* arm-tdep.c (arm_frame_chain_valid): Remove unnecessary test.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e
ND
49
50/* If the kernel has to deliver a signal, it pushes a sigcontext
51 structure on the stack and then calls the signal handler, passing
52 the address of the sigcontext in an argument register. Usually
53 the signal handler doesn't save this register, so we have to
54 access the sigcontext structure via an offset from the signal handler
55 frame.
56 The following constants were determined by experimentation on AIX 3.2. */
57#define SIG_FRAME_PC_OFFSET 96
58#define SIG_FRAME_LR_OFFSET 108
59#define SIG_FRAME_FP_OFFSET 284
60
7a78ae4e
ND
61/* To be used by skip_prologue. */
62
63struct rs6000_framedata
64 {
65 int offset; /* total size of frame --- the distance
66 by which we decrement sp to allocate
67 the frame */
68 int saved_gpr; /* smallest # of saved gpr */
69 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 70 int saved_vr; /* smallest # of saved vr */
96ff0de4 71 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
72 int alloca_reg; /* alloca register number (frame ptr) */
73 char frameless; /* true if frameless functions. */
74 char nosavedpc; /* true if pc not saved. */
75 int gpr_offset; /* offset of saved gprs from prev sp */
76 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 77 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 78 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
79 int lr_offset; /* offset of saved lr */
80 int cr_offset; /* offset of saved cr */
6be8bc0c 81 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
82 };
83
84/* Description of a single register. */
85
86struct reg
87 {
88 char *name; /* name of register */
89 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
90 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
91 unsigned char fpr; /* whether register is floating-point */
489461e2 92 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
93 };
94
c906108c
SS
95/* Breakpoint shadows for the single step instructions will be kept here. */
96
c5aa993b
JM
97static struct sstep_breaks
98 {
99 /* Address, or 0 if this is not in use. */
100 CORE_ADDR address;
101 /* Shadow contents. */
102 char data[4];
103 }
104stepBreaks[2];
c906108c
SS
105
106/* Hook for determining the TOC address when calling functions in the
107 inferior under AIX. The initialization code in rs6000-nat.c sets
108 this hook to point to find_toc_address. */
109
7a78ae4e
ND
110CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
111
112/* Hook to set the current architecture when starting a child process.
113 rs6000-nat.c sets this. */
114
115void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
116
117/* Static function prototypes */
118
a14ed312
KB
119static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
120 CORE_ADDR safety);
077276e8
KB
121static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
122 struct rs6000_framedata *);
7a78ae4e
ND
123static void frame_get_saved_regs (struct frame_info * fi,
124 struct rs6000_framedata * fdatap);
125static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 126
64b84175
KB
127/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
128int
129altivec_register_p (int regno)
130{
131 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
132 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
133 return 0;
134 else
135 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
136}
137
7a78ae4e 138/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 139
7a78ae4e
ND
140static CORE_ADDR
141read_memory_addr (CORE_ADDR memaddr, int len)
142{
143 return read_memory_unsigned_integer (memaddr, len);
144}
c906108c 145
7a78ae4e
ND
146static CORE_ADDR
147rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
148{
149 struct rs6000_framedata frame;
077276e8 150 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
151 return pc;
152}
153
154
c906108c
SS
155/* Fill in fi->saved_regs */
156
157struct frame_extra_info
158{
159 /* Functions calling alloca() change the value of the stack
160 pointer. We need to use initial stack pointer (which is saved in
161 r31 by gcc) in such cases. If a compiler emits traceback table,
162 then we should use the alloca register specified in traceback
163 table. FIXME. */
c5aa993b 164 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
165};
166
9aa1e687 167void
7a78ae4e 168rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 169{
c9012c71
AC
170 struct frame_extra_info *extra_info =
171 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
172 extra_info->initial_sp = 0;
bdd78e62
AC
173 if (get_next_frame (fi) != NULL
174 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 175 /* We're in get_prev_frame */
c906108c
SS
176 /* and this is a special signal frame. */
177 /* (fi->pc will be some low address in the kernel, */
178 /* to which the signal handler returns). */
5a203e44 179 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
180}
181
7a78ae4e
ND
182/* Put here the code to store, into a struct frame_saved_regs,
183 the addresses of the saved registers of frame described by FRAME_INFO.
184 This includes special registers such as pc and fp saved in special
185 ways in the stack frame. sp is even more special:
186 the address we return for it IS the sp for the next frame. */
c906108c 187
7a78ae4e
ND
188/* In this implementation for RS/6000, we do *not* save sp. I am
189 not sure if it will be needed. The following function takes care of gpr's
190 and fpr's only. */
191
9aa1e687 192void
7a78ae4e 193rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
194{
195 frame_get_saved_regs (fi, NULL);
196}
197
7a78ae4e
ND
198static CORE_ADDR
199rs6000_frame_args_address (struct frame_info *fi)
c906108c 200{
c9012c71
AC
201 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
202 if (extra_info->initial_sp != 0)
203 return extra_info->initial_sp;
c906108c
SS
204 else
205 return frame_initial_stack_address (fi);
206}
207
7a78ae4e
ND
208/* Immediately after a function call, return the saved pc.
209 Can't go through the frames for this because on some machines
210 the new frame is not set up until the new function executes
211 some instructions. */
212
213static CORE_ADDR
214rs6000_saved_pc_after_call (struct frame_info *fi)
215{
2188cbdd 216 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 217}
c906108c
SS
218
219/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
220
221static CORE_ADDR
7a78ae4e 222branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
223{
224 CORE_ADDR dest;
225 int immediate;
226 int absolute;
227 int ext_op;
228
229 absolute = (int) ((instr >> 1) & 1);
230
c5aa993b
JM
231 switch (opcode)
232 {
233 case 18:
234 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
235 if (absolute)
236 dest = immediate;
237 else
238 dest = pc + immediate;
239 break;
240
241 case 16:
242 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
243 if (absolute)
244 dest = immediate;
245 else
246 dest = pc + immediate;
247 break;
248
249 case 19:
250 ext_op = (instr >> 1) & 0x3ff;
251
252 if (ext_op == 16) /* br conditional register */
253 {
2188cbdd 254 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
255
256 /* If we are about to return from a signal handler, dest is
257 something like 0x3c90. The current frame is a signal handler
258 caller frame, upon completion of the sigreturn system call
259 execution will return to the saved PC in the frame. */
260 if (dest < TEXT_SEGMENT_BASE)
261 {
262 struct frame_info *fi;
263
264 fi = get_current_frame ();
265 if (fi != NULL)
8b36eed8 266 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 267 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
268 }
269 }
270
271 else if (ext_op == 528) /* br cond to count reg */
272 {
2188cbdd 273 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
274
275 /* If we are about to execute a system call, dest is something
276 like 0x22fc or 0x3b00. Upon completion the system call
277 will return to the address in the link register. */
278 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
280 }
281 else
282 return -1;
283 break;
c906108c 284
c5aa993b
JM
285 default:
286 return -1;
287 }
c906108c
SS
288 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
289}
290
291
292/* Sequence of bytes for breakpoint instruction. */
293
294#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
295#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
296
f4f9705a 297const static unsigned char *
7a78ae4e 298rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c
SS
299{
300 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
301 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
302 *bp_size = 4;
d7449b42 303 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
304 return big_breakpoint;
305 else
306 return little_breakpoint;
307}
308
309
310/* AIX does not support PT_STEP. Simulate it. */
311
312void
379d08a1
AC
313rs6000_software_single_step (enum target_signal signal,
314 int insert_breakpoints_p)
c906108c 315{
7c40d541
KB
316 CORE_ADDR dummy;
317 int breakp_sz;
f4f9705a 318 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
319 int ii, insn;
320 CORE_ADDR loc;
321 CORE_ADDR breaks[2];
322 int opcode;
323
c5aa993b
JM
324 if (insert_breakpoints_p)
325 {
c906108c 326
c5aa993b 327 loc = read_pc ();
c906108c 328
c5aa993b 329 insn = read_memory_integer (loc, 4);
c906108c 330
7c40d541 331 breaks[0] = loc + breakp_sz;
c5aa993b
JM
332 opcode = insn >> 26;
333 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 334
c5aa993b
JM
335 /* Don't put two breakpoints on the same address. */
336 if (breaks[1] == breaks[0])
337 breaks[1] = -1;
c906108c 338
c5aa993b 339 stepBreaks[1].address = 0;
c906108c 340
c5aa993b
JM
341 for (ii = 0; ii < 2; ++ii)
342 {
c906108c 343
c5aa993b
JM
344 /* ignore invalid breakpoint. */
345 if (breaks[ii] == -1)
346 continue;
7c40d541 347 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
348 stepBreaks[ii].address = breaks[ii];
349 }
c906108c 350
c5aa993b
JM
351 }
352 else
353 {
c906108c 354
c5aa993b
JM
355 /* remove step breakpoints. */
356 for (ii = 0; ii < 2; ++ii)
357 if (stepBreaks[ii].address != 0)
7c40d541
KB
358 target_remove_breakpoint (stepBreaks[ii].address,
359 stepBreaks[ii].data);
c5aa993b 360 }
c906108c 361 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 362 /* What errors? {read,write}_memory call error(). */
c906108c
SS
363}
364
365
366/* return pc value after skipping a function prologue and also return
367 information about a function frame.
368
369 in struct rs6000_framedata fdata:
c5aa993b
JM
370 - frameless is TRUE, if function does not have a frame.
371 - nosavedpc is TRUE, if function does not save %pc value in its frame.
372 - offset is the initial size of this stack frame --- the amount by
373 which we decrement the sp to allocate the frame.
374 - saved_gpr is the number of the first saved gpr.
375 - saved_fpr is the number of the first saved fpr.
6be8bc0c 376 - saved_vr is the number of the first saved vr.
96ff0de4 377 - saved_ev is the number of the first saved ev.
c5aa993b
JM
378 - alloca_reg is the number of the register used for alloca() handling.
379 Otherwise -1.
380 - gpr_offset is the offset of the first saved gpr from the previous frame.
381 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 382 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 383 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
384 - lr_offset is the offset of the saved lr
385 - cr_offset is the offset of the saved cr
6be8bc0c 386 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 387 */
c906108c
SS
388
389#define SIGNED_SHORT(x) \
390 ((sizeof (short) == 2) \
391 ? ((int)(short)(x)) \
392 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
393
394#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
395
55d05f3b
KB
396/* Limit the number of skipped non-prologue instructions, as the examining
397 of the prologue is expensive. */
398static int max_skip_non_prologue_insns = 10;
399
400/* Given PC representing the starting address of a function, and
401 LIM_PC which is the (sloppy) limit to which to scan when looking
402 for a prologue, attempt to further refine this limit by using
403 the line data in the symbol table. If successful, a better guess
404 on where the prologue ends is returned, otherwise the previous
405 value of lim_pc is returned. */
406static CORE_ADDR
407refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
408{
409 struct symtab_and_line prologue_sal;
410
411 prologue_sal = find_pc_line (pc, 0);
412 if (prologue_sal.line != 0)
413 {
414 int i;
415 CORE_ADDR addr = prologue_sal.end;
416
417 /* Handle the case in which compiler's optimizer/scheduler
418 has moved instructions into the prologue. We scan ahead
419 in the function looking for address ranges whose corresponding
420 line number is less than or equal to the first one that we
421 found for the function. (It can be less than when the
422 scheduler puts a body instruction before the first prologue
423 instruction.) */
424 for (i = 2 * max_skip_non_prologue_insns;
425 i > 0 && (lim_pc == 0 || addr < lim_pc);
426 i--)
427 {
428 struct symtab_and_line sal;
429
430 sal = find_pc_line (addr, 0);
431 if (sal.line == 0)
432 break;
433 if (sal.line <= prologue_sal.line
434 && sal.symtab == prologue_sal.symtab)
435 {
436 prologue_sal = sal;
437 }
438 addr = sal.end;
439 }
440
441 if (lim_pc == 0 || prologue_sal.end < lim_pc)
442 lim_pc = prologue_sal.end;
443 }
444 return lim_pc;
445}
446
447
7a78ae4e 448static CORE_ADDR
077276e8 449skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
450{
451 CORE_ADDR orig_pc = pc;
55d05f3b 452 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 453 CORE_ADDR li_found_pc = 0;
c906108c
SS
454 char buf[4];
455 unsigned long op;
456 long offset = 0;
6be8bc0c 457 long vr_saved_offset = 0;
482ca3f5
KB
458 int lr_reg = -1;
459 int cr_reg = -1;
6be8bc0c 460 int vr_reg = -1;
96ff0de4
EZ
461 int ev_reg = -1;
462 long ev_offset = 0;
6be8bc0c 463 int vrsave_reg = -1;
c906108c
SS
464 int reg;
465 int framep = 0;
466 int minimal_toc_loaded = 0;
ddb20c56 467 int prev_insn_was_prologue_insn = 1;
55d05f3b 468 int num_skip_non_prologue_insns = 0;
96ff0de4 469 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 470 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 471
55d05f3b
KB
472 /* Attempt to find the end of the prologue when no limit is specified.
473 Note that refine_prologue_limit() has been written so that it may
474 be used to "refine" the limits of non-zero PC values too, but this
475 is only safe if we 1) trust the line information provided by the
476 compiler and 2) iterate enough to actually find the end of the
477 prologue.
478
479 It may become a good idea at some point (for both performance and
480 accuracy) to unconditionally call refine_prologue_limit(). But,
481 until we can make a clear determination that this is beneficial,
482 we'll play it safe and only use it to obtain a limit when none
483 has been specified. */
484 if (lim_pc == 0)
485 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 486
ddb20c56 487 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
488 fdata->saved_gpr = -1;
489 fdata->saved_fpr = -1;
6be8bc0c 490 fdata->saved_vr = -1;
96ff0de4 491 fdata->saved_ev = -1;
c906108c
SS
492 fdata->alloca_reg = -1;
493 fdata->frameless = 1;
494 fdata->nosavedpc = 1;
495
55d05f3b 496 for (;; pc += 4)
c906108c 497 {
ddb20c56
KB
498 /* Sometimes it isn't clear if an instruction is a prologue
499 instruction or not. When we encounter one of these ambiguous
500 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
501 Otherwise, we'll assume that it really is a prologue instruction. */
502 if (prev_insn_was_prologue_insn)
503 last_prologue_pc = pc;
55d05f3b
KB
504
505 /* Stop scanning if we've hit the limit. */
506 if (lim_pc != 0 && pc >= lim_pc)
507 break;
508
ddb20c56
KB
509 prev_insn_was_prologue_insn = 1;
510
55d05f3b 511 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
512 if (target_read_memory (pc, buf, 4))
513 break;
514 op = extract_signed_integer (buf, 4);
c906108c 515
c5aa993b
JM
516 if ((op & 0xfc1fffff) == 0x7c0802a6)
517 { /* mflr Rx */
518 lr_reg = (op & 0x03e00000) | 0x90010000;
519 continue;
c906108c 520
c5aa993b
JM
521 }
522 else if ((op & 0xfc1fffff) == 0x7c000026)
523 { /* mfcr Rx */
524 cr_reg = (op & 0x03e00000) | 0x90010000;
525 continue;
c906108c 526
c906108c 527 }
c5aa993b
JM
528 else if ((op & 0xfc1f0000) == 0xd8010000)
529 { /* stfd Rx,NUM(r1) */
530 reg = GET_SRC_REG (op);
531 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
532 {
533 fdata->saved_fpr = reg;
534 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
535 }
536 continue;
c906108c 537
c5aa993b
JM
538 }
539 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
540 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
541 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
542 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
543 {
544
545 reg = GET_SRC_REG (op);
546 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
547 {
548 fdata->saved_gpr = reg;
7a78ae4e
ND
549 if ((op & 0xfc1f0003) == 0xf8010000)
550 op = (op >> 1) << 1;
c5aa993b
JM
551 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
552 }
553 continue;
c906108c 554
ddb20c56
KB
555 }
556 else if ((op & 0xffff0000) == 0x60000000)
557 {
96ff0de4 558 /* nop */
ddb20c56
KB
559 /* Allow nops in the prologue, but do not consider them to
560 be part of the prologue unless followed by other prologue
561 instructions. */
562 prev_insn_was_prologue_insn = 0;
563 continue;
564
c906108c 565 }
c5aa993b
JM
566 else if ((op & 0xffff0000) == 0x3c000000)
567 { /* addis 0,0,NUM, used
568 for >= 32k frames */
569 fdata->offset = (op & 0x0000ffff) << 16;
570 fdata->frameless = 0;
571 continue;
572
573 }
574 else if ((op & 0xffff0000) == 0x60000000)
575 { /* ori 0,0,NUM, 2nd ha
576 lf of >= 32k frames */
577 fdata->offset |= (op & 0x0000ffff);
578 fdata->frameless = 0;
579 continue;
580
581 }
482ca3f5 582 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
c5aa993b
JM
583 { /* st Rx,NUM(r1)
584 where Rx == lr */
585 fdata->lr_offset = SIGNED_SHORT (op) + offset;
586 fdata->nosavedpc = 0;
587 lr_reg = 0;
588 continue;
589
590 }
482ca3f5 591 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
c5aa993b
JM
592 { /* st Rx,NUM(r1)
593 where Rx == cr */
594 fdata->cr_offset = SIGNED_SHORT (op) + offset;
595 cr_reg = 0;
596 continue;
597
598 }
599 else if (op == 0x48000005)
600 { /* bl .+4 used in
601 -mrelocatable */
602 continue;
603
604 }
605 else if (op == 0x48000004)
606 { /* b .+4 (xlc) */
607 break;
608
c5aa993b 609 }
6be8bc0c
EZ
610 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
611 in V.4 -mminimal-toc */
c5aa993b
JM
612 (op & 0xffff0000) == 0x3bde0000)
613 { /* addi 30,30,foo@l */
614 continue;
c906108c 615
c5aa993b
JM
616 }
617 else if ((op & 0xfc000001) == 0x48000001)
618 { /* bl foo,
619 to save fprs??? */
c906108c 620
c5aa993b 621 fdata->frameless = 0;
6be8bc0c
EZ
622 /* Don't skip over the subroutine call if it is not within
623 the first three instructions of the prologue. */
c5aa993b
JM
624 if ((pc - orig_pc) > 8)
625 break;
626
627 op = read_memory_integer (pc + 4, 4);
628
6be8bc0c
EZ
629 /* At this point, make sure this is not a trampoline
630 function (a function that simply calls another functions,
631 and nothing else). If the next is not a nop, this branch
632 was part of the function prologue. */
c5aa993b
JM
633
634 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
635 break; /* don't skip over
636 this branch */
637 continue;
638
639 /* update stack pointer */
640 }
7a78ae4e
ND
641 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
642 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
643 {
c5aa993b 644 fdata->frameless = 0;
7a78ae4e
ND
645 if ((op & 0xffff0003) == 0xf8210001)
646 op = (op >> 1) << 1;
c5aa993b
JM
647 fdata->offset = SIGNED_SHORT (op);
648 offset = fdata->offset;
649 continue;
650
651 }
652 else if (op == 0x7c21016e)
653 { /* stwux 1,1,0 */
654 fdata->frameless = 0;
655 offset = fdata->offset;
656 continue;
657
658 /* Load up minimal toc pointer */
659 }
660 else if ((op >> 22) == 0x20f
661 && !minimal_toc_loaded)
662 { /* l r31,... or l r30,... */
663 minimal_toc_loaded = 1;
664 continue;
665
f6077098
KB
666 /* move parameters from argument registers to local variable
667 registers */
668 }
669 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
670 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
671 (((op >> 21) & 31) <= 10) &&
96ff0de4 672 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
673 {
674 continue;
675
c5aa993b
JM
676 /* store parameters in stack */
677 }
6be8bc0c 678 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 679 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
680 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
681 {
c5aa993b 682 continue;
c906108c 683
c5aa993b
JM
684 /* store parameters in stack via frame pointer */
685 }
686 else if (framep &&
687 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
688 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
689 (op & 0xfc1f0000) == 0xfc1f0000))
690 { /* frsp, fp?,NUM(r1) */
691 continue;
692
693 /* Set up frame pointer */
694 }
695 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
696 || op == 0x7c3f0b78)
697 { /* mr r31, r1 */
698 fdata->frameless = 0;
699 framep = 1;
6f99cb26 700 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
701 continue;
702
703 /* Another way to set up the frame pointer. */
704 }
705 else if ((op & 0xfc1fffff) == 0x38010000)
706 { /* addi rX, r1, 0x0 */
707 fdata->frameless = 0;
708 framep = 1;
6f99cb26
AC
709 fdata->alloca_reg = (tdep->ppc_gp0_regnum
710 + ((op & ~0x38010000) >> 21));
c5aa993b 711 continue;
c5aa993b 712 }
6be8bc0c
EZ
713 /* AltiVec related instructions. */
714 /* Store the vrsave register (spr 256) in another register for
715 later manipulation, or load a register into the vrsave
716 register. 2 instructions are used: mfvrsave and
717 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
718 and mtspr SPR256, Rn. */
719 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
720 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
721 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
722 {
723 vrsave_reg = GET_SRC_REG (op);
724 continue;
725 }
726 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
727 {
728 continue;
729 }
730 /* Store the register where vrsave was saved to onto the stack:
731 rS is the register where vrsave was stored in a previous
732 instruction. */
733 /* 100100 sssss 00001 dddddddd dddddddd */
734 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
735 {
736 if (vrsave_reg == GET_SRC_REG (op))
737 {
738 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
739 vrsave_reg = -1;
740 }
741 continue;
742 }
743 /* Compute the new value of vrsave, by modifying the register
744 where vrsave was saved to. */
745 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
746 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
747 {
748 continue;
749 }
750 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
751 in a pair of insns to save the vector registers on the
752 stack. */
753 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
754 /* 001110 01110 00000 iiii iiii iiii iiii */
755 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
756 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
757 {
758 li_found_pc = pc;
759 vr_saved_offset = SIGNED_SHORT (op);
760 }
761 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
762 /* 011111 sssss 11111 00000 00111001110 */
763 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
764 {
765 if (pc == (li_found_pc + 4))
766 {
767 vr_reg = GET_SRC_REG (op);
768 /* If this is the first vector reg to be saved, or if
769 it has a lower number than others previously seen,
770 reupdate the frame info. */
771 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
772 {
773 fdata->saved_vr = vr_reg;
774 fdata->vr_offset = vr_saved_offset + offset;
775 }
776 vr_saved_offset = -1;
777 vr_reg = -1;
778 li_found_pc = 0;
779 }
780 }
781 /* End AltiVec related instructions. */
96ff0de4
EZ
782
783 /* Start BookE related instructions. */
784 /* Store gen register S at (r31+uimm).
785 Any register less than r13 is volatile, so we don't care. */
786 /* 000100 sssss 11111 iiiii 01100100001 */
787 else if (arch_info->mach == bfd_mach_ppc_e500
788 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
789 {
790 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
791 {
792 unsigned int imm;
793 ev_reg = GET_SRC_REG (op);
794 imm = (op >> 11) & 0x1f;
795 ev_offset = imm * 8;
796 /* If this is the first vector reg to be saved, or if
797 it has a lower number than others previously seen,
798 reupdate the frame info. */
799 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
800 {
801 fdata->saved_ev = ev_reg;
802 fdata->ev_offset = ev_offset + offset;
803 }
804 }
805 continue;
806 }
807 /* Store gen register rS at (r1+rB). */
808 /* 000100 sssss 00001 bbbbb 01100100000 */
809 else if (arch_info->mach == bfd_mach_ppc_e500
810 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
811 {
812 if (pc == (li_found_pc + 4))
813 {
814 ev_reg = GET_SRC_REG (op);
815 /* If this is the first vector reg to be saved, or if
816 it has a lower number than others previously seen,
817 reupdate the frame info. */
818 /* We know the contents of rB from the previous instruction. */
819 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
820 {
821 fdata->saved_ev = ev_reg;
822 fdata->ev_offset = vr_saved_offset + offset;
823 }
824 vr_saved_offset = -1;
825 ev_reg = -1;
826 li_found_pc = 0;
827 }
828 continue;
829 }
830 /* Store gen register r31 at (rA+uimm). */
831 /* 000100 11111 aaaaa iiiii 01100100001 */
832 else if (arch_info->mach == bfd_mach_ppc_e500
833 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
834 {
835 /* Wwe know that the source register is 31 already, but
836 it can't hurt to compute it. */
837 ev_reg = GET_SRC_REG (op);
838 ev_offset = ((op >> 11) & 0x1f) * 8;
839 /* If this is the first vector reg to be saved, or if
840 it has a lower number than others previously seen,
841 reupdate the frame info. */
842 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
843 {
844 fdata->saved_ev = ev_reg;
845 fdata->ev_offset = ev_offset + offset;
846 }
847
848 continue;
849 }
850 /* Store gen register S at (r31+r0).
851 Store param on stack when offset from SP bigger than 4 bytes. */
852 /* 000100 sssss 11111 00000 01100100000 */
853 else if (arch_info->mach == bfd_mach_ppc_e500
854 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
855 {
856 if (pc == (li_found_pc + 4))
857 {
858 if ((op & 0x03e00000) >= 0x01a00000)
859 {
860 ev_reg = GET_SRC_REG (op);
861 /* If this is the first vector reg to be saved, or if
862 it has a lower number than others previously seen,
863 reupdate the frame info. */
864 /* We know the contents of r0 from the previous
865 instruction. */
866 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
867 {
868 fdata->saved_ev = ev_reg;
869 fdata->ev_offset = vr_saved_offset + offset;
870 }
871 ev_reg = -1;
872 }
873 vr_saved_offset = -1;
874 li_found_pc = 0;
875 continue;
876 }
877 }
878 /* End BookE related instructions. */
879
c5aa993b
JM
880 else
881 {
55d05f3b
KB
882 /* Not a recognized prologue instruction.
883 Handle optimizer code motions into the prologue by continuing
884 the search if we have no valid frame yet or if the return
885 address is not yet saved in the frame. */
886 if (fdata->frameless == 0
887 && (lr_reg == -1 || fdata->nosavedpc == 0))
888 break;
889
890 if (op == 0x4e800020 /* blr */
891 || op == 0x4e800420) /* bctr */
892 /* Do not scan past epilogue in frameless functions or
893 trampolines. */
894 break;
895 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 896 /* Never skip branches. */
55d05f3b
KB
897 break;
898
899 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
900 /* Do not scan too many insns, scanning insns is expensive with
901 remote targets. */
902 break;
903
904 /* Continue scanning. */
905 prev_insn_was_prologue_insn = 0;
906 continue;
c5aa993b 907 }
c906108c
SS
908 }
909
910#if 0
911/* I have problems with skipping over __main() that I need to address
912 * sometime. Previously, I used to use misc_function_vector which
913 * didn't work as well as I wanted to be. -MGO */
914
915 /* If the first thing after skipping a prolog is a branch to a function,
916 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 917 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 918 work before calling a function right after a prologue, thus we can
64366f1c 919 single out such gcc2 behaviour. */
c906108c 920
c906108c 921
c5aa993b
JM
922 if ((op & 0xfc000001) == 0x48000001)
923 { /* bl foo, an initializer function? */
924 op = read_memory_integer (pc + 4, 4);
925
926 if (op == 0x4def7b82)
927 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 928
64366f1c
EZ
929 /* Check and see if we are in main. If so, skip over this
930 initializer function as well. */
c906108c 931
c5aa993b 932 tmp = find_pc_misc_function (pc);
51cc5b07 933 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
934 return pc + 8;
935 }
c906108c 936 }
c906108c 937#endif /* 0 */
c5aa993b
JM
938
939 fdata->offset = -fdata->offset;
ddb20c56 940 return last_prologue_pc;
c906108c
SS
941}
942
943
944/*************************************************************************
f6077098 945 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
946 frames, etc.
947*************************************************************************/
948
c906108c 949
64366f1c 950/* Pop the innermost frame, go back to the caller. */
c5aa993b 951
c906108c 952static void
7a78ae4e 953rs6000_pop_frame (void)
c906108c 954{
470d5666 955 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
956 struct rs6000_framedata fdata;
957 struct frame_info *frame = get_current_frame ();
470d5666 958 int ii, wordsize;
c906108c
SS
959
960 pc = read_pc ();
c193f6ac 961 sp = get_frame_base (frame);
c906108c 962
bdd78e62 963 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
964 get_frame_base (frame),
965 get_frame_base (frame)))
c906108c 966 {
7a78ae4e
ND
967 generic_pop_dummy_frame ();
968 flush_cached_frames ();
969 return;
c906108c
SS
970 }
971
972 /* Make sure that all registers are valid. */
73937e03 973 deprecated_read_register_bytes (0, NULL, REGISTER_BYTES);
c906108c 974
64366f1c 975 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 976 still in the link register, otherwise walk the frames and retrieve the
64366f1c 977 saved %pc value in the previous frame. */
c906108c 978
bdd78e62
AC
979 addr = get_pc_function_start (get_frame_pc (frame));
980 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 981
21283beb 982 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
983 if (fdata.frameless)
984 prev_sp = sp;
985 else
7a78ae4e 986 prev_sp = read_memory_addr (sp, wordsize);
c906108c 987 if (fdata.lr_offset == 0)
2188cbdd 988 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 989 else
7a78ae4e 990 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
991
992 /* reset %pc value. */
993 write_register (PC_REGNUM, lr);
994
64366f1c 995 /* reset register values if any was saved earlier. */
c906108c
SS
996
997 if (fdata.saved_gpr != -1)
998 {
999 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1000 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1001 {
524d7c18
AC
1002 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1003 wordsize);
7a78ae4e 1004 addr += wordsize;
c5aa993b 1005 }
c906108c
SS
1006 }
1007
1008 if (fdata.saved_fpr != -1)
1009 {
1010 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1011 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1012 {
524d7c18 1013 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1014 addr += 8;
1015 }
c906108c
SS
1016 }
1017
1018 write_register (SP_REGNUM, prev_sp);
1019 target_store_registers (-1);
1020 flush_cached_frames ();
1021}
1022
7a78ae4e 1023/* Fixup the call sequence of a dummy function, with the real function
64366f1c 1024 address. Its arguments will be passed by gdb. */
c906108c 1025
7a78ae4e
ND
1026static void
1027rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 1028 int nargs, struct value **args, struct type *type,
7a78ae4e 1029 int gcc_p)
c906108c 1030{
c906108c
SS
1031 int ii;
1032 CORE_ADDR target_addr;
1033
7a78ae4e 1034 if (rs6000_find_toc_address_hook != NULL)
f6077098 1035 {
7a78ae4e 1036 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
1037 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1038 tocvalue);
f6077098 1039 }
c906108c
SS
1040}
1041
11269d7e
AC
1042/* All the ABI's require 16 byte alignment. */
1043static CORE_ADDR
1044rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1045{
1046 return (addr & -16);
1047}
1048
7a78ae4e 1049/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1050 the first eight words of the argument list (that might be less than
1051 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1052 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1053 passed in fpr's, in addition to that. Rest of the parameters if any
1054 are passed in user stack. There might be cases in which half of the
c906108c
SS
1055 parameter is copied into registers, the other half is pushed into
1056 stack.
1057
7a78ae4e
ND
1058 Stack must be aligned on 64-bit boundaries when synthesizing
1059 function calls.
1060
c906108c
SS
1061 If the function is returning a structure, then the return address is passed
1062 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1063 starting from r4. */
c906108c 1064
7a78ae4e 1065static CORE_ADDR
ea7c478f 1066rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 1067 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1068{
1069 int ii;
1070 int len = 0;
c5aa993b
JM
1071 int argno; /* current argument number */
1072 int argbytes; /* current argument byte */
1073 char tmp_buffer[50];
1074 int f_argno = 0; /* current floating point argno */
21283beb 1075 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1076
ea7c478f 1077 struct value *arg = 0;
c906108c
SS
1078 struct type *type;
1079
1080 CORE_ADDR saved_sp;
1081
64366f1c
EZ
1082 /* The first eight words of ther arguments are passed in registers.
1083 Copy them appropriately.
c906108c
SS
1084
1085 If the function is returning a `struct', then the first word (which
64366f1c 1086 will be passed in r3) is used for struct return address. In that
c906108c 1087 case we should advance one word and start from r4 register to copy
64366f1c 1088 parameters. */
c906108c 1089
c5aa993b 1090 ii = struct_return ? 1 : 0;
c906108c
SS
1091
1092/*
c5aa993b
JM
1093 effectively indirect call... gcc does...
1094
1095 return_val example( float, int);
1096
1097 eabi:
1098 float in fp0, int in r3
1099 offset of stack on overflow 8/16
1100 for varargs, must go by type.
1101 power open:
1102 float in r3&r4, int in r5
1103 offset of stack on overflow different
1104 both:
1105 return in r3 or f0. If no float, must study how gcc emulates floats;
1106 pay attention to arg promotion.
1107 User may have to cast\args to handle promotion correctly
1108 since gdb won't know if prototype supplied or not.
1109 */
c906108c 1110
c5aa993b
JM
1111 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1112 {
f6077098 1113 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1114
1115 arg = args[argno];
1116 type = check_typedef (VALUE_TYPE (arg));
1117 len = TYPE_LENGTH (type);
1118
1119 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1120 {
1121
64366f1c 1122 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1123 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1124 there is no way we would run out of them. */
c5aa993b
JM
1125
1126 if (len > 8)
1127 printf_unfiltered (
1128 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1129
524d7c18 1130 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1131 VALUE_CONTENTS (arg),
1132 len);
1133 ++f_argno;
1134 }
1135
f6077098 1136 if (len > reg_size)
c5aa993b
JM
1137 {
1138
64366f1c 1139 /* Argument takes more than one register. */
c5aa993b
JM
1140 while (argbytes < len)
1141 {
524d7c18
AC
1142 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1143 reg_size);
1144 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
c5aa993b 1145 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1146 (len - argbytes) > reg_size
1147 ? reg_size : len - argbytes);
1148 ++ii, argbytes += reg_size;
c5aa993b
JM
1149
1150 if (ii >= 8)
1151 goto ran_out_of_registers_for_arguments;
1152 }
1153 argbytes = 0;
1154 --ii;
1155 }
1156 else
64366f1c
EZ
1157 {
1158 /* Argument can fit in one register. No problem. */
d7449b42 1159 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
524d7c18
AC
1160 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1161 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
f6077098 1162 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1163 }
1164 ++argno;
c906108c 1165 }
c906108c
SS
1166
1167ran_out_of_registers_for_arguments:
1168
7a78ae4e 1169 saved_sp = read_sp ();
cc9836a8 1170
64366f1c 1171 /* Location for 8 parameters are always reserved. */
7a78ae4e 1172 sp -= wordsize * 8;
f6077098 1173
64366f1c 1174 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1175 sp -= wordsize * 6;
f6077098 1176
64366f1c 1177 /* Stack pointer must be quadword aligned. */
7a78ae4e 1178 sp &= -16;
c906108c 1179
64366f1c
EZ
1180 /* If there are more arguments, allocate space for them in
1181 the stack, then push them starting from the ninth one. */
c906108c 1182
c5aa993b
JM
1183 if ((argno < nargs) || argbytes)
1184 {
1185 int space = 0, jj;
c906108c 1186
c5aa993b
JM
1187 if (argbytes)
1188 {
1189 space += ((len - argbytes + 3) & -4);
1190 jj = argno + 1;
1191 }
1192 else
1193 jj = argno;
c906108c 1194
c5aa993b
JM
1195 for (; jj < nargs; ++jj)
1196 {
ea7c478f 1197 struct value *val = args[jj];
c5aa993b
JM
1198 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1199 }
c906108c 1200
64366f1c 1201 /* Add location required for the rest of the parameters. */
f6077098 1202 space = (space + 15) & -16;
c5aa993b 1203 sp -= space;
c906108c 1204
64366f1c
EZ
1205 /* This is another instance we need to be concerned about
1206 securing our stack space. If we write anything underneath %sp
1207 (r1), we might conflict with the kernel who thinks he is free
1208 to use this area. So, update %sp first before doing anything
1209 else. */
c906108c 1210
c5aa993b 1211 write_register (SP_REGNUM, sp);
c906108c 1212
64366f1c
EZ
1213 /* If the last argument copied into the registers didn't fit there
1214 completely, push the rest of it into stack. */
c906108c 1215
c5aa993b
JM
1216 if (argbytes)
1217 {
1218 write_memory (sp + 24 + (ii * 4),
1219 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1220 len - argbytes);
1221 ++argno;
1222 ii += ((len - argbytes + 3) & -4) / 4;
1223 }
c906108c 1224
64366f1c 1225 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1226 for (; argno < nargs; ++argno)
1227 {
c906108c 1228
c5aa993b
JM
1229 arg = args[argno];
1230 type = check_typedef (VALUE_TYPE (arg));
1231 len = TYPE_LENGTH (type);
c906108c
SS
1232
1233
64366f1c
EZ
1234 /* Float types should be passed in fpr's, as well as in the
1235 stack. */
c5aa993b
JM
1236 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1237 {
c906108c 1238
c5aa993b
JM
1239 if (len > 8)
1240 printf_unfiltered (
1241 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1242
524d7c18 1243 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1244 VALUE_CONTENTS (arg),
1245 len);
1246 ++f_argno;
1247 }
c906108c 1248
c5aa993b
JM
1249 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1250 ii += ((len + 3) & -4) / 4;
1251 }
c906108c 1252 }
c906108c 1253 else
64366f1c 1254 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1255 write_register (SP_REGNUM, sp);
1256
c906108c
SS
1257 /* set back chain properly */
1258 store_address (tmp_buffer, 4, saved_sp);
1259 write_memory (sp, tmp_buffer, 4);
1260
1261 target_store_registers (-1);
1262 return sp;
1263}
c906108c
SS
1264
1265/* Function: ppc_push_return_address (pc, sp)
64366f1c 1266 Set up the return address for the inferior function call. */
c906108c 1267
7a78ae4e
ND
1268static CORE_ADDR
1269ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1270{
2188cbdd
EZ
1271 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1272 CALL_DUMMY_ADDRESS ());
c906108c
SS
1273 return sp;
1274}
1275
7a78ae4e 1276/* Extract a function return value of type TYPE from raw register array
64366f1c 1277 REGBUF, and copy that return value into VALBUF in virtual format. */
96ff0de4 1278static void
46d79c04 1279e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
96ff0de4
EZ
1280{
1281 int offset = 0;
1282 int vallen = TYPE_LENGTH (valtype);
1283 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1284
1285 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1286 && vallen == 8
1287 && TYPE_VECTOR (valtype))
1288 {
1289 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1290 }
1291 else
1292 {
1293 /* Return value is copied starting from r3. Note that r3 for us
1294 is a pseudo register. */
1295 int offset = 0;
1296 int return_regnum = tdep->ppc_gp0_regnum + 3;
1297 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1298 int reg_part_size;
1299 char *val_buffer;
1300 int copied = 0;
1301 int i = 0;
1302
1303 /* Compute where we will start storing the value from. */
1304 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1305 {
1306 if (vallen <= reg_size)
1307 offset = reg_size - vallen;
1308 else
1309 offset = reg_size + (reg_size - vallen);
1310 }
1311
1312 /* How big does the local buffer need to be? */
1313 if (vallen <= reg_size)
1314 val_buffer = alloca (reg_size);
1315 else
1316 val_buffer = alloca (vallen);
1317
1318 /* Read all we need into our private buffer. We copy it in
1319 chunks that are as long as one register, never shorter, even
1320 if the value is smaller than the register. */
1321 while (copied < vallen)
1322 {
1323 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1324 /* It is a pseudo/cooked register. */
1325 regcache_cooked_read (regbuf, return_regnum + i,
1326 val_buffer + copied);
1327 copied += reg_part_size;
1328 i++;
1329 }
1330 /* Put the stuff in the return buffer. */
1331 memcpy (valbuf, val_buffer + offset, vallen);
1332 }
1333}
c906108c 1334
7a78ae4e
ND
1335static void
1336rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1337{
1338 int offset = 0;
ace1378a 1339 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1340
c5aa993b
JM
1341 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1342 {
c906108c 1343
c5aa993b
JM
1344 double dd;
1345 float ff;
1346 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1347 We need to truncate the return value into float size (4 byte) if
64366f1c 1348 necessary. */
c906108c 1349
c5aa993b
JM
1350 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1351 memcpy (valbuf,
1352 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1353 TYPE_LENGTH (valtype));
1354 else
1355 { /* float */
1356 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1357 ff = (float) dd;
1358 memcpy (valbuf, &ff, sizeof (float));
1359 }
1360 }
ace1378a
EZ
1361 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1362 && TYPE_LENGTH (valtype) == 16
1363 && TYPE_VECTOR (valtype))
1364 {
1365 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1366 TYPE_LENGTH (valtype));
1367 }
c5aa993b
JM
1368 else
1369 {
1370 /* return value is copied starting from r3. */
d7449b42 1371 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1372 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1373 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1374
1375 memcpy (valbuf,
1376 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1377 TYPE_LENGTH (valtype));
c906108c 1378 }
c906108c
SS
1379}
1380
977adac5
ND
1381/* Return whether handle_inferior_event() should proceed through code
1382 starting at PC in function NAME when stepping.
1383
1384 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1385 handle memory references that are too distant to fit in instructions
1386 generated by the compiler. For example, if 'foo' in the following
1387 instruction:
1388
1389 lwz r9,foo(r2)
1390
1391 is greater than 32767, the linker might replace the lwz with a branch to
1392 somewhere in @FIX1 that does the load in 2 instructions and then branches
1393 back to where execution should continue.
1394
1395 GDB should silently step over @FIX code, just like AIX dbx does.
1396 Unfortunately, the linker uses the "b" instruction for the branches,
1397 meaning that the link register doesn't get set. Therefore, GDB's usual
1398 step_over_function() mechanism won't work.
1399
1400 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1401 in handle_inferior_event() to skip past @FIX code. */
1402
1403int
1404rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1405{
1406 return name && !strncmp (name, "@FIX", 4);
1407}
1408
1409/* Skip code that the user doesn't want to see when stepping:
1410
1411 1. Indirect function calls use a piece of trampoline code to do context
1412 switching, i.e. to set the new TOC table. Skip such code if we are on
1413 its first instruction (as when we have single-stepped to here).
1414
1415 2. Skip shared library trampoline code (which is different from
c906108c 1416 indirect function call trampolines).
977adac5
ND
1417
1418 3. Skip bigtoc fixup code.
1419
c906108c 1420 Result is desired PC to step until, or NULL if we are not in
977adac5 1421 code that should be skipped. */
c906108c
SS
1422
1423CORE_ADDR
7a78ae4e 1424rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1425{
1426 register unsigned int ii, op;
977adac5 1427 int rel;
c906108c 1428 CORE_ADDR solib_target_pc;
977adac5 1429 struct minimal_symbol *msymbol;
c906108c 1430
c5aa993b
JM
1431 static unsigned trampoline_code[] =
1432 {
1433 0x800b0000, /* l r0,0x0(r11) */
1434 0x90410014, /* st r2,0x14(r1) */
1435 0x7c0903a6, /* mtctr r0 */
1436 0x804b0004, /* l r2,0x4(r11) */
1437 0x816b0008, /* l r11,0x8(r11) */
1438 0x4e800420, /* bctr */
1439 0x4e800020, /* br */
1440 0
c906108c
SS
1441 };
1442
977adac5
ND
1443 /* Check for bigtoc fixup code. */
1444 msymbol = lookup_minimal_symbol_by_pc (pc);
1445 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1446 {
1447 /* Double-check that the third instruction from PC is relative "b". */
1448 op = read_memory_integer (pc + 8, 4);
1449 if ((op & 0xfc000003) == 0x48000000)
1450 {
1451 /* Extract bits 6-29 as a signed 24-bit relative word address and
1452 add it to the containing PC. */
1453 rel = ((int)(op << 6) >> 6);
1454 return pc + 8 + rel;
1455 }
1456 }
1457
c906108c
SS
1458 /* If pc is in a shared library trampoline, return its target. */
1459 solib_target_pc = find_solib_trampoline_target (pc);
1460 if (solib_target_pc)
1461 return solib_target_pc;
1462
c5aa993b
JM
1463 for (ii = 0; trampoline_code[ii]; ++ii)
1464 {
1465 op = read_memory_integer (pc + (ii * 4), 4);
1466 if (op != trampoline_code[ii])
1467 return 0;
1468 }
1469 ii = read_register (11); /* r11 holds destination addr */
21283beb 1470 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1471 return pc;
1472}
1473
1474/* Determines whether the function FI has a frame on the stack or not. */
1475
9aa1e687 1476int
c877c8e6 1477rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1478{
1479 CORE_ADDR func_start;
1480 struct rs6000_framedata fdata;
1481
1482 /* Don't even think about framelessness except on the innermost frame
1483 or if the function was interrupted by a signal. */
75e3c1f9
AC
1484 if (get_next_frame (fi) != NULL
1485 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1486 return 0;
c5aa993b 1487
bdd78e62 1488 func_start = get_pc_function_start (get_frame_pc (fi));
c906108c
SS
1489
1490 /* If we failed to find the start of the function, it is a mistake
64366f1c 1491 to inspect the instructions. */
c906108c
SS
1492
1493 if (!func_start)
1494 {
1495 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1496 function pointer, normally causing an immediate core dump of the
64366f1c 1497 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1498 of setting up a stack frame. */
bdd78e62 1499 if (get_frame_pc (fi) == 0)
c906108c
SS
1500 return 1;
1501 else
1502 return 0;
1503 }
1504
bdd78e62 1505 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1506 return fdata.frameless;
1507}
1508
64366f1c 1509/* Return the PC saved in a frame. */
c906108c 1510
9aa1e687 1511CORE_ADDR
c877c8e6 1512rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1513{
1514 CORE_ADDR func_start;
1515 struct rs6000_framedata fdata;
21283beb 1516 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1517 int wordsize = tdep->wordsize;
c906108c 1518
5a203e44 1519 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1520 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1521 wordsize);
c906108c 1522
bdd78e62 1523 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1524 get_frame_base (fi),
1525 get_frame_base (fi)))
bdd78e62 1526 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1527 get_frame_base (fi), PC_REGNUM);
c906108c 1528
bdd78e62 1529 func_start = get_pc_function_start (get_frame_pc (fi));
c906108c
SS
1530
1531 /* If we failed to find the start of the function, it is a mistake
64366f1c 1532 to inspect the instructions. */
c906108c
SS
1533 if (!func_start)
1534 return 0;
1535
bdd78e62 1536 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1537
75e3c1f9 1538 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1539 {
75e3c1f9 1540 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1541 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1542 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1543 wordsize);
bdd78e62 1544 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1545 /* The link register wasn't saved by this frame and the next
1546 (inner, newer) frame is a dummy. Get the link register
1547 value by unwinding it from that [dummy] frame. */
1548 {
1549 ULONGEST lr;
1550 frame_unwind_unsigned_register (get_next_frame (fi),
1551 tdep->ppc_lr_regnum, &lr);
1552 return lr;
1553 }
c906108c 1554 else
a88376a3 1555 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
7a78ae4e 1556 wordsize);
c906108c
SS
1557 }
1558
1559 if (fdata.lr_offset == 0)
2188cbdd 1560 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1561
7a78ae4e 1562 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
c906108c
SS
1563}
1564
1565/* If saved registers of frame FI are not known yet, read and cache them.
1566 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1567 in which case the framedata are read. */
1568
1569static void
7a78ae4e 1570frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1571{
c5aa993b 1572 CORE_ADDR frame_addr;
c906108c 1573 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1574 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1575 int wordsize = tdep->wordsize;
c906108c 1576
c9012c71 1577 if (get_frame_saved_regs (fi))
c906108c 1578 return;
c5aa993b 1579
c906108c
SS
1580 if (fdatap == NULL)
1581 {
1582 fdatap = &work_fdata;
bdd78e62
AC
1583 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1584 get_frame_pc (fi), fdatap);
c906108c
SS
1585 }
1586
1587 frame_saved_regs_zalloc (fi);
1588
1589 /* If there were any saved registers, figure out parent's stack
64366f1c 1590 pointer. */
c906108c 1591 /* The following is true only if the frame doesn't have a call to
64366f1c 1592 alloca(), FIXME. */
c906108c 1593
6be8bc0c
EZ
1594 if (fdatap->saved_fpr == 0
1595 && fdatap->saved_gpr == 0
1596 && fdatap->saved_vr == 0
96ff0de4 1597 && fdatap->saved_ev == 0
6be8bc0c
EZ
1598 && fdatap->lr_offset == 0
1599 && fdatap->cr_offset == 0
96ff0de4
EZ
1600 && fdatap->vr_offset == 0
1601 && fdatap->ev_offset == 0)
c906108c 1602 frame_addr = 0;
c906108c 1603 else
bf75c8c1
AC
1604 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1605 address of the current frame. Things might be easier if the
1606 ->frame pointed to the outer-most address of the frame. In the
1607 mean time, the address of the prev frame is used as the base
1608 address of this frame. */
1609 frame_addr = FRAME_CHAIN (fi);
c5aa993b 1610
c906108c
SS
1611 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1612 All fpr's from saved_fpr to fp31 are saved. */
1613
1614 if (fdatap->saved_fpr >= 0)
1615 {
1616 int i;
7a78ae4e 1617 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1618 for (i = fdatap->saved_fpr; i < 32; i++)
1619 {
c9012c71 1620 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1621 fpr_addr += 8;
c906108c
SS
1622 }
1623 }
1624
1625 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1626 All gpr's from saved_gpr to gpr31 are saved. */
1627
1628 if (fdatap->saved_gpr >= 0)
1629 {
1630 int i;
7a78ae4e 1631 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1632 for (i = fdatap->saved_gpr; i < 32; i++)
1633 {
c9012c71 1634 get_frame_saved_regs (fi)[i] = gpr_addr;
7a78ae4e 1635 gpr_addr += wordsize;
c906108c
SS
1636 }
1637 }
1638
6be8bc0c
EZ
1639 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1640 All vr's from saved_vr to vr31 are saved. */
1641 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1642 {
1643 if (fdatap->saved_vr >= 0)
1644 {
1645 int i;
1646 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1647 for (i = fdatap->saved_vr; i < 32; i++)
1648 {
c9012c71 1649 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
6be8bc0c
EZ
1650 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1651 }
1652 }
1653 }
1654
96ff0de4
EZ
1655 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1656 All vr's from saved_ev to ev31 are saved. ????? */
1657 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1658 {
1659 if (fdatap->saved_ev >= 0)
1660 {
1661 int i;
1662 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1663 for (i = fdatap->saved_ev; i < 32; i++)
1664 {
c9012c71
AC
1665 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1666 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
96ff0de4
EZ
1667 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1668 }
1669 }
1670 }
1671
c906108c
SS
1672 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1673 the CR. */
1674 if (fdatap->cr_offset != 0)
c9012c71 1675 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1676
1677 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1678 the LR. */
1679 if (fdatap->lr_offset != 0)
c9012c71 1680 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1681
1682 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1683 the VRSAVE. */
1684 if (fdatap->vrsave_offset != 0)
c9012c71 1685 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1686}
1687
1688/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1689 was first allocated. For functions calling alloca(), it might be saved in
1690 an alloca register. */
c906108c
SS
1691
1692static CORE_ADDR
7a78ae4e 1693frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1694{
1695 CORE_ADDR tmpaddr;
1696 struct rs6000_framedata fdata;
1697 struct frame_info *callee_fi;
1698
64366f1c
EZ
1699 /* If the initial stack pointer (frame address) of this frame is known,
1700 just return it. */
c906108c 1701
c9012c71
AC
1702 if (get_frame_extra_info (fi)->initial_sp)
1703 return get_frame_extra_info (fi)->initial_sp;
c906108c 1704
64366f1c 1705 /* Find out if this function is using an alloca register. */
c906108c 1706
bdd78e62
AC
1707 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1708 get_frame_pc (fi), &fdata);
c906108c 1709
64366f1c
EZ
1710 /* If saved registers of this frame are not known yet, read and
1711 cache them. */
c906108c 1712
c9012c71 1713 if (!get_frame_saved_regs (fi))
c906108c
SS
1714 frame_get_saved_regs (fi, &fdata);
1715
1716 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1717 this frame, and it is good enough. */
c906108c
SS
1718
1719 if (fdata.alloca_reg < 0)
1720 {
c9012c71
AC
1721 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1722 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1723 }
1724
953836b2
AC
1725 /* There is an alloca register, use its value, in the current frame,
1726 as the initial stack pointer. */
1727 {
1728 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1729 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1730 {
c9012c71 1731 get_frame_extra_info (fi)->initial_sp
953836b2
AC
1732 = extract_unsigned_integer (tmpbuf,
1733 REGISTER_RAW_SIZE (fdata.alloca_reg));
1734 }
1735 else
1736 /* NOTE: cagney/2002-04-17: At present the only time
1737 frame_register_read will fail is when the register isn't
1738 available. If that does happen, use the frame. */
c9012c71 1739 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1740 }
c9012c71 1741 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1742}
1743
7a78ae4e
ND
1744/* Describe the pointer in each stack frame to the previous stack frame
1745 (its caller). */
1746
1747/* FRAME_CHAIN takes a frame's nominal address
64366f1c 1748 and produces the frame's chain-pointer. */
7a78ae4e
ND
1749
1750/* In the case of the RS/6000, the frame's nominal address
1751 is the address of a 4-byte word containing the calling frame's address. */
1752
9aa1e687 1753CORE_ADDR
7a78ae4e 1754rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1755{
7a78ae4e 1756 CORE_ADDR fp, fpp, lr;
21283beb 1757 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1758
bdd78e62 1759 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1760 get_frame_base (thisframe),
1761 get_frame_base (thisframe)))
9f3b7f07
AC
1762 /* A dummy frame always correctly chains back to the previous
1763 frame. */
8b36eed8 1764 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1765
bdd78e62
AC
1766 if (inside_entry_file (get_frame_pc (thisframe))
1767 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1768 return 0;
1769
5a203e44 1770 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1771 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1772 wordsize);
75e3c1f9
AC
1773 else if (get_next_frame (thisframe) != NULL
1774 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1775 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1776 /* A frameless function interrupted by a signal did not change the
1777 frame pointer. */
c193f6ac 1778 fp = get_frame_base (thisframe);
c906108c 1779 else
8b36eed8 1780 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1781 return fp;
1782}
1783
1784/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1785 isn't available with that word size, return 0. */
7a78ae4e
ND
1786
1787static int
1788regsize (const struct reg *reg, int wordsize)
1789{
1790 return wordsize == 8 ? reg->sz64 : reg->sz32;
1791}
1792
1793/* Return the name of register number N, or null if no such register exists
64366f1c 1794 in the current architecture. */
7a78ae4e 1795
fa88f677 1796static const char *
7a78ae4e
ND
1797rs6000_register_name (int n)
1798{
21283beb 1799 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1800 const struct reg *reg = tdep->regs + n;
1801
1802 if (!regsize (reg, tdep->wordsize))
1803 return NULL;
1804 return reg->name;
1805}
1806
1807/* Index within `registers' of the first byte of the space for
1808 register N. */
1809
1810static int
1811rs6000_register_byte (int n)
1812{
21283beb 1813 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1814}
1815
1816/* Return the number of bytes of storage in the actual machine representation
64366f1c 1817 for register N if that register is available, else return 0. */
7a78ae4e
ND
1818
1819static int
1820rs6000_register_raw_size (int n)
1821{
21283beb 1822 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1823 const struct reg *reg = tdep->regs + n;
1824 return regsize (reg, tdep->wordsize);
1825}
1826
7a78ae4e
ND
1827/* Return the GDB type object for the "standard" data type
1828 of data in register N. */
1829
1830static struct type *
fba45db2 1831rs6000_register_virtual_type (int n)
7a78ae4e 1832{
21283beb 1833 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1834 const struct reg *reg = tdep->regs + n;
1835
1fcc0bb8
EZ
1836 if (reg->fpr)
1837 return builtin_type_double;
1838 else
1839 {
1840 int size = regsize (reg, tdep->wordsize);
1841 switch (size)
1842 {
1843 case 8:
c8001721
EZ
1844 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1845 return builtin_type_vec64;
1846 else
1847 return builtin_type_int64;
1fcc0bb8
EZ
1848 break;
1849 case 16:
08cf96df 1850 return builtin_type_vec128;
1fcc0bb8
EZ
1851 break;
1852 default:
1853 return builtin_type_int32;
1854 break;
1855 }
1856 }
7a78ae4e
ND
1857}
1858
7a78ae4e
ND
1859/* Return whether register N requires conversion when moving from raw format
1860 to virtual format.
1861
1862 The register format for RS/6000 floating point registers is always
64366f1c 1863 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1864
1865static int
1866rs6000_register_convertible (int n)
1867{
21283beb 1868 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1869 return reg->fpr;
1870}
1871
1872/* Convert data from raw format for register N in buffer FROM
64366f1c 1873 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1874
1875static void
1876rs6000_register_convert_to_virtual (int n, struct type *type,
1877 char *from, char *to)
1878{
1879 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1880 {
7a78ae4e
ND
1881 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1882 store_floating (to, TYPE_LENGTH (type), val);
1883 }
1884 else
1885 memcpy (to, from, REGISTER_RAW_SIZE (n));
1886}
1887
1888/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1889 to raw format for register N in buffer TO. */
7a292a7a 1890
7a78ae4e
ND
1891static void
1892rs6000_register_convert_to_raw (struct type *type, int n,
1893 char *from, char *to)
1894{
1895 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1896 {
1897 double val = extract_floating (from, TYPE_LENGTH (type));
1898 store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1899 }
7a78ae4e
ND
1900 else
1901 memcpy (to, from, REGISTER_RAW_SIZE (n));
1902}
c906108c 1903
c8001721
EZ
1904static void
1905e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1906 int reg_nr, void *buffer)
1907{
1908 int base_regnum;
1909 int offset = 0;
1910 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1911 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1912
1913 if (reg_nr >= tdep->ppc_gp0_regnum
1914 && reg_nr <= tdep->ppc_gplast_regnum)
1915 {
1916 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1917
1918 /* Build the value in the provided buffer. */
1919 /* Read the raw register of which this one is the lower portion. */
1920 regcache_raw_read (regcache, base_regnum, temp_buffer);
1921 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1922 offset = 4;
1923 memcpy ((char *) buffer, temp_buffer + offset, 4);
1924 }
1925}
1926
1927static void
1928e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1929 int reg_nr, const void *buffer)
1930{
1931 int base_regnum;
1932 int offset = 0;
1933 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1934 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1935
1936 if (reg_nr >= tdep->ppc_gp0_regnum
1937 && reg_nr <= tdep->ppc_gplast_regnum)
1938 {
1939 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1940 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1941 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1942 offset = 4;
1943
1944 /* Let's read the value of the base register into a temporary
1945 buffer, so that overwriting the last four bytes with the new
1946 value of the pseudo will leave the upper 4 bytes unchanged. */
1947 regcache_raw_read (regcache, base_regnum, temp_buffer);
1948
1949 /* Write as an 8 byte quantity. */
1950 memcpy (temp_buffer + offset, (char *) buffer, 4);
1951 regcache_raw_write (regcache, base_regnum, temp_buffer);
1952 }
1953}
1954
1955/* Convert a dwarf2 register number to a gdb REGNUM. */
1956static int
1957e500_dwarf2_reg_to_regnum (int num)
1958{
1959 int regnum;
1960 if (0 <= num && num <= 31)
1961 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1962 else
1963 return num;
1964}
1965
2188cbdd 1966/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1967 REGNUM. */
2188cbdd
EZ
1968static int
1969rs6000_stab_reg_to_regnum (int num)
1970{
1971 int regnum;
1972 switch (num)
1973 {
1974 case 64:
1975 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1976 break;
1977 case 65:
1978 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1979 break;
1980 case 66:
1981 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1982 break;
1983 case 76:
1984 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1985 break;
1986 default:
1987 regnum = num;
1988 break;
1989 }
1990 return regnum;
1991}
1992
7a78ae4e 1993/* Store the address of the place in which to copy the structure the
11269d7e 1994 subroutine will return. */
7a78ae4e
ND
1995
1996static void
1997rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1998{
da3eff49
AC
1999 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2000 write_register (tdep->ppc_gp0_regnum + 3, addr);
7a78ae4e
ND
2001}
2002
2003/* Write into appropriate registers a function return value
2004 of type TYPE, given in virtual format. */
96ff0de4
EZ
2005static void
2006e500_store_return_value (struct type *type, char *valbuf)
2007{
2008 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2009
2010 /* Everything is returned in GPR3 and up. */
2011 int copied = 0;
2012 int i = 0;
2013 int len = TYPE_LENGTH (type);
2014 while (copied < len)
2015 {
2016 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2017 int reg_size = REGISTER_RAW_SIZE (regnum);
2018 char *reg_val_buf = alloca (reg_size);
2019
2020 memcpy (reg_val_buf, valbuf + copied, reg_size);
2021 copied += reg_size;
4caf0990 2022 deprecated_write_register_gen (regnum, reg_val_buf);
96ff0de4
EZ
2023 i++;
2024 }
2025}
7a78ae4e
ND
2026
2027static void
2028rs6000_store_return_value (struct type *type, char *valbuf)
2029{
ace1378a
EZ
2030 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2031
7a78ae4e
ND
2032 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2033
2034 /* Floating point values are returned starting from FPR1 and up.
2035 Say a double_double_double type could be returned in
64366f1c 2036 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2037
73937e03
AC
2038 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2039 TYPE_LENGTH (type));
ace1378a
EZ
2040 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2041 {
2042 if (TYPE_LENGTH (type) == 16
2043 && TYPE_VECTOR (type))
73937e03
AC
2044 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2045 valbuf, TYPE_LENGTH (type));
ace1378a 2046 }
7a78ae4e 2047 else
64366f1c 2048 /* Everything else is returned in GPR3 and up. */
73937e03
AC
2049 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2050 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2051}
2052
2053/* Extract from an array REGBUF containing the (raw) register state
2054 the address in which a function should return its structure value,
2055 as a CORE_ADDR (or an expression that can be used as one). */
2056
2057static CORE_ADDR
11269d7e
AC
2058rs6000_extract_struct_value_address (struct regcache *regcache)
2059{
2060 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2061 function call GDB knows the address of the struct return value
2062 and hence, should not need to call this function. Unfortunately,
2063 the current hand_function_call() code only saves the most recent
2064 struct address leading to occasional calls. The code should
2065 instead maintain a stack of such addresses (in the dummy frame
2066 object). */
2067 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2068 really got no idea where the return value is being stored. While
2069 r3, on function entry, contained the address it will have since
2070 been reused (scratch) and hence wouldn't be valid */
2071 return 0;
7a78ae4e
ND
2072}
2073
2074/* Return whether PC is in a dummy function call.
2075
2076 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2077 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2078
2079static int
2080rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2081{
2082 return sp < pc && pc < fp;
2083}
2084
64366f1c 2085/* Hook called when a new child process is started. */
7a78ae4e
ND
2086
2087void
2088rs6000_create_inferior (int pid)
2089{
2090 if (rs6000_set_host_arch_hook)
2091 rs6000_set_host_arch_hook (pid);
c906108c
SS
2092}
2093\f
7a78ae4e
ND
2094/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2095
2096 Usually a function pointer's representation is simply the address
2097 of the function. On the RS/6000 however, a function pointer is
2098 represented by a pointer to a TOC entry. This TOC entry contains
2099 three words, the first word is the address of the function, the
2100 second word is the TOC pointer (r2), and the third word is the
2101 static chain value. Throughout GDB it is currently assumed that a
2102 function pointer contains the address of the function, which is not
2103 easy to fix. In addition, the conversion of a function address to
2104 a function pointer would require allocation of a TOC entry in the
2105 inferior's memory space, with all its drawbacks. To be able to
2106 call C++ virtual methods in the inferior (which are called via
f517ea4e 2107 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2108 function address from a function pointer. */
2109
f517ea4e
PS
2110/* Return real function address if ADDR (a function pointer) is in the data
2111 space and is therefore a special function pointer. */
c906108c 2112
7a78ae4e
ND
2113CORE_ADDR
2114rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2115{
2116 struct obj_section *s;
2117
2118 s = find_pc_section (addr);
2119 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2120 return addr;
c906108c 2121
7a78ae4e 2122 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2123 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2124}
c906108c 2125\f
c5aa993b 2126
7a78ae4e 2127/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2128
2129
7a78ae4e
ND
2130/* The arrays here called registers_MUMBLE hold information about available
2131 registers.
c906108c
SS
2132
2133 For each family of PPC variants, I've tried to isolate out the
2134 common registers and put them up front, so that as long as you get
2135 the general family right, GDB will correctly identify the registers
2136 common to that family. The common register sets are:
2137
2138 For the 60x family: hid0 hid1 iabr dabr pir
2139
2140 For the 505 and 860 family: eie eid nri
2141
2142 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2143 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2144 pbu1 pbl2 pbu2
c906108c
SS
2145
2146 Most of these register groups aren't anything formal. I arrived at
2147 them by looking at the registers that occurred in more than one
6f5987a6
KB
2148 processor.
2149
2150 Note: kevinb/2002-04-30: Support for the fpscr register was added
2151 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2152 for Power. For PowerPC, slot 70 was unused and was already in the
2153 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2154 slot 70 was being used for "mq", so the next available slot (71)
2155 was chosen. It would have been nice to be able to make the
2156 register numbers the same across processor cores, but this wasn't
2157 possible without either 1) renumbering some registers for some
2158 processors or 2) assigning fpscr to a really high slot that's
2159 larger than any current register number. Doing (1) is bad because
2160 existing stubs would break. Doing (2) is undesirable because it
2161 would introduce a really large gap between fpscr and the rest of
2162 the registers for most processors. */
7a78ae4e 2163
64366f1c 2164/* Convenience macros for populating register arrays. */
7a78ae4e 2165
64366f1c 2166/* Within another macro, convert S to a string. */
7a78ae4e
ND
2167
2168#define STR(s) #s
2169
2170/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2171 and 64 bits on 64-bit systems. */
489461e2 2172#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2173
2174/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2175 systems. */
489461e2 2176#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2177
2178/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2179 systems. */
489461e2 2180#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2181
1fcc0bb8 2182/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2183 systems. */
489461e2 2184#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2185
64366f1c 2186/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2187#define F(name) { STR(name), 8, 8, 1, 0 }
2188
64366f1c 2189/* Return a struct reg defining a pseudo register NAME. */
489461e2 2190#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2191
2192/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2193 systems and that doesn't exist on 64-bit systems. */
489461e2 2194#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2195
2196/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2197 systems and that doesn't exist on 32-bit systems. */
489461e2 2198#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2199
64366f1c 2200/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2201#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2202
2203/* UISA registers common across all architectures, including POWER. */
2204
2205#define COMMON_UISA_REGS \
2206 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2207 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2208 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2209 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2210 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2211 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2212 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2213 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2214 /* 64 */ R(pc), R(ps)
2215
ebeac11a
EZ
2216#define COMMON_UISA_NOFP_REGS \
2217 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2218 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2219 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2220 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2221 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2222 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2223 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2224 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2225 /* 64 */ R(pc), R(ps)
2226
7a78ae4e
ND
2227/* UISA-level SPRs for PowerPC. */
2228#define PPC_UISA_SPRS \
e3f36dbd 2229 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2230
c8001721
EZ
2231/* UISA-level SPRs for PowerPC without floating point support. */
2232#define PPC_UISA_NOFP_SPRS \
2233 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2234
7a78ae4e
ND
2235/* Segment registers, for PowerPC. */
2236#define PPC_SEGMENT_REGS \
2237 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2238 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2239 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2240 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2241
2242/* OEA SPRs for PowerPC. */
2243#define PPC_OEA_SPRS \
2244 /* 87 */ R4(pvr), \
2245 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2246 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2247 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2248 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2249 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2250 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2251 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2252 /* 116 */ R4(dec), R(dabr), R4(ear)
2253
64366f1c 2254/* AltiVec registers. */
1fcc0bb8
EZ
2255#define PPC_ALTIVEC_REGS \
2256 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2257 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2258 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2259 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2260 /*151*/R4(vscr), R4(vrsave)
2261
c8001721
EZ
2262/* Vectors of hi-lo general purpose registers. */
2263#define PPC_EV_REGS \
2264 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2265 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2266 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2267 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2268
2269/* Lower half of the EV registers. */
2270#define PPC_GPRS_PSEUDO_REGS \
2271 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2272 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2273 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2274 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2275
7a78ae4e 2276/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2277 user-level SPR's. */
7a78ae4e 2278static const struct reg registers_power[] =
c906108c 2279{
7a78ae4e 2280 COMMON_UISA_REGS,
e3f36dbd
KB
2281 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2282 /* 71 */ R4(fpscr)
c906108c
SS
2283};
2284
7a78ae4e 2285/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2286 view of the PowerPC. */
7a78ae4e 2287static const struct reg registers_powerpc[] =
c906108c 2288{
7a78ae4e 2289 COMMON_UISA_REGS,
1fcc0bb8
EZ
2290 PPC_UISA_SPRS,
2291 PPC_ALTIVEC_REGS
c906108c
SS
2292};
2293
ebeac11a
EZ
2294/* PowerPC UISA - a PPC processor as viewed by user-level
2295 code, but without floating point registers. */
2296static const struct reg registers_powerpc_nofp[] =
2297{
2298 COMMON_UISA_NOFP_REGS,
2299 PPC_UISA_SPRS
2300};
2301
64366f1c 2302/* IBM PowerPC 403. */
7a78ae4e 2303static const struct reg registers_403[] =
c5aa993b 2304{
7a78ae4e
ND
2305 COMMON_UISA_REGS,
2306 PPC_UISA_SPRS,
2307 PPC_SEGMENT_REGS,
2308 PPC_OEA_SPRS,
2309 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2310 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2311 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2312 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2313 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2314 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2315};
2316
64366f1c 2317/* IBM PowerPC 403GC. */
7a78ae4e 2318static const struct reg registers_403GC[] =
c5aa993b 2319{
7a78ae4e
ND
2320 COMMON_UISA_REGS,
2321 PPC_UISA_SPRS,
2322 PPC_SEGMENT_REGS,
2323 PPC_OEA_SPRS,
2324 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2325 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2326 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2327 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2328 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2329 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2330 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2331 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2332};
2333
64366f1c 2334/* Motorola PowerPC 505. */
7a78ae4e 2335static const struct reg registers_505[] =
c5aa993b 2336{
7a78ae4e
ND
2337 COMMON_UISA_REGS,
2338 PPC_UISA_SPRS,
2339 PPC_SEGMENT_REGS,
2340 PPC_OEA_SPRS,
2341 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2342};
2343
64366f1c 2344/* Motorola PowerPC 860 or 850. */
7a78ae4e 2345static const struct reg registers_860[] =
c5aa993b 2346{
7a78ae4e
ND
2347 COMMON_UISA_REGS,
2348 PPC_UISA_SPRS,
2349 PPC_SEGMENT_REGS,
2350 PPC_OEA_SPRS,
2351 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2352 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2353 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2354 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2355 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2356 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2357 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2358 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2359 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2360 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2361 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2362 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2363};
2364
7a78ae4e
ND
2365/* Motorola PowerPC 601. Note that the 601 has different register numbers
2366 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2367 register is the stub's problem. */
7a78ae4e 2368static const struct reg registers_601[] =
c5aa993b 2369{
7a78ae4e
ND
2370 COMMON_UISA_REGS,
2371 PPC_UISA_SPRS,
2372 PPC_SEGMENT_REGS,
2373 PPC_OEA_SPRS,
2374 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2375 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2376};
2377
64366f1c 2378/* Motorola PowerPC 602. */
7a78ae4e 2379static const struct reg registers_602[] =
c5aa993b 2380{
7a78ae4e
ND
2381 COMMON_UISA_REGS,
2382 PPC_UISA_SPRS,
2383 PPC_SEGMENT_REGS,
2384 PPC_OEA_SPRS,
2385 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2386 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2387 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2388};
2389
64366f1c 2390/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2391static const struct reg registers_603[] =
c5aa993b 2392{
7a78ae4e
ND
2393 COMMON_UISA_REGS,
2394 PPC_UISA_SPRS,
2395 PPC_SEGMENT_REGS,
2396 PPC_OEA_SPRS,
2397 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2398 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2399 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2400};
2401
64366f1c 2402/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2403static const struct reg registers_604[] =
c5aa993b 2404{
7a78ae4e
ND
2405 COMMON_UISA_REGS,
2406 PPC_UISA_SPRS,
2407 PPC_SEGMENT_REGS,
2408 PPC_OEA_SPRS,
2409 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2410 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2411 /* 127 */ R(sia), R(sda)
c906108c
SS
2412};
2413
64366f1c 2414/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2415static const struct reg registers_750[] =
c5aa993b 2416{
7a78ae4e
ND
2417 COMMON_UISA_REGS,
2418 PPC_UISA_SPRS,
2419 PPC_SEGMENT_REGS,
2420 PPC_OEA_SPRS,
2421 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2422 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2423 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2424 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2425 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2426 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2427};
2428
2429
64366f1c 2430/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2431static const struct reg registers_7400[] =
2432{
2433 /* gpr0-gpr31, fpr0-fpr31 */
2434 COMMON_UISA_REGS,
2435 /* ctr, xre, lr, cr */
2436 PPC_UISA_SPRS,
2437 /* sr0-sr15 */
2438 PPC_SEGMENT_REGS,
2439 PPC_OEA_SPRS,
2440 /* vr0-vr31, vrsave, vscr */
2441 PPC_ALTIVEC_REGS
2442 /* FIXME? Add more registers? */
2443};
2444
c8001721
EZ
2445/* Motorola e500. */
2446static const struct reg registers_e500[] =
2447{
2448 R(pc), R(ps),
2449 /* cr, lr, ctr, xer, "" */
2450 PPC_UISA_NOFP_SPRS,
2451 /* 7...38 */
2452 PPC_EV_REGS,
2453 /* 39...70 */
2454 PPC_GPRS_PSEUDO_REGS
2455};
2456
c906108c 2457/* Information about a particular processor variant. */
7a78ae4e 2458
c906108c 2459struct variant
c5aa993b
JM
2460 {
2461 /* Name of this variant. */
2462 char *name;
c906108c 2463
c5aa993b
JM
2464 /* English description of the variant. */
2465 char *description;
c906108c 2466
64366f1c 2467 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2468 enum bfd_architecture arch;
2469
64366f1c 2470 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2471 unsigned long mach;
2472
489461e2
EZ
2473 /* Number of real registers. */
2474 int nregs;
2475
2476 /* Number of pseudo registers. */
2477 int npregs;
2478
2479 /* Number of total registers (the sum of nregs and npregs). */
2480 int num_tot_regs;
2481
c5aa993b
JM
2482 /* Table of register names; registers[R] is the name of the register
2483 number R. */
7a78ae4e 2484 const struct reg *regs;
c5aa993b 2485 };
c906108c 2486
489461e2
EZ
2487#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2488
2489static int
2490num_registers (const struct reg *reg_list, int num_tot_regs)
2491{
2492 int i;
2493 int nregs = 0;
2494
2495 for (i = 0; i < num_tot_regs; i++)
2496 if (!reg_list[i].pseudo)
2497 nregs++;
2498
2499 return nregs;
2500}
2501
2502static int
2503num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2504{
2505 int i;
2506 int npregs = 0;
2507
2508 for (i = 0; i < num_tot_regs; i++)
2509 if (reg_list[i].pseudo)
2510 npregs ++;
2511
2512 return npregs;
2513}
c906108c 2514
c906108c
SS
2515/* Information in this table comes from the following web sites:
2516 IBM: http://www.chips.ibm.com:80/products/embedded/
2517 Motorola: http://www.mot.com/SPS/PowerPC/
2518
2519 I'm sure I've got some of the variant descriptions not quite right.
2520 Please report any inaccuracies you find to GDB's maintainer.
2521
2522 If you add entries to this table, please be sure to allow the new
2523 value as an argument to the --with-cpu flag, in configure.in. */
2524
489461e2 2525static struct variant variants[] =
c906108c 2526{
489461e2 2527
7a78ae4e 2528 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2529 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2530 registers_powerpc},
7a78ae4e 2531 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2532 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2533 registers_power},
7a78ae4e 2534 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2535 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2536 registers_403},
7a78ae4e 2537 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2538 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2539 registers_601},
7a78ae4e 2540 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2541 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2542 registers_602},
7a78ae4e 2543 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2544 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2545 registers_603},
7a78ae4e 2546 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2547 604, -1, -1, tot_num_registers (registers_604),
2548 registers_604},
7a78ae4e 2549 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2550 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2551 registers_403GC},
7a78ae4e 2552 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2553 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2554 registers_505},
7a78ae4e 2555 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2556 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2557 registers_860},
7a78ae4e 2558 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2559 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2560 registers_750},
1fcc0bb8 2561 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2562 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2563 registers_7400},
c8001721
EZ
2564 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2565 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2566 registers_e500},
7a78ae4e 2567
5d57ee30
KB
2568 /* 64-bit */
2569 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2570 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2571 registers_powerpc},
7a78ae4e 2572 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2573 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2574 registers_powerpc},
5d57ee30 2575 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2576 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2577 registers_powerpc},
7a78ae4e 2578 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2579 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2580 registers_powerpc},
5d57ee30 2581 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2582 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2583 registers_powerpc},
5d57ee30 2584 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2585 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2586 registers_powerpc},
5d57ee30 2587
64366f1c 2588 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2589 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2590 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2591 registers_power},
7a78ae4e 2592 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2593 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2594 registers_power},
7a78ae4e 2595 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2596 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2597 registers_power},
7a78ae4e 2598
489461e2 2599 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2600};
2601
64366f1c 2602/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2603
2604static void
2605init_variants (void)
2606{
2607 struct variant *v;
2608
2609 for (v = variants; v->name; v++)
2610 {
2611 if (v->nregs == -1)
2612 v->nregs = num_registers (v->regs, v->num_tot_regs);
2613 if (v->npregs == -1)
2614 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2615 }
2616}
c906108c 2617
7a78ae4e 2618/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2619 MACH. If no such variant exists, return null. */
c906108c 2620
7a78ae4e
ND
2621static const struct variant *
2622find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2623{
7a78ae4e 2624 const struct variant *v;
c5aa993b 2625
7a78ae4e
ND
2626 for (v = variants; v->name; v++)
2627 if (arch == v->arch && mach == v->mach)
2628 return v;
c906108c 2629
7a78ae4e 2630 return NULL;
c906108c 2631}
9364a0ef
EZ
2632
2633static int
2634gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2635{
2636 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2637 return print_insn_big_powerpc (memaddr, info);
2638 else
2639 return print_insn_little_powerpc (memaddr, info);
2640}
7a78ae4e 2641\f
7a78ae4e
ND
2642/* Initialize the current architecture based on INFO. If possible, re-use an
2643 architecture from ARCHES, which is a list of architectures already created
2644 during this debugging session.
c906108c 2645
7a78ae4e 2646 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2647 a binary file. */
c906108c 2648
7a78ae4e
ND
2649static struct gdbarch *
2650rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2651{
2652 struct gdbarch *gdbarch;
2653 struct gdbarch_tdep *tdep;
9aa1e687 2654 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2655 struct reg *regs;
2656 const struct variant *v;
2657 enum bfd_architecture arch;
2658 unsigned long mach;
2659 bfd abfd;
7b112f9c 2660 int sysv_abi;
5bf1c677 2661 asection *sect;
7a78ae4e 2662
9aa1e687 2663 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2664 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2665
9aa1e687
KB
2666 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2667 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2668
2669 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2670
e712c1cf 2671 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2672 that, else choose a likely default. */
9aa1e687 2673 if (from_xcoff_exec)
c906108c 2674 {
11ed25ac 2675 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2676 wordsize = 8;
2677 else
2678 wordsize = 4;
c906108c 2679 }
9aa1e687
KB
2680 else if (from_elf_exec)
2681 {
2682 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2683 wordsize = 8;
2684 else
2685 wordsize = 4;
2686 }
c906108c 2687 else
7a78ae4e 2688 {
27b15785
KB
2689 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2690 wordsize = info.bfd_arch_info->bits_per_word /
2691 info.bfd_arch_info->bits_per_byte;
2692 else
2693 wordsize = 4;
7a78ae4e 2694 }
c906108c 2695
64366f1c 2696 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2697 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2698 arches != NULL;
2699 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2700 {
2701 /* Word size in the various PowerPC bfd_arch_info structs isn't
2702 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2703 separate word size check. */
7a78ae4e 2704 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2705 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2706 return arches->gdbarch;
2707 }
c906108c 2708
7a78ae4e
ND
2709 /* None found, create a new architecture from INFO, whose bfd_arch_info
2710 validity depends on the source:
2711 - executable useless
2712 - rs6000_host_arch() good
2713 - core file good
2714 - "set arch" trust blindly
2715 - GDB startup useless but harmless */
c906108c 2716
9aa1e687 2717 if (!from_xcoff_exec)
c906108c 2718 {
b732d07d 2719 arch = info.bfd_arch_info->arch;
7a78ae4e 2720 mach = info.bfd_arch_info->mach;
c906108c 2721 }
7a78ae4e 2722 else
c906108c 2723 {
7a78ae4e
ND
2724 arch = bfd_arch_powerpc;
2725 mach = 0;
2726 bfd_default_set_arch_mach (&abfd, arch, mach);
2727 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2728 }
2729 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2730 tdep->wordsize = wordsize;
5bf1c677
EZ
2731
2732 /* For e500 executables, the apuinfo section is of help here. Such
2733 section contains the identifier and revision number of each
2734 Application-specific Processing Unit that is present on the
2735 chip. The content of the section is determined by the assembler
2736 which looks at each instruction and determines which unit (and
2737 which version of it) can execute it. In our case we just look for
2738 the existance of the section. */
2739
2740 if (info.abfd)
2741 {
2742 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2743 if (sect)
2744 {
2745 arch = info.bfd_arch_info->arch;
2746 mach = bfd_mach_ppc_e500;
2747 bfd_default_set_arch_mach (&abfd, arch, mach);
2748 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2749 }
2750 }
2751
7a78ae4e
ND
2752 gdbarch = gdbarch_alloc (&info, tdep);
2753 power = arch == bfd_arch_rs6000;
2754
489461e2
EZ
2755 /* Initialize the number of real and pseudo registers in each variant. */
2756 init_variants ();
2757
64366f1c 2758 /* Choose variant. */
7a78ae4e
ND
2759 v = find_variant_by_arch (arch, mach);
2760 if (!v)
dd47e6fd
EZ
2761 return NULL;
2762
7a78ae4e
ND
2763 tdep->regs = v->regs;
2764
2188cbdd
EZ
2765 tdep->ppc_gp0_regnum = 0;
2766 tdep->ppc_gplast_regnum = 31;
2767 tdep->ppc_toc_regnum = 2;
2768 tdep->ppc_ps_regnum = 65;
2769 tdep->ppc_cr_regnum = 66;
2770 tdep->ppc_lr_regnum = 67;
2771 tdep->ppc_ctr_regnum = 68;
2772 tdep->ppc_xer_regnum = 69;
2773 if (v->mach == bfd_mach_ppc_601)
2774 tdep->ppc_mq_regnum = 124;
e3f36dbd 2775 else if (power)
2188cbdd 2776 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2777 else
2778 tdep->ppc_mq_regnum = -1;
2779 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2780
c8001721
EZ
2781 set_gdbarch_pc_regnum (gdbarch, 64);
2782 set_gdbarch_sp_regnum (gdbarch, 1);
2783 set_gdbarch_fp_regnum (gdbarch, 1);
96ff0de4
EZ
2784 set_gdbarch_deprecated_extract_return_value (gdbarch,
2785 rs6000_extract_return_value);
46d79c04 2786 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
c8001721 2787
1fcc0bb8
EZ
2788 if (v->arch == bfd_arch_powerpc)
2789 switch (v->mach)
2790 {
2791 case bfd_mach_ppc:
2792 tdep->ppc_vr0_regnum = 71;
2793 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2794 tdep->ppc_ev0_regnum = -1;
2795 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2796 break;
2797 case bfd_mach_ppc_7400:
2798 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2799 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2800 tdep->ppc_ev0_regnum = -1;
2801 tdep->ppc_ev31_regnum = -1;
2802 break;
2803 case bfd_mach_ppc_e500:
2804 tdep->ppc_gp0_regnum = 39;
2805 tdep->ppc_gplast_regnum = 70;
2806 tdep->ppc_toc_regnum = -1;
2807 tdep->ppc_ps_regnum = 1;
2808 tdep->ppc_cr_regnum = 2;
2809 tdep->ppc_lr_regnum = 3;
2810 tdep->ppc_ctr_regnum = 4;
2811 tdep->ppc_xer_regnum = 5;
2812 tdep->ppc_ev0_regnum = 7;
2813 tdep->ppc_ev31_regnum = 38;
2814 set_gdbarch_pc_regnum (gdbarch, 0);
2815 set_gdbarch_sp_regnum (gdbarch, 40);
2816 set_gdbarch_fp_regnum (gdbarch, 40);
2817 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2818 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2819 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
96ff0de4 2820 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
46d79c04 2821 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
1fcc0bb8
EZ
2822 break;
2823 default:
2824 tdep->ppc_vr0_regnum = -1;
2825 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2826 tdep->ppc_ev0_regnum = -1;
2827 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2828 break;
2829 }
2830
a88376a3
KB
2831 /* Set lr_frame_offset. */
2832 if (wordsize == 8)
2833 tdep->lr_frame_offset = 16;
2834 else if (sysv_abi)
2835 tdep->lr_frame_offset = 4;
2836 else
2837 tdep->lr_frame_offset = 8;
2838
2839 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2840 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2841 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2842 {
2843 tdep->regoff[i] = off;
2844 off += regsize (v->regs + i, wordsize);
c906108c
SS
2845 }
2846
56a6dfb9
KB
2847 /* Select instruction printer. */
2848 if (arch == power)
9364a0ef 2849 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2850 else
9364a0ef 2851 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2852
7a78ae4e
ND
2853 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2854 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2855 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
7a78ae4e
ND
2856 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2857 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2858
2859 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2860 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e
ND
2861 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2862 set_gdbarch_register_size (gdbarch, wordsize);
2863 set_gdbarch_register_bytes (gdbarch, off);
2864 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2865 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2a873819 2866 set_gdbarch_max_register_raw_size (gdbarch, 16);
b2e75d78 2867 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2a873819 2868 set_gdbarch_max_register_virtual_size (gdbarch, 16);
7a78ae4e
ND
2869 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2870
2871 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2872 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2873 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2874 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2875 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2876 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2877 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2878 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2879 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2880
7a78ae4e 2881 set_gdbarch_call_dummy_length (gdbarch, 0);
7a78ae4e
ND
2882 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2883 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2884 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2885 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
7a78ae4e
ND
2886 set_gdbarch_call_dummy_p (gdbarch, 1);
2887 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
7a78ae4e 2888 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
11269d7e 2889 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
7a78ae4e 2890 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
58223630 2891 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e
ND
2892 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2893 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e
ND
2894
2895 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2896 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2897 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2898 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2899 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2900 is correct for the SysV ABI when the wordsize is 8, but I'm also
2901 fairly certain that ppc_sysv_abi_push_arguments() will give even
2902 worse results since it only works for 32-bit code. So, for the moment,
2903 we're better off calling rs6000_push_arguments() since it works for
2904 64-bit code. At some point in the future, this matter needs to be
2905 revisited. */
2906 if (sysv_abi && wordsize == 4)
9aa1e687
KB
2907 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2908 else
2909 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e 2910
d0403e00 2911 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
11269d7e 2912 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
2913 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2914
2915 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2916 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2917 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2918 set_gdbarch_function_start_offset (gdbarch, 0);
2919 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2920
2921 /* Not sure on this. FIXMEmgo */
2922 set_gdbarch_frame_args_skip (gdbarch, 8);
2923
8e0662df 2924 if (sysv_abi)
7b112f9c
JT
2925 set_gdbarch_use_struct_convention (gdbarch,
2926 ppc_sysv_abi_use_struct_convention);
8e0662df 2927 else
7b112f9c
JT
2928 set_gdbarch_use_struct_convention (gdbarch,
2929 generic_use_struct_convention);
8e0662df 2930
7b112f9c
JT
2931 set_gdbarch_frameless_function_invocation (gdbarch,
2932 rs6000_frameless_function_invocation);
2933 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2934 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2935
2936 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2937 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2938
15813d3f
AC
2939 if (!sysv_abi)
2940 {
2941 /* Handle RS/6000 function pointers (which are really function
2942 descriptors). */
f517ea4e
PS
2943 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2944 rs6000_convert_from_func_ptr_addr);
9aa1e687 2945 }
7a78ae4e
ND
2946 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2947 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2948 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2949
2950 /* We can't tell how many args there are
2951 now that the C compiler delays popping them. */
2952 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2953
7b112f9c 2954 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2955 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2956
7a78ae4e 2957 return gdbarch;
c906108c
SS
2958}
2959
7b112f9c
JT
2960static void
2961rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2962{
2963 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2964
2965 if (tdep == NULL)
2966 return;
2967
4be87837 2968 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2969}
2970
1fcc0bb8
EZ
2971static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2972
2973static void
2974rs6000_info_powerpc_command (char *args, int from_tty)
2975{
2976 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2977}
2978
c906108c
SS
2979/* Initialization code. */
2980
2981void
fba45db2 2982_initialize_rs6000_tdep (void)
c906108c 2983{
7b112f9c
JT
2984 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2985 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2986
2987 /* Add root prefix command for "info powerpc" commands */
2988 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2989 "Various POWERPC info specific commands.",
2990 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2991}
This page took 0.440931 seconds and 4 git commands to generate.