Commit | Line | Data |
---|---|---|
baa835b4 KB |
1 | /* Target-dependent code for the Renesas RX for GDB, the GNU debugger. |
2 | ||
4c38e0a4 | 3 | Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc. |
baa835b4 KB |
4 | |
5 | Contributed by Red Hat, Inc. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 3 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "arch-utils.h" | |
24 | #include "prologue-value.h" | |
25 | #include "target.h" | |
26 | #include "regcache.h" | |
27 | #include "opcode/rx.h" | |
28 | #include "dis-asm.h" | |
29 | #include "gdbtypes.h" | |
30 | #include "frame.h" | |
31 | #include "frame-unwind.h" | |
32 | #include "frame-base.h" | |
33 | #include "value.h" | |
34 | #include "gdbcore.h" | |
35 | #include "dwarf2-frame.h" | |
36 | ||
37 | #include "elf/rx.h" | |
38 | #include "elf-bfd.h" | |
39 | ||
40 | /* Certain important register numbers. */ | |
41 | enum | |
42 | { | |
43 | RX_SP_REGNUM = 0, | |
44 | RX_R1_REGNUM = 1, | |
45 | RX_R4_REGNUM = 4, | |
46 | RX_FP_REGNUM = 6, | |
47 | RX_R15_REGNUM = 15, | |
48 | RX_PC_REGNUM = 19, | |
49 | RX_NUM_REGS = 25 | |
50 | }; | |
51 | ||
52 | /* Architecture specific data. */ | |
53 | struct gdbarch_tdep | |
54 | { | |
55 | /* The ELF header flags specify the multilib used. */ | |
56 | int elf_flags; | |
57 | }; | |
58 | ||
59 | /* This structure holds the results of a prologue analysis. */ | |
60 | struct rx_prologue | |
61 | { | |
62 | /* The offset from the frame base to the stack pointer --- always | |
63 | zero or negative. | |
64 | ||
65 | Calling this a "size" is a bit misleading, but given that the | |
66 | stack grows downwards, using offsets for everything keeps one | |
67 | from going completely sign-crazy: you never change anything's | |
68 | sign for an ADD instruction; always change the second operand's | |
69 | sign for a SUB instruction; and everything takes care of | |
70 | itself. */ | |
71 | int frame_size; | |
72 | ||
73 | /* Non-zero if this function has initialized the frame pointer from | |
74 | the stack pointer, zero otherwise. */ | |
75 | int has_frame_ptr; | |
76 | ||
77 | /* If has_frame_ptr is non-zero, this is the offset from the frame | |
78 | base to where the frame pointer points. This is always zero or | |
79 | negative. */ | |
80 | int frame_ptr_offset; | |
81 | ||
82 | /* The address of the first instruction at which the frame has been | |
83 | set up and the arguments are where the debug info says they are | |
84 | --- as best as we can tell. */ | |
85 | CORE_ADDR prologue_end; | |
86 | ||
87 | /* reg_offset[R] is the offset from the CFA at which register R is | |
88 | saved, or 1 if register R has not been saved. (Real values are | |
89 | always zero or negative.) */ | |
90 | int reg_offset[RX_NUM_REGS]; | |
91 | }; | |
92 | ||
93 | /* Implement the "register_name" gdbarch method. */ | |
94 | static const char * | |
95 | rx_register_name (struct gdbarch *gdbarch, int regnr) | |
96 | { | |
97 | static const char *const reg_names[] = { | |
98 | "r0", | |
99 | "r1", | |
100 | "r2", | |
101 | "r3", | |
102 | "r4", | |
103 | "r5", | |
104 | "r6", | |
105 | "r7", | |
106 | "r8", | |
107 | "r9", | |
108 | "r10", | |
109 | "r11", | |
110 | "r12", | |
111 | "r13", | |
112 | "r14", | |
113 | "r15", | |
114 | "isp", | |
115 | "usp", | |
116 | "intb", | |
117 | "pc", | |
118 | "psw", | |
119 | "bpc", | |
120 | "bpsw", | |
121 | "vct", | |
122 | "fpsw" | |
123 | }; | |
124 | ||
125 | return reg_names[regnr]; | |
126 | } | |
127 | ||
128 | /* Implement the "register_type" gdbarch method. */ | |
129 | static struct type * | |
130 | rx_register_type (struct gdbarch *gdbarch, int reg_nr) | |
131 | { | |
132 | if (reg_nr == RX_PC_REGNUM) | |
133 | return builtin_type (gdbarch)->builtin_func_ptr; | |
134 | else | |
135 | return builtin_type (gdbarch)->builtin_unsigned_long; | |
136 | } | |
137 | ||
138 | ||
139 | /* Function for finding saved registers in a 'struct pv_area'; this | |
140 | function is passed to pv_area_scan. | |
141 | ||
142 | If VALUE is a saved register, ADDR says it was saved at a constant | |
143 | offset from the frame base, and SIZE indicates that the whole | |
144 | register was saved, record its offset. */ | |
145 | static void | |
146 | check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) | |
147 | { | |
148 | struct rx_prologue *result = (struct rx_prologue *) result_untyped; | |
149 | ||
150 | if (value.kind == pvk_register | |
151 | && value.k == 0 | |
152 | && pv_is_register (addr, RX_SP_REGNUM) | |
153 | && size == register_size (target_gdbarch, value.reg)) | |
154 | result->reg_offset[value.reg] = addr.k; | |
155 | } | |
156 | ||
157 | /* Define a "handle" struct for fetching the next opcode. */ | |
158 | struct rx_get_opcode_byte_handle | |
159 | { | |
160 | CORE_ADDR pc; | |
161 | }; | |
162 | ||
163 | /* Fetch a byte on behalf of the opcode decoder. HANDLE contains | |
164 | the memory address of the next byte to fetch. If successful, | |
165 | the address in the handle is updated and the byte fetched is | |
166 | returned as the value of the function. If not successful, -1 | |
167 | is returned. */ | |
168 | static int | |
169 | rx_get_opcode_byte (void *handle) | |
170 | { | |
171 | struct rx_get_opcode_byte_handle *opcdata = handle; | |
172 | int status; | |
173 | gdb_byte byte; | |
174 | ||
175 | status = target_read_memory (opcdata->pc, &byte, 1); | |
176 | if (status == 0) | |
177 | { | |
178 | opcdata->pc += 1; | |
179 | return byte; | |
180 | } | |
181 | else | |
182 | return -1; | |
183 | } | |
184 | ||
185 | /* Analyze a prologue starting at START_PC, going no further than | |
186 | LIMIT_PC. Fill in RESULT as appropriate. */ | |
187 | static void | |
188 | rx_analyze_prologue (CORE_ADDR start_pc, | |
189 | CORE_ADDR limit_pc, struct rx_prologue *result) | |
190 | { | |
191 | CORE_ADDR pc, next_pc; | |
192 | int rn; | |
193 | pv_t reg[RX_NUM_REGS]; | |
194 | struct pv_area *stack; | |
195 | struct cleanup *back_to; | |
196 | CORE_ADDR after_last_frame_setup_insn = start_pc; | |
197 | ||
198 | memset (result, 0, sizeof (*result)); | |
199 | ||
200 | for (rn = 0; rn < RX_NUM_REGS; rn++) | |
201 | { | |
202 | reg[rn] = pv_register (rn, 0); | |
203 | result->reg_offset[rn] = 1; | |
204 | } | |
205 | ||
206 | stack = make_pv_area (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch)); | |
207 | back_to = make_cleanup_free_pv_area (stack); | |
208 | ||
209 | /* The call instruction has saved the return address on the stack. */ | |
210 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | |
211 | pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]); | |
212 | ||
213 | pc = start_pc; | |
214 | while (pc < limit_pc) | |
215 | { | |
216 | int bytes_read; | |
217 | struct rx_get_opcode_byte_handle opcode_handle; | |
218 | RX_Opcode_Decoded opc; | |
219 | ||
220 | opcode_handle.pc = pc; | |
221 | bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte, | |
222 | &opcode_handle); | |
223 | next_pc = pc + bytes_read; | |
224 | ||
225 | if (opc.id == RXO_pushm /* pushm r1, r2 */ | |
226 | && opc.op[1].type == RX_Operand_Register | |
227 | && opc.op[2].type == RX_Operand_Register) | |
228 | { | |
229 | int r1, r2; | |
230 | int r; | |
231 | ||
232 | r1 = opc.op[1].reg; | |
233 | r2 = opc.op[2].reg; | |
234 | for (r = r2; r >= r1; r--) | |
235 | { | |
236 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | |
237 | pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[r]); | |
238 | } | |
239 | after_last_frame_setup_insn = next_pc; | |
240 | } | |
241 | else if (opc.id == RXO_mov /* mov.l rdst, rsrc */ | |
242 | && opc.op[0].type == RX_Operand_Register | |
243 | && opc.op[1].type == RX_Operand_Register | |
244 | && opc.size == RX_Long) | |
245 | { | |
246 | int rdst, rsrc; | |
247 | ||
248 | rdst = opc.op[0].reg; | |
249 | rsrc = opc.op[1].reg; | |
250 | reg[rdst] = reg[rsrc]; | |
251 | if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM) | |
252 | after_last_frame_setup_insn = next_pc; | |
253 | } | |
254 | else if (opc.id == RXO_mov /* mov.l rsrc, [-SP] */ | |
255 | && opc.op[0].type == RX_Operand_Predec | |
256 | && opc.op[0].reg == RX_SP_REGNUM | |
257 | && opc.op[1].type == RX_Operand_Register | |
258 | && opc.size == RX_Long) | |
259 | { | |
260 | int rsrc; | |
261 | ||
262 | rsrc = opc.op[1].reg; | |
263 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | |
264 | pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[rsrc]); | |
265 | after_last_frame_setup_insn = next_pc; | |
266 | } | |
267 | else if (opc.id == RXO_add /* add #const, rsrc, rdst */ | |
268 | && opc.op[0].type == RX_Operand_Register | |
269 | && opc.op[1].type == RX_Operand_Immediate | |
270 | && opc.op[2].type == RX_Operand_Register) | |
271 | { | |
272 | int rdst = opc.op[0].reg; | |
273 | int addend = opc.op[1].addend; | |
274 | int rsrc = opc.op[2].reg; | |
275 | reg[rdst] = pv_add_constant (reg[rsrc], addend); | |
276 | /* Negative adjustments to the stack pointer or frame pointer | |
277 | are (most likely) part of the prologue. */ | |
278 | if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0) | |
279 | after_last_frame_setup_insn = next_pc; | |
280 | } | |
281 | else if (opc.id == RXO_mov | |
282 | && opc.op[0].type == RX_Operand_Indirect | |
283 | && opc.op[1].type == RX_Operand_Register | |
284 | && opc.size == RX_Long | |
285 | && (opc.op[0].reg == RX_SP_REGNUM | |
286 | || opc.op[0].reg == RX_FP_REGNUM) | |
287 | && (RX_R1_REGNUM <= opc.op[1].reg | |
288 | && opc.op[1].reg <= RX_R4_REGNUM)) | |
289 | { | |
290 | /* This moves an argument register to the stack. Don't | |
291 | record it, but allow it to be a part of the prologue. */ | |
292 | } | |
293 | else if (opc.id == RXO_branch | |
294 | && opc.op[0].type == RX_Operand_Immediate | |
295 | && opc.op[1].type == RX_Operand_Condition | |
296 | && next_pc < opc.op[0].addend) | |
297 | { | |
298 | /* When a loop appears as the first statement of a function | |
299 | body, gcc 4.x will use a BRA instruction to branch to the | |
300 | loop condition checking code. This BRA instruction is | |
301 | marked as part of the prologue. We therefore set next_pc | |
302 | to this branch target and also stop the prologue scan. | |
303 | The instructions at and beyond the branch target should | |
304 | no longer be associated with the prologue. | |
305 | ||
306 | Note that we only consider forward branches here. We | |
307 | presume that a forward branch is being used to skip over | |
308 | a loop body. | |
309 | ||
310 | A backwards branch is covered by the default case below. | |
311 | If we were to encounter a backwards branch, that would | |
312 | most likely mean that we've scanned through a loop body. | |
313 | We definitely want to stop the prologue scan when this | |
314 | happens and that is precisely what is done by the default | |
315 | case below. */ | |
316 | ||
317 | after_last_frame_setup_insn = opc.op[0].addend; | |
318 | break; /* Scan no further if we hit this case. */ | |
319 | } | |
320 | else | |
321 | { | |
322 | /* Terminate the prologue scan. */ | |
323 | break; | |
324 | } | |
325 | ||
326 | pc = next_pc; | |
327 | } | |
328 | ||
329 | /* Is the frame size (offset, really) a known constant? */ | |
330 | if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM)) | |
331 | result->frame_size = reg[RX_SP_REGNUM].k; | |
332 | ||
333 | /* Was the frame pointer initialized? */ | |
334 | if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM)) | |
335 | { | |
336 | result->has_frame_ptr = 1; | |
337 | result->frame_ptr_offset = reg[RX_FP_REGNUM].k; | |
338 | } | |
339 | ||
340 | /* Record where all the registers were saved. */ | |
341 | pv_area_scan (stack, check_for_saved, (void *) result); | |
342 | ||
343 | result->prologue_end = after_last_frame_setup_insn; | |
344 | ||
345 | do_cleanups (back_to); | |
346 | } | |
347 | ||
348 | ||
349 | /* Implement the "skip_prologue" gdbarch method. */ | |
350 | static CORE_ADDR | |
351 | rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | |
352 | { | |
353 | char *name; | |
354 | CORE_ADDR func_addr, func_end; | |
355 | struct rx_prologue p; | |
356 | ||
357 | /* Try to find the extent of the function that contains PC. */ | |
358 | if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) | |
359 | return pc; | |
360 | ||
361 | rx_analyze_prologue (pc, func_end, &p); | |
362 | return p.prologue_end; | |
363 | } | |
364 | ||
365 | /* Given a frame described by THIS_FRAME, decode the prologue of its | |
366 | associated function if there is not cache entry as specified by | |
367 | THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and | |
368 | return that struct as the value of this function. */ | |
369 | static struct rx_prologue * | |
370 | rx_analyze_frame_prologue (struct frame_info *this_frame, | |
371 | void **this_prologue_cache) | |
372 | { | |
373 | if (!*this_prologue_cache) | |
374 | { | |
375 | CORE_ADDR func_start, stop_addr; | |
376 | ||
377 | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue); | |
378 | ||
379 | func_start = get_frame_func (this_frame); | |
380 | stop_addr = get_frame_pc (this_frame); | |
381 | ||
382 | /* If we couldn't find any function containing the PC, then | |
383 | just initialize the prologue cache, but don't do anything. */ | |
384 | if (!func_start) | |
385 | stop_addr = func_start; | |
386 | ||
387 | rx_analyze_prologue (func_start, stop_addr, *this_prologue_cache); | |
388 | } | |
389 | ||
390 | return *this_prologue_cache; | |
391 | } | |
392 | ||
393 | /* Given the next frame and a prologue cache, return this frame's | |
394 | base. */ | |
395 | static CORE_ADDR | |
396 | rx_frame_base (struct frame_info *this_frame, void **this_prologue_cache) | |
397 | { | |
398 | struct rx_prologue *p | |
399 | = rx_analyze_frame_prologue (this_frame, this_prologue_cache); | |
400 | ||
401 | /* In functions that use alloca, the distance between the stack | |
402 | pointer and the frame base varies dynamically, so we can't use | |
403 | the SP plus static information like prologue analysis to find the | |
404 | frame base. However, such functions must have a frame pointer, | |
405 | to be able to restore the SP on exit. So whenever we do have a | |
406 | frame pointer, use that to find the base. */ | |
407 | if (p->has_frame_ptr) | |
408 | { | |
409 | CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM); | |
410 | return fp - p->frame_ptr_offset; | |
411 | } | |
412 | else | |
413 | { | |
414 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM); | |
415 | return sp - p->frame_size; | |
416 | } | |
417 | } | |
418 | ||
419 | /* Implement the "frame_this_id" method for unwinding frames. */ | |
420 | static void | |
421 | rx_frame_this_id (struct frame_info *this_frame, | |
422 | void **this_prologue_cache, struct frame_id *this_id) | |
423 | { | |
424 | *this_id = frame_id_build (rx_frame_base (this_frame, this_prologue_cache), | |
425 | get_frame_func (this_frame)); | |
426 | } | |
427 | ||
428 | /* Implement the "frame_prev_register" method for unwinding frames. */ | |
429 | static struct value * | |
430 | rx_frame_prev_register (struct frame_info *this_frame, | |
431 | void **this_prologue_cache, int regnum) | |
432 | { | |
433 | struct rx_prologue *p | |
434 | = rx_analyze_frame_prologue (this_frame, this_prologue_cache); | |
435 | CORE_ADDR frame_base = rx_frame_base (this_frame, this_prologue_cache); | |
436 | int reg_size = register_size (get_frame_arch (this_frame), regnum); | |
437 | ||
438 | if (regnum == RX_SP_REGNUM) | |
439 | return frame_unwind_got_constant (this_frame, regnum, frame_base); | |
440 | ||
441 | /* If prologue analysis says we saved this register somewhere, | |
442 | return a description of the stack slot holding it. */ | |
443 | else if (p->reg_offset[regnum] != 1) | |
444 | return frame_unwind_got_memory (this_frame, regnum, | |
445 | frame_base + p->reg_offset[regnum]); | |
446 | ||
447 | /* Otherwise, presume we haven't changed the value of this | |
448 | register, and get it from the next frame. */ | |
449 | else | |
450 | return frame_unwind_got_register (this_frame, regnum, regnum); | |
451 | } | |
452 | ||
453 | static const struct frame_unwind rx_frame_unwind = { | |
454 | NORMAL_FRAME, | |
455 | rx_frame_this_id, | |
456 | rx_frame_prev_register, | |
457 | NULL, | |
458 | default_frame_sniffer | |
459 | }; | |
460 | ||
461 | /* Implement the "unwind_pc" gdbarch method. */ | |
462 | static CORE_ADDR | |
463 | rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
464 | { | |
465 | ULONGEST pc; | |
466 | ||
467 | pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM); | |
468 | return pc; | |
469 | } | |
470 | ||
471 | /* Implement the "unwind_sp" gdbarch method. */ | |
472 | static CORE_ADDR | |
473 | rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
474 | { | |
475 | ULONGEST sp; | |
476 | ||
477 | sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM); | |
478 | return sp; | |
479 | } | |
480 | ||
481 | /* Implement the "dummy_id" gdbarch method. */ | |
482 | static struct frame_id | |
483 | rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
484 | { | |
485 | return | |
486 | frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM), | |
487 | get_frame_pc (this_frame)); | |
488 | } | |
489 | ||
490 | /* Implement the "push_dummy_call" gdbarch method. */ | |
491 | static CORE_ADDR | |
492 | rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
493 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
494 | struct value **args, CORE_ADDR sp, int struct_return, | |
495 | CORE_ADDR struct_addr) | |
496 | { | |
497 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
498 | int write_pass; | |
499 | int sp_off = 0; | |
500 | CORE_ADDR cfa; | |
501 | int num_register_candidate_args; | |
502 | ||
503 | struct type *func_type = value_type (function); | |
504 | ||
505 | /* Dereference function pointer types. */ | |
506 | while (TYPE_CODE (func_type) == TYPE_CODE_PTR) | |
507 | func_type = TYPE_TARGET_TYPE (func_type); | |
508 | ||
509 | /* The end result had better be a function or a method. */ | |
510 | gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC | |
511 | || TYPE_CODE (func_type) == TYPE_CODE_METHOD); | |
512 | ||
513 | /* Functions with a variable number of arguments have all of their | |
514 | variable arguments and the last non-variable argument passed | |
515 | on the stack. | |
516 | ||
517 | Otherwise, we can pass up to four arguments on the stack. | |
518 | ||
519 | Once computed, we leave this value alone. I.e. we don't update | |
520 | it in case of a struct return going in a register or an argument | |
521 | requiring multiple registers, etc. We rely instead on the value | |
522 | of the ``arg_reg'' variable to get these other details correct. */ | |
523 | ||
524 | if (TYPE_VARARGS (func_type)) | |
525 | num_register_candidate_args = TYPE_NFIELDS (func_type) - 1; | |
526 | else | |
527 | num_register_candidate_args = 4; | |
528 | ||
529 | /* We make two passes; the first does the stack allocation, | |
530 | the second actually stores the arguments. */ | |
531 | for (write_pass = 0; write_pass <= 1; write_pass++) | |
532 | { | |
533 | int i; | |
534 | int arg_reg = RX_R1_REGNUM; | |
535 | ||
536 | if (write_pass) | |
537 | sp = align_down (sp - sp_off, 4); | |
538 | sp_off = 0; | |
539 | ||
540 | if (struct_return) | |
541 | { | |
542 | struct type *return_type = TYPE_TARGET_TYPE (func_type); | |
543 | ||
544 | gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT | |
545 | || TYPE_CODE (func_type) == TYPE_CODE_UNION); | |
546 | ||
547 | if (TYPE_LENGTH (return_type) > 16 | |
548 | || TYPE_LENGTH (return_type) % 4 != 0) | |
549 | { | |
550 | if (write_pass) | |
551 | regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, | |
552 | struct_addr); | |
553 | } | |
554 | } | |
555 | ||
556 | /* Push the arguments. */ | |
557 | for (i = 0; i < nargs; i++) | |
558 | { | |
559 | struct value *arg = args[i]; | |
560 | const gdb_byte *arg_bits = value_contents_all (arg); | |
561 | struct type *arg_type = check_typedef (value_type (arg)); | |
562 | ULONGEST arg_size = TYPE_LENGTH (arg_type); | |
563 | ||
564 | if (i == 0 && struct_addr != 0 && !struct_return | |
565 | && TYPE_CODE (arg_type) == TYPE_CODE_PTR | |
566 | && extract_unsigned_integer (arg_bits, 4, | |
567 | byte_order) == struct_addr) | |
568 | { | |
569 | /* This argument represents the address at which C++ (and | |
570 | possibly other languages) store their return value. | |
571 | Put this value in R15. */ | |
572 | if (write_pass) | |
573 | regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, | |
574 | struct_addr); | |
575 | } | |
576 | else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT | |
577 | && TYPE_CODE (arg_type) != TYPE_CODE_UNION) | |
578 | { | |
579 | /* Argument is a scalar. */ | |
580 | if (arg_size == 8) | |
581 | { | |
582 | if (i < num_register_candidate_args | |
583 | && arg_reg <= RX_R4_REGNUM - 1) | |
584 | { | |
585 | /* If argument registers are going to be used to pass | |
586 | an 8 byte scalar, the ABI specifies that two registers | |
587 | must be available. */ | |
588 | if (write_pass) | |
589 | { | |
590 | regcache_cooked_write_unsigned (regcache, arg_reg, | |
591 | extract_unsigned_integer | |
592 | (arg_bits, 4, | |
593 | byte_order)); | |
594 | regcache_cooked_write_unsigned (regcache, | |
595 | arg_reg + 1, | |
596 | extract_unsigned_integer | |
597 | (arg_bits + 4, 4, | |
598 | byte_order)); | |
599 | } | |
600 | arg_reg += 2; | |
601 | } | |
602 | else | |
603 | { | |
604 | sp_off = align_up (sp_off, 4); | |
605 | /* Otherwise, pass the 8 byte scalar on the stack. */ | |
606 | if (write_pass) | |
607 | write_memory (sp + sp_off, arg_bits, 8); | |
608 | sp_off += 8; | |
609 | } | |
610 | } | |
611 | else | |
612 | { | |
613 | ULONGEST u; | |
614 | ||
615 | gdb_assert (arg_size <= 4); | |
616 | ||
617 | u = | |
618 | extract_unsigned_integer (arg_bits, arg_size, byte_order); | |
619 | ||
620 | if (i < num_register_candidate_args | |
621 | && arg_reg <= RX_R4_REGNUM) | |
622 | { | |
623 | if (write_pass) | |
624 | regcache_cooked_write_unsigned (regcache, arg_reg, u); | |
625 | arg_reg += 1; | |
626 | } | |
627 | else | |
628 | { | |
629 | int p_arg_size = 4; | |
630 | ||
631 | if (TYPE_PROTOTYPED (func_type) | |
632 | && i < TYPE_NFIELDS (func_type)) | |
633 | { | |
634 | struct type *p_arg_type = | |
635 | TYPE_FIELD_TYPE (func_type, i); | |
636 | p_arg_size = TYPE_LENGTH (p_arg_type); | |
637 | } | |
638 | ||
639 | sp_off = align_up (sp_off, p_arg_size); | |
640 | ||
641 | if (write_pass) | |
642 | write_memory_unsigned_integer (sp + sp_off, | |
643 | p_arg_size, byte_order, | |
644 | u); | |
645 | sp_off += p_arg_size; | |
646 | } | |
647 | } | |
648 | } | |
649 | else | |
650 | { | |
651 | /* Argument is a struct or union. Pass as much of the struct | |
652 | in registers, if possible. Pass the rest on the stack. */ | |
653 | while (arg_size > 0) | |
654 | { | |
655 | if (i < num_register_candidate_args | |
656 | && arg_reg <= RX_R4_REGNUM | |
657 | && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1) | |
658 | && arg_size % 4 == 0) | |
659 | { | |
660 | int len = min (arg_size, 4); | |
661 | ||
662 | if (write_pass) | |
663 | regcache_cooked_write_unsigned (regcache, arg_reg, | |
664 | extract_unsigned_integer | |
665 | (arg_bits, len, | |
666 | byte_order)); | |
667 | arg_bits += len; | |
668 | arg_size -= len; | |
669 | arg_reg++; | |
670 | } | |
671 | else | |
672 | { | |
673 | sp_off = align_up (sp_off, 4); | |
674 | if (write_pass) | |
675 | write_memory (sp + sp_off, arg_bits, arg_size); | |
676 | sp_off += align_up (arg_size, 4); | |
677 | arg_size = 0; | |
678 | } | |
679 | } | |
680 | } | |
681 | } | |
682 | } | |
683 | ||
684 | /* Keep track of the stack address prior to pushing the return address. | |
685 | This is the value that we'll return. */ | |
686 | cfa = sp; | |
687 | ||
688 | /* Push the return address. */ | |
689 | sp = sp - 4; | |
690 | write_memory_unsigned_integer (sp, 4, byte_order, bp_addr); | |
691 | ||
692 | /* Update the stack pointer. */ | |
693 | regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp); | |
694 | ||
695 | return cfa; | |
696 | } | |
697 | ||
698 | /* Implement the "return_value" gdbarch method. */ | |
699 | static enum return_value_convention | |
700 | rx_return_value (struct gdbarch *gdbarch, | |
701 | struct type *func_type, | |
702 | struct type *valtype, | |
703 | struct regcache *regcache, | |
704 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
705 | { | |
706 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
707 | ULONGEST valtype_len = TYPE_LENGTH (valtype); | |
708 | ||
709 | if (TYPE_LENGTH (valtype) > 16 | |
710 | || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
711 | || TYPE_CODE (valtype) == TYPE_CODE_UNION) | |
712 | && TYPE_LENGTH (valtype) % 4 != 0)) | |
713 | return RETURN_VALUE_STRUCT_CONVENTION; | |
714 | ||
715 | if (readbuf) | |
716 | { | |
717 | ULONGEST u; | |
718 | int argreg = RX_R1_REGNUM; | |
719 | int offset = 0; | |
720 | ||
721 | while (valtype_len > 0) | |
722 | { | |
723 | int len = min (valtype_len, 4); | |
724 | ||
725 | regcache_cooked_read_unsigned (regcache, argreg, &u); | |
726 | store_unsigned_integer (readbuf + offset, len, byte_order, u); | |
727 | valtype_len -= len; | |
728 | offset += len; | |
729 | argreg++; | |
730 | } | |
731 | } | |
732 | ||
733 | if (writebuf) | |
734 | { | |
735 | ULONGEST u; | |
736 | int argreg = RX_R1_REGNUM; | |
737 | int offset = 0; | |
738 | ||
739 | while (valtype_len > 0) | |
740 | { | |
741 | int len = min (valtype_len, 4); | |
742 | ||
743 | u = extract_unsigned_integer (writebuf + offset, len, byte_order); | |
744 | regcache_cooked_write_unsigned (regcache, argreg, u); | |
745 | valtype_len -= len; | |
746 | offset += len; | |
747 | argreg++; | |
748 | } | |
749 | } | |
750 | ||
751 | return RETURN_VALUE_REGISTER_CONVENTION; | |
752 | } | |
753 | ||
754 | /* Implement the "breakpoint_from_pc" gdbarch method. */ | |
755 | const gdb_byte * | |
756 | rx_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) | |
757 | { | |
758 | static gdb_byte breakpoint[] = { 0x00 }; | |
759 | *lenptr = sizeof breakpoint; | |
760 | return breakpoint; | |
761 | } | |
762 | ||
763 | /* Allocate and initialize a gdbarch object. */ | |
764 | static struct gdbarch * | |
765 | rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
766 | { | |
767 | struct gdbarch *gdbarch; | |
768 | struct gdbarch_tdep *tdep; | |
769 | int elf_flags; | |
770 | ||
771 | /* Extract the elf_flags if available. */ | |
772 | if (info.abfd != NULL | |
773 | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
774 | elf_flags = elf_elfheader (info.abfd)->e_flags; | |
775 | else | |
776 | elf_flags = 0; | |
777 | ||
778 | ||
779 | /* Try to find the architecture in the list of already defined | |
780 | architectures. */ | |
781 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
782 | arches != NULL; | |
783 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
784 | { | |
785 | if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags) | |
786 | continue; | |
787 | ||
788 | return arches->gdbarch; | |
789 | } | |
790 | ||
791 | /* None found, create a new architecture from the information | |
792 | provided. */ | |
793 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); | |
794 | gdbarch = gdbarch_alloc (&info, tdep); | |
795 | tdep->elf_flags = elf_flags; | |
796 | ||
797 | set_gdbarch_num_regs (gdbarch, RX_NUM_REGS); | |
798 | set_gdbarch_num_pseudo_regs (gdbarch, 0); | |
799 | set_gdbarch_register_name (gdbarch, rx_register_name); | |
800 | set_gdbarch_register_type (gdbarch, rx_register_type); | |
801 | set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM); | |
802 | set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM); | |
803 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
804 | set_gdbarch_decr_pc_after_break (gdbarch, 1); | |
805 | set_gdbarch_breakpoint_from_pc (gdbarch, rx_breakpoint_from_pc); | |
806 | set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue); | |
807 | ||
808 | set_gdbarch_print_insn (gdbarch, print_insn_rx); | |
809 | ||
810 | set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc); | |
811 | set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp); | |
812 | ||
813 | /* Target builtin data types. */ | |
814 | set_gdbarch_char_signed (gdbarch, 0); | |
815 | set_gdbarch_short_bit (gdbarch, 16); | |
816 | set_gdbarch_int_bit (gdbarch, 32); | |
817 | set_gdbarch_long_bit (gdbarch, 32); | |
818 | set_gdbarch_long_long_bit (gdbarch, 64); | |
819 | set_gdbarch_ptr_bit (gdbarch, 32); | |
820 | set_gdbarch_float_bit (gdbarch, 32); | |
821 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | |
822 | if (elf_flags & E_FLAG_RX_64BIT_DOUBLES) | |
823 | { | |
824 | set_gdbarch_double_bit (gdbarch, 64); | |
825 | set_gdbarch_long_double_bit (gdbarch, 64); | |
826 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
827 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
828 | } | |
829 | else | |
830 | { | |
831 | set_gdbarch_double_bit (gdbarch, 32); | |
832 | set_gdbarch_long_double_bit (gdbarch, 32); | |
833 | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | |
834 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); | |
835 | } | |
836 | ||
837 | /* Frame unwinding. */ | |
838 | #if 0 | |
839 | /* Note: The test results are better with the dwarf2 unwinder disabled, | |
840 | so it's turned off for now. */ | |
841 | dwarf2_append_unwinders (gdbarch); | |
842 | #endif | |
843 | frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind); | |
844 | ||
845 | /* Methods for saving / extracting a dummy frame's ID. | |
846 | The ID's stack address must match the SP value returned by | |
847 | PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ | |
848 | set_gdbarch_dummy_id (gdbarch, rx_dummy_id); | |
849 | set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call); | |
850 | set_gdbarch_return_value (gdbarch, rx_return_value); | |
851 | ||
852 | /* Virtual tables. */ | |
853 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
854 | ||
855 | return gdbarch; | |
856 | } | |
857 | ||
858 | /* Register the above initialization routine. */ | |
859 | void | |
860 | _initialize_rx_tdep (void) | |
861 | { | |
862 | register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init); | |
863 | } |