Commit | Line | Data |
---|---|---|
baa835b4 KB |
1 | /* Target-dependent code for the Renesas RX for GDB, the GNU debugger. |
2 | ||
42a4f53d | 3 | Copyright (C) 2008-2019 Free Software Foundation, Inc. |
baa835b4 KB |
4 | |
5 | Contributed by Red Hat, Inc. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 3 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "arch-utils.h" | |
24 | #include "prologue-value.h" | |
25 | #include "target.h" | |
26 | #include "regcache.h" | |
27 | #include "opcode/rx.h" | |
28 | #include "dis-asm.h" | |
29 | #include "gdbtypes.h" | |
30 | #include "frame.h" | |
31 | #include "frame-unwind.h" | |
32 | #include "frame-base.h" | |
33 | #include "value.h" | |
34 | #include "gdbcore.h" | |
35 | #include "dwarf2-frame.h" | |
e3ec872f YS |
36 | #include "remote.h" |
37 | #include "target-descriptions.h" | |
baa835b4 KB |
38 | |
39 | #include "elf/rx.h" | |
40 | #include "elf-bfd.h" | |
325fac50 | 41 | #include <algorithm> |
baa835b4 | 42 | |
e3ec872f YS |
43 | #include "features/rx.c" |
44 | ||
baa835b4 KB |
45 | /* Certain important register numbers. */ |
46 | enum | |
47 | { | |
48 | RX_SP_REGNUM = 0, | |
49 | RX_R1_REGNUM = 1, | |
50 | RX_R4_REGNUM = 4, | |
51 | RX_FP_REGNUM = 6, | |
52 | RX_R15_REGNUM = 15, | |
1b485e67 | 53 | RX_USP_REGNUM = 16, |
fd6e021d | 54 | RX_PSW_REGNUM = 18, |
baa835b4 | 55 | RX_PC_REGNUM = 19, |
0561fea4 | 56 | RX_BPSW_REGNUM = 21, |
1b485e67 | 57 | RX_BPC_REGNUM = 22, |
0561fea4 | 58 | RX_FPSW_REGNUM = 24, |
fd60dc69 KB |
59 | RX_ACC_REGNUM = 25, |
60 | RX_NUM_REGS = 26 | |
baa835b4 KB |
61 | }; |
62 | ||
1b485e67 KB |
63 | /* RX frame types. */ |
64 | enum rx_frame_type { | |
65 | RX_FRAME_TYPE_NORMAL, | |
66 | RX_FRAME_TYPE_EXCEPTION, | |
67 | RX_FRAME_TYPE_FAST_INTERRUPT | |
68 | }; | |
69 | ||
baa835b4 KB |
70 | /* Architecture specific data. */ |
71 | struct gdbarch_tdep | |
72 | { | |
73 | /* The ELF header flags specify the multilib used. */ | |
74 | int elf_flags; | |
0561fea4 KB |
75 | |
76 | /* Type of PSW and BPSW. */ | |
77 | struct type *rx_psw_type; | |
78 | ||
79 | /* Type of FPSW. */ | |
80 | struct type *rx_fpsw_type; | |
baa835b4 KB |
81 | }; |
82 | ||
83 | /* This structure holds the results of a prologue analysis. */ | |
84 | struct rx_prologue | |
85 | { | |
1b485e67 KB |
86 | /* Frame type, either a normal frame or one of two types of exception |
87 | frames. */ | |
88 | enum rx_frame_type frame_type; | |
89 | ||
baa835b4 KB |
90 | /* The offset from the frame base to the stack pointer --- always |
91 | zero or negative. | |
92 | ||
93 | Calling this a "size" is a bit misleading, but given that the | |
94 | stack grows downwards, using offsets for everything keeps one | |
95 | from going completely sign-crazy: you never change anything's | |
96 | sign for an ADD instruction; always change the second operand's | |
97 | sign for a SUB instruction; and everything takes care of | |
98 | itself. */ | |
99 | int frame_size; | |
100 | ||
101 | /* Non-zero if this function has initialized the frame pointer from | |
102 | the stack pointer, zero otherwise. */ | |
103 | int has_frame_ptr; | |
104 | ||
105 | /* If has_frame_ptr is non-zero, this is the offset from the frame | |
106 | base to where the frame pointer points. This is always zero or | |
107 | negative. */ | |
108 | int frame_ptr_offset; | |
109 | ||
110 | /* The address of the first instruction at which the frame has been | |
111 | set up and the arguments are where the debug info says they are | |
112 | --- as best as we can tell. */ | |
113 | CORE_ADDR prologue_end; | |
114 | ||
115 | /* reg_offset[R] is the offset from the CFA at which register R is | |
116 | saved, or 1 if register R has not been saved. (Real values are | |
117 | always zero or negative.) */ | |
118 | int reg_offset[RX_NUM_REGS]; | |
119 | }; | |
120 | ||
e3ec872f YS |
121 | /* RX register names */ |
122 | static const char *const rx_register_names[] = { | |
123 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
124 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
125 | "usp", "isp", "psw", "pc", "intb", "bpsw","bpc","fintv", | |
126 | "fpsw", "acc", | |
127 | }; | |
baa835b4 KB |
128 | |
129 | ||
130 | /* Function for finding saved registers in a 'struct pv_area'; this | |
f7b7ed97 | 131 | function is passed to pv_area::scan. |
baa835b4 KB |
132 | |
133 | If VALUE is a saved register, ADDR says it was saved at a constant | |
134 | offset from the frame base, and SIZE indicates that the whole | |
135 | register was saved, record its offset. */ | |
136 | static void | |
137 | check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) | |
138 | { | |
139 | struct rx_prologue *result = (struct rx_prologue *) result_untyped; | |
140 | ||
141 | if (value.kind == pvk_register | |
142 | && value.k == 0 | |
143 | && pv_is_register (addr, RX_SP_REGNUM) | |
f5656ead | 144 | && size == register_size (target_gdbarch (), value.reg)) |
baa835b4 KB |
145 | result->reg_offset[value.reg] = addr.k; |
146 | } | |
147 | ||
148 | /* Define a "handle" struct for fetching the next opcode. */ | |
149 | struct rx_get_opcode_byte_handle | |
150 | { | |
151 | CORE_ADDR pc; | |
152 | }; | |
153 | ||
154 | /* Fetch a byte on behalf of the opcode decoder. HANDLE contains | |
155 | the memory address of the next byte to fetch. If successful, | |
156 | the address in the handle is updated and the byte fetched is | |
157 | returned as the value of the function. If not successful, -1 | |
158 | is returned. */ | |
159 | static int | |
160 | rx_get_opcode_byte (void *handle) | |
161 | { | |
19ba03f4 SM |
162 | struct rx_get_opcode_byte_handle *opcdata |
163 | = (struct rx_get_opcode_byte_handle *) handle; | |
baa835b4 KB |
164 | int status; |
165 | gdb_byte byte; | |
166 | ||
a0e28e54 | 167 | status = target_read_code (opcdata->pc, &byte, 1); |
baa835b4 KB |
168 | if (status == 0) |
169 | { | |
170 | opcdata->pc += 1; | |
171 | return byte; | |
172 | } | |
173 | else | |
174 | return -1; | |
175 | } | |
176 | ||
177 | /* Analyze a prologue starting at START_PC, going no further than | |
178 | LIMIT_PC. Fill in RESULT as appropriate. */ | |
1b485e67 | 179 | |
baa835b4 | 180 | static void |
1b485e67 KB |
181 | rx_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc, |
182 | enum rx_frame_type frame_type, | |
183 | struct rx_prologue *result) | |
baa835b4 KB |
184 | { |
185 | CORE_ADDR pc, next_pc; | |
186 | int rn; | |
187 | pv_t reg[RX_NUM_REGS]; | |
baa835b4 KB |
188 | CORE_ADDR after_last_frame_setup_insn = start_pc; |
189 | ||
190 | memset (result, 0, sizeof (*result)); | |
191 | ||
1b485e67 KB |
192 | result->frame_type = frame_type; |
193 | ||
baa835b4 KB |
194 | for (rn = 0; rn < RX_NUM_REGS; rn++) |
195 | { | |
196 | reg[rn] = pv_register (rn, 0); | |
197 | result->reg_offset[rn] = 1; | |
198 | } | |
199 | ||
f7b7ed97 | 200 | pv_area stack (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ())); |
baa835b4 | 201 | |
1b485e67 KB |
202 | if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT) |
203 | { | |
204 | /* This code won't do anything useful at present, but this is | |
205 | what happens for fast interrupts. */ | |
206 | reg[RX_BPSW_REGNUM] = reg[RX_PSW_REGNUM]; | |
207 | reg[RX_BPC_REGNUM] = reg[RX_PC_REGNUM]; | |
208 | } | |
209 | else | |
210 | { | |
211 | /* When an exception occurs, the PSW is saved to the interrupt stack | |
212 | first. */ | |
213 | if (frame_type == RX_FRAME_TYPE_EXCEPTION) | |
214 | { | |
215 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | |
f7b7ed97 | 216 | stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PSW_REGNUM]); |
1b485e67 KB |
217 | } |
218 | ||
219 | /* The call instruction (or an exception/interrupt) has saved the return | |
220 | address on the stack. */ | |
221 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | |
f7b7ed97 | 222 | stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]); |
1b485e67 KB |
223 | |
224 | } | |
225 | ||
baa835b4 KB |
226 | |
227 | pc = start_pc; | |
228 | while (pc < limit_pc) | |
229 | { | |
230 | int bytes_read; | |
231 | struct rx_get_opcode_byte_handle opcode_handle; | |
232 | RX_Opcode_Decoded opc; | |
233 | ||
234 | opcode_handle.pc = pc; | |
235 | bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte, | |
236 | &opcode_handle); | |
237 | next_pc = pc + bytes_read; | |
238 | ||
239 | if (opc.id == RXO_pushm /* pushm r1, r2 */ | |
240 | && opc.op[1].type == RX_Operand_Register | |
241 | && opc.op[2].type == RX_Operand_Register) | |
242 | { | |
243 | int r1, r2; | |
244 | int r; | |
245 | ||
246 | r1 = opc.op[1].reg; | |
247 | r2 = opc.op[2].reg; | |
248 | for (r = r2; r >= r1; r--) | |
249 | { | |
250 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | |
f7b7ed97 | 251 | stack.store (reg[RX_SP_REGNUM], 4, reg[r]); |
baa835b4 KB |
252 | } |
253 | after_last_frame_setup_insn = next_pc; | |
254 | } | |
255 | else if (opc.id == RXO_mov /* mov.l rdst, rsrc */ | |
256 | && opc.op[0].type == RX_Operand_Register | |
257 | && opc.op[1].type == RX_Operand_Register | |
258 | && opc.size == RX_Long) | |
259 | { | |
260 | int rdst, rsrc; | |
261 | ||
262 | rdst = opc.op[0].reg; | |
263 | rsrc = opc.op[1].reg; | |
264 | reg[rdst] = reg[rsrc]; | |
265 | if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM) | |
266 | after_last_frame_setup_insn = next_pc; | |
267 | } | |
268 | else if (opc.id == RXO_mov /* mov.l rsrc, [-SP] */ | |
269 | && opc.op[0].type == RX_Operand_Predec | |
270 | && opc.op[0].reg == RX_SP_REGNUM | |
271 | && opc.op[1].type == RX_Operand_Register | |
272 | && opc.size == RX_Long) | |
273 | { | |
274 | int rsrc; | |
275 | ||
276 | rsrc = opc.op[1].reg; | |
277 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | |
f7b7ed97 | 278 | stack.store (reg[RX_SP_REGNUM], 4, reg[rsrc]); |
baa835b4 KB |
279 | after_last_frame_setup_insn = next_pc; |
280 | } | |
281 | else if (opc.id == RXO_add /* add #const, rsrc, rdst */ | |
282 | && opc.op[0].type == RX_Operand_Register | |
283 | && opc.op[1].type == RX_Operand_Immediate | |
284 | && opc.op[2].type == RX_Operand_Register) | |
285 | { | |
286 | int rdst = opc.op[0].reg; | |
287 | int addend = opc.op[1].addend; | |
288 | int rsrc = opc.op[2].reg; | |
289 | reg[rdst] = pv_add_constant (reg[rsrc], addend); | |
290 | /* Negative adjustments to the stack pointer or frame pointer | |
291 | are (most likely) part of the prologue. */ | |
292 | if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0) | |
293 | after_last_frame_setup_insn = next_pc; | |
294 | } | |
295 | else if (opc.id == RXO_mov | |
296 | && opc.op[0].type == RX_Operand_Indirect | |
297 | && opc.op[1].type == RX_Operand_Register | |
298 | && opc.size == RX_Long | |
299 | && (opc.op[0].reg == RX_SP_REGNUM | |
300 | || opc.op[0].reg == RX_FP_REGNUM) | |
301 | && (RX_R1_REGNUM <= opc.op[1].reg | |
302 | && opc.op[1].reg <= RX_R4_REGNUM)) | |
303 | { | |
304 | /* This moves an argument register to the stack. Don't | |
305 | record it, but allow it to be a part of the prologue. */ | |
306 | } | |
307 | else if (opc.id == RXO_branch | |
308 | && opc.op[0].type == RX_Operand_Immediate | |
baa835b4 KB |
309 | && next_pc < opc.op[0].addend) |
310 | { | |
311 | /* When a loop appears as the first statement of a function | |
312 | body, gcc 4.x will use a BRA instruction to branch to the | |
313 | loop condition checking code. This BRA instruction is | |
314 | marked as part of the prologue. We therefore set next_pc | |
315 | to this branch target and also stop the prologue scan. | |
316 | The instructions at and beyond the branch target should | |
317 | no longer be associated with the prologue. | |
318 | ||
319 | Note that we only consider forward branches here. We | |
320 | presume that a forward branch is being used to skip over | |
321 | a loop body. | |
322 | ||
323 | A backwards branch is covered by the default case below. | |
324 | If we were to encounter a backwards branch, that would | |
325 | most likely mean that we've scanned through a loop body. | |
326 | We definitely want to stop the prologue scan when this | |
327 | happens and that is precisely what is done by the default | |
328 | case below. */ | |
329 | ||
330 | after_last_frame_setup_insn = opc.op[0].addend; | |
331 | break; /* Scan no further if we hit this case. */ | |
332 | } | |
333 | else | |
334 | { | |
335 | /* Terminate the prologue scan. */ | |
336 | break; | |
337 | } | |
338 | ||
339 | pc = next_pc; | |
340 | } | |
341 | ||
342 | /* Is the frame size (offset, really) a known constant? */ | |
343 | if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM)) | |
344 | result->frame_size = reg[RX_SP_REGNUM].k; | |
345 | ||
346 | /* Was the frame pointer initialized? */ | |
347 | if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM)) | |
348 | { | |
349 | result->has_frame_ptr = 1; | |
350 | result->frame_ptr_offset = reg[RX_FP_REGNUM].k; | |
351 | } | |
352 | ||
353 | /* Record where all the registers were saved. */ | |
f7b7ed97 | 354 | stack.scan (check_for_saved, (void *) result); |
baa835b4 KB |
355 | |
356 | result->prologue_end = after_last_frame_setup_insn; | |
baa835b4 KB |
357 | } |
358 | ||
359 | ||
360 | /* Implement the "skip_prologue" gdbarch method. */ | |
361 | static CORE_ADDR | |
362 | rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | |
363 | { | |
2c02bd72 | 364 | const char *name; |
baa835b4 KB |
365 | CORE_ADDR func_addr, func_end; |
366 | struct rx_prologue p; | |
367 | ||
368 | /* Try to find the extent of the function that contains PC. */ | |
369 | if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) | |
370 | return pc; | |
371 | ||
1b485e67 KB |
372 | /* The frame type doesn't matter here, since we only care about |
373 | where the prologue ends. We'll use RX_FRAME_TYPE_NORMAL. */ | |
374 | rx_analyze_prologue (pc, func_end, RX_FRAME_TYPE_NORMAL, &p); | |
baa835b4 KB |
375 | return p.prologue_end; |
376 | } | |
377 | ||
378 | /* Given a frame described by THIS_FRAME, decode the prologue of its | |
379 | associated function if there is not cache entry as specified by | |
380 | THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and | |
381 | return that struct as the value of this function. */ | |
1b485e67 | 382 | |
baa835b4 KB |
383 | static struct rx_prologue * |
384 | rx_analyze_frame_prologue (struct frame_info *this_frame, | |
1b485e67 | 385 | enum rx_frame_type frame_type, |
baa835b4 KB |
386 | void **this_prologue_cache) |
387 | { | |
388 | if (!*this_prologue_cache) | |
389 | { | |
390 | CORE_ADDR func_start, stop_addr; | |
391 | ||
392 | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue); | |
393 | ||
394 | func_start = get_frame_func (this_frame); | |
395 | stop_addr = get_frame_pc (this_frame); | |
396 | ||
397 | /* If we couldn't find any function containing the PC, then | |
398 | just initialize the prologue cache, but don't do anything. */ | |
399 | if (!func_start) | |
400 | stop_addr = func_start; | |
401 | ||
1b485e67 | 402 | rx_analyze_prologue (func_start, stop_addr, frame_type, |
19ba03f4 | 403 | (struct rx_prologue *) *this_prologue_cache); |
baa835b4 KB |
404 | } |
405 | ||
19ba03f4 | 406 | return (struct rx_prologue *) *this_prologue_cache; |
baa835b4 KB |
407 | } |
408 | ||
1b485e67 KB |
409 | /* Determine type of frame by scanning the function for a return |
410 | instruction. */ | |
411 | ||
412 | static enum rx_frame_type | |
413 | rx_frame_type (struct frame_info *this_frame, void **this_cache) | |
414 | { | |
415 | const char *name; | |
416 | CORE_ADDR pc, start_pc, lim_pc; | |
417 | int bytes_read; | |
418 | struct rx_get_opcode_byte_handle opcode_handle; | |
419 | RX_Opcode_Decoded opc; | |
420 | ||
421 | gdb_assert (this_cache != NULL); | |
422 | ||
423 | /* If we have a cached value, return it. */ | |
424 | ||
425 | if (*this_cache != NULL) | |
426 | { | |
19ba03f4 | 427 | struct rx_prologue *p = (struct rx_prologue *) *this_cache; |
1b485e67 KB |
428 | |
429 | return p->frame_type; | |
430 | } | |
431 | ||
432 | /* No cached value; scan the function. The frame type is cached in | |
433 | rx_analyze_prologue / rx_analyze_frame_prologue. */ | |
434 | ||
435 | pc = get_frame_pc (this_frame); | |
436 | ||
437 | /* Attempt to find the last address in the function. If it cannot | |
438 | be determined, set the limit to be a short ways past the frame's | |
439 | pc. */ | |
440 | if (!find_pc_partial_function (pc, &name, &start_pc, &lim_pc)) | |
441 | lim_pc = pc + 20; | |
442 | ||
443 | while (pc < lim_pc) | |
444 | { | |
445 | opcode_handle.pc = pc; | |
446 | bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte, | |
447 | &opcode_handle); | |
448 | ||
449 | if (bytes_read <= 0 || opc.id == RXO_rts) | |
450 | return RX_FRAME_TYPE_NORMAL; | |
451 | else if (opc.id == RXO_rtfi) | |
452 | return RX_FRAME_TYPE_FAST_INTERRUPT; | |
453 | else if (opc.id == RXO_rte) | |
454 | return RX_FRAME_TYPE_EXCEPTION; | |
455 | ||
456 | pc += bytes_read; | |
457 | } | |
458 | ||
459 | return RX_FRAME_TYPE_NORMAL; | |
460 | } | |
461 | ||
462 | ||
baa835b4 KB |
463 | /* Given the next frame and a prologue cache, return this frame's |
464 | base. */ | |
1b485e67 | 465 | |
baa835b4 | 466 | static CORE_ADDR |
1b485e67 | 467 | rx_frame_base (struct frame_info *this_frame, void **this_cache) |
baa835b4 | 468 | { |
1b485e67 | 469 | enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache); |
baa835b4 | 470 | struct rx_prologue *p |
1b485e67 | 471 | = rx_analyze_frame_prologue (this_frame, frame_type, this_cache); |
baa835b4 KB |
472 | |
473 | /* In functions that use alloca, the distance between the stack | |
474 | pointer and the frame base varies dynamically, so we can't use | |
475 | the SP plus static information like prologue analysis to find the | |
476 | frame base. However, such functions must have a frame pointer, | |
477 | to be able to restore the SP on exit. So whenever we do have a | |
478 | frame pointer, use that to find the base. */ | |
479 | if (p->has_frame_ptr) | |
480 | { | |
481 | CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM); | |
482 | return fp - p->frame_ptr_offset; | |
483 | } | |
484 | else | |
485 | { | |
486 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM); | |
487 | return sp - p->frame_size; | |
488 | } | |
489 | } | |
490 | ||
491 | /* Implement the "frame_this_id" method for unwinding frames. */ | |
1b485e67 | 492 | |
baa835b4 | 493 | static void |
1b485e67 KB |
494 | rx_frame_this_id (struct frame_info *this_frame, void **this_cache, |
495 | struct frame_id *this_id) | |
baa835b4 | 496 | { |
1b485e67 | 497 | *this_id = frame_id_build (rx_frame_base (this_frame, this_cache), |
baa835b4 KB |
498 | get_frame_func (this_frame)); |
499 | } | |
500 | ||
501 | /* Implement the "frame_prev_register" method for unwinding frames. */ | |
1b485e67 | 502 | |
baa835b4 | 503 | static struct value * |
1b485e67 KB |
504 | rx_frame_prev_register (struct frame_info *this_frame, void **this_cache, |
505 | int regnum) | |
baa835b4 | 506 | { |
1b485e67 | 507 | enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache); |
baa835b4 | 508 | struct rx_prologue *p |
1b485e67 KB |
509 | = rx_analyze_frame_prologue (this_frame, frame_type, this_cache); |
510 | CORE_ADDR frame_base = rx_frame_base (this_frame, this_cache); | |
baa835b4 KB |
511 | |
512 | if (regnum == RX_SP_REGNUM) | |
1b485e67 KB |
513 | { |
514 | if (frame_type == RX_FRAME_TYPE_EXCEPTION) | |
515 | { | |
516 | struct value *psw_val; | |
517 | CORE_ADDR psw; | |
518 | ||
519 | psw_val = rx_frame_prev_register (this_frame, this_cache, | |
520 | RX_PSW_REGNUM); | |
521 | psw = extract_unsigned_integer (value_contents_all (psw_val), 4, | |
522 | gdbarch_byte_order ( | |
523 | get_frame_arch (this_frame))); | |
524 | ||
525 | if ((psw & 0x20000 /* U bit */) != 0) | |
526 | return rx_frame_prev_register (this_frame, this_cache, | |
527 | RX_USP_REGNUM); | |
528 | ||
529 | /* Fall through for the case where U bit is zero. */ | |
530 | } | |
531 | ||
532 | return frame_unwind_got_constant (this_frame, regnum, frame_base); | |
533 | } | |
534 | ||
535 | if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT) | |
536 | { | |
537 | if (regnum == RX_PC_REGNUM) | |
538 | return rx_frame_prev_register (this_frame, this_cache, | |
539 | RX_BPC_REGNUM); | |
540 | if (regnum == RX_PSW_REGNUM) | |
541 | return rx_frame_prev_register (this_frame, this_cache, | |
542 | RX_BPSW_REGNUM); | |
543 | } | |
baa835b4 KB |
544 | |
545 | /* If prologue analysis says we saved this register somewhere, | |
546 | return a description of the stack slot holding it. */ | |
1b485e67 | 547 | if (p->reg_offset[regnum] != 1) |
baa835b4 KB |
548 | return frame_unwind_got_memory (this_frame, regnum, |
549 | frame_base + p->reg_offset[regnum]); | |
550 | ||
551 | /* Otherwise, presume we haven't changed the value of this | |
552 | register, and get it from the next frame. */ | |
1b485e67 KB |
553 | return frame_unwind_got_register (this_frame, regnum, regnum); |
554 | } | |
555 | ||
556 | /* Return TRUE if the frame indicated by FRAME_TYPE is a normal frame. */ | |
557 | ||
558 | static int | |
559 | normal_frame_p (enum rx_frame_type frame_type) | |
560 | { | |
561 | return (frame_type == RX_FRAME_TYPE_NORMAL); | |
562 | } | |
563 | ||
564 | /* Return TRUE if the frame indicated by FRAME_TYPE is an exception | |
565 | frame. */ | |
566 | ||
567 | static int | |
568 | exception_frame_p (enum rx_frame_type frame_type) | |
569 | { | |
570 | return (frame_type == RX_FRAME_TYPE_EXCEPTION | |
571 | || frame_type == RX_FRAME_TYPE_FAST_INTERRUPT); | |
572 | } | |
573 | ||
574 | /* Common code used by both normal and exception frame sniffers. */ | |
575 | ||
576 | static int | |
577 | rx_frame_sniffer_common (const struct frame_unwind *self, | |
578 | struct frame_info *this_frame, | |
579 | void **this_cache, | |
580 | int (*sniff_p)(enum rx_frame_type) ) | |
581 | { | |
582 | gdb_assert (this_cache != NULL); | |
583 | ||
584 | if (*this_cache == NULL) | |
585 | { | |
586 | enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache); | |
587 | ||
588 | if (sniff_p (frame_type)) | |
589 | { | |
590 | /* The call below will fill in the cache, including the frame | |
591 | type. */ | |
592 | (void) rx_analyze_frame_prologue (this_frame, frame_type, this_cache); | |
593 | ||
594 | return 1; | |
595 | } | |
596 | else | |
597 | return 0; | |
598 | } | |
baa835b4 | 599 | else |
1b485e67 | 600 | { |
19ba03f4 | 601 | struct rx_prologue *p = (struct rx_prologue *) *this_cache; |
1b485e67 KB |
602 | |
603 | return sniff_p (p->frame_type); | |
604 | } | |
605 | } | |
606 | ||
607 | /* Frame sniffer for normal (non-exception) frames. */ | |
608 | ||
609 | static int | |
610 | rx_frame_sniffer (const struct frame_unwind *self, | |
611 | struct frame_info *this_frame, | |
612 | void **this_cache) | |
613 | { | |
614 | return rx_frame_sniffer_common (self, this_frame, this_cache, | |
615 | normal_frame_p); | |
616 | } | |
617 | ||
618 | /* Frame sniffer for exception frames. */ | |
619 | ||
620 | static int | |
621 | rx_exception_sniffer (const struct frame_unwind *self, | |
622 | struct frame_info *this_frame, | |
623 | void **this_cache) | |
624 | { | |
625 | return rx_frame_sniffer_common (self, this_frame, this_cache, | |
626 | exception_frame_p); | |
baa835b4 KB |
627 | } |
628 | ||
1b485e67 KB |
629 | /* Data structure for normal code using instruction-based prologue |
630 | analyzer. */ | |
631 | ||
baa835b4 KB |
632 | static const struct frame_unwind rx_frame_unwind = { |
633 | NORMAL_FRAME, | |
e0f68161 | 634 | default_frame_unwind_stop_reason, |
baa835b4 KB |
635 | rx_frame_this_id, |
636 | rx_frame_prev_register, | |
637 | NULL, | |
1b485e67 KB |
638 | rx_frame_sniffer |
639 | }; | |
640 | ||
641 | /* Data structure for exception code using instruction-based prologue | |
642 | analyzer. */ | |
643 | ||
644 | static const struct frame_unwind rx_exception_unwind = { | |
645 | /* SIGTRAMP_FRAME could be used here, but backtraces are less informative. */ | |
646 | NORMAL_FRAME, | |
647 | default_frame_unwind_stop_reason, | |
648 | rx_frame_this_id, | |
649 | rx_frame_prev_register, | |
650 | NULL, | |
651 | rx_exception_sniffer | |
baa835b4 KB |
652 | }; |
653 | ||
baa835b4 KB |
654 | /* Implement the "push_dummy_call" gdbarch method. */ |
655 | static CORE_ADDR | |
656 | rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
657 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
cf84fa6b AH |
658 | struct value **args, CORE_ADDR sp, |
659 | function_call_return_method return_method, | |
baa835b4 KB |
660 | CORE_ADDR struct_addr) |
661 | { | |
662 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
663 | int write_pass; | |
664 | int sp_off = 0; | |
665 | CORE_ADDR cfa; | |
666 | int num_register_candidate_args; | |
667 | ||
668 | struct type *func_type = value_type (function); | |
669 | ||
670 | /* Dereference function pointer types. */ | |
671 | while (TYPE_CODE (func_type) == TYPE_CODE_PTR) | |
672 | func_type = TYPE_TARGET_TYPE (func_type); | |
673 | ||
674 | /* The end result had better be a function or a method. */ | |
675 | gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC | |
676 | || TYPE_CODE (func_type) == TYPE_CODE_METHOD); | |
677 | ||
678 | /* Functions with a variable number of arguments have all of their | |
679 | variable arguments and the last non-variable argument passed | |
680 | on the stack. | |
681 | ||
682 | Otherwise, we can pass up to four arguments on the stack. | |
683 | ||
684 | Once computed, we leave this value alone. I.e. we don't update | |
685 | it in case of a struct return going in a register or an argument | |
686 | requiring multiple registers, etc. We rely instead on the value | |
687 | of the ``arg_reg'' variable to get these other details correct. */ | |
688 | ||
689 | if (TYPE_VARARGS (func_type)) | |
690 | num_register_candidate_args = TYPE_NFIELDS (func_type) - 1; | |
691 | else | |
692 | num_register_candidate_args = 4; | |
693 | ||
694 | /* We make two passes; the first does the stack allocation, | |
695 | the second actually stores the arguments. */ | |
696 | for (write_pass = 0; write_pass <= 1; write_pass++) | |
697 | { | |
698 | int i; | |
699 | int arg_reg = RX_R1_REGNUM; | |
700 | ||
701 | if (write_pass) | |
702 | sp = align_down (sp - sp_off, 4); | |
703 | sp_off = 0; | |
704 | ||
cf84fa6b | 705 | if (return_method == return_method_struct) |
baa835b4 KB |
706 | { |
707 | struct type *return_type = TYPE_TARGET_TYPE (func_type); | |
708 | ||
709 | gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT | |
710 | || TYPE_CODE (func_type) == TYPE_CODE_UNION); | |
711 | ||
712 | if (TYPE_LENGTH (return_type) > 16 | |
713 | || TYPE_LENGTH (return_type) % 4 != 0) | |
714 | { | |
715 | if (write_pass) | |
716 | regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, | |
717 | struct_addr); | |
718 | } | |
719 | } | |
720 | ||
721 | /* Push the arguments. */ | |
722 | for (i = 0; i < nargs; i++) | |
723 | { | |
724 | struct value *arg = args[i]; | |
725 | const gdb_byte *arg_bits = value_contents_all (arg); | |
726 | struct type *arg_type = check_typedef (value_type (arg)); | |
727 | ULONGEST arg_size = TYPE_LENGTH (arg_type); | |
728 | ||
cf84fa6b AH |
729 | if (i == 0 && struct_addr != 0 |
730 | && return_method != return_method_struct | |
baa835b4 KB |
731 | && TYPE_CODE (arg_type) == TYPE_CODE_PTR |
732 | && extract_unsigned_integer (arg_bits, 4, | |
733 | byte_order) == struct_addr) | |
734 | { | |
735 | /* This argument represents the address at which C++ (and | |
736 | possibly other languages) store their return value. | |
737 | Put this value in R15. */ | |
738 | if (write_pass) | |
739 | regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, | |
740 | struct_addr); | |
741 | } | |
742 | else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT | |
94715c17 KB |
743 | && TYPE_CODE (arg_type) != TYPE_CODE_UNION |
744 | && arg_size <= 8) | |
baa835b4 KB |
745 | { |
746 | /* Argument is a scalar. */ | |
747 | if (arg_size == 8) | |
748 | { | |
749 | if (i < num_register_candidate_args | |
750 | && arg_reg <= RX_R4_REGNUM - 1) | |
751 | { | |
752 | /* If argument registers are going to be used to pass | |
753 | an 8 byte scalar, the ABI specifies that two registers | |
754 | must be available. */ | |
755 | if (write_pass) | |
756 | { | |
757 | regcache_cooked_write_unsigned (regcache, arg_reg, | |
758 | extract_unsigned_integer | |
759 | (arg_bits, 4, | |
760 | byte_order)); | |
761 | regcache_cooked_write_unsigned (regcache, | |
762 | arg_reg + 1, | |
763 | extract_unsigned_integer | |
764 | (arg_bits + 4, 4, | |
765 | byte_order)); | |
766 | } | |
767 | arg_reg += 2; | |
768 | } | |
769 | else | |
770 | { | |
771 | sp_off = align_up (sp_off, 4); | |
772 | /* Otherwise, pass the 8 byte scalar on the stack. */ | |
773 | if (write_pass) | |
774 | write_memory (sp + sp_off, arg_bits, 8); | |
775 | sp_off += 8; | |
776 | } | |
777 | } | |
778 | else | |
779 | { | |
780 | ULONGEST u; | |
781 | ||
782 | gdb_assert (arg_size <= 4); | |
783 | ||
784 | u = | |
785 | extract_unsigned_integer (arg_bits, arg_size, byte_order); | |
786 | ||
787 | if (i < num_register_candidate_args | |
788 | && arg_reg <= RX_R4_REGNUM) | |
789 | { | |
790 | if (write_pass) | |
791 | regcache_cooked_write_unsigned (regcache, arg_reg, u); | |
792 | arg_reg += 1; | |
793 | } | |
794 | else | |
795 | { | |
796 | int p_arg_size = 4; | |
797 | ||
798 | if (TYPE_PROTOTYPED (func_type) | |
799 | && i < TYPE_NFIELDS (func_type)) | |
800 | { | |
801 | struct type *p_arg_type = | |
802 | TYPE_FIELD_TYPE (func_type, i); | |
803 | p_arg_size = TYPE_LENGTH (p_arg_type); | |
804 | } | |
805 | ||
806 | sp_off = align_up (sp_off, p_arg_size); | |
807 | ||
808 | if (write_pass) | |
809 | write_memory_unsigned_integer (sp + sp_off, | |
810 | p_arg_size, byte_order, | |
811 | u); | |
812 | sp_off += p_arg_size; | |
813 | } | |
814 | } | |
815 | } | |
816 | else | |
817 | { | |
818 | /* Argument is a struct or union. Pass as much of the struct | |
819 | in registers, if possible. Pass the rest on the stack. */ | |
820 | while (arg_size > 0) | |
821 | { | |
822 | if (i < num_register_candidate_args | |
823 | && arg_reg <= RX_R4_REGNUM | |
824 | && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1) | |
825 | && arg_size % 4 == 0) | |
826 | { | |
325fac50 | 827 | int len = std::min (arg_size, (ULONGEST) 4); |
baa835b4 KB |
828 | |
829 | if (write_pass) | |
830 | regcache_cooked_write_unsigned (regcache, arg_reg, | |
831 | extract_unsigned_integer | |
832 | (arg_bits, len, | |
833 | byte_order)); | |
834 | arg_bits += len; | |
835 | arg_size -= len; | |
836 | arg_reg++; | |
837 | } | |
838 | else | |
839 | { | |
840 | sp_off = align_up (sp_off, 4); | |
841 | if (write_pass) | |
842 | write_memory (sp + sp_off, arg_bits, arg_size); | |
843 | sp_off += align_up (arg_size, 4); | |
844 | arg_size = 0; | |
845 | } | |
846 | } | |
847 | } | |
848 | } | |
849 | } | |
850 | ||
851 | /* Keep track of the stack address prior to pushing the return address. | |
852 | This is the value that we'll return. */ | |
853 | cfa = sp; | |
854 | ||
855 | /* Push the return address. */ | |
856 | sp = sp - 4; | |
857 | write_memory_unsigned_integer (sp, 4, byte_order, bp_addr); | |
858 | ||
859 | /* Update the stack pointer. */ | |
860 | regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp); | |
861 | ||
862 | return cfa; | |
863 | } | |
864 | ||
865 | /* Implement the "return_value" gdbarch method. */ | |
866 | static enum return_value_convention | |
867 | rx_return_value (struct gdbarch *gdbarch, | |
6a3a010b | 868 | struct value *function, |
baa835b4 KB |
869 | struct type *valtype, |
870 | struct regcache *regcache, | |
871 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
872 | { | |
873 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
874 | ULONGEST valtype_len = TYPE_LENGTH (valtype); | |
875 | ||
876 | if (TYPE_LENGTH (valtype) > 16 | |
877 | || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
878 | || TYPE_CODE (valtype) == TYPE_CODE_UNION) | |
879 | && TYPE_LENGTH (valtype) % 4 != 0)) | |
880 | return RETURN_VALUE_STRUCT_CONVENTION; | |
881 | ||
882 | if (readbuf) | |
883 | { | |
884 | ULONGEST u; | |
885 | int argreg = RX_R1_REGNUM; | |
886 | int offset = 0; | |
887 | ||
888 | while (valtype_len > 0) | |
889 | { | |
325fac50 | 890 | int len = std::min (valtype_len, (ULONGEST) 4); |
baa835b4 KB |
891 | |
892 | regcache_cooked_read_unsigned (regcache, argreg, &u); | |
893 | store_unsigned_integer (readbuf + offset, len, byte_order, u); | |
894 | valtype_len -= len; | |
895 | offset += len; | |
896 | argreg++; | |
897 | } | |
898 | } | |
899 | ||
900 | if (writebuf) | |
901 | { | |
902 | ULONGEST u; | |
903 | int argreg = RX_R1_REGNUM; | |
904 | int offset = 0; | |
905 | ||
906 | while (valtype_len > 0) | |
907 | { | |
325fac50 | 908 | int len = std::min (valtype_len, (ULONGEST) 4); |
baa835b4 KB |
909 | |
910 | u = extract_unsigned_integer (writebuf + offset, len, byte_order); | |
911 | regcache_cooked_write_unsigned (regcache, argreg, u); | |
912 | valtype_len -= len; | |
913 | offset += len; | |
914 | argreg++; | |
915 | } | |
916 | } | |
917 | ||
918 | return RETURN_VALUE_REGISTER_CONVENTION; | |
919 | } | |
920 | ||
04180708 | 921 | constexpr gdb_byte rx_break_insn[] = { 0x00 }; |
598cc9dc | 922 | |
04180708 | 923 | typedef BP_MANIPULATION (rx_break_insn) rx_breakpoint; |
baa835b4 | 924 | |
fd6e021d KB |
925 | /* Implement the dwarf_reg_to_regnum" gdbarch method. */ |
926 | ||
927 | static int | |
928 | rx_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | |
929 | { | |
930 | if (0 <= reg && reg <= 15) | |
931 | return reg; | |
932 | else if (reg == 16) | |
933 | return RX_PSW_REGNUM; | |
934 | else if (reg == 17) | |
935 | return RX_PC_REGNUM; | |
936 | else | |
0fde2c53 | 937 | return -1; |
fd6e021d KB |
938 | } |
939 | ||
baa835b4 KB |
940 | /* Allocate and initialize a gdbarch object. */ |
941 | static struct gdbarch * | |
942 | rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
943 | { | |
944 | struct gdbarch *gdbarch; | |
945 | struct gdbarch_tdep *tdep; | |
946 | int elf_flags; | |
e3ec872f YS |
947 | struct tdesc_arch_data *tdesc_data = NULL; |
948 | const struct target_desc *tdesc = info.target_desc; | |
baa835b4 KB |
949 | |
950 | /* Extract the elf_flags if available. */ | |
951 | if (info.abfd != NULL | |
952 | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
953 | elf_flags = elf_elfheader (info.abfd)->e_flags; | |
954 | else | |
955 | elf_flags = 0; | |
956 | ||
957 | ||
958 | /* Try to find the architecture in the list of already defined | |
959 | architectures. */ | |
960 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
961 | arches != NULL; | |
962 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
963 | { | |
964 | if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags) | |
965 | continue; | |
966 | ||
967 | return arches->gdbarch; | |
968 | } | |
969 | ||
e3ec872f YS |
970 | if (tdesc == NULL) |
971 | tdesc = tdesc_rx; | |
972 | ||
973 | /* Check any target description for validity. */ | |
974 | if (tdesc_has_registers (tdesc)) | |
975 | { | |
976 | const struct tdesc_feature *feature; | |
977 | bool valid_p = true; | |
978 | ||
979 | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.rx.core"); | |
980 | ||
981 | if (feature != NULL) | |
982 | { | |
983 | tdesc_data = tdesc_data_alloc (); | |
984 | for (int i = 0; i < RX_NUM_REGS; i++) | |
985 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
986 | rx_register_names[i]); | |
987 | } | |
988 | ||
989 | if (!valid_p) | |
990 | { | |
991 | tdesc_data_cleanup (tdesc_data); | |
992 | return NULL; | |
993 | } | |
994 | } | |
995 | ||
996 | gdb_assert(tdesc_data != NULL); | |
997 | ||
e6ddc3bf | 998 | tdep = XCNEW (struct gdbarch_tdep); |
baa835b4 KB |
999 | gdbarch = gdbarch_alloc (&info, tdep); |
1000 | tdep->elf_flags = elf_flags; | |
1001 | ||
1002 | set_gdbarch_num_regs (gdbarch, RX_NUM_REGS); | |
e3ec872f YS |
1003 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
1004 | ||
baa835b4 | 1005 | set_gdbarch_num_pseudo_regs (gdbarch, 0); |
baa835b4 KB |
1006 | set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM); |
1007 | set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM); | |
1008 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1009 | set_gdbarch_decr_pc_after_break (gdbarch, 1); | |
04180708 YQ |
1010 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, rx_breakpoint::kind_from_pc); |
1011 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, rx_breakpoint::bp_from_kind); | |
baa835b4 KB |
1012 | set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue); |
1013 | ||
baa835b4 KB |
1014 | /* Target builtin data types. */ |
1015 | set_gdbarch_char_signed (gdbarch, 0); | |
1016 | set_gdbarch_short_bit (gdbarch, 16); | |
1017 | set_gdbarch_int_bit (gdbarch, 32); | |
1018 | set_gdbarch_long_bit (gdbarch, 32); | |
1019 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1020 | set_gdbarch_ptr_bit (gdbarch, 32); | |
1021 | set_gdbarch_float_bit (gdbarch, 32); | |
1022 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | |
e3ec872f | 1023 | |
baa835b4 KB |
1024 | if (elf_flags & E_FLAG_RX_64BIT_DOUBLES) |
1025 | { | |
1026 | set_gdbarch_double_bit (gdbarch, 64); | |
1027 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1028 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
1029 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
1030 | } | |
1031 | else | |
1032 | { | |
1033 | set_gdbarch_double_bit (gdbarch, 32); | |
1034 | set_gdbarch_long_double_bit (gdbarch, 32); | |
1035 | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | |
1036 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); | |
1037 | } | |
1038 | ||
fd6e021d KB |
1039 | /* DWARF register mapping. */ |
1040 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rx_dwarf_reg_to_regnum); | |
1041 | ||
baa835b4 | 1042 | /* Frame unwinding. */ |
1b485e67 | 1043 | frame_unwind_append_unwinder (gdbarch, &rx_exception_unwind); |
baa835b4 | 1044 | dwarf2_append_unwinders (gdbarch); |
baa835b4 KB |
1045 | frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind); |
1046 | ||
47c47d69 AB |
1047 | /* Methods setting up a dummy call, and extracting the return value from |
1048 | a call. */ | |
baa835b4 KB |
1049 | set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call); |
1050 | set_gdbarch_return_value (gdbarch, rx_return_value); | |
1051 | ||
1052 | /* Virtual tables. */ | |
1053 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
1054 | ||
1055 | return gdbarch; | |
1056 | } | |
1057 | ||
1058 | /* Register the above initialization routine. */ | |
693be288 | 1059 | |
baa835b4 KB |
1060 | void |
1061 | _initialize_rx_tdep (void) | |
1062 | { | |
1063 | register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init); | |
e3ec872f | 1064 | initialize_tdesc_rx (); |
baa835b4 | 1065 | } |