Refactor struct trad_frame_saved_regs
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
3666a048 3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include "symtab.h"
25#include "target.h"
26#include "gdbcore.h"
27#include "gdbcmd.h"
c906108c 28#include "objfiles.h"
7a78ae4e 29#include "arch-utils.h"
4e052eda 30#include "regcache.h"
d195bc9f 31#include "regset.h"
3b2ca824 32#include "target-float.h"
fd0407d6 33#include "value.h"
1fcc0bb8 34#include "parser-defs.h"
4be87837 35#include "osabi.h"
7d9b040b 36#include "infcall.h"
9f643768
JB
37#include "sim-regno.h"
38#include "gdb/sim-ppc.h"
6f072a10 39#include "reggroups.h"
82ca8957 40#include "dwarf2/frame.h"
7cc46491
DJ
41#include "target-descriptions.h"
42#include "user-regs.h"
b4cdae6f
WW
43#include "record-full.h"
44#include "auxv.h"
7a78ae4e 45
7a78ae4e 46#include "coff/internal.h" /* for libcoff.h */
2fccf04a 47#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
48#include "coff/xcoff.h"
49#include "libxcoff.h"
7a78ae4e 50
9aa1e687 51#include "elf-bfd.h"
55eddb0f 52#include "elf/ppc.h"
cd453cd0 53#include "elf/ppc64.h"
7a78ae4e 54
6ded7999 55#include "solib-svr4.h"
9aa1e687 56#include "ppc-tdep.h"
debb1f09 57#include "ppc-ravenscar-thread.h"
7a78ae4e 58
a89aa300 59#include "dis-asm.h"
338ef23d 60
61a65099
KB
61#include "trad-frame.h"
62#include "frame-unwind.h"
63#include "frame-base.h"
64
a67914de
MK
65#include "ax.h"
66#include "ax-gdb.h"
325fac50 67#include <algorithm>
a67914de 68
7cc46491 69#include "features/rs6000/powerpc-32.c"
7284e1be 70#include "features/rs6000/powerpc-altivec32.c"
604c2f83 71#include "features/rs6000/powerpc-vsx32.c"
7cc46491
DJ
72#include "features/rs6000/powerpc-403.c"
73#include "features/rs6000/powerpc-403gc.c"
4d09ffea 74#include "features/rs6000/powerpc-405.c"
7cc46491
DJ
75#include "features/rs6000/powerpc-505.c"
76#include "features/rs6000/powerpc-601.c"
77#include "features/rs6000/powerpc-602.c"
78#include "features/rs6000/powerpc-603.c"
79#include "features/rs6000/powerpc-604.c"
80#include "features/rs6000/powerpc-64.c"
7284e1be 81#include "features/rs6000/powerpc-altivec64.c"
604c2f83 82#include "features/rs6000/powerpc-vsx64.c"
7cc46491
DJ
83#include "features/rs6000/powerpc-7400.c"
84#include "features/rs6000/powerpc-750.c"
85#include "features/rs6000/powerpc-860.c"
86#include "features/rs6000/powerpc-e500.c"
87#include "features/rs6000/rs6000.c"
88
5a9e69ba
TJB
89/* Determine if regnum is an SPE pseudo-register. */
90#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
f949c649
TJB
94/* Determine if regnum is a decimal float pseudo-register. */
95#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
6f072a10
PFC
99/* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101#define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
604c2f83
LM
106/* Determine if regnum is a POWER7 VSX register. */
107#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111/* Determine if regnum is a POWER7 Extended FP register. */
112#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
d9492458 114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
604c2f83 115
8d619c01
EBM
116/* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118#define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122/* Determine if regnum is a Checkpointed POWER7 VSX register. */
123#define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127/* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128#define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
65b48a81
PB
132/* Holds the current set of options to be passed to the disassembler. */
133static char *powerpc_disassembler_options;
134
55eddb0f
DJ
135/* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137static struct cmd_list_element *setpowerpccmdlist = NULL;
138static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
40478521 143static const char *const powerpc_vector_strings[] =
55eddb0f
DJ
144{
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150};
151
152/* A variable that can be configured by the user. */
153static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154static const char *powerpc_vector_abi_string = "auto";
155
187b041e
SM
156/* PowerPC-related per-inferior data. */
157
158struct ppc_inferior_data
159{
160 /* This is an optional in case we add more fields to ppc_inferior_data, we
161 don't want it instantiated as soon as we get the ppc_inferior_data for an
162 inferior. */
480af54c 163 gdb::optional<displaced_step_buffers> disp_step_buf;
187b041e
SM
164};
165
166static inferior_key<ppc_inferior_data> ppc_inferior_data_key;
167
168/* Get the per-inferior PowerPC data for INF. */
169
170static ppc_inferior_data *
171get_ppc_per_inferior (inferior *inf)
172{
173 ppc_inferior_data *per_inf = ppc_inferior_data_key.get (inf);
174
175 if (per_inf == nullptr)
176 per_inf = ppc_inferior_data_key.emplace (inf);
177
178 return per_inf;
179}
180
0df8b418 181/* To be used by skip_prologue. */
7a78ae4e
ND
182
183struct rs6000_framedata
184 {
185 int offset; /* total size of frame --- the distance
186 by which we decrement sp to allocate
187 the frame */
188 int saved_gpr; /* smallest # of saved gpr */
46a9b8ed 189 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
7a78ae4e 190 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 191 int saved_vr; /* smallest # of saved vr */
96ff0de4 192 int saved_ev; /* smallest # of saved ev */
7a78ae4e 193 int alloca_reg; /* alloca register number (frame ptr) */
0df8b418
MS
194 char frameless; /* true if frameless functions. */
195 char nosavedpc; /* true if pc not saved. */
46a9b8ed 196 char used_bl; /* true if link register clobbered */
7a78ae4e
ND
197 int gpr_offset; /* offset of saved gprs from prev sp */
198 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 199 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 200 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e 201 int lr_offset; /* offset of saved lr */
46a9b8ed 202 int lr_register; /* register of saved lr, if trustworthy */
7a78ae4e 203 int cr_offset; /* offset of saved cr */
6be8bc0c 204 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
205 };
206
c906108c 207
604c2f83
LM
208/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
209int
210vsx_register_p (struct gdbarch *gdbarch, int regno)
211{
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213 if (tdep->ppc_vsr0_regnum < 0)
214 return 0;
215 else
216 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
217 <= tdep->ppc_vsr0_upper_regnum + 31);
218}
219
64b84175
KB
220/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
221int
be8626e0 222altivec_register_p (struct gdbarch *gdbarch, int regno)
64b84175 223{
be8626e0 224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
64b84175
KB
225 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
226 return 0;
227 else
228 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
229}
230
383f0f5b 231
867e2dc5
JB
232/* Return true if REGNO is an SPE register, false otherwise. */
233int
be8626e0 234spe_register_p (struct gdbarch *gdbarch, int regno)
867e2dc5 235{
be8626e0 236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
867e2dc5
JB
237
238 /* Is it a reference to EV0 -- EV31, and do we have those? */
5a9e69ba 239 if (IS_SPE_PSEUDOREG (tdep, regno))
867e2dc5
JB
240 return 1;
241
6ced10dd
JB
242 /* Is it a reference to one of the raw upper GPR halves? */
243 if (tdep->ppc_ev0_upper_regnum >= 0
244 && tdep->ppc_ev0_upper_regnum <= regno
245 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
246 return 1;
247
867e2dc5
JB
248 /* Is it a reference to the 64-bit accumulator, and do we have that? */
249 if (tdep->ppc_acc_regnum >= 0
250 && tdep->ppc_acc_regnum == regno)
251 return 1;
252
253 /* Is it a reference to the SPE floating-point status and control register,
254 and do we have that? */
255 if (tdep->ppc_spefscr_regnum >= 0
256 && tdep->ppc_spefscr_regnum == regno)
257 return 1;
258
259 return 0;
260}
261
262
383f0f5b
JB
263/* Return non-zero if the architecture described by GDBARCH has
264 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
265int
266ppc_floating_point_unit_p (struct gdbarch *gdbarch)
267{
383f0f5b
JB
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 return (tdep->ppc_fp0_regnum >= 0
dda83cd7 271 && tdep->ppc_fpscr_regnum >= 0);
0a613259 272}
9f643768 273
06caf7d2
CES
274/* Return non-zero if the architecture described by GDBARCH has
275 Altivec registers (vr0 --- vr31, vrsave and vscr). */
276int
277ppc_altivec_support_p (struct gdbarch *gdbarch)
278{
279 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
280
281 return (tdep->ppc_vr0_regnum >= 0
dda83cd7 282 && tdep->ppc_vrsave_regnum >= 0);
06caf7d2 283}
09991fa0
JB
284
285/* Check that TABLE[GDB_REGNO] is not already initialized, and then
286 set it to SIM_REGNO.
287
288 This is a helper function for init_sim_regno_table, constructing
289 the table mapping GDB register numbers to sim register numbers; we
290 initialize every element in that table to -1 before we start
291 filling it in. */
9f643768
JB
292static void
293set_sim_regno (int *table, int gdb_regno, int sim_regno)
294{
295 /* Make sure we don't try to assign any given GDB register a sim
296 register number more than once. */
297 gdb_assert (table[gdb_regno] == -1);
298 table[gdb_regno] = sim_regno;
299}
300
09991fa0
JB
301
302/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
303 numbers to simulator register numbers, based on the values placed
304 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
305static void
306init_sim_regno_table (struct gdbarch *arch)
307{
308 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
7cc46491 309 int total_regs = gdbarch_num_regs (arch);
9f643768
JB
310 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
311 int i;
7cc46491
DJ
312 static const char *const segment_regs[] = {
313 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
314 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
315 };
9f643768
JB
316
317 /* Presume that all registers not explicitly mentioned below are
318 unavailable from the sim. */
319 for (i = 0; i < total_regs; i++)
320 sim_regno[i] = -1;
321
322 /* General-purpose registers. */
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
325
326 /* Floating-point registers. */
327 if (tdep->ppc_fp0_regnum >= 0)
328 for (i = 0; i < ppc_num_fprs; i++)
329 set_sim_regno (sim_regno,
dda83cd7
SM
330 tdep->ppc_fp0_regnum + i,
331 sim_ppc_f0_regnum + i);
9f643768
JB
332 if (tdep->ppc_fpscr_regnum >= 0)
333 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
334
335 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
336 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
337 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
338
339 /* Segment registers. */
7cc46491
DJ
340 for (i = 0; i < ppc_num_srs; i++)
341 {
342 int gdb_regno;
343
344 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
345 if (gdb_regno >= 0)
346 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
347 }
9f643768
JB
348
349 /* Altivec registers. */
350 if (tdep->ppc_vr0_regnum >= 0)
351 {
352 for (i = 0; i < ppc_num_vrs; i++)
dda83cd7
SM
353 set_sim_regno (sim_regno,
354 tdep->ppc_vr0_regnum + i,
355 sim_ppc_vr0_regnum + i);
9f643768
JB
356
357 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
dda83cd7 358 we can treat this more like the other cases. */
9f643768 359 set_sim_regno (sim_regno,
dda83cd7
SM
360 tdep->ppc_vr0_regnum + ppc_num_vrs,
361 sim_ppc_vscr_regnum);
9f643768
JB
362 }
363 /* vsave is a special-purpose register, so the code below handles it. */
364
365 /* SPE APU (E500) registers. */
6ced10dd
JB
366 if (tdep->ppc_ev0_upper_regnum >= 0)
367 for (i = 0; i < ppc_num_gprs; i++)
368 set_sim_regno (sim_regno,
dda83cd7
SM
369 tdep->ppc_ev0_upper_regnum + i,
370 sim_ppc_rh0_regnum + i);
9f643768
JB
371 if (tdep->ppc_acc_regnum >= 0)
372 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
373 /* spefscr is a special-purpose register, so the code below handles it. */
374
976102cd 375#ifdef WITH_PPC_SIM
9f643768
JB
376 /* Now handle all special-purpose registers. Verify that they
377 haven't mistakenly been assigned numbers by any of the above
7cc46491
DJ
378 code. */
379 for (i = 0; i < sim_ppc_num_sprs; i++)
380 {
381 const char *spr_name = sim_spr_register_name (i);
382 int gdb_regno = -1;
383
384 if (spr_name != NULL)
385 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
386
387 if (gdb_regno != -1)
388 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
389 }
390#endif
9f643768
JB
391
392 /* Drop the initialized array into place. */
393 tdep->sim_regno = sim_regno;
394}
395
09991fa0
JB
396
397/* Given a GDB register number REG, return the corresponding SIM
398 register number. */
9f643768 399static int
e7faf938 400rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
9f643768 401{
e7faf938 402 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f643768
JB
403 int sim_regno;
404
7cc46491 405 if (tdep->sim_regno == NULL)
e7faf938 406 init_sim_regno_table (gdbarch);
7cc46491 407
f6efe3f8 408 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
9f643768
JB
409 sim_regno = tdep->sim_regno[reg];
410
411 if (sim_regno >= 0)
412 return sim_regno;
413 else
414 return LEGACY_SIM_REGNO_IGNORE;
415}
416
d195bc9f
MK
417\f
418
419/* Register set support functions. */
420
f2db237a
AM
421/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
422 Write the register to REGCACHE. */
423
7284e1be 424void
d195bc9f 425ppc_supply_reg (struct regcache *regcache, int regnum,
f2db237a 426 const gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
427{
428 if (regnum != -1 && offset != -1)
f2db237a
AM
429 {
430 if (regsize > 4)
431 {
ac7936df 432 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
433 int gdb_regsize = register_size (gdbarch, regnum);
434 if (gdb_regsize < regsize
435 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
436 offset += regsize - gdb_regsize;
437 }
73e1c03f 438 regcache->raw_supply (regnum, regs + offset);
f2db237a 439 }
d195bc9f
MK
440}
441
f2db237a
AM
442/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
443 in a field REGSIZE wide. Zero pad as necessary. */
444
7284e1be 445void
d195bc9f 446ppc_collect_reg (const struct regcache *regcache, int regnum,
f2db237a 447 gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
448{
449 if (regnum != -1 && offset != -1)
f2db237a
AM
450 {
451 if (regsize > 4)
452 {
ac7936df 453 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
454 int gdb_regsize = register_size (gdbarch, regnum);
455 if (gdb_regsize < regsize)
456 {
457 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
458 {
459 memset (regs + offset, 0, regsize - gdb_regsize);
460 offset += regsize - gdb_regsize;
461 }
462 else
463 memset (regs + offset + regsize - gdb_regsize, 0,
464 regsize - gdb_regsize);
465 }
466 }
34a79281 467 regcache->raw_collect (regnum, regs + offset);
f2db237a 468 }
d195bc9f
MK
469}
470
f2db237a
AM
471static int
472ppc_greg_offset (struct gdbarch *gdbarch,
473 struct gdbarch_tdep *tdep,
474 const struct ppc_reg_offsets *offsets,
475 int regnum,
476 int *regsize)
477{
478 *regsize = offsets->gpr_size;
479 if (regnum >= tdep->ppc_gp0_regnum
480 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
481 return (offsets->r0_offset
482 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
483
484 if (regnum == gdbarch_pc_regnum (gdbarch))
485 return offsets->pc_offset;
486
487 if (regnum == tdep->ppc_ps_regnum)
488 return offsets->ps_offset;
489
490 if (regnum == tdep->ppc_lr_regnum)
491 return offsets->lr_offset;
492
493 if (regnum == tdep->ppc_ctr_regnum)
494 return offsets->ctr_offset;
495
496 *regsize = offsets->xr_size;
497 if (regnum == tdep->ppc_cr_regnum)
498 return offsets->cr_offset;
499
500 if (regnum == tdep->ppc_xer_regnum)
501 return offsets->xer_offset;
502
503 if (regnum == tdep->ppc_mq_regnum)
504 return offsets->mq_offset;
505
506 return -1;
507}
508
509static int
510ppc_fpreg_offset (struct gdbarch_tdep *tdep,
511 const struct ppc_reg_offsets *offsets,
512 int regnum)
513{
514 if (regnum >= tdep->ppc_fp0_regnum
515 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
516 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
517
518 if (regnum == tdep->ppc_fpscr_regnum)
519 return offsets->fpscr_offset;
520
521 return -1;
522}
523
d195bc9f
MK
524/* Supply register REGNUM in the general-purpose register set REGSET
525 from the buffer specified by GREGS and LEN to register cache
526 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
527
528void
529ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
530 int regnum, const void *gregs, size_t len)
531{
ac7936df 532 struct gdbarch *gdbarch = regcache->arch ();
d195bc9f 533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
534 const struct ppc_reg_offsets *offsets
535 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 536 size_t offset;
f2db237a 537 int regsize;
d195bc9f 538
f2db237a 539 if (regnum == -1)
d195bc9f 540 {
f2db237a
AM
541 int i;
542 int gpr_size = offsets->gpr_size;
543
544 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
545 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
546 i++, offset += gpr_size)
19ba03f4
SM
547 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
548 gpr_size);
f2db237a
AM
549
550 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 551 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 552 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 553 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 554 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 555 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 556 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 557 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 558 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
559 (const gdb_byte *) gregs, offsets->cr_offset,
560 offsets->xr_size);
f2db237a 561 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
562 (const gdb_byte *) gregs, offsets->xer_offset,
563 offsets->xr_size);
f2db237a 564 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
565 (const gdb_byte *) gregs, offsets->mq_offset,
566 offsets->xr_size);
f2db237a 567 return;
d195bc9f
MK
568 }
569
f2db237a 570 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 571 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
572}
573
574/* Supply register REGNUM in the floating-point register set REGSET
575 from the buffer specified by FPREGS and LEN to register cache
576 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
577
578void
579ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
580 int regnum, const void *fpregs, size_t len)
581{
ac7936df 582 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
583 struct gdbarch_tdep *tdep;
584 const struct ppc_reg_offsets *offsets;
d195bc9f 585 size_t offset;
d195bc9f 586
f2db237a
AM
587 if (!ppc_floating_point_unit_p (gdbarch))
588 return;
383f0f5b 589
f2db237a 590 tdep = gdbarch_tdep (gdbarch);
19ba03f4 591 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 592 if (regnum == -1)
d195bc9f 593 {
f2db237a
AM
594 int i;
595
596 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
597 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
598 i++, offset += 8)
19ba03f4 599 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
f2db237a
AM
600
601 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
602 (const gdb_byte *) fpregs, offsets->fpscr_offset,
603 offsets->fpscr_size);
f2db237a 604 return;
d195bc9f
MK
605 }
606
f2db237a 607 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 608 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
f2db237a 609 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
610}
611
612/* Collect register REGNUM in the general-purpose register set
f2db237a 613 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
614 GREGS and LEN. If REGNUM is -1, do this for all registers in
615 REGSET. */
616
617void
618ppc_collect_gregset (const struct regset *regset,
619 const struct regcache *regcache,
620 int regnum, void *gregs, size_t len)
621{
ac7936df 622 struct gdbarch *gdbarch = regcache->arch ();
d195bc9f 623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
624 const struct ppc_reg_offsets *offsets
625 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 626 size_t offset;
f2db237a 627 int regsize;
d195bc9f 628
f2db237a 629 if (regnum == -1)
d195bc9f 630 {
f2db237a
AM
631 int i;
632 int gpr_size = offsets->gpr_size;
633
634 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
635 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
636 i++, offset += gpr_size)
19ba03f4 637 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
f2db237a
AM
638
639 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 640 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 641 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 642 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 643 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 644 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 645 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 646 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 647 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
648 (gdb_byte *) gregs, offsets->cr_offset,
649 offsets->xr_size);
f2db237a 650 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
651 (gdb_byte *) gregs, offsets->xer_offset,
652 offsets->xr_size);
f2db237a 653 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
654 (gdb_byte *) gregs, offsets->mq_offset,
655 offsets->xr_size);
f2db237a 656 return;
d195bc9f
MK
657 }
658
f2db237a 659 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 660 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
661}
662
663/* Collect register REGNUM in the floating-point register set
f2db237a 664 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
665 FPREGS and LEN. If REGNUM is -1, do this for all registers in
666 REGSET. */
667
668void
669ppc_collect_fpregset (const struct regset *regset,
670 const struct regcache *regcache,
671 int regnum, void *fpregs, size_t len)
672{
ac7936df 673 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
674 struct gdbarch_tdep *tdep;
675 const struct ppc_reg_offsets *offsets;
d195bc9f 676 size_t offset;
d195bc9f 677
f2db237a
AM
678 if (!ppc_floating_point_unit_p (gdbarch))
679 return;
383f0f5b 680
f2db237a 681 tdep = gdbarch_tdep (gdbarch);
19ba03f4 682 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 683 if (regnum == -1)
d195bc9f 684 {
f2db237a
AM
685 int i;
686
687 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
688 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
689 i++, offset += 8)
19ba03f4 690 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
f2db237a
AM
691
692 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
693 (gdb_byte *) fpregs, offsets->fpscr_offset,
694 offsets->fpscr_size);
f2db237a 695 return;
d195bc9f
MK
696 }
697
f2db237a 698 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 699 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
f2db237a 700 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f 701}
06caf7d2 702
0d1243d9
PG
703static int
704insn_changes_sp_or_jumps (unsigned long insn)
705{
706 int opcode = (insn >> 26) & 0x03f;
707 int sd = (insn >> 21) & 0x01f;
708 int a = (insn >> 16) & 0x01f;
709 int subcode = (insn >> 1) & 0x3ff;
710
711 /* Changes the stack pointer. */
712
713 /* NOTE: There are many ways to change the value of a given register.
dda83cd7
SM
714 The ways below are those used when the register is R1, the SP,
715 in a funtion's epilogue. */
0d1243d9
PG
716
717 if (opcode == 31 && subcode == 444 && a == 1)
718 return 1; /* mr R1,Rn */
719 if (opcode == 14 && sd == 1)
720 return 1; /* addi R1,Rn,simm */
721 if (opcode == 58 && sd == 1)
722 return 1; /* ld R1,ds(Rn) */
723
724 /* Transfers control. */
725
726 if (opcode == 18)
727 return 1; /* b */
728 if (opcode == 16)
729 return 1; /* bc */
730 if (opcode == 19 && subcode == 16)
731 return 1; /* bclr */
732 if (opcode == 19 && subcode == 528)
733 return 1; /* bcctr */
734
735 return 0;
736}
737
738/* Return true if we are in the function's epilogue, i.e. after the
739 instruction that destroyed the function's stack frame.
740
741 1) scan forward from the point of execution:
742 a) If you find an instruction that modifies the stack pointer
dda83cd7
SM
743 or transfers control (except a return), execution is not in
744 an epilogue, return.
0d1243d9 745 b) Stop scanning if you find a return instruction or reach the
dda83cd7
SM
746 end of the function or reach the hard limit for the size of
747 an epilogue.
0d1243d9 748 2) scan backward from the point of execution:
dda83cd7
SM
749 a) If you find an instruction that modifies the stack pointer,
750 execution *is* in an epilogue, return.
751 b) Stop scanning if you reach an instruction that transfers
752 control or the beginning of the function or reach the hard
753 limit for the size of an epilogue. */
0d1243d9
PG
754
755static int
2608dbf8
WW
756rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
757 struct gdbarch *gdbarch, CORE_ADDR pc)
0d1243d9 758{
46a9b8ed 759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0d1243d9
PG
761 bfd_byte insn_buf[PPC_INSN_SIZE];
762 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
763 unsigned long insn;
0d1243d9
PG
764
765 /* Find the search limits based on function boundaries and hard limit. */
766
767 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
768 return 0;
769
770 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
771 if (epilogue_start < func_start) epilogue_start = func_start;
772
773 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
774 if (epilogue_end > func_end) epilogue_end = func_end;
775
0d1243d9
PG
776 /* Scan forward until next 'blr'. */
777
778 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
779 {
780 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
dda83cd7 781 return 0;
e17a4113 782 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9 783 if (insn == 0x4e800020)
dda83cd7 784 break;
46a9b8ed
DJ
785 /* Assume a bctr is a tail call unless it points strictly within
786 this function. */
787 if (insn == 0x4e800420)
788 {
789 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
790 tdep->ppc_ctr_regnum);
791 if (ctr > func_start && ctr < func_end)
792 return 0;
793 else
794 break;
795 }
0d1243d9 796 if (insn_changes_sp_or_jumps (insn))
dda83cd7 797 return 0;
0d1243d9
PG
798 }
799
800 /* Scan backward until adjustment to stack pointer (R1). */
801
802 for (scan_pc = pc - PPC_INSN_SIZE;
803 scan_pc >= epilogue_start;
804 scan_pc -= PPC_INSN_SIZE)
805 {
806 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
dda83cd7 807 return 0;
e17a4113 808 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9 809 if (insn_changes_sp_or_jumps (insn))
dda83cd7 810 return 1;
0d1243d9
PG
811 }
812
813 return 0;
814}
815
c9cf6e20 816/* Implement the stack_frame_destroyed_p gdbarch method. */
2608dbf8
WW
817
818static int
c9cf6e20 819rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2608dbf8
WW
820{
821 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
822 gdbarch, pc);
823}
824
143985b7 825/* Get the ith function argument for the current function. */
b9362cc7 826static CORE_ADDR
143985b7
AF
827rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
828 struct type *type)
829{
50fd1280 830 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
831}
832
c906108c
SS
833/* Sequence of bytes for breakpoint instruction. */
834
04180708
YQ
835constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
836constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
d19280ad 837
04180708
YQ
838typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
839 rs6000_breakpoint;
c906108c 840
f74c6cad
LM
841/* Instruction masks for displaced stepping. */
842#define BRANCH_MASK 0xfc000000
843#define BP_MASK 0xFC0007FE
844#define B_INSN 0x48000000
845#define BC_INSN 0x40000000
846#define BXL_INSN 0x4c000000
847#define BP_INSN 0x7C000008
848
7f03bd92
PA
849/* Instruction masks used during single-stepping of atomic
850 sequences. */
2039d74e 851#define LOAD_AND_RESERVE_MASK 0xfc0007fe
7f03bd92
PA
852#define LWARX_INSTRUCTION 0x7c000028
853#define LDARX_INSTRUCTION 0x7c0000A8
2039d74e
EBM
854#define LBARX_INSTRUCTION 0x7c000068
855#define LHARX_INSTRUCTION 0x7c0000e8
856#define LQARX_INSTRUCTION 0x7c000228
857#define STORE_CONDITIONAL_MASK 0xfc0007ff
7f03bd92
PA
858#define STWCX_INSTRUCTION 0x7c00012d
859#define STDCX_INSTRUCTION 0x7c0001ad
2039d74e
EBM
860#define STBCX_INSTRUCTION 0x7c00056d
861#define STHCX_INSTRUCTION 0x7c0005ad
862#define STQCX_INSTRUCTION 0x7c00016d
863
864/* Check if insn is one of the Load And Reserve instructions used for atomic
865 sequences. */
866#define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
867 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
868 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
869 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
870 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
871/* Check if insn is one of the Store Conditional instructions used for atomic
872 sequences. */
873#define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
874 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
875 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
876 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
877 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
7f03bd92 878
1152d984
SM
879typedef buf_displaced_step_copy_insn_closure
880 ppc_displaced_step_copy_insn_closure;
cfba9872 881
c2508e90 882/* We can't displaced step atomic sequences. */
7f03bd92 883
1152d984 884static displaced_step_copy_insn_closure_up
7f03bd92
PA
885ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
886 CORE_ADDR from, CORE_ADDR to,
887 struct regcache *regs)
888{
889 size_t len = gdbarch_max_insn_length (gdbarch);
1152d984
SM
890 std::unique_ptr<ppc_displaced_step_copy_insn_closure> closure
891 (new ppc_displaced_step_copy_insn_closure (len));
cfba9872 892 gdb_byte *buf = closure->buf.data ();
7f03bd92
PA
893 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
894 int insn;
895
896 read_memory (from, buf, len);
897
898 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
899
2039d74e
EBM
900 /* Assume all atomic sequences start with a Load and Reserve instruction. */
901 if (IS_LOAD_AND_RESERVE_INSN (insn))
7f03bd92 902 {
136821d9 903 displaced_debug_printf ("can't displaced step atomic sequence at %s",
7f03bd92 904 paddress (gdbarch, from));
cfba9872 905
7f03bd92
PA
906 return NULL;
907 }
908
909 write_memory (to, buf, len);
910
136821d9 911 displaced_debug_printf ("copy %s->%s: %s",
dda83cd7 912 paddress (gdbarch, from), paddress (gdbarch, to),
136821d9 913 displaced_step_dump_bytes (buf, len).c_str ());;
7f03bd92 914
6d0cf446 915 /* This is a work around for a problem with g++ 4.8. */
1152d984 916 return displaced_step_copy_insn_closure_up (closure.release ());
7f03bd92
PA
917}
918
f74c6cad
LM
919/* Fix up the state of registers and memory after having single-stepped
920 a displaced instruction. */
63807e1d 921static void
f74c6cad 922ppc_displaced_step_fixup (struct gdbarch *gdbarch,
1152d984 923 struct displaced_step_copy_insn_closure *closure_,
63807e1d
PA
924 CORE_ADDR from, CORE_ADDR to,
925 struct regcache *regs)
f74c6cad 926{
e17a4113 927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7f03bd92 928 /* Our closure is a copy of the instruction. */
1152d984
SM
929 ppc_displaced_step_copy_insn_closure *closure
930 = (ppc_displaced_step_copy_insn_closure *) closure_;
cfba9872
SM
931 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
932 PPC_INSN_SIZE, byte_order);
f74c6cad
LM
933 ULONGEST opcode = 0;
934 /* Offset for non PC-relative instructions. */
935 LONGEST offset = PPC_INSN_SIZE;
936
937 opcode = insn & BRANCH_MASK;
938
136821d9
SM
939 displaced_debug_printf ("(ppc) fixup (%s, %s)",
940 paddress (gdbarch, from), paddress (gdbarch, to));
f74c6cad
LM
941
942 /* Handle PC-relative branch instructions. */
943 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
944 {
a4fafde3 945 ULONGEST current_pc;
f74c6cad
LM
946
947 /* Read the current PC value after the instruction has been executed
948 in a displaced location. Calculate the offset to be applied to the
949 original PC value before the displaced stepping. */
950 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
951 &current_pc);
952 offset = current_pc - to;
953
954 if (opcode != BXL_INSN)
955 {
956 /* Check for AA bit indicating whether this is an absolute
957 addressing or PC-relative (1: absolute, 0: relative). */
958 if (!(insn & 0x2))
959 {
960 /* PC-relative addressing is being used in the branch. */
136821d9
SM
961 displaced_debug_printf ("(ppc) branch instruction: %s",
962 paddress (gdbarch, insn));
963 displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
964 paddress (gdbarch, current_pc),
965 paddress (gdbarch, from + offset));
f74c6cad 966
0df8b418
MS
967 regcache_cooked_write_unsigned (regs,
968 gdbarch_pc_regnum (gdbarch),
f74c6cad
LM
969 from + offset);
970 }
971 }
972 else
973 {
974 /* If we're here, it means we have a branch to LR or CTR. If the
975 branch was taken, the offset is probably greater than 4 (the next
976 instruction), so it's safe to assume that an offset of 4 means we
977 did not take the branch. */
978 if (offset == PPC_INSN_SIZE)
979 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
980 from + PPC_INSN_SIZE);
981 }
982
983 /* Check for LK bit indicating whether we should set the link
984 register to point to the next instruction
985 (1: Set, 0: Don't set). */
986 if (insn & 0x1)
987 {
988 /* Link register needs to be set to the next instruction's PC. */
989 regcache_cooked_write_unsigned (regs,
990 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
991 from + PPC_INSN_SIZE);
136821d9
SM
992 displaced_debug_printf ("(ppc) adjusted LR to %s",
993 paddress (gdbarch, from + PPC_INSN_SIZE));
f74c6cad
LM
994
995 }
996 }
997 /* Check for breakpoints in the inferior. If we've found one, place the PC
998 right at the breakpoint instruction. */
999 else if ((insn & BP_MASK) == BP_INSN)
1000 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1001 else
1002 /* Handle any other instructions that do not fit in the categories above. */
1003 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1004 from + offset);
1005}
c906108c 1006
187b041e
SM
1007/* Implementation of gdbarch_displaced_step_prepare. */
1008
1009static displaced_step_prepare_status
1010ppc_displaced_step_prepare (gdbarch *arch, thread_info *thread,
1011 CORE_ADDR &displaced_pc)
1012{
1013 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1014
1015 if (!per_inferior->disp_step_buf.has_value ())
1016 {
1017 /* Figure out where the displaced step buffer is. */
1018 CORE_ADDR disp_step_buf_addr
1019 = displaced_step_at_entry_point (thread->inf->gdbarch);
1020
1021 per_inferior->disp_step_buf.emplace (disp_step_buf_addr);
1022 }
1023
1024 return per_inferior->disp_step_buf->prepare (thread, displaced_pc);
1025}
1026
1027/* Implementation of gdbarch_displaced_step_finish. */
1028
1029static displaced_step_finish_status
1030ppc_displaced_step_finish (gdbarch *arch, thread_info *thread,
1031 gdb_signal sig)
1032{
1033 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1034
1035 gdb_assert (per_inferior->disp_step_buf.has_value ());
1036
1037 return per_inferior->disp_step_buf->finish (arch, thread, sig);
1038}
1039
1040/* Implementation of gdbarch_displaced_step_restore_all_in_ptid. */
1041
1042static void
1043ppc_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid)
1044{
1045 ppc_inferior_data *per_inferior = ppc_inferior_data_key.get (parent_inf);
1046
1047 if (per_inferior == nullptr
1048 || !per_inferior->disp_step_buf.has_value ())
1049 return;
1050
1051 per_inferior->disp_step_buf->restore_in_ptid (ptid);
1052}
1053
99e40580
UW
1054/* Always use hardware single-stepping to execute the
1055 displaced instruction. */
07fbbd01 1056static bool
40a53766 1057ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
99e40580 1058{
07fbbd01 1059 return true;
99e40580
UW
1060}
1061
2039d74e
EBM
1062/* Checks for an atomic sequence of instructions beginning with a
1063 Load And Reserve instruction and ending with a Store Conditional
1064 instruction. If such a sequence is found, attempt to step through it.
1065 A breakpoint is placed at the end of the sequence. */
a0ff9e1a 1066std::vector<CORE_ADDR>
f5ea389a 1067ppc_deal_with_atomic_sequence (struct regcache *regcache)
ce5eab59 1068{
ac7936df 1069 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1070 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
41e26ad3 1071 CORE_ADDR pc = regcache_read_pc (regcache);
70ab8ccd 1072 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
ce5eab59 1073 CORE_ADDR loc = pc;
24d45690 1074 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
e17a4113 1075 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1076 int insn_count;
1077 int index;
1078 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1079 const int atomic_sequence_length = 16; /* Instruction sequence length. */
ce5eab59
UW
1080 int bc_insn_count = 0; /* Conditional branch instruction count. */
1081
2039d74e
EBM
1082 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1083 if (!IS_LOAD_AND_RESERVE_INSN (insn))
a0ff9e1a 1084 return {};
ce5eab59
UW
1085
1086 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1087 instructions. */
1088 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1089 {
1090 loc += PPC_INSN_SIZE;
e17a4113 1091 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1092
1093 /* Assume that there is at most one conditional branch in the atomic
dda83cd7
SM
1094 sequence. If a conditional branch is found, put a breakpoint in
1095 its destination address. */
f74c6cad 1096 if ((insn & BRANCH_MASK) == BC_INSN)
dda83cd7
SM
1097 {
1098 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1099 int absolute = insn & 2;
4a7622d1 1100
dda83cd7
SM
1101 if (bc_insn_count >= 1)
1102 return {}; /* More than one conditional branch found, fallback
1103 to the standard single-step code. */
4a7622d1
UW
1104
1105 if (absolute)
1106 breaks[1] = immediate;
1107 else
a3769e0c 1108 breaks[1] = loc + immediate;
4a7622d1
UW
1109
1110 bc_insn_count++;
1111 last_breakpoint++;
dda83cd7 1112 }
ce5eab59 1113
2039d74e 1114 if (IS_STORE_CONDITIONAL_INSN (insn))
dda83cd7 1115 break;
ce5eab59
UW
1116 }
1117
2039d74e
EBM
1118 /* Assume that the atomic sequence ends with a Store Conditional
1119 instruction. */
1120 if (!IS_STORE_CONDITIONAL_INSN (insn))
a0ff9e1a 1121 return {};
ce5eab59 1122
24d45690 1123 closing_insn = loc;
ce5eab59 1124 loc += PPC_INSN_SIZE;
ce5eab59
UW
1125
1126 /* Insert a breakpoint right after the end of the atomic sequence. */
1127 breaks[0] = loc;
1128
24d45690 1129 /* Check for duplicated breakpoints. Check also for a breakpoint
a3769e0c
AM
1130 placed (branch instruction's destination) anywhere in sequence. */
1131 if (last_breakpoint
1132 && (breaks[1] == breaks[0]
1133 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
ce5eab59
UW
1134 last_breakpoint = 0;
1135
a0ff9e1a
SM
1136 std::vector<CORE_ADDR> next_pcs;
1137
ce5eab59 1138 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 1139 next_pcs.push_back (breaks[index]);
ce5eab59 1140
93f9a11f 1141 return next_pcs;
ce5eab59
UW
1142}
1143
c906108c 1144
c906108c
SS
1145#define SIGNED_SHORT(x) \
1146 ((sizeof (short) == 2) \
1147 ? ((int)(short)(x)) \
1148 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1149
1150#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1151
55d05f3b
KB
1152/* Limit the number of skipped non-prologue instructions, as the examining
1153 of the prologue is expensive. */
1154static int max_skip_non_prologue_insns = 10;
1155
773df3e5
JB
1156/* Return nonzero if the given instruction OP can be part of the prologue
1157 of a function and saves a parameter on the stack. FRAMEP should be
1158 set if one of the previous instructions in the function has set the
1159 Frame Pointer. */
1160
1161static int
1162store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1163{
1164 /* Move parameters from argument registers to temporary register. */
1165 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1166 {
1167 /* Rx must be scratch register r0. */
1168 const int rx_regno = (op >> 16) & 31;
1169 /* Ry: Only r3 - r10 are used for parameter passing. */
1170 const int ry_regno = GET_SRC_REG (op);
1171
1172 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
dda83cd7
SM
1173 {
1174 *r0_contains_arg = 1;
1175 return 1;
1176 }
773df3e5 1177 else
dda83cd7 1178 return 0;
773df3e5
JB
1179 }
1180
1181 /* Save a General Purpose Register on stack. */
1182
1183 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1184 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1185 {
1186 /* Rx: Only r3 - r10 are used for parameter passing. */
1187 const int rx_regno = GET_SRC_REG (op);
1188
1189 return (rx_regno >= 3 && rx_regno <= 10);
1190 }
dda83cd7 1191
773df3e5
JB
1192 /* Save a General Purpose Register on stack via the Frame Pointer. */
1193
1194 if (framep &&
1195 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1196 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1197 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1198 {
1199 /* Rx: Usually, only r3 - r10 are used for parameter passing.
dda83cd7 1200 However, the compiler sometimes uses r0 to hold an argument. */
773df3e5
JB
1201 const int rx_regno = GET_SRC_REG (op);
1202
1203 return ((rx_regno >= 3 && rx_regno <= 10)
dda83cd7 1204 || (rx_regno == 0 && *r0_contains_arg));
773df3e5
JB
1205 }
1206
1207 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1208 {
1209 /* Only f2 - f8 are used for parameter passing. */
1210 const int src_regno = GET_SRC_REG (op);
1211
1212 return (src_regno >= 2 && src_regno <= 8);
1213 }
1214
1215 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1216 {
1217 /* Only f2 - f8 are used for parameter passing. */
1218 const int src_regno = GET_SRC_REG (op);
1219
1220 return (src_regno >= 2 && src_regno <= 8);
1221 }
1222
1223 /* Not an insn that saves a parameter on stack. */
1224 return 0;
1225}
55d05f3b 1226
3c77c82a
DJ
1227/* Assuming that INSN is a "bl" instruction located at PC, return
1228 nonzero if the destination of the branch is a "blrl" instruction.
1229
1230 This sequence is sometimes found in certain function prologues.
1231 It allows the function to load the LR register with a value that
1232 they can use to access PIC data using PC-relative offsets. */
1233
1234static int
e17a4113 1235bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
3c77c82a 1236{
0b1b3e42
UW
1237 CORE_ADDR dest;
1238 int immediate;
1239 int absolute;
3c77c82a
DJ
1240 int dest_insn;
1241
0b1b3e42
UW
1242 absolute = (int) ((insn >> 1) & 1);
1243 immediate = ((insn & ~3) << 6) >> 6;
1244 if (absolute)
1245 dest = immediate;
1246 else
1247 dest = pc + immediate;
1248
e17a4113 1249 dest_insn = read_memory_integer (dest, 4, byte_order);
3c77c82a
DJ
1250 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1251 return 1;
1252
1253 return 0;
1254}
1255
dd6d677f
PFC
1256/* Return true if OP is a stw or std instruction with
1257 register operands RS and RA and any immediate offset.
1258
1259 If WITH_UPDATE is true, also return true if OP is
1260 a stwu or stdu instruction with the same operands.
1261
1262 Return false otherwise.
1263 */
1264static bool
1265store_insn_p (unsigned long op, unsigned long rs,
1266 unsigned long ra, bool with_update)
1267{
1268 rs = rs << 21;
1269 ra = ra << 16;
1270
1271 if (/* std RS, SIMM(RA) */
1272 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1273 /* stw RS, SIMM(RA) */
1274 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1275 return true;
1276
1277 if (with_update)
1278 {
1279 if (/* stdu RS, SIMM(RA) */
1280 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1281 /* stwu RS, SIMM(RA) */
1282 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1283 return true;
1284 }
1285
1286 return false;
1287}
1288
0df8b418 1289/* Masks for decoding a branch-and-link (bl) instruction.
8ab3d180
KB
1290
1291 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1292 The former is anded with the opcode in question; if the result of
1293 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1294 question is a ``bl'' instruction.
1295
85102364 1296 BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
8ab3d180
KB
1297 the branch displacement. */
1298
1299#define BL_MASK 0xfc000001
1300#define BL_INSTRUCTION 0x48000001
1301#define BL_DISPLACEMENT_MASK 0x03fffffc
1302
de9f48f0 1303static unsigned long
e17a4113 1304rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
de9f48f0 1305{
e17a4113 1306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
de9f48f0
JG
1307 gdb_byte buf[4];
1308 unsigned long op;
1309
1310 /* Fetch the instruction and convert it to an integer. */
1311 if (target_read_memory (pc, buf, 4))
1312 return 0;
e17a4113 1313 op = extract_unsigned_integer (buf, 4, byte_order);
de9f48f0
JG
1314
1315 return op;
1316}
1317
1318/* GCC generates several well-known sequences of instructions at the begining
1319 of each function prologue when compiling with -fstack-check. If one of
1320 such sequences starts at START_PC, then return the address of the
1321 instruction immediately past this sequence. Otherwise, return START_PC. */
1322
1323static CORE_ADDR
e17a4113 1324rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
de9f48f0
JG
1325{
1326 CORE_ADDR pc = start_pc;
e17a4113 1327 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1328
1329 /* First possible sequence: A small number of probes.
dda83cd7
SM
1330 stw 0, -<some immediate>(1)
1331 [repeat this instruction any (small) number of times]. */
de9f48f0
JG
1332
1333 if ((op & 0xffff0000) == 0x90010000)
1334 {
1335 while ((op & 0xffff0000) == 0x90010000)
dda83cd7
SM
1336 {
1337 pc = pc + 4;
1338 op = rs6000_fetch_instruction (gdbarch, pc);
1339 }
de9f48f0
JG
1340 return pc;
1341 }
1342
1343 /* Second sequence: A probing loop.
dda83cd7
SM
1344 addi 12,1,-<some immediate>
1345 lis 0,-<some immediate>
1346 [possibly ori 0,0,<some immediate>]
1347 add 0,12,0
1348 cmpw 0,12,0
1349 beq 0,<disp>
1350 addi 12,12,-<some immediate>
1351 stw 0,0(12)
1352 b <disp>
1353 [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0
JG
1354
1355 while (1)
1356 {
1357 /* addi 12,1,-<some immediate> */
1358 if ((op & 0xffff0000) != 0x39810000)
dda83cd7 1359 break;
de9f48f0
JG
1360
1361 /* lis 0,-<some immediate> */
1362 pc = pc + 4;
e17a4113 1363 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1364 if ((op & 0xffff0000) != 0x3c000000)
dda83cd7 1365 break;
de9f48f0
JG
1366
1367 pc = pc + 4;
e17a4113 1368 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1369 /* [possibly ori 0,0,<some immediate>] */
1370 if ((op & 0xffff0000) == 0x60000000)
dda83cd7
SM
1371 {
1372 pc = pc + 4;
1373 op = rs6000_fetch_instruction (gdbarch, pc);
1374 }
de9f48f0
JG
1375 /* add 0,12,0 */
1376 if (op != 0x7c0c0214)
dda83cd7 1377 break;
de9f48f0
JG
1378
1379 /* cmpw 0,12,0 */
1380 pc = pc + 4;
e17a4113 1381 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1382 if (op != 0x7c0c0000)
dda83cd7 1383 break;
de9f48f0
JG
1384
1385 /* beq 0,<disp> */
1386 pc = pc + 4;
e17a4113 1387 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1388 if ((op & 0xff9f0001) != 0x41820000)
dda83cd7 1389 break;
de9f48f0
JG
1390
1391 /* addi 12,12,-<some immediate> */
1392 pc = pc + 4;
e17a4113 1393 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1394 if ((op & 0xffff0000) != 0x398c0000)
dda83cd7 1395 break;
de9f48f0
JG
1396
1397 /* stw 0,0(12) */
1398 pc = pc + 4;
e17a4113 1399 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1400 if (op != 0x900c0000)
dda83cd7 1401 break;
de9f48f0
JG
1402
1403 /* b <disp> */
1404 pc = pc + 4;
e17a4113 1405 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1406 if ((op & 0xfc000001) != 0x48000000)
dda83cd7 1407 break;
de9f48f0 1408
0df8b418 1409 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0 1410 pc = pc + 4;
e17a4113 1411 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1412 if ((op & 0xffff0000) == 0x900c0000)
dda83cd7
SM
1413 {
1414 pc = pc + 4;
1415 op = rs6000_fetch_instruction (gdbarch, pc);
1416 }
de9f48f0
JG
1417
1418 /* We found a valid stack-check sequence, return the new PC. */
1419 return pc;
1420 }
1421
30baf67b 1422 /* Third sequence: No probe; instead, a comparison between the stack size
de9f48f0
JG
1423 limit (saved in a run-time global variable) and the current stack
1424 pointer:
1425
dda83cd7
SM
1426 addi 0,1,-<some immediate>
1427 lis 12,__gnat_stack_limit@ha
1428 lwz 12,__gnat_stack_limit@l(12)
1429 twllt 0,12
de9f48f0
JG
1430
1431 or, with a small variant in the case of a bigger stack frame:
dda83cd7
SM
1432 addis 0,1,<some immediate>
1433 addic 0,0,-<some immediate>
1434 lis 12,__gnat_stack_limit@ha
1435 lwz 12,__gnat_stack_limit@l(12)
1436 twllt 0,12
de9f48f0
JG
1437 */
1438 while (1)
1439 {
1440 /* addi 0,1,-<some immediate> */
1441 if ((op & 0xffff0000) != 0x38010000)
dda83cd7
SM
1442 {
1443 /* small stack frame variant not recognized; try the
1444 big stack frame variant: */
de9f48f0 1445
dda83cd7
SM
1446 /* addis 0,1,<some immediate> */
1447 if ((op & 0xffff0000) != 0x3c010000)
1448 break;
de9f48f0 1449
dda83cd7
SM
1450 /* addic 0,0,-<some immediate> */
1451 pc = pc + 4;
1452 op = rs6000_fetch_instruction (gdbarch, pc);
1453 if ((op & 0xffff0000) != 0x30000000)
1454 break;
1455 }
de9f48f0
JG
1456
1457 /* lis 12,<some immediate> */
1458 pc = pc + 4;
e17a4113 1459 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1460 if ((op & 0xffff0000) != 0x3d800000)
dda83cd7 1461 break;
de9f48f0
JG
1462
1463 /* lwz 12,<some immediate>(12) */
1464 pc = pc + 4;
e17a4113 1465 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1466 if ((op & 0xffff0000) != 0x818c0000)
dda83cd7 1467 break;
de9f48f0
JG
1468
1469 /* twllt 0,12 */
1470 pc = pc + 4;
e17a4113 1471 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1472 if ((op & 0xfffffffe) != 0x7c406008)
dda83cd7 1473 break;
de9f48f0
JG
1474
1475 /* We found a valid stack-check sequence, return the new PC. */
1476 return pc;
1477 }
1478
1479 /* No stack check code in our prologue, return the start_pc. */
1480 return start_pc;
1481}
1482
6a16c029
TJB
1483/* return pc value after skipping a function prologue and also return
1484 information about a function frame.
1485
1486 in struct rs6000_framedata fdata:
1487 - frameless is TRUE, if function does not have a frame.
1488 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1489 - offset is the initial size of this stack frame --- the amount by
1490 which we decrement the sp to allocate the frame.
1491 - saved_gpr is the number of the first saved gpr.
1492 - saved_fpr is the number of the first saved fpr.
1493 - saved_vr is the number of the first saved vr.
1494 - saved_ev is the number of the first saved ev.
1495 - alloca_reg is the number of the register used for alloca() handling.
1496 Otherwise -1.
1497 - gpr_offset is the offset of the first saved gpr from the previous frame.
1498 - fpr_offset is the offset of the first saved fpr from the previous frame.
1499 - vr_offset is the offset of the first saved vr from the previous frame.
1500 - ev_offset is the offset of the first saved ev from the previous frame.
1501 - lr_offset is the offset of the saved lr
1502 - cr_offset is the offset of the saved cr
0df8b418 1503 - vrsave_offset is the offset of the saved vrsave register. */
6a16c029 1504
7a78ae4e 1505static CORE_ADDR
be8626e0
MD
1506skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1507 struct rs6000_framedata *fdata)
c906108c
SS
1508{
1509 CORE_ADDR orig_pc = pc;
55d05f3b 1510 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 1511 CORE_ADDR li_found_pc = 0;
50fd1280 1512 gdb_byte buf[4];
c906108c
SS
1513 unsigned long op;
1514 long offset = 0;
dd6d677f 1515 long alloca_reg_offset = 0;
6be8bc0c 1516 long vr_saved_offset = 0;
482ca3f5
KB
1517 int lr_reg = -1;
1518 int cr_reg = -1;
6be8bc0c 1519 int vr_reg = -1;
96ff0de4
EZ
1520 int ev_reg = -1;
1521 long ev_offset = 0;
6be8bc0c 1522 int vrsave_reg = -1;
c906108c
SS
1523 int reg;
1524 int framep = 0;
1525 int minimal_toc_loaded = 0;
ddb20c56 1526 int prev_insn_was_prologue_insn = 1;
55d05f3b 1527 int num_skip_non_prologue_insns = 0;
773df3e5 1528 int r0_contains_arg = 0;
be8626e0
MD
1529 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 1532
ddb20c56 1533 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1534 fdata->saved_gpr = -1;
1535 fdata->saved_fpr = -1;
6be8bc0c 1536 fdata->saved_vr = -1;
96ff0de4 1537 fdata->saved_ev = -1;
c906108c
SS
1538 fdata->alloca_reg = -1;
1539 fdata->frameless = 1;
1540 fdata->nosavedpc = 1;
46a9b8ed 1541 fdata->lr_register = -1;
c906108c 1542
e17a4113 1543 pc = rs6000_skip_stack_check (gdbarch, pc);
de9f48f0
JG
1544 if (pc >= lim_pc)
1545 pc = lim_pc;
1546
55d05f3b 1547 for (;; pc += 4)
c906108c 1548 {
ddb20c56 1549 /* Sometimes it isn't clear if an instruction is a prologue
dda83cd7 1550 instruction or not. When we encounter one of these ambiguous
ddb20c56 1551 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
0df8b418 1552 Otherwise, we'll assume that it really is a prologue instruction. */
ddb20c56
KB
1553 if (prev_insn_was_prologue_insn)
1554 last_prologue_pc = pc;
55d05f3b
KB
1555
1556 /* Stop scanning if we've hit the limit. */
4e463ff5 1557 if (pc >= lim_pc)
55d05f3b
KB
1558 break;
1559
ddb20c56
KB
1560 prev_insn_was_prologue_insn = 1;
1561
55d05f3b 1562 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1563 if (target_read_memory (pc, buf, 4))
1564 break;
e17a4113 1565 op = extract_unsigned_integer (buf, 4, byte_order);
c906108c 1566
c5aa993b
JM
1567 if ((op & 0xfc1fffff) == 0x7c0802a6)
1568 { /* mflr Rx */
43b1ab88
AC
1569 /* Since shared library / PIC code, which needs to get its
1570 address at runtime, can appear to save more than one link
1571 register vis:
1572
1573 *INDENT-OFF*
1574 stwu r1,-304(r1)
1575 mflr r3
1576 bl 0xff570d0 (blrl)
1577 stw r30,296(r1)
1578 mflr r30
1579 stw r31,300(r1)
1580 stw r3,308(r1);
1581 ...
1582 *INDENT-ON*
1583
1584 remember just the first one, but skip over additional
1585 ones. */
721d14ba 1586 if (lr_reg == -1)
dd6d677f 1587 lr_reg = (op & 0x03e00000) >> 21;
dda83cd7
SM
1588 if (lr_reg == 0)
1589 r0_contains_arg = 0;
c5aa993b 1590 continue;
c5aa993b
JM
1591 }
1592 else if ((op & 0xfc1fffff) == 0x7c000026)
1593 { /* mfcr Rx */
dd6d677f 1594 cr_reg = (op & 0x03e00000) >> 21;
dda83cd7
SM
1595 if (cr_reg == 0)
1596 r0_contains_arg = 0;
c5aa993b 1597 continue;
c906108c 1598
c906108c 1599 }
c5aa993b
JM
1600 else if ((op & 0xfc1f0000) == 0xd8010000)
1601 { /* stfd Rx,NUM(r1) */
1602 reg = GET_SRC_REG (op);
1603 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1604 {
1605 fdata->saved_fpr = reg;
1606 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1607 }
1608 continue;
c906108c 1609
c5aa993b
JM
1610 }
1611 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1612 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1613 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1614 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1615 {
1616
1617 reg = GET_SRC_REG (op);
46a9b8ed
DJ
1618 if ((op & 0xfc1f0000) == 0xbc010000)
1619 fdata->gpr_mask |= ~((1U << reg) - 1);
1620 else
1621 fdata->gpr_mask |= 1U << reg;
c5aa993b
JM
1622 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1623 {
1624 fdata->saved_gpr = reg;
7a78ae4e 1625 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1626 op &= ~3UL;
c5aa993b
JM
1627 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1628 }
1629 continue;
c906108c 1630
ddb20c56 1631 }
ef1bc9e7
AM
1632 else if ((op & 0xffff0000) == 0x3c4c0000
1633 || (op & 0xffff0000) == 0x3c400000
1634 || (op & 0xffff0000) == 0x38420000)
1635 {
1636 /* . 0: addis 2,12,.TOC.-0b@ha
1637 . addi 2,2,.TOC.-0b@l
1638 or
1639 . lis 2,.TOC.@ha
1640 . addi 2,2,.TOC.@l
1641 used by ELFv2 global entry points to set up r2. */
1642 continue;
1643 }
1644 else if (op == 0x60000000)
dda83cd7 1645 {
96ff0de4 1646 /* nop */
ddb20c56
KB
1647 /* Allow nops in the prologue, but do not consider them to
1648 be part of the prologue unless followed by other prologue
0df8b418 1649 instructions. */
ddb20c56
KB
1650 prev_insn_was_prologue_insn = 0;
1651 continue;
1652
c906108c 1653 }
c5aa993b 1654 else if ((op & 0xffff0000) == 0x3c000000)
ef1bc9e7 1655 { /* addis 0,0,NUM, used for >= 32k frames */
c5aa993b
JM
1656 fdata->offset = (op & 0x0000ffff) << 16;
1657 fdata->frameless = 0;
dda83cd7 1658 r0_contains_arg = 0;
c5aa993b
JM
1659 continue;
1660
1661 }
1662 else if ((op & 0xffff0000) == 0x60000000)
ef1bc9e7 1663 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
c5aa993b
JM
1664 fdata->offset |= (op & 0x0000ffff);
1665 fdata->frameless = 0;
dda83cd7 1666 r0_contains_arg = 0;
c5aa993b
JM
1667 continue;
1668
1669 }
be723e22 1670 else if (lr_reg >= 0 &&
dd6d677f
PFC
1671 ((store_insn_p (op, lr_reg, 1, true)) ||
1672 (framep &&
1673 (store_insn_p (op, lr_reg,
1674 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1675 false)))))
1676 {
1677 if (store_insn_p (op, lr_reg, 1, true))
1678 fdata->lr_offset = offset;
1679 else /* LR save through frame pointer. */
1680 fdata->lr_offset = alloca_reg_offset;
1681
c5aa993b 1682 fdata->nosavedpc = 0;
be723e22
MS
1683 /* Invalidate lr_reg, but don't set it to -1.
1684 That would mean that it had never been set. */
1685 lr_reg = -2;
98f08d3d
KB
1686 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1687 (op & 0xfc000000) == 0x90000000) /* stw */
1688 {
1689 /* Does not update r1, so add displacement to lr_offset. */
1690 fdata->lr_offset += SIGNED_SHORT (op);
1691 }
c5aa993b
JM
1692 continue;
1693
1694 }
be723e22 1695 else if (cr_reg >= 0 &&
dd6d677f
PFC
1696 (store_insn_p (op, cr_reg, 1, true)))
1697 {
98f08d3d 1698 fdata->cr_offset = offset;
be723e22
MS
1699 /* Invalidate cr_reg, but don't set it to -1.
1700 That would mean that it had never been set. */
1701 cr_reg = -2;
98f08d3d
KB
1702 if ((op & 0xfc000003) == 0xf8000000 ||
1703 (op & 0xfc000000) == 0x90000000)
1704 {
1705 /* Does not update r1, so add displacement to cr_offset. */
1706 fdata->cr_offset += SIGNED_SHORT (op);
1707 }
c5aa993b
JM
1708 continue;
1709
1710 }
721d14ba
DJ
1711 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1712 {
1713 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1714 prediction bits. If the LR has already been saved, we can
1715 skip it. */
1716 continue;
1717 }
c5aa993b
JM
1718 else if (op == 0x48000005)
1719 { /* bl .+4 used in
1720 -mrelocatable */
46a9b8ed 1721 fdata->used_bl = 1;
c5aa993b
JM
1722 continue;
1723
1724 }
1725 else if (op == 0x48000004)
1726 { /* b .+4 (xlc) */
1727 break;
1728
c5aa993b 1729 }
6be8bc0c
EZ
1730 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1731 in V.4 -mminimal-toc */
c5aa993b
JM
1732 (op & 0xffff0000) == 0x3bde0000)
1733 { /* addi 30,30,foo@l */
1734 continue;
c906108c 1735
c5aa993b
JM
1736 }
1737 else if ((op & 0xfc000001) == 0x48000001)
1738 { /* bl foo,
0df8b418 1739 to save fprs??? */
c906108c 1740
c5aa993b 1741 fdata->frameless = 0;
3c77c82a
DJ
1742
1743 /* If the return address has already been saved, we can skip
1744 calls to blrl (for PIC). */
dda83cd7 1745 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
46a9b8ed
DJ
1746 {
1747 fdata->used_bl = 1;
1748 continue;
1749 }
3c77c82a 1750
6be8bc0c 1751 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1752 the first three instructions of the prologue and either
1753 we have no line table information or the line info tells
1754 us that the subroutine call is not part of the line
1755 associated with the prologue. */
c5aa993b 1756 if ((pc - orig_pc) > 8)
ebd98106
FF
1757 {
1758 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1759 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1760
0df8b418
MS
1761 if ((prologue_sal.line == 0)
1762 || (prologue_sal.line != this_sal.line))
ebd98106
FF
1763 break;
1764 }
c5aa993b 1765
e17a4113 1766 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b 1767
6be8bc0c
EZ
1768 /* At this point, make sure this is not a trampoline
1769 function (a function that simply calls another functions,
1770 and nothing else). If the next is not a nop, this branch
0df8b418 1771 was part of the function prologue. */
c5aa993b
JM
1772
1773 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
0df8b418
MS
1774 break; /* Don't skip over
1775 this branch. */
c5aa993b 1776
46a9b8ed
DJ
1777 fdata->used_bl = 1;
1778 continue;
c5aa993b 1779 }
98f08d3d
KB
1780 /* update stack pointer */
1781 else if ((op & 0xfc1f0000) == 0x94010000)
1782 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1783 fdata->frameless = 0;
1784 fdata->offset = SIGNED_SHORT (op);
1785 offset = fdata->offset;
1786 continue;
c5aa993b 1787 }
7a8f494c
PFC
1788 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1789 { /* stwux rX,r1,rY || stdux rX,r1,rY */
0df8b418 1790 /* No way to figure out what r1 is going to be. */
98f08d3d
KB
1791 fdata->frameless = 0;
1792 offset = fdata->offset;
1793 continue;
1794 }
1795 else if ((op & 0xfc1f0003) == 0xf8010001)
1796 { /* stdu rX,NUM(r1) */
1797 fdata->frameless = 0;
1798 fdata->offset = SIGNED_SHORT (op & ~3UL);
1799 offset = fdata->offset;
1800 continue;
1801 }
7313566f
FF
1802 else if ((op & 0xffff0000) == 0x38210000)
1803 { /* addi r1,r1,SIMM */
1804 fdata->frameless = 0;
1805 fdata->offset += SIGNED_SHORT (op);
1806 offset = fdata->offset;
1807 continue;
1808 }
4e463ff5
DJ
1809 /* Load up minimal toc pointer. Do not treat an epilogue restore
1810 of r31 as a minimal TOC load. */
0df8b418
MS
1811 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1812 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1813 && !framep
c5aa993b 1814 && !minimal_toc_loaded)
98f08d3d 1815 {
c5aa993b
JM
1816 minimal_toc_loaded = 1;
1817 continue;
1818
f6077098 1819 /* move parameters from argument registers to local variable
dda83cd7 1820 registers */
f6077098
KB
1821 }
1822 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
dda83cd7
SM
1823 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1824 (((op >> 21) & 31) <= 10) &&
1825 ((long) ((op >> 16) & 31)
0df8b418 1826 >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1827 {
1828 continue;
1829
c5aa993b
JM
1830 /* store parameters in stack */
1831 }
e802b915 1832 /* Move parameters from argument registers to temporary register. */
773df3e5 1833 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
dda83cd7 1834 {
c5aa993b
JM
1835 continue;
1836
1837 /* Set up frame pointer */
1838 }
76219d77
JB
1839 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1840 {
1841 fdata->frameless = 0;
1842 framep = 1;
1843 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
dd6d677f 1844 alloca_reg_offset = offset;
76219d77
JB
1845 continue;
1846
1847 /* Another way to set up the frame pointer. */
1848 }
c5aa993b
JM
1849 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1850 || op == 0x7c3f0b78)
1851 { /* mr r31, r1 */
1852 fdata->frameless = 0;
1853 framep = 1;
6f99cb26 1854 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
dd6d677f 1855 alloca_reg_offset = offset;
c5aa993b
JM
1856 continue;
1857
1858 /* Another way to set up the frame pointer. */
1859 }
1860 else if ((op & 0xfc1fffff) == 0x38010000)
1861 { /* addi rX, r1, 0x0 */
1862 fdata->frameless = 0;
1863 framep = 1;
6f99cb26
AC
1864 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1865 + ((op & ~0x38010000) >> 21));
dd6d677f 1866 alloca_reg_offset = offset;
c5aa993b 1867 continue;
c5aa993b 1868 }
6be8bc0c
EZ
1869 /* AltiVec related instructions. */
1870 /* Store the vrsave register (spr 256) in another register for
1871 later manipulation, or load a register into the vrsave
1872 register. 2 instructions are used: mfvrsave and
1873 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1874 and mtspr SPR256, Rn. */
1875 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1876 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1877 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1878 {
dda83cd7 1879 vrsave_reg = GET_SRC_REG (op);
6be8bc0c
EZ
1880 continue;
1881 }
1882 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
dda83cd7
SM
1883 {
1884 continue;
1885 }
6be8bc0c 1886 /* Store the register where vrsave was saved to onto the stack:
dda83cd7 1887 rS is the register where vrsave was stored in a previous
6be8bc0c
EZ
1888 instruction. */
1889 /* 100100 sssss 00001 dddddddd dddddddd */
1890 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
dda83cd7
SM
1891 {
1892 if (vrsave_reg == GET_SRC_REG (op))
6be8bc0c
EZ
1893 {
1894 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1895 vrsave_reg = -1;
1896 }
dda83cd7
SM
1897 continue;
1898 }
6be8bc0c 1899 /* Compute the new value of vrsave, by modifying the register
dda83cd7 1900 where vrsave was saved to. */
6be8bc0c
EZ
1901 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1902 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1903 {
1904 continue;
1905 }
1906 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1907 in a pair of insns to save the vector registers on the
1908 stack. */
1909 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1910 /* 001110 01110 00000 iiii iiii iiii iiii */
1911 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
dda83cd7 1912 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1913 {
dda83cd7
SM
1914 if ((op & 0xffff0000) == 0x38000000)
1915 r0_contains_arg = 0;
6be8bc0c
EZ
1916 li_found_pc = pc;
1917 vr_saved_offset = SIGNED_SHORT (op);
773df3e5 1918
dda83cd7
SM
1919 /* This insn by itself is not part of the prologue, unless
1920 if part of the pair of insns mentioned above. So do not
1921 record this insn as part of the prologue yet. */
1922 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1923 }
1924 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1925 /* 011111 sssss 11111 00000 00111001110 */
1926 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
dda83cd7 1927 {
6be8bc0c
EZ
1928 if (pc == (li_found_pc + 4))
1929 {
1930 vr_reg = GET_SRC_REG (op);
1931 /* If this is the first vector reg to be saved, or if
1932 it has a lower number than others previously seen,
1933 reupdate the frame info. */
1934 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1935 {
1936 fdata->saved_vr = vr_reg;
1937 fdata->vr_offset = vr_saved_offset + offset;
1938 }
1939 vr_saved_offset = -1;
1940 vr_reg = -1;
1941 li_found_pc = 0;
1942 }
1943 }
1944 /* End AltiVec related instructions. */
96ff0de4
EZ
1945
1946 /* Start BookE related instructions. */
1947 /* Store gen register S at (r31+uimm).
dda83cd7 1948 Any register less than r13 is volatile, so we don't care. */
96ff0de4
EZ
1949 /* 000100 sssss 11111 iiiii 01100100001 */
1950 else if (arch_info->mach == bfd_mach_ppc_e500
1951 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1952 {
dda83cd7 1953 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
96ff0de4 1954 {
dda83cd7 1955 unsigned int imm;
96ff0de4 1956 ev_reg = GET_SRC_REG (op);
dda83cd7 1957 imm = (op >> 11) & 0x1f;
96ff0de4
EZ
1958 ev_offset = imm * 8;
1959 /* If this is the first vector reg to be saved, or if
1960 it has a lower number than others previously seen,
1961 reupdate the frame info. */
1962 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1963 {
1964 fdata->saved_ev = ev_reg;
1965 fdata->ev_offset = ev_offset + offset;
1966 }
1967 }
dda83cd7
SM
1968 continue;
1969 }
96ff0de4
EZ
1970 /* Store gen register rS at (r1+rB). */
1971 /* 000100 sssss 00001 bbbbb 01100100000 */
1972 else if (arch_info->mach == bfd_mach_ppc_e500
1973 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1974 {
dda83cd7
SM
1975 if (pc == (li_found_pc + 4))
1976 {
1977 ev_reg = GET_SRC_REG (op);
96ff0de4 1978 /* If this is the first vector reg to be saved, or if
dda83cd7
SM
1979 it has a lower number than others previously seen,
1980 reupdate the frame info. */
1981 /* We know the contents of rB from the previous instruction. */
96ff0de4
EZ
1982 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1983 {
dda83cd7
SM
1984 fdata->saved_ev = ev_reg;
1985 fdata->ev_offset = vr_saved_offset + offset;
96ff0de4
EZ
1986 }
1987 vr_saved_offset = -1;
1988 ev_reg = -1;
1989 li_found_pc = 0;
dda83cd7
SM
1990 }
1991 continue;
1992 }
96ff0de4
EZ
1993 /* Store gen register r31 at (rA+uimm). */
1994 /* 000100 11111 aaaaa iiiii 01100100001 */
1995 else if (arch_info->mach == bfd_mach_ppc_e500
1996 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
dda83cd7
SM
1997 {
1998 /* Wwe know that the source register is 31 already, but
1999 it can't hurt to compute it. */
96ff0de4 2000 ev_reg = GET_SRC_REG (op);
dda83cd7 2001 ev_offset = ((op >> 11) & 0x1f) * 8;
96ff0de4
EZ
2002 /* If this is the first vector reg to be saved, or if
2003 it has a lower number than others previously seen,
2004 reupdate the frame info. */
2005 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2006 {
2007 fdata->saved_ev = ev_reg;
2008 fdata->ev_offset = ev_offset + offset;
2009 }
2010
2011 continue;
2012 }
2013 /* Store gen register S at (r31+r0).
dda83cd7 2014 Store param on stack when offset from SP bigger than 4 bytes. */
96ff0de4
EZ
2015 /* 000100 sssss 11111 00000 01100100000 */
2016 else if (arch_info->mach == bfd_mach_ppc_e500
2017 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2018 {
dda83cd7
SM
2019 if (pc == (li_found_pc + 4))
2020 {
2021 if ((op & 0x03e00000) >= 0x01a00000)
96ff0de4
EZ
2022 {
2023 ev_reg = GET_SRC_REG (op);
2024 /* If this is the first vector reg to be saved, or if
2025 it has a lower number than others previously seen,
2026 reupdate the frame info. */
dda83cd7
SM
2027 /* We know the contents of r0 from the previous
2028 instruction. */
96ff0de4
EZ
2029 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2030 {
2031 fdata->saved_ev = ev_reg;
2032 fdata->ev_offset = vr_saved_offset + offset;
2033 }
2034 ev_reg = -1;
2035 }
2036 vr_saved_offset = -1;
2037 li_found_pc = 0;
2038 continue;
dda83cd7 2039 }
96ff0de4
EZ
2040 }
2041 /* End BookE related instructions. */
2042
c5aa993b
JM
2043 else
2044 {
55d05f3b
KB
2045 /* Not a recognized prologue instruction.
2046 Handle optimizer code motions into the prologue by continuing
2047 the search if we have no valid frame yet or if the return
46a9b8ed
DJ
2048 address is not yet saved in the frame. Also skip instructions
2049 if some of the GPRs expected to be saved are not yet saved. */
2050 if (fdata->frameless == 0 && fdata->nosavedpc == 0
1cc62f2e
JB
2051 && fdata->saved_gpr != -1)
2052 {
2053 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2054
2055 if ((fdata->gpr_mask & all_mask) == all_mask)
2056 break;
2057 }
55d05f3b
KB
2058
2059 if (op == 0x4e800020 /* blr */
2060 || op == 0x4e800420) /* bctr */
2061 /* Do not scan past epilogue in frameless functions or
2062 trampolines. */
2063 break;
2064 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 2065 /* Never skip branches. */
55d05f3b
KB
2066 break;
2067
2068 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2069 /* Do not scan too many insns, scanning insns is expensive with
2070 remote targets. */
2071 break;
2072
2073 /* Continue scanning. */
2074 prev_insn_was_prologue_insn = 0;
2075 continue;
c5aa993b 2076 }
c906108c
SS
2077 }
2078
2079#if 0
2080/* I have problems with skipping over __main() that I need to address
0df8b418 2081 * sometime. Previously, I used to use misc_function_vector which
c906108c
SS
2082 * didn't work as well as I wanted to be. -MGO */
2083
2084 /* If the first thing after skipping a prolog is a branch to a function,
2085 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 2086 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 2087 work before calling a function right after a prologue, thus we can
64366f1c 2088 single out such gcc2 behaviour. */
c906108c 2089
c906108c 2090
c5aa993b 2091 if ((op & 0xfc000001) == 0x48000001)
0df8b418 2092 { /* bl foo, an initializer function? */
e17a4113 2093 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b
JM
2094
2095 if (op == 0x4def7b82)
2096 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 2097
64366f1c
EZ
2098 /* Check and see if we are in main. If so, skip over this
2099 initializer function as well. */
c906108c 2100
c5aa993b 2101 tmp = find_pc_misc_function (pc);
6314a349
AC
2102 if (tmp >= 0
2103 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
2104 return pc + 8;
2105 }
c906108c 2106 }
c906108c 2107#endif /* 0 */
c5aa993b 2108
46a9b8ed 2109 if (pc == lim_pc && lr_reg >= 0)
dd6d677f 2110 fdata->lr_register = lr_reg;
46a9b8ed 2111
c5aa993b 2112 fdata->offset = -fdata->offset;
ddb20c56 2113 return last_prologue_pc;
c906108c
SS
2114}
2115
7a78ae4e 2116static CORE_ADDR
4a7622d1 2117rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2118{
4a7622d1 2119 struct rs6000_framedata frame;
e3acb115 2120 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
c906108c 2121
4a7622d1
UW
2122 /* See if we can determine the end of the prologue via the symbol table.
2123 If so, then return either PC, or the PC after the prologue, whichever
2124 is greater. */
e3acb115 2125 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
c5aa993b 2126 {
d80b854b
UW
2127 CORE_ADDR post_prologue_pc
2128 = skip_prologue_using_sal (gdbarch, func_addr);
4a7622d1 2129 if (post_prologue_pc != 0)
325fac50 2130 return std::max (pc, post_prologue_pc);
c906108c 2131 }
c906108c 2132
4a7622d1
UW
2133 /* Can't determine prologue from the symbol table, need to examine
2134 instructions. */
c906108c 2135
4a7622d1
UW
2136 /* Find an upper limit on the function prologue using the debug
2137 information. If the debug information could not be used to provide
2138 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 2139 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4a7622d1
UW
2140 if (limit_pc == 0)
2141 limit_pc = pc + 100; /* Magic. */
794a477a 2142
e3acb115
JB
2143 /* Do not allow limit_pc to be past the function end, if we know
2144 where that end is... */
2145 if (func_end_addr && limit_pc > func_end_addr)
2146 limit_pc = func_end_addr;
2147
4a7622d1
UW
2148 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2149 return pc;
c906108c 2150}
c906108c 2151
8ab3d180
KB
2152/* When compiling for EABI, some versions of GCC emit a call to __eabi
2153 in the prologue of main().
2154
2155 The function below examines the code pointed at by PC and checks to
2156 see if it corresponds to a call to __eabi. If so, it returns the
2157 address of the instruction following that call. Otherwise, it simply
2158 returns PC. */
2159
63807e1d 2160static CORE_ADDR
8ab3d180
KB
2161rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2162{
e17a4113 2163 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8ab3d180
KB
2164 gdb_byte buf[4];
2165 unsigned long op;
2166
2167 if (target_read_memory (pc, buf, 4))
2168 return pc;
e17a4113 2169 op = extract_unsigned_integer (buf, 4, byte_order);
8ab3d180
KB
2170
2171 if ((op & BL_MASK) == BL_INSTRUCTION)
2172 {
2173 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2174 CORE_ADDR call_dest = pc + 4 + displ;
7cbd4a93 2175 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
8ab3d180
KB
2176
2177 /* We check for ___eabi (three leading underscores) in addition
dda83cd7 2178 to __eabi in case the GCC option "-fleading-underscore" was
8ab3d180 2179 used to compile the program. */
7cbd4a93 2180 if (s.minsym != NULL
dda83cd7 2181 && s.minsym->linkage_name () != NULL
c9d95fa3
CB
2182 && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2183 || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
8ab3d180
KB
2184 pc += 4;
2185 }
2186 return pc;
2187}
383f0f5b 2188
4a7622d1
UW
2189/* All the ABI's require 16 byte alignment. */
2190static CORE_ADDR
2191rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2192{
2193 return (addr & -16);
c906108c
SS
2194}
2195
977adac5
ND
2196/* Return whether handle_inferior_event() should proceed through code
2197 starting at PC in function NAME when stepping.
2198
2199 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2200 handle memory references that are too distant to fit in instructions
2201 generated by the compiler. For example, if 'foo' in the following
2202 instruction:
2203
2204 lwz r9,foo(r2)
2205
2206 is greater than 32767, the linker might replace the lwz with a branch to
2207 somewhere in @FIX1 that does the load in 2 instructions and then branches
2208 back to where execution should continue.
2209
2210 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
2211 Unfortunately, the linker uses the "b" instruction for the
2212 branches, meaning that the link register doesn't get set.
2213 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 2214
e76f05fa
UW
2215 Instead, use the gdbarch_skip_trampoline_code and
2216 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 2217 @FIX code. */
977adac5 2218
63807e1d 2219static int
e17a4113 2220rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2c02bd72 2221 CORE_ADDR pc, const char *name)
977adac5 2222{
61012eef 2223 return name && startswith (name, "@FIX");
977adac5
ND
2224}
2225
2226/* Skip code that the user doesn't want to see when stepping:
2227
2228 1. Indirect function calls use a piece of trampoline code to do context
2229 switching, i.e. to set the new TOC table. Skip such code if we are on
2230 its first instruction (as when we have single-stepped to here).
2231
2232 2. Skip shared library trampoline code (which is different from
c906108c 2233 indirect function call trampolines).
977adac5
ND
2234
2235 3. Skip bigtoc fixup code.
2236
c906108c 2237 Result is desired PC to step until, or NULL if we are not in
977adac5 2238 code that should be skipped. */
c906108c 2239
63807e1d 2240static CORE_ADDR
52f729a7 2241rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 2242{
e17a4113
UW
2243 struct gdbarch *gdbarch = get_frame_arch (frame);
2244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2245 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
52f0bd74 2246 unsigned int ii, op;
977adac5 2247 int rel;
c906108c 2248 CORE_ADDR solib_target_pc;
7cbd4a93 2249 struct bound_minimal_symbol msymbol;
c906108c 2250
c5aa993b
JM
2251 static unsigned trampoline_code[] =
2252 {
2253 0x800b0000, /* l r0,0x0(r11) */
2254 0x90410014, /* st r2,0x14(r1) */
2255 0x7c0903a6, /* mtctr r0 */
2256 0x804b0004, /* l r2,0x4(r11) */
2257 0x816b0008, /* l r11,0x8(r11) */
2258 0x4e800420, /* bctr */
2259 0x4e800020, /* br */
2260 0
c906108c
SS
2261 };
2262
977adac5
ND
2263 /* Check for bigtoc fixup code. */
2264 msymbol = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 2265 if (msymbol.minsym
e17a4113 2266 && rs6000_in_solib_return_trampoline (gdbarch, pc,
c9d95fa3 2267 msymbol.minsym->linkage_name ()))
977adac5
ND
2268 {
2269 /* Double-check that the third instruction from PC is relative "b". */
e17a4113 2270 op = read_memory_integer (pc + 8, 4, byte_order);
977adac5
ND
2271 if ((op & 0xfc000003) == 0x48000000)
2272 {
2273 /* Extract bits 6-29 as a signed 24-bit relative word address and
2274 add it to the containing PC. */
2275 rel = ((int)(op << 6) >> 6);
2276 return pc + 8 + rel;
2277 }
2278 }
2279
c906108c 2280 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2281 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2282 if (solib_target_pc)
2283 return solib_target_pc;
2284
c5aa993b
JM
2285 for (ii = 0; trampoline_code[ii]; ++ii)
2286 {
e17a4113 2287 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
c5aa993b
JM
2288 if (op != trampoline_code[ii])
2289 return 0;
2290 }
0df8b418
MS
2291 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2292 addr. */
e17a4113 2293 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
c906108c
SS
2294 return pc;
2295}
2296
794ac428
UW
2297/* ISA-specific vector types. */
2298
2299static struct type *
2300rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2301{
2302 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2303
2304 if (!tdep->ppc_builtin_type_vec64)
2305 {
df4df182
UW
2306 const struct builtin_type *bt = builtin_type (gdbarch);
2307
794ac428
UW
2308 /* The type we're building is this: */
2309#if 0
2310 union __gdb_builtin_type_vec64
2311 {
2312 int64_t uint64;
2313 float v2_float[2];
2314 int32_t v2_int32[2];
2315 int16_t v4_int16[4];
2316 int8_t v8_int8[8];
2317 };
2318#endif
2319
2320 struct type *t;
2321
e9bb382b
UW
2322 t = arch_composite_type (gdbarch,
2323 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
df4df182 2324 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2325 append_composite_type_field (t, "v2_float",
df4df182 2326 init_vector_type (bt->builtin_float, 2));
794ac428 2327 append_composite_type_field (t, "v2_int32",
df4df182 2328 init_vector_type (bt->builtin_int32, 2));
794ac428 2329 append_composite_type_field (t, "v4_int16",
df4df182 2330 init_vector_type (bt->builtin_int16, 4));
794ac428 2331 append_composite_type_field (t, "v8_int8",
df4df182 2332 init_vector_type (bt->builtin_int8, 8));
794ac428 2333
2062087b 2334 t->set_is_vector (true);
d0e39ea2 2335 t->set_name ("ppc_builtin_type_vec64");
794ac428
UW
2336 tdep->ppc_builtin_type_vec64 = t;
2337 }
2338
2339 return tdep->ppc_builtin_type_vec64;
2340}
2341
604c2f83
LM
2342/* Vector 128 type. */
2343
2344static struct type *
2345rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2346{
2347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2348
2349 if (!tdep->ppc_builtin_type_vec128)
2350 {
df4df182
UW
2351 const struct builtin_type *bt = builtin_type (gdbarch);
2352
604c2f83
LM
2353 /* The type we're building is this
2354
2355 type = union __ppc_builtin_type_vec128 {
2356 uint128_t uint128;
db9f5df8 2357 double v2_double[2];
604c2f83
LM
2358 float v4_float[4];
2359 int32_t v4_int32[4];
2360 int16_t v8_int16[8];
2361 int8_t v16_int8[16];
2362 }
2363 */
2364
2365 struct type *t;
2366
e9bb382b
UW
2367 t = arch_composite_type (gdbarch,
2368 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 2369 append_composite_type_field (t, "uint128", bt->builtin_uint128);
db9f5df8
UW
2370 append_composite_type_field (t, "v2_double",
2371 init_vector_type (bt->builtin_double, 2));
604c2f83 2372 append_composite_type_field (t, "v4_float",
df4df182 2373 init_vector_type (bt->builtin_float, 4));
604c2f83 2374 append_composite_type_field (t, "v4_int32",
df4df182 2375 init_vector_type (bt->builtin_int32, 4));
604c2f83 2376 append_composite_type_field (t, "v8_int16",
df4df182 2377 init_vector_type (bt->builtin_int16, 8));
604c2f83 2378 append_composite_type_field (t, "v16_int8",
df4df182 2379 init_vector_type (bt->builtin_int8, 16));
604c2f83 2380
2062087b 2381 t->set_is_vector (true);
d0e39ea2 2382 t->set_name ("ppc_builtin_type_vec128");
604c2f83
LM
2383 tdep->ppc_builtin_type_vec128 = t;
2384 }
2385
2386 return tdep->ppc_builtin_type_vec128;
2387}
2388
7cc46491
DJ
2389/* Return the name of register number REGNO, or the empty string if it
2390 is an anonymous register. */
7a78ae4e 2391
fa88f677 2392static const char *
d93859e2 2393rs6000_register_name (struct gdbarch *gdbarch, int regno)
7a78ae4e 2394{
d93859e2 2395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2396
7cc46491
DJ
2397 /* The upper half "registers" have names in the XML description,
2398 but we present only the low GPRs and the full 64-bit registers
2399 to the user. */
2400 if (tdep->ppc_ev0_upper_regnum >= 0
2401 && tdep->ppc_ev0_upper_regnum <= regno
2402 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2403 return "";
2404
604c2f83
LM
2405 /* Hide the upper halves of the vs0~vs31 registers. */
2406 if (tdep->ppc_vsr0_regnum >= 0
2407 && tdep->ppc_vsr0_upper_regnum <= regno
2408 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2409 return "";
2410
8d619c01
EBM
2411 /* Hide the upper halves of the cvs0~cvs31 registers. */
2412 if (PPC_CVSR0_UPPER_REGNUM <= regno
2413 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2414 return "";
2415
7cc46491 2416 /* Check if the SPE pseudo registers are available. */
5a9e69ba 2417 if (IS_SPE_PSEUDOREG (tdep, regno))
7cc46491
DJ
2418 {
2419 static const char *const spe_regnames[] = {
2420 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2421 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2422 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2423 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2424 };
2425 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2426 }
2427
f949c649
TJB
2428 /* Check if the decimal128 pseudo-registers are available. */
2429 if (IS_DFP_PSEUDOREG (tdep, regno))
2430 {
2431 static const char *const dfp128_regnames[] = {
2432 "dl0", "dl1", "dl2", "dl3",
2433 "dl4", "dl5", "dl6", "dl7",
2434 "dl8", "dl9", "dl10", "dl11",
2435 "dl12", "dl13", "dl14", "dl15"
2436 };
2437 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2438 }
2439
6f072a10
PFC
2440 /* Check if this is a vX alias for a raw vrX vector register. */
2441 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2442 {
2443 static const char *const vector_alias_regnames[] = {
2444 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2445 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2446 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2447 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2448 };
2449 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2450 }
2451
604c2f83
LM
2452 /* Check if this is a VSX pseudo-register. */
2453 if (IS_VSX_PSEUDOREG (tdep, regno))
2454 {
2455 static const char *const vsx_regnames[] = {
2456 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2457 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2458 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2459 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2460 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2461 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2462 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2463 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2464 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2465 };
2466 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2467 }
2468
2469 /* Check if the this is a Extended FP pseudo-register. */
2470 if (IS_EFP_PSEUDOREG (tdep, regno))
2471 {
2472 static const char *const efpr_regnames[] = {
2473 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2474 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2475 "f46", "f47", "f48", "f49", "f50", "f51",
2476 "f52", "f53", "f54", "f55", "f56", "f57",
2477 "f58", "f59", "f60", "f61", "f62", "f63"
2478 };
2479 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2480 }
2481
8d619c01
EBM
2482 /* Check if this is a Checkpointed DFP pseudo-register. */
2483 if (IS_CDFP_PSEUDOREG (tdep, regno))
2484 {
2485 static const char *const cdfp128_regnames[] = {
2486 "cdl0", "cdl1", "cdl2", "cdl3",
2487 "cdl4", "cdl5", "cdl6", "cdl7",
2488 "cdl8", "cdl9", "cdl10", "cdl11",
2489 "cdl12", "cdl13", "cdl14", "cdl15"
2490 };
2491 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2492 }
2493
2494 /* Check if this is a Checkpointed VSX pseudo-register. */
2495 if (IS_CVSX_PSEUDOREG (tdep, regno))
2496 {
2497 static const char *const cvsx_regnames[] = {
2498 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2499 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2500 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2501 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2502 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2503 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2504 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2505 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2506 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2507 };
2508 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2509 }
2510
2511 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2512 if (IS_CEFP_PSEUDOREG (tdep, regno))
2513 {
2514 static const char *const cefpr_regnames[] = {
2515 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2516 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2517 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2518 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2519 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2520 };
2521 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2522 }
2523
d93859e2 2524 return tdesc_register_name (gdbarch, regno);
7a78ae4e
ND
2525}
2526
7cc46491
DJ
2527/* Return the GDB type object for the "standard" data type of data in
2528 register N. */
7a78ae4e
ND
2529
2530static struct type *
7cc46491 2531rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
7a78ae4e 2532{
691d145a 2533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2534
f949c649
TJB
2535 /* These are the e500 pseudo-registers. */
2536 if (IS_SPE_PSEUDOREG (tdep, regnum))
2537 return rs6000_builtin_type_vec64 (gdbarch);
8d619c01
EBM
2538 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2539 || IS_CDFP_PSEUDOREG (tdep, regnum))
604c2f83 2540 /* PPC decimal128 pseudo-registers. */
f949c649 2541 return builtin_type (gdbarch)->builtin_declong;
6f072a10
PFC
2542 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2543 return gdbarch_register_type (gdbarch,
2544 tdep->ppc_vr0_regnum
2545 + (regnum
2546 - tdep->ppc_v0_alias_regnum));
8d619c01
EBM
2547 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2548 || IS_CVSX_PSEUDOREG (tdep, regnum))
604c2f83
LM
2549 /* POWER7 VSX pseudo-registers. */
2550 return rs6000_builtin_type_vec128 (gdbarch);
8d619c01
EBM
2551 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2552 || IS_CEFP_PSEUDOREG (tdep, regnum))
604c2f83
LM
2553 /* POWER7 Extended FP pseudo-registers. */
2554 return builtin_type (gdbarch)->builtin_double;
8d619c01
EBM
2555 else
2556 internal_error (__FILE__, __LINE__,
2557 _("rs6000_pseudo_register_type: "
2558 "called on unexpected register '%s' (%d)"),
2559 gdbarch_register_name (gdbarch, regnum), regnum);
7a78ae4e
ND
2560}
2561
6f072a10
PFC
2562/* Check if REGNUM is a member of REGGROUP. We only need to handle
2563 the vX aliases for the vector registers by always returning false
2564 to avoid duplicated information in "info register vector/all",
2565 since the raw vrX registers will already show in these cases. For
2566 other pseudo-registers we use the default membership function. */
2567
2568static int
2569rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2570 struct reggroup *group)
2571{
2572 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2573
2574 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2575 return 0;
2576 else
2577 return default_register_reggroup_p (gdbarch, regnum, group);
2578}
2579
691d145a 2580/* The register format for RS/6000 floating point registers is always
64366f1c 2581 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2582
2583static int
0abe36f5
MD
2584rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2585 struct type *type)
7a78ae4e 2586{
0abe36f5 2587 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7cc46491
DJ
2588
2589 return (tdep->ppc_fp0_regnum >= 0
2590 && regnum >= tdep->ppc_fp0_regnum
2591 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
78134374 2592 && type->code () == TYPE_CODE_FLT
0dfff4cb
UW
2593 && TYPE_LENGTH (type)
2594 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
7a78ae4e
ND
2595}
2596
8dccd430 2597static int
691d145a 2598rs6000_register_to_value (struct frame_info *frame,
dda83cd7
SM
2599 int regnum,
2600 struct type *type,
2601 gdb_byte *to,
8dccd430 2602 int *optimizedp, int *unavailablep)
7a78ae4e 2603{
0dfff4cb 2604 struct gdbarch *gdbarch = get_frame_arch (frame);
0f068fb5 2605 gdb_byte from[PPC_MAX_REGISTER_SIZE];
691d145a 2606
78134374 2607 gdb_assert (type->code () == TYPE_CODE_FLT);
7a78ae4e 2608
8dccd430
PA
2609 if (!get_frame_register_bytes (frame, regnum, 0,
2610 register_size (gdbarch, regnum),
2611 from, optimizedp, unavailablep))
2612 return 0;
2613
3b2ca824
UW
2614 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2615 to, type);
8dccd430
PA
2616 *optimizedp = *unavailablep = 0;
2617 return 1;
691d145a 2618}
7a292a7a 2619
7a78ae4e 2620static void
691d145a 2621rs6000_value_to_register (struct frame_info *frame,
dda83cd7
SM
2622 int regnum,
2623 struct type *type,
2624 const gdb_byte *from)
7a78ae4e 2625{
0dfff4cb 2626 struct gdbarch *gdbarch = get_frame_arch (frame);
0f068fb5 2627 gdb_byte to[PPC_MAX_REGISTER_SIZE];
691d145a 2628
78134374 2629 gdb_assert (type->code () == TYPE_CODE_FLT);
691d145a 2630
3b2ca824
UW
2631 target_float_convert (from, type,
2632 to, builtin_type (gdbarch)->builtin_double);
691d145a 2633 put_frame_register (frame, regnum, to);
7a78ae4e 2634}
c906108c 2635
05d1431c
PA
2636 /* The type of a function that moves the value of REG between CACHE
2637 or BUF --- in either direction. */
2638typedef enum register_status (*move_ev_register_func) (struct regcache *,
2639 int, void *);
2640
6ced10dd
JB
2641/* Move SPE vector register values between a 64-bit buffer and the two
2642 32-bit raw register halves in a regcache. This function handles
2643 both splitting a 64-bit value into two 32-bit halves, and joining
2644 two halves into a whole 64-bit value, depending on the function
2645 passed as the MOVE argument.
2646
2647 EV_REG must be the number of an SPE evN vector register --- a
2648 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2649 64-bit buffer.
2650
2651 Call MOVE once for each 32-bit half of that register, passing
2652 REGCACHE, the number of the raw register corresponding to that
2653 half, and the address of the appropriate half of BUFFER.
2654
2655 For example, passing 'regcache_raw_read' as the MOVE function will
2656 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2657 'regcache_raw_supply' will supply the contents of BUFFER to the
2658 appropriate pair of raw registers in REGCACHE.
2659
2660 You may need to cast away some 'const' qualifiers when passing
2661 MOVE, since this function can't tell at compile-time which of
2662 REGCACHE or BUFFER is acting as the source of the data. If C had
2663 co-variant type qualifiers, ... */
05d1431c
PA
2664
2665static enum register_status
2666e500_move_ev_register (move_ev_register_func move,
2667 struct regcache *regcache, int ev_reg, void *buffer)
6ced10dd 2668{
ac7936df 2669 struct gdbarch *arch = regcache->arch ();
6ced10dd
JB
2670 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2671 int reg_index;
19ba03f4 2672 gdb_byte *byte_buffer = (gdb_byte *) buffer;
05d1431c 2673 enum register_status status;
6ced10dd 2674
5a9e69ba 2675 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
6ced10dd
JB
2676
2677 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2678
8b164abb 2679 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
6ced10dd 2680 {
05d1431c
PA
2681 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2682 byte_buffer);
2683 if (status == REG_VALID)
2684 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2685 byte_buffer + 4);
6ced10dd
JB
2686 }
2687 else
2688 {
05d1431c
PA
2689 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2690 if (status == REG_VALID)
2691 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2692 byte_buffer + 4);
6ced10dd 2693 }
05d1431c
PA
2694
2695 return status;
6ced10dd
JB
2696}
2697
05d1431c
PA
2698static enum register_status
2699do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2700{
10eaee5f 2701 regcache->raw_write (regnum, (const gdb_byte *) buffer);
05d1431c
PA
2702
2703 return REG_VALID;
2704}
2705
2706static enum register_status
849d0ba8
YQ
2707e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2708 int ev_reg, gdb_byte *buffer)
f949c649 2709{
849d0ba8
YQ
2710 struct gdbarch *arch = regcache->arch ();
2711 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2712 int reg_index;
2713 enum register_status status;
2714
2715 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2716
2717 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2718
2719 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2720 {
2721 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2722 buffer);
2723 if (status == REG_VALID)
2724 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2725 buffer + 4);
2726 }
2727 else
2728 {
2729 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2730 if (status == REG_VALID)
2731 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2732 buffer + 4);
2733 }
2734
2735 return status;
2736
f949c649
TJB
2737}
2738
2739static void
2740e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2741 int reg_nr, const gdb_byte *buffer)
2742{
05d1431c
PA
2743 e500_move_ev_register (do_regcache_raw_write, regcache,
2744 reg_nr, (void *) buffer);
f949c649
TJB
2745}
2746
604c2f83 2747/* Read method for DFP pseudo-registers. */
05d1431c 2748static enum register_status
849d0ba8 2749dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
f949c649
TJB
2750 int reg_nr, gdb_byte *buffer)
2751{
2752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2753 int reg_index, fp0;
05d1431c 2754 enum register_status status;
f949c649 2755
8d619c01
EBM
2756 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2757 {
2758 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2759 fp0 = PPC_F0_REGNUM;
2760 }
2761 else
2762 {
2763 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2764
2765 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2766 fp0 = PPC_CF0_REGNUM;
2767 }
2768
f949c649
TJB
2769 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2770 {
2771 /* Read two FP registers to form a whole dl register. */
8d619c01 2772 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
05d1431c 2773 if (status == REG_VALID)
8d619c01
EBM
2774 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2775 buffer + 8);
f949c649
TJB
2776 }
2777 else
2778 {
8d619c01 2779 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
05d1431c 2780 if (status == REG_VALID)
8d619c01 2781 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
f949c649 2782 }
05d1431c
PA
2783
2784 return status;
f949c649
TJB
2785}
2786
604c2f83 2787/* Write method for DFP pseudo-registers. */
f949c649 2788static void
604c2f83 2789dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2790 int reg_nr, const gdb_byte *buffer)
2791{
2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2793 int reg_index, fp0;
2794
2795 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2796 {
2797 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2798 fp0 = PPC_F0_REGNUM;
2799 }
2800 else
2801 {
2802 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2803
2804 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2805 fp0 = PPC_CF0_REGNUM;
2806 }
f949c649
TJB
2807
2808 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2809 {
2810 /* Write each half of the dl register into a separate
8d619c01
EBM
2811 FP register. */
2812 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2813 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
f949c649
TJB
2814 }
2815 else
2816 {
8d619c01
EBM
2817 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2818 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
f949c649
TJB
2819 }
2820}
2821
6f072a10
PFC
2822/* Read method for the vX aliases for the raw vrX registers. */
2823
2824static enum register_status
2825v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2826 readable_regcache *regcache, int reg_nr,
2827 gdb_byte *buffer)
2828{
2829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2830 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2831
2832 return regcache->raw_read (tdep->ppc_vr0_regnum
2833 + (reg_nr - tdep->ppc_v0_alias_regnum),
2834 buffer);
2835}
2836
2837/* Write method for the vX aliases for the raw vrX registers. */
2838
2839static void
2840v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2841 struct regcache *regcache,
2842 int reg_nr, const gdb_byte *buffer)
2843{
2844 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2845 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2846
2847 regcache->raw_write (tdep->ppc_vr0_regnum
2848 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2849}
2850
604c2f83 2851/* Read method for POWER7 VSX pseudo-registers. */
05d1431c 2852static enum register_status
849d0ba8 2853vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
604c2f83
LM
2854 int reg_nr, gdb_byte *buffer)
2855{
2856 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2857 int reg_index, vr0, fp0, vsr0_upper;
05d1431c 2858 enum register_status status;
604c2f83 2859
8d619c01
EBM
2860 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2861 {
2862 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2863 vr0 = PPC_VR0_REGNUM;
2864 fp0 = PPC_F0_REGNUM;
2865 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2866 }
2867 else
2868 {
2869 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2870
2871 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2872 vr0 = PPC_CVR0_REGNUM;
2873 fp0 = PPC_CF0_REGNUM;
2874 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2875 }
2876
604c2f83
LM
2877 /* Read the portion that overlaps the VMX registers. */
2878 if (reg_index > 31)
8d619c01 2879 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
604c2f83
LM
2880 else
2881 /* Read the portion that overlaps the FPR registers. */
2882 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2883 {
8d619c01 2884 status = regcache->raw_read (fp0 + reg_index, buffer);
05d1431c 2885 if (status == REG_VALID)
8d619c01
EBM
2886 status = regcache->raw_read (vsr0_upper + reg_index,
2887 buffer + 8);
604c2f83
LM
2888 }
2889 else
2890 {
8d619c01 2891 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
05d1431c 2892 if (status == REG_VALID)
8d619c01 2893 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
604c2f83 2894 }
05d1431c
PA
2895
2896 return status;
604c2f83
LM
2897}
2898
2899/* Write method for POWER7 VSX pseudo-registers. */
2900static void
2901vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2902 int reg_nr, const gdb_byte *buffer)
2903{
2904 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2905 int reg_index, vr0, fp0, vsr0_upper;
2906
2907 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2908 {
2909 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2910 vr0 = PPC_VR0_REGNUM;
2911 fp0 = PPC_F0_REGNUM;
2912 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2913 }
2914 else
2915 {
2916 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2917
2918 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2919 vr0 = PPC_CVR0_REGNUM;
2920 fp0 = PPC_CF0_REGNUM;
2921 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2922 }
604c2f83
LM
2923
2924 /* Write the portion that overlaps the VMX registers. */
2925 if (reg_index > 31)
8d619c01 2926 regcache->raw_write (vr0 + reg_index - 32, buffer);
604c2f83
LM
2927 else
2928 /* Write the portion that overlaps the FPR registers. */
2929 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2930 {
8d619c01
EBM
2931 regcache->raw_write (fp0 + reg_index, buffer);
2932 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
604c2f83
LM
2933 }
2934 else
2935 {
8d619c01
EBM
2936 regcache->raw_write (fp0 + reg_index, buffer + 8);
2937 regcache->raw_write (vsr0_upper + reg_index, buffer);
604c2f83
LM
2938 }
2939}
2940
2941/* Read method for POWER7 Extended FP pseudo-registers. */
05d1431c 2942static enum register_status
8d619c01 2943efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
604c2f83
LM
2944 int reg_nr, gdb_byte *buffer)
2945{
2946 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2947 int reg_index, vr0;
2948
2949 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2950 {
2951 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2952 vr0 = PPC_VR0_REGNUM;
2953 }
2954 else
2955 {
2956 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2957
2958 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2959 vr0 = PPC_CVR0_REGNUM;
2960 }
2961
084ee545 2962 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2963
d9492458 2964 /* Read the portion that overlaps the VMX register. */
8d619c01
EBM
2965 return regcache->raw_read_part (vr0 + reg_index, offset,
2966 register_size (gdbarch, reg_nr),
849d0ba8 2967 buffer);
604c2f83
LM
2968}
2969
2970/* Write method for POWER7 Extended FP pseudo-registers. */
2971static void
8d619c01 2972efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
604c2f83
LM
2973 int reg_nr, const gdb_byte *buffer)
2974{
2975 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2976 int reg_index, vr0;
084ee545 2977 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2978
8d619c01
EBM
2979 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2980 {
2981 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2982 vr0 = PPC_VR0_REGNUM;
2983 }
2984 else
2985 {
2986 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2987
2988 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2989 vr0 = PPC_CVR0_REGNUM;
2990
2991 /* The call to raw_write_part fails silently if the initial read
2992 of the read-update-write sequence returns an invalid status,
2993 so we check this manually and throw an error if needed. */
2994 regcache->raw_update (vr0 + reg_index);
2995 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
2996 error (_("Cannot write to the checkpointed EFP register, "
2997 "the corresponding vector register is unavailable."));
2998 }
2999
d9492458 3000 /* Write the portion that overlaps the VMX register. */
8d619c01 3001 regcache->raw_write_part (vr0 + reg_index, offset,
4f0420fd 3002 register_size (gdbarch, reg_nr), buffer);
604c2f83
LM
3003}
3004
05d1431c 3005static enum register_status
0df8b418 3006rs6000_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 3007 readable_regcache *regcache,
f949c649 3008 int reg_nr, gdb_byte *buffer)
c8001721 3009{
ac7936df 3010 struct gdbarch *regcache_arch = regcache->arch ();
c8001721
EZ
3011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3012
6ced10dd 3013 gdb_assert (regcache_arch == gdbarch);
f949c649 3014
5a9e69ba 3015 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
05d1431c 3016 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3017 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3018 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
05d1431c 3019 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6f072a10
PFC
3020 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3021 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
3022 buffer);
8d619c01
EBM
3023 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3024 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
05d1431c 3025 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3026 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3027 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3028 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6ced10dd 3029 else
a44bddec 3030 internal_error (__FILE__, __LINE__,
f949c649
TJB
3031 _("rs6000_pseudo_register_read: "
3032 "called on unexpected register '%s' (%d)"),
3033 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
3034}
3035
3036static void
f949c649
TJB
3037rs6000_pseudo_register_write (struct gdbarch *gdbarch,
3038 struct regcache *regcache,
3039 int reg_nr, const gdb_byte *buffer)
c8001721 3040{
ac7936df 3041 struct gdbarch *regcache_arch = regcache->arch ();
c8001721
EZ
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043
6ced10dd 3044 gdb_assert (regcache_arch == gdbarch);
f949c649 3045
5a9e69ba 3046 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
f949c649 3047 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3048 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3049 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
604c2f83 3050 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6f072a10
PFC
3051 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3052 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3053 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3054 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
604c2f83 3055 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3056 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3057 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3058 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6ced10dd 3059 else
a44bddec 3060 internal_error (__FILE__, __LINE__,
f949c649
TJB
3061 _("rs6000_pseudo_register_write: "
3062 "called on unexpected register '%s' (%d)"),
3063 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
3064}
3065
8d619c01
EBM
3066/* Set the register mask in AX with the registers that form the DFP or
3067 checkpointed DFP pseudo-register REG_NR. */
3068
3069static void
3070dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3071 struct agent_expr *ax, int reg_nr)
3072{
3073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3074 int reg_index, fp0;
3075
3076 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3077 {
3078 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3079 fp0 = PPC_F0_REGNUM;
3080 }
3081 else
3082 {
3083 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3084
3085 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3086 fp0 = PPC_CF0_REGNUM;
3087 }
3088
3089 ax_reg_mask (ax, fp0 + 2 * reg_index);
3090 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3091}
3092
6f072a10
PFC
3093/* Set the register mask in AX with the raw vector register that
3094 corresponds to its REG_NR alias. */
3095
3096static void
3097v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3098 struct agent_expr *ax, int reg_nr)
3099{
3100 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3101 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3102
3103 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3104 + (reg_nr - tdep->ppc_v0_alias_regnum));
3105}
3106
8d619c01
EBM
3107/* Set the register mask in AX with the registers that form the VSX or
3108 checkpointed VSX pseudo-register REG_NR. */
3109
3110static void
3111vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3112 struct agent_expr *ax, int reg_nr)
3113{
3114 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3115 int reg_index, vr0, fp0, vsr0_upper;
3116
3117 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3118 {
3119 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3120 vr0 = PPC_VR0_REGNUM;
3121 fp0 = PPC_F0_REGNUM;
3122 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3123 }
3124 else
3125 {
3126 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3127
3128 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3129 vr0 = PPC_CVR0_REGNUM;
3130 fp0 = PPC_CF0_REGNUM;
3131 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3132 }
3133
3134 if (reg_index > 31)
3135 {
3136 ax_reg_mask (ax, vr0 + reg_index - 32);
3137 }
3138 else
3139 {
3140 ax_reg_mask (ax, fp0 + reg_index);
3141 ax_reg_mask (ax, vsr0_upper + reg_index);
3142 }
3143}
3144
3145/* Set the register mask in AX with the register that corresponds to
3146 the EFP or checkpointed EFP pseudo-register REG_NR. */
3147
3148static void
3149efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3150 struct agent_expr *ax, int reg_nr)
3151{
3152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3153 int reg_index, vr0;
3154
3155 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3156 {
3157 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3158 vr0 = PPC_VR0_REGNUM;
3159 }
3160 else
3161 {
3162 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3163
3164 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3165 vr0 = PPC_CVR0_REGNUM;
3166 }
3167
3168 ax_reg_mask (ax, vr0 + reg_index);
3169}
3170
2a2fa07b
MK
3171static int
3172rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3173 struct agent_expr *ax, int reg_nr)
3174{
3175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3176 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3177 {
3178 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3179 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3180 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3181 }
8d619c01
EBM
3182 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3183 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3184 {
8d619c01 3185 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b 3186 }
6f072a10
PFC
3187 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3188 {
3189 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3190 }
8d619c01
EBM
3191 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3192 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3193 {
8d619c01 3194 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b 3195 }
8d619c01
EBM
3196 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3197 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3198 {
8d619c01 3199 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b
MK
3200 }
3201 else
3202 internal_error (__FILE__, __LINE__,
3203 _("rs6000_pseudo_register_collect: "
3204 "called on unexpected register '%s' (%d)"),
3205 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3206 return 0;
3207}
3208
3209
a67914de
MK
3210static void
3211rs6000_gen_return_address (struct gdbarch *gdbarch,
3212 struct agent_expr *ax, struct axs_value *value,
3213 CORE_ADDR scope)
3214{
3215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3216 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3217 value->kind = axs_lvalue_register;
3218 value->u.reg = tdep->ppc_lr_regnum;
3219}
3220
3221
18ed0c4e 3222/* Convert a DBX STABS register number to a GDB register number. */
c8001721 3223static int
d3f73121 3224rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
c8001721 3225{
d3f73121 3226 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c8001721 3227
9f744501
JB
3228 if (0 <= num && num <= 31)
3229 return tdep->ppc_gp0_regnum + num;
3230 else if (32 <= num && num <= 63)
383f0f5b
JB
3231 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3232 specifies registers the architecture doesn't have? Our
3233 callers don't check the value we return. */
366f009f 3234 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
3235 else if (77 <= num && num <= 108)
3236 return tdep->ppc_vr0_regnum + (num - 77);
9f744501 3237 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 3238 return tdep->ppc_ev0_upper_regnum + (num - 1200);
9f744501
JB
3239 else
3240 switch (num)
3241 {
3242 case 64:
dda83cd7 3243 return tdep->ppc_mq_regnum;
9f744501 3244 case 65:
dda83cd7 3245 return tdep->ppc_lr_regnum;
9f744501 3246 case 66:
dda83cd7 3247 return tdep->ppc_ctr_regnum;
9f744501 3248 case 76:
dda83cd7 3249 return tdep->ppc_xer_regnum;
9f744501 3250 case 109:
dda83cd7 3251 return tdep->ppc_vrsave_regnum;
18ed0c4e 3252 case 110:
dda83cd7 3253 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 3254 case 111:
dda83cd7 3255 return tdep->ppc_acc_regnum;
867e2dc5 3256 case 112:
dda83cd7 3257 return tdep->ppc_spefscr_regnum;
9f744501 3258 default:
dda83cd7 3259 return num;
9f744501 3260 }
18ed0c4e 3261}
9f744501 3262
9f744501 3263
18ed0c4e
JB
3264/* Convert a Dwarf 2 register number to a GDB register number. */
3265static int
d3f73121 3266rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
18ed0c4e 3267{
d3f73121 3268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f744501 3269
18ed0c4e
JB
3270 if (0 <= num && num <= 31)
3271 return tdep->ppc_gp0_regnum + num;
3272 else if (32 <= num && num <= 63)
3273 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3274 specifies registers the architecture doesn't have? Our
3275 callers don't check the value we return. */
3276 return tdep->ppc_fp0_regnum + (num - 32);
3277 else if (1124 <= num && num < 1124 + 32)
3278 return tdep->ppc_vr0_regnum + (num - 1124);
3279 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 3280 return tdep->ppc_ev0_upper_regnum + (num - 1200);
18ed0c4e
JB
3281 else
3282 switch (num)
3283 {
a489f789
AS
3284 case 64:
3285 return tdep->ppc_cr_regnum;
18ed0c4e 3286 case 67:
dda83cd7 3287 return tdep->ppc_vrsave_regnum - 1; /* vscr */
18ed0c4e 3288 case 99:
dda83cd7 3289 return tdep->ppc_acc_regnum;
18ed0c4e 3290 case 100:
dda83cd7 3291 return tdep->ppc_mq_regnum;
18ed0c4e 3292 case 101:
dda83cd7 3293 return tdep->ppc_xer_regnum;
18ed0c4e 3294 case 108:
dda83cd7 3295 return tdep->ppc_lr_regnum;
18ed0c4e 3296 case 109:
dda83cd7 3297 return tdep->ppc_ctr_regnum;
18ed0c4e 3298 case 356:
dda83cd7 3299 return tdep->ppc_vrsave_regnum;
18ed0c4e 3300 case 612:
dda83cd7 3301 return tdep->ppc_spefscr_regnum;
18ed0c4e 3302 }
aa2045e7
SM
3303
3304 /* Unknown DWARF register number. */
3305 return -1;
2188cbdd
EZ
3306}
3307
4fc771b8
DJ
3308/* Translate a .eh_frame register to DWARF register, or adjust a
3309 .debug_frame register. */
3310
3311static int
3312rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3313{
3314 /* GCC releases before 3.4 use GCC internal register numbering in
3315 .debug_frame (and .debug_info, et cetera). The numbering is
3316 different from the standard SysV numbering for everything except
3317 for GPRs and FPRs. We can not detect this problem in most cases
3318 - to get accurate debug info for variables living in lr, ctr, v0,
3319 et cetera, use a newer version of GCC. But we must detect
3320 one important case - lr is in column 65 in .debug_frame output,
3321 instead of 108.
3322
3323 GCC 3.4, and the "hammer" branch, have a related problem. They
3324 record lr register saves in .debug_frame as 108, but still record
3325 the return column as 65. We fix that up too.
3326
3327 We can do this because 65 is assigned to fpsr, and GCC never
3328 generates debug info referring to it. To add support for
3329 handwritten debug info that restores fpsr, we would need to add a
3330 producer version check to this. */
3331 if (!eh_frame_p)
3332 {
3333 if (num == 65)
3334 return 108;
3335 else
3336 return num;
3337 }
3338
3339 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3340 internal register numbering; translate that to the standard DWARF2
3341 register numbering. */
3342 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3343 return num;
3344 else if (68 <= num && num <= 75) /* cr0-cr8 */
3345 return num - 68 + 86;
3346 else if (77 <= num && num <= 108) /* vr0-vr31 */
3347 return num - 77 + 1124;
3348 else
3349 switch (num)
3350 {
3351 case 64: /* mq */
3352 return 100;
3353 case 65: /* lr */
3354 return 108;
3355 case 66: /* ctr */
3356 return 109;
3357 case 76: /* xer */
3358 return 101;
3359 case 109: /* vrsave */
3360 return 356;
3361 case 110: /* vscr */
3362 return 67;
3363 case 111: /* spe_acc */
3364 return 99;
3365 case 112: /* spefscr */
3366 return 612;
3367 default:
3368 return num;
3369 }
3370}
c906108c 3371\f
c5aa993b 3372
7a78ae4e 3373/* Handling the various POWER/PowerPC variants. */
c906108c 3374
c906108c 3375/* Information about a particular processor variant. */
7a78ae4e 3376
675127ec 3377struct ppc_variant
c5aa993b
JM
3378 {
3379 /* Name of this variant. */
a121b7c1 3380 const char *name;
c906108c 3381
c5aa993b 3382 /* English description of the variant. */
a121b7c1 3383 const char *description;
c906108c 3384
64366f1c 3385 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
3386 enum bfd_architecture arch;
3387
64366f1c 3388 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
3389 unsigned long mach;
3390
7cc46491
DJ
3391 /* Target description for this variant. */
3392 struct target_desc **tdesc;
c5aa993b 3393 };
c906108c 3394
675127ec 3395static struct ppc_variant variants[] =
c906108c 3396{
7a78ae4e 3397 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
7284e1be 3398 bfd_mach_ppc, &tdesc_powerpc_altivec32},
7a78ae4e 3399 {"power", "POWER user-level", bfd_arch_rs6000,
7cc46491 3400 bfd_mach_rs6k, &tdesc_rs6000},
7a78ae4e 3401 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
7cc46491 3402 bfd_mach_ppc_403, &tdesc_powerpc_403},
4d09ffea
MS
3403 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3404 bfd_mach_ppc_405, &tdesc_powerpc_405},
7a78ae4e 3405 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
7cc46491 3406 bfd_mach_ppc_601, &tdesc_powerpc_601},
7a78ae4e 3407 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
7cc46491 3408 bfd_mach_ppc_602, &tdesc_powerpc_602},
7a78ae4e 3409 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
7cc46491 3410 bfd_mach_ppc_603, &tdesc_powerpc_603},
7a78ae4e 3411 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
7cc46491 3412 604, &tdesc_powerpc_604},
7a78ae4e 3413 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
7cc46491 3414 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
7a78ae4e 3415 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
7cc46491 3416 bfd_mach_ppc_505, &tdesc_powerpc_505},
7a78ae4e 3417 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
7cc46491 3418 bfd_mach_ppc_860, &tdesc_powerpc_860},
7a78ae4e 3419 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
7cc46491 3420 bfd_mach_ppc_750, &tdesc_powerpc_750},
1fcc0bb8 3421 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
7cc46491 3422 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
c8001721 3423 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
7cc46491 3424 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
7a78ae4e 3425
5d57ee30
KB
3426 /* 64-bit */
3427 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
7284e1be 3428 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
7a78ae4e 3429 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
7cc46491 3430 bfd_mach_ppc_620, &tdesc_powerpc_64},
5d57ee30 3431 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
7cc46491 3432 bfd_mach_ppc_630, &tdesc_powerpc_64},
7a78ae4e 3433 {"a35", "PowerPC A35", bfd_arch_powerpc,
7cc46491 3434 bfd_mach_ppc_a35, &tdesc_powerpc_64},
5d57ee30 3435 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
7cc46491 3436 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
5d57ee30 3437 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
7cc46491 3438 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
5d57ee30 3439
64366f1c 3440 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 3441 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
7cc46491 3442 bfd_mach_rs6k_rs1, &tdesc_rs6000},
7a78ae4e 3443 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
7cc46491 3444 bfd_mach_rs6k_rsc, &tdesc_rs6000},
7a78ae4e 3445 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
7cc46491 3446 bfd_mach_rs6k_rs2, &tdesc_rs6000},
7a78ae4e 3447
3e45d68b 3448 {0, 0, (enum bfd_architecture) 0, 0, 0}
c906108c
SS
3449};
3450
7a78ae4e 3451/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 3452 MACH. If no such variant exists, return null. */
c906108c 3453
675127ec 3454static const struct ppc_variant *
7a78ae4e 3455find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 3456{
675127ec 3457 const struct ppc_variant *v;
c5aa993b 3458
7a78ae4e
ND
3459 for (v = variants; v->name; v++)
3460 if (arch == v->arch && mach == v->mach)
3461 return v;
c906108c 3462
7a78ae4e 3463 return NULL;
c906108c 3464}
9364a0ef 3465
7a78ae4e 3466\f
61a65099
KB
3467
3468struct rs6000_frame_cache
3469{
3470 CORE_ADDR base;
3471 CORE_ADDR initial_sp;
098caef4 3472 trad_frame_saved_reg *saved_regs;
50ae56ec
WW
3473
3474 /* Set BASE_P to true if this frame cache is properly initialized.
3475 Otherwise set to false because some registers or memory cannot
3476 collected. */
3477 int base_p;
3478 /* Cache PC for building unavailable frame. */
3479 CORE_ADDR pc;
61a65099
KB
3480};
3481
3482static struct rs6000_frame_cache *
1af5d7ce 3483rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
61a65099
KB
3484{
3485 struct rs6000_frame_cache *cache;
1af5d7ce 3486 struct gdbarch *gdbarch = get_frame_arch (this_frame);
61a65099 3487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 3488 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61a65099
KB
3489 struct rs6000_framedata fdata;
3490 int wordsize = tdep->wordsize;
338435ef 3491 CORE_ADDR func = 0, pc = 0;
61a65099
KB
3492
3493 if ((*this_cache) != NULL)
19ba03f4 3494 return (struct rs6000_frame_cache *) (*this_cache);
61a65099
KB
3495 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3496 (*this_cache) = cache;
50ae56ec 3497 cache->pc = 0;
1af5d7ce 3498 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61a65099 3499
a70b8144 3500 try
50ae56ec
WW
3501 {
3502 func = get_frame_func (this_frame);
3503 cache->pc = func;
3504 pc = get_frame_pc (this_frame);
3505 skip_prologue (gdbarch, func, pc, &fdata);
3506
3507 /* Figure out the parent's stack pointer. */
3508
3509 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3510 address of the current frame. Things might be easier if the
3511 ->frame pointed to the outer-most address of the frame. In
3512 the mean time, the address of the prev frame is used as the
3513 base address of this frame. */
3514 cache->base = get_frame_register_unsigned
3515 (this_frame, gdbarch_sp_regnum (gdbarch));
3516 }
230d2906 3517 catch (const gdb_exception_error &ex)
50ae56ec
WW
3518 {
3519 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 3520 throw;
1ed0c2a4 3521 return (struct rs6000_frame_cache *) (*this_cache);
50ae56ec 3522 }
e10b1c4c
DJ
3523
3524 /* If the function appears to be frameless, check a couple of likely
3525 indicators that we have simply failed to find the frame setup.
3526 Two common cases of this are missing symbols (i.e.
ef02daa9 3527 get_frame_func returns the wrong address or 0), and assembly
e10b1c4c
DJ
3528 stubs which have a fast exit path but set up a frame on the slow
3529 path.
3530
3531 If the LR appears to return to this function, then presume that
3532 we have an ABI compliant frame that we failed to find. */
3533 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3534 {
e10b1c4c
DJ
3535 CORE_ADDR saved_lr;
3536 int make_frame = 0;
3537
1af5d7ce 3538 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
e10b1c4c
DJ
3539 if (func == 0 && saved_lr == pc)
3540 make_frame = 1;
3541 else if (func != 0)
3542 {
3543 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3544 if (func == saved_func)
3545 make_frame = 1;
3546 }
3547
3548 if (make_frame)
3549 {
3550 fdata.frameless = 0;
de6a76fd 3551 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3552 }
61a65099 3553 }
e10b1c4c
DJ
3554
3555 if (!fdata.frameless)
9d9bf2df
EBM
3556 {
3557 /* Frameless really means stackless. */
cc2c4da8 3558 ULONGEST backchain;
9d9bf2df 3559
cc2c4da8
MK
3560 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3561 byte_order, &backchain))
dda83cd7 3562 cache->base = (CORE_ADDR) backchain;
9d9bf2df 3563 }
e10b1c4c 3564
3e8c568d 3565 trad_frame_set_value (cache->saved_regs,
8b164abb 3566 gdbarch_sp_regnum (gdbarch), cache->base);
61a65099
KB
3567
3568 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3569 All fpr's from saved_fpr to fp31 are saved. */
3570
3571 if (fdata.saved_fpr >= 0)
3572 {
3573 int i;
3574 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3575
3576 /* If skip_prologue says floating-point registers were saved,
dda83cd7
SM
3577 but the current architecture has no floating-point registers,
3578 then that's strange. But we have no indices to even record
3579 the addresses under, so we just ignore it. */
383f0f5b 3580 if (ppc_floating_point_unit_p (gdbarch))
dda83cd7
SM
3581 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3582 {
098caef4 3583 cache->saved_regs[tdep->ppc_fp0_regnum + i].set_addr (fpr_addr);
dda83cd7
SM
3584 fpr_addr += 8;
3585 }
61a65099
KB
3586 }
3587
3588 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
46a9b8ed
DJ
3589 All gpr's from saved_gpr to gpr31 are saved (except during the
3590 prologue). */
61a65099
KB
3591
3592 if (fdata.saved_gpr >= 0)
3593 {
3594 int i;
3595 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3596 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099 3597 {
46a9b8ed 3598 if (fdata.gpr_mask & (1U << i))
098caef4 3599 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (gpr_addr);
61a65099
KB
3600 gpr_addr += wordsize;
3601 }
3602 }
3603
3604 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3605 All vr's from saved_vr to vr31 are saved. */
3606 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3607 {
3608 if (fdata.saved_vr >= 0)
3609 {
3610 int i;
3611 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3612 for (i = fdata.saved_vr; i < 32; i++)
3613 {
098caef4 3614 cache->saved_regs[tdep->ppc_vr0_regnum + i].set_addr (vr_addr);
61a65099
KB
3615 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3616 }
3617 }
3618 }
3619
3620 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
0df8b418 3621 All vr's from saved_ev to ev31 are saved. ????? */
5a9e69ba 3622 if (tdep->ppc_ev0_regnum != -1)
61a65099
KB
3623 {
3624 if (fdata.saved_ev >= 0)
3625 {
3626 int i;
3627 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
dea80df0
MR
3628 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3629
063715bf 3630 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099 3631 {
098caef4
LM
3632 cache->saved_regs[tdep->ppc_ev0_regnum + i].set_addr (ev_addr);
3633 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (ev_addr
3634 + off);
61a65099 3635 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
dea80df0 3636 }
61a65099
KB
3637 }
3638 }
3639
3640 /* If != 0, fdata.cr_offset is the offset from the frame that
3641 holds the CR. */
3642 if (fdata.cr_offset != 0)
098caef4
LM
3643 cache->saved_regs[tdep->ppc_cr_regnum].set_addr (cache->base
3644 + fdata.cr_offset);
61a65099
KB
3645
3646 /* If != 0, fdata.lr_offset is the offset from the frame that
3647 holds the LR. */
3648 if (fdata.lr_offset != 0)
098caef4
LM
3649 cache->saved_regs[tdep->ppc_lr_regnum].set_addr (cache->base
3650 + fdata.lr_offset);
46a9b8ed 3651 else if (fdata.lr_register != -1)
098caef4 3652 cache->saved_regs[tdep->ppc_lr_regnum].set_realreg (fdata.lr_register);
61a65099 3653 /* The PC is found in the link register. */
8b164abb 3654 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3e8c568d 3655 cache->saved_regs[tdep->ppc_lr_regnum];
61a65099
KB
3656
3657 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3658 holds the VRSAVE. */
3659 if (fdata.vrsave_offset != 0)
098caef4
LM
3660 cache->saved_regs[tdep->ppc_vrsave_regnum].set_addr (cache->base
3661 + fdata.vrsave_offset);
61a65099
KB
3662
3663 if (fdata.alloca_reg < 0)
3664 /* If no alloca register used, then fi->frame is the value of the
3665 %sp for this frame, and it is good enough. */
1af5d7ce
UW
3666 cache->initial_sp
3667 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
61a65099 3668 else
1af5d7ce
UW
3669 cache->initial_sp
3670 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
61a65099 3671
50ae56ec 3672 cache->base_p = 1;
61a65099
KB
3673 return cache;
3674}
3675
3676static void
1af5d7ce 3677rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
61a65099
KB
3678 struct frame_id *this_id)
3679{
1af5d7ce 3680 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3681 this_cache);
50ae56ec
WW
3682
3683 if (!info->base_p)
3684 {
3685 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3686 return;
3687 }
3688
5b197912
UW
3689 /* This marks the outermost frame. */
3690 if (info->base == 0)
3691 return;
3692
1af5d7ce 3693 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
61a65099
KB
3694}
3695
1af5d7ce
UW
3696static struct value *
3697rs6000_frame_prev_register (struct frame_info *this_frame,
3698 void **this_cache, int regnum)
61a65099 3699{
1af5d7ce 3700 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3701 this_cache);
1af5d7ce 3702 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61a65099
KB
3703}
3704
3705static const struct frame_unwind rs6000_frame_unwind =
3706{
3707 NORMAL_FRAME,
8fbca658 3708 default_frame_unwind_stop_reason,
61a65099 3709 rs6000_frame_this_id,
1af5d7ce
UW
3710 rs6000_frame_prev_register,
3711 NULL,
3712 default_frame_sniffer
61a65099 3713};
2608dbf8 3714
ddeca1df
WW
3715/* Allocate and initialize a frame cache for an epilogue frame.
3716 SP is restored and prev-PC is stored in LR. */
3717
2608dbf8
WW
3718static struct rs6000_frame_cache *
3719rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3720{
2608dbf8
WW
3721 struct rs6000_frame_cache *cache;
3722 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3723 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2608dbf8
WW
3724
3725 if (*this_cache)
19ba03f4 3726 return (struct rs6000_frame_cache *) *this_cache;
2608dbf8
WW
3727
3728 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3729 (*this_cache) = cache;
3730 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3731
a70b8144 3732 try
2608dbf8
WW
3733 {
3734 /* At this point the stack looks as if we just entered the
3735 function, and the return address is stored in LR. */
3736 CORE_ADDR sp, lr;
3737
3738 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3739 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3740
3741 cache->base = sp;
3742 cache->initial_sp = sp;
3743
3744 trad_frame_set_value (cache->saved_regs,
3745 gdbarch_pc_regnum (gdbarch), lr);
3746 }
230d2906 3747 catch (const gdb_exception_error &ex)
7556d4a4
PA
3748 {
3749 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 3750 throw;
7556d4a4 3751 }
2608dbf8
WW
3752
3753 return cache;
3754}
3755
ddeca1df
WW
3756/* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3757 Return the frame ID of an epilogue frame. */
3758
2608dbf8
WW
3759static void
3760rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3761 void **this_cache, struct frame_id *this_id)
3762{
3763 CORE_ADDR pc;
3764 struct rs6000_frame_cache *info =
3765 rs6000_epilogue_frame_cache (this_frame, this_cache);
3766
3767 pc = get_frame_func (this_frame);
3768 if (info->base == 0)
3769 (*this_id) = frame_id_build_unavailable_stack (pc);
3770 else
3771 (*this_id) = frame_id_build (info->base, pc);
3772}
3773
ddeca1df
WW
3774/* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3775 Return the register value of REGNUM in previous frame. */
3776
2608dbf8
WW
3777static struct value *
3778rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3779 void **this_cache, int regnum)
3780{
3781 struct rs6000_frame_cache *info =
3782 rs6000_epilogue_frame_cache (this_frame, this_cache);
3783 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3784}
3785
ddeca1df
WW
3786/* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3787 Check whether this an epilogue frame. */
3788
2608dbf8
WW
3789static int
3790rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3791 struct frame_info *this_frame,
3792 void **this_prologue_cache)
3793{
3794 if (frame_relative_level (this_frame) == 0)
3795 return rs6000_in_function_epilogue_frame_p (this_frame,
3796 get_frame_arch (this_frame),
3797 get_frame_pc (this_frame));
3798 else
3799 return 0;
3800}
3801
ddeca1df
WW
3802/* Frame unwinder for epilogue frame. This is required for reverse step-over
3803 a function without debug information. */
3804
2608dbf8
WW
3805static const struct frame_unwind rs6000_epilogue_frame_unwind =
3806{
3807 NORMAL_FRAME,
3808 default_frame_unwind_stop_reason,
3809 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3810 NULL,
3811 rs6000_epilogue_frame_sniffer
3812};
61a65099
KB
3813\f
3814
3815static CORE_ADDR
1af5d7ce 3816rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
61a65099 3817{
1af5d7ce 3818 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099
KB
3819 this_cache);
3820 return info->initial_sp;
3821}
3822
3823static const struct frame_base rs6000_frame_base = {
3824 &rs6000_frame_unwind,
3825 rs6000_frame_base_address,
3826 rs6000_frame_base_address,
3827 rs6000_frame_base_address
3828};
3829
3830static const struct frame_base *
1af5d7ce 3831rs6000_frame_base_sniffer (struct frame_info *this_frame)
61a65099
KB
3832{
3833 return &rs6000_frame_base;
3834}
3835
9274a07c
LM
3836/* DWARF-2 frame support. Used to handle the detection of
3837 clobbered registers during function calls. */
3838
3839static void
3840ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3841 struct dwarf2_frame_state_reg *reg,
4a4e5149 3842 struct frame_info *this_frame)
9274a07c
LM
3843{
3844 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3845
3846 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3847 non-volatile registers. We will use the same code for both. */
3848
3849 /* Call-saved GP registers. */
3850 if ((regnum >= tdep->ppc_gp0_regnum + 14
3851 && regnum <= tdep->ppc_gp0_regnum + 31)
3852 || (regnum == tdep->ppc_gp0_regnum + 1))
3853 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3854
3855 /* Call-clobbered GP registers. */
3856 if ((regnum >= tdep->ppc_gp0_regnum + 3
3857 && regnum <= tdep->ppc_gp0_regnum + 12)
3858 || (regnum == tdep->ppc_gp0_regnum))
3859 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3860
3861 /* Deal with FP registers, if supported. */
3862 if (tdep->ppc_fp0_regnum >= 0)
3863 {
3864 /* Call-saved FP registers. */
3865 if ((regnum >= tdep->ppc_fp0_regnum + 14
3866 && regnum <= tdep->ppc_fp0_regnum + 31))
3867 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3868
3869 /* Call-clobbered FP registers. */
3870 if ((regnum >= tdep->ppc_fp0_regnum
3871 && regnum <= tdep->ppc_fp0_regnum + 13))
3872 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3873 }
3874
3875 /* Deal with ALTIVEC registers, if supported. */
3876 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3877 {
3878 /* Call-saved Altivec registers. */
3879 if ((regnum >= tdep->ppc_vr0_regnum + 20
3880 && regnum <= tdep->ppc_vr0_regnum + 31)
3881 || regnum == tdep->ppc_vrsave_regnum)
3882 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3883
3884 /* Call-clobbered Altivec registers. */
3885 if ((regnum >= tdep->ppc_vr0_regnum
3886 && regnum <= tdep->ppc_vr0_regnum + 19))
3887 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3888 }
3889
3890 /* Handle PC register and Stack Pointer correctly. */
40a6adc1 3891 if (regnum == gdbarch_pc_regnum (gdbarch))
9274a07c 3892 reg->how = DWARF2_FRAME_REG_RA;
40a6adc1 3893 else if (regnum == gdbarch_sp_regnum (gdbarch))
9274a07c
LM
3894 reg->how = DWARF2_FRAME_REG_CFA;
3895}
3896
3897
74af9197
NF
3898/* Return true if a .gnu_attributes section exists in BFD and it
3899 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3900 section exists in BFD and it indicates that SPE extensions are in
3901 use. Check the .gnu.attributes section first, as the binary might be
3902 compiled for SPE, but not actually using SPE instructions. */
3903
3904static int
3905bfd_uses_spe_extensions (bfd *abfd)
3906{
3907 asection *sect;
3908 gdb_byte *contents = NULL;
3909 bfd_size_type size;
3910 gdb_byte *ptr;
3911 int success = 0;
74af9197
NF
3912
3913 if (!abfd)
3914 return 0;
3915
50a99728 3916#ifdef HAVE_ELF
74af9197
NF
3917 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3918 could be using the SPE vector abi without actually using any spe
3919 bits whatsoever. But it's close enough for now. */
17cbafdb
SM
3920 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3921 Tag_GNU_Power_ABI_Vector);
74af9197
NF
3922 if (vector_abi == 3)
3923 return 1;
50a99728 3924#endif
74af9197
NF
3925
3926 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3927 if (!sect)
3928 return 0;
3929
fd361982 3930 size = bfd_section_size (sect);
224c3ddb 3931 contents = (gdb_byte *) xmalloc (size);
74af9197
NF
3932 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3933 {
3934 xfree (contents);
3935 return 0;
3936 }
3937
3938 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3939
3940 struct {
3941 uint32 name_len;
3942 uint32 data_len;
3943 uint32 type;
3944 char name[name_len rounded up to 4-byte alignment];
3945 char data[data_len];
3946 };
3947
3948 Technically, there's only supposed to be one such structure in a
3949 given apuinfo section, but the linker is not always vigilant about
3950 merging apuinfo sections from input files. Just go ahead and parse
3951 them all, exiting early when we discover the binary uses SPE
3952 insns.
3953
3954 It's not specified in what endianness the information in this
3955 section is stored. Assume that it's the endianness of the BFD. */
3956 ptr = contents;
3957 while (1)
3958 {
3959 unsigned int name_len;
3960 unsigned int data_len;
3961 unsigned int type;
3962
3963 /* If we can't read the first three fields, we're done. */
3964 if (size < 12)
3965 break;
3966
3967 name_len = bfd_get_32 (abfd, ptr);
3968 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3969 data_len = bfd_get_32 (abfd, ptr + 4);
3970 type = bfd_get_32 (abfd, ptr + 8);
3971 ptr += 12;
3972
3973 /* The name must be "APUinfo\0". */
3974 if (name_len != 8
3975 && strcmp ((const char *) ptr, "APUinfo") != 0)
3976 break;
3977 ptr += name_len;
3978
3979 /* The type must be 2. */
3980 if (type != 2)
3981 break;
3982
3983 /* The data is stored as a series of uint32. The upper half of
3984 each uint32 indicates the particular APU used and the lower
3985 half indicates the revision of that APU. We just care about
3986 the upper half. */
3987
3988 /* Not 4-byte quantities. */
3989 if (data_len & 3U)
3990 break;
3991
3992 while (data_len)
3993 {
3994 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3995 unsigned int apu = apuinfo >> 16;
3996 ptr += 4;
3997 data_len -= 4;
3998
3999 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
4000 either. */
4001 if (apu == 0x100 || apu == 0x101)
4002 {
4003 success = 1;
4004 data_len = 0;
4005 }
4006 }
4007
4008 if (success)
4009 break;
4010 }
4011
4012 xfree (contents);
4013 return success;
4014}
4015
b4cdae6f
WW
4016/* These are macros for parsing instruction fields (I.1.6.28) */
4017
4018#define PPC_FIELD(value, from, len) \
4019 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
4020#define PPC_SEXT(v, bs) \
4021 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
4022 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
4023 - ((CORE_ADDR) 1 << ((bs) - 1)))
4024#define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
4025#define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
4026#define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
4027#define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
4028#define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
4029#define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
4030#define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
4031#define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
4032#define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
4033#define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
4034 | (PPC_FIELD (insn, 16, 5) << 5))
4035#define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
4036#define PPC_T(insn) PPC_FIELD (insn, 6, 5)
4037#define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
4038#define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
6ec2b213 4039#define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
b4cdae6f
WW
4040#define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
4041#define PPC_OE(insn) PPC_BIT (insn, 21)
4042#define PPC_RC(insn) PPC_BIT (insn, 31)
4043#define PPC_Rc(insn) PPC_BIT (insn, 21)
4044#define PPC_LK(insn) PPC_BIT (insn, 31)
4045#define PPC_TX(insn) PPC_BIT (insn, 31)
4046#define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
4047
4048#define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
4049#define PPC_XER_NB(xer) (xer & 0x7f)
4050
ddeca1df
WW
4051/* Record Vector-Scalar Registers.
4052 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
4053 Otherwise, it's just a VR register. Record them accordingly. */
b4cdae6f
WW
4054
4055static int
4056ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
4057{
4058 if (vsr < 0 || vsr >= 64)
4059 return -1;
4060
4061 if (vsr >= 32)
4062 {
4063 if (tdep->ppc_vr0_regnum >= 0)
4064 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4065 }
4066 else
4067 {
4068 if (tdep->ppc_fp0_regnum >= 0)
4069 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4070 if (tdep->ppc_vsr0_upper_regnum >= 0)
4071 record_full_arch_list_add_reg (regcache,
4072 tdep->ppc_vsr0_upper_regnum + vsr);
4073 }
4074
4075 return 0;
4076}
4077
ddeca1df
WW
4078/* Parse and record instructions primary opcode-4 at ADDR.
4079 Return 0 if successful. */
b4cdae6f
WW
4080
4081static int
4082ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
ddeca1df 4083 CORE_ADDR addr, uint32_t insn)
b4cdae6f
WW
4084{
4085 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4086 int ext = PPC_FIELD (insn, 21, 11);
6ec2b213 4087 int vra = PPC_FIELD (insn, 11, 5);
b4cdae6f
WW
4088
4089 switch (ext & 0x3f)
4090 {
4091 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4092 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4093 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4094 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4095 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4096 /* FALL-THROUGH */
4097 case 42: /* Vector Select */
4098 case 43: /* Vector Permute */
6ec2b213 4099 case 59: /* Vector Permute Right-indexed */
b4cdae6f
WW
4100 case 44: /* Vector Shift Left Double by Octet Immediate */
4101 case 45: /* Vector Permute and Exclusive-OR */
4102 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4103 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4104 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4105 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4106 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
6ec2b213 4107 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
b4cdae6f
WW
4108 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4109 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4110 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4111 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4112 case 46: /* Vector Multiply-Add Single-Precision */
4113 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4114 record_full_arch_list_add_reg (regcache,
4115 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4116 return 0;
6ec2b213
EBM
4117
4118 case 48: /* Multiply-Add High Doubleword */
4119 case 49: /* Multiply-Add High Doubleword Unsigned */
4120 case 51: /* Multiply-Add Low Doubleword */
4121 record_full_arch_list_add_reg (regcache,
4122 tdep->ppc_gp0_regnum + PPC_RT (insn));
4123 return 0;
b4cdae6f
WW
4124 }
4125
4126 switch ((ext & 0x1ff))
4127 {
6ec2b213
EBM
4128 case 385:
4129 if (vra != 0 /* Decimal Convert To Signed Quadword */
4130 && vra != 2 /* Decimal Convert From Signed Quadword */
4131 && vra != 4 /* Decimal Convert To Zoned */
4132 && vra != 5 /* Decimal Convert To National */
4133 && vra != 6 /* Decimal Convert From Zoned */
4134 && vra != 7 /* Decimal Convert From National */
4135 && vra != 31) /* Decimal Set Sign */
4136 break;
e3829d13 4137 /* Fall through. */
b4cdae6f
WW
4138 /* 5.16 Decimal Integer Arithmetic Instructions */
4139 case 1: /* Decimal Add Modulo */
4140 case 65: /* Decimal Subtract Modulo */
4141
6ec2b213
EBM
4142 case 193: /* Decimal Shift */
4143 case 129: /* Decimal Unsigned Shift */
4144 case 449: /* Decimal Shift and Round */
4145
4146 case 257: /* Decimal Truncate */
4147 case 321: /* Decimal Unsigned Truncate */
4148
b4cdae6f
WW
4149 /* Bit-21 should be set. */
4150 if (!PPC_BIT (insn, 21))
4151 break;
4152
4153 record_full_arch_list_add_reg (regcache,
4154 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4155 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4156 return 0;
4157 }
4158
4159 /* Bit-21 is used for RC */
4160 switch (ext & 0x3ff)
4161 {
4162 case 6: /* Vector Compare Equal To Unsigned Byte */
4163 case 70: /* Vector Compare Equal To Unsigned Halfword */
4164 case 134: /* Vector Compare Equal To Unsigned Word */
4165 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4166 case 774: /* Vector Compare Greater Than Signed Byte */
4167 case 838: /* Vector Compare Greater Than Signed Halfword */
4168 case 902: /* Vector Compare Greater Than Signed Word */
4169 case 967: /* Vector Compare Greater Than Signed Doubleword */
4170 case 518: /* Vector Compare Greater Than Unsigned Byte */
4171 case 646: /* Vector Compare Greater Than Unsigned Word */
4172 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4173 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4174 case 966: /* Vector Compare Bounds Single-Precision */
4175 case 198: /* Vector Compare Equal To Single-Precision */
4176 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4177 case 710: /* Vector Compare Greater Than Single-Precision */
6ec2b213
EBM
4178 case 7: /* Vector Compare Not Equal Byte */
4179 case 71: /* Vector Compare Not Equal Halfword */
4180 case 135: /* Vector Compare Not Equal Word */
4181 case 263: /* Vector Compare Not Equal or Zero Byte */
4182 case 327: /* Vector Compare Not Equal or Zero Halfword */
4183 case 391: /* Vector Compare Not Equal or Zero Word */
b4cdae6f
WW
4184 if (PPC_Rc (insn))
4185 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4186 record_full_arch_list_add_reg (regcache,
4187 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4188 return 0;
4189 }
4190
6ec2b213
EBM
4191 if (ext == 1538)
4192 {
4193 switch (vra)
4194 {
4195 case 0: /* Vector Count Leading Zero Least-Significant Bits
4196 Byte */
4197 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4198 Byte */
4199 record_full_arch_list_add_reg (regcache,
4200 tdep->ppc_gp0_regnum + PPC_RT (insn));
4201 return 0;
4202
4203 case 6: /* Vector Negate Word */
4204 case 7: /* Vector Negate Doubleword */
4205 case 8: /* Vector Parity Byte Word */
4206 case 9: /* Vector Parity Byte Doubleword */
4207 case 10: /* Vector Parity Byte Quadword */
4208 case 16: /* Vector Extend Sign Byte To Word */
4209 case 17: /* Vector Extend Sign Halfword To Word */
4210 case 24: /* Vector Extend Sign Byte To Doubleword */
4211 case 25: /* Vector Extend Sign Halfword To Doubleword */
4212 case 26: /* Vector Extend Sign Word To Doubleword */
4213 case 28: /* Vector Count Trailing Zeros Byte */
4214 case 29: /* Vector Count Trailing Zeros Halfword */
4215 case 30: /* Vector Count Trailing Zeros Word */
4216 case 31: /* Vector Count Trailing Zeros Doubleword */
4217 record_full_arch_list_add_reg (regcache,
4218 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4219 return 0;
4220 }
4221 }
4222
b4cdae6f
WW
4223 switch (ext)
4224 {
4225 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4226 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4227 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4228 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4229 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4230 case 462: /* Vector Pack Signed Word Signed Saturate */
4231 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4232 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4233 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4234 case 512: /* Vector Add Unsigned Byte Saturate */
4235 case 576: /* Vector Add Unsigned Halfword Saturate */
4236 case 640: /* Vector Add Unsigned Word Saturate */
4237 case 768: /* Vector Add Signed Byte Saturate */
4238 case 832: /* Vector Add Signed Halfword Saturate */
4239 case 896: /* Vector Add Signed Word Saturate */
4240 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4241 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4242 case 1664: /* Vector Subtract Unsigned Word Saturate */
4243 case 1792: /* Vector Subtract Signed Byte Saturate */
4244 case 1856: /* Vector Subtract Signed Halfword Saturate */
4245 case 1920: /* Vector Subtract Signed Word Saturate */
4246
4247 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4248 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4249 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4250 case 1672: /* Vector Sum across Half Signed Word Saturate */
4251 case 1928: /* Vector Sum across Signed Word Saturate */
4252 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4253 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4254 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4255 /* FALL-THROUGH */
4256 case 12: /* Vector Merge High Byte */
4257 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4258 case 76: /* Vector Merge High Halfword */
4259 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4260 case 140: /* Vector Merge High Word */
4261 case 268: /* Vector Merge Low Byte */
4262 case 332: /* Vector Merge Low Halfword */
4263 case 396: /* Vector Merge Low Word */
4264 case 526: /* Vector Unpack High Signed Byte */
4265 case 590: /* Vector Unpack High Signed Halfword */
4266 case 654: /* Vector Unpack Low Signed Byte */
4267 case 718: /* Vector Unpack Low Signed Halfword */
4268 case 782: /* Vector Pack Pixel */
4269 case 846: /* Vector Unpack High Pixel */
4270 case 974: /* Vector Unpack Low Pixel */
4271 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4272 case 1614: /* Vector Unpack High Signed Word */
4273 case 1676: /* Vector Merge Odd Word */
4274 case 1742: /* Vector Unpack Low Signed Word */
4275 case 1932: /* Vector Merge Even Word */
4276 case 524: /* Vector Splat Byte */
4277 case 588: /* Vector Splat Halfword */
4278 case 652: /* Vector Splat Word */
4279 case 780: /* Vector Splat Immediate Signed Byte */
4280 case 844: /* Vector Splat Immediate Signed Halfword */
4281 case 908: /* Vector Splat Immediate Signed Word */
4282 case 452: /* Vector Shift Left */
4283 case 708: /* Vector Shift Right */
4284 case 1036: /* Vector Shift Left by Octet */
4285 case 1100: /* Vector Shift Right by Octet */
4286 case 0: /* Vector Add Unsigned Byte Modulo */
4287 case 64: /* Vector Add Unsigned Halfword Modulo */
4288 case 128: /* Vector Add Unsigned Word Modulo */
4289 case 192: /* Vector Add Unsigned Doubleword Modulo */
4290 case 256: /* Vector Add Unsigned Quadword Modulo */
4291 case 320: /* Vector Add & write Carry Unsigned Quadword */
4292 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4293 case 8: /* Vector Multiply Odd Unsigned Byte */
4294 case 72: /* Vector Multiply Odd Unsigned Halfword */
4295 case 136: /* Vector Multiply Odd Unsigned Word */
4296 case 264: /* Vector Multiply Odd Signed Byte */
4297 case 328: /* Vector Multiply Odd Signed Halfword */
4298 case 392: /* Vector Multiply Odd Signed Word */
4299 case 520: /* Vector Multiply Even Unsigned Byte */
4300 case 584: /* Vector Multiply Even Unsigned Halfword */
4301 case 648: /* Vector Multiply Even Unsigned Word */
4302 case 776: /* Vector Multiply Even Signed Byte */
4303 case 840: /* Vector Multiply Even Signed Halfword */
4304 case 904: /* Vector Multiply Even Signed Word */
4305 case 137: /* Vector Multiply Unsigned Word Modulo */
4306 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4307 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4308 case 1152: /* Vector Subtract Unsigned Word Modulo */
4309 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4310 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4311 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4312 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4313 case 1282: /* Vector Average Signed Byte */
4314 case 1346: /* Vector Average Signed Halfword */
4315 case 1410: /* Vector Average Signed Word */
4316 case 1026: /* Vector Average Unsigned Byte */
4317 case 1090: /* Vector Average Unsigned Halfword */
4318 case 1154: /* Vector Average Unsigned Word */
4319 case 258: /* Vector Maximum Signed Byte */
4320 case 322: /* Vector Maximum Signed Halfword */
4321 case 386: /* Vector Maximum Signed Word */
4322 case 450: /* Vector Maximum Signed Doubleword */
4323 case 2: /* Vector Maximum Unsigned Byte */
4324 case 66: /* Vector Maximum Unsigned Halfword */
4325 case 130: /* Vector Maximum Unsigned Word */
4326 case 194: /* Vector Maximum Unsigned Doubleword */
4327 case 770: /* Vector Minimum Signed Byte */
4328 case 834: /* Vector Minimum Signed Halfword */
4329 case 898: /* Vector Minimum Signed Word */
4330 case 962: /* Vector Minimum Signed Doubleword */
4331 case 514: /* Vector Minimum Unsigned Byte */
4332 case 578: /* Vector Minimum Unsigned Halfword */
4333 case 642: /* Vector Minimum Unsigned Word */
4334 case 706: /* Vector Minimum Unsigned Doubleword */
4335 case 1028: /* Vector Logical AND */
4336 case 1668: /* Vector Logical Equivalent */
4337 case 1092: /* Vector Logical AND with Complement */
4338 case 1412: /* Vector Logical NAND */
4339 case 1348: /* Vector Logical OR with Complement */
4340 case 1156: /* Vector Logical OR */
4341 case 1284: /* Vector Logical NOR */
4342 case 1220: /* Vector Logical XOR */
4343 case 4: /* Vector Rotate Left Byte */
4344 case 132: /* Vector Rotate Left Word VX-form */
4345 case 68: /* Vector Rotate Left Halfword */
4346 case 196: /* Vector Rotate Left Doubleword */
4347 case 260: /* Vector Shift Left Byte */
4348 case 388: /* Vector Shift Left Word */
4349 case 324: /* Vector Shift Left Halfword */
4350 case 1476: /* Vector Shift Left Doubleword */
4351 case 516: /* Vector Shift Right Byte */
4352 case 644: /* Vector Shift Right Word */
4353 case 580: /* Vector Shift Right Halfword */
4354 case 1732: /* Vector Shift Right Doubleword */
4355 case 772: /* Vector Shift Right Algebraic Byte */
4356 case 900: /* Vector Shift Right Algebraic Word */
4357 case 836: /* Vector Shift Right Algebraic Halfword */
4358 case 964: /* Vector Shift Right Algebraic Doubleword */
4359 case 10: /* Vector Add Single-Precision */
4360 case 74: /* Vector Subtract Single-Precision */
4361 case 1034: /* Vector Maximum Single-Precision */
4362 case 1098: /* Vector Minimum Single-Precision */
4363 case 842: /* Vector Convert From Signed Fixed-Point Word */
4364 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4365 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4366 case 522: /* Vector Round to Single-Precision Integer Nearest */
4367 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4368 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4369 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4370 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4371 case 266: /* Vector Reciprocal Estimate Single-Precision */
4372 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4373 case 1288: /* Vector AES Cipher */
4374 case 1289: /* Vector AES Cipher Last */
4375 case 1352: /* Vector AES Inverse Cipher */
4376 case 1353: /* Vector AES Inverse Cipher Last */
4377 case 1480: /* Vector AES SubBytes */
4378 case 1730: /* Vector SHA-512 Sigma Doubleword */
4379 case 1666: /* Vector SHA-256 Sigma Word */
4380 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4381 case 1160: /* Vector Polynomial Multiply-Sum Word */
4382 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4383 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4384 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4385 case 1794: /* Vector Count Leading Zeros Byte */
4386 case 1858: /* Vector Count Leading Zeros Halfword */
4387 case 1922: /* Vector Count Leading Zeros Word */
4388 case 1986: /* Vector Count Leading Zeros Doubleword */
4389 case 1795: /* Vector Population Count Byte */
4390 case 1859: /* Vector Population Count Halfword */
4391 case 1923: /* Vector Population Count Word */
4392 case 1987: /* Vector Population Count Doubleword */
4393 case 1356: /* Vector Bit Permute Quadword */
6ec2b213
EBM
4394 case 1484: /* Vector Bit Permute Doubleword */
4395 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4396 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4397 Quadword */
4398 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4399 case 65: /* Vector Multiply-by-10 Extended & write Carry
4400 Unsigned Quadword */
4401 case 1027: /* Vector Absolute Difference Unsigned Byte */
4402 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4403 case 1155: /* Vector Absolute Difference Unsigned Word */
4404 case 1796: /* Vector Shift Right Variable */
4405 case 1860: /* Vector Shift Left Variable */
4406 case 133: /* Vector Rotate Left Word then Mask Insert */
4407 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4408 case 389: /* Vector Rotate Left Word then AND with Mask */
4409 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4410 case 525: /* Vector Extract Unsigned Byte */
4411 case 589: /* Vector Extract Unsigned Halfword */
4412 case 653: /* Vector Extract Unsigned Word */
4413 case 717: /* Vector Extract Doubleword */
4414 case 781: /* Vector Insert Byte */
4415 case 845: /* Vector Insert Halfword */
4416 case 909: /* Vector Insert Word */
4417 case 973: /* Vector Insert Doubleword */
b4cdae6f
WW
4418 record_full_arch_list_add_reg (regcache,
4419 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4420 return 0;
4421
6ec2b213
EBM
4422 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4423 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4424 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4425 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4426 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4427 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4428 record_full_arch_list_add_reg (regcache,
4429 tdep->ppc_gp0_regnum + PPC_RT (insn));
4430 return 0;
4431
b4cdae6f
WW
4432 case 1604: /* Move To Vector Status and Control Register */
4433 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4434 return 0;
4435 case 1540: /* Move From Vector Status and Control Register */
4436 record_full_arch_list_add_reg (regcache,
4437 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4438 return 0;
6ec2b213
EBM
4439 case 833: /* Decimal Copy Sign */
4440 record_full_arch_list_add_reg (regcache,
4441 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4442 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4443 return 0;
b4cdae6f
WW
4444 }
4445
810c1026
WW
4446 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4447 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4448 return -1;
4449}
4450
ddeca1df
WW
4451/* Parse and record instructions of primary opcode-19 at ADDR.
4452 Return 0 if successful. */
b4cdae6f
WW
4453
4454static int
4455ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4456 CORE_ADDR addr, uint32_t insn)
4457{
4458 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4459 int ext = PPC_EXTOP (insn);
4460
6ec2b213
EBM
4461 switch (ext & 0x01f)
4462 {
4463 case 2: /* Add PC Immediate Shifted */
4464 record_full_arch_list_add_reg (regcache,
4465 tdep->ppc_gp0_regnum + PPC_RT (insn));
4466 return 0;
4467 }
4468
b4cdae6f
WW
4469 switch (ext)
4470 {
4471 case 0: /* Move Condition Register Field */
4472 case 33: /* Condition Register NOR */
4473 case 129: /* Condition Register AND with Complement */
4474 case 193: /* Condition Register XOR */
4475 case 225: /* Condition Register NAND */
4476 case 257: /* Condition Register AND */
4477 case 289: /* Condition Register Equivalent */
4478 case 417: /* Condition Register OR with Complement */
4479 case 449: /* Condition Register OR */
4480 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4481 return 0;
4482
4483 case 16: /* Branch Conditional */
4484 case 560: /* Branch Conditional to Branch Target Address Register */
4485 if ((PPC_BO (insn) & 0x4) == 0)
4486 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4487 /* FALL-THROUGH */
4488 case 528: /* Branch Conditional to Count Register */
4489 if (PPC_LK (insn))
4490 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4491 return 0;
4492
4493 case 150: /* Instruction Synchronize */
4494 /* Do nothing. */
4495 return 0;
4496 }
4497
810c1026
WW
4498 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4499 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4500 return -1;
4501}
4502
ddeca1df
WW
4503/* Parse and record instructions of primary opcode-31 at ADDR.
4504 Return 0 if successful. */
b4cdae6f
WW
4505
4506static int
4507ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4508 CORE_ADDR addr, uint32_t insn)
4509{
4510 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4511 int ext = PPC_EXTOP (insn);
4512 int tmp, nr, nb, i;
4513 CORE_ADDR at_dcsz, ea = 0;
4514 ULONGEST rb, ra, xer;
4515 int size = 0;
4516
4517 /* These instructions have OE bit. */
4518 switch (ext & 0x1ff)
4519 {
4520 /* These write RT and XER. Update CR if RC is set. */
4521 case 8: /* Subtract from carrying */
4522 case 10: /* Add carrying */
4523 case 136: /* Subtract from extended */
4524 case 138: /* Add extended */
4525 case 200: /* Subtract from zero extended */
4526 case 202: /* Add to zero extended */
4527 case 232: /* Subtract from minus one extended */
4528 case 234: /* Add to minus one extended */
4529 /* CA is always altered, but SO/OV are only altered when OE=1.
4530 In any case, XER is always altered. */
4531 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4532 if (PPC_RC (insn))
4533 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4534 record_full_arch_list_add_reg (regcache,
4535 tdep->ppc_gp0_regnum + PPC_RT (insn));
4536 return 0;
4537
4538 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4539 case 40: /* Subtract from */
4540 case 104: /* Negate */
4541 case 233: /* Multiply low doubleword */
4542 case 235: /* Multiply low word */
4543 case 266: /* Add */
4544 case 393: /* Divide Doubleword Extended Unsigned */
4545 case 395: /* Divide Word Extended Unsigned */
4546 case 425: /* Divide Doubleword Extended */
4547 case 427: /* Divide Word Extended */
4548 case 457: /* Divide Doubleword Unsigned */
4549 case 459: /* Divide Word Unsigned */
4550 case 489: /* Divide Doubleword */
4551 case 491: /* Divide Word */
4552 if (PPC_OE (insn))
4553 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4554 /* FALL-THROUGH */
4555 case 9: /* Multiply High Doubleword Unsigned */
4556 case 11: /* Multiply High Word Unsigned */
4557 case 73: /* Multiply High Doubleword */
4558 case 75: /* Multiply High Word */
4559 if (PPC_RC (insn))
4560 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4561 record_full_arch_list_add_reg (regcache,
4562 tdep->ppc_gp0_regnum + PPC_RT (insn));
4563 return 0;
4564 }
4565
4566 if ((ext & 0x1f) == 15)
4567 {
4568 /* Integer Select. bit[16:20] is used for BC. */
4569 record_full_arch_list_add_reg (regcache,
4570 tdep->ppc_gp0_regnum + PPC_RT (insn));
4571 return 0;
4572 }
4573
6ec2b213
EBM
4574 if ((ext & 0xff) == 170)
4575 {
4576 /* Add Extended using alternate carry bits */
4577 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4578 record_full_arch_list_add_reg (regcache,
4579 tdep->ppc_gp0_regnum + PPC_RT (insn));
4580 return 0;
4581 }
4582
b4cdae6f
WW
4583 switch (ext)
4584 {
4585 case 78: /* Determine Leftmost Zero Byte */
4586 if (PPC_RC (insn))
4587 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4588 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4589 record_full_arch_list_add_reg (regcache,
4590 tdep->ppc_gp0_regnum + PPC_RT (insn));
4591 return 0;
4592
4593 /* These only write RT. */
4594 case 19: /* Move from condition register */
4595 /* Move From One Condition Register Field */
4596 case 74: /* Add and Generate Sixes */
4597 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4598 case 302: /* Move From Branch History Rolling Buffer */
4599 case 339: /* Move From Special Purpose Register */
4600 case 371: /* Move From Time Base [Phased-Out] */
6ec2b213
EBM
4601 case 309: /* Load Doubleword Monitored Indexed */
4602 case 128: /* Set Boolean */
4603 case 755: /* Deliver A Random Number */
b4cdae6f
WW
4604 record_full_arch_list_add_reg (regcache,
4605 tdep->ppc_gp0_regnum + PPC_RT (insn));
4606 return 0;
4607
4608 /* These only write to RA. */
4609 case 51: /* Move From VSR Doubleword */
4610 case 115: /* Move From VSR Word and Zero */
4611 case 122: /* Population count bytes */
4612 case 378: /* Population count words */
4613 case 506: /* Population count doublewords */
4614 case 154: /* Parity Word */
4615 case 186: /* Parity Doubleword */
4616 case 252: /* Bit Permute Doubleword */
4617 case 282: /* Convert Declets To Binary Coded Decimal */
4618 case 314: /* Convert Binary Coded Decimal To Declets */
4619 case 508: /* Compare bytes */
6ec2b213 4620 case 307: /* Move From VSR Lower Doubleword */
b4cdae6f
WW
4621 record_full_arch_list_add_reg (regcache,
4622 tdep->ppc_gp0_regnum + PPC_RA (insn));
4623 return 0;
4624
4625 /* These write CR and optional RA. */
4626 case 792: /* Shift Right Algebraic Word */
4627 case 794: /* Shift Right Algebraic Doubleword */
4628 case 824: /* Shift Right Algebraic Word Immediate */
4629 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4630 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4631 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4632 record_full_arch_list_add_reg (regcache,
4633 tdep->ppc_gp0_regnum + PPC_RA (insn));
4634 /* FALL-THROUGH */
4635 case 0: /* Compare */
4636 case 32: /* Compare logical */
4637 case 144: /* Move To Condition Register Fields */
4638 /* Move To One Condition Register Field */
6ec2b213
EBM
4639 case 192: /* Compare Ranged Byte */
4640 case 224: /* Compare Equal Byte */
4641 case 576: /* Move XER to CR Extended */
4642 case 902: /* Paste (should always fail due to single-stepping and
4643 the memory location might not be accessible, so
4644 record only CR) */
b4cdae6f
WW
4645 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4646 return 0;
4647
4648 /* These write to RT. Update RA if 'update indexed.' */
4649 case 53: /* Load Doubleword with Update Indexed */
4650 case 119: /* Load Byte and Zero with Update Indexed */
4651 case 311: /* Load Halfword and Zero with Update Indexed */
4652 case 55: /* Load Word and Zero with Update Indexed */
4653 case 375: /* Load Halfword Algebraic with Update Indexed */
4654 case 373: /* Load Word Algebraic with Update Indexed */
4655 record_full_arch_list_add_reg (regcache,
4656 tdep->ppc_gp0_regnum + PPC_RA (insn));
4657 /* FALL-THROUGH */
4658 case 21: /* Load Doubleword Indexed */
4659 case 52: /* Load Byte And Reserve Indexed */
4660 case 116: /* Load Halfword And Reserve Indexed */
4661 case 20: /* Load Word And Reserve Indexed */
4662 case 84: /* Load Doubleword And Reserve Indexed */
4663 case 87: /* Load Byte and Zero Indexed */
4664 case 279: /* Load Halfword and Zero Indexed */
4665 case 23: /* Load Word and Zero Indexed */
4666 case 343: /* Load Halfword Algebraic Indexed */
4667 case 341: /* Load Word Algebraic Indexed */
4668 case 790: /* Load Halfword Byte-Reverse Indexed */
4669 case 534: /* Load Word Byte-Reverse Indexed */
4670 case 532: /* Load Doubleword Byte-Reverse Indexed */
6ec2b213
EBM
4671 case 582: /* Load Word Atomic */
4672 case 614: /* Load Doubleword Atomic */
4673 case 265: /* Modulo Unsigned Doubleword */
4674 case 777: /* Modulo Signed Doubleword */
4675 case 267: /* Modulo Unsigned Word */
4676 case 779: /* Modulo Signed Word */
b4cdae6f
WW
4677 record_full_arch_list_add_reg (regcache,
4678 tdep->ppc_gp0_regnum + PPC_RT (insn));
4679 return 0;
4680
4681 case 597: /* Load String Word Immediate */
4682 case 533: /* Load String Word Indexed */
4683 if (ext == 597)
4684 {
4685 nr = PPC_NB (insn);
4686 if (nr == 0)
4687 nr = 32;
4688 }
4689 else
4690 {
4691 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4692 nr = PPC_XER_NB (xer);
4693 }
4694
4695 nr = (nr + 3) >> 2;
4696
4697 /* If n=0, the contents of register RT are undefined. */
4698 if (nr == 0)
4699 nr = 1;
4700
4701 for (i = 0; i < nr; i++)
4702 record_full_arch_list_add_reg (regcache,
4703 tdep->ppc_gp0_regnum
4704 + ((PPC_RT (insn) + i) & 0x1f));
4705 return 0;
4706
4707 case 276: /* Load Quadword And Reserve Indexed */
4708 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4709 record_full_arch_list_add_reg (regcache, tmp);
4710 record_full_arch_list_add_reg (regcache, tmp + 1);
4711 return 0;
4712
4713 /* These write VRT. */
4714 case 6: /* Load Vector for Shift Left Indexed */
4715 case 38: /* Load Vector for Shift Right Indexed */
4716 case 7: /* Load Vector Element Byte Indexed */
4717 case 39: /* Load Vector Element Halfword Indexed */
4718 case 71: /* Load Vector Element Word Indexed */
4719 case 103: /* Load Vector Indexed */
4720 case 359: /* Load Vector Indexed LRU */
4721 record_full_arch_list_add_reg (regcache,
4722 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4723 return 0;
4724
4725 /* These write FRT. Update RA if 'update indexed.' */
4726 case 567: /* Load Floating-Point Single with Update Indexed */
4727 case 631: /* Load Floating-Point Double with Update Indexed */
4728 record_full_arch_list_add_reg (regcache,
4729 tdep->ppc_gp0_regnum + PPC_RA (insn));
4730 /* FALL-THROUGH */
4731 case 535: /* Load Floating-Point Single Indexed */
4732 case 599: /* Load Floating-Point Double Indexed */
4733 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4734 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4735 record_full_arch_list_add_reg (regcache,
4736 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4737 return 0;
4738
4739 case 791: /* Load Floating-Point Double Pair Indexed */
4740 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4741 record_full_arch_list_add_reg (regcache, tmp);
4742 record_full_arch_list_add_reg (regcache, tmp + 1);
4743 return 0;
4744
4745 case 179: /* Move To VSR Doubleword */
4746 case 211: /* Move To VSR Word Algebraic */
4747 case 243: /* Move To VSR Word and Zero */
4748 case 588: /* Load VSX Scalar Doubleword Indexed */
4749 case 524: /* Load VSX Scalar Single-Precision Indexed */
4750 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4751 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4752 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4753 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4754 case 780: /* Load VSX Vector Word*4 Indexed */
6ec2b213
EBM
4755 case 268: /* Load VSX Vector Indexed */
4756 case 364: /* Load VSX Vector Word & Splat Indexed */
4757 case 812: /* Load VSX Vector Halfword*8 Indexed */
4758 case 876: /* Load VSX Vector Byte*16 Indexed */
4759 case 269: /* Load VSX Vector with Length */
4760 case 301: /* Load VSX Vector Left-justified with Length */
4761 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4762 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4763 case 403: /* Move To VSR Word & Splat */
4764 case 435: /* Move To VSR Double Doubleword */
b4cdae6f
WW
4765 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4766 return 0;
4767
4768 /* These write RA. Update CR if RC is set. */
4769 case 24: /* Shift Left Word */
4770 case 26: /* Count Leading Zeros Word */
4771 case 27: /* Shift Left Doubleword */
4772 case 28: /* AND */
4773 case 58: /* Count Leading Zeros Doubleword */
4774 case 60: /* AND with Complement */
4775 case 124: /* NOR */
4776 case 284: /* Equivalent */
4777 case 316: /* XOR */
4778 case 476: /* NAND */
4779 case 412: /* OR with Complement */
4780 case 444: /* OR */
4781 case 536: /* Shift Right Word */
4782 case 539: /* Shift Right Doubleword */
4783 case 922: /* Extend Sign Halfword */
4784 case 954: /* Extend Sign Byte */
4785 case 986: /* Extend Sign Word */
6ec2b213
EBM
4786 case 538: /* Count Trailing Zeros Word */
4787 case 570: /* Count Trailing Zeros Doubleword */
4788 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4789 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
7ca18ed6
EBM
4790
4791 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4792 && (PPC_RS (insn) == PPC_RA (insn))
4793 && (PPC_RA (insn) == PPC_RB (insn))
4794 && !PPC_RC (insn))
4795 {
4796 /* or Rx,Rx,Rx alters PRI in PPR. */
4797 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4798 return 0;
4799 }
4800
b4cdae6f
WW
4801 if (PPC_RC (insn))
4802 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4803 record_full_arch_list_add_reg (regcache,
4804 tdep->ppc_gp0_regnum + PPC_RA (insn));
4805 return 0;
4806
4807 /* Store memory. */
4808 case 181: /* Store Doubleword with Update Indexed */
4809 case 183: /* Store Word with Update Indexed */
4810 case 247: /* Store Byte with Update Indexed */
4811 case 439: /* Store Half Word with Update Indexed */
4812 case 695: /* Store Floating-Point Single with Update Indexed */
4813 case 759: /* Store Floating-Point Double with Update Indexed */
4814 record_full_arch_list_add_reg (regcache,
4815 tdep->ppc_gp0_regnum + PPC_RA (insn));
4816 /* FALL-THROUGH */
4817 case 135: /* Store Vector Element Byte Indexed */
4818 case 167: /* Store Vector Element Halfword Indexed */
4819 case 199: /* Store Vector Element Word Indexed */
4820 case 231: /* Store Vector Indexed */
4821 case 487: /* Store Vector Indexed LRU */
4822 case 716: /* Store VSX Scalar Doubleword Indexed */
4823 case 140: /* Store VSX Scalar as Integer Word Indexed */
4824 case 652: /* Store VSX Scalar Single-Precision Indexed */
4825 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4826 case 908: /* Store VSX Vector Word*4 Indexed */
4827 case 149: /* Store Doubleword Indexed */
4828 case 151: /* Store Word Indexed */
4829 case 215: /* Store Byte Indexed */
4830 case 407: /* Store Half Word Indexed */
4831 case 694: /* Store Byte Conditional Indexed */
4832 case 726: /* Store Halfword Conditional Indexed */
4833 case 150: /* Store Word Conditional Indexed */
4834 case 214: /* Store Doubleword Conditional Indexed */
4835 case 182: /* Store Quadword Conditional Indexed */
4836 case 662: /* Store Word Byte-Reverse Indexed */
4837 case 918: /* Store Halfword Byte-Reverse Indexed */
4838 case 660: /* Store Doubleword Byte-Reverse Indexed */
4839 case 663: /* Store Floating-Point Single Indexed */
4840 case 727: /* Store Floating-Point Double Indexed */
4841 case 919: /* Store Floating-Point Double Pair Indexed */
4842 case 983: /* Store Floating-Point as Integer Word Indexed */
6ec2b213
EBM
4843 case 396: /* Store VSX Vector Indexed */
4844 case 940: /* Store VSX Vector Halfword*8 Indexed */
4845 case 1004: /* Store VSX Vector Byte*16 Indexed */
4846 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4847 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4848 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4849 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4850
4851 ra = 0;
4852 if (PPC_RA (insn) != 0)
4853 regcache_raw_read_unsigned (regcache,
4854 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4855 regcache_raw_read_unsigned (regcache,
4856 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4857 ea = ra + rb;
4858
4859 switch (ext)
4860 {
4861 case 183: /* Store Word with Update Indexed */
4862 case 199: /* Store Vector Element Word Indexed */
4863 case 140: /* Store VSX Scalar as Integer Word Indexed */
4864 case 652: /* Store VSX Scalar Single-Precision Indexed */
4865 case 151: /* Store Word Indexed */
4866 case 150: /* Store Word Conditional Indexed */
4867 case 662: /* Store Word Byte-Reverse Indexed */
4868 case 663: /* Store Floating-Point Single Indexed */
4869 case 695: /* Store Floating-Point Single with Update Indexed */
4870 case 983: /* Store Floating-Point as Integer Word Indexed */
4871 size = 4;
4872 break;
4873 case 247: /* Store Byte with Update Indexed */
4874 case 135: /* Store Vector Element Byte Indexed */
4875 case 215: /* Store Byte Indexed */
4876 case 694: /* Store Byte Conditional Indexed */
6ec2b213 4877 case 909: /* Store VSX Scalar as Integer Byte Indexed */
b4cdae6f
WW
4878 size = 1;
4879 break;
4880 case 439: /* Store Halfword with Update Indexed */
4881 case 167: /* Store Vector Element Halfword Indexed */
4882 case 407: /* Store Halfword Indexed */
4883 case 726: /* Store Halfword Conditional Indexed */
4884 case 918: /* Store Halfword Byte-Reverse Indexed */
6ec2b213 4885 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4886 size = 2;
4887 break;
4888 case 181: /* Store Doubleword with Update Indexed */
4889 case 716: /* Store VSX Scalar Doubleword Indexed */
4890 case 149: /* Store Doubleword Indexed */
4891 case 214: /* Store Doubleword Conditional Indexed */
4892 case 660: /* Store Doubleword Byte-Reverse Indexed */
4893 case 727: /* Store Floating-Point Double Indexed */
4894 case 759: /* Store Floating-Point Double with Update Indexed */
4895 size = 8;
4896 break;
4897 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4898 case 908: /* Store VSX Vector Word*4 Indexed */
4899 case 182: /* Store Quadword Conditional Indexed */
4900 case 231: /* Store Vector Indexed */
4901 case 487: /* Store Vector Indexed LRU */
4902 case 919: /* Store Floating-Point Double Pair Indexed */
6ec2b213
EBM
4903 case 396: /* Store VSX Vector Indexed */
4904 case 940: /* Store VSX Vector Halfword*8 Indexed */
4905 case 1004: /* Store VSX Vector Byte*16 Indexed */
b4cdae6f
WW
4906 size = 16;
4907 break;
4908 default:
4909 gdb_assert (0);
4910 }
4911
4912 /* Align address for Store Vector instructions. */
4913 switch (ext)
4914 {
4915 case 167: /* Store Vector Element Halfword Indexed */
4916 addr = addr & ~0x1ULL;
4917 break;
4918
4919 case 199: /* Store Vector Element Word Indexed */
4920 addr = addr & ~0x3ULL;
4921 break;
4922
4923 case 231: /* Store Vector Indexed */
4924 case 487: /* Store Vector Indexed LRU */
4925 addr = addr & ~0xfULL;
4926 break;
4927 }
4928
4929 record_full_arch_list_add_mem (addr, size);
4930 return 0;
4931
6ec2b213
EBM
4932 case 397: /* Store VSX Vector with Length */
4933 case 429: /* Store VSX Vector Left-justified with Length */
de678454 4934 ra = 0;
6ec2b213
EBM
4935 if (PPC_RA (insn) != 0)
4936 regcache_raw_read_unsigned (regcache,
de678454
EBM
4937 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4938 ea = ra;
6ec2b213
EBM
4939 regcache_raw_read_unsigned (regcache,
4940 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4941 /* Store up to 16 bytes. */
4942 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4943 if (nb > 0)
4944 record_full_arch_list_add_mem (ea, nb);
4945 return 0;
4946
4947 case 710: /* Store Word Atomic */
4948 case 742: /* Store Doubleword Atomic */
de678454 4949 ra = 0;
6ec2b213
EBM
4950 if (PPC_RA (insn) != 0)
4951 regcache_raw_read_unsigned (regcache,
de678454
EBM
4952 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4953 ea = ra;
6ec2b213
EBM
4954 switch (ext)
4955 {
4956 case 710: /* Store Word Atomic */
4957 size = 8;
4958 break;
4959 case 742: /* Store Doubleword Atomic */
4960 size = 16;
4961 break;
4962 default:
4963 gdb_assert (0);
4964 }
4965 record_full_arch_list_add_mem (ea, size);
4966 return 0;
4967
b4cdae6f
WW
4968 case 725: /* Store String Word Immediate */
4969 ra = 0;
4970 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4971 regcache_raw_read_unsigned (regcache,
4972 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4973 ea += ra;
4974
4975 nb = PPC_NB (insn);
4976 if (nb == 0)
4977 nb = 32;
4978
4979 record_full_arch_list_add_mem (ea, nb);
4980
4981 return 0;
4982
4983 case 661: /* Store String Word Indexed */
4984 ra = 0;
4985 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4986 regcache_raw_read_unsigned (regcache,
4987 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4988 ea += ra;
4989
4990 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4991 nb = PPC_XER_NB (xer);
4992
4993 if (nb != 0)
4994 {
9f7efd5b
EBM
4995 regcache_raw_read_unsigned (regcache,
4996 tdep->ppc_gp0_regnum + PPC_RB (insn),
4997 &rb);
b4cdae6f
WW
4998 ea += rb;
4999 record_full_arch_list_add_mem (ea, nb);
5000 }
5001
5002 return 0;
5003
5004 case 467: /* Move To Special Purpose Register */
5005 switch (PPC_SPR (insn))
5006 {
5007 case 1: /* XER */
5008 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5009 return 0;
7ca18ed6
EBM
5010 case 3: /* DSCR */
5011 if (tdep->ppc_dscr_regnum >= 0)
5012 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
5013 return 0;
b4cdae6f
WW
5014 case 8: /* LR */
5015 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5016 return 0;
5017 case 9: /* CTR */
5018 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5019 return 0;
5020 case 256: /* VRSAVE */
5021 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
5022 return 0;
f2cf6173
EBM
5023 case 815: /* TAR */
5024 if (tdep->ppc_tar_regnum >= 0)
5025 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
5026 return 0;
7ca18ed6
EBM
5027 case 896:
5028 case 898: /* PPR */
5029 if (tdep->ppc_ppr_regnum >= 0)
5030 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5031 return 0;
b4cdae6f
WW
5032 }
5033
5034 goto UNKNOWN_OP;
5035
5036 case 147: /* Move To Split Little Endian */
5037 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5038 return 0;
5039
5040 case 512: /* Move to Condition Register from XER */
5041 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5042 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5043 return 0;
5044
5045 case 4: /* Trap Word */
5046 case 68: /* Trap Doubleword */
5047 case 430: /* Clear BHRB */
5048 case 598: /* Synchronize */
5049 case 62: /* Wait for Interrupt */
6ec2b213 5050 case 30: /* Wait */
b4cdae6f
WW
5051 case 22: /* Instruction Cache Block Touch */
5052 case 854: /* Enforce In-order Execution of I/O */
5053 case 246: /* Data Cache Block Touch for Store */
5054 case 54: /* Data Cache Block Store */
5055 case 86: /* Data Cache Block Flush */
5056 case 278: /* Data Cache Block Touch */
5057 case 758: /* Data Cache Block Allocate */
5058 case 982: /* Instruction Cache Block Invalidate */
6ec2b213
EBM
5059 case 774: /* Copy */
5060 case 838: /* CP_Abort */
b4cdae6f
WW
5061 return 0;
5062
5063 case 654: /* Transaction Begin */
5064 case 686: /* Transaction End */
b4cdae6f
WW
5065 case 750: /* Transaction Suspend or Resume */
5066 case 782: /* Transaction Abort Word Conditional */
5067 case 814: /* Transaction Abort Doubleword Conditional */
5068 case 846: /* Transaction Abort Word Conditional Immediate */
5069 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5070 case 910: /* Transaction Abort */
d44c67f3
EBM
5071 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5072 /* FALL-THROUGH */
5073 case 718: /* Transaction Check */
5074 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5075 return 0;
b4cdae6f
WW
5076
5077 case 1014: /* Data Cache Block set to Zero */
8b88a78e 5078 if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0
b4cdae6f
WW
5079 || at_dcsz == 0)
5080 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5081
bec734b2 5082 ra = 0;
b4cdae6f
WW
5083 if (PPC_RA (insn) != 0)
5084 regcache_raw_read_unsigned (regcache,
5085 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5086 regcache_raw_read_unsigned (regcache,
5087 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5088 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5089 record_full_arch_list_add_mem (ea, at_dcsz);
5090 return 0;
5091 }
5092
5093UNKNOWN_OP:
810c1026
WW
5094 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5095 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5096 return -1;
5097}
5098
ddeca1df
WW
5099/* Parse and record instructions of primary opcode-59 at ADDR.
5100 Return 0 if successful. */
b4cdae6f
WW
5101
5102static int
5103ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5104 CORE_ADDR addr, uint32_t insn)
5105{
5106 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5107 int ext = PPC_EXTOP (insn);
5108
5109 switch (ext & 0x1f)
5110 {
5111 case 18: /* Floating Divide */
5112 case 20: /* Floating Subtract */
5113 case 21: /* Floating Add */
5114 case 22: /* Floating Square Root */
5115 case 24: /* Floating Reciprocal Estimate */
5116 case 25: /* Floating Multiply */
5117 case 26: /* Floating Reciprocal Square Root Estimate */
5118 case 28: /* Floating Multiply-Subtract */
5119 case 29: /* Floating Multiply-Add */
5120 case 30: /* Floating Negative Multiply-Subtract */
5121 case 31: /* Floating Negative Multiply-Add */
5122 record_full_arch_list_add_reg (regcache,
5123 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5124 if (PPC_RC (insn))
5125 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5126 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5127
5128 return 0;
5129 }
5130
5131 switch (ext)
5132 {
5133 case 2: /* DFP Add */
5134 case 3: /* DFP Quantize */
5135 case 34: /* DFP Multiply */
5136 case 35: /* DFP Reround */
5137 case 67: /* DFP Quantize Immediate */
5138 case 99: /* DFP Round To FP Integer With Inexact */
5139 case 227: /* DFP Round To FP Integer Without Inexact */
5140 case 258: /* DFP Convert To DFP Long! */
5141 case 290: /* DFP Convert To Fixed */
5142 case 514: /* DFP Subtract */
5143 case 546: /* DFP Divide */
5144 case 770: /* DFP Round To DFP Short! */
5145 case 802: /* DFP Convert From Fixed */
5146 case 834: /* DFP Encode BCD To DPD */
5147 if (PPC_RC (insn))
5148 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5149 record_full_arch_list_add_reg (regcache,
5150 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5151 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5152 return 0;
5153
5154 case 130: /* DFP Compare Ordered */
5155 case 162: /* DFP Test Exponent */
5156 case 194: /* DFP Test Data Class */
5157 case 226: /* DFP Test Data Group */
5158 case 642: /* DFP Compare Unordered */
5159 case 674: /* DFP Test Significance */
6ec2b213 5160 case 675: /* DFP Test Significance Immediate */
b4cdae6f
WW
5161 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5162 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5163 return 0;
5164
5165 case 66: /* DFP Shift Significand Left Immediate */
5166 case 98: /* DFP Shift Significand Right Immediate */
5167 case 322: /* DFP Decode DPD To BCD */
5168 case 354: /* DFP Extract Biased Exponent */
5169 case 866: /* DFP Insert Biased Exponent */
5170 record_full_arch_list_add_reg (regcache,
5171 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5172 if (PPC_RC (insn))
5173 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5174 return 0;
5175
5176 case 846: /* Floating Convert From Integer Doubleword Single */
5177 case 974: /* Floating Convert From Integer Doubleword Unsigned
5178 Single */
5179 record_full_arch_list_add_reg (regcache,
5180 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5181 if (PPC_RC (insn))
5182 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5183 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5184
5185 return 0;
5186 }
5187
810c1026
WW
5188 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5189 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5190 return -1;
5191}
5192
ddeca1df
WW
5193/* Parse and record instructions of primary opcode-60 at ADDR.
5194 Return 0 if successful. */
b4cdae6f
WW
5195
5196static int
5197ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5198 CORE_ADDR addr, uint32_t insn)
5199{
5200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5201 int ext = PPC_EXTOP (insn);
b4cdae6f
WW
5202
5203 switch (ext >> 2)
5204 {
5205 case 0: /* VSX Scalar Add Single-Precision */
5206 case 32: /* VSX Scalar Add Double-Precision */
5207 case 24: /* VSX Scalar Divide Single-Precision */
5208 case 56: /* VSX Scalar Divide Double-Precision */
5209 case 176: /* VSX Scalar Copy Sign Double-Precision */
5210 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5211 case 41: /* ditto */
5212 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5213 case 9: /* ditto */
5214 case 160: /* VSX Scalar Maximum Double-Precision */
5215 case 168: /* VSX Scalar Minimum Double-Precision */
5216 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5217 case 57: /* ditto */
5218 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5219 case 25: /* ditto */
5220 case 48: /* VSX Scalar Multiply Double-Precision */
5221 case 16: /* VSX Scalar Multiply Single-Precision */
5222 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5223 case 169: /* ditto */
5224 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5225 case 137: /* ditto */
5226 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5227 case 185: /* ditto */
5228 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5229 case 153: /* ditto */
5230 case 40: /* VSX Scalar Subtract Double-Precision */
5231 case 8: /* VSX Scalar Subtract Single-Precision */
5232 case 96: /* VSX Vector Add Double-Precision */
5233 case 64: /* VSX Vector Add Single-Precision */
5234 case 120: /* VSX Vector Divide Double-Precision */
5235 case 88: /* VSX Vector Divide Single-Precision */
5236 case 97: /* VSX Vector Multiply-Add Double-Precision */
5237 case 105: /* ditto */
5238 case 65: /* VSX Vector Multiply-Add Single-Precision */
5239 case 73: /* ditto */
5240 case 224: /* VSX Vector Maximum Double-Precision */
5241 case 192: /* VSX Vector Maximum Single-Precision */
5242 case 232: /* VSX Vector Minimum Double-Precision */
5243 case 200: /* VSX Vector Minimum Single-Precision */
5244 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5245 case 121: /* ditto */
5246 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5247 case 89: /* ditto */
5248 case 112: /* VSX Vector Multiply Double-Precision */
5249 case 80: /* VSX Vector Multiply Single-Precision */
5250 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5251 case 233: /* ditto */
5252 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5253 case 201: /* ditto */
5254 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5255 case 249: /* ditto */
5256 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5257 case 217: /* ditto */
5258 case 104: /* VSX Vector Subtract Double-Precision */
5259 case 72: /* VSX Vector Subtract Single-Precision */
6ec2b213
EBM
5260 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5261 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5262 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5263 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5264 case 3: /* VSX Scalar Compare Equal Double-Precision */
5265 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5266 case 19: /* VSX Scalar Compare Greater Than or Equal
5267 Double-Precision */
b4cdae6f 5268 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 5269 /* FALL-THROUGH */
b4cdae6f
WW
5270 case 240: /* VSX Vector Copy Sign Double-Precision */
5271 case 208: /* VSX Vector Copy Sign Single-Precision */
5272 case 130: /* VSX Logical AND */
5273 case 138: /* VSX Logical AND with Complement */
5274 case 186: /* VSX Logical Equivalence */
5275 case 178: /* VSX Logical NAND */
5276 case 170: /* VSX Logical OR with Complement */
5277 case 162: /* VSX Logical NOR */
5278 case 146: /* VSX Logical OR */
5279 case 154: /* VSX Logical XOR */
5280 case 18: /* VSX Merge High Word */
5281 case 50: /* VSX Merge Low Word */
5282 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5283 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5284 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5285 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5286 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5287 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5288 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5289 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
6ec2b213
EBM
5290 case 216: /* VSX Vector Insert Exponent Single-Precision */
5291 case 248: /* VSX Vector Insert Exponent Double-Precision */
5292 case 26: /* VSX Vector Permute */
5293 case 58: /* VSX Vector Permute Right-indexed */
5294 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5295 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5296 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5297 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
b4cdae6f
WW
5298 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5299 return 0;
5300
5301 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5302 case 125: /* VSX Vector Test for software Divide Double-Precision */
5303 case 93: /* VSX Vector Test for software Divide Single-Precision */
5304 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5305 return 0;
5306
5307 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5308 case 43: /* VSX Scalar Compare Ordered Double-Precision */
6ec2b213 5309 case 59: /* VSX Scalar Compare Exponents Double-Precision */
b4cdae6f
WW
5310 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5311 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5312 return 0;
5313 }
5314
5315 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5316 {
5317 case 99: /* VSX Vector Compare Equal To Double-Precision */
5318 case 67: /* VSX Vector Compare Equal To Single-Precision */
5319 case 115: /* VSX Vector Compare Greater Than or
5320 Equal To Double-Precision */
5321 case 83: /* VSX Vector Compare Greater Than or
5322 Equal To Single-Precision */
5323 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5324 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5325 if (PPC_Rc (insn))
5326 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5327 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5328 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5329 return 0;
5330 }
5331
5332 switch (ext >> 1)
5333 {
5334 case 265: /* VSX Scalar round Double-Precision to
5335 Single-Precision and Convert to
5336 Single-Precision format */
5337 case 344: /* VSX Scalar truncate Double-Precision to
5338 Integer and Convert to Signed Integer
5339 Doubleword format with Saturate */
5340 case 88: /* VSX Scalar truncate Double-Precision to
5341 Integer and Convert to Signed Integer Word
5342 Format with Saturate */
5343 case 328: /* VSX Scalar truncate Double-Precision integer
5344 and Convert to Unsigned Integer Doubleword
5345 Format with Saturate */
5346 case 72: /* VSX Scalar truncate Double-Precision to
5347 Integer and Convert to Unsigned Integer Word
5348 Format with Saturate */
5349 case 329: /* VSX Scalar Convert Single-Precision to
5350 Double-Precision format */
5351 case 376: /* VSX Scalar Convert Signed Integer
5352 Doubleword to floating-point format and
5353 Round to Double-Precision format */
5354 case 312: /* VSX Scalar Convert Signed Integer
5355 Doubleword to floating-point format and
5356 round to Single-Precision */
5357 case 360: /* VSX Scalar Convert Unsigned Integer
5358 Doubleword to floating-point format and
5359 Round to Double-Precision format */
5360 case 296: /* VSX Scalar Convert Unsigned Integer
5361 Doubleword to floating-point format and
5362 Round to Single-Precision */
5363 case 73: /* VSX Scalar Round to Double-Precision Integer
5364 Using Round to Nearest Away */
5365 case 107: /* VSX Scalar Round to Double-Precision Integer
5366 Exact using Current rounding mode */
5367 case 121: /* VSX Scalar Round to Double-Precision Integer
5368 Using Round toward -Infinity */
5369 case 105: /* VSX Scalar Round to Double-Precision Integer
5370 Using Round toward +Infinity */
5371 case 89: /* VSX Scalar Round to Double-Precision Integer
5372 Using Round toward Zero */
5373 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5374 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5375 case 281: /* VSX Scalar Round to Single-Precision */
5376 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5377 Double-Precision */
5378 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5379 Single-Precision */
5380 case 75: /* VSX Scalar Square Root Double-Precision */
5381 case 11: /* VSX Scalar Square Root Single-Precision */
5382 case 393: /* VSX Vector round Double-Precision to
5383 Single-Precision and Convert to
5384 Single-Precision format */
5385 case 472: /* VSX Vector truncate Double-Precision to
5386 Integer and Convert to Signed Integer
5387 Doubleword format with Saturate */
5388 case 216: /* VSX Vector truncate Double-Precision to
5389 Integer and Convert to Signed Integer Word
5390 Format with Saturate */
5391 case 456: /* VSX Vector truncate Double-Precision to
5392 Integer and Convert to Unsigned Integer
5393 Doubleword format with Saturate */
5394 case 200: /* VSX Vector truncate Double-Precision to
5395 Integer and Convert to Unsigned Integer Word
5396 Format with Saturate */
5397 case 457: /* VSX Vector Convert Single-Precision to
5398 Double-Precision format */
5399 case 408: /* VSX Vector truncate Single-Precision to
5400 Integer and Convert to Signed Integer
5401 Doubleword format with Saturate */
5402 case 152: /* VSX Vector truncate Single-Precision to
5403 Integer and Convert to Signed Integer Word
5404 Format with Saturate */
5405 case 392: /* VSX Vector truncate Single-Precision to
5406 Integer and Convert to Unsigned Integer
5407 Doubleword format with Saturate */
5408 case 136: /* VSX Vector truncate Single-Precision to
5409 Integer and Convert to Unsigned Integer Word
5410 Format with Saturate */
5411 case 504: /* VSX Vector Convert and round Signed Integer
5412 Doubleword to Double-Precision format */
5413 case 440: /* VSX Vector Convert and round Signed Integer
5414 Doubleword to Single-Precision format */
5415 case 248: /* VSX Vector Convert Signed Integer Word to
5416 Double-Precision format */
5417 case 184: /* VSX Vector Convert and round Signed Integer
5418 Word to Single-Precision format */
5419 case 488: /* VSX Vector Convert and round Unsigned
5420 Integer Doubleword to Double-Precision format */
5421 case 424: /* VSX Vector Convert and round Unsigned
5422 Integer Doubleword to Single-Precision format */
5423 case 232: /* VSX Vector Convert and round Unsigned
5424 Integer Word to Double-Precision format */
5425 case 168: /* VSX Vector Convert and round Unsigned
5426 Integer Word to Single-Precision format */
5427 case 201: /* VSX Vector Round to Double-Precision
5428 Integer using round to Nearest Away */
5429 case 235: /* VSX Vector Round to Double-Precision
5430 Integer Exact using Current rounding mode */
5431 case 249: /* VSX Vector Round to Double-Precision
5432 Integer using round toward -Infinity */
5433 case 233: /* VSX Vector Round to Double-Precision
5434 Integer using round toward +Infinity */
5435 case 217: /* VSX Vector Round to Double-Precision
5436 Integer using round toward Zero */
5437 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5438 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5439 case 137: /* VSX Vector Round to Single-Precision Integer
5440 Using Round to Nearest Away */
5441 case 171: /* VSX Vector Round to Single-Precision Integer
5442 Exact Using Current rounding mode */
5443 case 185: /* VSX Vector Round to Single-Precision Integer
5444 Using Round toward -Infinity */
5445 case 169: /* VSX Vector Round to Single-Precision Integer
5446 Using Round toward +Infinity */
5447 case 153: /* VSX Vector Round to Single-Precision Integer
5448 Using round toward Zero */
5449 case 202: /* VSX Vector Reciprocal Square Root Estimate
5450 Double-Precision */
5451 case 138: /* VSX Vector Reciprocal Square Root Estimate
5452 Single-Precision */
5453 case 203: /* VSX Vector Square Root Double-Precision */
5454 case 139: /* VSX Vector Square Root Single-Precision */
5455 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 5456 /* FALL-THROUGH */
b4cdae6f
WW
5457 case 345: /* VSX Scalar Absolute Value Double-Precision */
5458 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5459 Vector Single-Precision format Non-signalling */
5460 case 331: /* VSX Scalar Convert Single-Precision to
5461 Double-Precision format Non-signalling */
5462 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5463 case 377: /* VSX Scalar Negate Double-Precision */
5464 case 473: /* VSX Vector Absolute Value Double-Precision */
5465 case 409: /* VSX Vector Absolute Value Single-Precision */
5466 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5467 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5468 case 505: /* VSX Vector Negate Double-Precision */
5469 case 441: /* VSX Vector Negate Single-Precision */
5470 case 164: /* VSX Splat Word */
6ec2b213
EBM
5471 case 165: /* VSX Vector Extract Unsigned Word */
5472 case 181: /* VSX Vector Insert Word */
b4cdae6f
WW
5473 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5474 return 0;
5475
6ec2b213
EBM
5476 case 298: /* VSX Scalar Test Data Class Single-Precision */
5477 case 362: /* VSX Scalar Test Data Class Double-Precision */
5478 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5479 /* FALL-THROUGH */
b4cdae6f
WW
5480 case 106: /* VSX Scalar Test for software Square Root
5481 Double-Precision */
5482 case 234: /* VSX Vector Test for software Square Root
5483 Double-Precision */
5484 case 170: /* VSX Vector Test for software Square Root
5485 Single-Precision */
5486 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5487 return 0;
6ec2b213
EBM
5488
5489 case 347:
5490 switch (PPC_FIELD (insn, 11, 5))
5491 {
5492 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5493 case 1: /* VSX Scalar Extract Significand Double-Precision */
dda83cd7 5494 record_full_arch_list_add_reg (regcache,
6ec2b213
EBM
5495 tdep->ppc_gp0_regnum + PPC_RT (insn));
5496 return 0;
5497 case 16: /* VSX Scalar Convert Half-Precision format to
5498 Double-Precision format */
5499 case 17: /* VSX Scalar round & Convert Double-Precision format
5500 to Half-Precision format */
5501 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5502 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5503 return 0;
5504 }
5505 break;
5506
5507 case 475:
5508 switch (PPC_FIELD (insn, 11, 5))
5509 {
5510 case 24: /* VSX Vector Convert Half-Precision format to
5511 Single-Precision format */
5512 case 25: /* VSX Vector round and Convert Single-Precision format
5513 to Half-Precision format */
5514 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5515 /* FALL-THROUGH */
5516 case 0: /* VSX Vector Extract Exponent Double-Precision */
5517 case 1: /* VSX Vector Extract Significand Double-Precision */
5518 case 7: /* VSX Vector Byte-Reverse Halfword */
5519 case 8: /* VSX Vector Extract Exponent Single-Precision */
5520 case 9: /* VSX Vector Extract Significand Single-Precision */
5521 case 15: /* VSX Vector Byte-Reverse Word */
5522 case 23: /* VSX Vector Byte-Reverse Doubleword */
5523 case 31: /* VSX Vector Byte-Reverse Quadword */
5524 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5525 return 0;
5526 }
5527 break;
5528 }
5529
5530 switch (ext)
5531 {
5532 case 360: /* VSX Vector Splat Immediate Byte */
5533 if (PPC_FIELD (insn, 11, 2) == 0)
5534 {
5535 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5536 return 0;
5537 }
5538 break;
5539 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5540 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5541 return 0;
b4cdae6f
WW
5542 }
5543
5544 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5545 {
5546 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5547 return 0;
5548 }
5549
810c1026
WW
5550 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5551 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5552 return -1;
5553}
5554
6ec2b213
EBM
5555/* Parse and record instructions of primary opcode-61 at ADDR.
5556 Return 0 if successful. */
5557
5558static int
5559ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5560 CORE_ADDR addr, uint32_t insn)
5561{
5562 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5563 ULONGEST ea = 0;
5564 int size;
5565
5566 switch (insn & 0x3)
5567 {
5568 case 0: /* Store Floating-Point Double Pair */
5569 case 2: /* Store VSX Scalar Doubleword */
5570 case 3: /* Store VSX Scalar Single */
5571 if (PPC_RA (insn) != 0)
5572 regcache_raw_read_unsigned (regcache,
5573 tdep->ppc_gp0_regnum + PPC_RA (insn),
5574 &ea);
5575 ea += PPC_DS (insn) << 2;
5576 switch (insn & 0x3)
5577 {
5578 case 0: /* Store Floating-Point Double Pair */
5579 size = 16;
5580 break;
5581 case 2: /* Store VSX Scalar Doubleword */
5582 size = 8;
5583 break;
5584 case 3: /* Store VSX Scalar Single */
5585 size = 4;
5586 break;
5587 default:
5588 gdb_assert (0);
5589 }
5590 record_full_arch_list_add_mem (ea, size);
5591 return 0;
5592 }
5593
5594 switch (insn & 0x7)
5595 {
5596 case 1: /* Load VSX Vector */
5597 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5598 return 0;
5599 case 5: /* Store VSX Vector */
5600 if (PPC_RA (insn) != 0)
5601 regcache_raw_read_unsigned (regcache,
5602 tdep->ppc_gp0_regnum + PPC_RA (insn),
5603 &ea);
5604 ea += PPC_DQ (insn) << 4;
5605 record_full_arch_list_add_mem (ea, 16);
5606 return 0;
5607 }
5608
5609 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5610 "at %s.\n", insn, paddress (gdbarch, addr));
5611 return -1;
5612}
5613
ddeca1df
WW
5614/* Parse and record instructions of primary opcode-63 at ADDR.
5615 Return 0 if successful. */
b4cdae6f
WW
5616
5617static int
5618ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5619 CORE_ADDR addr, uint32_t insn)
5620{
5621 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5622 int ext = PPC_EXTOP (insn);
5623 int tmp;
5624
5625 switch (ext & 0x1f)
5626 {
5627 case 18: /* Floating Divide */
5628 case 20: /* Floating Subtract */
5629 case 21: /* Floating Add */
5630 case 22: /* Floating Square Root */
5631 case 24: /* Floating Reciprocal Estimate */
5632 case 25: /* Floating Multiply */
5633 case 26: /* Floating Reciprocal Square Root Estimate */
5634 case 28: /* Floating Multiply-Subtract */
5635 case 29: /* Floating Multiply-Add */
5636 case 30: /* Floating Negative Multiply-Subtract */
5637 case 31: /* Floating Negative Multiply-Add */
5638 record_full_arch_list_add_reg (regcache,
5639 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5640 if (PPC_RC (insn))
5641 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5642 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5643 return 0;
5644
5645 case 23: /* Floating Select */
5646 record_full_arch_list_add_reg (regcache,
5647 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5648 if (PPC_RC (insn))
5649 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
8aabe2e2 5650 return 0;
b4cdae6f
WW
5651 }
5652
6ec2b213
EBM
5653 switch (ext & 0xff)
5654 {
5655 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5656 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5657 Precision */
5658 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5659 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5660 return 0;
5661 }
5662
b4cdae6f
WW
5663 switch (ext)
5664 {
5665 case 2: /* DFP Add Quad */
5666 case 3: /* DFP Quantize Quad */
5667 case 34: /* DFP Multiply Quad */
5668 case 35: /* DFP Reround Quad */
5669 case 67: /* DFP Quantize Immediate Quad */
5670 case 99: /* DFP Round To FP Integer With Inexact Quad */
5671 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5672 case 258: /* DFP Convert To DFP Extended Quad */
5673 case 514: /* DFP Subtract Quad */
5674 case 546: /* DFP Divide Quad */
5675 case 770: /* DFP Round To DFP Long Quad */
5676 case 802: /* DFP Convert From Fixed Quad */
5677 case 834: /* DFP Encode BCD To DPD Quad */
5678 if (PPC_RC (insn))
5679 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5680 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5681 record_full_arch_list_add_reg (regcache, tmp);
5682 record_full_arch_list_add_reg (regcache, tmp + 1);
5683 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5684 return 0;
5685
5686 case 130: /* DFP Compare Ordered Quad */
5687 case 162: /* DFP Test Exponent Quad */
5688 case 194: /* DFP Test Data Class Quad */
5689 case 226: /* DFP Test Data Group Quad */
5690 case 642: /* DFP Compare Unordered Quad */
5691 case 674: /* DFP Test Significance Quad */
6ec2b213 5692 case 675: /* DFP Test Significance Immediate Quad */
b4cdae6f
WW
5693 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5694 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5695 return 0;
5696
5697 case 66: /* DFP Shift Significand Left Immediate Quad */
5698 case 98: /* DFP Shift Significand Right Immediate Quad */
5699 case 322: /* DFP Decode DPD To BCD Quad */
5700 case 866: /* DFP Insert Biased Exponent Quad */
5701 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5702 record_full_arch_list_add_reg (regcache, tmp);
5703 record_full_arch_list_add_reg (regcache, tmp + 1);
5704 if (PPC_RC (insn))
5705 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5706 return 0;
5707
5708 case 290: /* DFP Convert To Fixed Quad */
5709 record_full_arch_list_add_reg (regcache,
5710 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5711 if (PPC_RC (insn))
5712 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5713 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5714 return 0;
b4cdae6f
WW
5715
5716 case 354: /* DFP Extract Biased Exponent Quad */
5717 record_full_arch_list_add_reg (regcache,
5718 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5719 if (PPC_RC (insn))
5720 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5721 return 0;
5722
5723 case 12: /* Floating Round to Single-Precision */
5724 case 14: /* Floating Convert To Integer Word */
5725 case 15: /* Floating Convert To Integer Word
5726 with round toward Zero */
5727 case 142: /* Floating Convert To Integer Word Unsigned */
5728 case 143: /* Floating Convert To Integer Word Unsigned
5729 with round toward Zero */
5730 case 392: /* Floating Round to Integer Nearest */
5731 case 424: /* Floating Round to Integer Toward Zero */
5732 case 456: /* Floating Round to Integer Plus */
5733 case 488: /* Floating Round to Integer Minus */
5734 case 814: /* Floating Convert To Integer Doubleword */
5735 case 815: /* Floating Convert To Integer Doubleword
5736 with round toward Zero */
5737 case 846: /* Floating Convert From Integer Doubleword */
5738 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5739 case 943: /* Floating Convert To Integer Doubleword Unsigned
5740 with round toward Zero */
5741 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5742 record_full_arch_list_add_reg (regcache,
5743 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5744 if (PPC_RC (insn))
5745 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5746 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5747 return 0;
5748
6ec2b213
EBM
5749 case 583:
5750 switch (PPC_FIELD (insn, 11, 5))
dda83cd7 5751 {
6ec2b213
EBM
5752 case 1: /* Move From FPSCR & Clear Enables */
5753 case 20: /* Move From FPSCR Control & set DRN */
5754 case 21: /* Move From FPSCR Control & set DRN Immediate */
5755 case 22: /* Move From FPSCR Control & set RN */
5756 case 23: /* Move From FPSCR Control & set RN Immediate */
5757 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
e3829d13 5758 /* Fall through. */
6ec2b213
EBM
5759 case 0: /* Move From FPSCR */
5760 case 24: /* Move From FPSCR Lightweight */
5761 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5762 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5763 record_full_arch_list_add_reg (regcache,
5764 tdep->ppc_fp0_regnum
5765 + PPC_FRT (insn));
5766 return 0;
dda83cd7 5767 }
6ec2b213
EBM
5768 break;
5769
b4cdae6f
WW
5770 case 8: /* Floating Copy Sign */
5771 case 40: /* Floating Negate */
5772 case 72: /* Floating Move Register */
5773 case 136: /* Floating Negative Absolute Value */
5774 case 264: /* Floating Absolute Value */
5775 record_full_arch_list_add_reg (regcache,
5776 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5777 if (PPC_RC (insn))
5778 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5779 return 0;
5780
5781 case 838: /* Floating Merge Odd Word */
5782 case 966: /* Floating Merge Even Word */
5783 record_full_arch_list_add_reg (regcache,
5784 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5785 return 0;
5786
5787 case 38: /* Move To FPSCR Bit 1 */
5788 case 70: /* Move To FPSCR Bit 0 */
5789 case 134: /* Move To FPSCR Field Immediate */
5790 case 711: /* Move To FPSCR Fields */
5791 if (PPC_RC (insn))
5792 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5793 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5794 return 0;
b4cdae6f
WW
5795
5796 case 0: /* Floating Compare Unordered */
5797 case 32: /* Floating Compare Ordered */
5798 case 64: /* Move to Condition Register from FPSCR */
6ec2b213
EBM
5799 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5800 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5801 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5802 case 708: /* VSX Scalar Test Data Class Quad-Precision */
b4cdae6f
WW
5803 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5804 /* FALL-THROUGH */
5805 case 128: /* Floating Test for software Divide */
5806 case 160: /* Floating Test for software Square Root */
5807 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5808 return 0;
5809
6ec2b213
EBM
5810 case 4: /* VSX Scalar Add Quad-Precision */
5811 case 36: /* VSX Scalar Multiply Quad-Precision */
5812 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5813 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5814 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5815 case 484: /* VSX Scalar Negative Multiply-Subtract
5816 Quad-Precision */
5817 case 516: /* VSX Scalar Subtract Quad-Precision */
5818 case 548: /* VSX Scalar Divide Quad-Precision */
5819 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5820 /* FALL-THROUGH */
5821 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5822 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5823 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5824 return 0;
5825
5826 case 804:
5827 switch (PPC_FIELD (insn, 11, 5))
5828 {
5829 case 27: /* VSX Scalar Square Root Quad-Precision */
5830 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5831 /* FALL-THROUGH */
5832 case 0: /* VSX Scalar Absolute Quad-Precision */
5833 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5834 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5835 case 16: /* VSX Scalar Negate Quad-Precision */
5836 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5837 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5838 return 0;
5839 }
5840 break;
5841
5842 case 836:
5843 switch (PPC_FIELD (insn, 11, 5))
5844 {
5845 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5846 to Unsigned Word format */
5847 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5848 Quad-Precision format */
5849 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5850 to Signed Word format */
5851 case 10: /* VSX Scalar Convert Signed Doubleword format to
5852 Quad-Precision format */
5853 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5854 to Unsigned Doubleword format */
5855 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5856 Double-Precision format */
5857 case 22: /* VSX Scalar Convert Double-Precision format to
5858 Quad-Precision format */
5859 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5860 to Signed Doubleword format */
5861 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5862 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5863 return 0;
5864 }
b4cdae6f
WW
5865 }
5866
810c1026 5867 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6ec2b213 5868 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5869 return -1;
5870}
5871
5872/* Parse the current instruction and record the values of the registers and
5873 memory that will be changed in current instruction to "record_arch_list".
5874 Return -1 if something wrong. */
5875
5876int
5877ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5878 CORE_ADDR addr)
5879{
5880 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5882 uint32_t insn;
5883 int op6, tmp, i;
5884
5885 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5886 op6 = PPC_OP6 (insn);
5887
5888 switch (op6)
5889 {
5890 case 2: /* Trap Doubleword Immediate */
5891 case 3: /* Trap Word Immediate */
5892 /* Do nothing. */
5893 break;
5894
5895 case 4:
5896 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5897 return -1;
5898 break;
5899
5900 case 17: /* System call */
5901 if (PPC_LEV (insn) != 0)
5902 goto UNKNOWN_OP;
5903
5904 if (tdep->ppc_syscall_record != NULL)
5905 {
5906 if (tdep->ppc_syscall_record (regcache) != 0)
5907 return -1;
5908 }
5909 else
5910 {
5911 printf_unfiltered (_("no syscall record support\n"));
5912 return -1;
5913 }
5914 break;
5915
5916 case 7: /* Multiply Low Immediate */
5917 record_full_arch_list_add_reg (regcache,
5918 tdep->ppc_gp0_regnum + PPC_RT (insn));
5919 break;
5920
5921 case 8: /* Subtract From Immediate Carrying */
5922 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5923 record_full_arch_list_add_reg (regcache,
5924 tdep->ppc_gp0_regnum + PPC_RT (insn));
5925 break;
5926
5927 case 10: /* Compare Logical Immediate */
5928 case 11: /* Compare Immediate */
5929 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5930 break;
5931
5932 case 13: /* Add Immediate Carrying and Record */
5933 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5934 /* FALL-THROUGH */
5935 case 12: /* Add Immediate Carrying */
5936 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5937 /* FALL-THROUGH */
5938 case 14: /* Add Immediate */
5939 case 15: /* Add Immediate Shifted */
5940 record_full_arch_list_add_reg (regcache,
5941 tdep->ppc_gp0_regnum + PPC_RT (insn));
5942 break;
5943
5944 case 16: /* Branch Conditional */
5945 if ((PPC_BO (insn) & 0x4) == 0)
5946 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5947 /* FALL-THROUGH */
5948 case 18: /* Branch */
5949 if (PPC_LK (insn))
5950 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5951 break;
5952
5953 case 19:
5954 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5955 return -1;
5956 break;
5957
5958 case 20: /* Rotate Left Word Immediate then Mask Insert */
5959 case 21: /* Rotate Left Word Immediate then AND with Mask */
5960 case 23: /* Rotate Left Word then AND with Mask */
5961 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5962 /* Rotate Left Doubleword Immediate then Clear Right */
5963 /* Rotate Left Doubleword Immediate then Clear */
5964 /* Rotate Left Doubleword then Clear Left */
5965 /* Rotate Left Doubleword then Clear Right */
5966 /* Rotate Left Doubleword Immediate then Mask Insert */
5967 if (PPC_RC (insn))
5968 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5969 record_full_arch_list_add_reg (regcache,
5970 tdep->ppc_gp0_regnum + PPC_RA (insn));
5971 break;
5972
5973 case 28: /* AND Immediate */
5974 case 29: /* AND Immediate Shifted */
5975 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5976 /* FALL-THROUGH */
5977 case 24: /* OR Immediate */
5978 case 25: /* OR Immediate Shifted */
5979 case 26: /* XOR Immediate */
5980 case 27: /* XOR Immediate Shifted */
5981 record_full_arch_list_add_reg (regcache,
5982 tdep->ppc_gp0_regnum + PPC_RA (insn));
5983 break;
5984
5985 case 31:
5986 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5987 return -1;
5988 break;
5989
5990 case 33: /* Load Word and Zero with Update */
5991 case 35: /* Load Byte and Zero with Update */
5992 case 41: /* Load Halfword and Zero with Update */
5993 case 43: /* Load Halfword Algebraic with Update */
5994 record_full_arch_list_add_reg (regcache,
5995 tdep->ppc_gp0_regnum + PPC_RA (insn));
5996 /* FALL-THROUGH */
5997 case 32: /* Load Word and Zero */
5998 case 34: /* Load Byte and Zero */
5999 case 40: /* Load Halfword and Zero */
6000 case 42: /* Load Halfword Algebraic */
6001 record_full_arch_list_add_reg (regcache,
6002 tdep->ppc_gp0_regnum + PPC_RT (insn));
6003 break;
6004
6005 case 46: /* Load Multiple Word */
6006 for (i = PPC_RT (insn); i < 32; i++)
6007 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
6008 break;
6009
6010 case 56: /* Load Quadword */
6011 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
6012 record_full_arch_list_add_reg (regcache, tmp);
6013 record_full_arch_list_add_reg (regcache, tmp + 1);
6014 break;
6015
6016 case 49: /* Load Floating-Point Single with Update */
6017 case 51: /* Load Floating-Point Double with Update */
6018 record_full_arch_list_add_reg (regcache,
6019 tdep->ppc_gp0_regnum + PPC_RA (insn));
6020 /* FALL-THROUGH */
6021 case 48: /* Load Floating-Point Single */
6022 case 50: /* Load Floating-Point Double */
6023 record_full_arch_list_add_reg (regcache,
6024 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6025 break;
6026
6027 case 47: /* Store Multiple Word */
6028 {
b926417a 6029 ULONGEST iaddr = 0;
b4cdae6f
WW
6030
6031 if (PPC_RA (insn) != 0)
6032 regcache_raw_read_unsigned (regcache,
6033 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a 6034 &iaddr);
b4cdae6f 6035
b926417a
TT
6036 iaddr += PPC_D (insn);
6037 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
b4cdae6f
WW
6038 }
6039 break;
6040
6041 case 37: /* Store Word with Update */
6042 case 39: /* Store Byte with Update */
6043 case 45: /* Store Halfword with Update */
6044 case 53: /* Store Floating-Point Single with Update */
6045 case 55: /* Store Floating-Point Double with Update */
6046 record_full_arch_list_add_reg (regcache,
6047 tdep->ppc_gp0_regnum + PPC_RA (insn));
6048 /* FALL-THROUGH */
6049 case 36: /* Store Word */
6050 case 38: /* Store Byte */
6051 case 44: /* Store Halfword */
6052 case 52: /* Store Floating-Point Single */
6053 case 54: /* Store Floating-Point Double */
6054 {
b926417a 6055 ULONGEST iaddr = 0;
b4cdae6f
WW
6056 int size = -1;
6057
6058 if (PPC_RA (insn) != 0)
6059 regcache_raw_read_unsigned (regcache,
6060 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a
TT
6061 &iaddr);
6062 iaddr += PPC_D (insn);
b4cdae6f
WW
6063
6064 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6065 size = 4;
6066 else if (op6 == 54 || op6 == 55)
6067 size = 8;
6068 else if (op6 == 44 || op6 == 45)
6069 size = 2;
6070 else if (op6 == 38 || op6 == 39)
6071 size = 1;
6072 else
6073 gdb_assert (0);
6074
b926417a 6075 record_full_arch_list_add_mem (iaddr, size);
b4cdae6f
WW
6076 }
6077 break;
6078
6ec2b213
EBM
6079 case 57:
6080 switch (insn & 0x3)
dda83cd7 6081 {
6ec2b213
EBM
6082 case 0: /* Load Floating-Point Double Pair */
6083 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6084 record_full_arch_list_add_reg (regcache, tmp);
6085 record_full_arch_list_add_reg (regcache, tmp + 1);
6086 break;
6087 case 2: /* Load VSX Scalar Doubleword */
6088 case 3: /* Load VSX Scalar Single */
6089 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6090 break;
6091 default:
6092 goto UNKNOWN_OP;
6093 }
b4cdae6f
WW
6094 break;
6095
6096 case 58: /* Load Doubleword */
6097 /* Load Doubleword with Update */
6098 /* Load Word Algebraic */
6099 if (PPC_FIELD (insn, 30, 2) > 2)
6100 goto UNKNOWN_OP;
6101
6102 record_full_arch_list_add_reg (regcache,
6103 tdep->ppc_gp0_regnum + PPC_RT (insn));
6104 if (PPC_BIT (insn, 31))
6105 record_full_arch_list_add_reg (regcache,
6106 tdep->ppc_gp0_regnum + PPC_RA (insn));
6107 break;
6108
6109 case 59:
6110 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6111 return -1;
6112 break;
6113
6114 case 60:
6115 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6116 return -1;
6117 break;
6118
6ec2b213
EBM
6119 case 61:
6120 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6121 return -1;
6122 break;
6123
b4cdae6f
WW
6124 case 62: /* Store Doubleword */
6125 /* Store Doubleword with Update */
6126 /* Store Quadword with Update */
6127 {
b926417a 6128 ULONGEST iaddr = 0;
b4cdae6f
WW
6129 int size;
6130 int sub2 = PPC_FIELD (insn, 30, 2);
6131
6ec2b213 6132 if (sub2 > 2)
b4cdae6f
WW
6133 goto UNKNOWN_OP;
6134
6135 if (PPC_RA (insn) != 0)
6136 regcache_raw_read_unsigned (regcache,
6137 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a 6138 &iaddr);
b4cdae6f 6139
6ec2b213 6140 size = (sub2 == 2) ? 16 : 8;
b4cdae6f 6141
b926417a
TT
6142 iaddr += PPC_DS (insn) << 2;
6143 record_full_arch_list_add_mem (iaddr, size);
b4cdae6f
WW
6144
6145 if (op6 == 62 && sub2 == 1)
6146 record_full_arch_list_add_reg (regcache,
6147 tdep->ppc_gp0_regnum +
6148 PPC_RA (insn));
6149
6150 break;
6151 }
6152
6153 case 63:
6154 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6155 return -1;
6156 break;
6157
6158 default:
6159UNKNOWN_OP:
810c1026
WW
6160 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6161 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
b4cdae6f
WW
6162 return -1;
6163 }
6164
6165 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6166 return -1;
6167 if (record_full_arch_list_add_end ())
6168 return -1;
6169 return 0;
6170}
6171
7a78ae4e
ND
6172/* Initialize the current architecture based on INFO. If possible, re-use an
6173 architecture from ARCHES, which is a list of architectures already created
6174 during this debugging session.
c906108c 6175
7a78ae4e 6176 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 6177 a binary file. */
c906108c 6178
7a78ae4e
ND
6179static struct gdbarch *
6180rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6181{
6182 struct gdbarch *gdbarch;
6183 struct gdbarch_tdep *tdep;
7cc46491 6184 int wordsize, from_xcoff_exec, from_elf_exec;
7a78ae4e
ND
6185 enum bfd_architecture arch;
6186 unsigned long mach;
6187 bfd abfd;
55eddb0f
DJ
6188 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6189 int soft_float;
ed0f4273 6190 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
55eddb0f 6191 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
cd453cd0 6192 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
93b4691f 6193 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
7ca18ed6 6194 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
8d619c01
EBM
6195 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6196 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6197 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6198 int have_htm_tar = 0;
7cc46491
DJ
6199 int tdesc_wordsize = -1;
6200 const struct target_desc *tdesc = info.target_desc;
c1e1314d 6201 tdesc_arch_data_up tdesc_data;
f949c649 6202 int num_pseudoregs = 0;
604c2f83 6203 int cur_reg;
7a78ae4e 6204
9aa1e687 6205 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
6206 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6207
9aa1e687
KB
6208 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6209 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6210
e712c1cf 6211 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 6212 that, else choose a likely default. */
9aa1e687 6213 if (from_xcoff_exec)
c906108c 6214 {
11ed25ac 6215 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
6216 wordsize = 8;
6217 else
6218 wordsize = 4;
c906108c 6219 }
9aa1e687
KB
6220 else if (from_elf_exec)
6221 {
6222 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6223 wordsize = 8;
6224 else
6225 wordsize = 4;
6226 }
7cc46491
DJ
6227 else if (tdesc_has_registers (tdesc))
6228 wordsize = -1;
c906108c 6229 else
7a78ae4e 6230 {
27b15785 6231 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
16d8013c
JB
6232 wordsize = (info.bfd_arch_info->bits_per_word
6233 / info.bfd_arch_info->bits_per_byte);
27b15785
KB
6234 else
6235 wordsize = 4;
7a78ae4e 6236 }
c906108c 6237
475bbd17
JB
6238 /* Get the architecture and machine from the BFD. */
6239 arch = info.bfd_arch_info->arch;
6240 mach = info.bfd_arch_info->mach;
5bf1c677
EZ
6241
6242 /* For e500 executables, the apuinfo section is of help here. Such
6243 section contains the identifier and revision number of each
6244 Application-specific Processing Unit that is present on the
6245 chip. The content of the section is determined by the assembler
6246 which looks at each instruction and determines which unit (and
74af9197
NF
6247 which version of it) can execute it. Grovel through the section
6248 looking for relevant e500 APUs. */
5bf1c677 6249
74af9197 6250 if (bfd_uses_spe_extensions (info.abfd))
5bf1c677 6251 {
74af9197
NF
6252 arch = info.bfd_arch_info->arch;
6253 mach = bfd_mach_ppc_e500;
6254 bfd_default_set_arch_mach (&abfd, arch, mach);
6255 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5bf1c677
EZ
6256 }
6257
7cc46491
DJ
6258 /* Find a default target description which describes our register
6259 layout, if we do not already have one. */
6260 if (! tdesc_has_registers (tdesc))
6261 {
675127ec 6262 const struct ppc_variant *v;
7cc46491
DJ
6263
6264 /* Choose variant. */
6265 v = find_variant_by_arch (arch, mach);
6266 if (!v)
6267 return NULL;
6268
6269 tdesc = *v->tdesc;
6270 }
6271
6272 gdb_assert (tdesc_has_registers (tdesc));
6273
6274 /* Check any target description for validity. */
6275 if (tdesc_has_registers (tdesc))
6276 {
6277 static const char *const gprs[] = {
6278 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6279 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6280 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6281 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6282 };
7cc46491
DJ
6283 const struct tdesc_feature *feature;
6284 int i, valid_p;
6285 static const char *const msr_names[] = { "msr", "ps" };
6286 static const char *const cr_names[] = { "cr", "cnd" };
6287 static const char *const ctr_names[] = { "ctr", "cnt" };
6288
6289 feature = tdesc_find_feature (tdesc,
6290 "org.gnu.gdb.power.core");
6291 if (feature == NULL)
6292 return NULL;
6293
6294 tdesc_data = tdesc_data_alloc ();
6295
6296 valid_p = 1;
6297 for (i = 0; i < ppc_num_gprs; i++)
c1e1314d
TT
6298 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6299 i, gprs[i]);
6300 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6301 PPC_PC_REGNUM, "pc");
6302 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6303 PPC_LR_REGNUM, "lr");
6304 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6305 PPC_XER_REGNUM, "xer");
7cc46491
DJ
6306
6307 /* Allow alternate names for these registers, to accomodate GDB's
6308 historic naming. */
c1e1314d 6309 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7cc46491 6310 PPC_MSR_REGNUM, msr_names);
c1e1314d 6311 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7cc46491 6312 PPC_CR_REGNUM, cr_names);
c1e1314d 6313 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7cc46491
DJ
6314 PPC_CTR_REGNUM, ctr_names);
6315
6316 if (!valid_p)
c1e1314d 6317 return NULL;
7cc46491 6318
c1e1314d
TT
6319 have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
6320 PPC_MQ_REGNUM, "mq");
7cc46491 6321
12863263 6322 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
7cc46491
DJ
6323 if (wordsize == -1)
6324 wordsize = tdesc_wordsize;
6325
6326 feature = tdesc_find_feature (tdesc,
6327 "org.gnu.gdb.power.fpu");
6328 if (feature != NULL)
6329 {
6330 static const char *const fprs[] = {
6331 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6332 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6333 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6334 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6335 };
6336 valid_p = 1;
6337 for (i = 0; i < ppc_num_fprs; i++)
c1e1314d 6338 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491 6339 PPC_F0_REGNUM + i, fprs[i]);
c1e1314d 6340 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6341 PPC_FPSCR_REGNUM, "fpscr");
6342
6343 if (!valid_p)
c1e1314d 6344 return NULL;
7cc46491 6345 have_fpu = 1;
0fb2aaa1
PFC
6346
6347 /* The fpscr register was expanded in isa 2.05 to 64 bits
6348 along with the addition of the decimal floating point
6349 facility. */
12863263 6350 if (tdesc_register_bitsize (feature, "fpscr") > 32)
0fb2aaa1 6351 have_dfp = 1;
7cc46491
DJ
6352 }
6353 else
6354 have_fpu = 0;
6355
6356 feature = tdesc_find_feature (tdesc,
6357 "org.gnu.gdb.power.altivec");
6358 if (feature != NULL)
6359 {
6360 static const char *const vector_regs[] = {
6361 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6362 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6363 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6364 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6365 };
6366
6367 valid_p = 1;
6368 for (i = 0; i < ppc_num_gprs; i++)
c1e1314d 6369 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6370 PPC_VR0_REGNUM + i,
6371 vector_regs[i]);
c1e1314d 6372 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491 6373 PPC_VSCR_REGNUM, "vscr");
c1e1314d 6374 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6375 PPC_VRSAVE_REGNUM, "vrsave");
6376
6377 if (have_spe || !valid_p)
c1e1314d 6378 return NULL;
7cc46491
DJ
6379 have_altivec = 1;
6380 }
6381 else
6382 have_altivec = 0;
6383
604c2f83
LM
6384 /* Check for POWER7 VSX registers support. */
6385 feature = tdesc_find_feature (tdesc,
6386 "org.gnu.gdb.power.vsx");
6387
6388 if (feature != NULL)
6389 {
6390 static const char *const vsx_regs[] = {
6391 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6392 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6393 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6394 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6395 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6396 "vs30h", "vs31h"
6397 };
6398
6399 valid_p = 1;
6400
6401 for (i = 0; i < ppc_num_vshrs; i++)
c1e1314d 6402 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
604c2f83
LM
6403 PPC_VSR0_UPPER_REGNUM + i,
6404 vsx_regs[i]);
81ab84fd
PFC
6405
6406 if (!valid_p || !have_fpu || !have_altivec)
c1e1314d 6407 return NULL;
604c2f83
LM
6408
6409 have_vsx = 1;
6410 }
6411 else
6412 have_vsx = 0;
6413
7cc46491
DJ
6414 /* On machines supporting the SPE APU, the general-purpose registers
6415 are 64 bits long. There are SIMD vector instructions to treat them
6416 as pairs of floats, but the rest of the instruction set treats them
6417 as 32-bit registers, and only operates on their lower halves.
6418
6419 In the GDB regcache, we treat their high and low halves as separate
6420 registers. The low halves we present as the general-purpose
6421 registers, and then we have pseudo-registers that stitch together
6422 the upper and lower halves and present them as pseudo-registers.
6423
6424 Thus, the target description is expected to supply the upper
6425 halves separately. */
6426
6427 feature = tdesc_find_feature (tdesc,
6428 "org.gnu.gdb.power.spe");
6429 if (feature != NULL)
6430 {
6431 static const char *const upper_spe[] = {
6432 "ev0h", "ev1h", "ev2h", "ev3h",
6433 "ev4h", "ev5h", "ev6h", "ev7h",
6434 "ev8h", "ev9h", "ev10h", "ev11h",
6435 "ev12h", "ev13h", "ev14h", "ev15h",
6436 "ev16h", "ev17h", "ev18h", "ev19h",
6437 "ev20h", "ev21h", "ev22h", "ev23h",
6438 "ev24h", "ev25h", "ev26h", "ev27h",
6439 "ev28h", "ev29h", "ev30h", "ev31h"
6440 };
6441
6442 valid_p = 1;
6443 for (i = 0; i < ppc_num_gprs; i++)
c1e1314d 6444 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6445 PPC_SPE_UPPER_GP0_REGNUM + i,
6446 upper_spe[i]);
c1e1314d 6447 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491 6448 PPC_SPE_ACC_REGNUM, "acc");
c1e1314d 6449 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6450 PPC_SPE_FSCR_REGNUM, "spefscr");
6451
6452 if (have_mq || have_fpu || !valid_p)
c1e1314d 6453 return NULL;
7cc46491
DJ
6454 have_spe = 1;
6455 }
6456 else
6457 have_spe = 0;
7ca18ed6
EBM
6458
6459 /* Program Priority Register. */
6460 feature = tdesc_find_feature (tdesc,
6461 "org.gnu.gdb.power.ppr");
6462 if (feature != NULL)
6463 {
6464 valid_p = 1;
c1e1314d 6465 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7ca18ed6
EBM
6466 PPC_PPR_REGNUM, "ppr");
6467
6468 if (!valid_p)
c1e1314d 6469 return NULL;
7ca18ed6
EBM
6470 have_ppr = 1;
6471 }
6472 else
6473 have_ppr = 0;
6474
6475 /* Data Stream Control Register. */
6476 feature = tdesc_find_feature (tdesc,
6477 "org.gnu.gdb.power.dscr");
6478 if (feature != NULL)
6479 {
6480 valid_p = 1;
c1e1314d 6481 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7ca18ed6
EBM
6482 PPC_DSCR_REGNUM, "dscr");
6483
6484 if (!valid_p)
c1e1314d 6485 return NULL;
7ca18ed6
EBM
6486 have_dscr = 1;
6487 }
6488 else
6489 have_dscr = 0;
f2cf6173
EBM
6490
6491 /* Target Address Register. */
6492 feature = tdesc_find_feature (tdesc,
6493 "org.gnu.gdb.power.tar");
6494 if (feature != NULL)
6495 {
6496 valid_p = 1;
c1e1314d 6497 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
f2cf6173
EBM
6498 PPC_TAR_REGNUM, "tar");
6499
6500 if (!valid_p)
c1e1314d 6501 return NULL;
f2cf6173
EBM
6502 have_tar = 1;
6503 }
6504 else
6505 have_tar = 0;
232bfb86
EBM
6506
6507 /* Event-based Branching Registers. */
6508 feature = tdesc_find_feature (tdesc,
6509 "org.gnu.gdb.power.ebb");
6510 if (feature != NULL)
6511 {
6512 static const char *const ebb_regs[] = {
6513 "bescr", "ebbhr", "ebbrr"
6514 };
6515
6516 valid_p = 1;
6517 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
c1e1314d 6518 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6519 PPC_BESCR_REGNUM + i,
6520 ebb_regs[i]);
6521 if (!valid_p)
c1e1314d 6522 return NULL;
232bfb86
EBM
6523 have_ebb = 1;
6524 }
6525 else
6526 have_ebb = 0;
6527
6528 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6529 by Linux. */
6530 feature = tdesc_find_feature (tdesc,
6531 "org.gnu.gdb.power.linux.pmu");
6532 if (feature != NULL)
6533 {
6534 valid_p = 1;
6535
c1e1314d 6536 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6537 PPC_MMCR0_REGNUM,
6538 "mmcr0");
c1e1314d 6539 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6540 PPC_MMCR2_REGNUM,
6541 "mmcr2");
c1e1314d 6542 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6543 PPC_SIAR_REGNUM,
6544 "siar");
c1e1314d 6545 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6546 PPC_SDAR_REGNUM,
6547 "sdar");
c1e1314d 6548 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6549 PPC_SIER_REGNUM,
6550 "sier");
6551
6552 if (!valid_p)
c1e1314d 6553 return NULL;
232bfb86
EBM
6554 have_pmu = 1;
6555 }
6556 else
6557 have_pmu = 0;
8d619c01
EBM
6558
6559 /* Hardware Transactional Memory Registers. */
6560 feature = tdesc_find_feature (tdesc,
6561 "org.gnu.gdb.power.htm.spr");
6562 if (feature != NULL)
6563 {
6564 static const char *const tm_spr_regs[] = {
6565 "tfhar", "texasr", "tfiar"
6566 };
6567
6568 valid_p = 1;
6569 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
c1e1314d 6570 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6571 PPC_TFHAR_REGNUM + i,
6572 tm_spr_regs[i]);
6573 if (!valid_p)
c1e1314d 6574 return NULL;
8d619c01
EBM
6575
6576 have_htm_spr = 1;
6577 }
6578 else
6579 have_htm_spr = 0;
6580
6581 feature = tdesc_find_feature (tdesc,
6582 "org.gnu.gdb.power.htm.core");
6583 if (feature != NULL)
6584 {
6585 static const char *const cgprs[] = {
6586 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6587 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6588 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6589 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6590 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6591 };
6592
6593 valid_p = 1;
6594
6595 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
c1e1314d 6596 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6597 PPC_CR0_REGNUM + i,
6598 cgprs[i]);
6599 if (!valid_p)
c1e1314d 6600 return NULL;
8d619c01
EBM
6601
6602 have_htm_core = 1;
6603 }
6604 else
6605 have_htm_core = 0;
6606
6607 feature = tdesc_find_feature (tdesc,
6608 "org.gnu.gdb.power.htm.fpu");
6609 if (feature != NULL)
6610 {
6611 valid_p = 1;
6612
6613 static const char *const cfprs[] = {
6614 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6615 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6616 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6617 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6618 "cf30", "cf31", "cfpscr"
6619 };
6620
6621 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
c1e1314d 6622 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6623 PPC_CF0_REGNUM + i,
6624 cfprs[i]);
6625
6626 if (!valid_p)
c1e1314d 6627 return NULL;
8d619c01
EBM
6628 have_htm_fpu = 1;
6629 }
6630 else
6631 have_htm_fpu = 0;
6632
6633 feature = tdesc_find_feature (tdesc,
6634 "org.gnu.gdb.power.htm.altivec");
6635 if (feature != NULL)
6636 {
6637 valid_p = 1;
6638
6639 static const char *const cvmx[] = {
6640 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6641 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6642 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6643 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6644 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6645 "cvrsave"
6646 };
6647
6648 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
c1e1314d 6649 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6650 PPC_CVR0_REGNUM + i,
6651 cvmx[i]);
6652
6653 if (!valid_p)
c1e1314d 6654 return NULL;
8d619c01
EBM
6655 have_htm_altivec = 1;
6656 }
6657 else
6658 have_htm_altivec = 0;
6659
6660 feature = tdesc_find_feature (tdesc,
6661 "org.gnu.gdb.power.htm.vsx");
6662 if (feature != NULL)
6663 {
6664 valid_p = 1;
6665
6666 static const char *const cvsx[] = {
6667 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6668 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6669 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6670 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6671 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6672 "cvs30h", "cvs31h"
6673 };
6674
6675 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
c1e1314d 6676 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6677 (PPC_CVSR0_UPPER_REGNUM
6678 + i),
6679 cvsx[i]);
6680
6681 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
c1e1314d 6682 return NULL;
8d619c01
EBM
6683 have_htm_vsx = 1;
6684 }
6685 else
6686 have_htm_vsx = 0;
6687
6688 feature = tdesc_find_feature (tdesc,
6689 "org.gnu.gdb.power.htm.ppr");
6690 if (feature != NULL)
6691 {
c1e1314d 6692 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6693 PPC_CPPR_REGNUM, "cppr");
6694
6695 if (!valid_p)
c1e1314d 6696 return NULL;
8d619c01
EBM
6697 have_htm_ppr = 1;
6698 }
6699 else
6700 have_htm_ppr = 0;
6701
6702 feature = tdesc_find_feature (tdesc,
6703 "org.gnu.gdb.power.htm.dscr");
6704 if (feature != NULL)
6705 {
c1e1314d 6706 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6707 PPC_CDSCR_REGNUM, "cdscr");
6708
6709 if (!valid_p)
c1e1314d 6710 return NULL;
8d619c01
EBM
6711 have_htm_dscr = 1;
6712 }
6713 else
6714 have_htm_dscr = 0;
6715
6716 feature = tdesc_find_feature (tdesc,
6717 "org.gnu.gdb.power.htm.tar");
6718 if (feature != NULL)
6719 {
c1e1314d 6720 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6721 PPC_CTAR_REGNUM, "ctar");
6722
6723 if (!valid_p)
c1e1314d 6724 return NULL;
8d619c01
EBM
6725 have_htm_tar = 1;
6726 }
6727 else
6728 have_htm_tar = 0;
7cc46491
DJ
6729 }
6730
6731 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6732 complain for a 32-bit binary on a 64-bit target; we do not yet
6733 support that. For instance, the 32-bit ABI routines expect
6734 32-bit GPRs.
6735
6736 As long as there isn't an explicit target description, we'll
6737 choose one based on the BFD architecture and get a word size
6738 matching the binary (probably powerpc:common or
6739 powerpc:common64). So there is only trouble if a 64-bit target
6740 supplies a 64-bit description while debugging a 32-bit
6741 binary. */
6742 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
c1e1314d 6743 return NULL;
7cc46491 6744
55eddb0f 6745#ifdef HAVE_ELF
cd453cd0
UW
6746 if (from_elf_exec)
6747 {
6748 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6749 {
6750 case 1:
6751 elf_abi = POWERPC_ELF_V1;
6752 break;
6753 case 2:
6754 elf_abi = POWERPC_ELF_V2;
6755 break;
6756 default:
6757 break;
6758 }
6759 }
6760
55eddb0f
DJ
6761 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6762 {
6763 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
ed0f4273 6764 Tag_GNU_Power_ABI_FP) & 3)
55eddb0f
DJ
6765 {
6766 case 1:
6767 soft_float_flag = AUTO_BOOLEAN_FALSE;
6768 break;
6769 case 2:
6770 soft_float_flag = AUTO_BOOLEAN_TRUE;
6771 break;
6772 default:
6773 break;
6774 }
6775 }
6776
ed0f4273
UW
6777 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6778 {
6779 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6780 Tag_GNU_Power_ABI_FP) >> 2)
6781 {
6782 case 1:
6783 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6784 break;
6785 case 3:
6786 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6787 break;
6788 default:
6789 break;
6790 }
6791 }
6792
55eddb0f
DJ
6793 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6794 {
6795 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6796 Tag_GNU_Power_ABI_Vector))
6797 {
6798 case 1:
6799 vector_abi = POWERPC_VEC_GENERIC;
6800 break;
6801 case 2:
6802 vector_abi = POWERPC_VEC_ALTIVEC;
6803 break;
6804 case 3:
6805 vector_abi = POWERPC_VEC_SPE;
6806 break;
6807 default:
6808 break;
6809 }
6810 }
6811#endif
6812
cd453cd0
UW
6813 /* At this point, the only supported ELF-based 64-bit little-endian
6814 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6815 default. All other supported ELF-based operating systems use the
6816 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6817 e.g. because we run a legacy binary, or have attached to a process
6818 and have not found any associated binary file, set the default
6819 according to this heuristic. */
6820 if (elf_abi == POWERPC_ELF_AUTO)
6821 {
6822 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
dda83cd7 6823 elf_abi = POWERPC_ELF_V2;
cd453cd0 6824 else
dda83cd7 6825 elf_abi = POWERPC_ELF_V1;
cd453cd0
UW
6826 }
6827
55eddb0f
DJ
6828 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6829 soft_float = 1;
6830 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6831 soft_float = 0;
6832 else
6833 soft_float = !have_fpu;
6834
6835 /* If we have a hard float binary or setting but no floating point
6836 registers, downgrade to soft float anyway. We're still somewhat
6837 useful in this scenario. */
6838 if (!soft_float && !have_fpu)
6839 soft_float = 1;
6840
6841 /* Similarly for vector registers. */
6842 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6843 vector_abi = POWERPC_VEC_GENERIC;
6844
6845 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6846 vector_abi = POWERPC_VEC_GENERIC;
6847
6848 if (vector_abi == POWERPC_VEC_AUTO)
6849 {
6850 if (have_altivec)
6851 vector_abi = POWERPC_VEC_ALTIVEC;
6852 else if (have_spe)
6853 vector_abi = POWERPC_VEC_SPE;
6854 else
6855 vector_abi = POWERPC_VEC_GENERIC;
6856 }
6857
6858 /* Do not limit the vector ABI based on available hardware, since we
6859 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6860
7cc46491
DJ
6861 /* Find a candidate among extant architectures. */
6862 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6863 arches != NULL;
6864 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6865 {
6866 /* Word size in the various PowerPC bfd_arch_info structs isn't
dda83cd7
SM
6867 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6868 separate word size check. */
7cc46491 6869 tdep = gdbarch_tdep (arches->gdbarch);
cd453cd0
UW
6870 if (tdep && tdep->elf_abi != elf_abi)
6871 continue;
55eddb0f
DJ
6872 if (tdep && tdep->soft_float != soft_float)
6873 continue;
ed0f4273
UW
6874 if (tdep && tdep->long_double_abi != long_double_abi)
6875 continue;
55eddb0f
DJ
6876 if (tdep && tdep->vector_abi != vector_abi)
6877 continue;
7cc46491 6878 if (tdep && tdep->wordsize == wordsize)
c1e1314d 6879 return arches->gdbarch;
7cc46491
DJ
6880 }
6881
6882 /* None found, create a new architecture from INFO, whose bfd_arch_info
6883 validity depends on the source:
6884 - executable useless
6885 - rs6000_host_arch() good
6886 - core file good
6887 - "set arch" trust blindly
6888 - GDB startup useless but harmless */
6889
fc270c35 6890 tdep = XCNEW (struct gdbarch_tdep);
7cc46491 6891 tdep->wordsize = wordsize;
cd453cd0 6892 tdep->elf_abi = elf_abi;
55eddb0f 6893 tdep->soft_float = soft_float;
ed0f4273 6894 tdep->long_double_abi = long_double_abi;
55eddb0f 6895 tdep->vector_abi = vector_abi;
7cc46491 6896
7a78ae4e 6897 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 6898
7cc46491
DJ
6899 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6900 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6901 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6902 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6903 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6904 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6905 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6906 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6907
6908 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6909 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
604c2f83 6910 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
7cc46491
DJ
6911 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6912 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6913 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6914 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6915 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
7ca18ed6
EBM
6916 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6917 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
f2cf6173 6918 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
232bfb86
EBM
6919 tdep->have_ebb = have_ebb;
6920
6921 /* If additional pmu registers are added, care must be taken when
6922 setting new fields in the tdep below, to maintain compatibility
6923 with features that only provide some of the registers. Currently
6924 gdb access to the pmu registers is only supported in linux, and
6925 linux only provides a subset of the pmu registers defined in the
6926 architecture. */
6927
6928 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
6929 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
6930 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
6931 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
6932 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
7cc46491 6933
8d619c01
EBM
6934 tdep->have_htm_spr = have_htm_spr;
6935 tdep->have_htm_core = have_htm_core;
6936 tdep->have_htm_fpu = have_htm_fpu;
6937 tdep->have_htm_altivec = have_htm_altivec;
6938 tdep->have_htm_vsx = have_htm_vsx;
6939 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
6940 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
6941 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
6942
7cc46491
DJ
6943 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6944 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
7cc46491 6945 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
9f643768 6946 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7cc46491
DJ
6947
6948 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6949 GDB traditionally called it "ps", though, so let GDB add an
6950 alias. */
6951 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6952
4a7622d1 6953 if (wordsize == 8)
05580c65 6954 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
afd48b75 6955 else
4a7622d1 6956 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
c8001721 6957
baffbae0
JB
6958 /* Set lr_frame_offset. */
6959 if (wordsize == 8)
6960 tdep->lr_frame_offset = 16;
baffbae0 6961 else
4a7622d1 6962 tdep->lr_frame_offset = 4;
baffbae0 6963
6f072a10
PFC
6964 if (have_spe || have_dfp || have_altivec
6965 || have_vsx || have_htm_fpu || have_htm_vsx)
7cc46491 6966 {
f949c649 6967 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
0df8b418
MS
6968 set_gdbarch_pseudo_register_write (gdbarch,
6969 rs6000_pseudo_register_write);
2a2fa07b
MK
6970 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6971 rs6000_ax_pseudo_register_collect);
7cc46491 6972 }
1fcc0bb8 6973
a67914de
MK
6974 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6975
e0d24f8d
WZ
6976 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6977
5a9e69ba 6978 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
f949c649
TJB
6979
6980 if (have_spe)
6981 num_pseudoregs += 32;
6982 if (have_dfp)
6983 num_pseudoregs += 16;
6f072a10
PFC
6984 if (have_altivec)
6985 num_pseudoregs += 32;
604c2f83
LM
6986 if (have_vsx)
6987 /* Include both VSX and Extended FP registers. */
6988 num_pseudoregs += 96;
8d619c01
EBM
6989 if (have_htm_fpu)
6990 num_pseudoregs += 16;
6991 /* Include both checkpointed VSX and EFP registers. */
6992 if (have_htm_vsx)
6993 num_pseudoregs += 64 + 32;
f949c649
TJB
6994
6995 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7a78ae4e
ND
6996
6997 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6998 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6999 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7000 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7001 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7002 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7003 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4a7622d1 7004 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4e409299 7005 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 7006
11269d7e 7007 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4a7622d1 7008 if (wordsize == 8)
8b148df9
AC
7009 /* PPC64 SYSV. */
7010 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7a78ae4e 7011
691d145a
JB
7012 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7013 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7014 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7015
18ed0c4e
JB
7016 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7017 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 7018
4a7622d1 7019 if (wordsize == 4)
77b2b6d4 7020 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4a7622d1 7021 else if (wordsize == 8)
8be9034a 7022 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7a78ae4e 7023
7a78ae4e 7024 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
c9cf6e20 7025 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
8ab3d180 7026 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
0d1243d9 7027
7a78ae4e 7028 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
7029
7030 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7031 rs6000_breakpoint::kind_from_pc);
7032 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7033 rs6000_breakpoint::bp_from_kind);
7a78ae4e 7034
203c3895 7035 /* The value of symbols of type N_SO and N_FUN maybe null when
0df8b418 7036 it shouldn't be. */
203c3895
UW
7037 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7038
ce5eab59 7039 /* Handles single stepping of atomic sequences. */
4a7622d1 7040 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
ce5eab59 7041
0df8b418 7042 /* Not sure on this. FIXMEmgo */
7a78ae4e
ND
7043 set_gdbarch_frame_args_skip (gdbarch, 8);
7044
143985b7
AF
7045 /* Helpers for function argument information. */
7046 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7047
6f7f3f0d
UW
7048 /* Trampoline. */
7049 set_gdbarch_in_solib_return_trampoline
7050 (gdbarch, rs6000_in_solib_return_trampoline);
7051 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7052
4fc771b8 7053 /* Hook in the DWARF CFI frame unwinder. */
1af5d7ce 7054 dwarf2_append_unwinders (gdbarch);
4fc771b8
DJ
7055 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7056
9274a07c
LM
7057 /* Frame handling. */
7058 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7059
2454a024
UW
7060 /* Setup displaced stepping. */
7061 set_gdbarch_displaced_step_copy_insn (gdbarch,
7f03bd92 7062 ppc_displaced_step_copy_insn);
99e40580
UW
7063 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7064 ppc_displaced_step_hw_singlestep);
2454a024 7065 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
187b041e
SM
7066 set_gdbarch_displaced_step_prepare (gdbarch, ppc_displaced_step_prepare);
7067 set_gdbarch_displaced_step_finish (gdbarch, ppc_displaced_step_finish);
7068 set_gdbarch_displaced_step_restore_all_in_ptid
7069 (gdbarch, ppc_displaced_step_restore_all_in_ptid);
2454a024
UW
7070
7071 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
7072
7b112f9c 7073 /* Hook in ABI-specific overrides, if they have been registered. */
8a4c2d24 7074 info.target_desc = tdesc;
c1e1314d 7075 info.tdesc_data = tdesc_data.get ();
4be87837 7076 gdbarch_init_osabi (info, gdbarch);
7b112f9c 7077
61a65099
KB
7078 switch (info.osabi)
7079 {
f5aecab8 7080 case GDB_OSABI_LINUX:
1736a7bd 7081 case GDB_OSABI_NETBSD:
61a65099 7082 case GDB_OSABI_UNKNOWN:
2608dbf8 7083 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce 7084 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
61a65099
KB
7085 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7086 break;
7087 default:
61a65099 7088 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287 7089
2608dbf8 7090 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce 7091 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
81332287 7092 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
7093 }
7094
7cc46491 7095 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6f072a10
PFC
7096 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7097 rs6000_pseudo_register_reggroup_p);
c1e1314d 7098 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
7cc46491
DJ
7099
7100 /* Override the normal target description method to make the SPE upper
7101 halves anonymous. */
7102 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7103
604c2f83
LM
7104 /* Choose register numbers for all supported pseudo-registers. */
7105 tdep->ppc_ev0_regnum = -1;
7106 tdep->ppc_dl0_regnum = -1;
6f072a10 7107 tdep->ppc_v0_alias_regnum = -1;
604c2f83
LM
7108 tdep->ppc_vsr0_regnum = -1;
7109 tdep->ppc_efpr0_regnum = -1;
8d619c01
EBM
7110 tdep->ppc_cdl0_regnum = -1;
7111 tdep->ppc_cvsr0_regnum = -1;
7112 tdep->ppc_cefpr0_regnum = -1;
9f643768 7113
604c2f83
LM
7114 cur_reg = gdbarch_num_regs (gdbarch);
7115
7116 if (have_spe)
7117 {
7118 tdep->ppc_ev0_regnum = cur_reg;
7119 cur_reg += 32;
7120 }
7121 if (have_dfp)
7122 {
7123 tdep->ppc_dl0_regnum = cur_reg;
7124 cur_reg += 16;
7125 }
6f072a10
PFC
7126 if (have_altivec)
7127 {
7128 tdep->ppc_v0_alias_regnum = cur_reg;
7129 cur_reg += 32;
7130 }
604c2f83
LM
7131 if (have_vsx)
7132 {
7133 tdep->ppc_vsr0_regnum = cur_reg;
7134 cur_reg += 64;
7135 tdep->ppc_efpr0_regnum = cur_reg;
7136 cur_reg += 32;
7137 }
8d619c01
EBM
7138 if (have_htm_fpu)
7139 {
7140 tdep->ppc_cdl0_regnum = cur_reg;
7141 cur_reg += 16;
7142 }
7143 if (have_htm_vsx)
7144 {
7145 tdep->ppc_cvsr0_regnum = cur_reg;
7146 cur_reg += 64;
7147 tdep->ppc_cefpr0_regnum = cur_reg;
7148 cur_reg += 32;
7149 }
f949c649 7150
f6efe3f8 7151 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
f949c649 7152
debb1f09
JB
7153 /* Register the ravenscar_arch_ops. */
7154 if (mach == bfd_mach_ppc_e500)
7155 register_e500_ravenscar_ops (gdbarch);
7156 else
7157 register_ppc_ravenscar_ops (gdbarch);
7158
65b48a81
PB
7159 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7160 set_gdbarch_valid_disassembler_options (gdbarch,
7161 disassembler_options_powerpc ());
7162
7a78ae4e 7163 return gdbarch;
c906108c
SS
7164}
7165
7b112f9c 7166static void
8b164abb 7167rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7b112f9c 7168{
8b164abb 7169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7b112f9c
JT
7170
7171 if (tdep == NULL)
7172 return;
7173
4be87837 7174 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
7175}
7176
55eddb0f 7177static void
eb4c3f4a 7178powerpc_set_soft_float (const char *args, int from_tty,
55eddb0f
DJ
7179 struct cmd_list_element *c)
7180{
7181 struct gdbarch_info info;
7182
7183 /* Update the architecture. */
7184 gdbarch_info_init (&info);
7185 if (!gdbarch_update_p (info))
9b20d036 7186 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
7187}
7188
7189static void
eb4c3f4a 7190powerpc_set_vector_abi (const char *args, int from_tty,
55eddb0f
DJ
7191 struct cmd_list_element *c)
7192{
7193 struct gdbarch_info info;
570dc176 7194 int vector_abi;
55eddb0f
DJ
7195
7196 for (vector_abi = POWERPC_VEC_AUTO;
7197 vector_abi != POWERPC_VEC_LAST;
7198 vector_abi++)
7199 if (strcmp (powerpc_vector_abi_string,
7200 powerpc_vector_strings[vector_abi]) == 0)
7201 {
aead7601 7202 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
55eddb0f
DJ
7203 break;
7204 }
7205
7206 if (vector_abi == POWERPC_VEC_LAST)
7207 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7208 powerpc_vector_abi_string);
7209
7210 /* Update the architecture. */
7211 gdbarch_info_init (&info);
7212 if (!gdbarch_update_p (info))
9b20d036 7213 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
7214}
7215
e09342b5
TJB
7216/* Show the current setting of the exact watchpoints flag. */
7217
7218static void
7219show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7220 struct cmd_list_element *c,
7221 const char *value)
7222{
7223 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7224}
7225
845d4708 7226/* Read a PPC instruction from memory. */
d78489bf
AT
7227
7228static unsigned int
845d4708 7229read_insn (struct frame_info *frame, CORE_ADDR pc)
d78489bf 7230{
845d4708
AM
7231 struct gdbarch *gdbarch = get_frame_arch (frame);
7232 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7233
7234 return read_memory_unsigned_integer (pc, 4, byte_order);
d78489bf
AT
7235}
7236
7237/* Return non-zero if the instructions at PC match the series
7238 described in PATTERN, or zero otherwise. PATTERN is an array of
7239 'struct ppc_insn_pattern' objects, terminated by an entry whose
7240 mask is zero.
7241
7433498b 7242 When the match is successful, fill INSNS[i] with what PATTERN[i]
d78489bf 7243 matched. If PATTERN[i] is optional, and the instruction wasn't
7433498b
AM
7244 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7245 INSNS should have as many elements as PATTERN, minus the terminator.
7246 Note that, if PATTERN contains optional instructions which aren't
7247 present in memory, then INSNS will have holes, so INSNS[i] isn't
7248 necessarily the i'th instruction in memory. */
d78489bf
AT
7249
7250int
845d4708 7251ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7433498b 7252 const struct ppc_insn_pattern *pattern,
845d4708 7253 unsigned int *insns)
d78489bf
AT
7254{
7255 int i;
845d4708 7256 unsigned int insn;
d78489bf 7257
845d4708 7258 for (i = 0, insn = 0; pattern[i].mask; i++)
d78489bf 7259 {
845d4708
AM
7260 if (insn == 0)
7261 insn = read_insn (frame, pc);
7262 insns[i] = 0;
7263 if ((insn & pattern[i].mask) == pattern[i].data)
7264 {
7265 insns[i] = insn;
7266 pc += 4;
7267 insn = 0;
7268 }
7269 else if (!pattern[i].optional)
d78489bf
AT
7270 return 0;
7271 }
7272
7273 return 1;
7274}
7275
7276/* Return the 'd' field of the d-form instruction INSN, properly
7277 sign-extended. */
7278
7279CORE_ADDR
7280ppc_insn_d_field (unsigned int insn)
7281{
7282 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7283}
7284
7285/* Return the 'ds' field of the ds-form instruction INSN, with the two
7286 zero bits concatenated at the right, and properly
7287 sign-extended. */
7288
7289CORE_ADDR
7290ppc_insn_ds_field (unsigned int insn)
7291{
7292 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7293}
7294
c906108c
SS
7295/* Initialization code. */
7296
6c265988 7297void _initialize_rs6000_tdep ();
c906108c 7298void
6c265988 7299_initialize_rs6000_tdep ()
c906108c 7300{
7b112f9c
JT
7301 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7302 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7cc46491
DJ
7303
7304 /* Initialize the standard target descriptions. */
7305 initialize_tdesc_powerpc_32 ();
7284e1be 7306 initialize_tdesc_powerpc_altivec32 ();
604c2f83 7307 initialize_tdesc_powerpc_vsx32 ();
7cc46491
DJ
7308 initialize_tdesc_powerpc_403 ();
7309 initialize_tdesc_powerpc_403gc ();
4d09ffea 7310 initialize_tdesc_powerpc_405 ();
7cc46491
DJ
7311 initialize_tdesc_powerpc_505 ();
7312 initialize_tdesc_powerpc_601 ();
7313 initialize_tdesc_powerpc_602 ();
7314 initialize_tdesc_powerpc_603 ();
7315 initialize_tdesc_powerpc_604 ();
7316 initialize_tdesc_powerpc_64 ();
7284e1be 7317 initialize_tdesc_powerpc_altivec64 ();
604c2f83 7318 initialize_tdesc_powerpc_vsx64 ();
7cc46491
DJ
7319 initialize_tdesc_powerpc_7400 ();
7320 initialize_tdesc_powerpc_750 ();
7321 initialize_tdesc_powerpc_860 ();
7322 initialize_tdesc_powerpc_e500 ();
7323 initialize_tdesc_rs6000 ();
55eddb0f
DJ
7324
7325 /* Add root prefix command for all "set powerpc"/"show powerpc"
7326 commands. */
0743fc83
TT
7327 add_basic_prefix_cmd ("powerpc", no_class,
7328 _("Various PowerPC-specific commands."),
7329 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
55eddb0f 7330
0743fc83
TT
7331 add_show_prefix_cmd ("powerpc", no_class,
7332 _("Various PowerPC-specific commands."),
7333 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
55eddb0f
DJ
7334
7335 /* Add a command to allow the user to force the ABI. */
7336 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7337 &powerpc_soft_float_global,
7338 _("Set whether to use a soft-float ABI."),
7339 _("Show whether to use a soft-float ABI."),
7340 NULL,
7341 powerpc_set_soft_float, NULL,
7342 &setpowerpccmdlist, &showpowerpccmdlist);
7343
7344 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7345 &powerpc_vector_abi_string,
7346 _("Set the vector ABI."),
7347 _("Show the vector ABI."),
7348 NULL, powerpc_set_vector_abi, NULL,
7349 &setpowerpccmdlist, &showpowerpccmdlist);
e09342b5
TJB
7350
7351 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7352 &target_exact_watchpoints,
7353 _("\
7354Set whether to use just one debug register for watchpoints on scalars."),
7355 _("\
7356Show whether to use just one debug register for watchpoints on scalars."),
7357 _("\
7358If true, GDB will use only one debug register when watching a variable of\n\
7359scalar type, thus assuming that the variable is accessed through the address\n\
7360of its first byte."),
7361 NULL, show_powerpc_exact_watchpoints,
7362 &setpowerpccmdlist, &showpowerpccmdlist);
c906108c 7363}
This page took 2.640692 seconds and 4 git commands to generate.