6664 initialize_tdesc_powerpc_7400 ();
6665 initialize_tdesc_powerpc_750 ();
6666 initialize_tdesc_powerpc_860 ();
6667 initialize_tdesc_powerpc_e500 ();
6668 initialize_tdesc_rs6000 ();
55eddb0f
DJ
6669
6670 /* Add root prefix command for all "set powerpc"/"show powerpc"
6671 commands. */
6672 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6673 _("Various PowerPC-specific commands."),
6674 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6675
6676 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6677 _("Various PowerPC-specific commands."),
6678 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6679
6680 /* Add a command to allow the user to force the ABI. */
6681 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6682 &powerpc_soft_float_global,
6683 _("Set whether to use a soft-float ABI."),
6684 _("Show whether to use a soft-float ABI."),
6685 NULL,
6686 powerpc_set_soft_float, NULL,
6687 &setpowerpccmdlist, &showpowerpccmdlist);
6688
6689 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6690 &powerpc_vector_abi_string,
6691 _("Set the vector ABI."),
6692 _("Show the vector ABI."),
6693 NULL, powerpc_set_vector_abi, NULL,
6694 &setpowerpccmdlist, &showpowerpccmdlist);
e09342b5
TJB
6695
6696 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6697 &target_exact_watchpoints,
6698 _("\
6699Set whether to use just one debug register for watchpoints on scalars."),
6700 _("\
6701Show whether to use just one debug register for watchpoints on scalars."),
6702 _("\
6703If true, GDB will use only one debug register when watching a variable of\n\
6704scalar type, thus assuming that the variable is accessed through the address\n\
6705of its first byte."),
6706 NULL, show_powerpc_exact_watchpoints,
6707 &setpowerpccmdlist, &showpowerpccmdlist);
c906108c 6708}
This page took 2.247617 seconds and 4 git commands to generate.