2004-02-14 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6
AC
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d 50#include "gdb_assert.h"
a89aa300 51#include "dis-asm.h"
338ef23d 52
7a78ae4e
ND
53/* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60#define SIG_FRAME_PC_OFFSET 96
61#define SIG_FRAME_LR_OFFSET 108
62#define SIG_FRAME_FP_OFFSET 284
63
7a78ae4e
ND
64/* To be used by skip_prologue. */
65
66struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 73 int saved_vr; /* smallest # of saved vr */
96ff0de4 74 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 80 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 81 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
6be8bc0c 84 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
85 };
86
87/* Description of a single register. */
88
89struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
489461e2 95 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
96 };
97
c906108c
SS
98/* Breakpoint shadows for the single step instructions will be kept here. */
99
c5aa993b
JM
100static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107stepBreaks[2];
c906108c
SS
108
109/* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
7a78ae4e
ND
113CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115/* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
119
120/* Static function prototypes */
121
a14ed312
KB
122static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
077276e8
KB
124static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
7a78ae4e
ND
126static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 129
64b84175
KB
130/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131int
132altivec_register_p (int regno)
133{
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139}
140
0a613259
AC
141/* Use the architectures FP registers? */
142int
143ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144{
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151}
152
7a78ae4e 153/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 154
7a78ae4e
ND
155static CORE_ADDR
156read_memory_addr (CORE_ADDR memaddr, int len)
157{
158 return read_memory_unsigned_integer (memaddr, len);
159}
c906108c 160
7a78ae4e
ND
161static CORE_ADDR
162rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
163{
164 struct rs6000_framedata frame;
077276e8 165 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
166 return pc;
167}
168
169
c906108c
SS
170/* Fill in fi->saved_regs */
171
172struct frame_extra_info
173{
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
c5aa993b 179 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
180};
181
9aa1e687 182void
7a78ae4e 183rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 184{
c9012c71
AC
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
bdd78e62
AC
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 190 /* We're in get_prev_frame */
c906108c
SS
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
5a203e44 194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
195}
196
7a78ae4e
ND
197/* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
c906108c 202
7a78ae4e
ND
203/* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
9aa1e687 207void
7a78ae4e 208rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
209{
210 frame_get_saved_regs (fi, NULL);
211}
212
7a78ae4e
ND
213static CORE_ADDR
214rs6000_frame_args_address (struct frame_info *fi)
c906108c 215{
c9012c71
AC
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
c906108c
SS
219 else
220 return frame_initial_stack_address (fi);
221}
222
7a78ae4e
ND
223/* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228static CORE_ADDR
229rs6000_saved_pc_after_call (struct frame_info *fi)
230{
2188cbdd 231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 232}
c906108c 233
143985b7 234/* Get the ith function argument for the current function. */
b9362cc7 235static CORE_ADDR
143985b7
AF
236rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238{
239 CORE_ADDR addr;
7f5f525d 240 get_frame_register (frame, 3 + argi, &addr);
143985b7
AF
241 return addr;
242}
243
c906108c
SS
244/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246static CORE_ADDR
7a78ae4e 247branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
248{
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
c5aa993b
JM
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
2188cbdd 279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
8b36eed8 291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 292 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
2188cbdd 298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
305 }
306 else
307 return -1;
308 break;
c906108c 309
c5aa993b
JM
310 default:
311 return -1;
312 }
c906108c
SS
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314}
315
316
317/* Sequence of bytes for breakpoint instruction. */
318
f4f9705a 319const static unsigned char *
7a78ae4e 320rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 321{
aaab4dba
AC
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 324 *bp_size = 4;
d7449b42 325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329}
330
331
332/* AIX does not support PT_STEP. Simulate it. */
333
334void
379d08a1
AC
335rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
c906108c 337{
7c40d541
KB
338 CORE_ADDR dummy;
339 int breakp_sz;
f4f9705a 340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
c5aa993b
JM
346 if (insert_breakpoints_p)
347 {
c906108c 348
c5aa993b 349 loc = read_pc ();
c906108c 350
c5aa993b 351 insn = read_memory_integer (loc, 4);
c906108c 352
7c40d541 353 breaks[0] = loc + breakp_sz;
c5aa993b
JM
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 356
c5aa993b
JM
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
c906108c 360
c5aa993b 361 stepBreaks[1].address = 0;
c906108c 362
c5aa993b
JM
363 for (ii = 0; ii < 2; ++ii)
364 {
c906108c 365
c5aa993b
JM
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
7c40d541 369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
370 stepBreaks[ii].address = breaks[ii];
371 }
c906108c 372
c5aa993b
JM
373 }
374 else
375 {
c906108c 376
c5aa993b
JM
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
7c40d541
KB
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
c5aa993b 382 }
c906108c 383 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 384 /* What errors? {read,write}_memory call error(). */
c906108c
SS
385}
386
387
388/* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
c5aa993b
JM
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
6be8bc0c 398 - saved_vr is the number of the first saved vr.
96ff0de4 399 - saved_ev is the number of the first saved ev.
c5aa993b
JM
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 404 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 405 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
6be8bc0c 408 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 409 */
c906108c
SS
410
411#define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
55d05f3b
KB
418/* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420static int max_skip_non_prologue_insns = 10;
421
422/* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428static CORE_ADDR
429refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430{
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467}
468
469
7a78ae4e 470static CORE_ADDR
077276e8 471skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
472{
473 CORE_ADDR orig_pc = pc;
55d05f3b 474 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 475 CORE_ADDR li_found_pc = 0;
c906108c
SS
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
6be8bc0c 479 long vr_saved_offset = 0;
482ca3f5
KB
480 int lr_reg = -1;
481 int cr_reg = -1;
6be8bc0c 482 int vr_reg = -1;
96ff0de4
EZ
483 int ev_reg = -1;
484 long ev_offset = 0;
6be8bc0c 485 int vrsave_reg = -1;
c906108c
SS
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
ddb20c56 489 int prev_insn_was_prologue_insn = 1;
55d05f3b 490 int num_skip_non_prologue_insns = 0;
96ff0de4 491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 493
55d05f3b
KB
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 508
ddb20c56 509 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
6be8bc0c 512 fdata->saved_vr = -1;
96ff0de4 513 fdata->saved_ev = -1;
c906108c
SS
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
55d05f3b 518 for (;; pc += 4)
c906108c 519 {
ddb20c56
KB
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
55d05f3b
KB
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
ddb20c56
KB
531 prev_insn_was_prologue_insn = 1;
532
55d05f3b 533 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
c906108c 537
c5aa993b
JM
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
98f08d3d 540 lr_reg = (op & 0x03e00000);
c5aa993b 541 continue;
c906108c 542
c5aa993b
JM
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
98f08d3d 546 cr_reg = (op & 0x03e00000);
c5aa993b 547 continue;
c906108c 548
c906108c 549 }
c5aa993b
JM
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
c906108c 559
c5aa993b
JM
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
7a78ae4e 571 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 572 op &= ~3UL;
c5aa993b
JM
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
c906108c 576
ddb20c56
KB
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
96ff0de4 580 /* nop */
ddb20c56
KB
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
c906108c 587 }
c5aa993b
JM
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
98f08d3d
KB
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
c5aa993b
JM
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
98f08d3d
KB
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
c5aa993b
JM
621 continue;
622
623 }
98f08d3d
KB
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
c5aa993b 633 cr_reg = 0;
98f08d3d
KB
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
c5aa993b
JM
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
c5aa993b 653 }
6be8bc0c
EZ
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
c5aa993b
JM
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
c906108c 659
c5aa993b
JM
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
c906108c 664
c5aa993b 665 fdata->frameless = 0;
6be8bc0c
EZ
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
c5aa993b
JM
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
6be8bc0c
EZ
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
c5aa993b
JM
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
c5aa993b 683 }
98f08d3d
KB
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
c5aa993b 691 }
98f08d3d
KB
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
c5aa993b
JM
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
c5aa993b 712 }
98f08d3d
KB
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 716 && !minimal_toc_loaded)
98f08d3d 717 {
c5aa993b
JM
718 minimal_toc_loaded = 1;
719 continue;
720
f6077098
KB
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
96ff0de4 727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
728 {
729 continue;
730
c5aa993b
JM
731 /* store parameters in stack */
732 }
6be8bc0c 733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
c5aa993b 737 continue;
c906108c 738
c5aa993b
JM
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
6f99cb26 755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
6f99cb26
AC
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
c5aa993b 766 continue;
c5aa993b 767 }
6be8bc0c
EZ
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
96ff0de4
EZ
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
c5aa993b
JM
935 else
936 {
55d05f3b
KB
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 951 /* Never skip branches. */
55d05f3b
KB
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
c5aa993b 962 }
c906108c
SS
963 }
964
965#if 0
966/* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 972 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 973 work before calling a function right after a prologue, thus we can
64366f1c 974 single out such gcc2 behaviour. */
c906108c 975
c906108c 976
c5aa993b
JM
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 983
64366f1c
EZ
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
c906108c 986
c5aa993b 987 tmp = find_pc_misc_function (pc);
6314a349
AC
988 if (tmp >= 0
989 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
990 return pc + 8;
991 }
c906108c 992 }
c906108c 993#endif /* 0 */
c5aa993b
JM
994
995 fdata->offset = -fdata->offset;
ddb20c56 996 return last_prologue_pc;
c906108c
SS
997}
998
999
1000/*************************************************************************
f6077098 1001 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1002 frames, etc.
1003*************************************************************************/
1004
c906108c 1005
64366f1c 1006/* Pop the innermost frame, go back to the caller. */
c5aa993b 1007
c906108c 1008static void
7a78ae4e 1009rs6000_pop_frame (void)
c906108c 1010{
470d5666 1011 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
1012 struct rs6000_framedata fdata;
1013 struct frame_info *frame = get_current_frame ();
470d5666 1014 int ii, wordsize;
c906108c
SS
1015
1016 pc = read_pc ();
c193f6ac 1017 sp = get_frame_base (frame);
c906108c 1018
bdd78e62 1019 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
1020 get_frame_base (frame),
1021 get_frame_base (frame)))
c906108c 1022 {
7a78ae4e
ND
1023 generic_pop_dummy_frame ();
1024 flush_cached_frames ();
1025 return;
c906108c
SS
1026 }
1027
1028 /* Make sure that all registers are valid. */
b8b527c5 1029 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
c906108c 1030
64366f1c 1031 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 1032 still in the link register, otherwise walk the frames and retrieve the
64366f1c 1033 saved %pc value in the previous frame. */
c906108c 1034
be41e9f4 1035 addr = get_frame_func (frame);
bdd78e62 1036 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 1037
21283beb 1038 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
1039 if (fdata.frameless)
1040 prev_sp = sp;
1041 else
7a78ae4e 1042 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1043 if (fdata.lr_offset == 0)
2188cbdd 1044 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1045 else
7a78ae4e 1046 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1047
1048 /* reset %pc value. */
1049 write_register (PC_REGNUM, lr);
1050
64366f1c 1051 /* reset register values if any was saved earlier. */
c906108c
SS
1052
1053 if (fdata.saved_gpr != -1)
1054 {
1055 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1056 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1057 {
62700349 1058 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
524d7c18 1059 wordsize);
7a78ae4e 1060 addr += wordsize;
c5aa993b 1061 }
c906108c
SS
1062 }
1063
1064 if (fdata.saved_fpr != -1)
1065 {
1066 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1067 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1068 {
62700349 1069 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1070 addr += 8;
1071 }
c906108c
SS
1072 }
1073
1074 write_register (SP_REGNUM, prev_sp);
1075 target_store_registers (-1);
1076 flush_cached_frames ();
1077}
1078
11269d7e
AC
1079/* All the ABI's require 16 byte alignment. */
1080static CORE_ADDR
1081rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1082{
1083 return (addr & -16);
1084}
1085
7a78ae4e 1086/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1087 the first eight words of the argument list (that might be less than
1088 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1089 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1090 passed in fpr's, in addition to that. Rest of the parameters if any
1091 are passed in user stack. There might be cases in which half of the
c906108c
SS
1092 parameter is copied into registers, the other half is pushed into
1093 stack.
1094
7a78ae4e
ND
1095 Stack must be aligned on 64-bit boundaries when synthesizing
1096 function calls.
1097
c906108c
SS
1098 If the function is returning a structure, then the return address is passed
1099 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1100 starting from r4. */
c906108c 1101
7a78ae4e 1102static CORE_ADDR
77b2b6d4
AC
1103rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1104 struct regcache *regcache, CORE_ADDR bp_addr,
1105 int nargs, struct value **args, CORE_ADDR sp,
1106 int struct_return, CORE_ADDR struct_addr)
c906108c 1107{
7a41266b 1108 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1109 int ii;
1110 int len = 0;
c5aa993b
JM
1111 int argno; /* current argument number */
1112 int argbytes; /* current argument byte */
1113 char tmp_buffer[50];
1114 int f_argno = 0; /* current floating point argno */
21283beb 1115 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1116
ea7c478f 1117 struct value *arg = 0;
c906108c
SS
1118 struct type *type;
1119
1120 CORE_ADDR saved_sp;
1121
64366f1c 1122 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1123 Copy them appropriately. */
1124 ii = 0;
1125
1126 /* If the function is returning a `struct', then the first word
1127 (which will be passed in r3) is used for struct return address.
1128 In that case we should advance one word and start from r4
1129 register to copy parameters. */
1130 if (struct_return)
1131 {
1132 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1133 struct_addr);
1134 ii++;
1135 }
c906108c
SS
1136
1137/*
c5aa993b
JM
1138 effectively indirect call... gcc does...
1139
1140 return_val example( float, int);
1141
1142 eabi:
1143 float in fp0, int in r3
1144 offset of stack on overflow 8/16
1145 for varargs, must go by type.
1146 power open:
1147 float in r3&r4, int in r5
1148 offset of stack on overflow different
1149 both:
1150 return in r3 or f0. If no float, must study how gcc emulates floats;
1151 pay attention to arg promotion.
1152 User may have to cast\args to handle promotion correctly
1153 since gdb won't know if prototype supplied or not.
1154 */
c906108c 1155
c5aa993b
JM
1156 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1157 {
12c266ea 1158 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1159
1160 arg = args[argno];
1161 type = check_typedef (VALUE_TYPE (arg));
1162 len = TYPE_LENGTH (type);
1163
1164 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1165 {
1166
64366f1c 1167 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1168 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1169 there is no way we would run out of them. */
c5aa993b
JM
1170
1171 if (len > 8)
1172 printf_unfiltered (
1173 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1174
62700349 1175 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1176 VALUE_CONTENTS (arg),
1177 len);
1178 ++f_argno;
1179 }
1180
f6077098 1181 if (len > reg_size)
c5aa993b
JM
1182 {
1183
64366f1c 1184 /* Argument takes more than one register. */
c5aa993b
JM
1185 while (argbytes < len)
1186 {
62700349 1187 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
524d7c18 1188 reg_size);
62700349 1189 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
c5aa993b 1190 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1191 (len - argbytes) > reg_size
1192 ? reg_size : len - argbytes);
1193 ++ii, argbytes += reg_size;
c5aa993b
JM
1194
1195 if (ii >= 8)
1196 goto ran_out_of_registers_for_arguments;
1197 }
1198 argbytes = 0;
1199 --ii;
1200 }
1201 else
64366f1c
EZ
1202 {
1203 /* Argument can fit in one register. No problem. */
d7449b42 1204 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
62700349
AC
1205 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1206 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
f6077098 1207 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1208 }
1209 ++argno;
c906108c 1210 }
c906108c
SS
1211
1212ran_out_of_registers_for_arguments:
1213
7a78ae4e 1214 saved_sp = read_sp ();
cc9836a8 1215
64366f1c 1216 /* Location for 8 parameters are always reserved. */
7a78ae4e 1217 sp -= wordsize * 8;
f6077098 1218
64366f1c 1219 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1220 sp -= wordsize * 6;
f6077098 1221
64366f1c 1222 /* Stack pointer must be quadword aligned. */
7a78ae4e 1223 sp &= -16;
c906108c 1224
64366f1c
EZ
1225 /* If there are more arguments, allocate space for them in
1226 the stack, then push them starting from the ninth one. */
c906108c 1227
c5aa993b
JM
1228 if ((argno < nargs) || argbytes)
1229 {
1230 int space = 0, jj;
c906108c 1231
c5aa993b
JM
1232 if (argbytes)
1233 {
1234 space += ((len - argbytes + 3) & -4);
1235 jj = argno + 1;
1236 }
1237 else
1238 jj = argno;
c906108c 1239
c5aa993b
JM
1240 for (; jj < nargs; ++jj)
1241 {
ea7c478f 1242 struct value *val = args[jj];
c5aa993b
JM
1243 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1244 }
c906108c 1245
64366f1c 1246 /* Add location required for the rest of the parameters. */
f6077098 1247 space = (space + 15) & -16;
c5aa993b 1248 sp -= space;
c906108c 1249
7aea86e6
AC
1250 /* This is another instance we need to be concerned about
1251 securing our stack space. If we write anything underneath %sp
1252 (r1), we might conflict with the kernel who thinks he is free
1253 to use this area. So, update %sp first before doing anything
1254 else. */
1255
1256 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1257
64366f1c
EZ
1258 /* If the last argument copied into the registers didn't fit there
1259 completely, push the rest of it into stack. */
c906108c 1260
c5aa993b
JM
1261 if (argbytes)
1262 {
1263 write_memory (sp + 24 + (ii * 4),
1264 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1265 len - argbytes);
1266 ++argno;
1267 ii += ((len - argbytes + 3) & -4) / 4;
1268 }
c906108c 1269
64366f1c 1270 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1271 for (; argno < nargs; ++argno)
1272 {
c906108c 1273
c5aa993b
JM
1274 arg = args[argno];
1275 type = check_typedef (VALUE_TYPE (arg));
1276 len = TYPE_LENGTH (type);
c906108c
SS
1277
1278
64366f1c
EZ
1279 /* Float types should be passed in fpr's, as well as in the
1280 stack. */
c5aa993b
JM
1281 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1282 {
c906108c 1283
c5aa993b
JM
1284 if (len > 8)
1285 printf_unfiltered (
1286 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1287
62700349 1288 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1289 VALUE_CONTENTS (arg),
1290 len);
1291 ++f_argno;
1292 }
c906108c 1293
c5aa993b
JM
1294 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1295 ii += ((len + 3) & -4) / 4;
1296 }
c906108c 1297 }
c906108c 1298
69517000 1299 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1300 be set _before_ the corresponding stack space is used. On AIX,
1301 this even applies when the target has been completely stopped!
1302 Not doing this can lead to conflicts with the kernel which thinks
1303 that it still has control over this not-yet-allocated stack
1304 region. */
33a7c2fc
AC
1305 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1306
7aea86e6
AC
1307 /* Set back chain properly. */
1308 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1309 write_memory (sp, tmp_buffer, 4);
1310
e56a0ecc
AC
1311 /* Point the inferior function call's return address at the dummy's
1312 breakpoint. */
1313 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1314
794a477a
AC
1315 /* Set the TOC register, get the value from the objfile reader
1316 which, in turn, gets it from the VMAP table. */
1317 if (rs6000_find_toc_address_hook != NULL)
1318 {
1319 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1320 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1321 }
1322
c906108c
SS
1323 target_store_registers (-1);
1324 return sp;
1325}
c906108c 1326
b9ff3018
AC
1327/* PowerOpen always puts structures in memory. Vectors, which were
1328 added later, do get returned in a register though. */
1329
1330static int
1331rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1332{
1333 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1334 && TYPE_VECTOR (value_type))
1335 return 0;
1336 return 1;
1337}
1338
7a78ae4e
ND
1339static void
1340rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1341{
1342 int offset = 0;
ace1378a 1343 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1344
c5aa993b
JM
1345 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1346 {
c906108c 1347
c5aa993b
JM
1348 double dd;
1349 float ff;
1350 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1351 We need to truncate the return value into float size (4 byte) if
64366f1c 1352 necessary. */
c906108c 1353
c5aa993b
JM
1354 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1355 memcpy (valbuf,
62700349 1356 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
c5aa993b
JM
1357 TYPE_LENGTH (valtype));
1358 else
1359 { /* float */
62700349 1360 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
c5aa993b
JM
1361 ff = (float) dd;
1362 memcpy (valbuf, &ff, sizeof (float));
1363 }
1364 }
ace1378a
EZ
1365 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1366 && TYPE_LENGTH (valtype) == 16
1367 && TYPE_VECTOR (valtype))
1368 {
62700349 1369 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1370 TYPE_LENGTH (valtype));
1371 }
c5aa993b
JM
1372 else
1373 {
1374 /* return value is copied starting from r3. */
d7449b42 1375 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea
AC
1376 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1377 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1378
1379 memcpy (valbuf,
62700349 1380 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1381 TYPE_LENGTH (valtype));
c906108c 1382 }
c906108c
SS
1383}
1384
977adac5
ND
1385/* Return whether handle_inferior_event() should proceed through code
1386 starting at PC in function NAME when stepping.
1387
1388 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1389 handle memory references that are too distant to fit in instructions
1390 generated by the compiler. For example, if 'foo' in the following
1391 instruction:
1392
1393 lwz r9,foo(r2)
1394
1395 is greater than 32767, the linker might replace the lwz with a branch to
1396 somewhere in @FIX1 that does the load in 2 instructions and then branches
1397 back to where execution should continue.
1398
1399 GDB should silently step over @FIX code, just like AIX dbx does.
1400 Unfortunately, the linker uses the "b" instruction for the branches,
1401 meaning that the link register doesn't get set. Therefore, GDB's usual
1402 step_over_function() mechanism won't work.
1403
1404 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1405 in handle_inferior_event() to skip past @FIX code. */
1406
1407int
1408rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1409{
1410 return name && !strncmp (name, "@FIX", 4);
1411}
1412
1413/* Skip code that the user doesn't want to see when stepping:
1414
1415 1. Indirect function calls use a piece of trampoline code to do context
1416 switching, i.e. to set the new TOC table. Skip such code if we are on
1417 its first instruction (as when we have single-stepped to here).
1418
1419 2. Skip shared library trampoline code (which is different from
c906108c 1420 indirect function call trampolines).
977adac5
ND
1421
1422 3. Skip bigtoc fixup code.
1423
c906108c 1424 Result is desired PC to step until, or NULL if we are not in
977adac5 1425 code that should be skipped. */
c906108c
SS
1426
1427CORE_ADDR
7a78ae4e 1428rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1429{
52f0bd74 1430 unsigned int ii, op;
977adac5 1431 int rel;
c906108c 1432 CORE_ADDR solib_target_pc;
977adac5 1433 struct minimal_symbol *msymbol;
c906108c 1434
c5aa993b
JM
1435 static unsigned trampoline_code[] =
1436 {
1437 0x800b0000, /* l r0,0x0(r11) */
1438 0x90410014, /* st r2,0x14(r1) */
1439 0x7c0903a6, /* mtctr r0 */
1440 0x804b0004, /* l r2,0x4(r11) */
1441 0x816b0008, /* l r11,0x8(r11) */
1442 0x4e800420, /* bctr */
1443 0x4e800020, /* br */
1444 0
c906108c
SS
1445 };
1446
977adac5
ND
1447 /* Check for bigtoc fixup code. */
1448 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1449 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1450 {
1451 /* Double-check that the third instruction from PC is relative "b". */
1452 op = read_memory_integer (pc + 8, 4);
1453 if ((op & 0xfc000003) == 0x48000000)
1454 {
1455 /* Extract bits 6-29 as a signed 24-bit relative word address and
1456 add it to the containing PC. */
1457 rel = ((int)(op << 6) >> 6);
1458 return pc + 8 + rel;
1459 }
1460 }
1461
c906108c
SS
1462 /* If pc is in a shared library trampoline, return its target. */
1463 solib_target_pc = find_solib_trampoline_target (pc);
1464 if (solib_target_pc)
1465 return solib_target_pc;
1466
c5aa993b
JM
1467 for (ii = 0; trampoline_code[ii]; ++ii)
1468 {
1469 op = read_memory_integer (pc + (ii * 4), 4);
1470 if (op != trampoline_code[ii])
1471 return 0;
1472 }
1473 ii = read_register (11); /* r11 holds destination addr */
21283beb 1474 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1475 return pc;
1476}
1477
1478/* Determines whether the function FI has a frame on the stack or not. */
1479
9aa1e687 1480int
c877c8e6 1481rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1482{
1483 CORE_ADDR func_start;
1484 struct rs6000_framedata fdata;
1485
1486 /* Don't even think about framelessness except on the innermost frame
1487 or if the function was interrupted by a signal. */
75e3c1f9
AC
1488 if (get_next_frame (fi) != NULL
1489 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1490 return 0;
c5aa993b 1491
be41e9f4 1492 func_start = get_frame_func (fi);
c906108c
SS
1493
1494 /* If we failed to find the start of the function, it is a mistake
64366f1c 1495 to inspect the instructions. */
c906108c
SS
1496
1497 if (!func_start)
1498 {
1499 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1500 function pointer, normally causing an immediate core dump of the
64366f1c 1501 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1502 of setting up a stack frame. */
bdd78e62 1503 if (get_frame_pc (fi) == 0)
c906108c
SS
1504 return 1;
1505 else
1506 return 0;
1507 }
1508
bdd78e62 1509 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1510 return fdata.frameless;
1511}
1512
64366f1c 1513/* Return the PC saved in a frame. */
c906108c 1514
9aa1e687 1515CORE_ADDR
c877c8e6 1516rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1517{
1518 CORE_ADDR func_start;
1519 struct rs6000_framedata fdata;
21283beb 1520 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1521 int wordsize = tdep->wordsize;
c906108c 1522
5a203e44 1523 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1524 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1525 wordsize);
c906108c 1526
bdd78e62 1527 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1528 get_frame_base (fi),
1529 get_frame_base (fi)))
bdd78e62 1530 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1531 get_frame_base (fi), PC_REGNUM);
c906108c 1532
be41e9f4 1533 func_start = get_frame_func (fi);
c906108c
SS
1534
1535 /* If we failed to find the start of the function, it is a mistake
64366f1c 1536 to inspect the instructions. */
c906108c
SS
1537 if (!func_start)
1538 return 0;
1539
bdd78e62 1540 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1541
75e3c1f9 1542 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1543 {
75e3c1f9 1544 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1545 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1546 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1547 wordsize);
bdd78e62 1548 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1549 /* The link register wasn't saved by this frame and the next
1550 (inner, newer) frame is a dummy. Get the link register
1551 value by unwinding it from that [dummy] frame. */
1552 {
1553 ULONGEST lr;
1554 frame_unwind_unsigned_register (get_next_frame (fi),
1555 tdep->ppc_lr_regnum, &lr);
1556 return lr;
1557 }
c906108c 1558 else
618ce49f
AC
1559 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1560 + tdep->lr_frame_offset,
7a78ae4e 1561 wordsize);
c906108c
SS
1562 }
1563
1564 if (fdata.lr_offset == 0)
2188cbdd 1565 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1566
618ce49f
AC
1567 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1568 wordsize);
c906108c
SS
1569}
1570
1571/* If saved registers of frame FI are not known yet, read and cache them.
1572 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1573 in which case the framedata are read. */
1574
1575static void
7a78ae4e 1576frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1577{
c5aa993b 1578 CORE_ADDR frame_addr;
c906108c 1579 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1580 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1581 int wordsize = tdep->wordsize;
c906108c 1582
1b1d3794 1583 if (deprecated_get_frame_saved_regs (fi))
c906108c 1584 return;
c5aa993b 1585
c906108c
SS
1586 if (fdatap == NULL)
1587 {
1588 fdatap = &work_fdata;
be41e9f4 1589 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
c906108c
SS
1590 }
1591
1592 frame_saved_regs_zalloc (fi);
1593
1594 /* If there were any saved registers, figure out parent's stack
64366f1c 1595 pointer. */
c906108c 1596 /* The following is true only if the frame doesn't have a call to
64366f1c 1597 alloca(), FIXME. */
c906108c 1598
6be8bc0c
EZ
1599 if (fdatap->saved_fpr == 0
1600 && fdatap->saved_gpr == 0
1601 && fdatap->saved_vr == 0
96ff0de4 1602 && fdatap->saved_ev == 0
6be8bc0c
EZ
1603 && fdatap->lr_offset == 0
1604 && fdatap->cr_offset == 0
96ff0de4
EZ
1605 && fdatap->vr_offset == 0
1606 && fdatap->ev_offset == 0)
c906108c 1607 frame_addr = 0;
c906108c 1608 else
bf75c8c1
AC
1609 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1610 address of the current frame. Things might be easier if the
1611 ->frame pointed to the outer-most address of the frame. In the
1612 mean time, the address of the prev frame is used as the base
1613 address of this frame. */
618ce49f 1614 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1615
c906108c
SS
1616 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1617 All fpr's from saved_fpr to fp31 are saved. */
1618
1619 if (fdatap->saved_fpr >= 0)
1620 {
1621 int i;
7a78ae4e 1622 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1623 for (i = fdatap->saved_fpr; i < 32; i++)
1624 {
1b1d3794 1625 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1626 fpr_addr += 8;
c906108c
SS
1627 }
1628 }
1629
1630 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1631 All gpr's from saved_gpr to gpr31 are saved. */
1632
1633 if (fdatap->saved_gpr >= 0)
1634 {
1635 int i;
7a78ae4e 1636 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1637 for (i = fdatap->saved_gpr; i < 32; i++)
1638 {
1b1d3794 1639 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
7a78ae4e 1640 gpr_addr += wordsize;
c906108c
SS
1641 }
1642 }
1643
6be8bc0c
EZ
1644 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1645 All vr's from saved_vr to vr31 are saved. */
1646 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1647 {
1648 if (fdatap->saved_vr >= 0)
1649 {
1650 int i;
1651 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1652 for (i = fdatap->saved_vr; i < 32; i++)
1653 {
1b1d3794 1654 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
12c266ea 1655 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
6be8bc0c
EZ
1656 }
1657 }
1658 }
1659
96ff0de4
EZ
1660 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1661 All vr's from saved_ev to ev31 are saved. ????? */
1662 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1663 {
1664 if (fdatap->saved_ev >= 0)
1665 {
1666 int i;
1667 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1668 for (i = fdatap->saved_ev; i < 32; i++)
1669 {
1b1d3794
AC
1670 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1671 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
12c266ea 1672 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
96ff0de4
EZ
1673 }
1674 }
1675 }
1676
c906108c
SS
1677 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1678 the CR. */
1679 if (fdatap->cr_offset != 0)
1b1d3794 1680 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1681
1682 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1683 the LR. */
1684 if (fdatap->lr_offset != 0)
1b1d3794 1685 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1686
1687 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1688 the VRSAVE. */
1689 if (fdatap->vrsave_offset != 0)
1b1d3794 1690 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1691}
1692
1693/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1694 was first allocated. For functions calling alloca(), it might be saved in
1695 an alloca register. */
c906108c
SS
1696
1697static CORE_ADDR
7a78ae4e 1698frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1699{
1700 CORE_ADDR tmpaddr;
1701 struct rs6000_framedata fdata;
1702 struct frame_info *callee_fi;
1703
64366f1c
EZ
1704 /* If the initial stack pointer (frame address) of this frame is known,
1705 just return it. */
c906108c 1706
c9012c71
AC
1707 if (get_frame_extra_info (fi)->initial_sp)
1708 return get_frame_extra_info (fi)->initial_sp;
c906108c 1709
64366f1c 1710 /* Find out if this function is using an alloca register. */
c906108c 1711
be41e9f4 1712 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
c906108c 1713
64366f1c
EZ
1714 /* If saved registers of this frame are not known yet, read and
1715 cache them. */
c906108c 1716
1b1d3794 1717 if (!deprecated_get_frame_saved_regs (fi))
c906108c
SS
1718 frame_get_saved_regs (fi, &fdata);
1719
1720 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1721 this frame, and it is good enough. */
c906108c
SS
1722
1723 if (fdata.alloca_reg < 0)
1724 {
c9012c71
AC
1725 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1726 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1727 }
1728
953836b2
AC
1729 /* There is an alloca register, use its value, in the current frame,
1730 as the initial stack pointer. */
1731 {
d9d9c31f 1732 char tmpbuf[MAX_REGISTER_SIZE];
953836b2
AC
1733 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1734 {
c9012c71 1735 get_frame_extra_info (fi)->initial_sp
953836b2 1736 = extract_unsigned_integer (tmpbuf,
12c266ea 1737 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
953836b2
AC
1738 }
1739 else
1740 /* NOTE: cagney/2002-04-17: At present the only time
1741 frame_register_read will fail is when the register isn't
1742 available. If that does happen, use the frame. */
c9012c71 1743 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1744 }
c9012c71 1745 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1746}
1747
7a78ae4e
ND
1748/* Describe the pointer in each stack frame to the previous stack frame
1749 (its caller). */
1750
618ce49f
AC
1751/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1752 the frame's chain-pointer. */
7a78ae4e
ND
1753
1754/* In the case of the RS/6000, the frame's nominal address
1755 is the address of a 4-byte word containing the calling frame's address. */
1756
9aa1e687 1757CORE_ADDR
7a78ae4e 1758rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1759{
7a78ae4e 1760 CORE_ADDR fp, fpp, lr;
21283beb 1761 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1762
bdd78e62 1763 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1764 get_frame_base (thisframe),
1765 get_frame_base (thisframe)))
9f3b7f07
AC
1766 /* A dummy frame always correctly chains back to the previous
1767 frame. */
8b36eed8 1768 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1769
627b3ba2 1770 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
bdd78e62 1771 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1772 return 0;
1773
5a203e44 1774 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1775 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1776 wordsize);
75e3c1f9
AC
1777 else if (get_next_frame (thisframe) != NULL
1778 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1779 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1780 /* A frameless function interrupted by a signal did not change the
1781 frame pointer. */
c193f6ac 1782 fp = get_frame_base (thisframe);
c906108c 1783 else
8b36eed8 1784 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1785 return fp;
1786}
1787
1788/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1789 isn't available with that word size, return 0. */
7a78ae4e
ND
1790
1791static int
1792regsize (const struct reg *reg, int wordsize)
1793{
1794 return wordsize == 8 ? reg->sz64 : reg->sz32;
1795}
1796
1797/* Return the name of register number N, or null if no such register exists
64366f1c 1798 in the current architecture. */
7a78ae4e 1799
fa88f677 1800static const char *
7a78ae4e
ND
1801rs6000_register_name (int n)
1802{
21283beb 1803 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1804 const struct reg *reg = tdep->regs + n;
1805
1806 if (!regsize (reg, tdep->wordsize))
1807 return NULL;
1808 return reg->name;
1809}
1810
1811/* Index within `registers' of the first byte of the space for
1812 register N. */
1813
1814static int
1815rs6000_register_byte (int n)
1816{
21283beb 1817 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1818}
1819
1820/* Return the number of bytes of storage in the actual machine representation
64366f1c 1821 for register N if that register is available, else return 0. */
7a78ae4e
ND
1822
1823static int
1824rs6000_register_raw_size (int n)
1825{
21283beb 1826 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1827 const struct reg *reg = tdep->regs + n;
1828 return regsize (reg, tdep->wordsize);
1829}
1830
7a78ae4e
ND
1831/* Return the GDB type object for the "standard" data type
1832 of data in register N. */
1833
1834static struct type *
fba45db2 1835rs6000_register_virtual_type (int n)
7a78ae4e 1836{
21283beb 1837 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1838 const struct reg *reg = tdep->regs + n;
1839
1fcc0bb8
EZ
1840 if (reg->fpr)
1841 return builtin_type_double;
1842 else
1843 {
1844 int size = regsize (reg, tdep->wordsize);
1845 switch (size)
1846 {
449a5da4
AC
1847 case 0:
1848 return builtin_type_int0;
1849 case 4:
1850 return builtin_type_int32;
1fcc0bb8 1851 case 8:
c8001721
EZ
1852 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1853 return builtin_type_vec64;
1854 else
1855 return builtin_type_int64;
1fcc0bb8
EZ
1856 break;
1857 case 16:
08cf96df 1858 return builtin_type_vec128;
1fcc0bb8
EZ
1859 break;
1860 default:
449a5da4
AC
1861 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1862 n, size);
1fcc0bb8
EZ
1863 }
1864 }
7a78ae4e
ND
1865}
1866
7a78ae4e
ND
1867/* Return whether register N requires conversion when moving from raw format
1868 to virtual format.
1869
1870 The register format for RS/6000 floating point registers is always
64366f1c 1871 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1872
1873static int
1874rs6000_register_convertible (int n)
1875{
21283beb 1876 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1877 return reg->fpr;
1878}
1879
1880/* Convert data from raw format for register N in buffer FROM
64366f1c 1881 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1882
1883static void
1884rs6000_register_convert_to_virtual (int n, struct type *type,
1885 char *from, char *to)
1886{
12c266ea 1887 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a292a7a 1888 {
12c266ea 1889 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
f1908289 1890 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1891 }
1892 else
12c266ea 1893 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e
ND
1894}
1895
1896/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1897 to raw format for register N in buffer TO. */
7a292a7a 1898
7a78ae4e
ND
1899static void
1900rs6000_register_convert_to_raw (struct type *type, int n,
781a750d 1901 const char *from, char *to)
7a78ae4e 1902{
12c266ea 1903 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a78ae4e 1904 {
f1908289 1905 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
12c266ea 1906 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
7a292a7a 1907 }
7a78ae4e 1908 else
12c266ea 1909 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e 1910}
c906108c 1911
c8001721
EZ
1912static void
1913e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1914 int reg_nr, void *buffer)
1915{
1916 int base_regnum;
1917 int offset = 0;
d9d9c31f 1918 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1920
1921 if (reg_nr >= tdep->ppc_gp0_regnum
1922 && reg_nr <= tdep->ppc_gplast_regnum)
1923 {
1924 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1925
1926 /* Build the value in the provided buffer. */
1927 /* Read the raw register of which this one is the lower portion. */
1928 regcache_raw_read (regcache, base_regnum, temp_buffer);
1929 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1930 offset = 4;
1931 memcpy ((char *) buffer, temp_buffer + offset, 4);
1932 }
1933}
1934
1935static void
1936e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1937 int reg_nr, const void *buffer)
1938{
1939 int base_regnum;
1940 int offset = 0;
d9d9c31f 1941 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1943
1944 if (reg_nr >= tdep->ppc_gp0_regnum
1945 && reg_nr <= tdep->ppc_gplast_regnum)
1946 {
1947 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1948 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1949 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1950 offset = 4;
1951
1952 /* Let's read the value of the base register into a temporary
1953 buffer, so that overwriting the last four bytes with the new
1954 value of the pseudo will leave the upper 4 bytes unchanged. */
1955 regcache_raw_read (regcache, base_regnum, temp_buffer);
1956
1957 /* Write as an 8 byte quantity. */
1958 memcpy (temp_buffer + offset, (char *) buffer, 4);
1959 regcache_raw_write (regcache, base_regnum, temp_buffer);
1960 }
1961}
1962
1963/* Convert a dwarf2 register number to a gdb REGNUM. */
1964static int
1965e500_dwarf2_reg_to_regnum (int num)
1966{
1967 int regnum;
1968 if (0 <= num && num <= 31)
1969 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1970 else
1971 return num;
1972}
1973
2188cbdd 1974/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1975 REGNUM. */
2188cbdd
EZ
1976static int
1977rs6000_stab_reg_to_regnum (int num)
1978{
1979 int regnum;
1980 switch (num)
1981 {
1982 case 64:
1983 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1984 break;
1985 case 65:
1986 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1987 break;
1988 case 66:
1989 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1990 break;
1991 case 76:
1992 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1993 break;
1994 default:
1995 regnum = num;
1996 break;
1997 }
1998 return regnum;
1999}
2000
7a78ae4e
ND
2001static void
2002rs6000_store_return_value (struct type *type, char *valbuf)
2003{
ace1378a
EZ
2004 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2005
7a78ae4e
ND
2006 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2007
2008 /* Floating point values are returned starting from FPR1 and up.
2009 Say a double_double_double type could be returned in
64366f1c 2010 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2011
62700349 2012 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
73937e03 2013 TYPE_LENGTH (type));
ace1378a
EZ
2014 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2015 {
2016 if (TYPE_LENGTH (type) == 16
2017 && TYPE_VECTOR (type))
62700349 2018 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
73937e03 2019 valbuf, TYPE_LENGTH (type));
ace1378a 2020 }
7a78ae4e 2021 else
64366f1c 2022 /* Everything else is returned in GPR3 and up. */
62700349 2023 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
73937e03 2024 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2025}
2026
2027/* Extract from an array REGBUF containing the (raw) register state
2028 the address in which a function should return its structure value,
2029 as a CORE_ADDR (or an expression that can be used as one). */
2030
2031static CORE_ADDR
11269d7e
AC
2032rs6000_extract_struct_value_address (struct regcache *regcache)
2033{
2034 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2035 function call GDB knows the address of the struct return value
2036 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2037 the current call_function_by_hand() code only saves the most
2038 recent struct address leading to occasional calls. The code
2039 should instead maintain a stack of such addresses (in the dummy
2040 frame object). */
11269d7e
AC
2041 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2042 really got no idea where the return value is being stored. While
2043 r3, on function entry, contained the address it will have since
2044 been reused (scratch) and hence wouldn't be valid */
2045 return 0;
7a78ae4e
ND
2046}
2047
64366f1c 2048/* Hook called when a new child process is started. */
7a78ae4e
ND
2049
2050void
2051rs6000_create_inferior (int pid)
2052{
2053 if (rs6000_set_host_arch_hook)
2054 rs6000_set_host_arch_hook (pid);
c906108c
SS
2055}
2056\f
e2d0e7eb 2057/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2058
2059 Usually a function pointer's representation is simply the address
2060 of the function. On the RS/6000 however, a function pointer is
2061 represented by a pointer to a TOC entry. This TOC entry contains
2062 three words, the first word is the address of the function, the
2063 second word is the TOC pointer (r2), and the third word is the
2064 static chain value. Throughout GDB it is currently assumed that a
2065 function pointer contains the address of the function, which is not
2066 easy to fix. In addition, the conversion of a function address to
2067 a function pointer would require allocation of a TOC entry in the
2068 inferior's memory space, with all its drawbacks. To be able to
2069 call C++ virtual methods in the inferior (which are called via
f517ea4e 2070 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2071 function address from a function pointer. */
2072
f517ea4e
PS
2073/* Return real function address if ADDR (a function pointer) is in the data
2074 space and is therefore a special function pointer. */
c906108c 2075
b9362cc7 2076static CORE_ADDR
e2d0e7eb
AC
2077rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2078 CORE_ADDR addr,
2079 struct target_ops *targ)
c906108c
SS
2080{
2081 struct obj_section *s;
2082
2083 s = find_pc_section (addr);
2084 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2085 return addr;
c906108c 2086
7a78ae4e 2087 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2088 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2089}
c906108c 2090\f
c5aa993b 2091
7a78ae4e 2092/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2093
2094
7a78ae4e
ND
2095/* The arrays here called registers_MUMBLE hold information about available
2096 registers.
c906108c
SS
2097
2098 For each family of PPC variants, I've tried to isolate out the
2099 common registers and put them up front, so that as long as you get
2100 the general family right, GDB will correctly identify the registers
2101 common to that family. The common register sets are:
2102
2103 For the 60x family: hid0 hid1 iabr dabr pir
2104
2105 For the 505 and 860 family: eie eid nri
2106
2107 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2108 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2109 pbu1 pbl2 pbu2
c906108c
SS
2110
2111 Most of these register groups aren't anything formal. I arrived at
2112 them by looking at the registers that occurred in more than one
6f5987a6
KB
2113 processor.
2114
2115 Note: kevinb/2002-04-30: Support for the fpscr register was added
2116 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2117 for Power. For PowerPC, slot 70 was unused and was already in the
2118 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2119 slot 70 was being used for "mq", so the next available slot (71)
2120 was chosen. It would have been nice to be able to make the
2121 register numbers the same across processor cores, but this wasn't
2122 possible without either 1) renumbering some registers for some
2123 processors or 2) assigning fpscr to a really high slot that's
2124 larger than any current register number. Doing (1) is bad because
2125 existing stubs would break. Doing (2) is undesirable because it
2126 would introduce a really large gap between fpscr and the rest of
2127 the registers for most processors. */
7a78ae4e 2128
64366f1c 2129/* Convenience macros for populating register arrays. */
7a78ae4e 2130
64366f1c 2131/* Within another macro, convert S to a string. */
7a78ae4e
ND
2132
2133#define STR(s) #s
2134
2135/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2136 and 64 bits on 64-bit systems. */
489461e2 2137#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2138
2139/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2140 systems. */
489461e2 2141#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2142
2143/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2144 systems. */
489461e2 2145#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2146
1fcc0bb8 2147/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2148 systems. */
489461e2 2149#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2150
64366f1c 2151/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2152#define F(name) { STR(name), 8, 8, 1, 0 }
2153
64366f1c 2154/* Return a struct reg defining a pseudo register NAME. */
489461e2 2155#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2156
2157/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2158 systems and that doesn't exist on 64-bit systems. */
489461e2 2159#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2160
2161/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2162 systems and that doesn't exist on 32-bit systems. */
489461e2 2163#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2164
64366f1c 2165/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2166#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2167
2168/* UISA registers common across all architectures, including POWER. */
2169
2170#define COMMON_UISA_REGS \
2171 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2172 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2173 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2174 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2175 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2176 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2177 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2178 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2179 /* 64 */ R(pc), R(ps)
2180
ebeac11a
EZ
2181#define COMMON_UISA_NOFP_REGS \
2182 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2183 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2184 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2185 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2186 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2187 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2188 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2189 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2190 /* 64 */ R(pc), R(ps)
2191
7a78ae4e
ND
2192/* UISA-level SPRs for PowerPC. */
2193#define PPC_UISA_SPRS \
e3f36dbd 2194 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2195
c8001721
EZ
2196/* UISA-level SPRs for PowerPC without floating point support. */
2197#define PPC_UISA_NOFP_SPRS \
2198 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2199
7a78ae4e
ND
2200/* Segment registers, for PowerPC. */
2201#define PPC_SEGMENT_REGS \
2202 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2203 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2204 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2205 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2206
2207/* OEA SPRs for PowerPC. */
2208#define PPC_OEA_SPRS \
2209 /* 87 */ R4(pvr), \
2210 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2211 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2212 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2213 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2214 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2215 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2216 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2217 /* 116 */ R4(dec), R(dabr), R4(ear)
2218
64366f1c 2219/* AltiVec registers. */
1fcc0bb8
EZ
2220#define PPC_ALTIVEC_REGS \
2221 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2222 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2223 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2224 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2225 /*151*/R4(vscr), R4(vrsave)
2226
c8001721
EZ
2227/* Vectors of hi-lo general purpose registers. */
2228#define PPC_EV_REGS \
2229 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2230 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2231 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2232 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2233
2234/* Lower half of the EV registers. */
2235#define PPC_GPRS_PSEUDO_REGS \
2236 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2237 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2238 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2239 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2240
7a78ae4e 2241/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2242 user-level SPR's. */
7a78ae4e 2243static const struct reg registers_power[] =
c906108c 2244{
7a78ae4e 2245 COMMON_UISA_REGS,
e3f36dbd
KB
2246 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2247 /* 71 */ R4(fpscr)
c906108c
SS
2248};
2249
7a78ae4e 2250/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2251 view of the PowerPC. */
7a78ae4e 2252static const struct reg registers_powerpc[] =
c906108c 2253{
7a78ae4e 2254 COMMON_UISA_REGS,
1fcc0bb8
EZ
2255 PPC_UISA_SPRS,
2256 PPC_ALTIVEC_REGS
c906108c
SS
2257};
2258
ebeac11a
EZ
2259/* PowerPC UISA - a PPC processor as viewed by user-level
2260 code, but without floating point registers. */
2261static const struct reg registers_powerpc_nofp[] =
2262{
2263 COMMON_UISA_NOFP_REGS,
2264 PPC_UISA_SPRS
2265};
2266
64366f1c 2267/* IBM PowerPC 403. */
7a78ae4e 2268static const struct reg registers_403[] =
c5aa993b 2269{
7a78ae4e
ND
2270 COMMON_UISA_REGS,
2271 PPC_UISA_SPRS,
2272 PPC_SEGMENT_REGS,
2273 PPC_OEA_SPRS,
2274 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2275 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2276 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2277 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2278 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2279 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2280};
2281
64366f1c 2282/* IBM PowerPC 403GC. */
7a78ae4e 2283static const struct reg registers_403GC[] =
c5aa993b 2284{
7a78ae4e
ND
2285 COMMON_UISA_REGS,
2286 PPC_UISA_SPRS,
2287 PPC_SEGMENT_REGS,
2288 PPC_OEA_SPRS,
2289 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2290 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2291 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2292 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2293 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2294 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2295 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2296 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2297};
2298
64366f1c 2299/* Motorola PowerPC 505. */
7a78ae4e 2300static const struct reg registers_505[] =
c5aa993b 2301{
7a78ae4e
ND
2302 COMMON_UISA_REGS,
2303 PPC_UISA_SPRS,
2304 PPC_SEGMENT_REGS,
2305 PPC_OEA_SPRS,
2306 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2307};
2308
64366f1c 2309/* Motorola PowerPC 860 or 850. */
7a78ae4e 2310static const struct reg registers_860[] =
c5aa993b 2311{
7a78ae4e
ND
2312 COMMON_UISA_REGS,
2313 PPC_UISA_SPRS,
2314 PPC_SEGMENT_REGS,
2315 PPC_OEA_SPRS,
2316 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2317 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2318 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2319 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2320 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2321 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2322 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2323 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2324 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2325 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2326 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2327 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2328};
2329
7a78ae4e
ND
2330/* Motorola PowerPC 601. Note that the 601 has different register numbers
2331 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2332 register is the stub's problem. */
7a78ae4e 2333static const struct reg registers_601[] =
c5aa993b 2334{
7a78ae4e
ND
2335 COMMON_UISA_REGS,
2336 PPC_UISA_SPRS,
2337 PPC_SEGMENT_REGS,
2338 PPC_OEA_SPRS,
2339 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2340 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2341};
2342
64366f1c 2343/* Motorola PowerPC 602. */
7a78ae4e 2344static const struct reg registers_602[] =
c5aa993b 2345{
7a78ae4e
ND
2346 COMMON_UISA_REGS,
2347 PPC_UISA_SPRS,
2348 PPC_SEGMENT_REGS,
2349 PPC_OEA_SPRS,
2350 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2351 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2352 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2353};
2354
64366f1c 2355/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2356static const struct reg registers_603[] =
c5aa993b 2357{
7a78ae4e
ND
2358 COMMON_UISA_REGS,
2359 PPC_UISA_SPRS,
2360 PPC_SEGMENT_REGS,
2361 PPC_OEA_SPRS,
2362 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2363 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2364 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2365};
2366
64366f1c 2367/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2368static const struct reg registers_604[] =
c5aa993b 2369{
7a78ae4e
ND
2370 COMMON_UISA_REGS,
2371 PPC_UISA_SPRS,
2372 PPC_SEGMENT_REGS,
2373 PPC_OEA_SPRS,
2374 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2375 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2376 /* 127 */ R(sia), R(sda)
c906108c
SS
2377};
2378
64366f1c 2379/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2380static const struct reg registers_750[] =
c5aa993b 2381{
7a78ae4e
ND
2382 COMMON_UISA_REGS,
2383 PPC_UISA_SPRS,
2384 PPC_SEGMENT_REGS,
2385 PPC_OEA_SPRS,
2386 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2387 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2388 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2389 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2390 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2391 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2392};
2393
2394
64366f1c 2395/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2396static const struct reg registers_7400[] =
2397{
2398 /* gpr0-gpr31, fpr0-fpr31 */
2399 COMMON_UISA_REGS,
2400 /* ctr, xre, lr, cr */
2401 PPC_UISA_SPRS,
2402 /* sr0-sr15 */
2403 PPC_SEGMENT_REGS,
2404 PPC_OEA_SPRS,
2405 /* vr0-vr31, vrsave, vscr */
2406 PPC_ALTIVEC_REGS
2407 /* FIXME? Add more registers? */
2408};
2409
c8001721
EZ
2410/* Motorola e500. */
2411static const struct reg registers_e500[] =
2412{
2413 R(pc), R(ps),
2414 /* cr, lr, ctr, xer, "" */
2415 PPC_UISA_NOFP_SPRS,
2416 /* 7...38 */
2417 PPC_EV_REGS,
338ef23d
AC
2418 R8(acc), R(spefscr),
2419 /* NOTE: Add new registers here the end of the raw register
2420 list and just before the first pseudo register. */
c8001721
EZ
2421 /* 39...70 */
2422 PPC_GPRS_PSEUDO_REGS
2423};
2424
c906108c 2425/* Information about a particular processor variant. */
7a78ae4e 2426
c906108c 2427struct variant
c5aa993b
JM
2428 {
2429 /* Name of this variant. */
2430 char *name;
c906108c 2431
c5aa993b
JM
2432 /* English description of the variant. */
2433 char *description;
c906108c 2434
64366f1c 2435 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2436 enum bfd_architecture arch;
2437
64366f1c 2438 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2439 unsigned long mach;
2440
489461e2
EZ
2441 /* Number of real registers. */
2442 int nregs;
2443
2444 /* Number of pseudo registers. */
2445 int npregs;
2446
2447 /* Number of total registers (the sum of nregs and npregs). */
2448 int num_tot_regs;
2449
c5aa993b
JM
2450 /* Table of register names; registers[R] is the name of the register
2451 number R. */
7a78ae4e 2452 const struct reg *regs;
c5aa993b 2453 };
c906108c 2454
489461e2
EZ
2455#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2456
2457static int
2458num_registers (const struct reg *reg_list, int num_tot_regs)
2459{
2460 int i;
2461 int nregs = 0;
2462
2463 for (i = 0; i < num_tot_regs; i++)
2464 if (!reg_list[i].pseudo)
2465 nregs++;
2466
2467 return nregs;
2468}
2469
2470static int
2471num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2472{
2473 int i;
2474 int npregs = 0;
2475
2476 for (i = 0; i < num_tot_regs; i++)
2477 if (reg_list[i].pseudo)
2478 npregs ++;
2479
2480 return npregs;
2481}
c906108c 2482
c906108c
SS
2483/* Information in this table comes from the following web sites:
2484 IBM: http://www.chips.ibm.com:80/products/embedded/
2485 Motorola: http://www.mot.com/SPS/PowerPC/
2486
2487 I'm sure I've got some of the variant descriptions not quite right.
2488 Please report any inaccuracies you find to GDB's maintainer.
2489
2490 If you add entries to this table, please be sure to allow the new
2491 value as an argument to the --with-cpu flag, in configure.in. */
2492
489461e2 2493static struct variant variants[] =
c906108c 2494{
489461e2 2495
7a78ae4e 2496 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2497 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2498 registers_powerpc},
7a78ae4e 2499 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2500 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2501 registers_power},
7a78ae4e 2502 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2503 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2504 registers_403},
7a78ae4e 2505 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2506 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2507 registers_601},
7a78ae4e 2508 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2509 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2510 registers_602},
7a78ae4e 2511 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2512 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2513 registers_603},
7a78ae4e 2514 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2515 604, -1, -1, tot_num_registers (registers_604),
2516 registers_604},
7a78ae4e 2517 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2518 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2519 registers_403GC},
7a78ae4e 2520 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2521 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2522 registers_505},
7a78ae4e 2523 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2524 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2525 registers_860},
7a78ae4e 2526 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2527 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2528 registers_750},
1fcc0bb8 2529 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2530 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2531 registers_7400},
c8001721
EZ
2532 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2533 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2534 registers_e500},
7a78ae4e 2535
5d57ee30
KB
2536 /* 64-bit */
2537 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2538 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2539 registers_powerpc},
7a78ae4e 2540 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2541 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2542 registers_powerpc},
5d57ee30 2543 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2544 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2545 registers_powerpc},
7a78ae4e 2546 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2547 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2548 registers_powerpc},
5d57ee30 2549 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2550 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2551 registers_powerpc},
5d57ee30 2552 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2553 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2554 registers_powerpc},
5d57ee30 2555
64366f1c 2556 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2557 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2558 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2559 registers_power},
7a78ae4e 2560 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2561 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2562 registers_power},
7a78ae4e 2563 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2564 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2565 registers_power},
7a78ae4e 2566
489461e2 2567 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2568};
2569
64366f1c 2570/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2571
2572static void
2573init_variants (void)
2574{
2575 struct variant *v;
2576
2577 for (v = variants; v->name; v++)
2578 {
2579 if (v->nregs == -1)
2580 v->nregs = num_registers (v->regs, v->num_tot_regs);
2581 if (v->npregs == -1)
2582 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2583 }
2584}
c906108c 2585
7a78ae4e 2586/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2587 MACH. If no such variant exists, return null. */
c906108c 2588
7a78ae4e
ND
2589static const struct variant *
2590find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2591{
7a78ae4e 2592 const struct variant *v;
c5aa993b 2593
7a78ae4e
ND
2594 for (v = variants; v->name; v++)
2595 if (arch == v->arch && mach == v->mach)
2596 return v;
c906108c 2597
7a78ae4e 2598 return NULL;
c906108c 2599}
9364a0ef
EZ
2600
2601static int
2602gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2603{
2604 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2605 return print_insn_big_powerpc (memaddr, info);
2606 else
2607 return print_insn_little_powerpc (memaddr, info);
2608}
7a78ae4e 2609\f
7a78ae4e
ND
2610/* Initialize the current architecture based on INFO. If possible, re-use an
2611 architecture from ARCHES, which is a list of architectures already created
2612 during this debugging session.
c906108c 2613
7a78ae4e 2614 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2615 a binary file. */
c906108c 2616
7a78ae4e
ND
2617static struct gdbarch *
2618rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2619{
2620 struct gdbarch *gdbarch;
2621 struct gdbarch_tdep *tdep;
9aa1e687 2622 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2623 struct reg *regs;
2624 const struct variant *v;
2625 enum bfd_architecture arch;
2626 unsigned long mach;
2627 bfd abfd;
7b112f9c 2628 int sysv_abi;
5bf1c677 2629 asection *sect;
7a78ae4e 2630
9aa1e687 2631 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2632 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2633
9aa1e687
KB
2634 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2635 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2636
2637 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2638
e712c1cf 2639 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2640 that, else choose a likely default. */
9aa1e687 2641 if (from_xcoff_exec)
c906108c 2642 {
11ed25ac 2643 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2644 wordsize = 8;
2645 else
2646 wordsize = 4;
c906108c 2647 }
9aa1e687
KB
2648 else if (from_elf_exec)
2649 {
2650 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2651 wordsize = 8;
2652 else
2653 wordsize = 4;
2654 }
c906108c 2655 else
7a78ae4e 2656 {
27b15785
KB
2657 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2658 wordsize = info.bfd_arch_info->bits_per_word /
2659 info.bfd_arch_info->bits_per_byte;
2660 else
2661 wordsize = 4;
7a78ae4e 2662 }
c906108c 2663
64366f1c 2664 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2665 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2666 arches != NULL;
2667 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2668 {
2669 /* Word size in the various PowerPC bfd_arch_info structs isn't
2670 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2671 separate word size check. */
7a78ae4e 2672 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2673 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2674 return arches->gdbarch;
2675 }
c906108c 2676
7a78ae4e
ND
2677 /* None found, create a new architecture from INFO, whose bfd_arch_info
2678 validity depends on the source:
2679 - executable useless
2680 - rs6000_host_arch() good
2681 - core file good
2682 - "set arch" trust blindly
2683 - GDB startup useless but harmless */
c906108c 2684
9aa1e687 2685 if (!from_xcoff_exec)
c906108c 2686 {
b732d07d 2687 arch = info.bfd_arch_info->arch;
7a78ae4e 2688 mach = info.bfd_arch_info->mach;
c906108c 2689 }
7a78ae4e 2690 else
c906108c 2691 {
7a78ae4e 2692 arch = bfd_arch_powerpc;
35cec841 2693 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2694 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2695 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2696 }
2697 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2698 tdep->wordsize = wordsize;
5bf1c677
EZ
2699
2700 /* For e500 executables, the apuinfo section is of help here. Such
2701 section contains the identifier and revision number of each
2702 Application-specific Processing Unit that is present on the
2703 chip. The content of the section is determined by the assembler
2704 which looks at each instruction and determines which unit (and
2705 which version of it) can execute it. In our case we just look for
2706 the existance of the section. */
2707
2708 if (info.abfd)
2709 {
2710 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2711 if (sect)
2712 {
2713 arch = info.bfd_arch_info->arch;
2714 mach = bfd_mach_ppc_e500;
2715 bfd_default_set_arch_mach (&abfd, arch, mach);
2716 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2717 }
2718 }
2719
7a78ae4e
ND
2720 gdbarch = gdbarch_alloc (&info, tdep);
2721 power = arch == bfd_arch_rs6000;
2722
489461e2
EZ
2723 /* Initialize the number of real and pseudo registers in each variant. */
2724 init_variants ();
2725
64366f1c 2726 /* Choose variant. */
7a78ae4e
ND
2727 v = find_variant_by_arch (arch, mach);
2728 if (!v)
dd47e6fd
EZ
2729 return NULL;
2730
7a78ae4e
ND
2731 tdep->regs = v->regs;
2732
2188cbdd
EZ
2733 tdep->ppc_gp0_regnum = 0;
2734 tdep->ppc_gplast_regnum = 31;
2735 tdep->ppc_toc_regnum = 2;
2736 tdep->ppc_ps_regnum = 65;
2737 tdep->ppc_cr_regnum = 66;
2738 tdep->ppc_lr_regnum = 67;
2739 tdep->ppc_ctr_regnum = 68;
2740 tdep->ppc_xer_regnum = 69;
2741 if (v->mach == bfd_mach_ppc_601)
2742 tdep->ppc_mq_regnum = 124;
e3f36dbd 2743 else if (power)
2188cbdd 2744 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2745 else
2746 tdep->ppc_mq_regnum = -1;
2747 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2748
c8001721
EZ
2749 set_gdbarch_pc_regnum (gdbarch, 64);
2750 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2751 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
afd48b75 2752 if (sysv_abi && wordsize == 8)
05580c65 2753 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 2754 else if (sysv_abi && wordsize == 4)
05580c65 2755 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
2756 else
2757 {
2758 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2759 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2760 }
c8001721 2761
1fcc0bb8
EZ
2762 if (v->arch == bfd_arch_powerpc)
2763 switch (v->mach)
2764 {
2765 case bfd_mach_ppc:
2766 tdep->ppc_vr0_regnum = 71;
2767 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2768 tdep->ppc_ev0_regnum = -1;
2769 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2770 break;
2771 case bfd_mach_ppc_7400:
2772 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2773 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2774 tdep->ppc_ev0_regnum = -1;
2775 tdep->ppc_ev31_regnum = -1;
2776 break;
2777 case bfd_mach_ppc_e500:
338ef23d
AC
2778 tdep->ppc_gp0_regnum = 41;
2779 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2780 tdep->ppc_toc_regnum = -1;
2781 tdep->ppc_ps_regnum = 1;
2782 tdep->ppc_cr_regnum = 2;
2783 tdep->ppc_lr_regnum = 3;
2784 tdep->ppc_ctr_regnum = 4;
2785 tdep->ppc_xer_regnum = 5;
2786 tdep->ppc_ev0_regnum = 7;
2787 tdep->ppc_ev31_regnum = 38;
2788 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2789 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2790 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2791 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2792 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2793 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
1fcc0bb8
EZ
2794 break;
2795 default:
2796 tdep->ppc_vr0_regnum = -1;
2797 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2798 tdep->ppc_ev0_regnum = -1;
2799 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2800 break;
2801 }
2802
338ef23d
AC
2803 /* Sanity check on registers. */
2804 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2805
a88376a3
KB
2806 /* Set lr_frame_offset. */
2807 if (wordsize == 8)
2808 tdep->lr_frame_offset = 16;
2809 else if (sysv_abi)
2810 tdep->lr_frame_offset = 4;
2811 else
2812 tdep->lr_frame_offset = 8;
2813
2814 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2815 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2816 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2817 {
2818 tdep->regoff[i] = off;
2819 off += regsize (v->regs + i, wordsize);
c906108c
SS
2820 }
2821
56a6dfb9
KB
2822 /* Select instruction printer. */
2823 if (arch == power)
9364a0ef 2824 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2825 else
9364a0ef 2826 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2827
7a78ae4e 2828 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
2829
2830 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2831 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2832 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2833 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2834 set_gdbarch_deprecated_register_bytes (gdbarch, off);
9c04cab7
AC
2835 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2836 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
9c04cab7 2837 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
7a78ae4e
ND
2838
2839 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2840 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2841 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2842 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2843 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2844 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2845 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2846 if (sysv_abi)
2847 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2848 else
2849 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2850 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2851
11269d7e 2852 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
2853 if (sysv_abi && wordsize == 8)
2854 /* PPC64 SYSV. */
2855 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2856 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
2857 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2858 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2859 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2860 224. */
2861 set_gdbarch_frame_red_zone_size (gdbarch, 224);
a59fe496 2862 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e 2863 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e 2864
781a750d
AC
2865 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2866 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2867 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2868 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2869 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2870 is correct for the SysV ABI when the wordsize is 8, but I'm also
2871 fairly certain that ppc_sysv_abi_push_arguments() will give even
2872 worse results since it only works for 32-bit code. So, for the moment,
2873 we're better off calling rs6000_push_arguments() since it works for
2874 64-bit code. At some point in the future, this matter needs to be
2875 revisited. */
2876 if (sysv_abi && wordsize == 4)
77b2b6d4 2877 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
2878 else if (sysv_abi && wordsize == 8)
2879 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 2880 else
77b2b6d4 2881 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 2882
74055713 2883 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2884 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2885
2886 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2887 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
2888 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2889
6066c3de
AC
2890 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2891 for the descriptor and ".FN" for the entry-point -- a user
2892 specifying "break FN" will unexpectedly end up with a breakpoint
2893 on the descriptor and not the function. This architecture method
2894 transforms any breakpoints on descriptors into breakpoints on the
2895 corresponding entry point. */
2896 if (sysv_abi && wordsize == 8)
2897 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2898
7a78ae4e
ND
2899 /* Not sure on this. FIXMEmgo */
2900 set_gdbarch_frame_args_skip (gdbarch, 8);
2901
05580c65 2902 if (!sysv_abi)
7b112f9c 2903 set_gdbarch_use_struct_convention (gdbarch,
b9ff3018 2904 rs6000_use_struct_convention);
8e0662df 2905
7b112f9c
JT
2906 set_gdbarch_frameless_function_invocation (gdbarch,
2907 rs6000_frameless_function_invocation);
618ce49f 2908 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2909 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2910
f30ee0bc 2911 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2912 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2913
15813d3f
AC
2914 if (!sysv_abi)
2915 {
2916 /* Handle RS/6000 function pointers (which are really function
2917 descriptors). */
f517ea4e
PS
2918 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2919 rs6000_convert_from_func_ptr_addr);
9aa1e687 2920 }
42efa47a
AC
2921 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2922 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
6913c89a 2923 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
7a78ae4e 2924
143985b7
AF
2925 /* Helpers for function argument information. */
2926 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2927
7b112f9c 2928 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2929 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2930
ef5200c1
AC
2931 if (from_xcoff_exec)
2932 {
2933 /* NOTE: jimix/2003-06-09: This test should really check for
2934 GDB_OSABI_AIX when that is defined and becomes
2935 available. (Actually, once things are properly split apart,
2936 the test goes away.) */
2937 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2938 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2939 }
2940
7a78ae4e 2941 return gdbarch;
c906108c
SS
2942}
2943
7b112f9c
JT
2944static void
2945rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2946{
2947 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2948
2949 if (tdep == NULL)
2950 return;
2951
4be87837 2952 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2953}
2954
1fcc0bb8
EZ
2955static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2956
2957static void
2958rs6000_info_powerpc_command (char *args, int from_tty)
2959{
2960 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2961}
2962
c906108c
SS
2963/* Initialization code. */
2964
a78f21af 2965extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 2966
c906108c 2967void
fba45db2 2968_initialize_rs6000_tdep (void)
c906108c 2969{
7b112f9c
JT
2970 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2971 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2972
2973 /* Add root prefix command for "info powerpc" commands */
2974 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2975 "Various POWERPC info specific commands.",
2976 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2977}
This page took 0.576107 seconds and 4 git commands to generate.