2002-10-02 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
2a873819 3 1998, 1999, 2000, 2001, 2002
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
7a78ae4e 37
2fccf04a 38#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 39#include "coff/internal.h" /* for libcoff.h */
2fccf04a 40#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
41#include "coff/xcoff.h"
42#include "libxcoff.h"
7a78ae4e 43
9aa1e687 44#include "elf-bfd.h"
7a78ae4e 45
6ded7999 46#include "solib-svr4.h"
9aa1e687 47#include "ppc-tdep.h"
7a78ae4e
ND
48
49/* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56#define SIG_FRAME_PC_OFFSET 96
57#define SIG_FRAME_LR_OFFSET 108
58#define SIG_FRAME_FP_OFFSET 284
59
7a78ae4e
ND
60/* To be used by skip_prologue. */
61
62struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 69 int saved_vr; /* smallest # of saved vr */
96ff0de4 70 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
71 int alloca_reg; /* alloca register number (frame ptr) */
72 char frameless; /* true if frameless functions. */
73 char nosavedpc; /* true if pc not saved. */
74 int gpr_offset; /* offset of saved gprs from prev sp */
75 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 76 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 77 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
78 int lr_offset; /* offset of saved lr */
79 int cr_offset; /* offset of saved cr */
6be8bc0c 80 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
81 };
82
83/* Description of a single register. */
84
85struct reg
86 {
87 char *name; /* name of register */
88 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
89 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
90 unsigned char fpr; /* whether register is floating-point */
489461e2 91 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
92 };
93
c906108c
SS
94/* Breakpoint shadows for the single step instructions will be kept here. */
95
c5aa993b
JM
96static struct sstep_breaks
97 {
98 /* Address, or 0 if this is not in use. */
99 CORE_ADDR address;
100 /* Shadow contents. */
101 char data[4];
102 }
103stepBreaks[2];
c906108c
SS
104
105/* Hook for determining the TOC address when calling functions in the
106 inferior under AIX. The initialization code in rs6000-nat.c sets
107 this hook to point to find_toc_address. */
108
7a78ae4e
ND
109CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
110
111/* Hook to set the current architecture when starting a child process.
112 rs6000-nat.c sets this. */
113
114void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
115
116/* Static function prototypes */
117
a14ed312
KB
118static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
119 CORE_ADDR safety);
077276e8
KB
120static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
121 struct rs6000_framedata *);
7a78ae4e
ND
122static void frame_get_saved_regs (struct frame_info * fi,
123 struct rs6000_framedata * fdatap);
124static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 125
64b84175
KB
126/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127int
128altivec_register_p (int regno)
129{
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135}
136
7a78ae4e 137/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 138
7a78ae4e
ND
139static CORE_ADDR
140read_memory_addr (CORE_ADDR memaddr, int len)
141{
142 return read_memory_unsigned_integer (memaddr, len);
143}
c906108c 144
7a78ae4e
ND
145static CORE_ADDR
146rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
147{
148 struct rs6000_framedata frame;
077276e8 149 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
150 return pc;
151}
152
153
c906108c
SS
154/* Fill in fi->saved_regs */
155
156struct frame_extra_info
157{
158 /* Functions calling alloca() change the value of the stack
159 pointer. We need to use initial stack pointer (which is saved in
160 r31 by gcc) in such cases. If a compiler emits traceback table,
161 then we should use the alloca register specified in traceback
162 table. FIXME. */
c5aa993b 163 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
164};
165
9aa1e687 166void
7a78ae4e 167rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 168{
c5aa993b 169 fi->extra_info = (struct frame_extra_info *)
c906108c
SS
170 frame_obstack_alloc (sizeof (struct frame_extra_info));
171 fi->extra_info->initial_sp = 0;
172 if (fi->next != (CORE_ADDR) 0
173 && fi->pc < TEXT_SEGMENT_BASE)
7a292a7a 174 /* We're in get_prev_frame */
c906108c
SS
175 /* and this is a special signal frame. */
176 /* (fi->pc will be some low address in the kernel, */
177 /* to which the signal handler returns). */
178 fi->signal_handler_caller = 1;
179}
180
7a78ae4e
ND
181/* Put here the code to store, into a struct frame_saved_regs,
182 the addresses of the saved registers of frame described by FRAME_INFO.
183 This includes special registers such as pc and fp saved in special
184 ways in the stack frame. sp is even more special:
185 the address we return for it IS the sp for the next frame. */
c906108c 186
7a78ae4e
ND
187/* In this implementation for RS/6000, we do *not* save sp. I am
188 not sure if it will be needed. The following function takes care of gpr's
189 and fpr's only. */
190
9aa1e687 191void
7a78ae4e 192rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
193{
194 frame_get_saved_regs (fi, NULL);
195}
196
7a78ae4e
ND
197static CORE_ADDR
198rs6000_frame_args_address (struct frame_info *fi)
c906108c
SS
199{
200 if (fi->extra_info->initial_sp != 0)
201 return fi->extra_info->initial_sp;
202 else
203 return frame_initial_stack_address (fi);
204}
205
7a78ae4e
ND
206/* Immediately after a function call, return the saved pc.
207 Can't go through the frames for this because on some machines
208 the new frame is not set up until the new function executes
209 some instructions. */
210
211static CORE_ADDR
212rs6000_saved_pc_after_call (struct frame_info *fi)
213{
2188cbdd 214 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 215}
c906108c
SS
216
217/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
218
219static CORE_ADDR
7a78ae4e 220branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
221{
222 CORE_ADDR dest;
223 int immediate;
224 int absolute;
225 int ext_op;
226
227 absolute = (int) ((instr >> 1) & 1);
228
c5aa993b
JM
229 switch (opcode)
230 {
231 case 18:
232 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
233 if (absolute)
234 dest = immediate;
235 else
236 dest = pc + immediate;
237 break;
238
239 case 16:
240 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
241 if (absolute)
242 dest = immediate;
243 else
244 dest = pc + immediate;
245 break;
246
247 case 19:
248 ext_op = (instr >> 1) & 0x3ff;
249
250 if (ext_op == 16) /* br conditional register */
251 {
2188cbdd 252 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
253
254 /* If we are about to return from a signal handler, dest is
255 something like 0x3c90. The current frame is a signal handler
256 caller frame, upon completion of the sigreturn system call
257 execution will return to the saved PC in the frame. */
258 if (dest < TEXT_SEGMENT_BASE)
259 {
260 struct frame_info *fi;
261
262 fi = get_current_frame ();
263 if (fi != NULL)
7a78ae4e 264 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
21283beb 265 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
266 }
267 }
268
269 else if (ext_op == 528) /* br cond to count reg */
270 {
2188cbdd 271 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
272
273 /* If we are about to execute a system call, dest is something
274 like 0x22fc or 0x3b00. Upon completion the system call
275 will return to the address in the link register. */
276 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 277 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
278 }
279 else
280 return -1;
281 break;
c906108c 282
c5aa993b
JM
283 default:
284 return -1;
285 }
c906108c
SS
286 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
287}
288
289
290/* Sequence of bytes for breakpoint instruction. */
291
292#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
293#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
294
f4f9705a 295const static unsigned char *
7a78ae4e 296rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c
SS
297{
298 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
299 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
300 *bp_size = 4;
d7449b42 301 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
302 return big_breakpoint;
303 else
304 return little_breakpoint;
305}
306
307
308/* AIX does not support PT_STEP. Simulate it. */
309
310void
379d08a1
AC
311rs6000_software_single_step (enum target_signal signal,
312 int insert_breakpoints_p)
c906108c 313{
7c40d541
KB
314 CORE_ADDR dummy;
315 int breakp_sz;
f4f9705a 316 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
317 int ii, insn;
318 CORE_ADDR loc;
319 CORE_ADDR breaks[2];
320 int opcode;
321
c5aa993b
JM
322 if (insert_breakpoints_p)
323 {
c906108c 324
c5aa993b 325 loc = read_pc ();
c906108c 326
c5aa993b 327 insn = read_memory_integer (loc, 4);
c906108c 328
7c40d541 329 breaks[0] = loc + breakp_sz;
c5aa993b
JM
330 opcode = insn >> 26;
331 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 332
c5aa993b
JM
333 /* Don't put two breakpoints on the same address. */
334 if (breaks[1] == breaks[0])
335 breaks[1] = -1;
c906108c 336
c5aa993b 337 stepBreaks[1].address = 0;
c906108c 338
c5aa993b
JM
339 for (ii = 0; ii < 2; ++ii)
340 {
c906108c 341
c5aa993b
JM
342 /* ignore invalid breakpoint. */
343 if (breaks[ii] == -1)
344 continue;
7c40d541 345 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
346 stepBreaks[ii].address = breaks[ii];
347 }
c906108c 348
c5aa993b
JM
349 }
350 else
351 {
c906108c 352
c5aa993b
JM
353 /* remove step breakpoints. */
354 for (ii = 0; ii < 2; ++ii)
355 if (stepBreaks[ii].address != 0)
7c40d541
KB
356 target_remove_breakpoint (stepBreaks[ii].address,
357 stepBreaks[ii].data);
c5aa993b 358 }
c906108c 359 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 360 /* What errors? {read,write}_memory call error(). */
c906108c
SS
361}
362
363
364/* return pc value after skipping a function prologue and also return
365 information about a function frame.
366
367 in struct rs6000_framedata fdata:
c5aa993b
JM
368 - frameless is TRUE, if function does not have a frame.
369 - nosavedpc is TRUE, if function does not save %pc value in its frame.
370 - offset is the initial size of this stack frame --- the amount by
371 which we decrement the sp to allocate the frame.
372 - saved_gpr is the number of the first saved gpr.
373 - saved_fpr is the number of the first saved fpr.
6be8bc0c 374 - saved_vr is the number of the first saved vr.
96ff0de4 375 - saved_ev is the number of the first saved ev.
c5aa993b
JM
376 - alloca_reg is the number of the register used for alloca() handling.
377 Otherwise -1.
378 - gpr_offset is the offset of the first saved gpr from the previous frame.
379 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 380 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 381 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
382 - lr_offset is the offset of the saved lr
383 - cr_offset is the offset of the saved cr
6be8bc0c 384 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 385 */
c906108c
SS
386
387#define SIGNED_SHORT(x) \
388 ((sizeof (short) == 2) \
389 ? ((int)(short)(x)) \
390 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
391
392#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
393
55d05f3b
KB
394/* Limit the number of skipped non-prologue instructions, as the examining
395 of the prologue is expensive. */
396static int max_skip_non_prologue_insns = 10;
397
398/* Given PC representing the starting address of a function, and
399 LIM_PC which is the (sloppy) limit to which to scan when looking
400 for a prologue, attempt to further refine this limit by using
401 the line data in the symbol table. If successful, a better guess
402 on where the prologue ends is returned, otherwise the previous
403 value of lim_pc is returned. */
404static CORE_ADDR
405refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
406{
407 struct symtab_and_line prologue_sal;
408
409 prologue_sal = find_pc_line (pc, 0);
410 if (prologue_sal.line != 0)
411 {
412 int i;
413 CORE_ADDR addr = prologue_sal.end;
414
415 /* Handle the case in which compiler's optimizer/scheduler
416 has moved instructions into the prologue. We scan ahead
417 in the function looking for address ranges whose corresponding
418 line number is less than or equal to the first one that we
419 found for the function. (It can be less than when the
420 scheduler puts a body instruction before the first prologue
421 instruction.) */
422 for (i = 2 * max_skip_non_prologue_insns;
423 i > 0 && (lim_pc == 0 || addr < lim_pc);
424 i--)
425 {
426 struct symtab_and_line sal;
427
428 sal = find_pc_line (addr, 0);
429 if (sal.line == 0)
430 break;
431 if (sal.line <= prologue_sal.line
432 && sal.symtab == prologue_sal.symtab)
433 {
434 prologue_sal = sal;
435 }
436 addr = sal.end;
437 }
438
439 if (lim_pc == 0 || prologue_sal.end < lim_pc)
440 lim_pc = prologue_sal.end;
441 }
442 return lim_pc;
443}
444
445
7a78ae4e 446static CORE_ADDR
077276e8 447skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
448{
449 CORE_ADDR orig_pc = pc;
55d05f3b 450 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 451 CORE_ADDR li_found_pc = 0;
c906108c
SS
452 char buf[4];
453 unsigned long op;
454 long offset = 0;
6be8bc0c 455 long vr_saved_offset = 0;
482ca3f5
KB
456 int lr_reg = -1;
457 int cr_reg = -1;
6be8bc0c 458 int vr_reg = -1;
96ff0de4
EZ
459 int ev_reg = -1;
460 long ev_offset = 0;
6be8bc0c 461 int vrsave_reg = -1;
c906108c
SS
462 int reg;
463 int framep = 0;
464 int minimal_toc_loaded = 0;
ddb20c56 465 int prev_insn_was_prologue_insn = 1;
55d05f3b 466 int num_skip_non_prologue_insns = 0;
96ff0de4 467 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 468 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 469
55d05f3b
KB
470 /* Attempt to find the end of the prologue when no limit is specified.
471 Note that refine_prologue_limit() has been written so that it may
472 be used to "refine" the limits of non-zero PC values too, but this
473 is only safe if we 1) trust the line information provided by the
474 compiler and 2) iterate enough to actually find the end of the
475 prologue.
476
477 It may become a good idea at some point (for both performance and
478 accuracy) to unconditionally call refine_prologue_limit(). But,
479 until we can make a clear determination that this is beneficial,
480 we'll play it safe and only use it to obtain a limit when none
481 has been specified. */
482 if (lim_pc == 0)
483 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 484
ddb20c56 485 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
486 fdata->saved_gpr = -1;
487 fdata->saved_fpr = -1;
6be8bc0c 488 fdata->saved_vr = -1;
96ff0de4 489 fdata->saved_ev = -1;
c906108c
SS
490 fdata->alloca_reg = -1;
491 fdata->frameless = 1;
492 fdata->nosavedpc = 1;
493
55d05f3b 494 for (;; pc += 4)
c906108c 495 {
ddb20c56
KB
496 /* Sometimes it isn't clear if an instruction is a prologue
497 instruction or not. When we encounter one of these ambiguous
498 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
499 Otherwise, we'll assume that it really is a prologue instruction. */
500 if (prev_insn_was_prologue_insn)
501 last_prologue_pc = pc;
55d05f3b
KB
502
503 /* Stop scanning if we've hit the limit. */
504 if (lim_pc != 0 && pc >= lim_pc)
505 break;
506
ddb20c56
KB
507 prev_insn_was_prologue_insn = 1;
508
55d05f3b 509 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
510 if (target_read_memory (pc, buf, 4))
511 break;
512 op = extract_signed_integer (buf, 4);
c906108c 513
c5aa993b
JM
514 if ((op & 0xfc1fffff) == 0x7c0802a6)
515 { /* mflr Rx */
516 lr_reg = (op & 0x03e00000) | 0x90010000;
517 continue;
c906108c 518
c5aa993b
JM
519 }
520 else if ((op & 0xfc1fffff) == 0x7c000026)
521 { /* mfcr Rx */
522 cr_reg = (op & 0x03e00000) | 0x90010000;
523 continue;
c906108c 524
c906108c 525 }
c5aa993b
JM
526 else if ((op & 0xfc1f0000) == 0xd8010000)
527 { /* stfd Rx,NUM(r1) */
528 reg = GET_SRC_REG (op);
529 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
530 {
531 fdata->saved_fpr = reg;
532 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
533 }
534 continue;
c906108c 535
c5aa993b
JM
536 }
537 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
538 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
539 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
540 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
541 {
542
543 reg = GET_SRC_REG (op);
544 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
545 {
546 fdata->saved_gpr = reg;
7a78ae4e
ND
547 if ((op & 0xfc1f0003) == 0xf8010000)
548 op = (op >> 1) << 1;
c5aa993b
JM
549 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
550 }
551 continue;
c906108c 552
ddb20c56
KB
553 }
554 else if ((op & 0xffff0000) == 0x60000000)
555 {
96ff0de4 556 /* nop */
ddb20c56
KB
557 /* Allow nops in the prologue, but do not consider them to
558 be part of the prologue unless followed by other prologue
559 instructions. */
560 prev_insn_was_prologue_insn = 0;
561 continue;
562
c906108c 563 }
c5aa993b
JM
564 else if ((op & 0xffff0000) == 0x3c000000)
565 { /* addis 0,0,NUM, used
566 for >= 32k frames */
567 fdata->offset = (op & 0x0000ffff) << 16;
568 fdata->frameless = 0;
569 continue;
570
571 }
572 else if ((op & 0xffff0000) == 0x60000000)
573 { /* ori 0,0,NUM, 2nd ha
574 lf of >= 32k frames */
575 fdata->offset |= (op & 0x0000ffff);
576 fdata->frameless = 0;
577 continue;
578
579 }
482ca3f5 580 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
c5aa993b
JM
581 { /* st Rx,NUM(r1)
582 where Rx == lr */
583 fdata->lr_offset = SIGNED_SHORT (op) + offset;
584 fdata->nosavedpc = 0;
585 lr_reg = 0;
586 continue;
587
588 }
482ca3f5 589 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
c5aa993b
JM
590 { /* st Rx,NUM(r1)
591 where Rx == cr */
592 fdata->cr_offset = SIGNED_SHORT (op) + offset;
593 cr_reg = 0;
594 continue;
595
596 }
597 else if (op == 0x48000005)
598 { /* bl .+4 used in
599 -mrelocatable */
600 continue;
601
602 }
603 else if (op == 0x48000004)
604 { /* b .+4 (xlc) */
605 break;
606
c5aa993b 607 }
6be8bc0c
EZ
608 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
609 in V.4 -mminimal-toc */
c5aa993b
JM
610 (op & 0xffff0000) == 0x3bde0000)
611 { /* addi 30,30,foo@l */
612 continue;
c906108c 613
c5aa993b
JM
614 }
615 else if ((op & 0xfc000001) == 0x48000001)
616 { /* bl foo,
617 to save fprs??? */
c906108c 618
c5aa993b 619 fdata->frameless = 0;
6be8bc0c
EZ
620 /* Don't skip over the subroutine call if it is not within
621 the first three instructions of the prologue. */
c5aa993b
JM
622 if ((pc - orig_pc) > 8)
623 break;
624
625 op = read_memory_integer (pc + 4, 4);
626
6be8bc0c
EZ
627 /* At this point, make sure this is not a trampoline
628 function (a function that simply calls another functions,
629 and nothing else). If the next is not a nop, this branch
630 was part of the function prologue. */
c5aa993b
JM
631
632 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
633 break; /* don't skip over
634 this branch */
635 continue;
636
637 /* update stack pointer */
638 }
7a78ae4e
ND
639 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
640 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
641 {
c5aa993b 642 fdata->frameless = 0;
7a78ae4e
ND
643 if ((op & 0xffff0003) == 0xf8210001)
644 op = (op >> 1) << 1;
c5aa993b
JM
645 fdata->offset = SIGNED_SHORT (op);
646 offset = fdata->offset;
647 continue;
648
649 }
650 else if (op == 0x7c21016e)
651 { /* stwux 1,1,0 */
652 fdata->frameless = 0;
653 offset = fdata->offset;
654 continue;
655
656 /* Load up minimal toc pointer */
657 }
658 else if ((op >> 22) == 0x20f
659 && !minimal_toc_loaded)
660 { /* l r31,... or l r30,... */
661 minimal_toc_loaded = 1;
662 continue;
663
f6077098
KB
664 /* move parameters from argument registers to local variable
665 registers */
666 }
667 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
668 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
669 (((op >> 21) & 31) <= 10) &&
96ff0de4 670 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
671 {
672 continue;
673
c5aa993b
JM
674 /* store parameters in stack */
675 }
6be8bc0c 676 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 677 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
678 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
679 {
c5aa993b 680 continue;
c906108c 681
c5aa993b
JM
682 /* store parameters in stack via frame pointer */
683 }
684 else if (framep &&
685 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
686 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
687 (op & 0xfc1f0000) == 0xfc1f0000))
688 { /* frsp, fp?,NUM(r1) */
689 continue;
690
691 /* Set up frame pointer */
692 }
693 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
694 || op == 0x7c3f0b78)
695 { /* mr r31, r1 */
696 fdata->frameless = 0;
697 framep = 1;
6f99cb26 698 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
699 continue;
700
701 /* Another way to set up the frame pointer. */
702 }
703 else if ((op & 0xfc1fffff) == 0x38010000)
704 { /* addi rX, r1, 0x0 */
705 fdata->frameless = 0;
706 framep = 1;
6f99cb26
AC
707 fdata->alloca_reg = (tdep->ppc_gp0_regnum
708 + ((op & ~0x38010000) >> 21));
c5aa993b 709 continue;
c5aa993b 710 }
6be8bc0c
EZ
711 /* AltiVec related instructions. */
712 /* Store the vrsave register (spr 256) in another register for
713 later manipulation, or load a register into the vrsave
714 register. 2 instructions are used: mfvrsave and
715 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
716 and mtspr SPR256, Rn. */
717 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
718 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
719 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
720 {
721 vrsave_reg = GET_SRC_REG (op);
722 continue;
723 }
724 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
725 {
726 continue;
727 }
728 /* Store the register where vrsave was saved to onto the stack:
729 rS is the register where vrsave was stored in a previous
730 instruction. */
731 /* 100100 sssss 00001 dddddddd dddddddd */
732 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
733 {
734 if (vrsave_reg == GET_SRC_REG (op))
735 {
736 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
737 vrsave_reg = -1;
738 }
739 continue;
740 }
741 /* Compute the new value of vrsave, by modifying the register
742 where vrsave was saved to. */
743 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
744 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
745 {
746 continue;
747 }
748 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
749 in a pair of insns to save the vector registers on the
750 stack. */
751 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
752 /* 001110 01110 00000 iiii iiii iiii iiii */
753 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
754 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
755 {
756 li_found_pc = pc;
757 vr_saved_offset = SIGNED_SHORT (op);
758 }
759 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
760 /* 011111 sssss 11111 00000 00111001110 */
761 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
762 {
763 if (pc == (li_found_pc + 4))
764 {
765 vr_reg = GET_SRC_REG (op);
766 /* If this is the first vector reg to be saved, or if
767 it has a lower number than others previously seen,
768 reupdate the frame info. */
769 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
770 {
771 fdata->saved_vr = vr_reg;
772 fdata->vr_offset = vr_saved_offset + offset;
773 }
774 vr_saved_offset = -1;
775 vr_reg = -1;
776 li_found_pc = 0;
777 }
778 }
779 /* End AltiVec related instructions. */
96ff0de4
EZ
780
781 /* Start BookE related instructions. */
782 /* Store gen register S at (r31+uimm).
783 Any register less than r13 is volatile, so we don't care. */
784 /* 000100 sssss 11111 iiiii 01100100001 */
785 else if (arch_info->mach == bfd_mach_ppc_e500
786 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
787 {
788 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
789 {
790 unsigned int imm;
791 ev_reg = GET_SRC_REG (op);
792 imm = (op >> 11) & 0x1f;
793 ev_offset = imm * 8;
794 /* If this is the first vector reg to be saved, or if
795 it has a lower number than others previously seen,
796 reupdate the frame info. */
797 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
798 {
799 fdata->saved_ev = ev_reg;
800 fdata->ev_offset = ev_offset + offset;
801 }
802 }
803 continue;
804 }
805 /* Store gen register rS at (r1+rB). */
806 /* 000100 sssss 00001 bbbbb 01100100000 */
807 else if (arch_info->mach == bfd_mach_ppc_e500
808 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
809 {
810 if (pc == (li_found_pc + 4))
811 {
812 ev_reg = GET_SRC_REG (op);
813 /* If this is the first vector reg to be saved, or if
814 it has a lower number than others previously seen,
815 reupdate the frame info. */
816 /* We know the contents of rB from the previous instruction. */
817 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
818 {
819 fdata->saved_ev = ev_reg;
820 fdata->ev_offset = vr_saved_offset + offset;
821 }
822 vr_saved_offset = -1;
823 ev_reg = -1;
824 li_found_pc = 0;
825 }
826 continue;
827 }
828 /* Store gen register r31 at (rA+uimm). */
829 /* 000100 11111 aaaaa iiiii 01100100001 */
830 else if (arch_info->mach == bfd_mach_ppc_e500
831 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
832 {
833 /* Wwe know that the source register is 31 already, but
834 it can't hurt to compute it. */
835 ev_reg = GET_SRC_REG (op);
836 ev_offset = ((op >> 11) & 0x1f) * 8;
837 /* If this is the first vector reg to be saved, or if
838 it has a lower number than others previously seen,
839 reupdate the frame info. */
840 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
841 {
842 fdata->saved_ev = ev_reg;
843 fdata->ev_offset = ev_offset + offset;
844 }
845
846 continue;
847 }
848 /* Store gen register S at (r31+r0).
849 Store param on stack when offset from SP bigger than 4 bytes. */
850 /* 000100 sssss 11111 00000 01100100000 */
851 else if (arch_info->mach == bfd_mach_ppc_e500
852 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
853 {
854 if (pc == (li_found_pc + 4))
855 {
856 if ((op & 0x03e00000) >= 0x01a00000)
857 {
858 ev_reg = GET_SRC_REG (op);
859 /* If this is the first vector reg to be saved, or if
860 it has a lower number than others previously seen,
861 reupdate the frame info. */
862 /* We know the contents of r0 from the previous
863 instruction. */
864 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
865 {
866 fdata->saved_ev = ev_reg;
867 fdata->ev_offset = vr_saved_offset + offset;
868 }
869 ev_reg = -1;
870 }
871 vr_saved_offset = -1;
872 li_found_pc = 0;
873 continue;
874 }
875 }
876 /* End BookE related instructions. */
877
c5aa993b
JM
878 else
879 {
55d05f3b
KB
880 /* Not a recognized prologue instruction.
881 Handle optimizer code motions into the prologue by continuing
882 the search if we have no valid frame yet or if the return
883 address is not yet saved in the frame. */
884 if (fdata->frameless == 0
885 && (lr_reg == -1 || fdata->nosavedpc == 0))
886 break;
887
888 if (op == 0x4e800020 /* blr */
889 || op == 0x4e800420) /* bctr */
890 /* Do not scan past epilogue in frameless functions or
891 trampolines. */
892 break;
893 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 894 /* Never skip branches. */
55d05f3b
KB
895 break;
896
897 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
898 /* Do not scan too many insns, scanning insns is expensive with
899 remote targets. */
900 break;
901
902 /* Continue scanning. */
903 prev_insn_was_prologue_insn = 0;
904 continue;
c5aa993b 905 }
c906108c
SS
906 }
907
908#if 0
909/* I have problems with skipping over __main() that I need to address
910 * sometime. Previously, I used to use misc_function_vector which
911 * didn't work as well as I wanted to be. -MGO */
912
913 /* If the first thing after skipping a prolog is a branch to a function,
914 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 915 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 916 work before calling a function right after a prologue, thus we can
64366f1c 917 single out such gcc2 behaviour. */
c906108c 918
c906108c 919
c5aa993b
JM
920 if ((op & 0xfc000001) == 0x48000001)
921 { /* bl foo, an initializer function? */
922 op = read_memory_integer (pc + 4, 4);
923
924 if (op == 0x4def7b82)
925 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 926
64366f1c
EZ
927 /* Check and see if we are in main. If so, skip over this
928 initializer function as well. */
c906108c 929
c5aa993b 930 tmp = find_pc_misc_function (pc);
51cc5b07 931 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
932 return pc + 8;
933 }
c906108c 934 }
c906108c 935#endif /* 0 */
c5aa993b
JM
936
937 fdata->offset = -fdata->offset;
ddb20c56 938 return last_prologue_pc;
c906108c
SS
939}
940
941
942/*************************************************************************
f6077098 943 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
944 frames, etc.
945*************************************************************************/
946
c906108c 947
64366f1c 948/* Pop the innermost frame, go back to the caller. */
c5aa993b 949
c906108c 950static void
7a78ae4e 951rs6000_pop_frame (void)
c906108c 952{
470d5666 953 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
954 struct rs6000_framedata fdata;
955 struct frame_info *frame = get_current_frame ();
470d5666 956 int ii, wordsize;
c906108c
SS
957
958 pc = read_pc ();
959 sp = FRAME_FP (frame);
960
58223630 961 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c 962 {
7a78ae4e
ND
963 generic_pop_dummy_frame ();
964 flush_cached_frames ();
965 return;
c906108c
SS
966 }
967
968 /* Make sure that all registers are valid. */
969 read_register_bytes (0, NULL, REGISTER_BYTES);
970
64366f1c 971 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 972 still in the link register, otherwise walk the frames and retrieve the
64366f1c 973 saved %pc value in the previous frame. */
c906108c
SS
974
975 addr = get_pc_function_start (frame->pc);
077276e8 976 (void) skip_prologue (addr, frame->pc, &fdata);
c906108c 977
21283beb 978 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
979 if (fdata.frameless)
980 prev_sp = sp;
981 else
7a78ae4e 982 prev_sp = read_memory_addr (sp, wordsize);
c906108c 983 if (fdata.lr_offset == 0)
2188cbdd 984 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 985 else
7a78ae4e 986 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
987
988 /* reset %pc value. */
989 write_register (PC_REGNUM, lr);
990
64366f1c 991 /* reset register values if any was saved earlier. */
c906108c
SS
992
993 if (fdata.saved_gpr != -1)
994 {
995 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
996 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
997 {
7a78ae4e
ND
998 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
999 addr += wordsize;
c5aa993b 1000 }
c906108c
SS
1001 }
1002
1003 if (fdata.saved_fpr != -1)
1004 {
1005 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1006 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1007 {
1008 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1009 addr += 8;
1010 }
c906108c
SS
1011 }
1012
1013 write_register (SP_REGNUM, prev_sp);
1014 target_store_registers (-1);
1015 flush_cached_frames ();
1016}
1017
7a78ae4e 1018/* Fixup the call sequence of a dummy function, with the real function
64366f1c 1019 address. Its arguments will be passed by gdb. */
c906108c 1020
7a78ae4e
ND
1021static void
1022rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 1023 int nargs, struct value **args, struct type *type,
7a78ae4e 1024 int gcc_p)
c906108c 1025{
c906108c
SS
1026 int ii;
1027 CORE_ADDR target_addr;
1028
7a78ae4e 1029 if (rs6000_find_toc_address_hook != NULL)
f6077098 1030 {
7a78ae4e 1031 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
1032 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1033 tocvalue);
f6077098 1034 }
c906108c
SS
1035}
1036
11269d7e
AC
1037/* All the ABI's require 16 byte alignment. */
1038static CORE_ADDR
1039rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1040{
1041 return (addr & -16);
1042}
1043
7a78ae4e 1044/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1045 the first eight words of the argument list (that might be less than
1046 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1047 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1048 passed in fpr's, in addition to that. Rest of the parameters if any
1049 are passed in user stack. There might be cases in which half of the
c906108c
SS
1050 parameter is copied into registers, the other half is pushed into
1051 stack.
1052
7a78ae4e
ND
1053 Stack must be aligned on 64-bit boundaries when synthesizing
1054 function calls.
1055
c906108c
SS
1056 If the function is returning a structure, then the return address is passed
1057 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1058 starting from r4. */
c906108c 1059
7a78ae4e 1060static CORE_ADDR
ea7c478f 1061rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 1062 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1063{
1064 int ii;
1065 int len = 0;
c5aa993b
JM
1066 int argno; /* current argument number */
1067 int argbytes; /* current argument byte */
1068 char tmp_buffer[50];
1069 int f_argno = 0; /* current floating point argno */
21283beb 1070 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1071
ea7c478f 1072 struct value *arg = 0;
c906108c
SS
1073 struct type *type;
1074
1075 CORE_ADDR saved_sp;
1076
64366f1c
EZ
1077 /* The first eight words of ther arguments are passed in registers.
1078 Copy them appropriately.
c906108c
SS
1079
1080 If the function is returning a `struct', then the first word (which
64366f1c 1081 will be passed in r3) is used for struct return address. In that
c906108c 1082 case we should advance one word and start from r4 register to copy
64366f1c 1083 parameters. */
c906108c 1084
c5aa993b 1085 ii = struct_return ? 1 : 0;
c906108c
SS
1086
1087/*
c5aa993b
JM
1088 effectively indirect call... gcc does...
1089
1090 return_val example( float, int);
1091
1092 eabi:
1093 float in fp0, int in r3
1094 offset of stack on overflow 8/16
1095 for varargs, must go by type.
1096 power open:
1097 float in r3&r4, int in r5
1098 offset of stack on overflow different
1099 both:
1100 return in r3 or f0. If no float, must study how gcc emulates floats;
1101 pay attention to arg promotion.
1102 User may have to cast\args to handle promotion correctly
1103 since gdb won't know if prototype supplied or not.
1104 */
c906108c 1105
c5aa993b
JM
1106 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1107 {
f6077098 1108 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1109
1110 arg = args[argno];
1111 type = check_typedef (VALUE_TYPE (arg));
1112 len = TYPE_LENGTH (type);
1113
1114 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1115 {
1116
64366f1c 1117 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1118 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1119 there is no way we would run out of them. */
c5aa993b
JM
1120
1121 if (len > 8)
1122 printf_unfiltered (
1123 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1124
1125 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1126 VALUE_CONTENTS (arg),
1127 len);
1128 ++f_argno;
1129 }
1130
f6077098 1131 if (len > reg_size)
c5aa993b
JM
1132 {
1133
64366f1c 1134 /* Argument takes more than one register. */
c5aa993b
JM
1135 while (argbytes < len)
1136 {
f6077098 1137 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
c5aa993b
JM
1138 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1139 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1140 (len - argbytes) > reg_size
1141 ? reg_size : len - argbytes);
1142 ++ii, argbytes += reg_size;
c5aa993b
JM
1143
1144 if (ii >= 8)
1145 goto ran_out_of_registers_for_arguments;
1146 }
1147 argbytes = 0;
1148 --ii;
1149 }
1150 else
64366f1c
EZ
1151 {
1152 /* Argument can fit in one register. No problem. */
d7449b42 1153 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
f6077098
KB
1154 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1155 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1156 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1157 }
1158 ++argno;
c906108c 1159 }
c906108c
SS
1160
1161ran_out_of_registers_for_arguments:
1162
7a78ae4e 1163 saved_sp = read_sp ();
cc9836a8 1164
64366f1c 1165 /* Location for 8 parameters are always reserved. */
7a78ae4e 1166 sp -= wordsize * 8;
f6077098 1167
64366f1c 1168 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1169 sp -= wordsize * 6;
f6077098 1170
64366f1c 1171 /* Stack pointer must be quadword aligned. */
7a78ae4e 1172 sp &= -16;
c906108c 1173
64366f1c
EZ
1174 /* If there are more arguments, allocate space for them in
1175 the stack, then push them starting from the ninth one. */
c906108c 1176
c5aa993b
JM
1177 if ((argno < nargs) || argbytes)
1178 {
1179 int space = 0, jj;
c906108c 1180
c5aa993b
JM
1181 if (argbytes)
1182 {
1183 space += ((len - argbytes + 3) & -4);
1184 jj = argno + 1;
1185 }
1186 else
1187 jj = argno;
c906108c 1188
c5aa993b
JM
1189 for (; jj < nargs; ++jj)
1190 {
ea7c478f 1191 struct value *val = args[jj];
c5aa993b
JM
1192 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1193 }
c906108c 1194
64366f1c 1195 /* Add location required for the rest of the parameters. */
f6077098 1196 space = (space + 15) & -16;
c5aa993b 1197 sp -= space;
c906108c 1198
64366f1c
EZ
1199 /* This is another instance we need to be concerned about
1200 securing our stack space. If we write anything underneath %sp
1201 (r1), we might conflict with the kernel who thinks he is free
1202 to use this area. So, update %sp first before doing anything
1203 else. */
c906108c 1204
c5aa993b 1205 write_register (SP_REGNUM, sp);
c906108c 1206
64366f1c
EZ
1207 /* If the last argument copied into the registers didn't fit there
1208 completely, push the rest of it into stack. */
c906108c 1209
c5aa993b
JM
1210 if (argbytes)
1211 {
1212 write_memory (sp + 24 + (ii * 4),
1213 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1214 len - argbytes);
1215 ++argno;
1216 ii += ((len - argbytes + 3) & -4) / 4;
1217 }
c906108c 1218
64366f1c 1219 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1220 for (; argno < nargs; ++argno)
1221 {
c906108c 1222
c5aa993b
JM
1223 arg = args[argno];
1224 type = check_typedef (VALUE_TYPE (arg));
1225 len = TYPE_LENGTH (type);
c906108c
SS
1226
1227
64366f1c
EZ
1228 /* Float types should be passed in fpr's, as well as in the
1229 stack. */
c5aa993b
JM
1230 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1231 {
c906108c 1232
c5aa993b
JM
1233 if (len > 8)
1234 printf_unfiltered (
1235 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1236
c5aa993b
JM
1237 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1238 VALUE_CONTENTS (arg),
1239 len);
1240 ++f_argno;
1241 }
c906108c 1242
c5aa993b
JM
1243 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1244 ii += ((len + 3) & -4) / 4;
1245 }
c906108c 1246 }
c906108c 1247 else
64366f1c 1248 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1249 write_register (SP_REGNUM, sp);
1250
c906108c
SS
1251 /* set back chain properly */
1252 store_address (tmp_buffer, 4, saved_sp);
1253 write_memory (sp, tmp_buffer, 4);
1254
1255 target_store_registers (-1);
1256 return sp;
1257}
c906108c
SS
1258
1259/* Function: ppc_push_return_address (pc, sp)
64366f1c 1260 Set up the return address for the inferior function call. */
c906108c 1261
7a78ae4e
ND
1262static CORE_ADDR
1263ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1264{
2188cbdd
EZ
1265 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1266 CALL_DUMMY_ADDRESS ());
c906108c
SS
1267 return sp;
1268}
1269
7a78ae4e 1270/* Extract a function return value of type TYPE from raw register array
64366f1c 1271 REGBUF, and copy that return value into VALBUF in virtual format. */
96ff0de4 1272static void
46d79c04 1273e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
96ff0de4
EZ
1274{
1275 int offset = 0;
1276 int vallen = TYPE_LENGTH (valtype);
1277 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1278
1279 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1280 && vallen == 8
1281 && TYPE_VECTOR (valtype))
1282 {
1283 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1284 }
1285 else
1286 {
1287 /* Return value is copied starting from r3. Note that r3 for us
1288 is a pseudo register. */
1289 int offset = 0;
1290 int return_regnum = tdep->ppc_gp0_regnum + 3;
1291 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1292 int reg_part_size;
1293 char *val_buffer;
1294 int copied = 0;
1295 int i = 0;
1296
1297 /* Compute where we will start storing the value from. */
1298 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1299 {
1300 if (vallen <= reg_size)
1301 offset = reg_size - vallen;
1302 else
1303 offset = reg_size + (reg_size - vallen);
1304 }
1305
1306 /* How big does the local buffer need to be? */
1307 if (vallen <= reg_size)
1308 val_buffer = alloca (reg_size);
1309 else
1310 val_buffer = alloca (vallen);
1311
1312 /* Read all we need into our private buffer. We copy it in
1313 chunks that are as long as one register, never shorter, even
1314 if the value is smaller than the register. */
1315 while (copied < vallen)
1316 {
1317 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1318 /* It is a pseudo/cooked register. */
1319 regcache_cooked_read (regbuf, return_regnum + i,
1320 val_buffer + copied);
1321 copied += reg_part_size;
1322 i++;
1323 }
1324 /* Put the stuff in the return buffer. */
1325 memcpy (valbuf, val_buffer + offset, vallen);
1326 }
1327}
c906108c 1328
7a78ae4e
ND
1329static void
1330rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1331{
1332 int offset = 0;
ace1378a 1333 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1334
c5aa993b
JM
1335 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1336 {
c906108c 1337
c5aa993b
JM
1338 double dd;
1339 float ff;
1340 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1341 We need to truncate the return value into float size (4 byte) if
64366f1c 1342 necessary. */
c906108c 1343
c5aa993b
JM
1344 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1345 memcpy (valbuf,
1346 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1347 TYPE_LENGTH (valtype));
1348 else
1349 { /* float */
1350 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1351 ff = (float) dd;
1352 memcpy (valbuf, &ff, sizeof (float));
1353 }
1354 }
ace1378a
EZ
1355 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1356 && TYPE_LENGTH (valtype) == 16
1357 && TYPE_VECTOR (valtype))
1358 {
1359 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1360 TYPE_LENGTH (valtype));
1361 }
c5aa993b
JM
1362 else
1363 {
1364 /* return value is copied starting from r3. */
d7449b42 1365 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1366 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1367 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1368
1369 memcpy (valbuf,
1370 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1371 TYPE_LENGTH (valtype));
c906108c 1372 }
c906108c
SS
1373}
1374
977adac5
ND
1375/* Return whether handle_inferior_event() should proceed through code
1376 starting at PC in function NAME when stepping.
1377
1378 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1379 handle memory references that are too distant to fit in instructions
1380 generated by the compiler. For example, if 'foo' in the following
1381 instruction:
1382
1383 lwz r9,foo(r2)
1384
1385 is greater than 32767, the linker might replace the lwz with a branch to
1386 somewhere in @FIX1 that does the load in 2 instructions and then branches
1387 back to where execution should continue.
1388
1389 GDB should silently step over @FIX code, just like AIX dbx does.
1390 Unfortunately, the linker uses the "b" instruction for the branches,
1391 meaning that the link register doesn't get set. Therefore, GDB's usual
1392 step_over_function() mechanism won't work.
1393
1394 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1395 in handle_inferior_event() to skip past @FIX code. */
1396
1397int
1398rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1399{
1400 return name && !strncmp (name, "@FIX", 4);
1401}
1402
1403/* Skip code that the user doesn't want to see when stepping:
1404
1405 1. Indirect function calls use a piece of trampoline code to do context
1406 switching, i.e. to set the new TOC table. Skip such code if we are on
1407 its first instruction (as when we have single-stepped to here).
1408
1409 2. Skip shared library trampoline code (which is different from
c906108c 1410 indirect function call trampolines).
977adac5
ND
1411
1412 3. Skip bigtoc fixup code.
1413
c906108c 1414 Result is desired PC to step until, or NULL if we are not in
977adac5 1415 code that should be skipped. */
c906108c
SS
1416
1417CORE_ADDR
7a78ae4e 1418rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1419{
1420 register unsigned int ii, op;
977adac5 1421 int rel;
c906108c 1422 CORE_ADDR solib_target_pc;
977adac5 1423 struct minimal_symbol *msymbol;
c906108c 1424
c5aa993b
JM
1425 static unsigned trampoline_code[] =
1426 {
1427 0x800b0000, /* l r0,0x0(r11) */
1428 0x90410014, /* st r2,0x14(r1) */
1429 0x7c0903a6, /* mtctr r0 */
1430 0x804b0004, /* l r2,0x4(r11) */
1431 0x816b0008, /* l r11,0x8(r11) */
1432 0x4e800420, /* bctr */
1433 0x4e800020, /* br */
1434 0
c906108c
SS
1435 };
1436
977adac5
ND
1437 /* Check for bigtoc fixup code. */
1438 msymbol = lookup_minimal_symbol_by_pc (pc);
1439 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1440 {
1441 /* Double-check that the third instruction from PC is relative "b". */
1442 op = read_memory_integer (pc + 8, 4);
1443 if ((op & 0xfc000003) == 0x48000000)
1444 {
1445 /* Extract bits 6-29 as a signed 24-bit relative word address and
1446 add it to the containing PC. */
1447 rel = ((int)(op << 6) >> 6);
1448 return pc + 8 + rel;
1449 }
1450 }
1451
c906108c
SS
1452 /* If pc is in a shared library trampoline, return its target. */
1453 solib_target_pc = find_solib_trampoline_target (pc);
1454 if (solib_target_pc)
1455 return solib_target_pc;
1456
c5aa993b
JM
1457 for (ii = 0; trampoline_code[ii]; ++ii)
1458 {
1459 op = read_memory_integer (pc + (ii * 4), 4);
1460 if (op != trampoline_code[ii])
1461 return 0;
1462 }
1463 ii = read_register (11); /* r11 holds destination addr */
21283beb 1464 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1465 return pc;
1466}
1467
1468/* Determines whether the function FI has a frame on the stack or not. */
1469
9aa1e687 1470int
c877c8e6 1471rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1472{
1473 CORE_ADDR func_start;
1474 struct rs6000_framedata fdata;
1475
1476 /* Don't even think about framelessness except on the innermost frame
1477 or if the function was interrupted by a signal. */
1478 if (fi->next != NULL && !fi->next->signal_handler_caller)
1479 return 0;
c5aa993b 1480
c906108c
SS
1481 func_start = get_pc_function_start (fi->pc);
1482
1483 /* If we failed to find the start of the function, it is a mistake
64366f1c 1484 to inspect the instructions. */
c906108c
SS
1485
1486 if (!func_start)
1487 {
1488 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1489 function pointer, normally causing an immediate core dump of the
64366f1c 1490 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1491 of setting up a stack frame. */
c906108c
SS
1492 if (fi->pc == 0)
1493 return 1;
1494 else
1495 return 0;
1496 }
1497
077276e8 1498 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1499 return fdata.frameless;
1500}
1501
64366f1c 1502/* Return the PC saved in a frame. */
c906108c 1503
9aa1e687 1504CORE_ADDR
c877c8e6 1505rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1506{
1507 CORE_ADDR func_start;
1508 struct rs6000_framedata fdata;
21283beb 1509 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1510 int wordsize = tdep->wordsize;
c906108c
SS
1511
1512 if (fi->signal_handler_caller)
7a78ae4e 1513 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
c906108c 1514
7a78ae4e 1515 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
135c175f 1516 return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
c906108c
SS
1517
1518 func_start = get_pc_function_start (fi->pc);
1519
1520 /* If we failed to find the start of the function, it is a mistake
64366f1c 1521 to inspect the instructions. */
c906108c
SS
1522 if (!func_start)
1523 return 0;
1524
077276e8 1525 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1526
1527 if (fdata.lr_offset == 0 && fi->next != NULL)
1528 {
1529 if (fi->next->signal_handler_caller)
7a78ae4e
ND
1530 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1531 wordsize);
8b69000d
AC
1532 else if (PC_IN_CALL_DUMMY (get_next_frame (fi)->pc, 0, 0))
1533 /* The link register wasn't saved by this frame and the next
1534 (inner, newer) frame is a dummy. Get the link register
1535 value by unwinding it from that [dummy] frame. */
1536 {
1537 ULONGEST lr;
1538 frame_unwind_unsigned_register (get_next_frame (fi),
1539 tdep->ppc_lr_regnum, &lr);
1540 return lr;
1541 }
c906108c 1542 else
a88376a3 1543 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
7a78ae4e 1544 wordsize);
c906108c
SS
1545 }
1546
1547 if (fdata.lr_offset == 0)
2188cbdd 1548 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1549
7a78ae4e 1550 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
c906108c
SS
1551}
1552
1553/* If saved registers of frame FI are not known yet, read and cache them.
1554 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1555 in which case the framedata are read. */
1556
1557static void
7a78ae4e 1558frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1559{
c5aa993b 1560 CORE_ADDR frame_addr;
c906108c 1561 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1562 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1563 int wordsize = tdep->wordsize;
c906108c
SS
1564
1565 if (fi->saved_regs)
1566 return;
c5aa993b 1567
c906108c
SS
1568 if (fdatap == NULL)
1569 {
1570 fdatap = &work_fdata;
077276e8 1571 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
c906108c
SS
1572 }
1573
1574 frame_saved_regs_zalloc (fi);
1575
1576 /* If there were any saved registers, figure out parent's stack
64366f1c 1577 pointer. */
c906108c 1578 /* The following is true only if the frame doesn't have a call to
64366f1c 1579 alloca(), FIXME. */
c906108c 1580
6be8bc0c
EZ
1581 if (fdatap->saved_fpr == 0
1582 && fdatap->saved_gpr == 0
1583 && fdatap->saved_vr == 0
96ff0de4 1584 && fdatap->saved_ev == 0
6be8bc0c
EZ
1585 && fdatap->lr_offset == 0
1586 && fdatap->cr_offset == 0
96ff0de4
EZ
1587 && fdatap->vr_offset == 0
1588 && fdatap->ev_offset == 0)
c906108c 1589 frame_addr = 0;
c906108c 1590 else
bf75c8c1
AC
1591 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1592 address of the current frame. Things might be easier if the
1593 ->frame pointed to the outer-most address of the frame. In the
1594 mean time, the address of the prev frame is used as the base
1595 address of this frame. */
1596 frame_addr = FRAME_CHAIN (fi);
c5aa993b 1597
c906108c
SS
1598 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1599 All fpr's from saved_fpr to fp31 are saved. */
1600
1601 if (fdatap->saved_fpr >= 0)
1602 {
1603 int i;
7a78ae4e 1604 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1605 for (i = fdatap->saved_fpr; i < 32; i++)
1606 {
7a78ae4e
ND
1607 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1608 fpr_addr += 8;
c906108c
SS
1609 }
1610 }
1611
1612 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1613 All gpr's from saved_gpr to gpr31 are saved. */
1614
1615 if (fdatap->saved_gpr >= 0)
1616 {
1617 int i;
7a78ae4e 1618 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1619 for (i = fdatap->saved_gpr; i < 32; i++)
1620 {
7a78ae4e
ND
1621 fi->saved_regs[i] = gpr_addr;
1622 gpr_addr += wordsize;
c906108c
SS
1623 }
1624 }
1625
6be8bc0c
EZ
1626 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1627 All vr's from saved_vr to vr31 are saved. */
1628 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1629 {
1630 if (fdatap->saved_vr >= 0)
1631 {
1632 int i;
1633 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1634 for (i = fdatap->saved_vr; i < 32; i++)
1635 {
1636 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1637 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1638 }
1639 }
1640 }
1641
96ff0de4
EZ
1642 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1643 All vr's from saved_ev to ev31 are saved. ????? */
1644 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1645 {
1646 if (fdatap->saved_ev >= 0)
1647 {
1648 int i;
1649 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1650 for (i = fdatap->saved_ev; i < 32; i++)
1651 {
1652 fi->saved_regs[tdep->ppc_ev0_regnum + i] = ev_addr;
1653 fi->saved_regs[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1654 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1655 }
1656 }
1657 }
1658
c906108c
SS
1659 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1660 the CR. */
1661 if (fdatap->cr_offset != 0)
6be8bc0c 1662 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1663
1664 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1665 the LR. */
1666 if (fdatap->lr_offset != 0)
6be8bc0c
EZ
1667 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1668
1669 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1670 the VRSAVE. */
1671 if (fdatap->vrsave_offset != 0)
1672 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1673}
1674
1675/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1676 was first allocated. For functions calling alloca(), it might be saved in
1677 an alloca register. */
c906108c
SS
1678
1679static CORE_ADDR
7a78ae4e 1680frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1681{
1682 CORE_ADDR tmpaddr;
1683 struct rs6000_framedata fdata;
1684 struct frame_info *callee_fi;
1685
64366f1c
EZ
1686 /* If the initial stack pointer (frame address) of this frame is known,
1687 just return it. */
c906108c
SS
1688
1689 if (fi->extra_info->initial_sp)
1690 return fi->extra_info->initial_sp;
1691
64366f1c 1692 /* Find out if this function is using an alloca register. */
c906108c 1693
077276e8 1694 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
c906108c 1695
64366f1c
EZ
1696 /* If saved registers of this frame are not known yet, read and
1697 cache them. */
c906108c
SS
1698
1699 if (!fi->saved_regs)
1700 frame_get_saved_regs (fi, &fdata);
1701
1702 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1703 this frame, and it is good enough. */
c906108c
SS
1704
1705 if (fdata.alloca_reg < 0)
1706 {
1707 fi->extra_info->initial_sp = fi->frame;
1708 return fi->extra_info->initial_sp;
1709 }
1710
953836b2
AC
1711 /* There is an alloca register, use its value, in the current frame,
1712 as the initial stack pointer. */
1713 {
1714 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1715 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1716 {
1717 fi->extra_info->initial_sp
1718 = extract_unsigned_integer (tmpbuf,
1719 REGISTER_RAW_SIZE (fdata.alloca_reg));
1720 }
1721 else
1722 /* NOTE: cagney/2002-04-17: At present the only time
1723 frame_register_read will fail is when the register isn't
1724 available. If that does happen, use the frame. */
1725 fi->extra_info->initial_sp = fi->frame;
1726 }
c906108c
SS
1727 return fi->extra_info->initial_sp;
1728}
1729
7a78ae4e
ND
1730/* Describe the pointer in each stack frame to the previous stack frame
1731 (its caller). */
1732
1733/* FRAME_CHAIN takes a frame's nominal address
64366f1c 1734 and produces the frame's chain-pointer. */
7a78ae4e
ND
1735
1736/* In the case of the RS/6000, the frame's nominal address
1737 is the address of a 4-byte word containing the calling frame's address. */
1738
9aa1e687 1739CORE_ADDR
7a78ae4e 1740rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1741{
7a78ae4e 1742 CORE_ADDR fp, fpp, lr;
21283beb 1743 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1744
7a78ae4e 1745 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
9f3b7f07
AC
1746 /* A dummy frame always correctly chains back to the previous
1747 frame. */
1748 return read_memory_addr ((thisframe)->frame, wordsize);
c906108c 1749
c5aa993b 1750 if (inside_entry_file (thisframe->pc) ||
c906108c
SS
1751 thisframe->pc == entry_point_address ())
1752 return 0;
1753
1754 if (thisframe->signal_handler_caller)
7a78ae4e
ND
1755 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1756 wordsize);
c906108c
SS
1757 else if (thisframe->next != NULL
1758 && thisframe->next->signal_handler_caller
c877c8e6 1759 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1760 /* A frameless function interrupted by a signal did not change the
1761 frame pointer. */
1762 fp = FRAME_FP (thisframe);
1763 else
7a78ae4e 1764 fp = read_memory_addr ((thisframe)->frame, wordsize);
7a78ae4e
ND
1765 return fp;
1766}
1767
1768/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1769 isn't available with that word size, return 0. */
7a78ae4e
ND
1770
1771static int
1772regsize (const struct reg *reg, int wordsize)
1773{
1774 return wordsize == 8 ? reg->sz64 : reg->sz32;
1775}
1776
1777/* Return the name of register number N, or null if no such register exists
64366f1c 1778 in the current architecture. */
7a78ae4e 1779
fa88f677 1780static const char *
7a78ae4e
ND
1781rs6000_register_name (int n)
1782{
21283beb 1783 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1784 const struct reg *reg = tdep->regs + n;
1785
1786 if (!regsize (reg, tdep->wordsize))
1787 return NULL;
1788 return reg->name;
1789}
1790
1791/* Index within `registers' of the first byte of the space for
1792 register N. */
1793
1794static int
1795rs6000_register_byte (int n)
1796{
21283beb 1797 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1798}
1799
1800/* Return the number of bytes of storage in the actual machine representation
64366f1c 1801 for register N if that register is available, else return 0. */
7a78ae4e
ND
1802
1803static int
1804rs6000_register_raw_size (int n)
1805{
21283beb 1806 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1807 const struct reg *reg = tdep->regs + n;
1808 return regsize (reg, tdep->wordsize);
1809}
1810
7a78ae4e
ND
1811/* Return the GDB type object for the "standard" data type
1812 of data in register N. */
1813
1814static struct type *
fba45db2 1815rs6000_register_virtual_type (int n)
7a78ae4e 1816{
21283beb 1817 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1818 const struct reg *reg = tdep->regs + n;
1819
1fcc0bb8
EZ
1820 if (reg->fpr)
1821 return builtin_type_double;
1822 else
1823 {
1824 int size = regsize (reg, tdep->wordsize);
1825 switch (size)
1826 {
1827 case 8:
c8001721
EZ
1828 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1829 return builtin_type_vec64;
1830 else
1831 return builtin_type_int64;
1fcc0bb8
EZ
1832 break;
1833 case 16:
08cf96df 1834 return builtin_type_vec128;
1fcc0bb8
EZ
1835 break;
1836 default:
1837 return builtin_type_int32;
1838 break;
1839 }
1840 }
7a78ae4e
ND
1841}
1842
1843/* For the PowerPC, it appears that the debug info marks float parameters as
1844 floats regardless of whether the function is prototyped, but the actual
1845 values are always passed in as doubles. Tell gdb to always assume that
64366f1c 1846 floats are passed as doubles and then converted in the callee. */
7a78ae4e
ND
1847
1848static int
1849rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1850{
1851 return 1;
1852}
1853
1854/* Return whether register N requires conversion when moving from raw format
1855 to virtual format.
1856
1857 The register format for RS/6000 floating point registers is always
64366f1c 1858 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1859
1860static int
1861rs6000_register_convertible (int n)
1862{
21283beb 1863 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1864 return reg->fpr;
1865}
1866
1867/* Convert data from raw format for register N in buffer FROM
64366f1c 1868 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1869
1870static void
1871rs6000_register_convert_to_virtual (int n, struct type *type,
1872 char *from, char *to)
1873{
1874 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1875 {
7a78ae4e
ND
1876 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1877 store_floating (to, TYPE_LENGTH (type), val);
1878 }
1879 else
1880 memcpy (to, from, REGISTER_RAW_SIZE (n));
1881}
1882
1883/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1884 to raw format for register N in buffer TO. */
7a292a7a 1885
7a78ae4e
ND
1886static void
1887rs6000_register_convert_to_raw (struct type *type, int n,
1888 char *from, char *to)
1889{
1890 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1891 {
1892 double val = extract_floating (from, TYPE_LENGTH (type));
1893 store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1894 }
7a78ae4e
ND
1895 else
1896 memcpy (to, from, REGISTER_RAW_SIZE (n));
1897}
c906108c 1898
c8001721
EZ
1899static void
1900e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1901 int reg_nr, void *buffer)
1902{
1903 int base_regnum;
1904 int offset = 0;
1905 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1906 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1907
1908 if (reg_nr >= tdep->ppc_gp0_regnum
1909 && reg_nr <= tdep->ppc_gplast_regnum)
1910 {
1911 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1912
1913 /* Build the value in the provided buffer. */
1914 /* Read the raw register of which this one is the lower portion. */
1915 regcache_raw_read (regcache, base_regnum, temp_buffer);
1916 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1917 offset = 4;
1918 memcpy ((char *) buffer, temp_buffer + offset, 4);
1919 }
1920}
1921
1922static void
1923e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1924 int reg_nr, const void *buffer)
1925{
1926 int base_regnum;
1927 int offset = 0;
1928 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1929 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1930
1931 if (reg_nr >= tdep->ppc_gp0_regnum
1932 && reg_nr <= tdep->ppc_gplast_regnum)
1933 {
1934 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1935 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1936 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1937 offset = 4;
1938
1939 /* Let's read the value of the base register into a temporary
1940 buffer, so that overwriting the last four bytes with the new
1941 value of the pseudo will leave the upper 4 bytes unchanged. */
1942 regcache_raw_read (regcache, base_regnum, temp_buffer);
1943
1944 /* Write as an 8 byte quantity. */
1945 memcpy (temp_buffer + offset, (char *) buffer, 4);
1946 regcache_raw_write (regcache, base_regnum, temp_buffer);
1947 }
1948}
1949
1950/* Convert a dwarf2 register number to a gdb REGNUM. */
1951static int
1952e500_dwarf2_reg_to_regnum (int num)
1953{
1954 int regnum;
1955 if (0 <= num && num <= 31)
1956 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1957 else
1958 return num;
1959}
1960
2188cbdd 1961/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1962 REGNUM. */
2188cbdd
EZ
1963static int
1964rs6000_stab_reg_to_regnum (int num)
1965{
1966 int regnum;
1967 switch (num)
1968 {
1969 case 64:
1970 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1971 break;
1972 case 65:
1973 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1974 break;
1975 case 66:
1976 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1977 break;
1978 case 76:
1979 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1980 break;
1981 default:
1982 regnum = num;
1983 break;
1984 }
1985 return regnum;
1986}
1987
7a78ae4e 1988/* Store the address of the place in which to copy the structure the
11269d7e 1989 subroutine will return. */
7a78ae4e
ND
1990
1991static void
1992rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1993{
1994 write_register (3, addr);
7a78ae4e
ND
1995}
1996
1997/* Write into appropriate registers a function return value
1998 of type TYPE, given in virtual format. */
96ff0de4
EZ
1999static void
2000e500_store_return_value (struct type *type, char *valbuf)
2001{
2002 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2003
2004 /* Everything is returned in GPR3 and up. */
2005 int copied = 0;
2006 int i = 0;
2007 int len = TYPE_LENGTH (type);
2008 while (copied < len)
2009 {
2010 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2011 int reg_size = REGISTER_RAW_SIZE (regnum);
2012 char *reg_val_buf = alloca (reg_size);
2013
2014 memcpy (reg_val_buf, valbuf + copied, reg_size);
2015 copied += reg_size;
2016 write_register_gen (regnum, reg_val_buf);
2017 i++;
2018 }
2019}
7a78ae4e
ND
2020
2021static void
2022rs6000_store_return_value (struct type *type, char *valbuf)
2023{
ace1378a
EZ
2024 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2025
7a78ae4e
ND
2026 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2027
2028 /* Floating point values are returned starting from FPR1 and up.
2029 Say a double_double_double type could be returned in
64366f1c 2030 FPR1/FPR2/FPR3 triple. */
7a78ae4e
ND
2031
2032 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2033 TYPE_LENGTH (type));
ace1378a
EZ
2034 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2035 {
2036 if (TYPE_LENGTH (type) == 16
2037 && TYPE_VECTOR (type))
2038 write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2039 valbuf, TYPE_LENGTH (type));
2040 }
7a78ae4e 2041 else
64366f1c 2042 /* Everything else is returned in GPR3 and up. */
2188cbdd
EZ
2043 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2044 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2045}
2046
2047/* Extract from an array REGBUF containing the (raw) register state
2048 the address in which a function should return its structure value,
2049 as a CORE_ADDR (or an expression that can be used as one). */
2050
2051static CORE_ADDR
11269d7e
AC
2052rs6000_extract_struct_value_address (struct regcache *regcache)
2053{
2054 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2055 function call GDB knows the address of the struct return value
2056 and hence, should not need to call this function. Unfortunately,
2057 the current hand_function_call() code only saves the most recent
2058 struct address leading to occasional calls. The code should
2059 instead maintain a stack of such addresses (in the dummy frame
2060 object). */
2061 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2062 really got no idea where the return value is being stored. While
2063 r3, on function entry, contained the address it will have since
2064 been reused (scratch) and hence wouldn't be valid */
2065 return 0;
7a78ae4e
ND
2066}
2067
2068/* Return whether PC is in a dummy function call.
2069
2070 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2071 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2072
2073static int
2074rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2075{
2076 return sp < pc && pc < fp;
2077}
2078
64366f1c 2079/* Hook called when a new child process is started. */
7a78ae4e
ND
2080
2081void
2082rs6000_create_inferior (int pid)
2083{
2084 if (rs6000_set_host_arch_hook)
2085 rs6000_set_host_arch_hook (pid);
c906108c
SS
2086}
2087\f
7a78ae4e
ND
2088/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2089
2090 Usually a function pointer's representation is simply the address
2091 of the function. On the RS/6000 however, a function pointer is
2092 represented by a pointer to a TOC entry. This TOC entry contains
2093 three words, the first word is the address of the function, the
2094 second word is the TOC pointer (r2), and the third word is the
2095 static chain value. Throughout GDB it is currently assumed that a
2096 function pointer contains the address of the function, which is not
2097 easy to fix. In addition, the conversion of a function address to
2098 a function pointer would require allocation of a TOC entry in the
2099 inferior's memory space, with all its drawbacks. To be able to
2100 call C++ virtual methods in the inferior (which are called via
f517ea4e 2101 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2102 function address from a function pointer. */
2103
f517ea4e
PS
2104/* Return real function address if ADDR (a function pointer) is in the data
2105 space and is therefore a special function pointer. */
c906108c 2106
7a78ae4e
ND
2107CORE_ADDR
2108rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2109{
2110 struct obj_section *s;
2111
2112 s = find_pc_section (addr);
2113 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2114 return addr;
c906108c 2115
7a78ae4e 2116 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2117 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2118}
c906108c 2119\f
c5aa993b 2120
7a78ae4e 2121/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2122
2123
7a78ae4e
ND
2124/* The arrays here called registers_MUMBLE hold information about available
2125 registers.
c906108c
SS
2126
2127 For each family of PPC variants, I've tried to isolate out the
2128 common registers and put them up front, so that as long as you get
2129 the general family right, GDB will correctly identify the registers
2130 common to that family. The common register sets are:
2131
2132 For the 60x family: hid0 hid1 iabr dabr pir
2133
2134 For the 505 and 860 family: eie eid nri
2135
2136 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2137 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2138 pbu1 pbl2 pbu2
c906108c
SS
2139
2140 Most of these register groups aren't anything formal. I arrived at
2141 them by looking at the registers that occurred in more than one
6f5987a6
KB
2142 processor.
2143
2144 Note: kevinb/2002-04-30: Support for the fpscr register was added
2145 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2146 for Power. For PowerPC, slot 70 was unused and was already in the
2147 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2148 slot 70 was being used for "mq", so the next available slot (71)
2149 was chosen. It would have been nice to be able to make the
2150 register numbers the same across processor cores, but this wasn't
2151 possible without either 1) renumbering some registers for some
2152 processors or 2) assigning fpscr to a really high slot that's
2153 larger than any current register number. Doing (1) is bad because
2154 existing stubs would break. Doing (2) is undesirable because it
2155 would introduce a really large gap between fpscr and the rest of
2156 the registers for most processors. */
7a78ae4e 2157
64366f1c 2158/* Convenience macros for populating register arrays. */
7a78ae4e 2159
64366f1c 2160/* Within another macro, convert S to a string. */
7a78ae4e
ND
2161
2162#define STR(s) #s
2163
2164/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2165 and 64 bits on 64-bit systems. */
489461e2 2166#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2167
2168/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2169 systems. */
489461e2 2170#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2171
2172/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2173 systems. */
489461e2 2174#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2175
1fcc0bb8 2176/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2177 systems. */
489461e2 2178#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2179
64366f1c 2180/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2181#define F(name) { STR(name), 8, 8, 1, 0 }
2182
64366f1c 2183/* Return a struct reg defining a pseudo register NAME. */
489461e2 2184#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2185
2186/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2187 systems and that doesn't exist on 64-bit systems. */
489461e2 2188#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2189
2190/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2191 systems and that doesn't exist on 32-bit systems. */
489461e2 2192#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2193
64366f1c 2194/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2195#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2196
2197/* UISA registers common across all architectures, including POWER. */
2198
2199#define COMMON_UISA_REGS \
2200 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2201 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2202 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2203 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2204 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2205 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2206 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2207 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2208 /* 64 */ R(pc), R(ps)
2209
ebeac11a
EZ
2210#define COMMON_UISA_NOFP_REGS \
2211 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2212 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2213 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2214 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2215 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2216 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2217 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2218 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2219 /* 64 */ R(pc), R(ps)
2220
7a78ae4e
ND
2221/* UISA-level SPRs for PowerPC. */
2222#define PPC_UISA_SPRS \
e3f36dbd 2223 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2224
c8001721
EZ
2225/* UISA-level SPRs for PowerPC without floating point support. */
2226#define PPC_UISA_NOFP_SPRS \
2227 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2228
7a78ae4e
ND
2229/* Segment registers, for PowerPC. */
2230#define PPC_SEGMENT_REGS \
2231 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2232 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2233 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2234 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2235
2236/* OEA SPRs for PowerPC. */
2237#define PPC_OEA_SPRS \
2238 /* 87 */ R4(pvr), \
2239 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2240 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2241 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2242 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2243 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2244 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2245 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2246 /* 116 */ R4(dec), R(dabr), R4(ear)
2247
64366f1c 2248/* AltiVec registers. */
1fcc0bb8
EZ
2249#define PPC_ALTIVEC_REGS \
2250 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2251 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2252 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2253 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2254 /*151*/R4(vscr), R4(vrsave)
2255
c8001721
EZ
2256/* Vectors of hi-lo general purpose registers. */
2257#define PPC_EV_REGS \
2258 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2259 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2260 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2261 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2262
2263/* Lower half of the EV registers. */
2264#define PPC_GPRS_PSEUDO_REGS \
2265 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2266 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2267 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2268 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2269
7a78ae4e 2270/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2271 user-level SPR's. */
7a78ae4e 2272static const struct reg registers_power[] =
c906108c 2273{
7a78ae4e 2274 COMMON_UISA_REGS,
e3f36dbd
KB
2275 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2276 /* 71 */ R4(fpscr)
c906108c
SS
2277};
2278
7a78ae4e 2279/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2280 view of the PowerPC. */
7a78ae4e 2281static const struct reg registers_powerpc[] =
c906108c 2282{
7a78ae4e 2283 COMMON_UISA_REGS,
1fcc0bb8
EZ
2284 PPC_UISA_SPRS,
2285 PPC_ALTIVEC_REGS
c906108c
SS
2286};
2287
ebeac11a
EZ
2288/* PowerPC UISA - a PPC processor as viewed by user-level
2289 code, but without floating point registers. */
2290static const struct reg registers_powerpc_nofp[] =
2291{
2292 COMMON_UISA_NOFP_REGS,
2293 PPC_UISA_SPRS
2294};
2295
64366f1c 2296/* IBM PowerPC 403. */
7a78ae4e 2297static const struct reg registers_403[] =
c5aa993b 2298{
7a78ae4e
ND
2299 COMMON_UISA_REGS,
2300 PPC_UISA_SPRS,
2301 PPC_SEGMENT_REGS,
2302 PPC_OEA_SPRS,
2303 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2304 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2305 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2306 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2307 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2308 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2309};
2310
64366f1c 2311/* IBM PowerPC 403GC. */
7a78ae4e 2312static const struct reg registers_403GC[] =
c5aa993b 2313{
7a78ae4e
ND
2314 COMMON_UISA_REGS,
2315 PPC_UISA_SPRS,
2316 PPC_SEGMENT_REGS,
2317 PPC_OEA_SPRS,
2318 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2319 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2320 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2321 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2322 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2323 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2324 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2325 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2326};
2327
64366f1c 2328/* Motorola PowerPC 505. */
7a78ae4e 2329static const struct reg registers_505[] =
c5aa993b 2330{
7a78ae4e
ND
2331 COMMON_UISA_REGS,
2332 PPC_UISA_SPRS,
2333 PPC_SEGMENT_REGS,
2334 PPC_OEA_SPRS,
2335 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2336};
2337
64366f1c 2338/* Motorola PowerPC 860 or 850. */
7a78ae4e 2339static const struct reg registers_860[] =
c5aa993b 2340{
7a78ae4e
ND
2341 COMMON_UISA_REGS,
2342 PPC_UISA_SPRS,
2343 PPC_SEGMENT_REGS,
2344 PPC_OEA_SPRS,
2345 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2346 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2347 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2348 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2349 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2350 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2351 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2352 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2353 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2354 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2355 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2356 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2357};
2358
7a78ae4e
ND
2359/* Motorola PowerPC 601. Note that the 601 has different register numbers
2360 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2361 register is the stub's problem. */
7a78ae4e 2362static const struct reg registers_601[] =
c5aa993b 2363{
7a78ae4e
ND
2364 COMMON_UISA_REGS,
2365 PPC_UISA_SPRS,
2366 PPC_SEGMENT_REGS,
2367 PPC_OEA_SPRS,
2368 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2369 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2370};
2371
64366f1c 2372/* Motorola PowerPC 602. */
7a78ae4e 2373static const struct reg registers_602[] =
c5aa993b 2374{
7a78ae4e
ND
2375 COMMON_UISA_REGS,
2376 PPC_UISA_SPRS,
2377 PPC_SEGMENT_REGS,
2378 PPC_OEA_SPRS,
2379 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2380 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2381 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2382};
2383
64366f1c 2384/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2385static const struct reg registers_603[] =
c5aa993b 2386{
7a78ae4e
ND
2387 COMMON_UISA_REGS,
2388 PPC_UISA_SPRS,
2389 PPC_SEGMENT_REGS,
2390 PPC_OEA_SPRS,
2391 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2392 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2393 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2394};
2395
64366f1c 2396/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2397static const struct reg registers_604[] =
c5aa993b 2398{
7a78ae4e
ND
2399 COMMON_UISA_REGS,
2400 PPC_UISA_SPRS,
2401 PPC_SEGMENT_REGS,
2402 PPC_OEA_SPRS,
2403 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2404 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2405 /* 127 */ R(sia), R(sda)
c906108c
SS
2406};
2407
64366f1c 2408/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2409static const struct reg registers_750[] =
c5aa993b 2410{
7a78ae4e
ND
2411 COMMON_UISA_REGS,
2412 PPC_UISA_SPRS,
2413 PPC_SEGMENT_REGS,
2414 PPC_OEA_SPRS,
2415 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2416 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2417 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2418 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2419 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2420 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2421};
2422
2423
64366f1c 2424/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2425static const struct reg registers_7400[] =
2426{
2427 /* gpr0-gpr31, fpr0-fpr31 */
2428 COMMON_UISA_REGS,
2429 /* ctr, xre, lr, cr */
2430 PPC_UISA_SPRS,
2431 /* sr0-sr15 */
2432 PPC_SEGMENT_REGS,
2433 PPC_OEA_SPRS,
2434 /* vr0-vr31, vrsave, vscr */
2435 PPC_ALTIVEC_REGS
2436 /* FIXME? Add more registers? */
2437};
2438
c8001721
EZ
2439/* Motorola e500. */
2440static const struct reg registers_e500[] =
2441{
2442 R(pc), R(ps),
2443 /* cr, lr, ctr, xer, "" */
2444 PPC_UISA_NOFP_SPRS,
2445 /* 7...38 */
2446 PPC_EV_REGS,
2447 /* 39...70 */
2448 PPC_GPRS_PSEUDO_REGS
2449};
2450
c906108c 2451/* Information about a particular processor variant. */
7a78ae4e 2452
c906108c 2453struct variant
c5aa993b
JM
2454 {
2455 /* Name of this variant. */
2456 char *name;
c906108c 2457
c5aa993b
JM
2458 /* English description of the variant. */
2459 char *description;
c906108c 2460
64366f1c 2461 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2462 enum bfd_architecture arch;
2463
64366f1c 2464 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2465 unsigned long mach;
2466
489461e2
EZ
2467 /* Number of real registers. */
2468 int nregs;
2469
2470 /* Number of pseudo registers. */
2471 int npregs;
2472
2473 /* Number of total registers (the sum of nregs and npregs). */
2474 int num_tot_regs;
2475
c5aa993b
JM
2476 /* Table of register names; registers[R] is the name of the register
2477 number R. */
7a78ae4e 2478 const struct reg *regs;
c5aa993b 2479 };
c906108c 2480
489461e2
EZ
2481#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2482
2483static int
2484num_registers (const struct reg *reg_list, int num_tot_regs)
2485{
2486 int i;
2487 int nregs = 0;
2488
2489 for (i = 0; i < num_tot_regs; i++)
2490 if (!reg_list[i].pseudo)
2491 nregs++;
2492
2493 return nregs;
2494}
2495
2496static int
2497num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2498{
2499 int i;
2500 int npregs = 0;
2501
2502 for (i = 0; i < num_tot_regs; i++)
2503 if (reg_list[i].pseudo)
2504 npregs ++;
2505
2506 return npregs;
2507}
c906108c 2508
c906108c
SS
2509/* Information in this table comes from the following web sites:
2510 IBM: http://www.chips.ibm.com:80/products/embedded/
2511 Motorola: http://www.mot.com/SPS/PowerPC/
2512
2513 I'm sure I've got some of the variant descriptions not quite right.
2514 Please report any inaccuracies you find to GDB's maintainer.
2515
2516 If you add entries to this table, please be sure to allow the new
2517 value as an argument to the --with-cpu flag, in configure.in. */
2518
489461e2 2519static struct variant variants[] =
c906108c 2520{
489461e2 2521
7a78ae4e 2522 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2523 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2524 registers_powerpc},
7a78ae4e 2525 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2526 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2527 registers_power},
7a78ae4e 2528 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2529 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2530 registers_403},
7a78ae4e 2531 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2532 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2533 registers_601},
7a78ae4e 2534 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2535 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2536 registers_602},
7a78ae4e 2537 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2538 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2539 registers_603},
7a78ae4e 2540 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2541 604, -1, -1, tot_num_registers (registers_604),
2542 registers_604},
7a78ae4e 2543 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2544 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2545 registers_403GC},
7a78ae4e 2546 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2547 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2548 registers_505},
7a78ae4e 2549 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2550 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2551 registers_860},
7a78ae4e 2552 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2553 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2554 registers_750},
1fcc0bb8 2555 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2556 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2557 registers_7400},
c8001721
EZ
2558 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2559 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2560 registers_e500},
7a78ae4e 2561
5d57ee30
KB
2562 /* 64-bit */
2563 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2564 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2565 registers_powerpc},
7a78ae4e 2566 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2567 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2568 registers_powerpc},
5d57ee30 2569 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2570 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2571 registers_powerpc},
7a78ae4e 2572 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2573 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2574 registers_powerpc},
5d57ee30 2575 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2576 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2577 registers_powerpc},
5d57ee30 2578 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2579 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2580 registers_powerpc},
5d57ee30 2581
64366f1c 2582 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2583 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2584 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2585 registers_power},
7a78ae4e 2586 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2587 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2588 registers_power},
7a78ae4e 2589 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2590 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2591 registers_power},
7a78ae4e 2592
489461e2 2593 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2594};
2595
64366f1c 2596/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2597
2598static void
2599init_variants (void)
2600{
2601 struct variant *v;
2602
2603 for (v = variants; v->name; v++)
2604 {
2605 if (v->nregs == -1)
2606 v->nregs = num_registers (v->regs, v->num_tot_regs);
2607 if (v->npregs == -1)
2608 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2609 }
2610}
c906108c 2611
7a78ae4e 2612/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2613 MACH. If no such variant exists, return null. */
c906108c 2614
7a78ae4e
ND
2615static const struct variant *
2616find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2617{
7a78ae4e 2618 const struct variant *v;
c5aa993b 2619
7a78ae4e
ND
2620 for (v = variants; v->name; v++)
2621 if (arch == v->arch && mach == v->mach)
2622 return v;
c906108c 2623
7a78ae4e 2624 return NULL;
c906108c 2625}
9364a0ef
EZ
2626
2627static int
2628gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2629{
2630 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2631 return print_insn_big_powerpc (memaddr, info);
2632 else
2633 return print_insn_little_powerpc (memaddr, info);
2634}
7a78ae4e 2635\f
7a78ae4e
ND
2636/* Initialize the current architecture based on INFO. If possible, re-use an
2637 architecture from ARCHES, which is a list of architectures already created
2638 during this debugging session.
c906108c 2639
7a78ae4e 2640 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2641 a binary file. */
c906108c 2642
7a78ae4e
ND
2643static struct gdbarch *
2644rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2645{
2646 struct gdbarch *gdbarch;
2647 struct gdbarch_tdep *tdep;
9aa1e687 2648 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2649 struct reg *regs;
2650 const struct variant *v;
2651 enum bfd_architecture arch;
2652 unsigned long mach;
2653 bfd abfd;
7b112f9c
JT
2654 int sysv_abi;
2655 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5bf1c677 2656 asection *sect;
7a78ae4e 2657
9aa1e687 2658 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2659 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2660
9aa1e687
KB
2661 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2662 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2663
2664 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2665
7b112f9c
JT
2666 if (info.abfd)
2667 osabi = gdbarch_lookup_osabi (info.abfd);
9aa1e687 2668
e712c1cf 2669 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2670 that, else choose a likely default. */
9aa1e687 2671 if (from_xcoff_exec)
c906108c 2672 {
11ed25ac 2673 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2674 wordsize = 8;
2675 else
2676 wordsize = 4;
c906108c 2677 }
9aa1e687
KB
2678 else if (from_elf_exec)
2679 {
2680 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2681 wordsize = 8;
2682 else
2683 wordsize = 4;
2684 }
c906108c 2685 else
7a78ae4e 2686 {
27b15785
KB
2687 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2688 wordsize = info.bfd_arch_info->bits_per_word /
2689 info.bfd_arch_info->bits_per_byte;
2690 else
2691 wordsize = 4;
7a78ae4e 2692 }
c906108c 2693
64366f1c 2694 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2695 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2696 arches != NULL;
2697 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2698 {
2699 /* Word size in the various PowerPC bfd_arch_info structs isn't
2700 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2701 separate word size check. */
7a78ae4e 2702 tdep = gdbarch_tdep (arches->gdbarch);
9aa1e687 2703 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
7a78ae4e
ND
2704 return arches->gdbarch;
2705 }
c906108c 2706
7a78ae4e
ND
2707 /* None found, create a new architecture from INFO, whose bfd_arch_info
2708 validity depends on the source:
2709 - executable useless
2710 - rs6000_host_arch() good
2711 - core file good
2712 - "set arch" trust blindly
2713 - GDB startup useless but harmless */
c906108c 2714
9aa1e687 2715 if (!from_xcoff_exec)
c906108c 2716 {
b732d07d 2717 arch = info.bfd_arch_info->arch;
7a78ae4e 2718 mach = info.bfd_arch_info->mach;
c906108c 2719 }
7a78ae4e 2720 else
c906108c 2721 {
7a78ae4e
ND
2722 arch = bfd_arch_powerpc;
2723 mach = 0;
2724 bfd_default_set_arch_mach (&abfd, arch, mach);
2725 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2726 }
2727 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2728 tdep->wordsize = wordsize;
9aa1e687 2729 tdep->osabi = osabi;
5bf1c677
EZ
2730
2731 /* For e500 executables, the apuinfo section is of help here. Such
2732 section contains the identifier and revision number of each
2733 Application-specific Processing Unit that is present on the
2734 chip. The content of the section is determined by the assembler
2735 which looks at each instruction and determines which unit (and
2736 which version of it) can execute it. In our case we just look for
2737 the existance of the section. */
2738
2739 if (info.abfd)
2740 {
2741 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2742 if (sect)
2743 {
2744 arch = info.bfd_arch_info->arch;
2745 mach = bfd_mach_ppc_e500;
2746 bfd_default_set_arch_mach (&abfd, arch, mach);
2747 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2748 }
2749 }
2750
7a78ae4e
ND
2751 gdbarch = gdbarch_alloc (&info, tdep);
2752 power = arch == bfd_arch_rs6000;
2753
489461e2
EZ
2754 /* Initialize the number of real and pseudo registers in each variant. */
2755 init_variants ();
2756
64366f1c 2757 /* Choose variant. */
7a78ae4e
ND
2758 v = find_variant_by_arch (arch, mach);
2759 if (!v)
dd47e6fd
EZ
2760 return NULL;
2761
7a78ae4e
ND
2762 tdep->regs = v->regs;
2763
2188cbdd
EZ
2764 tdep->ppc_gp0_regnum = 0;
2765 tdep->ppc_gplast_regnum = 31;
2766 tdep->ppc_toc_regnum = 2;
2767 tdep->ppc_ps_regnum = 65;
2768 tdep->ppc_cr_regnum = 66;
2769 tdep->ppc_lr_regnum = 67;
2770 tdep->ppc_ctr_regnum = 68;
2771 tdep->ppc_xer_regnum = 69;
2772 if (v->mach == bfd_mach_ppc_601)
2773 tdep->ppc_mq_regnum = 124;
e3f36dbd 2774 else if (power)
2188cbdd 2775 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2776 else
2777 tdep->ppc_mq_regnum = -1;
2778 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2779
c8001721
EZ
2780 set_gdbarch_pc_regnum (gdbarch, 64);
2781 set_gdbarch_sp_regnum (gdbarch, 1);
2782 set_gdbarch_fp_regnum (gdbarch, 1);
96ff0de4
EZ
2783 set_gdbarch_deprecated_extract_return_value (gdbarch,
2784 rs6000_extract_return_value);
46d79c04 2785 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
c8001721 2786
1fcc0bb8
EZ
2787 if (v->arch == bfd_arch_powerpc)
2788 switch (v->mach)
2789 {
2790 case bfd_mach_ppc:
2791 tdep->ppc_vr0_regnum = 71;
2792 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2793 tdep->ppc_ev0_regnum = -1;
2794 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2795 break;
2796 case bfd_mach_ppc_7400:
2797 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2798 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2799 tdep->ppc_ev0_regnum = -1;
2800 tdep->ppc_ev31_regnum = -1;
2801 break;
2802 case bfd_mach_ppc_e500:
2803 tdep->ppc_gp0_regnum = 39;
2804 tdep->ppc_gplast_regnum = 70;
2805 tdep->ppc_toc_regnum = -1;
2806 tdep->ppc_ps_regnum = 1;
2807 tdep->ppc_cr_regnum = 2;
2808 tdep->ppc_lr_regnum = 3;
2809 tdep->ppc_ctr_regnum = 4;
2810 tdep->ppc_xer_regnum = 5;
2811 tdep->ppc_ev0_regnum = 7;
2812 tdep->ppc_ev31_regnum = 38;
2813 set_gdbarch_pc_regnum (gdbarch, 0);
2814 set_gdbarch_sp_regnum (gdbarch, 40);
2815 set_gdbarch_fp_regnum (gdbarch, 40);
2816 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2817 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2818 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
96ff0de4 2819 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
46d79c04 2820 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
1fcc0bb8
EZ
2821 break;
2822 default:
2823 tdep->ppc_vr0_regnum = -1;
2824 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2825 tdep->ppc_ev0_regnum = -1;
2826 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2827 break;
2828 }
2829
a88376a3
KB
2830 /* Set lr_frame_offset. */
2831 if (wordsize == 8)
2832 tdep->lr_frame_offset = 16;
2833 else if (sysv_abi)
2834 tdep->lr_frame_offset = 4;
2835 else
2836 tdep->lr_frame_offset = 8;
2837
2838 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2839 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2840 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2841 {
2842 tdep->regoff[i] = off;
2843 off += regsize (v->regs + i, wordsize);
c906108c
SS
2844 }
2845
56a6dfb9
KB
2846 /* Select instruction printer. */
2847 if (arch == power)
9364a0ef 2848 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2849 else
9364a0ef 2850 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2851
7a78ae4e
ND
2852 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2853 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2854 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
7a78ae4e
ND
2855 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2856 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2857
2858 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2859 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e
ND
2860 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2861 set_gdbarch_register_size (gdbarch, wordsize);
2862 set_gdbarch_register_bytes (gdbarch, off);
2863 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2864 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2a873819 2865 set_gdbarch_max_register_raw_size (gdbarch, 16);
b2e75d78 2866 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2a873819 2867 set_gdbarch_max_register_virtual_size (gdbarch, 16);
7a78ae4e
ND
2868 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2869
2870 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2871 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2872 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2873 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2874 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2875 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2876 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2877 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2878 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e
ND
2879
2880 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2881 set_gdbarch_call_dummy_length (gdbarch, 0);
2882 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2883 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2884 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2885 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2886 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
fe794dc6 2887 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
7a78ae4e
ND
2888 set_gdbarch_call_dummy_p (gdbarch, 1);
2889 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
dd486634 2890 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
7a78ae4e 2891 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
11269d7e 2892 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
7a78ae4e 2893 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
58223630 2894 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e
ND
2895 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2896 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2897 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2898
2899 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2900 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2901 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2902 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2903 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2904 is correct for the SysV ABI when the wordsize is 8, but I'm also
2905 fairly certain that ppc_sysv_abi_push_arguments() will give even
2906 worse results since it only works for 32-bit code. So, for the moment,
2907 we're better off calling rs6000_push_arguments() since it works for
2908 64-bit code. At some point in the future, this matter needs to be
2909 revisited. */
2910 if (sysv_abi && wordsize == 4)
9aa1e687
KB
2911 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2912 else
2913 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e 2914
d0403e00 2915 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
11269d7e 2916 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
2917 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2918
2919 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2920 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2921 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2922 set_gdbarch_function_start_offset (gdbarch, 0);
2923 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2924
2925 /* Not sure on this. FIXMEmgo */
2926 set_gdbarch_frame_args_skip (gdbarch, 8);
2927
8e0662df 2928 if (sysv_abi)
7b112f9c
JT
2929 set_gdbarch_use_struct_convention (gdbarch,
2930 ppc_sysv_abi_use_struct_convention);
8e0662df 2931 else
7b112f9c
JT
2932 set_gdbarch_use_struct_convention (gdbarch,
2933 generic_use_struct_convention);
8e0662df 2934
7a78ae4e 2935 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
9aa1e687 2936
7b112f9c
JT
2937 set_gdbarch_frameless_function_invocation (gdbarch,
2938 rs6000_frameless_function_invocation);
2939 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2940 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2941
2942 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2943 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2944
15813d3f
AC
2945 if (!sysv_abi)
2946 {
2947 /* Handle RS/6000 function pointers (which are really function
2948 descriptors). */
f517ea4e
PS
2949 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2950 rs6000_convert_from_func_ptr_addr);
9aa1e687 2951 }
7a78ae4e
ND
2952 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2953 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2954 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2955
2956 /* We can't tell how many args there are
2957 now that the C compiler delays popping them. */
2958 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2959
7b112f9c
JT
2960 /* Hook in ABI-specific overrides, if they have been registered. */
2961 gdbarch_init_osabi (info, gdbarch, osabi);
2962
7a78ae4e 2963 return gdbarch;
c906108c
SS
2964}
2965
7b112f9c
JT
2966static void
2967rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2968{
2969 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2970
2971 if (tdep == NULL)
2972 return;
2973
2974 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2975 gdbarch_osabi_name (tdep->osabi));
2976}
2977
1fcc0bb8
EZ
2978static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2979
2980static void
2981rs6000_info_powerpc_command (char *args, int from_tty)
2982{
2983 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2984}
2985
c906108c
SS
2986/* Initialization code. */
2987
2988void
fba45db2 2989_initialize_rs6000_tdep (void)
c906108c 2990{
7b112f9c
JT
2991 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2992 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2993
2994 /* Add root prefix command for "info powerpc" commands */
2995 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2996 "Various POWERPC info specific commands.",
2997 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2998}
This page took 0.63202 seconds and 4 git commands to generate.