RS6000 Add support to print vector register contents as float128
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
3666a048 3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include "symtab.h"
25#include "target.h"
26#include "gdbcore.h"
27#include "gdbcmd.h"
c906108c 28#include "objfiles.h"
7a78ae4e 29#include "arch-utils.h"
4e052eda 30#include "regcache.h"
d195bc9f 31#include "regset.h"
3b2ca824 32#include "target-float.h"
fd0407d6 33#include "value.h"
1fcc0bb8 34#include "parser-defs.h"
4be87837 35#include "osabi.h"
7d9b040b 36#include "infcall.h"
9f643768
JB
37#include "sim-regno.h"
38#include "gdb/sim-ppc.h"
6f072a10 39#include "reggroups.h"
82ca8957 40#include "dwarf2/frame.h"
7cc46491
DJ
41#include "target-descriptions.h"
42#include "user-regs.h"
b4cdae6f
WW
43#include "record-full.h"
44#include "auxv.h"
7a78ae4e 45
7a78ae4e 46#include "coff/internal.h" /* for libcoff.h */
2fccf04a 47#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
48#include "coff/xcoff.h"
49#include "libxcoff.h"
7a78ae4e 50
9aa1e687 51#include "elf-bfd.h"
55eddb0f 52#include "elf/ppc.h"
cd453cd0 53#include "elf/ppc64.h"
7a78ae4e 54
6ded7999 55#include "solib-svr4.h"
9aa1e687 56#include "ppc-tdep.h"
debb1f09 57#include "ppc-ravenscar-thread.h"
7a78ae4e 58
a89aa300 59#include "dis-asm.h"
338ef23d 60
61a65099
KB
61#include "trad-frame.h"
62#include "frame-unwind.h"
63#include "frame-base.h"
64
a67914de
MK
65#include "ax.h"
66#include "ax-gdb.h"
325fac50 67#include <algorithm>
a67914de 68
7cc46491 69#include "features/rs6000/powerpc-32.c"
7284e1be 70#include "features/rs6000/powerpc-altivec32.c"
604c2f83 71#include "features/rs6000/powerpc-vsx32.c"
7cc46491
DJ
72#include "features/rs6000/powerpc-403.c"
73#include "features/rs6000/powerpc-403gc.c"
4d09ffea 74#include "features/rs6000/powerpc-405.c"
7cc46491
DJ
75#include "features/rs6000/powerpc-505.c"
76#include "features/rs6000/powerpc-601.c"
77#include "features/rs6000/powerpc-602.c"
78#include "features/rs6000/powerpc-603.c"
79#include "features/rs6000/powerpc-604.c"
80#include "features/rs6000/powerpc-64.c"
7284e1be 81#include "features/rs6000/powerpc-altivec64.c"
604c2f83 82#include "features/rs6000/powerpc-vsx64.c"
7cc46491
DJ
83#include "features/rs6000/powerpc-7400.c"
84#include "features/rs6000/powerpc-750.c"
85#include "features/rs6000/powerpc-860.c"
86#include "features/rs6000/powerpc-e500.c"
87#include "features/rs6000/rs6000.c"
88
5a9e69ba
TJB
89/* Determine if regnum is an SPE pseudo-register. */
90#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
f949c649
TJB
94/* Determine if regnum is a decimal float pseudo-register. */
95#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
6f072a10
PFC
99/* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101#define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
604c2f83
LM
106/* Determine if regnum is a POWER7 VSX register. */
107#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111/* Determine if regnum is a POWER7 Extended FP register. */
112#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
d9492458 114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
604c2f83 115
8d619c01
EBM
116/* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118#define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122/* Determine if regnum is a Checkpointed POWER7 VSX register. */
123#define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127/* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128#define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
65b48a81
PB
132/* Holds the current set of options to be passed to the disassembler. */
133static char *powerpc_disassembler_options;
134
55eddb0f
DJ
135/* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137static struct cmd_list_element *setpowerpccmdlist = NULL;
138static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
40478521 143static const char *const powerpc_vector_strings[] =
55eddb0f
DJ
144{
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150};
151
152/* A variable that can be configured by the user. */
153static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154static const char *powerpc_vector_abi_string = "auto";
155
187b041e
SM
156/* PowerPC-related per-inferior data. */
157
158struct ppc_inferior_data
159{
160 /* This is an optional in case we add more fields to ppc_inferior_data, we
161 don't want it instantiated as soon as we get the ppc_inferior_data for an
162 inferior. */
480af54c 163 gdb::optional<displaced_step_buffers> disp_step_buf;
187b041e
SM
164};
165
166static inferior_key<ppc_inferior_data> ppc_inferior_data_key;
167
168/* Get the per-inferior PowerPC data for INF. */
169
170static ppc_inferior_data *
171get_ppc_per_inferior (inferior *inf)
172{
173 ppc_inferior_data *per_inf = ppc_inferior_data_key.get (inf);
174
175 if (per_inf == nullptr)
176 per_inf = ppc_inferior_data_key.emplace (inf);
177
178 return per_inf;
179}
180
0df8b418 181/* To be used by skip_prologue. */
7a78ae4e
ND
182
183struct rs6000_framedata
184 {
185 int offset; /* total size of frame --- the distance
186 by which we decrement sp to allocate
187 the frame */
188 int saved_gpr; /* smallest # of saved gpr */
46a9b8ed 189 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
7a78ae4e 190 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 191 int saved_vr; /* smallest # of saved vr */
96ff0de4 192 int saved_ev; /* smallest # of saved ev */
7a78ae4e 193 int alloca_reg; /* alloca register number (frame ptr) */
0df8b418
MS
194 char frameless; /* true if frameless functions. */
195 char nosavedpc; /* true if pc not saved. */
46a9b8ed 196 char used_bl; /* true if link register clobbered */
7a78ae4e
ND
197 int gpr_offset; /* offset of saved gprs from prev sp */
198 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 199 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 200 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e 201 int lr_offset; /* offset of saved lr */
46a9b8ed 202 int lr_register; /* register of saved lr, if trustworthy */
7a78ae4e 203 int cr_offset; /* offset of saved cr */
6be8bc0c 204 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
205 };
206
c906108c 207
604c2f83
LM
208/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
209int
210vsx_register_p (struct gdbarch *gdbarch, int regno)
211{
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213 if (tdep->ppc_vsr0_regnum < 0)
214 return 0;
215 else
216 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
217 <= tdep->ppc_vsr0_upper_regnum + 31);
218}
219
64b84175
KB
220/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
221int
be8626e0 222altivec_register_p (struct gdbarch *gdbarch, int regno)
64b84175 223{
be8626e0 224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
64b84175
KB
225 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
226 return 0;
227 else
228 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
229}
230
383f0f5b 231
867e2dc5
JB
232/* Return true if REGNO is an SPE register, false otherwise. */
233int
be8626e0 234spe_register_p (struct gdbarch *gdbarch, int regno)
867e2dc5 235{
be8626e0 236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
867e2dc5
JB
237
238 /* Is it a reference to EV0 -- EV31, and do we have those? */
5a9e69ba 239 if (IS_SPE_PSEUDOREG (tdep, regno))
867e2dc5
JB
240 return 1;
241
6ced10dd
JB
242 /* Is it a reference to one of the raw upper GPR halves? */
243 if (tdep->ppc_ev0_upper_regnum >= 0
244 && tdep->ppc_ev0_upper_regnum <= regno
245 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
246 return 1;
247
867e2dc5
JB
248 /* Is it a reference to the 64-bit accumulator, and do we have that? */
249 if (tdep->ppc_acc_regnum >= 0
250 && tdep->ppc_acc_regnum == regno)
251 return 1;
252
253 /* Is it a reference to the SPE floating-point status and control register,
254 and do we have that? */
255 if (tdep->ppc_spefscr_regnum >= 0
256 && tdep->ppc_spefscr_regnum == regno)
257 return 1;
258
259 return 0;
260}
261
262
383f0f5b
JB
263/* Return non-zero if the architecture described by GDBARCH has
264 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
265int
266ppc_floating_point_unit_p (struct gdbarch *gdbarch)
267{
383f0f5b
JB
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 return (tdep->ppc_fp0_regnum >= 0
dda83cd7 271 && tdep->ppc_fpscr_regnum >= 0);
0a613259 272}
9f643768 273
06caf7d2
CES
274/* Return non-zero if the architecture described by GDBARCH has
275 Altivec registers (vr0 --- vr31, vrsave and vscr). */
276int
277ppc_altivec_support_p (struct gdbarch *gdbarch)
278{
279 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
280
281 return (tdep->ppc_vr0_regnum >= 0
dda83cd7 282 && tdep->ppc_vrsave_regnum >= 0);
06caf7d2 283}
09991fa0
JB
284
285/* Check that TABLE[GDB_REGNO] is not already initialized, and then
286 set it to SIM_REGNO.
287
288 This is a helper function for init_sim_regno_table, constructing
289 the table mapping GDB register numbers to sim register numbers; we
290 initialize every element in that table to -1 before we start
291 filling it in. */
9f643768
JB
292static void
293set_sim_regno (int *table, int gdb_regno, int sim_regno)
294{
295 /* Make sure we don't try to assign any given GDB register a sim
296 register number more than once. */
297 gdb_assert (table[gdb_regno] == -1);
298 table[gdb_regno] = sim_regno;
299}
300
09991fa0
JB
301
302/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
303 numbers to simulator register numbers, based on the values placed
304 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
305static void
306init_sim_regno_table (struct gdbarch *arch)
307{
308 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
7cc46491 309 int total_regs = gdbarch_num_regs (arch);
9f643768
JB
310 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
311 int i;
7cc46491
DJ
312 static const char *const segment_regs[] = {
313 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
314 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
315 };
9f643768
JB
316
317 /* Presume that all registers not explicitly mentioned below are
318 unavailable from the sim. */
319 for (i = 0; i < total_regs; i++)
320 sim_regno[i] = -1;
321
322 /* General-purpose registers. */
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
325
326 /* Floating-point registers. */
327 if (tdep->ppc_fp0_regnum >= 0)
328 for (i = 0; i < ppc_num_fprs; i++)
329 set_sim_regno (sim_regno,
dda83cd7
SM
330 tdep->ppc_fp0_regnum + i,
331 sim_ppc_f0_regnum + i);
9f643768
JB
332 if (tdep->ppc_fpscr_regnum >= 0)
333 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
334
335 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
336 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
337 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
338
339 /* Segment registers. */
7cc46491
DJ
340 for (i = 0; i < ppc_num_srs; i++)
341 {
342 int gdb_regno;
343
344 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
345 if (gdb_regno >= 0)
346 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
347 }
9f643768
JB
348
349 /* Altivec registers. */
350 if (tdep->ppc_vr0_regnum >= 0)
351 {
352 for (i = 0; i < ppc_num_vrs; i++)
dda83cd7
SM
353 set_sim_regno (sim_regno,
354 tdep->ppc_vr0_regnum + i,
355 sim_ppc_vr0_regnum + i);
9f643768
JB
356
357 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
dda83cd7 358 we can treat this more like the other cases. */
9f643768 359 set_sim_regno (sim_regno,
dda83cd7
SM
360 tdep->ppc_vr0_regnum + ppc_num_vrs,
361 sim_ppc_vscr_regnum);
9f643768
JB
362 }
363 /* vsave is a special-purpose register, so the code below handles it. */
364
365 /* SPE APU (E500) registers. */
6ced10dd
JB
366 if (tdep->ppc_ev0_upper_regnum >= 0)
367 for (i = 0; i < ppc_num_gprs; i++)
368 set_sim_regno (sim_regno,
dda83cd7
SM
369 tdep->ppc_ev0_upper_regnum + i,
370 sim_ppc_rh0_regnum + i);
9f643768
JB
371 if (tdep->ppc_acc_regnum >= 0)
372 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
373 /* spefscr is a special-purpose register, so the code below handles it. */
374
976102cd 375#ifdef WITH_PPC_SIM
9f643768
JB
376 /* Now handle all special-purpose registers. Verify that they
377 haven't mistakenly been assigned numbers by any of the above
7cc46491
DJ
378 code. */
379 for (i = 0; i < sim_ppc_num_sprs; i++)
380 {
381 const char *spr_name = sim_spr_register_name (i);
382 int gdb_regno = -1;
383
384 if (spr_name != NULL)
385 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
386
387 if (gdb_regno != -1)
388 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
389 }
390#endif
9f643768
JB
391
392 /* Drop the initialized array into place. */
393 tdep->sim_regno = sim_regno;
394}
395
09991fa0
JB
396
397/* Given a GDB register number REG, return the corresponding SIM
398 register number. */
9f643768 399static int
e7faf938 400rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
9f643768 401{
e7faf938 402 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f643768
JB
403 int sim_regno;
404
7cc46491 405 if (tdep->sim_regno == NULL)
e7faf938 406 init_sim_regno_table (gdbarch);
7cc46491 407
f6efe3f8 408 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
9f643768
JB
409 sim_regno = tdep->sim_regno[reg];
410
411 if (sim_regno >= 0)
412 return sim_regno;
413 else
414 return LEGACY_SIM_REGNO_IGNORE;
415}
416
d195bc9f
MK
417\f
418
419/* Register set support functions. */
420
f2db237a
AM
421/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
422 Write the register to REGCACHE. */
423
7284e1be 424void
d195bc9f 425ppc_supply_reg (struct regcache *regcache, int regnum,
f2db237a 426 const gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
427{
428 if (regnum != -1 && offset != -1)
f2db237a
AM
429 {
430 if (regsize > 4)
431 {
ac7936df 432 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
433 int gdb_regsize = register_size (gdbarch, regnum);
434 if (gdb_regsize < regsize
435 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
436 offset += regsize - gdb_regsize;
437 }
73e1c03f 438 regcache->raw_supply (regnum, regs + offset);
f2db237a 439 }
d195bc9f
MK
440}
441
f2db237a
AM
442/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
443 in a field REGSIZE wide. Zero pad as necessary. */
444
7284e1be 445void
d195bc9f 446ppc_collect_reg (const struct regcache *regcache, int regnum,
f2db237a 447 gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
448{
449 if (regnum != -1 && offset != -1)
f2db237a
AM
450 {
451 if (regsize > 4)
452 {
ac7936df 453 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
454 int gdb_regsize = register_size (gdbarch, regnum);
455 if (gdb_regsize < regsize)
456 {
457 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
458 {
459 memset (regs + offset, 0, regsize - gdb_regsize);
460 offset += regsize - gdb_regsize;
461 }
462 else
463 memset (regs + offset + regsize - gdb_regsize, 0,
464 regsize - gdb_regsize);
465 }
466 }
34a79281 467 regcache->raw_collect (regnum, regs + offset);
f2db237a 468 }
d195bc9f
MK
469}
470
f2db237a
AM
471static int
472ppc_greg_offset (struct gdbarch *gdbarch,
473 struct gdbarch_tdep *tdep,
474 const struct ppc_reg_offsets *offsets,
475 int regnum,
476 int *regsize)
477{
478 *regsize = offsets->gpr_size;
479 if (regnum >= tdep->ppc_gp0_regnum
480 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
481 return (offsets->r0_offset
482 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
483
484 if (regnum == gdbarch_pc_regnum (gdbarch))
485 return offsets->pc_offset;
486
487 if (regnum == tdep->ppc_ps_regnum)
488 return offsets->ps_offset;
489
490 if (regnum == tdep->ppc_lr_regnum)
491 return offsets->lr_offset;
492
493 if (regnum == tdep->ppc_ctr_regnum)
494 return offsets->ctr_offset;
495
496 *regsize = offsets->xr_size;
497 if (regnum == tdep->ppc_cr_regnum)
498 return offsets->cr_offset;
499
500 if (regnum == tdep->ppc_xer_regnum)
501 return offsets->xer_offset;
502
503 if (regnum == tdep->ppc_mq_regnum)
504 return offsets->mq_offset;
505
506 return -1;
507}
508
509static int
510ppc_fpreg_offset (struct gdbarch_tdep *tdep,
511 const struct ppc_reg_offsets *offsets,
512 int regnum)
513{
514 if (regnum >= tdep->ppc_fp0_regnum
515 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
516 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
517
518 if (regnum == tdep->ppc_fpscr_regnum)
519 return offsets->fpscr_offset;
520
521 return -1;
522}
523
d195bc9f
MK
524/* Supply register REGNUM in the general-purpose register set REGSET
525 from the buffer specified by GREGS and LEN to register cache
526 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
527
528void
529ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
530 int regnum, const void *gregs, size_t len)
531{
ac7936df 532 struct gdbarch *gdbarch = regcache->arch ();
d195bc9f 533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
534 const struct ppc_reg_offsets *offsets
535 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 536 size_t offset;
f2db237a 537 int regsize;
d195bc9f 538
f2db237a 539 if (regnum == -1)
d195bc9f 540 {
f2db237a
AM
541 int i;
542 int gpr_size = offsets->gpr_size;
543
544 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
545 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
546 i++, offset += gpr_size)
19ba03f4
SM
547 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
548 gpr_size);
f2db237a
AM
549
550 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 551 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 552 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 553 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 554 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 555 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 556 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 557 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 558 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
559 (const gdb_byte *) gregs, offsets->cr_offset,
560 offsets->xr_size);
f2db237a 561 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
562 (const gdb_byte *) gregs, offsets->xer_offset,
563 offsets->xr_size);
f2db237a 564 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
565 (const gdb_byte *) gregs, offsets->mq_offset,
566 offsets->xr_size);
f2db237a 567 return;
d195bc9f
MK
568 }
569
f2db237a 570 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 571 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
572}
573
574/* Supply register REGNUM in the floating-point register set REGSET
575 from the buffer specified by FPREGS and LEN to register cache
576 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
577
578void
579ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
580 int regnum, const void *fpregs, size_t len)
581{
ac7936df 582 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
583 struct gdbarch_tdep *tdep;
584 const struct ppc_reg_offsets *offsets;
d195bc9f 585 size_t offset;
d195bc9f 586
f2db237a
AM
587 if (!ppc_floating_point_unit_p (gdbarch))
588 return;
383f0f5b 589
f2db237a 590 tdep = gdbarch_tdep (gdbarch);
19ba03f4 591 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 592 if (regnum == -1)
d195bc9f 593 {
f2db237a
AM
594 int i;
595
596 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
597 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
598 i++, offset += 8)
19ba03f4 599 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
f2db237a
AM
600
601 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
602 (const gdb_byte *) fpregs, offsets->fpscr_offset,
603 offsets->fpscr_size);
f2db237a 604 return;
d195bc9f
MK
605 }
606
f2db237a 607 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 608 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
f2db237a 609 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
610}
611
612/* Collect register REGNUM in the general-purpose register set
f2db237a 613 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
614 GREGS and LEN. If REGNUM is -1, do this for all registers in
615 REGSET. */
616
617void
618ppc_collect_gregset (const struct regset *regset,
619 const struct regcache *regcache,
620 int regnum, void *gregs, size_t len)
621{
ac7936df 622 struct gdbarch *gdbarch = regcache->arch ();
d195bc9f 623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
624 const struct ppc_reg_offsets *offsets
625 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 626 size_t offset;
f2db237a 627 int regsize;
d195bc9f 628
f2db237a 629 if (regnum == -1)
d195bc9f 630 {
f2db237a
AM
631 int i;
632 int gpr_size = offsets->gpr_size;
633
634 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
635 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
636 i++, offset += gpr_size)
19ba03f4 637 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
f2db237a
AM
638
639 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 640 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 641 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 642 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 643 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 644 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 645 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 646 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 647 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
648 (gdb_byte *) gregs, offsets->cr_offset,
649 offsets->xr_size);
f2db237a 650 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
651 (gdb_byte *) gregs, offsets->xer_offset,
652 offsets->xr_size);
f2db237a 653 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
654 (gdb_byte *) gregs, offsets->mq_offset,
655 offsets->xr_size);
f2db237a 656 return;
d195bc9f
MK
657 }
658
f2db237a 659 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 660 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
661}
662
663/* Collect register REGNUM in the floating-point register set
f2db237a 664 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
665 FPREGS and LEN. If REGNUM is -1, do this for all registers in
666 REGSET. */
667
668void
669ppc_collect_fpregset (const struct regset *regset,
670 const struct regcache *regcache,
671 int regnum, void *fpregs, size_t len)
672{
ac7936df 673 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
674 struct gdbarch_tdep *tdep;
675 const struct ppc_reg_offsets *offsets;
d195bc9f 676 size_t offset;
d195bc9f 677
f2db237a
AM
678 if (!ppc_floating_point_unit_p (gdbarch))
679 return;
383f0f5b 680
f2db237a 681 tdep = gdbarch_tdep (gdbarch);
19ba03f4 682 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 683 if (regnum == -1)
d195bc9f 684 {
f2db237a
AM
685 int i;
686
687 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
688 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
689 i++, offset += 8)
19ba03f4 690 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
f2db237a
AM
691
692 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
693 (gdb_byte *) fpregs, offsets->fpscr_offset,
694 offsets->fpscr_size);
f2db237a 695 return;
d195bc9f
MK
696 }
697
f2db237a 698 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 699 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
f2db237a 700 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f 701}
06caf7d2 702
0d1243d9
PG
703static int
704insn_changes_sp_or_jumps (unsigned long insn)
705{
706 int opcode = (insn >> 26) & 0x03f;
707 int sd = (insn >> 21) & 0x01f;
708 int a = (insn >> 16) & 0x01f;
709 int subcode = (insn >> 1) & 0x3ff;
710
711 /* Changes the stack pointer. */
712
713 /* NOTE: There are many ways to change the value of a given register.
dda83cd7
SM
714 The ways below are those used when the register is R1, the SP,
715 in a funtion's epilogue. */
0d1243d9
PG
716
717 if (opcode == 31 && subcode == 444 && a == 1)
718 return 1; /* mr R1,Rn */
719 if (opcode == 14 && sd == 1)
720 return 1; /* addi R1,Rn,simm */
721 if (opcode == 58 && sd == 1)
722 return 1; /* ld R1,ds(Rn) */
723
724 /* Transfers control. */
725
726 if (opcode == 18)
727 return 1; /* b */
728 if (opcode == 16)
729 return 1; /* bc */
730 if (opcode == 19 && subcode == 16)
731 return 1; /* bclr */
732 if (opcode == 19 && subcode == 528)
733 return 1; /* bcctr */
734
735 return 0;
736}
737
738/* Return true if we are in the function's epilogue, i.e. after the
739 instruction that destroyed the function's stack frame.
740
741 1) scan forward from the point of execution:
742 a) If you find an instruction that modifies the stack pointer
dda83cd7
SM
743 or transfers control (except a return), execution is not in
744 an epilogue, return.
0d1243d9 745 b) Stop scanning if you find a return instruction or reach the
dda83cd7
SM
746 end of the function or reach the hard limit for the size of
747 an epilogue.
0d1243d9 748 2) scan backward from the point of execution:
dda83cd7
SM
749 a) If you find an instruction that modifies the stack pointer,
750 execution *is* in an epilogue, return.
751 b) Stop scanning if you reach an instruction that transfers
752 control or the beginning of the function or reach the hard
753 limit for the size of an epilogue. */
0d1243d9
PG
754
755static int
2608dbf8
WW
756rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
757 struct gdbarch *gdbarch, CORE_ADDR pc)
0d1243d9 758{
46a9b8ed 759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0d1243d9
PG
761 bfd_byte insn_buf[PPC_INSN_SIZE];
762 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
763 unsigned long insn;
0d1243d9
PG
764
765 /* Find the search limits based on function boundaries and hard limit. */
766
767 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
768 return 0;
769
770 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
771 if (epilogue_start < func_start) epilogue_start = func_start;
772
773 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
774 if (epilogue_end > func_end) epilogue_end = func_end;
775
0d1243d9
PG
776 /* Scan forward until next 'blr'. */
777
778 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
779 {
bdec2917
LM
780 if (!safe_frame_unwind_memory (curfrm, scan_pc,
781 {insn_buf, PPC_INSN_SIZE}))
dda83cd7 782 return 0;
e17a4113 783 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9 784 if (insn == 0x4e800020)
dda83cd7 785 break;
46a9b8ed
DJ
786 /* Assume a bctr is a tail call unless it points strictly within
787 this function. */
788 if (insn == 0x4e800420)
789 {
790 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
791 tdep->ppc_ctr_regnum);
792 if (ctr > func_start && ctr < func_end)
793 return 0;
794 else
795 break;
796 }
0d1243d9 797 if (insn_changes_sp_or_jumps (insn))
dda83cd7 798 return 0;
0d1243d9
PG
799 }
800
801 /* Scan backward until adjustment to stack pointer (R1). */
802
803 for (scan_pc = pc - PPC_INSN_SIZE;
804 scan_pc >= epilogue_start;
805 scan_pc -= PPC_INSN_SIZE)
806 {
bdec2917
LM
807 if (!safe_frame_unwind_memory (curfrm, scan_pc,
808 {insn_buf, PPC_INSN_SIZE}))
dda83cd7 809 return 0;
e17a4113 810 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9 811 if (insn_changes_sp_or_jumps (insn))
dda83cd7 812 return 1;
0d1243d9
PG
813 }
814
815 return 0;
816}
817
c9cf6e20 818/* Implement the stack_frame_destroyed_p gdbarch method. */
2608dbf8
WW
819
820static int
c9cf6e20 821rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2608dbf8
WW
822{
823 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
824 gdbarch, pc);
825}
826
143985b7 827/* Get the ith function argument for the current function. */
b9362cc7 828static CORE_ADDR
143985b7
AF
829rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
830 struct type *type)
831{
50fd1280 832 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
833}
834
c906108c
SS
835/* Sequence of bytes for breakpoint instruction. */
836
04180708
YQ
837constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
838constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
d19280ad 839
04180708
YQ
840typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
841 rs6000_breakpoint;
c906108c 842
f74c6cad
LM
843/* Instruction masks for displaced stepping. */
844#define BRANCH_MASK 0xfc000000
845#define BP_MASK 0xFC0007FE
846#define B_INSN 0x48000000
847#define BC_INSN 0x40000000
848#define BXL_INSN 0x4c000000
849#define BP_INSN 0x7C000008
850
7f03bd92
PA
851/* Instruction masks used during single-stepping of atomic
852 sequences. */
2039d74e 853#define LOAD_AND_RESERVE_MASK 0xfc0007fe
7f03bd92
PA
854#define LWARX_INSTRUCTION 0x7c000028
855#define LDARX_INSTRUCTION 0x7c0000A8
2039d74e
EBM
856#define LBARX_INSTRUCTION 0x7c000068
857#define LHARX_INSTRUCTION 0x7c0000e8
858#define LQARX_INSTRUCTION 0x7c000228
859#define STORE_CONDITIONAL_MASK 0xfc0007ff
7f03bd92
PA
860#define STWCX_INSTRUCTION 0x7c00012d
861#define STDCX_INSTRUCTION 0x7c0001ad
2039d74e
EBM
862#define STBCX_INSTRUCTION 0x7c00056d
863#define STHCX_INSTRUCTION 0x7c0005ad
864#define STQCX_INSTRUCTION 0x7c00016d
865
866/* Check if insn is one of the Load And Reserve instructions used for atomic
867 sequences. */
868#define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
869 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
870 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
871 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
872 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
873/* Check if insn is one of the Store Conditional instructions used for atomic
874 sequences. */
875#define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
876 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
877 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
878 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
879 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
7f03bd92 880
1152d984
SM
881typedef buf_displaced_step_copy_insn_closure
882 ppc_displaced_step_copy_insn_closure;
cfba9872 883
c2508e90 884/* We can't displaced step atomic sequences. */
7f03bd92 885
1152d984 886static displaced_step_copy_insn_closure_up
7f03bd92
PA
887ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
888 CORE_ADDR from, CORE_ADDR to,
889 struct regcache *regs)
890{
891 size_t len = gdbarch_max_insn_length (gdbarch);
1152d984
SM
892 std::unique_ptr<ppc_displaced_step_copy_insn_closure> closure
893 (new ppc_displaced_step_copy_insn_closure (len));
cfba9872 894 gdb_byte *buf = closure->buf.data ();
7f03bd92
PA
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896 int insn;
897
898 read_memory (from, buf, len);
899
900 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
901
2039d74e
EBM
902 /* Assume all atomic sequences start with a Load and Reserve instruction. */
903 if (IS_LOAD_AND_RESERVE_INSN (insn))
7f03bd92 904 {
136821d9 905 displaced_debug_printf ("can't displaced step atomic sequence at %s",
7f03bd92 906 paddress (gdbarch, from));
cfba9872 907
7f03bd92
PA
908 return NULL;
909 }
910
911 write_memory (to, buf, len);
912
136821d9 913 displaced_debug_printf ("copy %s->%s: %s",
dda83cd7 914 paddress (gdbarch, from), paddress (gdbarch, to),
136821d9 915 displaced_step_dump_bytes (buf, len).c_str ());;
7f03bd92 916
6d0cf446 917 /* This is a work around for a problem with g++ 4.8. */
1152d984 918 return displaced_step_copy_insn_closure_up (closure.release ());
7f03bd92
PA
919}
920
f74c6cad
LM
921/* Fix up the state of registers and memory after having single-stepped
922 a displaced instruction. */
63807e1d 923static void
f74c6cad 924ppc_displaced_step_fixup (struct gdbarch *gdbarch,
1152d984 925 struct displaced_step_copy_insn_closure *closure_,
63807e1d
PA
926 CORE_ADDR from, CORE_ADDR to,
927 struct regcache *regs)
f74c6cad 928{
e17a4113 929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7f03bd92 930 /* Our closure is a copy of the instruction. */
1152d984
SM
931 ppc_displaced_step_copy_insn_closure *closure
932 = (ppc_displaced_step_copy_insn_closure *) closure_;
cfba9872
SM
933 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
934 PPC_INSN_SIZE, byte_order);
f74c6cad
LM
935 ULONGEST opcode = 0;
936 /* Offset for non PC-relative instructions. */
937 LONGEST offset = PPC_INSN_SIZE;
938
939 opcode = insn & BRANCH_MASK;
940
136821d9
SM
941 displaced_debug_printf ("(ppc) fixup (%s, %s)",
942 paddress (gdbarch, from), paddress (gdbarch, to));
f74c6cad
LM
943
944 /* Handle PC-relative branch instructions. */
945 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
946 {
a4fafde3 947 ULONGEST current_pc;
f74c6cad
LM
948
949 /* Read the current PC value after the instruction has been executed
950 in a displaced location. Calculate the offset to be applied to the
951 original PC value before the displaced stepping. */
952 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
953 &current_pc);
954 offset = current_pc - to;
955
956 if (opcode != BXL_INSN)
957 {
958 /* Check for AA bit indicating whether this is an absolute
959 addressing or PC-relative (1: absolute, 0: relative). */
960 if (!(insn & 0x2))
961 {
962 /* PC-relative addressing is being used in the branch. */
136821d9
SM
963 displaced_debug_printf ("(ppc) branch instruction: %s",
964 paddress (gdbarch, insn));
965 displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
966 paddress (gdbarch, current_pc),
967 paddress (gdbarch, from + offset));
f74c6cad 968
0df8b418
MS
969 regcache_cooked_write_unsigned (regs,
970 gdbarch_pc_regnum (gdbarch),
f74c6cad
LM
971 from + offset);
972 }
973 }
974 else
975 {
976 /* If we're here, it means we have a branch to LR or CTR. If the
977 branch was taken, the offset is probably greater than 4 (the next
978 instruction), so it's safe to assume that an offset of 4 means we
979 did not take the branch. */
980 if (offset == PPC_INSN_SIZE)
981 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
982 from + PPC_INSN_SIZE);
983 }
984
985 /* Check for LK bit indicating whether we should set the link
986 register to point to the next instruction
987 (1: Set, 0: Don't set). */
988 if (insn & 0x1)
989 {
990 /* Link register needs to be set to the next instruction's PC. */
991 regcache_cooked_write_unsigned (regs,
992 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
993 from + PPC_INSN_SIZE);
136821d9
SM
994 displaced_debug_printf ("(ppc) adjusted LR to %s",
995 paddress (gdbarch, from + PPC_INSN_SIZE));
f74c6cad
LM
996
997 }
998 }
999 /* Check for breakpoints in the inferior. If we've found one, place the PC
1000 right at the breakpoint instruction. */
1001 else if ((insn & BP_MASK) == BP_INSN)
1002 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1003 else
1004 /* Handle any other instructions that do not fit in the categories above. */
1005 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1006 from + offset);
1007}
c906108c 1008
187b041e
SM
1009/* Implementation of gdbarch_displaced_step_prepare. */
1010
1011static displaced_step_prepare_status
1012ppc_displaced_step_prepare (gdbarch *arch, thread_info *thread,
1013 CORE_ADDR &displaced_pc)
1014{
1015 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1016
1017 if (!per_inferior->disp_step_buf.has_value ())
1018 {
1019 /* Figure out where the displaced step buffer is. */
1020 CORE_ADDR disp_step_buf_addr
1021 = displaced_step_at_entry_point (thread->inf->gdbarch);
1022
1023 per_inferior->disp_step_buf.emplace (disp_step_buf_addr);
1024 }
1025
1026 return per_inferior->disp_step_buf->prepare (thread, displaced_pc);
1027}
1028
1029/* Implementation of gdbarch_displaced_step_finish. */
1030
1031static displaced_step_finish_status
1032ppc_displaced_step_finish (gdbarch *arch, thread_info *thread,
1033 gdb_signal sig)
1034{
1035 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1036
1037 gdb_assert (per_inferior->disp_step_buf.has_value ());
1038
1039 return per_inferior->disp_step_buf->finish (arch, thread, sig);
1040}
1041
1042/* Implementation of gdbarch_displaced_step_restore_all_in_ptid. */
1043
1044static void
1045ppc_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid)
1046{
1047 ppc_inferior_data *per_inferior = ppc_inferior_data_key.get (parent_inf);
1048
1049 if (per_inferior == nullptr
1050 || !per_inferior->disp_step_buf.has_value ())
1051 return;
1052
1053 per_inferior->disp_step_buf->restore_in_ptid (ptid);
1054}
1055
99e40580
UW
1056/* Always use hardware single-stepping to execute the
1057 displaced instruction. */
07fbbd01 1058static bool
40a53766 1059ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
99e40580 1060{
07fbbd01 1061 return true;
99e40580
UW
1062}
1063
2039d74e
EBM
1064/* Checks for an atomic sequence of instructions beginning with a
1065 Load And Reserve instruction and ending with a Store Conditional
1066 instruction. If such a sequence is found, attempt to step through it.
1067 A breakpoint is placed at the end of the sequence. */
a0ff9e1a 1068std::vector<CORE_ADDR>
f5ea389a 1069ppc_deal_with_atomic_sequence (struct regcache *regcache)
ce5eab59 1070{
ac7936df 1071 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1072 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
41e26ad3 1073 CORE_ADDR pc = regcache_read_pc (regcache);
70ab8ccd 1074 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
ce5eab59 1075 CORE_ADDR loc = pc;
24d45690 1076 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
e17a4113 1077 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1078 int insn_count;
1079 int index;
1080 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1081 const int atomic_sequence_length = 16; /* Instruction sequence length. */
ce5eab59
UW
1082 int bc_insn_count = 0; /* Conditional branch instruction count. */
1083
2039d74e
EBM
1084 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1085 if (!IS_LOAD_AND_RESERVE_INSN (insn))
a0ff9e1a 1086 return {};
ce5eab59
UW
1087
1088 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1089 instructions. */
1090 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1091 {
1092 loc += PPC_INSN_SIZE;
e17a4113 1093 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1094
1095 /* Assume that there is at most one conditional branch in the atomic
dda83cd7
SM
1096 sequence. If a conditional branch is found, put a breakpoint in
1097 its destination address. */
f74c6cad 1098 if ((insn & BRANCH_MASK) == BC_INSN)
dda83cd7
SM
1099 {
1100 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1101 int absolute = insn & 2;
4a7622d1 1102
dda83cd7
SM
1103 if (bc_insn_count >= 1)
1104 return {}; /* More than one conditional branch found, fallback
1105 to the standard single-step code. */
4a7622d1
UW
1106
1107 if (absolute)
1108 breaks[1] = immediate;
1109 else
a3769e0c 1110 breaks[1] = loc + immediate;
4a7622d1
UW
1111
1112 bc_insn_count++;
1113 last_breakpoint++;
dda83cd7 1114 }
ce5eab59 1115
2039d74e 1116 if (IS_STORE_CONDITIONAL_INSN (insn))
dda83cd7 1117 break;
ce5eab59
UW
1118 }
1119
2039d74e
EBM
1120 /* Assume that the atomic sequence ends with a Store Conditional
1121 instruction. */
1122 if (!IS_STORE_CONDITIONAL_INSN (insn))
a0ff9e1a 1123 return {};
ce5eab59 1124
24d45690 1125 closing_insn = loc;
ce5eab59 1126 loc += PPC_INSN_SIZE;
ce5eab59
UW
1127
1128 /* Insert a breakpoint right after the end of the atomic sequence. */
1129 breaks[0] = loc;
1130
24d45690 1131 /* Check for duplicated breakpoints. Check also for a breakpoint
a3769e0c
AM
1132 placed (branch instruction's destination) anywhere in sequence. */
1133 if (last_breakpoint
1134 && (breaks[1] == breaks[0]
1135 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
ce5eab59
UW
1136 last_breakpoint = 0;
1137
a0ff9e1a
SM
1138 std::vector<CORE_ADDR> next_pcs;
1139
ce5eab59 1140 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 1141 next_pcs.push_back (breaks[index]);
ce5eab59 1142
93f9a11f 1143 return next_pcs;
ce5eab59
UW
1144}
1145
c906108c 1146
c906108c
SS
1147#define SIGNED_SHORT(x) \
1148 ((sizeof (short) == 2) \
1149 ? ((int)(short)(x)) \
1150 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1151
1152#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1153
55d05f3b
KB
1154/* Limit the number of skipped non-prologue instructions, as the examining
1155 of the prologue is expensive. */
1156static int max_skip_non_prologue_insns = 10;
1157
773df3e5
JB
1158/* Return nonzero if the given instruction OP can be part of the prologue
1159 of a function and saves a parameter on the stack. FRAMEP should be
1160 set if one of the previous instructions in the function has set the
1161 Frame Pointer. */
1162
1163static int
1164store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1165{
1166 /* Move parameters from argument registers to temporary register. */
1167 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1168 {
1169 /* Rx must be scratch register r0. */
1170 const int rx_regno = (op >> 16) & 31;
1171 /* Ry: Only r3 - r10 are used for parameter passing. */
1172 const int ry_regno = GET_SRC_REG (op);
1173
1174 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
dda83cd7
SM
1175 {
1176 *r0_contains_arg = 1;
1177 return 1;
1178 }
773df3e5 1179 else
dda83cd7 1180 return 0;
773df3e5
JB
1181 }
1182
1183 /* Save a General Purpose Register on stack. */
1184
1185 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1186 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1187 {
1188 /* Rx: Only r3 - r10 are used for parameter passing. */
1189 const int rx_regno = GET_SRC_REG (op);
1190
1191 return (rx_regno >= 3 && rx_regno <= 10);
1192 }
dda83cd7 1193
773df3e5
JB
1194 /* Save a General Purpose Register on stack via the Frame Pointer. */
1195
1196 if (framep &&
1197 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1198 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1199 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1200 {
1201 /* Rx: Usually, only r3 - r10 are used for parameter passing.
dda83cd7 1202 However, the compiler sometimes uses r0 to hold an argument. */
773df3e5
JB
1203 const int rx_regno = GET_SRC_REG (op);
1204
1205 return ((rx_regno >= 3 && rx_regno <= 10)
dda83cd7 1206 || (rx_regno == 0 && *r0_contains_arg));
773df3e5
JB
1207 }
1208
1209 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1210 {
1211 /* Only f2 - f8 are used for parameter passing. */
1212 const int src_regno = GET_SRC_REG (op);
1213
1214 return (src_regno >= 2 && src_regno <= 8);
1215 }
1216
1217 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1218 {
1219 /* Only f2 - f8 are used for parameter passing. */
1220 const int src_regno = GET_SRC_REG (op);
1221
1222 return (src_regno >= 2 && src_regno <= 8);
1223 }
1224
1225 /* Not an insn that saves a parameter on stack. */
1226 return 0;
1227}
55d05f3b 1228
3c77c82a
DJ
1229/* Assuming that INSN is a "bl" instruction located at PC, return
1230 nonzero if the destination of the branch is a "blrl" instruction.
1231
1232 This sequence is sometimes found in certain function prologues.
1233 It allows the function to load the LR register with a value that
1234 they can use to access PIC data using PC-relative offsets. */
1235
1236static int
e17a4113 1237bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
3c77c82a 1238{
0b1b3e42
UW
1239 CORE_ADDR dest;
1240 int immediate;
1241 int absolute;
3c77c82a
DJ
1242 int dest_insn;
1243
0b1b3e42
UW
1244 absolute = (int) ((insn >> 1) & 1);
1245 immediate = ((insn & ~3) << 6) >> 6;
1246 if (absolute)
1247 dest = immediate;
1248 else
1249 dest = pc + immediate;
1250
e17a4113 1251 dest_insn = read_memory_integer (dest, 4, byte_order);
3c77c82a
DJ
1252 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1253 return 1;
1254
1255 return 0;
1256}
1257
dd6d677f
PFC
1258/* Return true if OP is a stw or std instruction with
1259 register operands RS and RA and any immediate offset.
1260
1261 If WITH_UPDATE is true, also return true if OP is
1262 a stwu or stdu instruction with the same operands.
1263
1264 Return false otherwise.
1265 */
1266static bool
1267store_insn_p (unsigned long op, unsigned long rs,
1268 unsigned long ra, bool with_update)
1269{
1270 rs = rs << 21;
1271 ra = ra << 16;
1272
1273 if (/* std RS, SIMM(RA) */
1274 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1275 /* stw RS, SIMM(RA) */
1276 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1277 return true;
1278
1279 if (with_update)
1280 {
1281 if (/* stdu RS, SIMM(RA) */
1282 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1283 /* stwu RS, SIMM(RA) */
1284 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1285 return true;
1286 }
1287
1288 return false;
1289}
1290
0df8b418 1291/* Masks for decoding a branch-and-link (bl) instruction.
8ab3d180
KB
1292
1293 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1294 The former is anded with the opcode in question; if the result of
1295 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1296 question is a ``bl'' instruction.
1297
85102364 1298 BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
8ab3d180
KB
1299 the branch displacement. */
1300
1301#define BL_MASK 0xfc000001
1302#define BL_INSTRUCTION 0x48000001
1303#define BL_DISPLACEMENT_MASK 0x03fffffc
1304
de9f48f0 1305static unsigned long
e17a4113 1306rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
de9f48f0 1307{
e17a4113 1308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
de9f48f0
JG
1309 gdb_byte buf[4];
1310 unsigned long op;
1311
1312 /* Fetch the instruction and convert it to an integer. */
1313 if (target_read_memory (pc, buf, 4))
1314 return 0;
e17a4113 1315 op = extract_unsigned_integer (buf, 4, byte_order);
de9f48f0
JG
1316
1317 return op;
1318}
1319
1320/* GCC generates several well-known sequences of instructions at the begining
1321 of each function prologue when compiling with -fstack-check. If one of
1322 such sequences starts at START_PC, then return the address of the
1323 instruction immediately past this sequence. Otherwise, return START_PC. */
1324
1325static CORE_ADDR
e17a4113 1326rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
de9f48f0
JG
1327{
1328 CORE_ADDR pc = start_pc;
e17a4113 1329 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1330
1331 /* First possible sequence: A small number of probes.
dda83cd7
SM
1332 stw 0, -<some immediate>(1)
1333 [repeat this instruction any (small) number of times]. */
de9f48f0
JG
1334
1335 if ((op & 0xffff0000) == 0x90010000)
1336 {
1337 while ((op & 0xffff0000) == 0x90010000)
dda83cd7
SM
1338 {
1339 pc = pc + 4;
1340 op = rs6000_fetch_instruction (gdbarch, pc);
1341 }
de9f48f0
JG
1342 return pc;
1343 }
1344
1345 /* Second sequence: A probing loop.
dda83cd7
SM
1346 addi 12,1,-<some immediate>
1347 lis 0,-<some immediate>
1348 [possibly ori 0,0,<some immediate>]
1349 add 0,12,0
1350 cmpw 0,12,0
1351 beq 0,<disp>
1352 addi 12,12,-<some immediate>
1353 stw 0,0(12)
1354 b <disp>
1355 [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0
JG
1356
1357 while (1)
1358 {
1359 /* addi 12,1,-<some immediate> */
1360 if ((op & 0xffff0000) != 0x39810000)
dda83cd7 1361 break;
de9f48f0
JG
1362
1363 /* lis 0,-<some immediate> */
1364 pc = pc + 4;
e17a4113 1365 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1366 if ((op & 0xffff0000) != 0x3c000000)
dda83cd7 1367 break;
de9f48f0
JG
1368
1369 pc = pc + 4;
e17a4113 1370 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1371 /* [possibly ori 0,0,<some immediate>] */
1372 if ((op & 0xffff0000) == 0x60000000)
dda83cd7
SM
1373 {
1374 pc = pc + 4;
1375 op = rs6000_fetch_instruction (gdbarch, pc);
1376 }
de9f48f0
JG
1377 /* add 0,12,0 */
1378 if (op != 0x7c0c0214)
dda83cd7 1379 break;
de9f48f0
JG
1380
1381 /* cmpw 0,12,0 */
1382 pc = pc + 4;
e17a4113 1383 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1384 if (op != 0x7c0c0000)
dda83cd7 1385 break;
de9f48f0
JG
1386
1387 /* beq 0,<disp> */
1388 pc = pc + 4;
e17a4113 1389 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1390 if ((op & 0xff9f0001) != 0x41820000)
dda83cd7 1391 break;
de9f48f0
JG
1392
1393 /* addi 12,12,-<some immediate> */
1394 pc = pc + 4;
e17a4113 1395 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1396 if ((op & 0xffff0000) != 0x398c0000)
dda83cd7 1397 break;
de9f48f0
JG
1398
1399 /* stw 0,0(12) */
1400 pc = pc + 4;
e17a4113 1401 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1402 if (op != 0x900c0000)
dda83cd7 1403 break;
de9f48f0
JG
1404
1405 /* b <disp> */
1406 pc = pc + 4;
e17a4113 1407 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1408 if ((op & 0xfc000001) != 0x48000000)
dda83cd7 1409 break;
de9f48f0 1410
0df8b418 1411 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0 1412 pc = pc + 4;
e17a4113 1413 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1414 if ((op & 0xffff0000) == 0x900c0000)
dda83cd7
SM
1415 {
1416 pc = pc + 4;
1417 op = rs6000_fetch_instruction (gdbarch, pc);
1418 }
de9f48f0
JG
1419
1420 /* We found a valid stack-check sequence, return the new PC. */
1421 return pc;
1422 }
1423
30baf67b 1424 /* Third sequence: No probe; instead, a comparison between the stack size
de9f48f0
JG
1425 limit (saved in a run-time global variable) and the current stack
1426 pointer:
1427
dda83cd7
SM
1428 addi 0,1,-<some immediate>
1429 lis 12,__gnat_stack_limit@ha
1430 lwz 12,__gnat_stack_limit@l(12)
1431 twllt 0,12
de9f48f0
JG
1432
1433 or, with a small variant in the case of a bigger stack frame:
dda83cd7
SM
1434 addis 0,1,<some immediate>
1435 addic 0,0,-<some immediate>
1436 lis 12,__gnat_stack_limit@ha
1437 lwz 12,__gnat_stack_limit@l(12)
1438 twllt 0,12
de9f48f0
JG
1439 */
1440 while (1)
1441 {
1442 /* addi 0,1,-<some immediate> */
1443 if ((op & 0xffff0000) != 0x38010000)
dda83cd7
SM
1444 {
1445 /* small stack frame variant not recognized; try the
1446 big stack frame variant: */
de9f48f0 1447
dda83cd7
SM
1448 /* addis 0,1,<some immediate> */
1449 if ((op & 0xffff0000) != 0x3c010000)
1450 break;
de9f48f0 1451
dda83cd7
SM
1452 /* addic 0,0,-<some immediate> */
1453 pc = pc + 4;
1454 op = rs6000_fetch_instruction (gdbarch, pc);
1455 if ((op & 0xffff0000) != 0x30000000)
1456 break;
1457 }
de9f48f0
JG
1458
1459 /* lis 12,<some immediate> */
1460 pc = pc + 4;
e17a4113 1461 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1462 if ((op & 0xffff0000) != 0x3d800000)
dda83cd7 1463 break;
de9f48f0
JG
1464
1465 /* lwz 12,<some immediate>(12) */
1466 pc = pc + 4;
e17a4113 1467 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1468 if ((op & 0xffff0000) != 0x818c0000)
dda83cd7 1469 break;
de9f48f0
JG
1470
1471 /* twllt 0,12 */
1472 pc = pc + 4;
e17a4113 1473 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1474 if ((op & 0xfffffffe) != 0x7c406008)
dda83cd7 1475 break;
de9f48f0
JG
1476
1477 /* We found a valid stack-check sequence, return the new PC. */
1478 return pc;
1479 }
1480
1481 /* No stack check code in our prologue, return the start_pc. */
1482 return start_pc;
1483}
1484
6a16c029
TJB
1485/* return pc value after skipping a function prologue and also return
1486 information about a function frame.
1487
1488 in struct rs6000_framedata fdata:
1489 - frameless is TRUE, if function does not have a frame.
1490 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1491 - offset is the initial size of this stack frame --- the amount by
1492 which we decrement the sp to allocate the frame.
1493 - saved_gpr is the number of the first saved gpr.
1494 - saved_fpr is the number of the first saved fpr.
1495 - saved_vr is the number of the first saved vr.
1496 - saved_ev is the number of the first saved ev.
1497 - alloca_reg is the number of the register used for alloca() handling.
1498 Otherwise -1.
1499 - gpr_offset is the offset of the first saved gpr from the previous frame.
1500 - fpr_offset is the offset of the first saved fpr from the previous frame.
1501 - vr_offset is the offset of the first saved vr from the previous frame.
1502 - ev_offset is the offset of the first saved ev from the previous frame.
1503 - lr_offset is the offset of the saved lr
1504 - cr_offset is the offset of the saved cr
0df8b418 1505 - vrsave_offset is the offset of the saved vrsave register. */
6a16c029 1506
7a78ae4e 1507static CORE_ADDR
be8626e0
MD
1508skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1509 struct rs6000_framedata *fdata)
c906108c
SS
1510{
1511 CORE_ADDR orig_pc = pc;
55d05f3b 1512 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 1513 CORE_ADDR li_found_pc = 0;
50fd1280 1514 gdb_byte buf[4];
c906108c
SS
1515 unsigned long op;
1516 long offset = 0;
dd6d677f 1517 long alloca_reg_offset = 0;
6be8bc0c 1518 long vr_saved_offset = 0;
482ca3f5
KB
1519 int lr_reg = -1;
1520 int cr_reg = -1;
6be8bc0c 1521 int vr_reg = -1;
96ff0de4
EZ
1522 int ev_reg = -1;
1523 long ev_offset = 0;
6be8bc0c 1524 int vrsave_reg = -1;
c906108c
SS
1525 int reg;
1526 int framep = 0;
1527 int minimal_toc_loaded = 0;
ddb20c56 1528 int prev_insn_was_prologue_insn = 1;
55d05f3b 1529 int num_skip_non_prologue_insns = 0;
773df3e5 1530 int r0_contains_arg = 0;
be8626e0
MD
1531 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 1534
ddb20c56 1535 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1536 fdata->saved_gpr = -1;
1537 fdata->saved_fpr = -1;
6be8bc0c 1538 fdata->saved_vr = -1;
96ff0de4 1539 fdata->saved_ev = -1;
c906108c
SS
1540 fdata->alloca_reg = -1;
1541 fdata->frameless = 1;
1542 fdata->nosavedpc = 1;
46a9b8ed 1543 fdata->lr_register = -1;
c906108c 1544
e17a4113 1545 pc = rs6000_skip_stack_check (gdbarch, pc);
de9f48f0
JG
1546 if (pc >= lim_pc)
1547 pc = lim_pc;
1548
55d05f3b 1549 for (;; pc += 4)
c906108c 1550 {
ddb20c56 1551 /* Sometimes it isn't clear if an instruction is a prologue
dda83cd7 1552 instruction or not. When we encounter one of these ambiguous
ddb20c56 1553 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
0df8b418 1554 Otherwise, we'll assume that it really is a prologue instruction. */
ddb20c56
KB
1555 if (prev_insn_was_prologue_insn)
1556 last_prologue_pc = pc;
55d05f3b
KB
1557
1558 /* Stop scanning if we've hit the limit. */
4e463ff5 1559 if (pc >= lim_pc)
55d05f3b
KB
1560 break;
1561
ddb20c56
KB
1562 prev_insn_was_prologue_insn = 1;
1563
55d05f3b 1564 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1565 if (target_read_memory (pc, buf, 4))
1566 break;
e17a4113 1567 op = extract_unsigned_integer (buf, 4, byte_order);
c906108c 1568
c5aa993b
JM
1569 if ((op & 0xfc1fffff) == 0x7c0802a6)
1570 { /* mflr Rx */
43b1ab88
AC
1571 /* Since shared library / PIC code, which needs to get its
1572 address at runtime, can appear to save more than one link
1573 register vis:
1574
1575 *INDENT-OFF*
1576 stwu r1,-304(r1)
1577 mflr r3
1578 bl 0xff570d0 (blrl)
1579 stw r30,296(r1)
1580 mflr r30
1581 stw r31,300(r1)
1582 stw r3,308(r1);
1583 ...
1584 *INDENT-ON*
1585
1586 remember just the first one, but skip over additional
1587 ones. */
721d14ba 1588 if (lr_reg == -1)
dd6d677f 1589 lr_reg = (op & 0x03e00000) >> 21;
dda83cd7
SM
1590 if (lr_reg == 0)
1591 r0_contains_arg = 0;
c5aa993b 1592 continue;
c5aa993b
JM
1593 }
1594 else if ((op & 0xfc1fffff) == 0x7c000026)
1595 { /* mfcr Rx */
dd6d677f 1596 cr_reg = (op & 0x03e00000) >> 21;
dda83cd7
SM
1597 if (cr_reg == 0)
1598 r0_contains_arg = 0;
c5aa993b 1599 continue;
c906108c 1600
c906108c 1601 }
c5aa993b
JM
1602 else if ((op & 0xfc1f0000) == 0xd8010000)
1603 { /* stfd Rx,NUM(r1) */
1604 reg = GET_SRC_REG (op);
1605 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1606 {
1607 fdata->saved_fpr = reg;
1608 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1609 }
1610 continue;
c906108c 1611
c5aa993b
JM
1612 }
1613 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1614 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1615 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1616 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1617 {
1618
1619 reg = GET_SRC_REG (op);
46a9b8ed
DJ
1620 if ((op & 0xfc1f0000) == 0xbc010000)
1621 fdata->gpr_mask |= ~((1U << reg) - 1);
1622 else
1623 fdata->gpr_mask |= 1U << reg;
c5aa993b
JM
1624 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1625 {
1626 fdata->saved_gpr = reg;
7a78ae4e 1627 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1628 op &= ~3UL;
c5aa993b
JM
1629 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1630 }
1631 continue;
c906108c 1632
ddb20c56 1633 }
ef1bc9e7
AM
1634 else if ((op & 0xffff0000) == 0x3c4c0000
1635 || (op & 0xffff0000) == 0x3c400000
1636 || (op & 0xffff0000) == 0x38420000)
1637 {
1638 /* . 0: addis 2,12,.TOC.-0b@ha
1639 . addi 2,2,.TOC.-0b@l
1640 or
1641 . lis 2,.TOC.@ha
1642 . addi 2,2,.TOC.@l
1643 used by ELFv2 global entry points to set up r2. */
1644 continue;
1645 }
1646 else if (op == 0x60000000)
dda83cd7 1647 {
96ff0de4 1648 /* nop */
ddb20c56
KB
1649 /* Allow nops in the prologue, but do not consider them to
1650 be part of the prologue unless followed by other prologue
0df8b418 1651 instructions. */
ddb20c56
KB
1652 prev_insn_was_prologue_insn = 0;
1653 continue;
1654
c906108c 1655 }
c5aa993b 1656 else if ((op & 0xffff0000) == 0x3c000000)
ef1bc9e7 1657 { /* addis 0,0,NUM, used for >= 32k frames */
c5aa993b
JM
1658 fdata->offset = (op & 0x0000ffff) << 16;
1659 fdata->frameless = 0;
dda83cd7 1660 r0_contains_arg = 0;
c5aa993b
JM
1661 continue;
1662
1663 }
1664 else if ((op & 0xffff0000) == 0x60000000)
ef1bc9e7 1665 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
c5aa993b
JM
1666 fdata->offset |= (op & 0x0000ffff);
1667 fdata->frameless = 0;
dda83cd7 1668 r0_contains_arg = 0;
c5aa993b
JM
1669 continue;
1670
1671 }
be723e22 1672 else if (lr_reg >= 0 &&
dd6d677f
PFC
1673 ((store_insn_p (op, lr_reg, 1, true)) ||
1674 (framep &&
1675 (store_insn_p (op, lr_reg,
1676 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1677 false)))))
1678 {
1679 if (store_insn_p (op, lr_reg, 1, true))
1680 fdata->lr_offset = offset;
1681 else /* LR save through frame pointer. */
1682 fdata->lr_offset = alloca_reg_offset;
1683
c5aa993b 1684 fdata->nosavedpc = 0;
be723e22
MS
1685 /* Invalidate lr_reg, but don't set it to -1.
1686 That would mean that it had never been set. */
1687 lr_reg = -2;
98f08d3d
KB
1688 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1689 (op & 0xfc000000) == 0x90000000) /* stw */
1690 {
1691 /* Does not update r1, so add displacement to lr_offset. */
1692 fdata->lr_offset += SIGNED_SHORT (op);
1693 }
c5aa993b
JM
1694 continue;
1695
1696 }
be723e22 1697 else if (cr_reg >= 0 &&
dd6d677f
PFC
1698 (store_insn_p (op, cr_reg, 1, true)))
1699 {
98f08d3d 1700 fdata->cr_offset = offset;
be723e22
MS
1701 /* Invalidate cr_reg, but don't set it to -1.
1702 That would mean that it had never been set. */
1703 cr_reg = -2;
98f08d3d
KB
1704 if ((op & 0xfc000003) == 0xf8000000 ||
1705 (op & 0xfc000000) == 0x90000000)
1706 {
1707 /* Does not update r1, so add displacement to cr_offset. */
1708 fdata->cr_offset += SIGNED_SHORT (op);
1709 }
c5aa993b
JM
1710 continue;
1711
1712 }
721d14ba
DJ
1713 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1714 {
1715 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1716 prediction bits. If the LR has already been saved, we can
1717 skip it. */
1718 continue;
1719 }
c5aa993b
JM
1720 else if (op == 0x48000005)
1721 { /* bl .+4 used in
1722 -mrelocatable */
46a9b8ed 1723 fdata->used_bl = 1;
c5aa993b
JM
1724 continue;
1725
1726 }
1727 else if (op == 0x48000004)
1728 { /* b .+4 (xlc) */
1729 break;
1730
c5aa993b 1731 }
6be8bc0c
EZ
1732 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1733 in V.4 -mminimal-toc */
c5aa993b
JM
1734 (op & 0xffff0000) == 0x3bde0000)
1735 { /* addi 30,30,foo@l */
1736 continue;
c906108c 1737
c5aa993b
JM
1738 }
1739 else if ((op & 0xfc000001) == 0x48000001)
1740 { /* bl foo,
0df8b418 1741 to save fprs??? */
c906108c 1742
c5aa993b 1743 fdata->frameless = 0;
3c77c82a
DJ
1744
1745 /* If the return address has already been saved, we can skip
1746 calls to blrl (for PIC). */
dda83cd7 1747 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
46a9b8ed
DJ
1748 {
1749 fdata->used_bl = 1;
1750 continue;
1751 }
3c77c82a 1752
6be8bc0c 1753 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1754 the first three instructions of the prologue and either
1755 we have no line table information or the line info tells
1756 us that the subroutine call is not part of the line
1757 associated with the prologue. */
c5aa993b 1758 if ((pc - orig_pc) > 8)
ebd98106
FF
1759 {
1760 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1761 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1762
0df8b418
MS
1763 if ((prologue_sal.line == 0)
1764 || (prologue_sal.line != this_sal.line))
ebd98106
FF
1765 break;
1766 }
c5aa993b 1767
e17a4113 1768 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b 1769
6be8bc0c
EZ
1770 /* At this point, make sure this is not a trampoline
1771 function (a function that simply calls another functions,
1772 and nothing else). If the next is not a nop, this branch
0df8b418 1773 was part of the function prologue. */
c5aa993b
JM
1774
1775 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
0df8b418
MS
1776 break; /* Don't skip over
1777 this branch. */
c5aa993b 1778
46a9b8ed
DJ
1779 fdata->used_bl = 1;
1780 continue;
c5aa993b 1781 }
98f08d3d
KB
1782 /* update stack pointer */
1783 else if ((op & 0xfc1f0000) == 0x94010000)
1784 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1785 fdata->frameless = 0;
1786 fdata->offset = SIGNED_SHORT (op);
1787 offset = fdata->offset;
1788 continue;
c5aa993b 1789 }
7a8f494c
PFC
1790 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1791 { /* stwux rX,r1,rY || stdux rX,r1,rY */
0df8b418 1792 /* No way to figure out what r1 is going to be. */
98f08d3d
KB
1793 fdata->frameless = 0;
1794 offset = fdata->offset;
1795 continue;
1796 }
1797 else if ((op & 0xfc1f0003) == 0xf8010001)
1798 { /* stdu rX,NUM(r1) */
1799 fdata->frameless = 0;
1800 fdata->offset = SIGNED_SHORT (op & ~3UL);
1801 offset = fdata->offset;
1802 continue;
1803 }
7313566f
FF
1804 else if ((op & 0xffff0000) == 0x38210000)
1805 { /* addi r1,r1,SIMM */
1806 fdata->frameless = 0;
1807 fdata->offset += SIGNED_SHORT (op);
1808 offset = fdata->offset;
1809 continue;
1810 }
4e463ff5
DJ
1811 /* Load up minimal toc pointer. Do not treat an epilogue restore
1812 of r31 as a minimal TOC load. */
0df8b418
MS
1813 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1814 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1815 && !framep
c5aa993b 1816 && !minimal_toc_loaded)
98f08d3d 1817 {
c5aa993b
JM
1818 minimal_toc_loaded = 1;
1819 continue;
1820
f6077098 1821 /* move parameters from argument registers to local variable
dda83cd7 1822 registers */
f6077098
KB
1823 }
1824 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
dda83cd7
SM
1825 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1826 (((op >> 21) & 31) <= 10) &&
1827 ((long) ((op >> 16) & 31)
0df8b418 1828 >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1829 {
1830 continue;
1831
c5aa993b
JM
1832 /* store parameters in stack */
1833 }
e802b915 1834 /* Move parameters from argument registers to temporary register. */
773df3e5 1835 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
dda83cd7 1836 {
c5aa993b
JM
1837 continue;
1838
1839 /* Set up frame pointer */
1840 }
76219d77
JB
1841 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1842 {
1843 fdata->frameless = 0;
1844 framep = 1;
1845 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
dd6d677f 1846 alloca_reg_offset = offset;
76219d77
JB
1847 continue;
1848
1849 /* Another way to set up the frame pointer. */
1850 }
c5aa993b
JM
1851 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1852 || op == 0x7c3f0b78)
1853 { /* mr r31, r1 */
1854 fdata->frameless = 0;
1855 framep = 1;
6f99cb26 1856 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
dd6d677f 1857 alloca_reg_offset = offset;
c5aa993b
JM
1858 continue;
1859
1860 /* Another way to set up the frame pointer. */
1861 }
1862 else if ((op & 0xfc1fffff) == 0x38010000)
1863 { /* addi rX, r1, 0x0 */
1864 fdata->frameless = 0;
1865 framep = 1;
6f99cb26
AC
1866 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1867 + ((op & ~0x38010000) >> 21));
dd6d677f 1868 alloca_reg_offset = offset;
c5aa993b 1869 continue;
c5aa993b 1870 }
6be8bc0c
EZ
1871 /* AltiVec related instructions. */
1872 /* Store the vrsave register (spr 256) in another register for
1873 later manipulation, or load a register into the vrsave
1874 register. 2 instructions are used: mfvrsave and
1875 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1876 and mtspr SPR256, Rn. */
1877 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1878 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1879 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1880 {
dda83cd7 1881 vrsave_reg = GET_SRC_REG (op);
6be8bc0c
EZ
1882 continue;
1883 }
1884 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
dda83cd7
SM
1885 {
1886 continue;
1887 }
6be8bc0c 1888 /* Store the register where vrsave was saved to onto the stack:
dda83cd7 1889 rS is the register where vrsave was stored in a previous
6be8bc0c
EZ
1890 instruction. */
1891 /* 100100 sssss 00001 dddddddd dddddddd */
1892 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
dda83cd7
SM
1893 {
1894 if (vrsave_reg == GET_SRC_REG (op))
6be8bc0c
EZ
1895 {
1896 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1897 vrsave_reg = -1;
1898 }
dda83cd7
SM
1899 continue;
1900 }
6be8bc0c 1901 /* Compute the new value of vrsave, by modifying the register
dda83cd7 1902 where vrsave was saved to. */
6be8bc0c
EZ
1903 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1904 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1905 {
1906 continue;
1907 }
1908 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1909 in a pair of insns to save the vector registers on the
1910 stack. */
1911 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1912 /* 001110 01110 00000 iiii iiii iiii iiii */
1913 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
dda83cd7 1914 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1915 {
dda83cd7
SM
1916 if ((op & 0xffff0000) == 0x38000000)
1917 r0_contains_arg = 0;
6be8bc0c
EZ
1918 li_found_pc = pc;
1919 vr_saved_offset = SIGNED_SHORT (op);
773df3e5 1920
dda83cd7
SM
1921 /* This insn by itself is not part of the prologue, unless
1922 if part of the pair of insns mentioned above. So do not
1923 record this insn as part of the prologue yet. */
1924 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1925 }
1926 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1927 /* 011111 sssss 11111 00000 00111001110 */
1928 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
dda83cd7 1929 {
6be8bc0c
EZ
1930 if (pc == (li_found_pc + 4))
1931 {
1932 vr_reg = GET_SRC_REG (op);
1933 /* If this is the first vector reg to be saved, or if
1934 it has a lower number than others previously seen,
1935 reupdate the frame info. */
1936 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1937 {
1938 fdata->saved_vr = vr_reg;
1939 fdata->vr_offset = vr_saved_offset + offset;
1940 }
1941 vr_saved_offset = -1;
1942 vr_reg = -1;
1943 li_found_pc = 0;
1944 }
1945 }
1946 /* End AltiVec related instructions. */
96ff0de4
EZ
1947
1948 /* Start BookE related instructions. */
1949 /* Store gen register S at (r31+uimm).
dda83cd7 1950 Any register less than r13 is volatile, so we don't care. */
96ff0de4
EZ
1951 /* 000100 sssss 11111 iiiii 01100100001 */
1952 else if (arch_info->mach == bfd_mach_ppc_e500
1953 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1954 {
dda83cd7 1955 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
96ff0de4 1956 {
dda83cd7 1957 unsigned int imm;
96ff0de4 1958 ev_reg = GET_SRC_REG (op);
dda83cd7 1959 imm = (op >> 11) & 0x1f;
96ff0de4
EZ
1960 ev_offset = imm * 8;
1961 /* If this is the first vector reg to be saved, or if
1962 it has a lower number than others previously seen,
1963 reupdate the frame info. */
1964 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1965 {
1966 fdata->saved_ev = ev_reg;
1967 fdata->ev_offset = ev_offset + offset;
1968 }
1969 }
dda83cd7
SM
1970 continue;
1971 }
96ff0de4
EZ
1972 /* Store gen register rS at (r1+rB). */
1973 /* 000100 sssss 00001 bbbbb 01100100000 */
1974 else if (arch_info->mach == bfd_mach_ppc_e500
1975 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1976 {
dda83cd7
SM
1977 if (pc == (li_found_pc + 4))
1978 {
1979 ev_reg = GET_SRC_REG (op);
96ff0de4 1980 /* If this is the first vector reg to be saved, or if
dda83cd7
SM
1981 it has a lower number than others previously seen,
1982 reupdate the frame info. */
1983 /* We know the contents of rB from the previous instruction. */
96ff0de4
EZ
1984 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1985 {
dda83cd7
SM
1986 fdata->saved_ev = ev_reg;
1987 fdata->ev_offset = vr_saved_offset + offset;
96ff0de4
EZ
1988 }
1989 vr_saved_offset = -1;
1990 ev_reg = -1;
1991 li_found_pc = 0;
dda83cd7
SM
1992 }
1993 continue;
1994 }
96ff0de4
EZ
1995 /* Store gen register r31 at (rA+uimm). */
1996 /* 000100 11111 aaaaa iiiii 01100100001 */
1997 else if (arch_info->mach == bfd_mach_ppc_e500
1998 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
dda83cd7
SM
1999 {
2000 /* Wwe know that the source register is 31 already, but
2001 it can't hurt to compute it. */
96ff0de4 2002 ev_reg = GET_SRC_REG (op);
dda83cd7 2003 ev_offset = ((op >> 11) & 0x1f) * 8;
96ff0de4
EZ
2004 /* If this is the first vector reg to be saved, or if
2005 it has a lower number than others previously seen,
2006 reupdate the frame info. */
2007 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2008 {
2009 fdata->saved_ev = ev_reg;
2010 fdata->ev_offset = ev_offset + offset;
2011 }
2012
2013 continue;
2014 }
2015 /* Store gen register S at (r31+r0).
dda83cd7 2016 Store param on stack when offset from SP bigger than 4 bytes. */
96ff0de4
EZ
2017 /* 000100 sssss 11111 00000 01100100000 */
2018 else if (arch_info->mach == bfd_mach_ppc_e500
2019 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2020 {
dda83cd7
SM
2021 if (pc == (li_found_pc + 4))
2022 {
2023 if ((op & 0x03e00000) >= 0x01a00000)
96ff0de4
EZ
2024 {
2025 ev_reg = GET_SRC_REG (op);
2026 /* If this is the first vector reg to be saved, or if
2027 it has a lower number than others previously seen,
2028 reupdate the frame info. */
dda83cd7
SM
2029 /* We know the contents of r0 from the previous
2030 instruction. */
96ff0de4
EZ
2031 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2032 {
2033 fdata->saved_ev = ev_reg;
2034 fdata->ev_offset = vr_saved_offset + offset;
2035 }
2036 ev_reg = -1;
2037 }
2038 vr_saved_offset = -1;
2039 li_found_pc = 0;
2040 continue;
dda83cd7 2041 }
96ff0de4
EZ
2042 }
2043 /* End BookE related instructions. */
2044
c5aa993b
JM
2045 else
2046 {
55d05f3b
KB
2047 /* Not a recognized prologue instruction.
2048 Handle optimizer code motions into the prologue by continuing
2049 the search if we have no valid frame yet or if the return
46a9b8ed
DJ
2050 address is not yet saved in the frame. Also skip instructions
2051 if some of the GPRs expected to be saved are not yet saved. */
2052 if (fdata->frameless == 0 && fdata->nosavedpc == 0
1cc62f2e
JB
2053 && fdata->saved_gpr != -1)
2054 {
2055 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2056
2057 if ((fdata->gpr_mask & all_mask) == all_mask)
2058 break;
2059 }
55d05f3b
KB
2060
2061 if (op == 0x4e800020 /* blr */
2062 || op == 0x4e800420) /* bctr */
2063 /* Do not scan past epilogue in frameless functions or
2064 trampolines. */
2065 break;
2066 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 2067 /* Never skip branches. */
55d05f3b
KB
2068 break;
2069
2070 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2071 /* Do not scan too many insns, scanning insns is expensive with
2072 remote targets. */
2073 break;
2074
2075 /* Continue scanning. */
2076 prev_insn_was_prologue_insn = 0;
2077 continue;
c5aa993b 2078 }
c906108c
SS
2079 }
2080
2081#if 0
2082/* I have problems with skipping over __main() that I need to address
0df8b418 2083 * sometime. Previously, I used to use misc_function_vector which
c906108c
SS
2084 * didn't work as well as I wanted to be. -MGO */
2085
2086 /* If the first thing after skipping a prolog is a branch to a function,
2087 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 2088 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 2089 work before calling a function right after a prologue, thus we can
64366f1c 2090 single out such gcc2 behaviour. */
c906108c 2091
c906108c 2092
c5aa993b 2093 if ((op & 0xfc000001) == 0x48000001)
0df8b418 2094 { /* bl foo, an initializer function? */
e17a4113 2095 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b
JM
2096
2097 if (op == 0x4def7b82)
2098 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 2099
64366f1c
EZ
2100 /* Check and see if we are in main. If so, skip over this
2101 initializer function as well. */
c906108c 2102
c5aa993b 2103 tmp = find_pc_misc_function (pc);
6314a349
AC
2104 if (tmp >= 0
2105 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
2106 return pc + 8;
2107 }
c906108c 2108 }
c906108c 2109#endif /* 0 */
c5aa993b 2110
46a9b8ed 2111 if (pc == lim_pc && lr_reg >= 0)
dd6d677f 2112 fdata->lr_register = lr_reg;
46a9b8ed 2113
c5aa993b 2114 fdata->offset = -fdata->offset;
ddb20c56 2115 return last_prologue_pc;
c906108c
SS
2116}
2117
7a78ae4e 2118static CORE_ADDR
4a7622d1 2119rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2120{
4a7622d1 2121 struct rs6000_framedata frame;
e3acb115 2122 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
c906108c 2123
4a7622d1
UW
2124 /* See if we can determine the end of the prologue via the symbol table.
2125 If so, then return either PC, or the PC after the prologue, whichever
2126 is greater. */
e3acb115 2127 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
c5aa993b 2128 {
d80b854b
UW
2129 CORE_ADDR post_prologue_pc
2130 = skip_prologue_using_sal (gdbarch, func_addr);
4a7622d1 2131 if (post_prologue_pc != 0)
325fac50 2132 return std::max (pc, post_prologue_pc);
c906108c 2133 }
c906108c 2134
4a7622d1
UW
2135 /* Can't determine prologue from the symbol table, need to examine
2136 instructions. */
c906108c 2137
4a7622d1
UW
2138 /* Find an upper limit on the function prologue using the debug
2139 information. If the debug information could not be used to provide
2140 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 2141 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4a7622d1
UW
2142 if (limit_pc == 0)
2143 limit_pc = pc + 100; /* Magic. */
794a477a 2144
e3acb115
JB
2145 /* Do not allow limit_pc to be past the function end, if we know
2146 where that end is... */
2147 if (func_end_addr && limit_pc > func_end_addr)
2148 limit_pc = func_end_addr;
2149
4a7622d1
UW
2150 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2151 return pc;
c906108c 2152}
c906108c 2153
8ab3d180
KB
2154/* When compiling for EABI, some versions of GCC emit a call to __eabi
2155 in the prologue of main().
2156
2157 The function below examines the code pointed at by PC and checks to
2158 see if it corresponds to a call to __eabi. If so, it returns the
2159 address of the instruction following that call. Otherwise, it simply
2160 returns PC. */
2161
63807e1d 2162static CORE_ADDR
8ab3d180
KB
2163rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2164{
e17a4113 2165 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8ab3d180
KB
2166 gdb_byte buf[4];
2167 unsigned long op;
2168
2169 if (target_read_memory (pc, buf, 4))
2170 return pc;
e17a4113 2171 op = extract_unsigned_integer (buf, 4, byte_order);
8ab3d180
KB
2172
2173 if ((op & BL_MASK) == BL_INSTRUCTION)
2174 {
2175 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2176 CORE_ADDR call_dest = pc + 4 + displ;
7cbd4a93 2177 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
8ab3d180
KB
2178
2179 /* We check for ___eabi (three leading underscores) in addition
dda83cd7 2180 to __eabi in case the GCC option "-fleading-underscore" was
8ab3d180 2181 used to compile the program. */
7cbd4a93 2182 if (s.minsym != NULL
dda83cd7 2183 && s.minsym->linkage_name () != NULL
c9d95fa3
CB
2184 && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2185 || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
8ab3d180
KB
2186 pc += 4;
2187 }
2188 return pc;
2189}
383f0f5b 2190
4a7622d1
UW
2191/* All the ABI's require 16 byte alignment. */
2192static CORE_ADDR
2193rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2194{
2195 return (addr & -16);
c906108c
SS
2196}
2197
977adac5
ND
2198/* Return whether handle_inferior_event() should proceed through code
2199 starting at PC in function NAME when stepping.
2200
2201 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2202 handle memory references that are too distant to fit in instructions
2203 generated by the compiler. For example, if 'foo' in the following
2204 instruction:
2205
2206 lwz r9,foo(r2)
2207
2208 is greater than 32767, the linker might replace the lwz with a branch to
2209 somewhere in @FIX1 that does the load in 2 instructions and then branches
2210 back to where execution should continue.
2211
2212 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
2213 Unfortunately, the linker uses the "b" instruction for the
2214 branches, meaning that the link register doesn't get set.
2215 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 2216
e76f05fa
UW
2217 Instead, use the gdbarch_skip_trampoline_code and
2218 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 2219 @FIX code. */
977adac5 2220
63807e1d 2221static int
e17a4113 2222rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2c02bd72 2223 CORE_ADDR pc, const char *name)
977adac5 2224{
61012eef 2225 return name && startswith (name, "@FIX");
977adac5
ND
2226}
2227
2228/* Skip code that the user doesn't want to see when stepping:
2229
2230 1. Indirect function calls use a piece of trampoline code to do context
2231 switching, i.e. to set the new TOC table. Skip such code if we are on
2232 its first instruction (as when we have single-stepped to here).
2233
2234 2. Skip shared library trampoline code (which is different from
c906108c 2235 indirect function call trampolines).
977adac5
ND
2236
2237 3. Skip bigtoc fixup code.
2238
c906108c 2239 Result is desired PC to step until, or NULL if we are not in
977adac5 2240 code that should be skipped. */
c906108c 2241
63807e1d 2242static CORE_ADDR
52f729a7 2243rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 2244{
e17a4113
UW
2245 struct gdbarch *gdbarch = get_frame_arch (frame);
2246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
52f0bd74 2248 unsigned int ii, op;
977adac5 2249 int rel;
c906108c 2250 CORE_ADDR solib_target_pc;
7cbd4a93 2251 struct bound_minimal_symbol msymbol;
c906108c 2252
c5aa993b
JM
2253 static unsigned trampoline_code[] =
2254 {
2255 0x800b0000, /* l r0,0x0(r11) */
2256 0x90410014, /* st r2,0x14(r1) */
2257 0x7c0903a6, /* mtctr r0 */
2258 0x804b0004, /* l r2,0x4(r11) */
2259 0x816b0008, /* l r11,0x8(r11) */
2260 0x4e800420, /* bctr */
2261 0x4e800020, /* br */
2262 0
c906108c
SS
2263 };
2264
977adac5
ND
2265 /* Check for bigtoc fixup code. */
2266 msymbol = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 2267 if (msymbol.minsym
e17a4113 2268 && rs6000_in_solib_return_trampoline (gdbarch, pc,
c9d95fa3 2269 msymbol.minsym->linkage_name ()))
977adac5
ND
2270 {
2271 /* Double-check that the third instruction from PC is relative "b". */
e17a4113 2272 op = read_memory_integer (pc + 8, 4, byte_order);
977adac5
ND
2273 if ((op & 0xfc000003) == 0x48000000)
2274 {
2275 /* Extract bits 6-29 as a signed 24-bit relative word address and
2276 add it to the containing PC. */
2277 rel = ((int)(op << 6) >> 6);
2278 return pc + 8 + rel;
2279 }
2280 }
2281
c906108c 2282 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2283 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2284 if (solib_target_pc)
2285 return solib_target_pc;
2286
c5aa993b
JM
2287 for (ii = 0; trampoline_code[ii]; ++ii)
2288 {
e17a4113 2289 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
c5aa993b
JM
2290 if (op != trampoline_code[ii])
2291 return 0;
2292 }
0df8b418
MS
2293 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2294 addr. */
e17a4113 2295 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
c906108c
SS
2296 return pc;
2297}
2298
794ac428
UW
2299/* ISA-specific vector types. */
2300
2301static struct type *
2302rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2303{
2304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2305
2306 if (!tdep->ppc_builtin_type_vec64)
2307 {
df4df182
UW
2308 const struct builtin_type *bt = builtin_type (gdbarch);
2309
794ac428
UW
2310 /* The type we're building is this: */
2311#if 0
2312 union __gdb_builtin_type_vec64
2313 {
2314 int64_t uint64;
2315 float v2_float[2];
2316 int32_t v2_int32[2];
2317 int16_t v4_int16[4];
2318 int8_t v8_int8[8];
2319 };
2320#endif
2321
2322 struct type *t;
2323
e9bb382b
UW
2324 t = arch_composite_type (gdbarch,
2325 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
df4df182 2326 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2327 append_composite_type_field (t, "v2_float",
df4df182 2328 init_vector_type (bt->builtin_float, 2));
794ac428 2329 append_composite_type_field (t, "v2_int32",
df4df182 2330 init_vector_type (bt->builtin_int32, 2));
794ac428 2331 append_composite_type_field (t, "v4_int16",
df4df182 2332 init_vector_type (bt->builtin_int16, 4));
794ac428 2333 append_composite_type_field (t, "v8_int8",
df4df182 2334 init_vector_type (bt->builtin_int8, 8));
794ac428 2335
2062087b 2336 t->set_is_vector (true);
d0e39ea2 2337 t->set_name ("ppc_builtin_type_vec64");
794ac428
UW
2338 tdep->ppc_builtin_type_vec64 = t;
2339 }
2340
2341 return tdep->ppc_builtin_type_vec64;
2342}
2343
604c2f83
LM
2344/* Vector 128 type. */
2345
2346static struct type *
2347rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2348{
2349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2350
2351 if (!tdep->ppc_builtin_type_vec128)
2352 {
df4df182
UW
2353 const struct builtin_type *bt = builtin_type (gdbarch);
2354
604c2f83
LM
2355 /* The type we're building is this
2356
2357 type = union __ppc_builtin_type_vec128 {
6ba4cb84 2358 float128_t float128;
604c2f83 2359 uint128_t uint128;
db9f5df8 2360 double v2_double[2];
604c2f83
LM
2361 float v4_float[4];
2362 int32_t v4_int32[4];
2363 int16_t v8_int16[8];
2364 int8_t v16_int8[16];
2365 }
2366 */
2367
6ba4cb84
CL
2368 /* PPC specific type for IEEE 128-bit float field */
2369 struct type *t_float128
2370 = arch_float_type (gdbarch, 128, "float128_t", floatformats_ia64_quad);
2371
604c2f83
LM
2372 struct type *t;
2373
e9bb382b
UW
2374 t = arch_composite_type (gdbarch,
2375 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
6ba4cb84 2376 append_composite_type_field (t, "float128", t_float128);
df4df182 2377 append_composite_type_field (t, "uint128", bt->builtin_uint128);
db9f5df8
UW
2378 append_composite_type_field (t, "v2_double",
2379 init_vector_type (bt->builtin_double, 2));
604c2f83 2380 append_composite_type_field (t, "v4_float",
df4df182 2381 init_vector_type (bt->builtin_float, 4));
604c2f83 2382 append_composite_type_field (t, "v4_int32",
df4df182 2383 init_vector_type (bt->builtin_int32, 4));
604c2f83 2384 append_composite_type_field (t, "v8_int16",
df4df182 2385 init_vector_type (bt->builtin_int16, 8));
604c2f83 2386 append_composite_type_field (t, "v16_int8",
df4df182 2387 init_vector_type (bt->builtin_int8, 16));
604c2f83 2388
2062087b 2389 t->set_is_vector (true);
d0e39ea2 2390 t->set_name ("ppc_builtin_type_vec128");
604c2f83
LM
2391 tdep->ppc_builtin_type_vec128 = t;
2392 }
2393
2394 return tdep->ppc_builtin_type_vec128;
2395}
2396
7cc46491
DJ
2397/* Return the name of register number REGNO, or the empty string if it
2398 is an anonymous register. */
7a78ae4e 2399
fa88f677 2400static const char *
d93859e2 2401rs6000_register_name (struct gdbarch *gdbarch, int regno)
7a78ae4e 2402{
d93859e2 2403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2404
7cc46491
DJ
2405 /* The upper half "registers" have names in the XML description,
2406 but we present only the low GPRs and the full 64-bit registers
2407 to the user. */
2408 if (tdep->ppc_ev0_upper_regnum >= 0
2409 && tdep->ppc_ev0_upper_regnum <= regno
2410 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2411 return "";
2412
604c2f83
LM
2413 /* Hide the upper halves of the vs0~vs31 registers. */
2414 if (tdep->ppc_vsr0_regnum >= 0
2415 && tdep->ppc_vsr0_upper_regnum <= regno
2416 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2417 return "";
2418
8d619c01
EBM
2419 /* Hide the upper halves of the cvs0~cvs31 registers. */
2420 if (PPC_CVSR0_UPPER_REGNUM <= regno
2421 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2422 return "";
2423
7cc46491 2424 /* Check if the SPE pseudo registers are available. */
5a9e69ba 2425 if (IS_SPE_PSEUDOREG (tdep, regno))
7cc46491
DJ
2426 {
2427 static const char *const spe_regnames[] = {
2428 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2429 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2430 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2431 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2432 };
2433 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2434 }
2435
f949c649
TJB
2436 /* Check if the decimal128 pseudo-registers are available. */
2437 if (IS_DFP_PSEUDOREG (tdep, regno))
2438 {
2439 static const char *const dfp128_regnames[] = {
2440 "dl0", "dl1", "dl2", "dl3",
2441 "dl4", "dl5", "dl6", "dl7",
2442 "dl8", "dl9", "dl10", "dl11",
2443 "dl12", "dl13", "dl14", "dl15"
2444 };
2445 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2446 }
2447
6f072a10
PFC
2448 /* Check if this is a vX alias for a raw vrX vector register. */
2449 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2450 {
2451 static const char *const vector_alias_regnames[] = {
2452 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2453 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2454 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2455 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2456 };
2457 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2458 }
2459
604c2f83
LM
2460 /* Check if this is a VSX pseudo-register. */
2461 if (IS_VSX_PSEUDOREG (tdep, regno))
2462 {
2463 static const char *const vsx_regnames[] = {
2464 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2465 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2466 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2467 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2468 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2469 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2470 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2471 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2472 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2473 };
2474 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2475 }
2476
2477 /* Check if the this is a Extended FP pseudo-register. */
2478 if (IS_EFP_PSEUDOREG (tdep, regno))
2479 {
2480 static const char *const efpr_regnames[] = {
2481 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2482 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2483 "f46", "f47", "f48", "f49", "f50", "f51",
2484 "f52", "f53", "f54", "f55", "f56", "f57",
2485 "f58", "f59", "f60", "f61", "f62", "f63"
2486 };
2487 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2488 }
2489
8d619c01
EBM
2490 /* Check if this is a Checkpointed DFP pseudo-register. */
2491 if (IS_CDFP_PSEUDOREG (tdep, regno))
2492 {
2493 static const char *const cdfp128_regnames[] = {
2494 "cdl0", "cdl1", "cdl2", "cdl3",
2495 "cdl4", "cdl5", "cdl6", "cdl7",
2496 "cdl8", "cdl9", "cdl10", "cdl11",
2497 "cdl12", "cdl13", "cdl14", "cdl15"
2498 };
2499 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2500 }
2501
2502 /* Check if this is a Checkpointed VSX pseudo-register. */
2503 if (IS_CVSX_PSEUDOREG (tdep, regno))
2504 {
2505 static const char *const cvsx_regnames[] = {
2506 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2507 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2508 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2509 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2510 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2511 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2512 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2513 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2514 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2515 };
2516 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2517 }
2518
2519 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2520 if (IS_CEFP_PSEUDOREG (tdep, regno))
2521 {
2522 static const char *const cefpr_regnames[] = {
2523 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2524 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2525 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2526 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2527 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2528 };
2529 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2530 }
2531
d93859e2 2532 return tdesc_register_name (gdbarch, regno);
7a78ae4e
ND
2533}
2534
7cc46491
DJ
2535/* Return the GDB type object for the "standard" data type of data in
2536 register N. */
7a78ae4e
ND
2537
2538static struct type *
7cc46491 2539rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
7a78ae4e 2540{
691d145a 2541 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2542
f949c649
TJB
2543 /* These are the e500 pseudo-registers. */
2544 if (IS_SPE_PSEUDOREG (tdep, regnum))
2545 return rs6000_builtin_type_vec64 (gdbarch);
8d619c01
EBM
2546 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2547 || IS_CDFP_PSEUDOREG (tdep, regnum))
604c2f83 2548 /* PPC decimal128 pseudo-registers. */
f949c649 2549 return builtin_type (gdbarch)->builtin_declong;
6f072a10
PFC
2550 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2551 return gdbarch_register_type (gdbarch,
2552 tdep->ppc_vr0_regnum
2553 + (regnum
2554 - tdep->ppc_v0_alias_regnum));
8d619c01
EBM
2555 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2556 || IS_CVSX_PSEUDOREG (tdep, regnum))
604c2f83
LM
2557 /* POWER7 VSX pseudo-registers. */
2558 return rs6000_builtin_type_vec128 (gdbarch);
8d619c01
EBM
2559 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2560 || IS_CEFP_PSEUDOREG (tdep, regnum))
604c2f83
LM
2561 /* POWER7 Extended FP pseudo-registers. */
2562 return builtin_type (gdbarch)->builtin_double;
8d619c01
EBM
2563 else
2564 internal_error (__FILE__, __LINE__,
2565 _("rs6000_pseudo_register_type: "
2566 "called on unexpected register '%s' (%d)"),
2567 gdbarch_register_name (gdbarch, regnum), regnum);
7a78ae4e
ND
2568}
2569
6f072a10
PFC
2570/* Check if REGNUM is a member of REGGROUP. We only need to handle
2571 the vX aliases for the vector registers by always returning false
2572 to avoid duplicated information in "info register vector/all",
2573 since the raw vrX registers will already show in these cases. For
2574 other pseudo-registers we use the default membership function. */
2575
2576static int
2577rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2578 struct reggroup *group)
2579{
2580 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2581
2582 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2583 return 0;
2584 else
2585 return default_register_reggroup_p (gdbarch, regnum, group);
2586}
2587
691d145a 2588/* The register format for RS/6000 floating point registers is always
64366f1c 2589 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2590
2591static int
0abe36f5
MD
2592rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2593 struct type *type)
7a78ae4e 2594{
0abe36f5 2595 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7cc46491
DJ
2596
2597 return (tdep->ppc_fp0_regnum >= 0
2598 && regnum >= tdep->ppc_fp0_regnum
2599 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
78134374 2600 && type->code () == TYPE_CODE_FLT
0dfff4cb
UW
2601 && TYPE_LENGTH (type)
2602 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
7a78ae4e
ND
2603}
2604
8dccd430 2605static int
691d145a 2606rs6000_register_to_value (struct frame_info *frame,
dda83cd7
SM
2607 int regnum,
2608 struct type *type,
2609 gdb_byte *to,
8dccd430 2610 int *optimizedp, int *unavailablep)
7a78ae4e 2611{
0dfff4cb 2612 struct gdbarch *gdbarch = get_frame_arch (frame);
0f068fb5 2613 gdb_byte from[PPC_MAX_REGISTER_SIZE];
691d145a 2614
78134374 2615 gdb_assert (type->code () == TYPE_CODE_FLT);
7a78ae4e 2616
8dccd430 2617 if (!get_frame_register_bytes (frame, regnum, 0,
bdec2917
LM
2618 gdb::make_array_view (from,
2619 register_size (gdbarch,
2620 regnum)),
2621 optimizedp, unavailablep))
8dccd430
PA
2622 return 0;
2623
3b2ca824
UW
2624 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2625 to, type);
8dccd430
PA
2626 *optimizedp = *unavailablep = 0;
2627 return 1;
691d145a 2628}
7a292a7a 2629
7a78ae4e 2630static void
691d145a 2631rs6000_value_to_register (struct frame_info *frame,
dda83cd7
SM
2632 int regnum,
2633 struct type *type,
2634 const gdb_byte *from)
7a78ae4e 2635{
0dfff4cb 2636 struct gdbarch *gdbarch = get_frame_arch (frame);
0f068fb5 2637 gdb_byte to[PPC_MAX_REGISTER_SIZE];
691d145a 2638
78134374 2639 gdb_assert (type->code () == TYPE_CODE_FLT);
691d145a 2640
3b2ca824
UW
2641 target_float_convert (from, type,
2642 to, builtin_type (gdbarch)->builtin_double);
691d145a 2643 put_frame_register (frame, regnum, to);
7a78ae4e 2644}
c906108c 2645
05d1431c
PA
2646 /* The type of a function that moves the value of REG between CACHE
2647 or BUF --- in either direction. */
2648typedef enum register_status (*move_ev_register_func) (struct regcache *,
2649 int, void *);
2650
6ced10dd
JB
2651/* Move SPE vector register values between a 64-bit buffer and the two
2652 32-bit raw register halves in a regcache. This function handles
2653 both splitting a 64-bit value into two 32-bit halves, and joining
2654 two halves into a whole 64-bit value, depending on the function
2655 passed as the MOVE argument.
2656
2657 EV_REG must be the number of an SPE evN vector register --- a
2658 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2659 64-bit buffer.
2660
2661 Call MOVE once for each 32-bit half of that register, passing
2662 REGCACHE, the number of the raw register corresponding to that
2663 half, and the address of the appropriate half of BUFFER.
2664
2665 For example, passing 'regcache_raw_read' as the MOVE function will
2666 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2667 'regcache_raw_supply' will supply the contents of BUFFER to the
2668 appropriate pair of raw registers in REGCACHE.
2669
2670 You may need to cast away some 'const' qualifiers when passing
2671 MOVE, since this function can't tell at compile-time which of
2672 REGCACHE or BUFFER is acting as the source of the data. If C had
2673 co-variant type qualifiers, ... */
05d1431c
PA
2674
2675static enum register_status
2676e500_move_ev_register (move_ev_register_func move,
2677 struct regcache *regcache, int ev_reg, void *buffer)
6ced10dd 2678{
ac7936df 2679 struct gdbarch *arch = regcache->arch ();
6ced10dd
JB
2680 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2681 int reg_index;
19ba03f4 2682 gdb_byte *byte_buffer = (gdb_byte *) buffer;
05d1431c 2683 enum register_status status;
6ced10dd 2684
5a9e69ba 2685 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
6ced10dd
JB
2686
2687 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2688
8b164abb 2689 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
6ced10dd 2690 {
05d1431c
PA
2691 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2692 byte_buffer);
2693 if (status == REG_VALID)
2694 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2695 byte_buffer + 4);
6ced10dd
JB
2696 }
2697 else
2698 {
05d1431c
PA
2699 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2700 if (status == REG_VALID)
2701 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2702 byte_buffer + 4);
6ced10dd 2703 }
05d1431c
PA
2704
2705 return status;
6ced10dd
JB
2706}
2707
05d1431c
PA
2708static enum register_status
2709do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2710{
10eaee5f 2711 regcache->raw_write (regnum, (const gdb_byte *) buffer);
05d1431c
PA
2712
2713 return REG_VALID;
2714}
2715
2716static enum register_status
849d0ba8
YQ
2717e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2718 int ev_reg, gdb_byte *buffer)
f949c649 2719{
849d0ba8
YQ
2720 struct gdbarch *arch = regcache->arch ();
2721 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2722 int reg_index;
2723 enum register_status status;
2724
2725 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2726
2727 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2728
2729 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2730 {
2731 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2732 buffer);
2733 if (status == REG_VALID)
2734 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2735 buffer + 4);
2736 }
2737 else
2738 {
2739 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2740 if (status == REG_VALID)
2741 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2742 buffer + 4);
2743 }
2744
2745 return status;
2746
f949c649
TJB
2747}
2748
2749static void
2750e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2751 int reg_nr, const gdb_byte *buffer)
2752{
05d1431c
PA
2753 e500_move_ev_register (do_regcache_raw_write, regcache,
2754 reg_nr, (void *) buffer);
f949c649
TJB
2755}
2756
604c2f83 2757/* Read method for DFP pseudo-registers. */
05d1431c 2758static enum register_status
849d0ba8 2759dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
f949c649
TJB
2760 int reg_nr, gdb_byte *buffer)
2761{
2762 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2763 int reg_index, fp0;
05d1431c 2764 enum register_status status;
f949c649 2765
8d619c01
EBM
2766 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2767 {
2768 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2769 fp0 = PPC_F0_REGNUM;
2770 }
2771 else
2772 {
2773 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2774
2775 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2776 fp0 = PPC_CF0_REGNUM;
2777 }
2778
f949c649
TJB
2779 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2780 {
2781 /* Read two FP registers to form a whole dl register. */
8d619c01 2782 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
05d1431c 2783 if (status == REG_VALID)
8d619c01
EBM
2784 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2785 buffer + 8);
f949c649
TJB
2786 }
2787 else
2788 {
8d619c01 2789 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
05d1431c 2790 if (status == REG_VALID)
8d619c01 2791 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
f949c649 2792 }
05d1431c
PA
2793
2794 return status;
f949c649
TJB
2795}
2796
604c2f83 2797/* Write method for DFP pseudo-registers. */
f949c649 2798static void
604c2f83 2799dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2800 int reg_nr, const gdb_byte *buffer)
2801{
2802 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2803 int reg_index, fp0;
2804
2805 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2806 {
2807 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2808 fp0 = PPC_F0_REGNUM;
2809 }
2810 else
2811 {
2812 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2813
2814 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2815 fp0 = PPC_CF0_REGNUM;
2816 }
f949c649
TJB
2817
2818 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2819 {
2820 /* Write each half of the dl register into a separate
8d619c01
EBM
2821 FP register. */
2822 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2823 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
f949c649
TJB
2824 }
2825 else
2826 {
8d619c01
EBM
2827 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2828 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
f949c649
TJB
2829 }
2830}
2831
6f072a10
PFC
2832/* Read method for the vX aliases for the raw vrX registers. */
2833
2834static enum register_status
2835v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2836 readable_regcache *regcache, int reg_nr,
2837 gdb_byte *buffer)
2838{
2839 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2840 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2841
2842 return regcache->raw_read (tdep->ppc_vr0_regnum
2843 + (reg_nr - tdep->ppc_v0_alias_regnum),
2844 buffer);
2845}
2846
2847/* Write method for the vX aliases for the raw vrX registers. */
2848
2849static void
2850v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2851 struct regcache *regcache,
2852 int reg_nr, const gdb_byte *buffer)
2853{
2854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2855 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2856
2857 regcache->raw_write (tdep->ppc_vr0_regnum
2858 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2859}
2860
604c2f83 2861/* Read method for POWER7 VSX pseudo-registers. */
05d1431c 2862static enum register_status
849d0ba8 2863vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
604c2f83
LM
2864 int reg_nr, gdb_byte *buffer)
2865{
2866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2867 int reg_index, vr0, fp0, vsr0_upper;
05d1431c 2868 enum register_status status;
604c2f83 2869
8d619c01
EBM
2870 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2871 {
2872 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2873 vr0 = PPC_VR0_REGNUM;
2874 fp0 = PPC_F0_REGNUM;
2875 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2876 }
2877 else
2878 {
2879 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2880
2881 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2882 vr0 = PPC_CVR0_REGNUM;
2883 fp0 = PPC_CF0_REGNUM;
2884 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2885 }
2886
604c2f83
LM
2887 /* Read the portion that overlaps the VMX registers. */
2888 if (reg_index > 31)
8d619c01 2889 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
604c2f83
LM
2890 else
2891 /* Read the portion that overlaps the FPR registers. */
2892 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2893 {
8d619c01 2894 status = regcache->raw_read (fp0 + reg_index, buffer);
05d1431c 2895 if (status == REG_VALID)
8d619c01
EBM
2896 status = regcache->raw_read (vsr0_upper + reg_index,
2897 buffer + 8);
604c2f83
LM
2898 }
2899 else
2900 {
8d619c01 2901 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
05d1431c 2902 if (status == REG_VALID)
8d619c01 2903 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
604c2f83 2904 }
05d1431c
PA
2905
2906 return status;
604c2f83
LM
2907}
2908
2909/* Write method for POWER7 VSX pseudo-registers. */
2910static void
2911vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2912 int reg_nr, const gdb_byte *buffer)
2913{
2914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2915 int reg_index, vr0, fp0, vsr0_upper;
2916
2917 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2918 {
2919 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2920 vr0 = PPC_VR0_REGNUM;
2921 fp0 = PPC_F0_REGNUM;
2922 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2923 }
2924 else
2925 {
2926 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2927
2928 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2929 vr0 = PPC_CVR0_REGNUM;
2930 fp0 = PPC_CF0_REGNUM;
2931 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2932 }
604c2f83
LM
2933
2934 /* Write the portion that overlaps the VMX registers. */
2935 if (reg_index > 31)
8d619c01 2936 regcache->raw_write (vr0 + reg_index - 32, buffer);
604c2f83
LM
2937 else
2938 /* Write the portion that overlaps the FPR registers. */
2939 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2940 {
8d619c01
EBM
2941 regcache->raw_write (fp0 + reg_index, buffer);
2942 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
604c2f83
LM
2943 }
2944 else
2945 {
8d619c01
EBM
2946 regcache->raw_write (fp0 + reg_index, buffer + 8);
2947 regcache->raw_write (vsr0_upper + reg_index, buffer);
604c2f83
LM
2948 }
2949}
2950
2951/* Read method for POWER7 Extended FP pseudo-registers. */
05d1431c 2952static enum register_status
8d619c01 2953efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
604c2f83
LM
2954 int reg_nr, gdb_byte *buffer)
2955{
2956 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2957 int reg_index, vr0;
2958
2959 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2960 {
2961 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2962 vr0 = PPC_VR0_REGNUM;
2963 }
2964 else
2965 {
2966 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2967
2968 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2969 vr0 = PPC_CVR0_REGNUM;
2970 }
2971
084ee545 2972 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2973
d9492458 2974 /* Read the portion that overlaps the VMX register. */
8d619c01
EBM
2975 return regcache->raw_read_part (vr0 + reg_index, offset,
2976 register_size (gdbarch, reg_nr),
849d0ba8 2977 buffer);
604c2f83
LM
2978}
2979
2980/* Write method for POWER7 Extended FP pseudo-registers. */
2981static void
8d619c01 2982efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
604c2f83
LM
2983 int reg_nr, const gdb_byte *buffer)
2984{
2985 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2986 int reg_index, vr0;
084ee545 2987 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2988
8d619c01
EBM
2989 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2990 {
2991 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2992 vr0 = PPC_VR0_REGNUM;
2993 }
2994 else
2995 {
2996 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2997
2998 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2999 vr0 = PPC_CVR0_REGNUM;
3000
3001 /* The call to raw_write_part fails silently if the initial read
3002 of the read-update-write sequence returns an invalid status,
3003 so we check this manually and throw an error if needed. */
3004 regcache->raw_update (vr0 + reg_index);
3005 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
3006 error (_("Cannot write to the checkpointed EFP register, "
3007 "the corresponding vector register is unavailable."));
3008 }
3009
d9492458 3010 /* Write the portion that overlaps the VMX register. */
8d619c01 3011 regcache->raw_write_part (vr0 + reg_index, offset,
4f0420fd 3012 register_size (gdbarch, reg_nr), buffer);
604c2f83
LM
3013}
3014
05d1431c 3015static enum register_status
0df8b418 3016rs6000_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 3017 readable_regcache *regcache,
f949c649 3018 int reg_nr, gdb_byte *buffer)
c8001721 3019{
ac7936df 3020 struct gdbarch *regcache_arch = regcache->arch ();
c8001721
EZ
3021 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3022
6ced10dd 3023 gdb_assert (regcache_arch == gdbarch);
f949c649 3024
5a9e69ba 3025 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
05d1431c 3026 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3027 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3028 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
05d1431c 3029 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6f072a10
PFC
3030 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3031 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
3032 buffer);
8d619c01
EBM
3033 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3034 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
05d1431c 3035 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3036 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3037 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3038 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6ced10dd 3039 else
a44bddec 3040 internal_error (__FILE__, __LINE__,
f949c649
TJB
3041 _("rs6000_pseudo_register_read: "
3042 "called on unexpected register '%s' (%d)"),
3043 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
3044}
3045
3046static void
f949c649
TJB
3047rs6000_pseudo_register_write (struct gdbarch *gdbarch,
3048 struct regcache *regcache,
3049 int reg_nr, const gdb_byte *buffer)
c8001721 3050{
ac7936df 3051 struct gdbarch *regcache_arch = regcache->arch ();
c8001721
EZ
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3053
6ced10dd 3054 gdb_assert (regcache_arch == gdbarch);
f949c649 3055
5a9e69ba 3056 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
f949c649 3057 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3058 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3059 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
604c2f83 3060 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6f072a10
PFC
3061 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3062 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3063 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3064 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
604c2f83 3065 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3066 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3067 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3068 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6ced10dd 3069 else
a44bddec 3070 internal_error (__FILE__, __LINE__,
f949c649
TJB
3071 _("rs6000_pseudo_register_write: "
3072 "called on unexpected register '%s' (%d)"),
3073 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
3074}
3075
8d619c01
EBM
3076/* Set the register mask in AX with the registers that form the DFP or
3077 checkpointed DFP pseudo-register REG_NR. */
3078
3079static void
3080dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3081 struct agent_expr *ax, int reg_nr)
3082{
3083 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3084 int reg_index, fp0;
3085
3086 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3087 {
3088 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3089 fp0 = PPC_F0_REGNUM;
3090 }
3091 else
3092 {
3093 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3094
3095 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3096 fp0 = PPC_CF0_REGNUM;
3097 }
3098
3099 ax_reg_mask (ax, fp0 + 2 * reg_index);
3100 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3101}
3102
6f072a10
PFC
3103/* Set the register mask in AX with the raw vector register that
3104 corresponds to its REG_NR alias. */
3105
3106static void
3107v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3108 struct agent_expr *ax, int reg_nr)
3109{
3110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3111 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3112
3113 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3114 + (reg_nr - tdep->ppc_v0_alias_regnum));
3115}
3116
8d619c01
EBM
3117/* Set the register mask in AX with the registers that form the VSX or
3118 checkpointed VSX pseudo-register REG_NR. */
3119
3120static void
3121vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3122 struct agent_expr *ax, int reg_nr)
3123{
3124 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3125 int reg_index, vr0, fp0, vsr0_upper;
3126
3127 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3128 {
3129 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3130 vr0 = PPC_VR0_REGNUM;
3131 fp0 = PPC_F0_REGNUM;
3132 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3133 }
3134 else
3135 {
3136 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3137
3138 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3139 vr0 = PPC_CVR0_REGNUM;
3140 fp0 = PPC_CF0_REGNUM;
3141 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3142 }
3143
3144 if (reg_index > 31)
3145 {
3146 ax_reg_mask (ax, vr0 + reg_index - 32);
3147 }
3148 else
3149 {
3150 ax_reg_mask (ax, fp0 + reg_index);
3151 ax_reg_mask (ax, vsr0_upper + reg_index);
3152 }
3153}
3154
3155/* Set the register mask in AX with the register that corresponds to
3156 the EFP or checkpointed EFP pseudo-register REG_NR. */
3157
3158static void
3159efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3160 struct agent_expr *ax, int reg_nr)
3161{
3162 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3163 int reg_index, vr0;
3164
3165 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3166 {
3167 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3168 vr0 = PPC_VR0_REGNUM;
3169 }
3170 else
3171 {
3172 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3173
3174 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3175 vr0 = PPC_CVR0_REGNUM;
3176 }
3177
3178 ax_reg_mask (ax, vr0 + reg_index);
3179}
3180
2a2fa07b
MK
3181static int
3182rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3183 struct agent_expr *ax, int reg_nr)
3184{
3185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3186 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3187 {
3188 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3189 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3190 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3191 }
8d619c01
EBM
3192 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3193 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3194 {
8d619c01 3195 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b 3196 }
6f072a10
PFC
3197 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3198 {
3199 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3200 }
8d619c01
EBM
3201 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3202 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3203 {
8d619c01 3204 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b 3205 }
8d619c01
EBM
3206 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3207 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3208 {
8d619c01 3209 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b
MK
3210 }
3211 else
3212 internal_error (__FILE__, __LINE__,
3213 _("rs6000_pseudo_register_collect: "
3214 "called on unexpected register '%s' (%d)"),
3215 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3216 return 0;
3217}
3218
3219
a67914de
MK
3220static void
3221rs6000_gen_return_address (struct gdbarch *gdbarch,
3222 struct agent_expr *ax, struct axs_value *value,
3223 CORE_ADDR scope)
3224{
3225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3226 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3227 value->kind = axs_lvalue_register;
3228 value->u.reg = tdep->ppc_lr_regnum;
3229}
3230
3231
18ed0c4e 3232/* Convert a DBX STABS register number to a GDB register number. */
c8001721 3233static int
d3f73121 3234rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
c8001721 3235{
d3f73121 3236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c8001721 3237
9f744501
JB
3238 if (0 <= num && num <= 31)
3239 return tdep->ppc_gp0_regnum + num;
3240 else if (32 <= num && num <= 63)
383f0f5b
JB
3241 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3242 specifies registers the architecture doesn't have? Our
3243 callers don't check the value we return. */
366f009f 3244 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
3245 else if (77 <= num && num <= 108)
3246 return tdep->ppc_vr0_regnum + (num - 77);
9f744501 3247 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 3248 return tdep->ppc_ev0_upper_regnum + (num - 1200);
9f744501
JB
3249 else
3250 switch (num)
3251 {
3252 case 64:
dda83cd7 3253 return tdep->ppc_mq_regnum;
9f744501 3254 case 65:
dda83cd7 3255 return tdep->ppc_lr_regnum;
9f744501 3256 case 66:
dda83cd7 3257 return tdep->ppc_ctr_regnum;
9f744501 3258 case 76:
dda83cd7 3259 return tdep->ppc_xer_regnum;
9f744501 3260 case 109:
dda83cd7 3261 return tdep->ppc_vrsave_regnum;
18ed0c4e 3262 case 110:
dda83cd7 3263 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 3264 case 111:
dda83cd7 3265 return tdep->ppc_acc_regnum;
867e2dc5 3266 case 112:
dda83cd7 3267 return tdep->ppc_spefscr_regnum;
9f744501 3268 default:
dda83cd7 3269 return num;
9f744501 3270 }
18ed0c4e 3271}
9f744501 3272
9f744501 3273
18ed0c4e
JB
3274/* Convert a Dwarf 2 register number to a GDB register number. */
3275static int
d3f73121 3276rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
18ed0c4e 3277{
d3f73121 3278 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f744501 3279
18ed0c4e
JB
3280 if (0 <= num && num <= 31)
3281 return tdep->ppc_gp0_regnum + num;
3282 else if (32 <= num && num <= 63)
3283 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3284 specifies registers the architecture doesn't have? Our
3285 callers don't check the value we return. */
3286 return tdep->ppc_fp0_regnum + (num - 32);
3287 else if (1124 <= num && num < 1124 + 32)
3288 return tdep->ppc_vr0_regnum + (num - 1124);
3289 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 3290 return tdep->ppc_ev0_upper_regnum + (num - 1200);
18ed0c4e
JB
3291 else
3292 switch (num)
3293 {
a489f789
AS
3294 case 64:
3295 return tdep->ppc_cr_regnum;
18ed0c4e 3296 case 67:
dda83cd7 3297 return tdep->ppc_vrsave_regnum - 1; /* vscr */
18ed0c4e 3298 case 99:
dda83cd7 3299 return tdep->ppc_acc_regnum;
18ed0c4e 3300 case 100:
dda83cd7 3301 return tdep->ppc_mq_regnum;
18ed0c4e 3302 case 101:
dda83cd7 3303 return tdep->ppc_xer_regnum;
18ed0c4e 3304 case 108:
dda83cd7 3305 return tdep->ppc_lr_regnum;
18ed0c4e 3306 case 109:
dda83cd7 3307 return tdep->ppc_ctr_regnum;
18ed0c4e 3308 case 356:
dda83cd7 3309 return tdep->ppc_vrsave_regnum;
18ed0c4e 3310 case 612:
dda83cd7 3311 return tdep->ppc_spefscr_regnum;
18ed0c4e 3312 }
aa2045e7
SM
3313
3314 /* Unknown DWARF register number. */
3315 return -1;
2188cbdd
EZ
3316}
3317
4fc771b8
DJ
3318/* Translate a .eh_frame register to DWARF register, or adjust a
3319 .debug_frame register. */
3320
3321static int
3322rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3323{
3324 /* GCC releases before 3.4 use GCC internal register numbering in
3325 .debug_frame (and .debug_info, et cetera). The numbering is
3326 different from the standard SysV numbering for everything except
3327 for GPRs and FPRs. We can not detect this problem in most cases
3328 - to get accurate debug info for variables living in lr, ctr, v0,
3329 et cetera, use a newer version of GCC. But we must detect
3330 one important case - lr is in column 65 in .debug_frame output,
3331 instead of 108.
3332
3333 GCC 3.4, and the "hammer" branch, have a related problem. They
3334 record lr register saves in .debug_frame as 108, but still record
3335 the return column as 65. We fix that up too.
3336
3337 We can do this because 65 is assigned to fpsr, and GCC never
3338 generates debug info referring to it. To add support for
3339 handwritten debug info that restores fpsr, we would need to add a
3340 producer version check to this. */
3341 if (!eh_frame_p)
3342 {
3343 if (num == 65)
3344 return 108;
3345 else
3346 return num;
3347 }
3348
3349 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3350 internal register numbering; translate that to the standard DWARF2
3351 register numbering. */
3352 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3353 return num;
3354 else if (68 <= num && num <= 75) /* cr0-cr8 */
3355 return num - 68 + 86;
3356 else if (77 <= num && num <= 108) /* vr0-vr31 */
3357 return num - 77 + 1124;
3358 else
3359 switch (num)
3360 {
3361 case 64: /* mq */
3362 return 100;
3363 case 65: /* lr */
3364 return 108;
3365 case 66: /* ctr */
3366 return 109;
3367 case 76: /* xer */
3368 return 101;
3369 case 109: /* vrsave */
3370 return 356;
3371 case 110: /* vscr */
3372 return 67;
3373 case 111: /* spe_acc */
3374 return 99;
3375 case 112: /* spefscr */
3376 return 612;
3377 default:
3378 return num;
3379 }
3380}
c906108c 3381\f
c5aa993b 3382
7a78ae4e 3383/* Handling the various POWER/PowerPC variants. */
c906108c 3384
c906108c 3385/* Information about a particular processor variant. */
7a78ae4e 3386
675127ec 3387struct ppc_variant
c5aa993b
JM
3388 {
3389 /* Name of this variant. */
a121b7c1 3390 const char *name;
c906108c 3391
c5aa993b 3392 /* English description of the variant. */
a121b7c1 3393 const char *description;
c906108c 3394
64366f1c 3395 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
3396 enum bfd_architecture arch;
3397
64366f1c 3398 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
3399 unsigned long mach;
3400
7cc46491
DJ
3401 /* Target description for this variant. */
3402 struct target_desc **tdesc;
c5aa993b 3403 };
c906108c 3404
675127ec 3405static struct ppc_variant variants[] =
c906108c 3406{
7a78ae4e 3407 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
7284e1be 3408 bfd_mach_ppc, &tdesc_powerpc_altivec32},
7a78ae4e 3409 {"power", "POWER user-level", bfd_arch_rs6000,
7cc46491 3410 bfd_mach_rs6k, &tdesc_rs6000},
7a78ae4e 3411 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
7cc46491 3412 bfd_mach_ppc_403, &tdesc_powerpc_403},
4d09ffea
MS
3413 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3414 bfd_mach_ppc_405, &tdesc_powerpc_405},
7a78ae4e 3415 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
7cc46491 3416 bfd_mach_ppc_601, &tdesc_powerpc_601},
7a78ae4e 3417 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
7cc46491 3418 bfd_mach_ppc_602, &tdesc_powerpc_602},
7a78ae4e 3419 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
7cc46491 3420 bfd_mach_ppc_603, &tdesc_powerpc_603},
7a78ae4e 3421 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
7cc46491 3422 604, &tdesc_powerpc_604},
7a78ae4e 3423 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
7cc46491 3424 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
7a78ae4e 3425 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
7cc46491 3426 bfd_mach_ppc_505, &tdesc_powerpc_505},
7a78ae4e 3427 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
7cc46491 3428 bfd_mach_ppc_860, &tdesc_powerpc_860},
7a78ae4e 3429 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
7cc46491 3430 bfd_mach_ppc_750, &tdesc_powerpc_750},
1fcc0bb8 3431 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
7cc46491 3432 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
c8001721 3433 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
7cc46491 3434 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
7a78ae4e 3435
5d57ee30
KB
3436 /* 64-bit */
3437 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
7284e1be 3438 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
7a78ae4e 3439 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
7cc46491 3440 bfd_mach_ppc_620, &tdesc_powerpc_64},
5d57ee30 3441 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
7cc46491 3442 bfd_mach_ppc_630, &tdesc_powerpc_64},
7a78ae4e 3443 {"a35", "PowerPC A35", bfd_arch_powerpc,
7cc46491 3444 bfd_mach_ppc_a35, &tdesc_powerpc_64},
5d57ee30 3445 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
7cc46491 3446 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
5d57ee30 3447 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
7cc46491 3448 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
5d57ee30 3449
64366f1c 3450 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 3451 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
7cc46491 3452 bfd_mach_rs6k_rs1, &tdesc_rs6000},
7a78ae4e 3453 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
7cc46491 3454 bfd_mach_rs6k_rsc, &tdesc_rs6000},
7a78ae4e 3455 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
7cc46491 3456 bfd_mach_rs6k_rs2, &tdesc_rs6000},
7a78ae4e 3457
3e45d68b 3458 {0, 0, (enum bfd_architecture) 0, 0, 0}
c906108c
SS
3459};
3460
7a78ae4e 3461/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 3462 MACH. If no such variant exists, return null. */
c906108c 3463
675127ec 3464static const struct ppc_variant *
7a78ae4e 3465find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 3466{
675127ec 3467 const struct ppc_variant *v;
c5aa993b 3468
7a78ae4e
ND
3469 for (v = variants; v->name; v++)
3470 if (arch == v->arch && mach == v->mach)
3471 return v;
c906108c 3472
7a78ae4e 3473 return NULL;
c906108c 3474}
9364a0ef 3475
7a78ae4e 3476\f
61a65099
KB
3477
3478struct rs6000_frame_cache
3479{
3480 CORE_ADDR base;
3481 CORE_ADDR initial_sp;
098caef4 3482 trad_frame_saved_reg *saved_regs;
50ae56ec
WW
3483
3484 /* Set BASE_P to true if this frame cache is properly initialized.
3485 Otherwise set to false because some registers or memory cannot
3486 collected. */
3487 int base_p;
3488 /* Cache PC for building unavailable frame. */
3489 CORE_ADDR pc;
61a65099
KB
3490};
3491
3492static struct rs6000_frame_cache *
1af5d7ce 3493rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
61a65099
KB
3494{
3495 struct rs6000_frame_cache *cache;
1af5d7ce 3496 struct gdbarch *gdbarch = get_frame_arch (this_frame);
61a65099 3497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 3498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61a65099
KB
3499 struct rs6000_framedata fdata;
3500 int wordsize = tdep->wordsize;
338435ef 3501 CORE_ADDR func = 0, pc = 0;
61a65099
KB
3502
3503 if ((*this_cache) != NULL)
19ba03f4 3504 return (struct rs6000_frame_cache *) (*this_cache);
61a65099
KB
3505 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3506 (*this_cache) = cache;
50ae56ec 3507 cache->pc = 0;
1af5d7ce 3508 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61a65099 3509
a70b8144 3510 try
50ae56ec
WW
3511 {
3512 func = get_frame_func (this_frame);
3513 cache->pc = func;
3514 pc = get_frame_pc (this_frame);
3515 skip_prologue (gdbarch, func, pc, &fdata);
3516
3517 /* Figure out the parent's stack pointer. */
3518
3519 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3520 address of the current frame. Things might be easier if the
3521 ->frame pointed to the outer-most address of the frame. In
3522 the mean time, the address of the prev frame is used as the
3523 base address of this frame. */
3524 cache->base = get_frame_register_unsigned
3525 (this_frame, gdbarch_sp_regnum (gdbarch));
3526 }
230d2906 3527 catch (const gdb_exception_error &ex)
50ae56ec
WW
3528 {
3529 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 3530 throw;
1ed0c2a4 3531 return (struct rs6000_frame_cache *) (*this_cache);
50ae56ec 3532 }
e10b1c4c
DJ
3533
3534 /* If the function appears to be frameless, check a couple of likely
3535 indicators that we have simply failed to find the frame setup.
3536 Two common cases of this are missing symbols (i.e.
ef02daa9 3537 get_frame_func returns the wrong address or 0), and assembly
e10b1c4c
DJ
3538 stubs which have a fast exit path but set up a frame on the slow
3539 path.
3540
3541 If the LR appears to return to this function, then presume that
3542 we have an ABI compliant frame that we failed to find. */
3543 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3544 {
e10b1c4c
DJ
3545 CORE_ADDR saved_lr;
3546 int make_frame = 0;
3547
1af5d7ce 3548 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
e10b1c4c
DJ
3549 if (func == 0 && saved_lr == pc)
3550 make_frame = 1;
3551 else if (func != 0)
3552 {
3553 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3554 if (func == saved_func)
3555 make_frame = 1;
3556 }
3557
3558 if (make_frame)
3559 {
3560 fdata.frameless = 0;
de6a76fd 3561 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3562 }
61a65099 3563 }
e10b1c4c
DJ
3564
3565 if (!fdata.frameless)
9d9bf2df
EBM
3566 {
3567 /* Frameless really means stackless. */
cc2c4da8 3568 ULONGEST backchain;
9d9bf2df 3569
cc2c4da8
MK
3570 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3571 byte_order, &backchain))
dda83cd7 3572 cache->base = (CORE_ADDR) backchain;
9d9bf2df 3573 }
e10b1c4c 3574
a9a87d35 3575 cache->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (cache->base);
61a65099
KB
3576
3577 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3578 All fpr's from saved_fpr to fp31 are saved. */
3579
3580 if (fdata.saved_fpr >= 0)
3581 {
3582 int i;
3583 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3584
3585 /* If skip_prologue says floating-point registers were saved,
dda83cd7
SM
3586 but the current architecture has no floating-point registers,
3587 then that's strange. But we have no indices to even record
3588 the addresses under, so we just ignore it. */
383f0f5b 3589 if (ppc_floating_point_unit_p (gdbarch))
dda83cd7
SM
3590 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3591 {
098caef4 3592 cache->saved_regs[tdep->ppc_fp0_regnum + i].set_addr (fpr_addr);
dda83cd7
SM
3593 fpr_addr += 8;
3594 }
61a65099
KB
3595 }
3596
3597 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
46a9b8ed
DJ
3598 All gpr's from saved_gpr to gpr31 are saved (except during the
3599 prologue). */
61a65099
KB
3600
3601 if (fdata.saved_gpr >= 0)
3602 {
3603 int i;
3604 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3605 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099 3606 {
46a9b8ed 3607 if (fdata.gpr_mask & (1U << i))
098caef4 3608 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (gpr_addr);
61a65099
KB
3609 gpr_addr += wordsize;
3610 }
3611 }
3612
3613 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3614 All vr's from saved_vr to vr31 are saved. */
3615 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3616 {
3617 if (fdata.saved_vr >= 0)
3618 {
3619 int i;
3620 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3621 for (i = fdata.saved_vr; i < 32; i++)
3622 {
098caef4 3623 cache->saved_regs[tdep->ppc_vr0_regnum + i].set_addr (vr_addr);
61a65099
KB
3624 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3625 }
3626 }
3627 }
3628
3629 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
0df8b418 3630 All vr's from saved_ev to ev31 are saved. ????? */
5a9e69ba 3631 if (tdep->ppc_ev0_regnum != -1)
61a65099
KB
3632 {
3633 if (fdata.saved_ev >= 0)
3634 {
3635 int i;
3636 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
dea80df0
MR
3637 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3638
063715bf 3639 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099 3640 {
098caef4
LM
3641 cache->saved_regs[tdep->ppc_ev0_regnum + i].set_addr (ev_addr);
3642 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (ev_addr
3643 + off);
61a65099 3644 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
dea80df0 3645 }
61a65099
KB
3646 }
3647 }
3648
3649 /* If != 0, fdata.cr_offset is the offset from the frame that
3650 holds the CR. */
3651 if (fdata.cr_offset != 0)
098caef4
LM
3652 cache->saved_regs[tdep->ppc_cr_regnum].set_addr (cache->base
3653 + fdata.cr_offset);
61a65099
KB
3654
3655 /* If != 0, fdata.lr_offset is the offset from the frame that
3656 holds the LR. */
3657 if (fdata.lr_offset != 0)
098caef4
LM
3658 cache->saved_regs[tdep->ppc_lr_regnum].set_addr (cache->base
3659 + fdata.lr_offset);
46a9b8ed 3660 else if (fdata.lr_register != -1)
098caef4 3661 cache->saved_regs[tdep->ppc_lr_regnum].set_realreg (fdata.lr_register);
61a65099 3662 /* The PC is found in the link register. */
8b164abb 3663 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3e8c568d 3664 cache->saved_regs[tdep->ppc_lr_regnum];
61a65099
KB
3665
3666 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3667 holds the VRSAVE. */
3668 if (fdata.vrsave_offset != 0)
098caef4
LM
3669 cache->saved_regs[tdep->ppc_vrsave_regnum].set_addr (cache->base
3670 + fdata.vrsave_offset);
61a65099
KB
3671
3672 if (fdata.alloca_reg < 0)
3673 /* If no alloca register used, then fi->frame is the value of the
3674 %sp for this frame, and it is good enough. */
1af5d7ce
UW
3675 cache->initial_sp
3676 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
61a65099 3677 else
1af5d7ce
UW
3678 cache->initial_sp
3679 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
61a65099 3680
50ae56ec 3681 cache->base_p = 1;
61a65099
KB
3682 return cache;
3683}
3684
3685static void
1af5d7ce 3686rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
61a65099
KB
3687 struct frame_id *this_id)
3688{
1af5d7ce 3689 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3690 this_cache);
50ae56ec
WW
3691
3692 if (!info->base_p)
3693 {
3694 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3695 return;
3696 }
3697
5b197912
UW
3698 /* This marks the outermost frame. */
3699 if (info->base == 0)
3700 return;
3701
1af5d7ce 3702 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
61a65099
KB
3703}
3704
1af5d7ce
UW
3705static struct value *
3706rs6000_frame_prev_register (struct frame_info *this_frame,
3707 void **this_cache, int regnum)
61a65099 3708{
1af5d7ce 3709 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3710 this_cache);
1af5d7ce 3711 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61a65099
KB
3712}
3713
3714static const struct frame_unwind rs6000_frame_unwind =
3715{
3716 NORMAL_FRAME,
8fbca658 3717 default_frame_unwind_stop_reason,
61a65099 3718 rs6000_frame_this_id,
1af5d7ce
UW
3719 rs6000_frame_prev_register,
3720 NULL,
3721 default_frame_sniffer
61a65099 3722};
2608dbf8 3723
ddeca1df
WW
3724/* Allocate and initialize a frame cache for an epilogue frame.
3725 SP is restored and prev-PC is stored in LR. */
3726
2608dbf8
WW
3727static struct rs6000_frame_cache *
3728rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3729{
2608dbf8
WW
3730 struct rs6000_frame_cache *cache;
3731 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3732 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2608dbf8
WW
3733
3734 if (*this_cache)
19ba03f4 3735 return (struct rs6000_frame_cache *) *this_cache;
2608dbf8
WW
3736
3737 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3738 (*this_cache) = cache;
3739 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3740
a70b8144 3741 try
2608dbf8
WW
3742 {
3743 /* At this point the stack looks as if we just entered the
3744 function, and the return address is stored in LR. */
3745 CORE_ADDR sp, lr;
3746
3747 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3748 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3749
3750 cache->base = sp;
3751 cache->initial_sp = sp;
3752
a9a87d35 3753 cache->saved_regs[gdbarch_pc_regnum (gdbarch)].set_value (lr);
2608dbf8 3754 }
230d2906 3755 catch (const gdb_exception_error &ex)
7556d4a4
PA
3756 {
3757 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 3758 throw;
7556d4a4 3759 }
2608dbf8
WW
3760
3761 return cache;
3762}
3763
ddeca1df
WW
3764/* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3765 Return the frame ID of an epilogue frame. */
3766
2608dbf8
WW
3767static void
3768rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3769 void **this_cache, struct frame_id *this_id)
3770{
3771 CORE_ADDR pc;
3772 struct rs6000_frame_cache *info =
3773 rs6000_epilogue_frame_cache (this_frame, this_cache);
3774
3775 pc = get_frame_func (this_frame);
3776 if (info->base == 0)
3777 (*this_id) = frame_id_build_unavailable_stack (pc);
3778 else
3779 (*this_id) = frame_id_build (info->base, pc);
3780}
3781
ddeca1df
WW
3782/* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3783 Return the register value of REGNUM in previous frame. */
3784
2608dbf8
WW
3785static struct value *
3786rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3787 void **this_cache, int regnum)
3788{
3789 struct rs6000_frame_cache *info =
3790 rs6000_epilogue_frame_cache (this_frame, this_cache);
3791 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3792}
3793
ddeca1df
WW
3794/* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3795 Check whether this an epilogue frame. */
3796
2608dbf8
WW
3797static int
3798rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3799 struct frame_info *this_frame,
3800 void **this_prologue_cache)
3801{
3802 if (frame_relative_level (this_frame) == 0)
3803 return rs6000_in_function_epilogue_frame_p (this_frame,
3804 get_frame_arch (this_frame),
3805 get_frame_pc (this_frame));
3806 else
3807 return 0;
3808}
3809
ddeca1df
WW
3810/* Frame unwinder for epilogue frame. This is required for reverse step-over
3811 a function without debug information. */
3812
2608dbf8
WW
3813static const struct frame_unwind rs6000_epilogue_frame_unwind =
3814{
3815 NORMAL_FRAME,
3816 default_frame_unwind_stop_reason,
3817 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3818 NULL,
3819 rs6000_epilogue_frame_sniffer
3820};
61a65099
KB
3821\f
3822
3823static CORE_ADDR
1af5d7ce 3824rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
61a65099 3825{
1af5d7ce 3826 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099
KB
3827 this_cache);
3828 return info->initial_sp;
3829}
3830
3831static const struct frame_base rs6000_frame_base = {
3832 &rs6000_frame_unwind,
3833 rs6000_frame_base_address,
3834 rs6000_frame_base_address,
3835 rs6000_frame_base_address
3836};
3837
3838static const struct frame_base *
1af5d7ce 3839rs6000_frame_base_sniffer (struct frame_info *this_frame)
61a65099
KB
3840{
3841 return &rs6000_frame_base;
3842}
3843
9274a07c
LM
3844/* DWARF-2 frame support. Used to handle the detection of
3845 clobbered registers during function calls. */
3846
3847static void
3848ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3849 struct dwarf2_frame_state_reg *reg,
4a4e5149 3850 struct frame_info *this_frame)
9274a07c
LM
3851{
3852 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3853
3854 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3855 non-volatile registers. We will use the same code for both. */
3856
3857 /* Call-saved GP registers. */
3858 if ((regnum >= tdep->ppc_gp0_regnum + 14
3859 && regnum <= tdep->ppc_gp0_regnum + 31)
3860 || (regnum == tdep->ppc_gp0_regnum + 1))
3861 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3862
3863 /* Call-clobbered GP registers. */
3864 if ((regnum >= tdep->ppc_gp0_regnum + 3
3865 && regnum <= tdep->ppc_gp0_regnum + 12)
3866 || (regnum == tdep->ppc_gp0_regnum))
3867 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3868
3869 /* Deal with FP registers, if supported. */
3870 if (tdep->ppc_fp0_regnum >= 0)
3871 {
3872 /* Call-saved FP registers. */
3873 if ((regnum >= tdep->ppc_fp0_regnum + 14
3874 && regnum <= tdep->ppc_fp0_regnum + 31))
3875 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3876
3877 /* Call-clobbered FP registers. */
3878 if ((regnum >= tdep->ppc_fp0_regnum
3879 && regnum <= tdep->ppc_fp0_regnum + 13))
3880 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3881 }
3882
3883 /* Deal with ALTIVEC registers, if supported. */
3884 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3885 {
3886 /* Call-saved Altivec registers. */
3887 if ((regnum >= tdep->ppc_vr0_regnum + 20
3888 && regnum <= tdep->ppc_vr0_regnum + 31)
3889 || regnum == tdep->ppc_vrsave_regnum)
3890 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3891
3892 /* Call-clobbered Altivec registers. */
3893 if ((regnum >= tdep->ppc_vr0_regnum
3894 && regnum <= tdep->ppc_vr0_regnum + 19))
3895 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3896 }
3897
3898 /* Handle PC register and Stack Pointer correctly. */
40a6adc1 3899 if (regnum == gdbarch_pc_regnum (gdbarch))
9274a07c 3900 reg->how = DWARF2_FRAME_REG_RA;
40a6adc1 3901 else if (regnum == gdbarch_sp_regnum (gdbarch))
9274a07c
LM
3902 reg->how = DWARF2_FRAME_REG_CFA;
3903}
3904
3905
74af9197
NF
3906/* Return true if a .gnu_attributes section exists in BFD and it
3907 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3908 section exists in BFD and it indicates that SPE extensions are in
3909 use. Check the .gnu.attributes section first, as the binary might be
3910 compiled for SPE, but not actually using SPE instructions. */
3911
3912static int
3913bfd_uses_spe_extensions (bfd *abfd)
3914{
3915 asection *sect;
3916 gdb_byte *contents = NULL;
3917 bfd_size_type size;
3918 gdb_byte *ptr;
3919 int success = 0;
74af9197
NF
3920
3921 if (!abfd)
3922 return 0;
3923
50a99728 3924#ifdef HAVE_ELF
74af9197
NF
3925 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3926 could be using the SPE vector abi without actually using any spe
3927 bits whatsoever. But it's close enough for now. */
17cbafdb
SM
3928 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3929 Tag_GNU_Power_ABI_Vector);
74af9197
NF
3930 if (vector_abi == 3)
3931 return 1;
50a99728 3932#endif
74af9197
NF
3933
3934 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3935 if (!sect)
3936 return 0;
3937
fd361982 3938 size = bfd_section_size (sect);
224c3ddb 3939 contents = (gdb_byte *) xmalloc (size);
74af9197
NF
3940 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3941 {
3942 xfree (contents);
3943 return 0;
3944 }
3945
3946 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3947
3948 struct {
3949 uint32 name_len;
3950 uint32 data_len;
3951 uint32 type;
3952 char name[name_len rounded up to 4-byte alignment];
3953 char data[data_len];
3954 };
3955
3956 Technically, there's only supposed to be one such structure in a
3957 given apuinfo section, but the linker is not always vigilant about
3958 merging apuinfo sections from input files. Just go ahead and parse
3959 them all, exiting early when we discover the binary uses SPE
3960 insns.
3961
3962 It's not specified in what endianness the information in this
3963 section is stored. Assume that it's the endianness of the BFD. */
3964 ptr = contents;
3965 while (1)
3966 {
3967 unsigned int name_len;
3968 unsigned int data_len;
3969 unsigned int type;
3970
3971 /* If we can't read the first three fields, we're done. */
3972 if (size < 12)
3973 break;
3974
3975 name_len = bfd_get_32 (abfd, ptr);
3976 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3977 data_len = bfd_get_32 (abfd, ptr + 4);
3978 type = bfd_get_32 (abfd, ptr + 8);
3979 ptr += 12;
3980
3981 /* The name must be "APUinfo\0". */
3982 if (name_len != 8
3983 && strcmp ((const char *) ptr, "APUinfo") != 0)
3984 break;
3985 ptr += name_len;
3986
3987 /* The type must be 2. */
3988 if (type != 2)
3989 break;
3990
3991 /* The data is stored as a series of uint32. The upper half of
3992 each uint32 indicates the particular APU used and the lower
3993 half indicates the revision of that APU. We just care about
3994 the upper half. */
3995
3996 /* Not 4-byte quantities. */
3997 if (data_len & 3U)
3998 break;
3999
4000 while (data_len)
4001 {
4002 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
4003 unsigned int apu = apuinfo >> 16;
4004 ptr += 4;
4005 data_len -= 4;
4006
4007 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
4008 either. */
4009 if (apu == 0x100 || apu == 0x101)
4010 {
4011 success = 1;
4012 data_len = 0;
4013 }
4014 }
4015
4016 if (success)
4017 break;
4018 }
4019
4020 xfree (contents);
4021 return success;
4022}
4023
b4cdae6f
WW
4024/* These are macros for parsing instruction fields (I.1.6.28) */
4025
4026#define PPC_FIELD(value, from, len) \
4027 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
4028#define PPC_SEXT(v, bs) \
4029 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
4030 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
4031 - ((CORE_ADDR) 1 << ((bs) - 1)))
4032#define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
4033#define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
4034#define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
4035#define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
4036#define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
4037#define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
4038#define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
4039#define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
4040#define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
4041#define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
4042 | (PPC_FIELD (insn, 16, 5) << 5))
4043#define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
4044#define PPC_T(insn) PPC_FIELD (insn, 6, 5)
4045#define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
4046#define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
6ec2b213 4047#define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
b4cdae6f
WW
4048#define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
4049#define PPC_OE(insn) PPC_BIT (insn, 21)
4050#define PPC_RC(insn) PPC_BIT (insn, 31)
4051#define PPC_Rc(insn) PPC_BIT (insn, 21)
4052#define PPC_LK(insn) PPC_BIT (insn, 31)
4053#define PPC_TX(insn) PPC_BIT (insn, 31)
4054#define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
4055
4056#define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
4057#define PPC_XER_NB(xer) (xer & 0x7f)
4058
ddeca1df
WW
4059/* Record Vector-Scalar Registers.
4060 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
4061 Otherwise, it's just a VR register. Record them accordingly. */
b4cdae6f
WW
4062
4063static int
4064ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
4065{
4066 if (vsr < 0 || vsr >= 64)
4067 return -1;
4068
4069 if (vsr >= 32)
4070 {
4071 if (tdep->ppc_vr0_regnum >= 0)
4072 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4073 }
4074 else
4075 {
4076 if (tdep->ppc_fp0_regnum >= 0)
4077 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4078 if (tdep->ppc_vsr0_upper_regnum >= 0)
4079 record_full_arch_list_add_reg (regcache,
4080 tdep->ppc_vsr0_upper_regnum + vsr);
4081 }
4082
4083 return 0;
4084}
4085
ddeca1df
WW
4086/* Parse and record instructions primary opcode-4 at ADDR.
4087 Return 0 if successful. */
b4cdae6f
WW
4088
4089static int
4090ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
ddeca1df 4091 CORE_ADDR addr, uint32_t insn)
b4cdae6f
WW
4092{
4093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4094 int ext = PPC_FIELD (insn, 21, 11);
6ec2b213 4095 int vra = PPC_FIELD (insn, 11, 5);
b4cdae6f
WW
4096
4097 switch (ext & 0x3f)
4098 {
4099 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4100 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4101 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4102 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4103 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4104 /* FALL-THROUGH */
4105 case 42: /* Vector Select */
4106 case 43: /* Vector Permute */
6ec2b213 4107 case 59: /* Vector Permute Right-indexed */
b4cdae6f
WW
4108 case 44: /* Vector Shift Left Double by Octet Immediate */
4109 case 45: /* Vector Permute and Exclusive-OR */
4110 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4111 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4112 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4113 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4114 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
6ec2b213 4115 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
b4cdae6f
WW
4116 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4117 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4118 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4119 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4120 case 46: /* Vector Multiply-Add Single-Precision */
4121 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4122 record_full_arch_list_add_reg (regcache,
4123 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4124 return 0;
6ec2b213
EBM
4125
4126 case 48: /* Multiply-Add High Doubleword */
4127 case 49: /* Multiply-Add High Doubleword Unsigned */
4128 case 51: /* Multiply-Add Low Doubleword */
4129 record_full_arch_list_add_reg (regcache,
4130 tdep->ppc_gp0_regnum + PPC_RT (insn));
4131 return 0;
b4cdae6f
WW
4132 }
4133
4134 switch ((ext & 0x1ff))
4135 {
6ec2b213
EBM
4136 case 385:
4137 if (vra != 0 /* Decimal Convert To Signed Quadword */
4138 && vra != 2 /* Decimal Convert From Signed Quadword */
4139 && vra != 4 /* Decimal Convert To Zoned */
4140 && vra != 5 /* Decimal Convert To National */
4141 && vra != 6 /* Decimal Convert From Zoned */
4142 && vra != 7 /* Decimal Convert From National */
4143 && vra != 31) /* Decimal Set Sign */
4144 break;
e3829d13 4145 /* Fall through. */
b4cdae6f
WW
4146 /* 5.16 Decimal Integer Arithmetic Instructions */
4147 case 1: /* Decimal Add Modulo */
4148 case 65: /* Decimal Subtract Modulo */
4149
6ec2b213
EBM
4150 case 193: /* Decimal Shift */
4151 case 129: /* Decimal Unsigned Shift */
4152 case 449: /* Decimal Shift and Round */
4153
4154 case 257: /* Decimal Truncate */
4155 case 321: /* Decimal Unsigned Truncate */
4156
b4cdae6f
WW
4157 /* Bit-21 should be set. */
4158 if (!PPC_BIT (insn, 21))
4159 break;
4160
4161 record_full_arch_list_add_reg (regcache,
4162 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4163 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4164 return 0;
4165 }
4166
4167 /* Bit-21 is used for RC */
4168 switch (ext & 0x3ff)
4169 {
4170 case 6: /* Vector Compare Equal To Unsigned Byte */
4171 case 70: /* Vector Compare Equal To Unsigned Halfword */
4172 case 134: /* Vector Compare Equal To Unsigned Word */
4173 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4174 case 774: /* Vector Compare Greater Than Signed Byte */
4175 case 838: /* Vector Compare Greater Than Signed Halfword */
4176 case 902: /* Vector Compare Greater Than Signed Word */
4177 case 967: /* Vector Compare Greater Than Signed Doubleword */
4178 case 518: /* Vector Compare Greater Than Unsigned Byte */
4179 case 646: /* Vector Compare Greater Than Unsigned Word */
4180 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4181 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4182 case 966: /* Vector Compare Bounds Single-Precision */
4183 case 198: /* Vector Compare Equal To Single-Precision */
4184 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4185 case 710: /* Vector Compare Greater Than Single-Precision */
6ec2b213
EBM
4186 case 7: /* Vector Compare Not Equal Byte */
4187 case 71: /* Vector Compare Not Equal Halfword */
4188 case 135: /* Vector Compare Not Equal Word */
4189 case 263: /* Vector Compare Not Equal or Zero Byte */
4190 case 327: /* Vector Compare Not Equal or Zero Halfword */
4191 case 391: /* Vector Compare Not Equal or Zero Word */
b4cdae6f
WW
4192 if (PPC_Rc (insn))
4193 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4194 record_full_arch_list_add_reg (regcache,
4195 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4196 return 0;
4197 }
4198
6ec2b213
EBM
4199 if (ext == 1538)
4200 {
4201 switch (vra)
4202 {
4203 case 0: /* Vector Count Leading Zero Least-Significant Bits
4204 Byte */
4205 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4206 Byte */
4207 record_full_arch_list_add_reg (regcache,
4208 tdep->ppc_gp0_regnum + PPC_RT (insn));
4209 return 0;
4210
4211 case 6: /* Vector Negate Word */
4212 case 7: /* Vector Negate Doubleword */
4213 case 8: /* Vector Parity Byte Word */
4214 case 9: /* Vector Parity Byte Doubleword */
4215 case 10: /* Vector Parity Byte Quadword */
4216 case 16: /* Vector Extend Sign Byte To Word */
4217 case 17: /* Vector Extend Sign Halfword To Word */
4218 case 24: /* Vector Extend Sign Byte To Doubleword */
4219 case 25: /* Vector Extend Sign Halfword To Doubleword */
4220 case 26: /* Vector Extend Sign Word To Doubleword */
4221 case 28: /* Vector Count Trailing Zeros Byte */
4222 case 29: /* Vector Count Trailing Zeros Halfword */
4223 case 30: /* Vector Count Trailing Zeros Word */
4224 case 31: /* Vector Count Trailing Zeros Doubleword */
4225 record_full_arch_list_add_reg (regcache,
4226 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4227 return 0;
4228 }
4229 }
4230
b4cdae6f
WW
4231 switch (ext)
4232 {
4233 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4234 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4235 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4236 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4237 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4238 case 462: /* Vector Pack Signed Word Signed Saturate */
4239 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4240 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4241 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4242 case 512: /* Vector Add Unsigned Byte Saturate */
4243 case 576: /* Vector Add Unsigned Halfword Saturate */
4244 case 640: /* Vector Add Unsigned Word Saturate */
4245 case 768: /* Vector Add Signed Byte Saturate */
4246 case 832: /* Vector Add Signed Halfword Saturate */
4247 case 896: /* Vector Add Signed Word Saturate */
4248 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4249 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4250 case 1664: /* Vector Subtract Unsigned Word Saturate */
4251 case 1792: /* Vector Subtract Signed Byte Saturate */
4252 case 1856: /* Vector Subtract Signed Halfword Saturate */
4253 case 1920: /* Vector Subtract Signed Word Saturate */
4254
4255 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4256 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4257 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4258 case 1672: /* Vector Sum across Half Signed Word Saturate */
4259 case 1928: /* Vector Sum across Signed Word Saturate */
4260 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4261 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4262 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4263 /* FALL-THROUGH */
4264 case 12: /* Vector Merge High Byte */
4265 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4266 case 76: /* Vector Merge High Halfword */
4267 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4268 case 140: /* Vector Merge High Word */
4269 case 268: /* Vector Merge Low Byte */
4270 case 332: /* Vector Merge Low Halfword */
4271 case 396: /* Vector Merge Low Word */
4272 case 526: /* Vector Unpack High Signed Byte */
4273 case 590: /* Vector Unpack High Signed Halfword */
4274 case 654: /* Vector Unpack Low Signed Byte */
4275 case 718: /* Vector Unpack Low Signed Halfword */
4276 case 782: /* Vector Pack Pixel */
4277 case 846: /* Vector Unpack High Pixel */
4278 case 974: /* Vector Unpack Low Pixel */
4279 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4280 case 1614: /* Vector Unpack High Signed Word */
4281 case 1676: /* Vector Merge Odd Word */
4282 case 1742: /* Vector Unpack Low Signed Word */
4283 case 1932: /* Vector Merge Even Word */
4284 case 524: /* Vector Splat Byte */
4285 case 588: /* Vector Splat Halfword */
4286 case 652: /* Vector Splat Word */
4287 case 780: /* Vector Splat Immediate Signed Byte */
4288 case 844: /* Vector Splat Immediate Signed Halfword */
4289 case 908: /* Vector Splat Immediate Signed Word */
4290 case 452: /* Vector Shift Left */
4291 case 708: /* Vector Shift Right */
4292 case 1036: /* Vector Shift Left by Octet */
4293 case 1100: /* Vector Shift Right by Octet */
4294 case 0: /* Vector Add Unsigned Byte Modulo */
4295 case 64: /* Vector Add Unsigned Halfword Modulo */
4296 case 128: /* Vector Add Unsigned Word Modulo */
4297 case 192: /* Vector Add Unsigned Doubleword Modulo */
4298 case 256: /* Vector Add Unsigned Quadword Modulo */
4299 case 320: /* Vector Add & write Carry Unsigned Quadword */
4300 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4301 case 8: /* Vector Multiply Odd Unsigned Byte */
4302 case 72: /* Vector Multiply Odd Unsigned Halfword */
4303 case 136: /* Vector Multiply Odd Unsigned Word */
4304 case 264: /* Vector Multiply Odd Signed Byte */
4305 case 328: /* Vector Multiply Odd Signed Halfword */
4306 case 392: /* Vector Multiply Odd Signed Word */
4307 case 520: /* Vector Multiply Even Unsigned Byte */
4308 case 584: /* Vector Multiply Even Unsigned Halfword */
4309 case 648: /* Vector Multiply Even Unsigned Word */
4310 case 776: /* Vector Multiply Even Signed Byte */
4311 case 840: /* Vector Multiply Even Signed Halfword */
4312 case 904: /* Vector Multiply Even Signed Word */
4313 case 137: /* Vector Multiply Unsigned Word Modulo */
4314 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4315 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4316 case 1152: /* Vector Subtract Unsigned Word Modulo */
4317 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4318 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4319 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4320 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4321 case 1282: /* Vector Average Signed Byte */
4322 case 1346: /* Vector Average Signed Halfword */
4323 case 1410: /* Vector Average Signed Word */
4324 case 1026: /* Vector Average Unsigned Byte */
4325 case 1090: /* Vector Average Unsigned Halfword */
4326 case 1154: /* Vector Average Unsigned Word */
4327 case 258: /* Vector Maximum Signed Byte */
4328 case 322: /* Vector Maximum Signed Halfword */
4329 case 386: /* Vector Maximum Signed Word */
4330 case 450: /* Vector Maximum Signed Doubleword */
4331 case 2: /* Vector Maximum Unsigned Byte */
4332 case 66: /* Vector Maximum Unsigned Halfword */
4333 case 130: /* Vector Maximum Unsigned Word */
4334 case 194: /* Vector Maximum Unsigned Doubleword */
4335 case 770: /* Vector Minimum Signed Byte */
4336 case 834: /* Vector Minimum Signed Halfword */
4337 case 898: /* Vector Minimum Signed Word */
4338 case 962: /* Vector Minimum Signed Doubleword */
4339 case 514: /* Vector Minimum Unsigned Byte */
4340 case 578: /* Vector Minimum Unsigned Halfword */
4341 case 642: /* Vector Minimum Unsigned Word */
4342 case 706: /* Vector Minimum Unsigned Doubleword */
4343 case 1028: /* Vector Logical AND */
4344 case 1668: /* Vector Logical Equivalent */
4345 case 1092: /* Vector Logical AND with Complement */
4346 case 1412: /* Vector Logical NAND */
4347 case 1348: /* Vector Logical OR with Complement */
4348 case 1156: /* Vector Logical OR */
4349 case 1284: /* Vector Logical NOR */
4350 case 1220: /* Vector Logical XOR */
4351 case 4: /* Vector Rotate Left Byte */
4352 case 132: /* Vector Rotate Left Word VX-form */
4353 case 68: /* Vector Rotate Left Halfword */
4354 case 196: /* Vector Rotate Left Doubleword */
4355 case 260: /* Vector Shift Left Byte */
4356 case 388: /* Vector Shift Left Word */
4357 case 324: /* Vector Shift Left Halfword */
4358 case 1476: /* Vector Shift Left Doubleword */
4359 case 516: /* Vector Shift Right Byte */
4360 case 644: /* Vector Shift Right Word */
4361 case 580: /* Vector Shift Right Halfword */
4362 case 1732: /* Vector Shift Right Doubleword */
4363 case 772: /* Vector Shift Right Algebraic Byte */
4364 case 900: /* Vector Shift Right Algebraic Word */
4365 case 836: /* Vector Shift Right Algebraic Halfword */
4366 case 964: /* Vector Shift Right Algebraic Doubleword */
4367 case 10: /* Vector Add Single-Precision */
4368 case 74: /* Vector Subtract Single-Precision */
4369 case 1034: /* Vector Maximum Single-Precision */
4370 case 1098: /* Vector Minimum Single-Precision */
4371 case 842: /* Vector Convert From Signed Fixed-Point Word */
4372 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4373 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4374 case 522: /* Vector Round to Single-Precision Integer Nearest */
4375 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4376 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4377 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4378 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4379 case 266: /* Vector Reciprocal Estimate Single-Precision */
4380 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4381 case 1288: /* Vector AES Cipher */
4382 case 1289: /* Vector AES Cipher Last */
4383 case 1352: /* Vector AES Inverse Cipher */
4384 case 1353: /* Vector AES Inverse Cipher Last */
4385 case 1480: /* Vector AES SubBytes */
4386 case 1730: /* Vector SHA-512 Sigma Doubleword */
4387 case 1666: /* Vector SHA-256 Sigma Word */
4388 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4389 case 1160: /* Vector Polynomial Multiply-Sum Word */
4390 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4391 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4392 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4393 case 1794: /* Vector Count Leading Zeros Byte */
4394 case 1858: /* Vector Count Leading Zeros Halfword */
4395 case 1922: /* Vector Count Leading Zeros Word */
4396 case 1986: /* Vector Count Leading Zeros Doubleword */
4397 case 1795: /* Vector Population Count Byte */
4398 case 1859: /* Vector Population Count Halfword */
4399 case 1923: /* Vector Population Count Word */
4400 case 1987: /* Vector Population Count Doubleword */
4401 case 1356: /* Vector Bit Permute Quadword */
6ec2b213
EBM
4402 case 1484: /* Vector Bit Permute Doubleword */
4403 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4404 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4405 Quadword */
4406 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4407 case 65: /* Vector Multiply-by-10 Extended & write Carry
4408 Unsigned Quadword */
4409 case 1027: /* Vector Absolute Difference Unsigned Byte */
4410 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4411 case 1155: /* Vector Absolute Difference Unsigned Word */
4412 case 1796: /* Vector Shift Right Variable */
4413 case 1860: /* Vector Shift Left Variable */
4414 case 133: /* Vector Rotate Left Word then Mask Insert */
4415 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4416 case 389: /* Vector Rotate Left Word then AND with Mask */
4417 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4418 case 525: /* Vector Extract Unsigned Byte */
4419 case 589: /* Vector Extract Unsigned Halfword */
4420 case 653: /* Vector Extract Unsigned Word */
4421 case 717: /* Vector Extract Doubleword */
4422 case 781: /* Vector Insert Byte */
4423 case 845: /* Vector Insert Halfword */
4424 case 909: /* Vector Insert Word */
4425 case 973: /* Vector Insert Doubleword */
b4cdae6f
WW
4426 record_full_arch_list_add_reg (regcache,
4427 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4428 return 0;
4429
6ec2b213
EBM
4430 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4431 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4432 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4433 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4434 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4435 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4436 record_full_arch_list_add_reg (regcache,
4437 tdep->ppc_gp0_regnum + PPC_RT (insn));
4438 return 0;
4439
b4cdae6f
WW
4440 case 1604: /* Move To Vector Status and Control Register */
4441 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4442 return 0;
4443 case 1540: /* Move From Vector Status and Control Register */
4444 record_full_arch_list_add_reg (regcache,
4445 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4446 return 0;
6ec2b213
EBM
4447 case 833: /* Decimal Copy Sign */
4448 record_full_arch_list_add_reg (regcache,
4449 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4450 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4451 return 0;
b4cdae6f
WW
4452 }
4453
810c1026
WW
4454 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4455 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4456 return -1;
4457}
4458
ddeca1df
WW
4459/* Parse and record instructions of primary opcode-19 at ADDR.
4460 Return 0 if successful. */
b4cdae6f
WW
4461
4462static int
4463ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4464 CORE_ADDR addr, uint32_t insn)
4465{
4466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4467 int ext = PPC_EXTOP (insn);
4468
6ec2b213
EBM
4469 switch (ext & 0x01f)
4470 {
4471 case 2: /* Add PC Immediate Shifted */
4472 record_full_arch_list_add_reg (regcache,
4473 tdep->ppc_gp0_regnum + PPC_RT (insn));
4474 return 0;
4475 }
4476
b4cdae6f
WW
4477 switch (ext)
4478 {
4479 case 0: /* Move Condition Register Field */
4480 case 33: /* Condition Register NOR */
4481 case 129: /* Condition Register AND with Complement */
4482 case 193: /* Condition Register XOR */
4483 case 225: /* Condition Register NAND */
4484 case 257: /* Condition Register AND */
4485 case 289: /* Condition Register Equivalent */
4486 case 417: /* Condition Register OR with Complement */
4487 case 449: /* Condition Register OR */
4488 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4489 return 0;
4490
4491 case 16: /* Branch Conditional */
4492 case 560: /* Branch Conditional to Branch Target Address Register */
4493 if ((PPC_BO (insn) & 0x4) == 0)
4494 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4495 /* FALL-THROUGH */
4496 case 528: /* Branch Conditional to Count Register */
4497 if (PPC_LK (insn))
4498 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4499 return 0;
4500
4501 case 150: /* Instruction Synchronize */
4502 /* Do nothing. */
4503 return 0;
4504 }
4505
810c1026
WW
4506 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4507 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4508 return -1;
4509}
4510
ddeca1df
WW
4511/* Parse and record instructions of primary opcode-31 at ADDR.
4512 Return 0 if successful. */
b4cdae6f
WW
4513
4514static int
4515ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4516 CORE_ADDR addr, uint32_t insn)
4517{
4518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4519 int ext = PPC_EXTOP (insn);
4520 int tmp, nr, nb, i;
4521 CORE_ADDR at_dcsz, ea = 0;
4522 ULONGEST rb, ra, xer;
4523 int size = 0;
4524
4525 /* These instructions have OE bit. */
4526 switch (ext & 0x1ff)
4527 {
4528 /* These write RT and XER. Update CR if RC is set. */
4529 case 8: /* Subtract from carrying */
4530 case 10: /* Add carrying */
4531 case 136: /* Subtract from extended */
4532 case 138: /* Add extended */
4533 case 200: /* Subtract from zero extended */
4534 case 202: /* Add to zero extended */
4535 case 232: /* Subtract from minus one extended */
4536 case 234: /* Add to minus one extended */
4537 /* CA is always altered, but SO/OV are only altered when OE=1.
4538 In any case, XER is always altered. */
4539 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4540 if (PPC_RC (insn))
4541 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4542 record_full_arch_list_add_reg (regcache,
4543 tdep->ppc_gp0_regnum + PPC_RT (insn));
4544 return 0;
4545
4546 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4547 case 40: /* Subtract from */
4548 case 104: /* Negate */
4549 case 233: /* Multiply low doubleword */
4550 case 235: /* Multiply low word */
4551 case 266: /* Add */
4552 case 393: /* Divide Doubleword Extended Unsigned */
4553 case 395: /* Divide Word Extended Unsigned */
4554 case 425: /* Divide Doubleword Extended */
4555 case 427: /* Divide Word Extended */
4556 case 457: /* Divide Doubleword Unsigned */
4557 case 459: /* Divide Word Unsigned */
4558 case 489: /* Divide Doubleword */
4559 case 491: /* Divide Word */
4560 if (PPC_OE (insn))
4561 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4562 /* FALL-THROUGH */
4563 case 9: /* Multiply High Doubleword Unsigned */
4564 case 11: /* Multiply High Word Unsigned */
4565 case 73: /* Multiply High Doubleword */
4566 case 75: /* Multiply High Word */
4567 if (PPC_RC (insn))
4568 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4569 record_full_arch_list_add_reg (regcache,
4570 tdep->ppc_gp0_regnum + PPC_RT (insn));
4571 return 0;
4572 }
4573
4574 if ((ext & 0x1f) == 15)
4575 {
4576 /* Integer Select. bit[16:20] is used for BC. */
4577 record_full_arch_list_add_reg (regcache,
4578 tdep->ppc_gp0_regnum + PPC_RT (insn));
4579 return 0;
4580 }
4581
6ec2b213
EBM
4582 if ((ext & 0xff) == 170)
4583 {
4584 /* Add Extended using alternate carry bits */
4585 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4586 record_full_arch_list_add_reg (regcache,
4587 tdep->ppc_gp0_regnum + PPC_RT (insn));
4588 return 0;
4589 }
4590
b4cdae6f
WW
4591 switch (ext)
4592 {
4593 case 78: /* Determine Leftmost Zero Byte */
4594 if (PPC_RC (insn))
4595 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4596 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4597 record_full_arch_list_add_reg (regcache,
4598 tdep->ppc_gp0_regnum + PPC_RT (insn));
4599 return 0;
4600
4601 /* These only write RT. */
4602 case 19: /* Move from condition register */
4603 /* Move From One Condition Register Field */
4604 case 74: /* Add and Generate Sixes */
4605 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4606 case 302: /* Move From Branch History Rolling Buffer */
4607 case 339: /* Move From Special Purpose Register */
4608 case 371: /* Move From Time Base [Phased-Out] */
6ec2b213
EBM
4609 case 309: /* Load Doubleword Monitored Indexed */
4610 case 128: /* Set Boolean */
4611 case 755: /* Deliver A Random Number */
b4cdae6f
WW
4612 record_full_arch_list_add_reg (regcache,
4613 tdep->ppc_gp0_regnum + PPC_RT (insn));
4614 return 0;
4615
4616 /* These only write to RA. */
4617 case 51: /* Move From VSR Doubleword */
4618 case 115: /* Move From VSR Word and Zero */
4619 case 122: /* Population count bytes */
4620 case 378: /* Population count words */
4621 case 506: /* Population count doublewords */
4622 case 154: /* Parity Word */
4623 case 186: /* Parity Doubleword */
4624 case 252: /* Bit Permute Doubleword */
4625 case 282: /* Convert Declets To Binary Coded Decimal */
4626 case 314: /* Convert Binary Coded Decimal To Declets */
4627 case 508: /* Compare bytes */
6ec2b213 4628 case 307: /* Move From VSR Lower Doubleword */
b4cdae6f
WW
4629 record_full_arch_list_add_reg (regcache,
4630 tdep->ppc_gp0_regnum + PPC_RA (insn));
4631 return 0;
4632
4633 /* These write CR and optional RA. */
4634 case 792: /* Shift Right Algebraic Word */
4635 case 794: /* Shift Right Algebraic Doubleword */
4636 case 824: /* Shift Right Algebraic Word Immediate */
4637 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4638 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4639 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4640 record_full_arch_list_add_reg (regcache,
4641 tdep->ppc_gp0_regnum + PPC_RA (insn));
4642 /* FALL-THROUGH */
4643 case 0: /* Compare */
4644 case 32: /* Compare logical */
4645 case 144: /* Move To Condition Register Fields */
4646 /* Move To One Condition Register Field */
6ec2b213
EBM
4647 case 192: /* Compare Ranged Byte */
4648 case 224: /* Compare Equal Byte */
4649 case 576: /* Move XER to CR Extended */
4650 case 902: /* Paste (should always fail due to single-stepping and
4651 the memory location might not be accessible, so
4652 record only CR) */
b4cdae6f
WW
4653 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4654 return 0;
4655
4656 /* These write to RT. Update RA if 'update indexed.' */
4657 case 53: /* Load Doubleword with Update Indexed */
4658 case 119: /* Load Byte and Zero with Update Indexed */
4659 case 311: /* Load Halfword and Zero with Update Indexed */
4660 case 55: /* Load Word and Zero with Update Indexed */
4661 case 375: /* Load Halfword Algebraic with Update Indexed */
4662 case 373: /* Load Word Algebraic with Update Indexed */
4663 record_full_arch_list_add_reg (regcache,
4664 tdep->ppc_gp0_regnum + PPC_RA (insn));
4665 /* FALL-THROUGH */
4666 case 21: /* Load Doubleword Indexed */
4667 case 52: /* Load Byte And Reserve Indexed */
4668 case 116: /* Load Halfword And Reserve Indexed */
4669 case 20: /* Load Word And Reserve Indexed */
4670 case 84: /* Load Doubleword And Reserve Indexed */
4671 case 87: /* Load Byte and Zero Indexed */
4672 case 279: /* Load Halfword and Zero Indexed */
4673 case 23: /* Load Word and Zero Indexed */
4674 case 343: /* Load Halfword Algebraic Indexed */
4675 case 341: /* Load Word Algebraic Indexed */
4676 case 790: /* Load Halfword Byte-Reverse Indexed */
4677 case 534: /* Load Word Byte-Reverse Indexed */
4678 case 532: /* Load Doubleword Byte-Reverse Indexed */
6ec2b213
EBM
4679 case 582: /* Load Word Atomic */
4680 case 614: /* Load Doubleword Atomic */
4681 case 265: /* Modulo Unsigned Doubleword */
4682 case 777: /* Modulo Signed Doubleword */
4683 case 267: /* Modulo Unsigned Word */
4684 case 779: /* Modulo Signed Word */
b4cdae6f
WW
4685 record_full_arch_list_add_reg (regcache,
4686 tdep->ppc_gp0_regnum + PPC_RT (insn));
4687 return 0;
4688
4689 case 597: /* Load String Word Immediate */
4690 case 533: /* Load String Word Indexed */
4691 if (ext == 597)
4692 {
4693 nr = PPC_NB (insn);
4694 if (nr == 0)
4695 nr = 32;
4696 }
4697 else
4698 {
4699 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4700 nr = PPC_XER_NB (xer);
4701 }
4702
4703 nr = (nr + 3) >> 2;
4704
4705 /* If n=0, the contents of register RT are undefined. */
4706 if (nr == 0)
4707 nr = 1;
4708
4709 for (i = 0; i < nr; i++)
4710 record_full_arch_list_add_reg (regcache,
4711 tdep->ppc_gp0_regnum
4712 + ((PPC_RT (insn) + i) & 0x1f));
4713 return 0;
4714
4715 case 276: /* Load Quadword And Reserve Indexed */
4716 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4717 record_full_arch_list_add_reg (regcache, tmp);
4718 record_full_arch_list_add_reg (regcache, tmp + 1);
4719 return 0;
4720
4721 /* These write VRT. */
4722 case 6: /* Load Vector for Shift Left Indexed */
4723 case 38: /* Load Vector for Shift Right Indexed */
4724 case 7: /* Load Vector Element Byte Indexed */
4725 case 39: /* Load Vector Element Halfword Indexed */
4726 case 71: /* Load Vector Element Word Indexed */
4727 case 103: /* Load Vector Indexed */
4728 case 359: /* Load Vector Indexed LRU */
4729 record_full_arch_list_add_reg (regcache,
4730 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4731 return 0;
4732
4733 /* These write FRT. Update RA if 'update indexed.' */
4734 case 567: /* Load Floating-Point Single with Update Indexed */
4735 case 631: /* Load Floating-Point Double with Update Indexed */
4736 record_full_arch_list_add_reg (regcache,
4737 tdep->ppc_gp0_regnum + PPC_RA (insn));
4738 /* FALL-THROUGH */
4739 case 535: /* Load Floating-Point Single Indexed */
4740 case 599: /* Load Floating-Point Double Indexed */
4741 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4742 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4743 record_full_arch_list_add_reg (regcache,
4744 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4745 return 0;
4746
4747 case 791: /* Load Floating-Point Double Pair Indexed */
4748 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4749 record_full_arch_list_add_reg (regcache, tmp);
4750 record_full_arch_list_add_reg (regcache, tmp + 1);
4751 return 0;
4752
4753 case 179: /* Move To VSR Doubleword */
4754 case 211: /* Move To VSR Word Algebraic */
4755 case 243: /* Move To VSR Word and Zero */
4756 case 588: /* Load VSX Scalar Doubleword Indexed */
4757 case 524: /* Load VSX Scalar Single-Precision Indexed */
4758 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4759 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4760 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4761 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4762 case 780: /* Load VSX Vector Word*4 Indexed */
6ec2b213
EBM
4763 case 268: /* Load VSX Vector Indexed */
4764 case 364: /* Load VSX Vector Word & Splat Indexed */
4765 case 812: /* Load VSX Vector Halfword*8 Indexed */
4766 case 876: /* Load VSX Vector Byte*16 Indexed */
4767 case 269: /* Load VSX Vector with Length */
4768 case 301: /* Load VSX Vector Left-justified with Length */
4769 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4770 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4771 case 403: /* Move To VSR Word & Splat */
4772 case 435: /* Move To VSR Double Doubleword */
b4cdae6f
WW
4773 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4774 return 0;
4775
4776 /* These write RA. Update CR if RC is set. */
4777 case 24: /* Shift Left Word */
4778 case 26: /* Count Leading Zeros Word */
4779 case 27: /* Shift Left Doubleword */
4780 case 28: /* AND */
4781 case 58: /* Count Leading Zeros Doubleword */
4782 case 60: /* AND with Complement */
4783 case 124: /* NOR */
4784 case 284: /* Equivalent */
4785 case 316: /* XOR */
4786 case 476: /* NAND */
4787 case 412: /* OR with Complement */
4788 case 444: /* OR */
4789 case 536: /* Shift Right Word */
4790 case 539: /* Shift Right Doubleword */
4791 case 922: /* Extend Sign Halfword */
4792 case 954: /* Extend Sign Byte */
4793 case 986: /* Extend Sign Word */
6ec2b213
EBM
4794 case 538: /* Count Trailing Zeros Word */
4795 case 570: /* Count Trailing Zeros Doubleword */
4796 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4797 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
7ca18ed6
EBM
4798
4799 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4800 && (PPC_RS (insn) == PPC_RA (insn))
4801 && (PPC_RA (insn) == PPC_RB (insn))
4802 && !PPC_RC (insn))
4803 {
4804 /* or Rx,Rx,Rx alters PRI in PPR. */
4805 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4806 return 0;
4807 }
4808
b4cdae6f
WW
4809 if (PPC_RC (insn))
4810 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4811 record_full_arch_list_add_reg (regcache,
4812 tdep->ppc_gp0_regnum + PPC_RA (insn));
4813 return 0;
4814
4815 /* Store memory. */
4816 case 181: /* Store Doubleword with Update Indexed */
4817 case 183: /* Store Word with Update Indexed */
4818 case 247: /* Store Byte with Update Indexed */
4819 case 439: /* Store Half Word with Update Indexed */
4820 case 695: /* Store Floating-Point Single with Update Indexed */
4821 case 759: /* Store Floating-Point Double with Update Indexed */
4822 record_full_arch_list_add_reg (regcache,
4823 tdep->ppc_gp0_regnum + PPC_RA (insn));
4824 /* FALL-THROUGH */
4825 case 135: /* Store Vector Element Byte Indexed */
4826 case 167: /* Store Vector Element Halfword Indexed */
4827 case 199: /* Store Vector Element Word Indexed */
4828 case 231: /* Store Vector Indexed */
4829 case 487: /* Store Vector Indexed LRU */
4830 case 716: /* Store VSX Scalar Doubleword Indexed */
4831 case 140: /* Store VSX Scalar as Integer Word Indexed */
4832 case 652: /* Store VSX Scalar Single-Precision Indexed */
4833 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4834 case 908: /* Store VSX Vector Word*4 Indexed */
4835 case 149: /* Store Doubleword Indexed */
4836 case 151: /* Store Word Indexed */
4837 case 215: /* Store Byte Indexed */
4838 case 407: /* Store Half Word Indexed */
4839 case 694: /* Store Byte Conditional Indexed */
4840 case 726: /* Store Halfword Conditional Indexed */
4841 case 150: /* Store Word Conditional Indexed */
4842 case 214: /* Store Doubleword Conditional Indexed */
4843 case 182: /* Store Quadword Conditional Indexed */
4844 case 662: /* Store Word Byte-Reverse Indexed */
4845 case 918: /* Store Halfword Byte-Reverse Indexed */
4846 case 660: /* Store Doubleword Byte-Reverse Indexed */
4847 case 663: /* Store Floating-Point Single Indexed */
4848 case 727: /* Store Floating-Point Double Indexed */
4849 case 919: /* Store Floating-Point Double Pair Indexed */
4850 case 983: /* Store Floating-Point as Integer Word Indexed */
6ec2b213
EBM
4851 case 396: /* Store VSX Vector Indexed */
4852 case 940: /* Store VSX Vector Halfword*8 Indexed */
4853 case 1004: /* Store VSX Vector Byte*16 Indexed */
4854 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4855 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4856 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4857 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4858
4859 ra = 0;
4860 if (PPC_RA (insn) != 0)
4861 regcache_raw_read_unsigned (regcache,
4862 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4863 regcache_raw_read_unsigned (regcache,
4864 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4865 ea = ra + rb;
4866
4867 switch (ext)
4868 {
4869 case 183: /* Store Word with Update Indexed */
4870 case 199: /* Store Vector Element Word Indexed */
4871 case 140: /* Store VSX Scalar as Integer Word Indexed */
4872 case 652: /* Store VSX Scalar Single-Precision Indexed */
4873 case 151: /* Store Word Indexed */
4874 case 150: /* Store Word Conditional Indexed */
4875 case 662: /* Store Word Byte-Reverse Indexed */
4876 case 663: /* Store Floating-Point Single Indexed */
4877 case 695: /* Store Floating-Point Single with Update Indexed */
4878 case 983: /* Store Floating-Point as Integer Word Indexed */
4879 size = 4;
4880 break;
4881 case 247: /* Store Byte with Update Indexed */
4882 case 135: /* Store Vector Element Byte Indexed */
4883 case 215: /* Store Byte Indexed */
4884 case 694: /* Store Byte Conditional Indexed */
6ec2b213 4885 case 909: /* Store VSX Scalar as Integer Byte Indexed */
b4cdae6f
WW
4886 size = 1;
4887 break;
4888 case 439: /* Store Halfword with Update Indexed */
4889 case 167: /* Store Vector Element Halfword Indexed */
4890 case 407: /* Store Halfword Indexed */
4891 case 726: /* Store Halfword Conditional Indexed */
4892 case 918: /* Store Halfword Byte-Reverse Indexed */
6ec2b213 4893 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4894 size = 2;
4895 break;
4896 case 181: /* Store Doubleword with Update Indexed */
4897 case 716: /* Store VSX Scalar Doubleword Indexed */
4898 case 149: /* Store Doubleword Indexed */
4899 case 214: /* Store Doubleword Conditional Indexed */
4900 case 660: /* Store Doubleword Byte-Reverse Indexed */
4901 case 727: /* Store Floating-Point Double Indexed */
4902 case 759: /* Store Floating-Point Double with Update Indexed */
4903 size = 8;
4904 break;
4905 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4906 case 908: /* Store VSX Vector Word*4 Indexed */
4907 case 182: /* Store Quadword Conditional Indexed */
4908 case 231: /* Store Vector Indexed */
4909 case 487: /* Store Vector Indexed LRU */
4910 case 919: /* Store Floating-Point Double Pair Indexed */
6ec2b213
EBM
4911 case 396: /* Store VSX Vector Indexed */
4912 case 940: /* Store VSX Vector Halfword*8 Indexed */
4913 case 1004: /* Store VSX Vector Byte*16 Indexed */
b4cdae6f
WW
4914 size = 16;
4915 break;
4916 default:
4917 gdb_assert (0);
4918 }
4919
4920 /* Align address for Store Vector instructions. */
4921 switch (ext)
4922 {
4923 case 167: /* Store Vector Element Halfword Indexed */
4924 addr = addr & ~0x1ULL;
4925 break;
4926
4927 case 199: /* Store Vector Element Word Indexed */
4928 addr = addr & ~0x3ULL;
4929 break;
4930
4931 case 231: /* Store Vector Indexed */
4932 case 487: /* Store Vector Indexed LRU */
4933 addr = addr & ~0xfULL;
4934 break;
4935 }
4936
4937 record_full_arch_list_add_mem (addr, size);
4938 return 0;
4939
6ec2b213
EBM
4940 case 397: /* Store VSX Vector with Length */
4941 case 429: /* Store VSX Vector Left-justified with Length */
de678454 4942 ra = 0;
6ec2b213
EBM
4943 if (PPC_RA (insn) != 0)
4944 regcache_raw_read_unsigned (regcache,
de678454
EBM
4945 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4946 ea = ra;
6ec2b213
EBM
4947 regcache_raw_read_unsigned (regcache,
4948 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4949 /* Store up to 16 bytes. */
4950 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4951 if (nb > 0)
4952 record_full_arch_list_add_mem (ea, nb);
4953 return 0;
4954
4955 case 710: /* Store Word Atomic */
4956 case 742: /* Store Doubleword Atomic */
de678454 4957 ra = 0;
6ec2b213
EBM
4958 if (PPC_RA (insn) != 0)
4959 regcache_raw_read_unsigned (regcache,
de678454
EBM
4960 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4961 ea = ra;
6ec2b213
EBM
4962 switch (ext)
4963 {
4964 case 710: /* Store Word Atomic */
4965 size = 8;
4966 break;
4967 case 742: /* Store Doubleword Atomic */
4968 size = 16;
4969 break;
4970 default:
4971 gdb_assert (0);
4972 }
4973 record_full_arch_list_add_mem (ea, size);
4974 return 0;
4975
b4cdae6f
WW
4976 case 725: /* Store String Word Immediate */
4977 ra = 0;
4978 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4979 regcache_raw_read_unsigned (regcache,
4980 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4981 ea += ra;
4982
4983 nb = PPC_NB (insn);
4984 if (nb == 0)
4985 nb = 32;
4986
4987 record_full_arch_list_add_mem (ea, nb);
4988
4989 return 0;
4990
4991 case 661: /* Store String Word Indexed */
4992 ra = 0;
4993 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4994 regcache_raw_read_unsigned (regcache,
4995 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4996 ea += ra;
4997
4998 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4999 nb = PPC_XER_NB (xer);
5000
5001 if (nb != 0)
5002 {
9f7efd5b
EBM
5003 regcache_raw_read_unsigned (regcache,
5004 tdep->ppc_gp0_regnum + PPC_RB (insn),
5005 &rb);
b4cdae6f
WW
5006 ea += rb;
5007 record_full_arch_list_add_mem (ea, nb);
5008 }
5009
5010 return 0;
5011
5012 case 467: /* Move To Special Purpose Register */
5013 switch (PPC_SPR (insn))
5014 {
5015 case 1: /* XER */
5016 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5017 return 0;
7ca18ed6
EBM
5018 case 3: /* DSCR */
5019 if (tdep->ppc_dscr_regnum >= 0)
5020 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
5021 return 0;
b4cdae6f
WW
5022 case 8: /* LR */
5023 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5024 return 0;
5025 case 9: /* CTR */
5026 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5027 return 0;
5028 case 256: /* VRSAVE */
5029 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
5030 return 0;
f2cf6173
EBM
5031 case 815: /* TAR */
5032 if (tdep->ppc_tar_regnum >= 0)
5033 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
5034 return 0;
7ca18ed6
EBM
5035 case 896:
5036 case 898: /* PPR */
5037 if (tdep->ppc_ppr_regnum >= 0)
5038 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5039 return 0;
b4cdae6f
WW
5040 }
5041
5042 goto UNKNOWN_OP;
5043
5044 case 147: /* Move To Split Little Endian */
5045 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5046 return 0;
5047
5048 case 512: /* Move to Condition Register from XER */
5049 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5050 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5051 return 0;
5052
5053 case 4: /* Trap Word */
5054 case 68: /* Trap Doubleword */
5055 case 430: /* Clear BHRB */
5056 case 598: /* Synchronize */
5057 case 62: /* Wait for Interrupt */
6ec2b213 5058 case 30: /* Wait */
b4cdae6f
WW
5059 case 22: /* Instruction Cache Block Touch */
5060 case 854: /* Enforce In-order Execution of I/O */
5061 case 246: /* Data Cache Block Touch for Store */
5062 case 54: /* Data Cache Block Store */
5063 case 86: /* Data Cache Block Flush */
5064 case 278: /* Data Cache Block Touch */
5065 case 758: /* Data Cache Block Allocate */
5066 case 982: /* Instruction Cache Block Invalidate */
6ec2b213
EBM
5067 case 774: /* Copy */
5068 case 838: /* CP_Abort */
b4cdae6f
WW
5069 return 0;
5070
5071 case 654: /* Transaction Begin */
5072 case 686: /* Transaction End */
b4cdae6f
WW
5073 case 750: /* Transaction Suspend or Resume */
5074 case 782: /* Transaction Abort Word Conditional */
5075 case 814: /* Transaction Abort Doubleword Conditional */
5076 case 846: /* Transaction Abort Word Conditional Immediate */
5077 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5078 case 910: /* Transaction Abort */
d44c67f3
EBM
5079 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5080 /* FALL-THROUGH */
5081 case 718: /* Transaction Check */
5082 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5083 return 0;
b4cdae6f
WW
5084
5085 case 1014: /* Data Cache Block set to Zero */
328d42d8
SM
5086 if (target_auxv_search (current_inferior ()->top_target (),
5087 AT_DCACHEBSIZE, &at_dcsz) <= 0
b4cdae6f
WW
5088 || at_dcsz == 0)
5089 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5090
bec734b2 5091 ra = 0;
b4cdae6f
WW
5092 if (PPC_RA (insn) != 0)
5093 regcache_raw_read_unsigned (regcache,
5094 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5095 regcache_raw_read_unsigned (regcache,
5096 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5097 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5098 record_full_arch_list_add_mem (ea, at_dcsz);
5099 return 0;
5100 }
5101
5102UNKNOWN_OP:
810c1026
WW
5103 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5104 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5105 return -1;
5106}
5107
ddeca1df
WW
5108/* Parse and record instructions of primary opcode-59 at ADDR.
5109 Return 0 if successful. */
b4cdae6f
WW
5110
5111static int
5112ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5113 CORE_ADDR addr, uint32_t insn)
5114{
5115 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5116 int ext = PPC_EXTOP (insn);
5117
5118 switch (ext & 0x1f)
5119 {
5120 case 18: /* Floating Divide */
5121 case 20: /* Floating Subtract */
5122 case 21: /* Floating Add */
5123 case 22: /* Floating Square Root */
5124 case 24: /* Floating Reciprocal Estimate */
5125 case 25: /* Floating Multiply */
5126 case 26: /* Floating Reciprocal Square Root Estimate */
5127 case 28: /* Floating Multiply-Subtract */
5128 case 29: /* Floating Multiply-Add */
5129 case 30: /* Floating Negative Multiply-Subtract */
5130 case 31: /* Floating Negative Multiply-Add */
5131 record_full_arch_list_add_reg (regcache,
5132 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5133 if (PPC_RC (insn))
5134 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5135 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5136
5137 return 0;
5138 }
5139
5140 switch (ext)
5141 {
5142 case 2: /* DFP Add */
5143 case 3: /* DFP Quantize */
5144 case 34: /* DFP Multiply */
5145 case 35: /* DFP Reround */
5146 case 67: /* DFP Quantize Immediate */
5147 case 99: /* DFP Round To FP Integer With Inexact */
5148 case 227: /* DFP Round To FP Integer Without Inexact */
5149 case 258: /* DFP Convert To DFP Long! */
5150 case 290: /* DFP Convert To Fixed */
5151 case 514: /* DFP Subtract */
5152 case 546: /* DFP Divide */
5153 case 770: /* DFP Round To DFP Short! */
5154 case 802: /* DFP Convert From Fixed */
5155 case 834: /* DFP Encode BCD To DPD */
5156 if (PPC_RC (insn))
5157 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5158 record_full_arch_list_add_reg (regcache,
5159 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5160 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5161 return 0;
5162
5163 case 130: /* DFP Compare Ordered */
5164 case 162: /* DFP Test Exponent */
5165 case 194: /* DFP Test Data Class */
5166 case 226: /* DFP Test Data Group */
5167 case 642: /* DFP Compare Unordered */
5168 case 674: /* DFP Test Significance */
6ec2b213 5169 case 675: /* DFP Test Significance Immediate */
b4cdae6f
WW
5170 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5171 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5172 return 0;
5173
5174 case 66: /* DFP Shift Significand Left Immediate */
5175 case 98: /* DFP Shift Significand Right Immediate */
5176 case 322: /* DFP Decode DPD To BCD */
5177 case 354: /* DFP Extract Biased Exponent */
5178 case 866: /* DFP Insert Biased Exponent */
5179 record_full_arch_list_add_reg (regcache,
5180 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5181 if (PPC_RC (insn))
5182 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5183 return 0;
5184
5185 case 846: /* Floating Convert From Integer Doubleword Single */
5186 case 974: /* Floating Convert From Integer Doubleword Unsigned
5187 Single */
5188 record_full_arch_list_add_reg (regcache,
5189 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5190 if (PPC_RC (insn))
5191 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5192 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5193
5194 return 0;
5195 }
5196
810c1026
WW
5197 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5198 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5199 return -1;
5200}
5201
ddeca1df
WW
5202/* Parse and record instructions of primary opcode-60 at ADDR.
5203 Return 0 if successful. */
b4cdae6f
WW
5204
5205static int
5206ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5207 CORE_ADDR addr, uint32_t insn)
5208{
5209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5210 int ext = PPC_EXTOP (insn);
b4cdae6f
WW
5211
5212 switch (ext >> 2)
5213 {
5214 case 0: /* VSX Scalar Add Single-Precision */
5215 case 32: /* VSX Scalar Add Double-Precision */
5216 case 24: /* VSX Scalar Divide Single-Precision */
5217 case 56: /* VSX Scalar Divide Double-Precision */
5218 case 176: /* VSX Scalar Copy Sign Double-Precision */
5219 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5220 case 41: /* ditto */
5221 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5222 case 9: /* ditto */
5223 case 160: /* VSX Scalar Maximum Double-Precision */
5224 case 168: /* VSX Scalar Minimum Double-Precision */
5225 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5226 case 57: /* ditto */
5227 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5228 case 25: /* ditto */
5229 case 48: /* VSX Scalar Multiply Double-Precision */
5230 case 16: /* VSX Scalar Multiply Single-Precision */
5231 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5232 case 169: /* ditto */
5233 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5234 case 137: /* ditto */
5235 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5236 case 185: /* ditto */
5237 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5238 case 153: /* ditto */
5239 case 40: /* VSX Scalar Subtract Double-Precision */
5240 case 8: /* VSX Scalar Subtract Single-Precision */
5241 case 96: /* VSX Vector Add Double-Precision */
5242 case 64: /* VSX Vector Add Single-Precision */
5243 case 120: /* VSX Vector Divide Double-Precision */
5244 case 88: /* VSX Vector Divide Single-Precision */
5245 case 97: /* VSX Vector Multiply-Add Double-Precision */
5246 case 105: /* ditto */
5247 case 65: /* VSX Vector Multiply-Add Single-Precision */
5248 case 73: /* ditto */
5249 case 224: /* VSX Vector Maximum Double-Precision */
5250 case 192: /* VSX Vector Maximum Single-Precision */
5251 case 232: /* VSX Vector Minimum Double-Precision */
5252 case 200: /* VSX Vector Minimum Single-Precision */
5253 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5254 case 121: /* ditto */
5255 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5256 case 89: /* ditto */
5257 case 112: /* VSX Vector Multiply Double-Precision */
5258 case 80: /* VSX Vector Multiply Single-Precision */
5259 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5260 case 233: /* ditto */
5261 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5262 case 201: /* ditto */
5263 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5264 case 249: /* ditto */
5265 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5266 case 217: /* ditto */
5267 case 104: /* VSX Vector Subtract Double-Precision */
5268 case 72: /* VSX Vector Subtract Single-Precision */
6ec2b213
EBM
5269 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5270 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5271 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5272 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5273 case 3: /* VSX Scalar Compare Equal Double-Precision */
5274 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5275 case 19: /* VSX Scalar Compare Greater Than or Equal
5276 Double-Precision */
b4cdae6f 5277 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 5278 /* FALL-THROUGH */
b4cdae6f
WW
5279 case 240: /* VSX Vector Copy Sign Double-Precision */
5280 case 208: /* VSX Vector Copy Sign Single-Precision */
5281 case 130: /* VSX Logical AND */
5282 case 138: /* VSX Logical AND with Complement */
5283 case 186: /* VSX Logical Equivalence */
5284 case 178: /* VSX Logical NAND */
5285 case 170: /* VSX Logical OR with Complement */
5286 case 162: /* VSX Logical NOR */
5287 case 146: /* VSX Logical OR */
5288 case 154: /* VSX Logical XOR */
5289 case 18: /* VSX Merge High Word */
5290 case 50: /* VSX Merge Low Word */
5291 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5292 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5293 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5294 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5295 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5296 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5297 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5298 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
6ec2b213
EBM
5299 case 216: /* VSX Vector Insert Exponent Single-Precision */
5300 case 248: /* VSX Vector Insert Exponent Double-Precision */
5301 case 26: /* VSX Vector Permute */
5302 case 58: /* VSX Vector Permute Right-indexed */
5303 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5304 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5305 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5306 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
b4cdae6f
WW
5307 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5308 return 0;
5309
5310 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5311 case 125: /* VSX Vector Test for software Divide Double-Precision */
5312 case 93: /* VSX Vector Test for software Divide Single-Precision */
5313 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5314 return 0;
5315
5316 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5317 case 43: /* VSX Scalar Compare Ordered Double-Precision */
6ec2b213 5318 case 59: /* VSX Scalar Compare Exponents Double-Precision */
b4cdae6f
WW
5319 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5320 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5321 return 0;
5322 }
5323
5324 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5325 {
5326 case 99: /* VSX Vector Compare Equal To Double-Precision */
5327 case 67: /* VSX Vector Compare Equal To Single-Precision */
5328 case 115: /* VSX Vector Compare Greater Than or
5329 Equal To Double-Precision */
5330 case 83: /* VSX Vector Compare Greater Than or
5331 Equal To Single-Precision */
5332 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5333 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5334 if (PPC_Rc (insn))
5335 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5336 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5337 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5338 return 0;
5339 }
5340
5341 switch (ext >> 1)
5342 {
5343 case 265: /* VSX Scalar round Double-Precision to
5344 Single-Precision and Convert to
5345 Single-Precision format */
5346 case 344: /* VSX Scalar truncate Double-Precision to
5347 Integer and Convert to Signed Integer
5348 Doubleword format with Saturate */
5349 case 88: /* VSX Scalar truncate Double-Precision to
5350 Integer and Convert to Signed Integer Word
5351 Format with Saturate */
5352 case 328: /* VSX Scalar truncate Double-Precision integer
5353 and Convert to Unsigned Integer Doubleword
5354 Format with Saturate */
5355 case 72: /* VSX Scalar truncate Double-Precision to
5356 Integer and Convert to Unsigned Integer Word
5357 Format with Saturate */
5358 case 329: /* VSX Scalar Convert Single-Precision to
5359 Double-Precision format */
5360 case 376: /* VSX Scalar Convert Signed Integer
5361 Doubleword to floating-point format and
5362 Round to Double-Precision format */
5363 case 312: /* VSX Scalar Convert Signed Integer
5364 Doubleword to floating-point format and
5365 round to Single-Precision */
5366 case 360: /* VSX Scalar Convert Unsigned Integer
5367 Doubleword to floating-point format and
5368 Round to Double-Precision format */
5369 case 296: /* VSX Scalar Convert Unsigned Integer
5370 Doubleword to floating-point format and
5371 Round to Single-Precision */
5372 case 73: /* VSX Scalar Round to Double-Precision Integer
5373 Using Round to Nearest Away */
5374 case 107: /* VSX Scalar Round to Double-Precision Integer
5375 Exact using Current rounding mode */
5376 case 121: /* VSX Scalar Round to Double-Precision Integer
5377 Using Round toward -Infinity */
5378 case 105: /* VSX Scalar Round to Double-Precision Integer
5379 Using Round toward +Infinity */
5380 case 89: /* VSX Scalar Round to Double-Precision Integer
5381 Using Round toward Zero */
5382 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5383 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5384 case 281: /* VSX Scalar Round to Single-Precision */
5385 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5386 Double-Precision */
5387 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5388 Single-Precision */
5389 case 75: /* VSX Scalar Square Root Double-Precision */
5390 case 11: /* VSX Scalar Square Root Single-Precision */
5391 case 393: /* VSX Vector round Double-Precision to
5392 Single-Precision and Convert to
5393 Single-Precision format */
5394 case 472: /* VSX Vector truncate Double-Precision to
5395 Integer and Convert to Signed Integer
5396 Doubleword format with Saturate */
5397 case 216: /* VSX Vector truncate Double-Precision to
5398 Integer and Convert to Signed Integer Word
5399 Format with Saturate */
5400 case 456: /* VSX Vector truncate Double-Precision to
5401 Integer and Convert to Unsigned Integer
5402 Doubleword format with Saturate */
5403 case 200: /* VSX Vector truncate Double-Precision to
5404 Integer and Convert to Unsigned Integer Word
5405 Format with Saturate */
5406 case 457: /* VSX Vector Convert Single-Precision to
5407 Double-Precision format */
5408 case 408: /* VSX Vector truncate Single-Precision to
5409 Integer and Convert to Signed Integer
5410 Doubleword format with Saturate */
5411 case 152: /* VSX Vector truncate Single-Precision to
5412 Integer and Convert to Signed Integer Word
5413 Format with Saturate */
5414 case 392: /* VSX Vector truncate Single-Precision to
5415 Integer and Convert to Unsigned Integer
5416 Doubleword format with Saturate */
5417 case 136: /* VSX Vector truncate Single-Precision to
5418 Integer and Convert to Unsigned Integer Word
5419 Format with Saturate */
5420 case 504: /* VSX Vector Convert and round Signed Integer
5421 Doubleword to Double-Precision format */
5422 case 440: /* VSX Vector Convert and round Signed Integer
5423 Doubleword to Single-Precision format */
5424 case 248: /* VSX Vector Convert Signed Integer Word to
5425 Double-Precision format */
5426 case 184: /* VSX Vector Convert and round Signed Integer
5427 Word to Single-Precision format */
5428 case 488: /* VSX Vector Convert and round Unsigned
5429 Integer Doubleword to Double-Precision format */
5430 case 424: /* VSX Vector Convert and round Unsigned
5431 Integer Doubleword to Single-Precision format */
5432 case 232: /* VSX Vector Convert and round Unsigned
5433 Integer Word to Double-Precision format */
5434 case 168: /* VSX Vector Convert and round Unsigned
5435 Integer Word to Single-Precision format */
5436 case 201: /* VSX Vector Round to Double-Precision
5437 Integer using round to Nearest Away */
5438 case 235: /* VSX Vector Round to Double-Precision
5439 Integer Exact using Current rounding mode */
5440 case 249: /* VSX Vector Round to Double-Precision
5441 Integer using round toward -Infinity */
5442 case 233: /* VSX Vector Round to Double-Precision
5443 Integer using round toward +Infinity */
5444 case 217: /* VSX Vector Round to Double-Precision
5445 Integer using round toward Zero */
5446 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5447 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5448 case 137: /* VSX Vector Round to Single-Precision Integer
5449 Using Round to Nearest Away */
5450 case 171: /* VSX Vector Round to Single-Precision Integer
5451 Exact Using Current rounding mode */
5452 case 185: /* VSX Vector Round to Single-Precision Integer
5453 Using Round toward -Infinity */
5454 case 169: /* VSX Vector Round to Single-Precision Integer
5455 Using Round toward +Infinity */
5456 case 153: /* VSX Vector Round to Single-Precision Integer
5457 Using round toward Zero */
5458 case 202: /* VSX Vector Reciprocal Square Root Estimate
5459 Double-Precision */
5460 case 138: /* VSX Vector Reciprocal Square Root Estimate
5461 Single-Precision */
5462 case 203: /* VSX Vector Square Root Double-Precision */
5463 case 139: /* VSX Vector Square Root Single-Precision */
5464 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 5465 /* FALL-THROUGH */
b4cdae6f
WW
5466 case 345: /* VSX Scalar Absolute Value Double-Precision */
5467 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5468 Vector Single-Precision format Non-signalling */
5469 case 331: /* VSX Scalar Convert Single-Precision to
5470 Double-Precision format Non-signalling */
5471 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5472 case 377: /* VSX Scalar Negate Double-Precision */
5473 case 473: /* VSX Vector Absolute Value Double-Precision */
5474 case 409: /* VSX Vector Absolute Value Single-Precision */
5475 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5476 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5477 case 505: /* VSX Vector Negate Double-Precision */
5478 case 441: /* VSX Vector Negate Single-Precision */
5479 case 164: /* VSX Splat Word */
6ec2b213
EBM
5480 case 165: /* VSX Vector Extract Unsigned Word */
5481 case 181: /* VSX Vector Insert Word */
b4cdae6f
WW
5482 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5483 return 0;
5484
6ec2b213
EBM
5485 case 298: /* VSX Scalar Test Data Class Single-Precision */
5486 case 362: /* VSX Scalar Test Data Class Double-Precision */
5487 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5488 /* FALL-THROUGH */
b4cdae6f
WW
5489 case 106: /* VSX Scalar Test for software Square Root
5490 Double-Precision */
5491 case 234: /* VSX Vector Test for software Square Root
5492 Double-Precision */
5493 case 170: /* VSX Vector Test for software Square Root
5494 Single-Precision */
5495 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5496 return 0;
6ec2b213
EBM
5497
5498 case 347:
5499 switch (PPC_FIELD (insn, 11, 5))
5500 {
5501 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5502 case 1: /* VSX Scalar Extract Significand Double-Precision */
dda83cd7 5503 record_full_arch_list_add_reg (regcache,
6ec2b213
EBM
5504 tdep->ppc_gp0_regnum + PPC_RT (insn));
5505 return 0;
5506 case 16: /* VSX Scalar Convert Half-Precision format to
5507 Double-Precision format */
5508 case 17: /* VSX Scalar round & Convert Double-Precision format
5509 to Half-Precision format */
5510 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5511 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5512 return 0;
5513 }
5514 break;
5515
5516 case 475:
5517 switch (PPC_FIELD (insn, 11, 5))
5518 {
5519 case 24: /* VSX Vector Convert Half-Precision format to
5520 Single-Precision format */
5521 case 25: /* VSX Vector round and Convert Single-Precision format
5522 to Half-Precision format */
5523 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5524 /* FALL-THROUGH */
5525 case 0: /* VSX Vector Extract Exponent Double-Precision */
5526 case 1: /* VSX Vector Extract Significand Double-Precision */
5527 case 7: /* VSX Vector Byte-Reverse Halfword */
5528 case 8: /* VSX Vector Extract Exponent Single-Precision */
5529 case 9: /* VSX Vector Extract Significand Single-Precision */
5530 case 15: /* VSX Vector Byte-Reverse Word */
5531 case 23: /* VSX Vector Byte-Reverse Doubleword */
5532 case 31: /* VSX Vector Byte-Reverse Quadword */
5533 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5534 return 0;
5535 }
5536 break;
5537 }
5538
5539 switch (ext)
5540 {
5541 case 360: /* VSX Vector Splat Immediate Byte */
5542 if (PPC_FIELD (insn, 11, 2) == 0)
5543 {
5544 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5545 return 0;
5546 }
5547 break;
5548 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5549 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5550 return 0;
b4cdae6f
WW
5551 }
5552
5553 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5554 {
5555 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5556 return 0;
5557 }
5558
810c1026
WW
5559 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5560 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5561 return -1;
5562}
5563
6ec2b213
EBM
5564/* Parse and record instructions of primary opcode-61 at ADDR.
5565 Return 0 if successful. */
5566
5567static int
5568ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5569 CORE_ADDR addr, uint32_t insn)
5570{
5571 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5572 ULONGEST ea = 0;
5573 int size;
5574
5575 switch (insn & 0x3)
5576 {
5577 case 0: /* Store Floating-Point Double Pair */
5578 case 2: /* Store VSX Scalar Doubleword */
5579 case 3: /* Store VSX Scalar Single */
5580 if (PPC_RA (insn) != 0)
5581 regcache_raw_read_unsigned (regcache,
5582 tdep->ppc_gp0_regnum + PPC_RA (insn),
5583 &ea);
5584 ea += PPC_DS (insn) << 2;
5585 switch (insn & 0x3)
5586 {
5587 case 0: /* Store Floating-Point Double Pair */
5588 size = 16;
5589 break;
5590 case 2: /* Store VSX Scalar Doubleword */
5591 size = 8;
5592 break;
5593 case 3: /* Store VSX Scalar Single */
5594 size = 4;
5595 break;
5596 default:
5597 gdb_assert (0);
5598 }
5599 record_full_arch_list_add_mem (ea, size);
5600 return 0;
5601 }
5602
5603 switch (insn & 0x7)
5604 {
5605 case 1: /* Load VSX Vector */
5606 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5607 return 0;
5608 case 5: /* Store VSX Vector */
5609 if (PPC_RA (insn) != 0)
5610 regcache_raw_read_unsigned (regcache,
5611 tdep->ppc_gp0_regnum + PPC_RA (insn),
5612 &ea);
5613 ea += PPC_DQ (insn) << 4;
5614 record_full_arch_list_add_mem (ea, 16);
5615 return 0;
5616 }
5617
5618 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5619 "at %s.\n", insn, paddress (gdbarch, addr));
5620 return -1;
5621}
5622
ddeca1df
WW
5623/* Parse and record instructions of primary opcode-63 at ADDR.
5624 Return 0 if successful. */
b4cdae6f
WW
5625
5626static int
5627ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5628 CORE_ADDR addr, uint32_t insn)
5629{
5630 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5631 int ext = PPC_EXTOP (insn);
5632 int tmp;
5633
5634 switch (ext & 0x1f)
5635 {
5636 case 18: /* Floating Divide */
5637 case 20: /* Floating Subtract */
5638 case 21: /* Floating Add */
5639 case 22: /* Floating Square Root */
5640 case 24: /* Floating Reciprocal Estimate */
5641 case 25: /* Floating Multiply */
5642 case 26: /* Floating Reciprocal Square Root Estimate */
5643 case 28: /* Floating Multiply-Subtract */
5644 case 29: /* Floating Multiply-Add */
5645 case 30: /* Floating Negative Multiply-Subtract */
5646 case 31: /* Floating Negative Multiply-Add */
5647 record_full_arch_list_add_reg (regcache,
5648 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5649 if (PPC_RC (insn))
5650 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5651 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5652 return 0;
5653
5654 case 23: /* Floating Select */
5655 record_full_arch_list_add_reg (regcache,
5656 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5657 if (PPC_RC (insn))
5658 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
8aabe2e2 5659 return 0;
b4cdae6f
WW
5660 }
5661
6ec2b213
EBM
5662 switch (ext & 0xff)
5663 {
5664 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5665 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5666 Precision */
5667 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5668 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5669 return 0;
5670 }
5671
b4cdae6f
WW
5672 switch (ext)
5673 {
5674 case 2: /* DFP Add Quad */
5675 case 3: /* DFP Quantize Quad */
5676 case 34: /* DFP Multiply Quad */
5677 case 35: /* DFP Reround Quad */
5678 case 67: /* DFP Quantize Immediate Quad */
5679 case 99: /* DFP Round To FP Integer With Inexact Quad */
5680 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5681 case 258: /* DFP Convert To DFP Extended Quad */
5682 case 514: /* DFP Subtract Quad */
5683 case 546: /* DFP Divide Quad */
5684 case 770: /* DFP Round To DFP Long Quad */
5685 case 802: /* DFP Convert From Fixed Quad */
5686 case 834: /* DFP Encode BCD To DPD Quad */
5687 if (PPC_RC (insn))
5688 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5689 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5690 record_full_arch_list_add_reg (regcache, tmp);
5691 record_full_arch_list_add_reg (regcache, tmp + 1);
5692 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5693 return 0;
5694
5695 case 130: /* DFP Compare Ordered Quad */
5696 case 162: /* DFP Test Exponent Quad */
5697 case 194: /* DFP Test Data Class Quad */
5698 case 226: /* DFP Test Data Group Quad */
5699 case 642: /* DFP Compare Unordered Quad */
5700 case 674: /* DFP Test Significance Quad */
6ec2b213 5701 case 675: /* DFP Test Significance Immediate Quad */
b4cdae6f
WW
5702 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5703 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5704 return 0;
5705
5706 case 66: /* DFP Shift Significand Left Immediate Quad */
5707 case 98: /* DFP Shift Significand Right Immediate Quad */
5708 case 322: /* DFP Decode DPD To BCD Quad */
5709 case 866: /* DFP Insert Biased Exponent Quad */
5710 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5711 record_full_arch_list_add_reg (regcache, tmp);
5712 record_full_arch_list_add_reg (regcache, tmp + 1);
5713 if (PPC_RC (insn))
5714 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5715 return 0;
5716
5717 case 290: /* DFP Convert To Fixed Quad */
5718 record_full_arch_list_add_reg (regcache,
5719 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5720 if (PPC_RC (insn))
5721 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5722 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5723 return 0;
b4cdae6f
WW
5724
5725 case 354: /* DFP Extract Biased Exponent Quad */
5726 record_full_arch_list_add_reg (regcache,
5727 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5728 if (PPC_RC (insn))
5729 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5730 return 0;
5731
5732 case 12: /* Floating Round to Single-Precision */
5733 case 14: /* Floating Convert To Integer Word */
5734 case 15: /* Floating Convert To Integer Word
5735 with round toward Zero */
5736 case 142: /* Floating Convert To Integer Word Unsigned */
5737 case 143: /* Floating Convert To Integer Word Unsigned
5738 with round toward Zero */
5739 case 392: /* Floating Round to Integer Nearest */
5740 case 424: /* Floating Round to Integer Toward Zero */
5741 case 456: /* Floating Round to Integer Plus */
5742 case 488: /* Floating Round to Integer Minus */
5743 case 814: /* Floating Convert To Integer Doubleword */
5744 case 815: /* Floating Convert To Integer Doubleword
5745 with round toward Zero */
5746 case 846: /* Floating Convert From Integer Doubleword */
5747 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5748 case 943: /* Floating Convert To Integer Doubleword Unsigned
5749 with round toward Zero */
5750 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5751 record_full_arch_list_add_reg (regcache,
5752 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5753 if (PPC_RC (insn))
5754 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5755 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5756 return 0;
5757
6ec2b213
EBM
5758 case 583:
5759 switch (PPC_FIELD (insn, 11, 5))
dda83cd7 5760 {
6ec2b213
EBM
5761 case 1: /* Move From FPSCR & Clear Enables */
5762 case 20: /* Move From FPSCR Control & set DRN */
5763 case 21: /* Move From FPSCR Control & set DRN Immediate */
5764 case 22: /* Move From FPSCR Control & set RN */
5765 case 23: /* Move From FPSCR Control & set RN Immediate */
5766 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
e3829d13 5767 /* Fall through. */
6ec2b213
EBM
5768 case 0: /* Move From FPSCR */
5769 case 24: /* Move From FPSCR Lightweight */
5770 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5771 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5772 record_full_arch_list_add_reg (regcache,
5773 tdep->ppc_fp0_regnum
5774 + PPC_FRT (insn));
5775 return 0;
dda83cd7 5776 }
6ec2b213
EBM
5777 break;
5778
b4cdae6f
WW
5779 case 8: /* Floating Copy Sign */
5780 case 40: /* Floating Negate */
5781 case 72: /* Floating Move Register */
5782 case 136: /* Floating Negative Absolute Value */
5783 case 264: /* Floating Absolute Value */
5784 record_full_arch_list_add_reg (regcache,
5785 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5786 if (PPC_RC (insn))
5787 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5788 return 0;
5789
5790 case 838: /* Floating Merge Odd Word */
5791 case 966: /* Floating Merge Even Word */
5792 record_full_arch_list_add_reg (regcache,
5793 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5794 return 0;
5795
5796 case 38: /* Move To FPSCR Bit 1 */
5797 case 70: /* Move To FPSCR Bit 0 */
5798 case 134: /* Move To FPSCR Field Immediate */
5799 case 711: /* Move To FPSCR Fields */
5800 if (PPC_RC (insn))
5801 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5802 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5803 return 0;
b4cdae6f
WW
5804
5805 case 0: /* Floating Compare Unordered */
5806 case 32: /* Floating Compare Ordered */
5807 case 64: /* Move to Condition Register from FPSCR */
6ec2b213
EBM
5808 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5809 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5810 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5811 case 708: /* VSX Scalar Test Data Class Quad-Precision */
b4cdae6f
WW
5812 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5813 /* FALL-THROUGH */
5814 case 128: /* Floating Test for software Divide */
5815 case 160: /* Floating Test for software Square Root */
5816 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5817 return 0;
5818
6ec2b213
EBM
5819 case 4: /* VSX Scalar Add Quad-Precision */
5820 case 36: /* VSX Scalar Multiply Quad-Precision */
5821 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5822 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5823 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5824 case 484: /* VSX Scalar Negative Multiply-Subtract
5825 Quad-Precision */
5826 case 516: /* VSX Scalar Subtract Quad-Precision */
5827 case 548: /* VSX Scalar Divide Quad-Precision */
5828 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5829 /* FALL-THROUGH */
5830 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5831 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5832 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5833 return 0;
5834
5835 case 804:
5836 switch (PPC_FIELD (insn, 11, 5))
5837 {
5838 case 27: /* VSX Scalar Square Root Quad-Precision */
5839 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5840 /* FALL-THROUGH */
5841 case 0: /* VSX Scalar Absolute Quad-Precision */
5842 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5843 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5844 case 16: /* VSX Scalar Negate Quad-Precision */
5845 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5846 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5847 return 0;
5848 }
5849 break;
5850
5851 case 836:
5852 switch (PPC_FIELD (insn, 11, 5))
5853 {
5854 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5855 to Unsigned Word format */
5856 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5857 Quad-Precision format */
5858 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5859 to Signed Word format */
5860 case 10: /* VSX Scalar Convert Signed Doubleword format to
5861 Quad-Precision format */
5862 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5863 to Unsigned Doubleword format */
5864 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5865 Double-Precision format */
5866 case 22: /* VSX Scalar Convert Double-Precision format to
5867 Quad-Precision format */
5868 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5869 to Signed Doubleword format */
5870 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5871 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5872 return 0;
5873 }
b4cdae6f
WW
5874 }
5875
810c1026 5876 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6ec2b213 5877 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5878 return -1;
5879}
5880
5881/* Parse the current instruction and record the values of the registers and
5882 memory that will be changed in current instruction to "record_arch_list".
5883 Return -1 if something wrong. */
5884
5885int
5886ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5887 CORE_ADDR addr)
5888{
5889 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5890 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5891 uint32_t insn;
5892 int op6, tmp, i;
5893
5894 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5895 op6 = PPC_OP6 (insn);
5896
5897 switch (op6)
5898 {
5899 case 2: /* Trap Doubleword Immediate */
5900 case 3: /* Trap Word Immediate */
5901 /* Do nothing. */
5902 break;
5903
5904 case 4:
5905 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5906 return -1;
5907 break;
5908
5909 case 17: /* System call */
5910 if (PPC_LEV (insn) != 0)
5911 goto UNKNOWN_OP;
5912
5913 if (tdep->ppc_syscall_record != NULL)
5914 {
5915 if (tdep->ppc_syscall_record (regcache) != 0)
5916 return -1;
5917 }
5918 else
5919 {
5920 printf_unfiltered (_("no syscall record support\n"));
5921 return -1;
5922 }
5923 break;
5924
5925 case 7: /* Multiply Low Immediate */
5926 record_full_arch_list_add_reg (regcache,
5927 tdep->ppc_gp0_regnum + PPC_RT (insn));
5928 break;
5929
5930 case 8: /* Subtract From Immediate Carrying */
5931 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5932 record_full_arch_list_add_reg (regcache,
5933 tdep->ppc_gp0_regnum + PPC_RT (insn));
5934 break;
5935
5936 case 10: /* Compare Logical Immediate */
5937 case 11: /* Compare Immediate */
5938 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5939 break;
5940
5941 case 13: /* Add Immediate Carrying and Record */
5942 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5943 /* FALL-THROUGH */
5944 case 12: /* Add Immediate Carrying */
5945 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5946 /* FALL-THROUGH */
5947 case 14: /* Add Immediate */
5948 case 15: /* Add Immediate Shifted */
5949 record_full_arch_list_add_reg (regcache,
5950 tdep->ppc_gp0_regnum + PPC_RT (insn));
5951 break;
5952
5953 case 16: /* Branch Conditional */
5954 if ((PPC_BO (insn) & 0x4) == 0)
5955 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5956 /* FALL-THROUGH */
5957 case 18: /* Branch */
5958 if (PPC_LK (insn))
5959 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5960 break;
5961
5962 case 19:
5963 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5964 return -1;
5965 break;
5966
5967 case 20: /* Rotate Left Word Immediate then Mask Insert */
5968 case 21: /* Rotate Left Word Immediate then AND with Mask */
5969 case 23: /* Rotate Left Word then AND with Mask */
5970 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5971 /* Rotate Left Doubleword Immediate then Clear Right */
5972 /* Rotate Left Doubleword Immediate then Clear */
5973 /* Rotate Left Doubleword then Clear Left */
5974 /* Rotate Left Doubleword then Clear Right */
5975 /* Rotate Left Doubleword Immediate then Mask Insert */
5976 if (PPC_RC (insn))
5977 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5978 record_full_arch_list_add_reg (regcache,
5979 tdep->ppc_gp0_regnum + PPC_RA (insn));
5980 break;
5981
5982 case 28: /* AND Immediate */
5983 case 29: /* AND Immediate Shifted */
5984 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5985 /* FALL-THROUGH */
5986 case 24: /* OR Immediate */
5987 case 25: /* OR Immediate Shifted */
5988 case 26: /* XOR Immediate */
5989 case 27: /* XOR Immediate Shifted */
5990 record_full_arch_list_add_reg (regcache,
5991 tdep->ppc_gp0_regnum + PPC_RA (insn));
5992 break;
5993
5994 case 31:
5995 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5996 return -1;
5997 break;
5998
5999 case 33: /* Load Word and Zero with Update */
6000 case 35: /* Load Byte and Zero with Update */
6001 case 41: /* Load Halfword and Zero with Update */
6002 case 43: /* Load Halfword Algebraic with Update */
6003 record_full_arch_list_add_reg (regcache,
6004 tdep->ppc_gp0_regnum + PPC_RA (insn));
6005 /* FALL-THROUGH */
6006 case 32: /* Load Word and Zero */
6007 case 34: /* Load Byte and Zero */
6008 case 40: /* Load Halfword and Zero */
6009 case 42: /* Load Halfword Algebraic */
6010 record_full_arch_list_add_reg (regcache,
6011 tdep->ppc_gp0_regnum + PPC_RT (insn));
6012 break;
6013
6014 case 46: /* Load Multiple Word */
6015 for (i = PPC_RT (insn); i < 32; i++)
6016 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
6017 break;
6018
6019 case 56: /* Load Quadword */
6020 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
6021 record_full_arch_list_add_reg (regcache, tmp);
6022 record_full_arch_list_add_reg (regcache, tmp + 1);
6023 break;
6024
6025 case 49: /* Load Floating-Point Single with Update */
6026 case 51: /* Load Floating-Point Double with Update */
6027 record_full_arch_list_add_reg (regcache,
6028 tdep->ppc_gp0_regnum + PPC_RA (insn));
6029 /* FALL-THROUGH */
6030 case 48: /* Load Floating-Point Single */
6031 case 50: /* Load Floating-Point Double */
6032 record_full_arch_list_add_reg (regcache,
6033 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6034 break;
6035
6036 case 47: /* Store Multiple Word */
6037 {
b926417a 6038 ULONGEST iaddr = 0;
b4cdae6f
WW
6039
6040 if (PPC_RA (insn) != 0)
6041 regcache_raw_read_unsigned (regcache,
6042 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a 6043 &iaddr);
b4cdae6f 6044
b926417a
TT
6045 iaddr += PPC_D (insn);
6046 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
b4cdae6f
WW
6047 }
6048 break;
6049
6050 case 37: /* Store Word with Update */
6051 case 39: /* Store Byte with Update */
6052 case 45: /* Store Halfword with Update */
6053 case 53: /* Store Floating-Point Single with Update */
6054 case 55: /* Store Floating-Point Double with Update */
6055 record_full_arch_list_add_reg (regcache,
6056 tdep->ppc_gp0_regnum + PPC_RA (insn));
6057 /* FALL-THROUGH */
6058 case 36: /* Store Word */
6059 case 38: /* Store Byte */
6060 case 44: /* Store Halfword */
6061 case 52: /* Store Floating-Point Single */
6062 case 54: /* Store Floating-Point Double */
6063 {
b926417a 6064 ULONGEST iaddr = 0;
b4cdae6f
WW
6065 int size = -1;
6066
6067 if (PPC_RA (insn) != 0)
6068 regcache_raw_read_unsigned (regcache,
6069 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a
TT
6070 &iaddr);
6071 iaddr += PPC_D (insn);
b4cdae6f
WW
6072
6073 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6074 size = 4;
6075 else if (op6 == 54 || op6 == 55)
6076 size = 8;
6077 else if (op6 == 44 || op6 == 45)
6078 size = 2;
6079 else if (op6 == 38 || op6 == 39)
6080 size = 1;
6081 else
6082 gdb_assert (0);
6083
b926417a 6084 record_full_arch_list_add_mem (iaddr, size);
b4cdae6f
WW
6085 }
6086 break;
6087
6ec2b213
EBM
6088 case 57:
6089 switch (insn & 0x3)
dda83cd7 6090 {
6ec2b213
EBM
6091 case 0: /* Load Floating-Point Double Pair */
6092 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6093 record_full_arch_list_add_reg (regcache, tmp);
6094 record_full_arch_list_add_reg (regcache, tmp + 1);
6095 break;
6096 case 2: /* Load VSX Scalar Doubleword */
6097 case 3: /* Load VSX Scalar Single */
6098 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6099 break;
6100 default:
6101 goto UNKNOWN_OP;
6102 }
b4cdae6f
WW
6103 break;
6104
6105 case 58: /* Load Doubleword */
6106 /* Load Doubleword with Update */
6107 /* Load Word Algebraic */
6108 if (PPC_FIELD (insn, 30, 2) > 2)
6109 goto UNKNOWN_OP;
6110
6111 record_full_arch_list_add_reg (regcache,
6112 tdep->ppc_gp0_regnum + PPC_RT (insn));
6113 if (PPC_BIT (insn, 31))
6114 record_full_arch_list_add_reg (regcache,
6115 tdep->ppc_gp0_regnum + PPC_RA (insn));
6116 break;
6117
6118 case 59:
6119 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6120 return -1;
6121 break;
6122
6123 case 60:
6124 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6125 return -1;
6126 break;
6127
6ec2b213
EBM
6128 case 61:
6129 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6130 return -1;
6131 break;
6132
b4cdae6f
WW
6133 case 62: /* Store Doubleword */
6134 /* Store Doubleword with Update */
6135 /* Store Quadword with Update */
6136 {
b926417a 6137 ULONGEST iaddr = 0;
b4cdae6f
WW
6138 int size;
6139 int sub2 = PPC_FIELD (insn, 30, 2);
6140
6ec2b213 6141 if (sub2 > 2)
b4cdae6f
WW
6142 goto UNKNOWN_OP;
6143
6144 if (PPC_RA (insn) != 0)
6145 regcache_raw_read_unsigned (regcache,
6146 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a 6147 &iaddr);
b4cdae6f 6148
6ec2b213 6149 size = (sub2 == 2) ? 16 : 8;
b4cdae6f 6150
b926417a
TT
6151 iaddr += PPC_DS (insn) << 2;
6152 record_full_arch_list_add_mem (iaddr, size);
b4cdae6f
WW
6153
6154 if (op6 == 62 && sub2 == 1)
6155 record_full_arch_list_add_reg (regcache,
6156 tdep->ppc_gp0_regnum +
6157 PPC_RA (insn));
6158
6159 break;
6160 }
6161
6162 case 63:
6163 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6164 return -1;
6165 break;
6166
6167 default:
6168UNKNOWN_OP:
810c1026
WW
6169 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6170 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
b4cdae6f
WW
6171 return -1;
6172 }
6173
6174 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6175 return -1;
6176 if (record_full_arch_list_add_end ())
6177 return -1;
6178 return 0;
6179}
6180
7a78ae4e
ND
6181/* Initialize the current architecture based on INFO. If possible, re-use an
6182 architecture from ARCHES, which is a list of architectures already created
6183 during this debugging session.
c906108c 6184
7a78ae4e 6185 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 6186 a binary file. */
c906108c 6187
7a78ae4e
ND
6188static struct gdbarch *
6189rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6190{
6191 struct gdbarch *gdbarch;
6192 struct gdbarch_tdep *tdep;
7cc46491 6193 int wordsize, from_xcoff_exec, from_elf_exec;
7a78ae4e
ND
6194 enum bfd_architecture arch;
6195 unsigned long mach;
6196 bfd abfd;
55eddb0f
DJ
6197 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6198 int soft_float;
ed0f4273 6199 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
55eddb0f 6200 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
cd453cd0 6201 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
93b4691f 6202 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
7ca18ed6 6203 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
8d619c01
EBM
6204 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6205 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6206 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6207 int have_htm_tar = 0;
7cc46491
DJ
6208 int tdesc_wordsize = -1;
6209 const struct target_desc *tdesc = info.target_desc;
c1e1314d 6210 tdesc_arch_data_up tdesc_data;
f949c649 6211 int num_pseudoregs = 0;
604c2f83 6212 int cur_reg;
7a78ae4e 6213
9aa1e687 6214 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
6215 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6216
9aa1e687
KB
6217 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6218 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6219
e712c1cf 6220 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 6221 that, else choose a likely default. */
9aa1e687 6222 if (from_xcoff_exec)
c906108c 6223 {
11ed25ac 6224 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
6225 wordsize = 8;
6226 else
6227 wordsize = 4;
c906108c 6228 }
9aa1e687
KB
6229 else if (from_elf_exec)
6230 {
6231 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6232 wordsize = 8;
6233 else
6234 wordsize = 4;
6235 }
7cc46491
DJ
6236 else if (tdesc_has_registers (tdesc))
6237 wordsize = -1;
c906108c 6238 else
7a78ae4e 6239 {
27b15785 6240 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
16d8013c
JB
6241 wordsize = (info.bfd_arch_info->bits_per_word
6242 / info.bfd_arch_info->bits_per_byte);
27b15785
KB
6243 else
6244 wordsize = 4;
7a78ae4e 6245 }
c906108c 6246
475bbd17
JB
6247 /* Get the architecture and machine from the BFD. */
6248 arch = info.bfd_arch_info->arch;
6249 mach = info.bfd_arch_info->mach;
5bf1c677
EZ
6250
6251 /* For e500 executables, the apuinfo section is of help here. Such
6252 section contains the identifier and revision number of each
6253 Application-specific Processing Unit that is present on the
6254 chip. The content of the section is determined by the assembler
6255 which looks at each instruction and determines which unit (and
74af9197
NF
6256 which version of it) can execute it. Grovel through the section
6257 looking for relevant e500 APUs. */
5bf1c677 6258
74af9197 6259 if (bfd_uses_spe_extensions (info.abfd))
5bf1c677 6260 {
74af9197
NF
6261 arch = info.bfd_arch_info->arch;
6262 mach = bfd_mach_ppc_e500;
6263 bfd_default_set_arch_mach (&abfd, arch, mach);
6264 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5bf1c677
EZ
6265 }
6266
7cc46491
DJ
6267 /* Find a default target description which describes our register
6268 layout, if we do not already have one. */
6269 if (! tdesc_has_registers (tdesc))
6270 {
675127ec 6271 const struct ppc_variant *v;
7cc46491
DJ
6272
6273 /* Choose variant. */
6274 v = find_variant_by_arch (arch, mach);
6275 if (!v)
6276 return NULL;
6277
6278 tdesc = *v->tdesc;
6279 }
6280
6281 gdb_assert (tdesc_has_registers (tdesc));
6282
6283 /* Check any target description for validity. */
6284 if (tdesc_has_registers (tdesc))
6285 {
6286 static const char *const gprs[] = {
6287 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6288 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6289 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6290 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6291 };
7cc46491
DJ
6292 const struct tdesc_feature *feature;
6293 int i, valid_p;
6294 static const char *const msr_names[] = { "msr", "ps" };
6295 static const char *const cr_names[] = { "cr", "cnd" };
6296 static const char *const ctr_names[] = { "ctr", "cnt" };
6297
6298 feature = tdesc_find_feature (tdesc,
6299 "org.gnu.gdb.power.core");
6300 if (feature == NULL)
6301 return NULL;
6302
6303 tdesc_data = tdesc_data_alloc ();
6304
6305 valid_p = 1;
6306 for (i = 0; i < ppc_num_gprs; i++)
c1e1314d
TT
6307 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6308 i, gprs[i]);
6309 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6310 PPC_PC_REGNUM, "pc");
6311 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6312 PPC_LR_REGNUM, "lr");
6313 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6314 PPC_XER_REGNUM, "xer");
7cc46491
DJ
6315
6316 /* Allow alternate names for these registers, to accomodate GDB's
6317 historic naming. */
c1e1314d 6318 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7cc46491 6319 PPC_MSR_REGNUM, msr_names);
c1e1314d 6320 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7cc46491 6321 PPC_CR_REGNUM, cr_names);
c1e1314d 6322 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7cc46491
DJ
6323 PPC_CTR_REGNUM, ctr_names);
6324
6325 if (!valid_p)
c1e1314d 6326 return NULL;
7cc46491 6327
c1e1314d
TT
6328 have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
6329 PPC_MQ_REGNUM, "mq");
7cc46491 6330
12863263 6331 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
7cc46491
DJ
6332 if (wordsize == -1)
6333 wordsize = tdesc_wordsize;
6334
6335 feature = tdesc_find_feature (tdesc,
6336 "org.gnu.gdb.power.fpu");
6337 if (feature != NULL)
6338 {
6339 static const char *const fprs[] = {
6340 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6341 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6342 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6343 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6344 };
6345 valid_p = 1;
6346 for (i = 0; i < ppc_num_fprs; i++)
c1e1314d 6347 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491 6348 PPC_F0_REGNUM + i, fprs[i]);
c1e1314d 6349 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6350 PPC_FPSCR_REGNUM, "fpscr");
6351
6352 if (!valid_p)
c1e1314d 6353 return NULL;
7cc46491 6354 have_fpu = 1;
0fb2aaa1
PFC
6355
6356 /* The fpscr register was expanded in isa 2.05 to 64 bits
6357 along with the addition of the decimal floating point
6358 facility. */
12863263 6359 if (tdesc_register_bitsize (feature, "fpscr") > 32)
0fb2aaa1 6360 have_dfp = 1;
7cc46491
DJ
6361 }
6362 else
6363 have_fpu = 0;
6364
6365 feature = tdesc_find_feature (tdesc,
6366 "org.gnu.gdb.power.altivec");
6367 if (feature != NULL)
6368 {
6369 static const char *const vector_regs[] = {
6370 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6371 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6372 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6373 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6374 };
6375
6376 valid_p = 1;
6377 for (i = 0; i < ppc_num_gprs; i++)
c1e1314d 6378 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6379 PPC_VR0_REGNUM + i,
6380 vector_regs[i]);
c1e1314d 6381 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491 6382 PPC_VSCR_REGNUM, "vscr");
c1e1314d 6383 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6384 PPC_VRSAVE_REGNUM, "vrsave");
6385
6386 if (have_spe || !valid_p)
c1e1314d 6387 return NULL;
7cc46491
DJ
6388 have_altivec = 1;
6389 }
6390 else
6391 have_altivec = 0;
6392
604c2f83
LM
6393 /* Check for POWER7 VSX registers support. */
6394 feature = tdesc_find_feature (tdesc,
6395 "org.gnu.gdb.power.vsx");
6396
6397 if (feature != NULL)
6398 {
6399 static const char *const vsx_regs[] = {
6400 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6401 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6402 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6403 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6404 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6405 "vs30h", "vs31h"
6406 };
6407
6408 valid_p = 1;
6409
6410 for (i = 0; i < ppc_num_vshrs; i++)
c1e1314d 6411 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
604c2f83
LM
6412 PPC_VSR0_UPPER_REGNUM + i,
6413 vsx_regs[i]);
81ab84fd
PFC
6414
6415 if (!valid_p || !have_fpu || !have_altivec)
c1e1314d 6416 return NULL;
604c2f83
LM
6417
6418 have_vsx = 1;
6419 }
6420 else
6421 have_vsx = 0;
6422
7cc46491
DJ
6423 /* On machines supporting the SPE APU, the general-purpose registers
6424 are 64 bits long. There are SIMD vector instructions to treat them
6425 as pairs of floats, but the rest of the instruction set treats them
6426 as 32-bit registers, and only operates on their lower halves.
6427
6428 In the GDB regcache, we treat their high and low halves as separate
6429 registers. The low halves we present as the general-purpose
6430 registers, and then we have pseudo-registers that stitch together
6431 the upper and lower halves and present them as pseudo-registers.
6432
6433 Thus, the target description is expected to supply the upper
6434 halves separately. */
6435
6436 feature = tdesc_find_feature (tdesc,
6437 "org.gnu.gdb.power.spe");
6438 if (feature != NULL)
6439 {
6440 static const char *const upper_spe[] = {
6441 "ev0h", "ev1h", "ev2h", "ev3h",
6442 "ev4h", "ev5h", "ev6h", "ev7h",
6443 "ev8h", "ev9h", "ev10h", "ev11h",
6444 "ev12h", "ev13h", "ev14h", "ev15h",
6445 "ev16h", "ev17h", "ev18h", "ev19h",
6446 "ev20h", "ev21h", "ev22h", "ev23h",
6447 "ev24h", "ev25h", "ev26h", "ev27h",
6448 "ev28h", "ev29h", "ev30h", "ev31h"
6449 };
6450
6451 valid_p = 1;
6452 for (i = 0; i < ppc_num_gprs; i++)
c1e1314d 6453 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6454 PPC_SPE_UPPER_GP0_REGNUM + i,
6455 upper_spe[i]);
c1e1314d 6456 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491 6457 PPC_SPE_ACC_REGNUM, "acc");
c1e1314d 6458 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6459 PPC_SPE_FSCR_REGNUM, "spefscr");
6460
6461 if (have_mq || have_fpu || !valid_p)
c1e1314d 6462 return NULL;
7cc46491
DJ
6463 have_spe = 1;
6464 }
6465 else
6466 have_spe = 0;
7ca18ed6
EBM
6467
6468 /* Program Priority Register. */
6469 feature = tdesc_find_feature (tdesc,
6470 "org.gnu.gdb.power.ppr");
6471 if (feature != NULL)
6472 {
6473 valid_p = 1;
c1e1314d 6474 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7ca18ed6
EBM
6475 PPC_PPR_REGNUM, "ppr");
6476
6477 if (!valid_p)
c1e1314d 6478 return NULL;
7ca18ed6
EBM
6479 have_ppr = 1;
6480 }
6481 else
6482 have_ppr = 0;
6483
6484 /* Data Stream Control Register. */
6485 feature = tdesc_find_feature (tdesc,
6486 "org.gnu.gdb.power.dscr");
6487 if (feature != NULL)
6488 {
6489 valid_p = 1;
c1e1314d 6490 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7ca18ed6
EBM
6491 PPC_DSCR_REGNUM, "dscr");
6492
6493 if (!valid_p)
c1e1314d 6494 return NULL;
7ca18ed6
EBM
6495 have_dscr = 1;
6496 }
6497 else
6498 have_dscr = 0;
f2cf6173
EBM
6499
6500 /* Target Address Register. */
6501 feature = tdesc_find_feature (tdesc,
6502 "org.gnu.gdb.power.tar");
6503 if (feature != NULL)
6504 {
6505 valid_p = 1;
c1e1314d 6506 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
f2cf6173
EBM
6507 PPC_TAR_REGNUM, "tar");
6508
6509 if (!valid_p)
c1e1314d 6510 return NULL;
f2cf6173
EBM
6511 have_tar = 1;
6512 }
6513 else
6514 have_tar = 0;
232bfb86
EBM
6515
6516 /* Event-based Branching Registers. */
6517 feature = tdesc_find_feature (tdesc,
6518 "org.gnu.gdb.power.ebb");
6519 if (feature != NULL)
6520 {
6521 static const char *const ebb_regs[] = {
6522 "bescr", "ebbhr", "ebbrr"
6523 };
6524
6525 valid_p = 1;
6526 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
c1e1314d 6527 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6528 PPC_BESCR_REGNUM + i,
6529 ebb_regs[i]);
6530 if (!valid_p)
c1e1314d 6531 return NULL;
232bfb86
EBM
6532 have_ebb = 1;
6533 }
6534 else
6535 have_ebb = 0;
6536
6537 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6538 by Linux. */
6539 feature = tdesc_find_feature (tdesc,
6540 "org.gnu.gdb.power.linux.pmu");
6541 if (feature != NULL)
6542 {
6543 valid_p = 1;
6544
c1e1314d 6545 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6546 PPC_MMCR0_REGNUM,
6547 "mmcr0");
c1e1314d 6548 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6549 PPC_MMCR2_REGNUM,
6550 "mmcr2");
c1e1314d 6551 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6552 PPC_SIAR_REGNUM,
6553 "siar");
c1e1314d 6554 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6555 PPC_SDAR_REGNUM,
6556 "sdar");
c1e1314d 6557 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6558 PPC_SIER_REGNUM,
6559 "sier");
6560
6561 if (!valid_p)
c1e1314d 6562 return NULL;
232bfb86
EBM
6563 have_pmu = 1;
6564 }
6565 else
6566 have_pmu = 0;
8d619c01
EBM
6567
6568 /* Hardware Transactional Memory Registers. */
6569 feature = tdesc_find_feature (tdesc,
6570 "org.gnu.gdb.power.htm.spr");
6571 if (feature != NULL)
6572 {
6573 static const char *const tm_spr_regs[] = {
6574 "tfhar", "texasr", "tfiar"
6575 };
6576
6577 valid_p = 1;
6578 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
c1e1314d 6579 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6580 PPC_TFHAR_REGNUM + i,
6581 tm_spr_regs[i]);
6582 if (!valid_p)
c1e1314d 6583 return NULL;
8d619c01
EBM
6584
6585 have_htm_spr = 1;
6586 }
6587 else
6588 have_htm_spr = 0;
6589
6590 feature = tdesc_find_feature (tdesc,
6591 "org.gnu.gdb.power.htm.core");
6592 if (feature != NULL)
6593 {
6594 static const char *const cgprs[] = {
6595 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6596 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6597 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6598 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6599 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6600 };
6601
6602 valid_p = 1;
6603
6604 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
c1e1314d 6605 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6606 PPC_CR0_REGNUM + i,
6607 cgprs[i]);
6608 if (!valid_p)
c1e1314d 6609 return NULL;
8d619c01
EBM
6610
6611 have_htm_core = 1;
6612 }
6613 else
6614 have_htm_core = 0;
6615
6616 feature = tdesc_find_feature (tdesc,
6617 "org.gnu.gdb.power.htm.fpu");
6618 if (feature != NULL)
6619 {
6620 valid_p = 1;
6621
6622 static const char *const cfprs[] = {
6623 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6624 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6625 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6626 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6627 "cf30", "cf31", "cfpscr"
6628 };
6629
6630 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
c1e1314d 6631 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6632 PPC_CF0_REGNUM + i,
6633 cfprs[i]);
6634
6635 if (!valid_p)
c1e1314d 6636 return NULL;
8d619c01
EBM
6637 have_htm_fpu = 1;
6638 }
6639 else
6640 have_htm_fpu = 0;
6641
6642 feature = tdesc_find_feature (tdesc,
6643 "org.gnu.gdb.power.htm.altivec");
6644 if (feature != NULL)
6645 {
6646 valid_p = 1;
6647
6648 static const char *const cvmx[] = {
6649 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6650 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6651 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6652 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6653 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6654 "cvrsave"
6655 };
6656
6657 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
c1e1314d 6658 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6659 PPC_CVR0_REGNUM + i,
6660 cvmx[i]);
6661
6662 if (!valid_p)
c1e1314d 6663 return NULL;
8d619c01
EBM
6664 have_htm_altivec = 1;
6665 }
6666 else
6667 have_htm_altivec = 0;
6668
6669 feature = tdesc_find_feature (tdesc,
6670 "org.gnu.gdb.power.htm.vsx");
6671 if (feature != NULL)
6672 {
6673 valid_p = 1;
6674
6675 static const char *const cvsx[] = {
6676 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6677 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6678 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6679 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6680 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6681 "cvs30h", "cvs31h"
6682 };
6683
6684 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
c1e1314d 6685 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6686 (PPC_CVSR0_UPPER_REGNUM
6687 + i),
6688 cvsx[i]);
6689
6690 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
c1e1314d 6691 return NULL;
8d619c01
EBM
6692 have_htm_vsx = 1;
6693 }
6694 else
6695 have_htm_vsx = 0;
6696
6697 feature = tdesc_find_feature (tdesc,
6698 "org.gnu.gdb.power.htm.ppr");
6699 if (feature != NULL)
6700 {
c1e1314d 6701 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6702 PPC_CPPR_REGNUM, "cppr");
6703
6704 if (!valid_p)
c1e1314d 6705 return NULL;
8d619c01
EBM
6706 have_htm_ppr = 1;
6707 }
6708 else
6709 have_htm_ppr = 0;
6710
6711 feature = tdesc_find_feature (tdesc,
6712 "org.gnu.gdb.power.htm.dscr");
6713 if (feature != NULL)
6714 {
c1e1314d 6715 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6716 PPC_CDSCR_REGNUM, "cdscr");
6717
6718 if (!valid_p)
c1e1314d 6719 return NULL;
8d619c01
EBM
6720 have_htm_dscr = 1;
6721 }
6722 else
6723 have_htm_dscr = 0;
6724
6725 feature = tdesc_find_feature (tdesc,
6726 "org.gnu.gdb.power.htm.tar");
6727 if (feature != NULL)
6728 {
c1e1314d 6729 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6730 PPC_CTAR_REGNUM, "ctar");
6731
6732 if (!valid_p)
c1e1314d 6733 return NULL;
8d619c01
EBM
6734 have_htm_tar = 1;
6735 }
6736 else
6737 have_htm_tar = 0;
7cc46491
DJ
6738 }
6739
6740 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6741 complain for a 32-bit binary on a 64-bit target; we do not yet
6742 support that. For instance, the 32-bit ABI routines expect
6743 32-bit GPRs.
6744
6745 As long as there isn't an explicit target description, we'll
6746 choose one based on the BFD architecture and get a word size
6747 matching the binary (probably powerpc:common or
6748 powerpc:common64). So there is only trouble if a 64-bit target
6749 supplies a 64-bit description while debugging a 32-bit
6750 binary. */
6751 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
c1e1314d 6752 return NULL;
7cc46491 6753
55eddb0f 6754#ifdef HAVE_ELF
cd453cd0
UW
6755 if (from_elf_exec)
6756 {
6757 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6758 {
6759 case 1:
6760 elf_abi = POWERPC_ELF_V1;
6761 break;
6762 case 2:
6763 elf_abi = POWERPC_ELF_V2;
6764 break;
6765 default:
6766 break;
6767 }
6768 }
6769
55eddb0f
DJ
6770 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6771 {
6772 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
ed0f4273 6773 Tag_GNU_Power_ABI_FP) & 3)
55eddb0f
DJ
6774 {
6775 case 1:
6776 soft_float_flag = AUTO_BOOLEAN_FALSE;
6777 break;
6778 case 2:
6779 soft_float_flag = AUTO_BOOLEAN_TRUE;
6780 break;
6781 default:
6782 break;
6783 }
6784 }
6785
ed0f4273
UW
6786 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6787 {
6788 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6789 Tag_GNU_Power_ABI_FP) >> 2)
6790 {
6791 case 1:
6792 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6793 break;
6794 case 3:
6795 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6796 break;
6797 default:
6798 break;
6799 }
6800 }
6801
55eddb0f
DJ
6802 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6803 {
6804 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6805 Tag_GNU_Power_ABI_Vector))
6806 {
6807 case 1:
6808 vector_abi = POWERPC_VEC_GENERIC;
6809 break;
6810 case 2:
6811 vector_abi = POWERPC_VEC_ALTIVEC;
6812 break;
6813 case 3:
6814 vector_abi = POWERPC_VEC_SPE;
6815 break;
6816 default:
6817 break;
6818 }
6819 }
6820#endif
6821
cd453cd0
UW
6822 /* At this point, the only supported ELF-based 64-bit little-endian
6823 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6824 default. All other supported ELF-based operating systems use the
6825 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6826 e.g. because we run a legacy binary, or have attached to a process
6827 and have not found any associated binary file, set the default
6828 according to this heuristic. */
6829 if (elf_abi == POWERPC_ELF_AUTO)
6830 {
6831 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
dda83cd7 6832 elf_abi = POWERPC_ELF_V2;
cd453cd0 6833 else
dda83cd7 6834 elf_abi = POWERPC_ELF_V1;
cd453cd0
UW
6835 }
6836
55eddb0f
DJ
6837 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6838 soft_float = 1;
6839 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6840 soft_float = 0;
6841 else
6842 soft_float = !have_fpu;
6843
6844 /* If we have a hard float binary or setting but no floating point
6845 registers, downgrade to soft float anyway. We're still somewhat
6846 useful in this scenario. */
6847 if (!soft_float && !have_fpu)
6848 soft_float = 1;
6849
6850 /* Similarly for vector registers. */
6851 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6852 vector_abi = POWERPC_VEC_GENERIC;
6853
6854 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6855 vector_abi = POWERPC_VEC_GENERIC;
6856
6857 if (vector_abi == POWERPC_VEC_AUTO)
6858 {
6859 if (have_altivec)
6860 vector_abi = POWERPC_VEC_ALTIVEC;
6861 else if (have_spe)
6862 vector_abi = POWERPC_VEC_SPE;
6863 else
6864 vector_abi = POWERPC_VEC_GENERIC;
6865 }
6866
6867 /* Do not limit the vector ABI based on available hardware, since we
6868 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6869
7cc46491
DJ
6870 /* Find a candidate among extant architectures. */
6871 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6872 arches != NULL;
6873 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6874 {
6875 /* Word size in the various PowerPC bfd_arch_info structs isn't
dda83cd7
SM
6876 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6877 separate word size check. */
7cc46491 6878 tdep = gdbarch_tdep (arches->gdbarch);
cd453cd0
UW
6879 if (tdep && tdep->elf_abi != elf_abi)
6880 continue;
55eddb0f
DJ
6881 if (tdep && tdep->soft_float != soft_float)
6882 continue;
ed0f4273
UW
6883 if (tdep && tdep->long_double_abi != long_double_abi)
6884 continue;
55eddb0f
DJ
6885 if (tdep && tdep->vector_abi != vector_abi)
6886 continue;
7cc46491 6887 if (tdep && tdep->wordsize == wordsize)
c1e1314d 6888 return arches->gdbarch;
7cc46491
DJ
6889 }
6890
6891 /* None found, create a new architecture from INFO, whose bfd_arch_info
6892 validity depends on the source:
6893 - executable useless
6894 - rs6000_host_arch() good
6895 - core file good
6896 - "set arch" trust blindly
6897 - GDB startup useless but harmless */
6898
fc270c35 6899 tdep = XCNEW (struct gdbarch_tdep);
7cc46491 6900 tdep->wordsize = wordsize;
cd453cd0 6901 tdep->elf_abi = elf_abi;
55eddb0f 6902 tdep->soft_float = soft_float;
ed0f4273 6903 tdep->long_double_abi = long_double_abi;
55eddb0f 6904 tdep->vector_abi = vector_abi;
7cc46491 6905
7a78ae4e 6906 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 6907
7cc46491
DJ
6908 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6909 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6910 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6911 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6912 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6913 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6914 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6915 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6916
6917 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6918 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
604c2f83 6919 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
7cc46491
DJ
6920 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6921 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6922 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6923 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6924 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
7ca18ed6
EBM
6925 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6926 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
f2cf6173 6927 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
232bfb86
EBM
6928 tdep->have_ebb = have_ebb;
6929
6930 /* If additional pmu registers are added, care must be taken when
6931 setting new fields in the tdep below, to maintain compatibility
6932 with features that only provide some of the registers. Currently
6933 gdb access to the pmu registers is only supported in linux, and
6934 linux only provides a subset of the pmu registers defined in the
6935 architecture. */
6936
6937 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
6938 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
6939 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
6940 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
6941 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
7cc46491 6942
8d619c01
EBM
6943 tdep->have_htm_spr = have_htm_spr;
6944 tdep->have_htm_core = have_htm_core;
6945 tdep->have_htm_fpu = have_htm_fpu;
6946 tdep->have_htm_altivec = have_htm_altivec;
6947 tdep->have_htm_vsx = have_htm_vsx;
6948 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
6949 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
6950 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
6951
7cc46491
DJ
6952 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6953 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
7cc46491 6954 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
9f643768 6955 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7cc46491
DJ
6956
6957 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6958 GDB traditionally called it "ps", though, so let GDB add an
6959 alias. */
6960 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6961
4a7622d1 6962 if (wordsize == 8)
05580c65 6963 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
afd48b75 6964 else
4a7622d1 6965 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
c8001721 6966
baffbae0
JB
6967 /* Set lr_frame_offset. */
6968 if (wordsize == 8)
6969 tdep->lr_frame_offset = 16;
baffbae0 6970 else
4a7622d1 6971 tdep->lr_frame_offset = 4;
baffbae0 6972
6f072a10
PFC
6973 if (have_spe || have_dfp || have_altivec
6974 || have_vsx || have_htm_fpu || have_htm_vsx)
7cc46491 6975 {
f949c649 6976 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
0df8b418
MS
6977 set_gdbarch_pseudo_register_write (gdbarch,
6978 rs6000_pseudo_register_write);
2a2fa07b
MK
6979 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6980 rs6000_ax_pseudo_register_collect);
7cc46491 6981 }
1fcc0bb8 6982
a67914de
MK
6983 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6984
e0d24f8d
WZ
6985 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6986
5a9e69ba 6987 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
f949c649
TJB
6988
6989 if (have_spe)
6990 num_pseudoregs += 32;
6991 if (have_dfp)
6992 num_pseudoregs += 16;
6f072a10
PFC
6993 if (have_altivec)
6994 num_pseudoregs += 32;
604c2f83
LM
6995 if (have_vsx)
6996 /* Include both VSX and Extended FP registers. */
6997 num_pseudoregs += 96;
8d619c01
EBM
6998 if (have_htm_fpu)
6999 num_pseudoregs += 16;
7000 /* Include both checkpointed VSX and EFP registers. */
7001 if (have_htm_vsx)
7002 num_pseudoregs += 64 + 32;
f949c649
TJB
7003
7004 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7a78ae4e
ND
7005
7006 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7007 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
7008 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7009 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7010 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7011 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7012 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4a7622d1 7013 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4e409299 7014 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 7015
11269d7e 7016 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4a7622d1 7017 if (wordsize == 8)
8b148df9
AC
7018 /* PPC64 SYSV. */
7019 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7a78ae4e 7020
691d145a
JB
7021 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7022 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7023 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7024
18ed0c4e
JB
7025 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7026 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 7027
4a7622d1 7028 if (wordsize == 4)
77b2b6d4 7029 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4a7622d1 7030 else if (wordsize == 8)
8be9034a 7031 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7a78ae4e 7032
7a78ae4e 7033 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
c9cf6e20 7034 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
8ab3d180 7035 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
0d1243d9 7036
7a78ae4e 7037 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
7038
7039 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7040 rs6000_breakpoint::kind_from_pc);
7041 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7042 rs6000_breakpoint::bp_from_kind);
7a78ae4e 7043
203c3895 7044 /* The value of symbols of type N_SO and N_FUN maybe null when
0df8b418 7045 it shouldn't be. */
203c3895
UW
7046 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7047
ce5eab59 7048 /* Handles single stepping of atomic sequences. */
4a7622d1 7049 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
ce5eab59 7050
0df8b418 7051 /* Not sure on this. FIXMEmgo */
7a78ae4e
ND
7052 set_gdbarch_frame_args_skip (gdbarch, 8);
7053
143985b7
AF
7054 /* Helpers for function argument information. */
7055 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7056
6f7f3f0d
UW
7057 /* Trampoline. */
7058 set_gdbarch_in_solib_return_trampoline
7059 (gdbarch, rs6000_in_solib_return_trampoline);
7060 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7061
4fc771b8 7062 /* Hook in the DWARF CFI frame unwinder. */
1af5d7ce 7063 dwarf2_append_unwinders (gdbarch);
4fc771b8
DJ
7064 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7065
9274a07c
LM
7066 /* Frame handling. */
7067 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7068
2454a024
UW
7069 /* Setup displaced stepping. */
7070 set_gdbarch_displaced_step_copy_insn (gdbarch,
7f03bd92 7071 ppc_displaced_step_copy_insn);
99e40580
UW
7072 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7073 ppc_displaced_step_hw_singlestep);
2454a024 7074 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
187b041e
SM
7075 set_gdbarch_displaced_step_prepare (gdbarch, ppc_displaced_step_prepare);
7076 set_gdbarch_displaced_step_finish (gdbarch, ppc_displaced_step_finish);
7077 set_gdbarch_displaced_step_restore_all_in_ptid
7078 (gdbarch, ppc_displaced_step_restore_all_in_ptid);
2454a024
UW
7079
7080 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
7081
7b112f9c 7082 /* Hook in ABI-specific overrides, if they have been registered. */
8a4c2d24 7083 info.target_desc = tdesc;
c1e1314d 7084 info.tdesc_data = tdesc_data.get ();
4be87837 7085 gdbarch_init_osabi (info, gdbarch);
7b112f9c 7086
61a65099
KB
7087 switch (info.osabi)
7088 {
f5aecab8 7089 case GDB_OSABI_LINUX:
1736a7bd 7090 case GDB_OSABI_NETBSD:
61a65099 7091 case GDB_OSABI_UNKNOWN:
2608dbf8 7092 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce 7093 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
61a65099
KB
7094 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7095 break;
7096 default:
61a65099 7097 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287 7098
2608dbf8 7099 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce 7100 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
81332287 7101 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
7102 }
7103
7cc46491 7104 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6f072a10
PFC
7105 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7106 rs6000_pseudo_register_reggroup_p);
c1e1314d 7107 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
7cc46491
DJ
7108
7109 /* Override the normal target description method to make the SPE upper
7110 halves anonymous. */
7111 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7112
604c2f83
LM
7113 /* Choose register numbers for all supported pseudo-registers. */
7114 tdep->ppc_ev0_regnum = -1;
7115 tdep->ppc_dl0_regnum = -1;
6f072a10 7116 tdep->ppc_v0_alias_regnum = -1;
604c2f83
LM
7117 tdep->ppc_vsr0_regnum = -1;
7118 tdep->ppc_efpr0_regnum = -1;
8d619c01
EBM
7119 tdep->ppc_cdl0_regnum = -1;
7120 tdep->ppc_cvsr0_regnum = -1;
7121 tdep->ppc_cefpr0_regnum = -1;
9f643768 7122
604c2f83
LM
7123 cur_reg = gdbarch_num_regs (gdbarch);
7124
7125 if (have_spe)
7126 {
7127 tdep->ppc_ev0_regnum = cur_reg;
7128 cur_reg += 32;
7129 }
7130 if (have_dfp)
7131 {
7132 tdep->ppc_dl0_regnum = cur_reg;
7133 cur_reg += 16;
7134 }
6f072a10
PFC
7135 if (have_altivec)
7136 {
7137 tdep->ppc_v0_alias_regnum = cur_reg;
7138 cur_reg += 32;
7139 }
604c2f83
LM
7140 if (have_vsx)
7141 {
7142 tdep->ppc_vsr0_regnum = cur_reg;
7143 cur_reg += 64;
7144 tdep->ppc_efpr0_regnum = cur_reg;
7145 cur_reg += 32;
7146 }
8d619c01
EBM
7147 if (have_htm_fpu)
7148 {
7149 tdep->ppc_cdl0_regnum = cur_reg;
7150 cur_reg += 16;
7151 }
7152 if (have_htm_vsx)
7153 {
7154 tdep->ppc_cvsr0_regnum = cur_reg;
7155 cur_reg += 64;
7156 tdep->ppc_cefpr0_regnum = cur_reg;
7157 cur_reg += 32;
7158 }
f949c649 7159
f6efe3f8 7160 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
f949c649 7161
debb1f09
JB
7162 /* Register the ravenscar_arch_ops. */
7163 if (mach == bfd_mach_ppc_e500)
7164 register_e500_ravenscar_ops (gdbarch);
7165 else
7166 register_ppc_ravenscar_ops (gdbarch);
7167
65b48a81
PB
7168 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7169 set_gdbarch_valid_disassembler_options (gdbarch,
7170 disassembler_options_powerpc ());
7171
7a78ae4e 7172 return gdbarch;
c906108c
SS
7173}
7174
7b112f9c 7175static void
8b164abb 7176rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7b112f9c 7177{
8b164abb 7178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7b112f9c
JT
7179
7180 if (tdep == NULL)
7181 return;
7182
4be87837 7183 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
7184}
7185
55eddb0f 7186static void
eb4c3f4a 7187powerpc_set_soft_float (const char *args, int from_tty,
55eddb0f
DJ
7188 struct cmd_list_element *c)
7189{
7190 struct gdbarch_info info;
7191
7192 /* Update the architecture. */
7193 gdbarch_info_init (&info);
7194 if (!gdbarch_update_p (info))
9b20d036 7195 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
7196}
7197
7198static void
eb4c3f4a 7199powerpc_set_vector_abi (const char *args, int from_tty,
55eddb0f
DJ
7200 struct cmd_list_element *c)
7201{
7202 struct gdbarch_info info;
570dc176 7203 int vector_abi;
55eddb0f
DJ
7204
7205 for (vector_abi = POWERPC_VEC_AUTO;
7206 vector_abi != POWERPC_VEC_LAST;
7207 vector_abi++)
7208 if (strcmp (powerpc_vector_abi_string,
7209 powerpc_vector_strings[vector_abi]) == 0)
7210 {
aead7601 7211 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
55eddb0f
DJ
7212 break;
7213 }
7214
7215 if (vector_abi == POWERPC_VEC_LAST)
7216 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7217 powerpc_vector_abi_string);
7218
7219 /* Update the architecture. */
7220 gdbarch_info_init (&info);
7221 if (!gdbarch_update_p (info))
9b20d036 7222 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
7223}
7224
e09342b5
TJB
7225/* Show the current setting of the exact watchpoints flag. */
7226
7227static void
7228show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7229 struct cmd_list_element *c,
7230 const char *value)
7231{
7232 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7233}
7234
845d4708 7235/* Read a PPC instruction from memory. */
d78489bf
AT
7236
7237static unsigned int
845d4708 7238read_insn (struct frame_info *frame, CORE_ADDR pc)
d78489bf 7239{
845d4708
AM
7240 struct gdbarch *gdbarch = get_frame_arch (frame);
7241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7242
7243 return read_memory_unsigned_integer (pc, 4, byte_order);
d78489bf
AT
7244}
7245
7246/* Return non-zero if the instructions at PC match the series
7247 described in PATTERN, or zero otherwise. PATTERN is an array of
7248 'struct ppc_insn_pattern' objects, terminated by an entry whose
7249 mask is zero.
7250
7433498b 7251 When the match is successful, fill INSNS[i] with what PATTERN[i]
d78489bf 7252 matched. If PATTERN[i] is optional, and the instruction wasn't
7433498b
AM
7253 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7254 INSNS should have as many elements as PATTERN, minus the terminator.
7255 Note that, if PATTERN contains optional instructions which aren't
7256 present in memory, then INSNS will have holes, so INSNS[i] isn't
7257 necessarily the i'th instruction in memory. */
d78489bf
AT
7258
7259int
845d4708 7260ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7433498b 7261 const struct ppc_insn_pattern *pattern,
845d4708 7262 unsigned int *insns)
d78489bf
AT
7263{
7264 int i;
845d4708 7265 unsigned int insn;
d78489bf 7266
845d4708 7267 for (i = 0, insn = 0; pattern[i].mask; i++)
d78489bf 7268 {
845d4708
AM
7269 if (insn == 0)
7270 insn = read_insn (frame, pc);
7271 insns[i] = 0;
7272 if ((insn & pattern[i].mask) == pattern[i].data)
7273 {
7274 insns[i] = insn;
7275 pc += 4;
7276 insn = 0;
7277 }
7278 else if (!pattern[i].optional)
d78489bf
AT
7279 return 0;
7280 }
7281
7282 return 1;
7283}
7284
7285/* Return the 'd' field of the d-form instruction INSN, properly
7286 sign-extended. */
7287
7288CORE_ADDR
7289ppc_insn_d_field (unsigned int insn)
7290{
7291 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7292}
7293
7294/* Return the 'ds' field of the ds-form instruction INSN, with the two
7295 zero bits concatenated at the right, and properly
7296 sign-extended. */
7297
7298CORE_ADDR
7299ppc_insn_ds_field (unsigned int insn)
7300{
7301 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7302}
7303
c906108c
SS
7304/* Initialization code. */
7305
6c265988 7306void _initialize_rs6000_tdep ();
c906108c 7307void
6c265988 7308_initialize_rs6000_tdep ()
c906108c 7309{
7b112f9c
JT
7310 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7311 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7cc46491
DJ
7312
7313 /* Initialize the standard target descriptions. */
7314 initialize_tdesc_powerpc_32 ();
7284e1be 7315 initialize_tdesc_powerpc_altivec32 ();
604c2f83 7316 initialize_tdesc_powerpc_vsx32 ();
7cc46491
DJ
7317 initialize_tdesc_powerpc_403 ();
7318 initialize_tdesc_powerpc_403gc ();
4d09ffea 7319 initialize_tdesc_powerpc_405 ();
7cc46491
DJ
7320 initialize_tdesc_powerpc_505 ();
7321 initialize_tdesc_powerpc_601 ();
7322 initialize_tdesc_powerpc_602 ();
7323 initialize_tdesc_powerpc_603 ();
7324 initialize_tdesc_powerpc_604 ();
7325 initialize_tdesc_powerpc_64 ();
7284e1be 7326 initialize_tdesc_powerpc_altivec64 ();
604c2f83 7327 initialize_tdesc_powerpc_vsx64 ();
7cc46491
DJ
7328 initialize_tdesc_powerpc_7400 ();
7329 initialize_tdesc_powerpc_750 ();
7330 initialize_tdesc_powerpc_860 ();
7331 initialize_tdesc_powerpc_e500 ();
7332 initialize_tdesc_rs6000 ();
55eddb0f
DJ
7333
7334 /* Add root prefix command for all "set powerpc"/"show powerpc"
7335 commands. */
0743fc83
TT
7336 add_basic_prefix_cmd ("powerpc", no_class,
7337 _("Various PowerPC-specific commands."),
7338 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
55eddb0f 7339
0743fc83
TT
7340 add_show_prefix_cmd ("powerpc", no_class,
7341 _("Various PowerPC-specific commands."),
7342 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
55eddb0f
DJ
7343
7344 /* Add a command to allow the user to force the ABI. */
7345 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7346 &powerpc_soft_float_global,
7347 _("Set whether to use a soft-float ABI."),
7348 _("Show whether to use a soft-float ABI."),
7349 NULL,
7350 powerpc_set_soft_float, NULL,
7351 &setpowerpccmdlist, &showpowerpccmdlist);
7352
7353 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7354 &powerpc_vector_abi_string,
7355 _("Set the vector ABI."),
7356 _("Show the vector ABI."),
7357 NULL, powerpc_set_vector_abi, NULL,
7358 &setpowerpccmdlist, &showpowerpccmdlist);
e09342b5
TJB
7359
7360 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7361 &target_exact_watchpoints,
7362 _("\
7363Set whether to use just one debug register for watchpoints on scalars."),
7364 _("\
7365Show whether to use just one debug register for watchpoints on scalars."),
7366 _("\
7367If true, GDB will use only one debug register when watching a variable of\n\
7368scalar type, thus assuming that the variable is accessed through the address\n\
7369of its first byte."),
7370 NULL, show_powerpc_exact_watchpoints,
7371 &setpowerpccmdlist, &showpowerpccmdlist);
c906108c 7372}
This page took 2.730267 seconds and 4 git commands to generate.