* i387-fp.c (struct i387_fsave, struct i387_fxsave): Make 16-bit
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
0fd88904 2
6aba47ca
DJ
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
c906108c
SS
22
23/*
c5aa993b
JM
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
c906108c
SS
26 */
27
28#include "defs.h"
29#include "frame.h"
1c0159e0
CV
30#include "frame-base.h"
31#include "frame-unwind.h"
32#include "dwarf2-frame.h"
c906108c 33#include "symtab.h"
c906108c
SS
34#include "gdbtypes.h"
35#include "gdbcmd.h"
36#include "gdbcore.h"
37#include "value.h"
38#include "dis-asm.h"
73c1f219 39#include "inferior.h"
c906108c 40#include "gdb_string.h"
1c0159e0 41#include "gdb_assert.h"
b4a20239 42#include "arch-utils.h"
fb409745 43#include "floatformat.h"
4e052eda 44#include "regcache.h"
d16aafd8 45#include "doublest.h"
4be87837 46#include "osabi.h"
dda63807 47#include "reggroups.h"
c906108c 48
ab3b8126
JT
49#include "sh-tdep.h"
50
d658f924 51#include "elf-bfd.h"
1a8629c7
MS
52#include "solib-svr4.h"
53
55ff77ac 54/* sh flags */
283150cd
EZ
55#include "elf/sh.h"
56/* registers numbers shared with the simulator */
1c922164 57#include "gdb/sim-sh.h"
283150cd 58
55ff77ac 59static void (*sh_show_regs) (void);
cc17453a 60
da962468 61#define SH_NUM_REGS 67
88e04cc1 62
1c0159e0 63struct sh_frame_cache
cc17453a 64{
1c0159e0
CV
65 /* Base address. */
66 CORE_ADDR base;
67 LONGEST sp_offset;
68 CORE_ADDR pc;
69
70 /* Flag showing that a frame has been created in the prologue code. */
71 int uses_fp;
72
73 /* Saved registers. */
74 CORE_ADDR saved_regs[SH_NUM_REGS];
75 CORE_ADDR saved_sp;
63978407 76};
c906108c 77
fa88f677 78static const char *
cc17453a
EZ
79sh_sh_register_name (int reg_nr)
80{
617daa0e
CV
81 static char *register_names[] = {
82 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
83 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
84 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
85 "", "",
86 "", "", "", "", "", "", "", "",
87 "", "", "", "", "", "", "", "",
88 "", "",
89 "", "", "", "", "", "", "", "",
90 "", "", "", "", "", "", "", "",
da962468 91 "", "", "", "", "", "", "", "",
cc17453a
EZ
92 };
93 if (reg_nr < 0)
94 return NULL;
95 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
96 return NULL;
97 return register_names[reg_nr];
98}
99
fa88f677 100static const char *
cc17453a
EZ
101sh_sh3_register_name (int reg_nr)
102{
617daa0e
CV
103 static char *register_names[] = {
104 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
105 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
106 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
107 "", "",
108 "", "", "", "", "", "", "", "",
109 "", "", "", "", "", "", "", "",
110 "ssr", "spc",
cc17453a
EZ
111 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
112 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
da962468 113 "", "", "", "", "", "", "", "",
cc17453a
EZ
114 };
115 if (reg_nr < 0)
116 return NULL;
117 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
118 return NULL;
119 return register_names[reg_nr];
120}
121
fa88f677 122static const char *
cc17453a
EZ
123sh_sh3e_register_name (int reg_nr)
124{
617daa0e
CV
125 static char *register_names[] = {
126 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
127 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
128 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
cc17453a 129 "fpul", "fpscr",
617daa0e
CV
130 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
131 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
132 "ssr", "spc",
cc17453a
EZ
133 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
134 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 135 "", "", "", "", "", "", "", "",
cc17453a
EZ
136 };
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
140 return NULL;
141 return register_names[reg_nr];
142}
143
2d188dd3
NC
144static const char *
145sh_sh2e_register_name (int reg_nr)
146{
617daa0e
CV
147 static char *register_names[] = {
148 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
149 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
150 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
2d188dd3 151 "fpul", "fpscr",
617daa0e
CV
152 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
153 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
154 "", "",
2d188dd3
NC
155 "", "", "", "", "", "", "", "",
156 "", "", "", "", "", "", "", "",
da962468
CV
157 "", "", "", "", "", "", "", "",
158 };
159 if (reg_nr < 0)
160 return NULL;
161 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
162 return NULL;
163 return register_names[reg_nr];
164}
165
166static const char *
167sh_sh2a_register_name (int reg_nr)
168{
169 static char *register_names[] = {
170 /* general registers 0-15 */
171 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
172 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
173 /* 16 - 22 */
174 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
175 /* 23, 24 */
176 "fpul", "fpscr",
177 /* floating point registers 25 - 40 */
178 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
179 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
180 /* 41, 42 */
181 "", "",
182 /* 43 - 62. Banked registers. The bank number used is determined by
183 the bank register (63). */
184 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
185 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
186 "machb", "ivnb", "prb", "gbrb", "maclb",
187 /* 63: register bank number, not a real register but used to
188 communicate the register bank currently get/set. This register
189 is hidden to the user, who manipulates it using the pseudo
190 register called "bank" (67). See below. */
191 "",
192 /* 64 - 66 */
193 "ibcr", "ibnr", "tbr",
194 /* 67: register bank number, the user visible pseudo register. */
195 "bank",
196 /* double precision (pseudo) 68 - 75 */
197 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
198 };
199 if (reg_nr < 0)
200 return NULL;
201 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
202 return NULL;
203 return register_names[reg_nr];
204}
205
206static const char *
207sh_sh2a_nofpu_register_name (int reg_nr)
208{
209 static char *register_names[] = {
210 /* general registers 0-15 */
211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
213 /* 16 - 22 */
214 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
215 /* 23, 24 */
216 "", "",
217 /* floating point registers 25 - 40 */
218 "", "", "", "", "", "", "", "",
219 "", "", "", "", "", "", "", "",
220 /* 41, 42 */
221 "", "",
222 /* 43 - 62. Banked registers. The bank number used is determined by
223 the bank register (63). */
224 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
225 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
226 "machb", "ivnb", "prb", "gbrb", "maclb",
227 /* 63: register bank number, not a real register but used to
228 communicate the register bank currently get/set. This register
229 is hidden to the user, who manipulates it using the pseudo
230 register called "bank" (67). See below. */
231 "",
232 /* 64 - 66 */
233 "ibcr", "ibnr", "tbr",
234 /* 67: register bank number, the user visible pseudo register. */
235 "bank",
236 /* double precision (pseudo) 68 - 75 */
237 "", "", "", "", "", "", "", "",
2d188dd3
NC
238 };
239 if (reg_nr < 0)
240 return NULL;
241 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
242 return NULL;
243 return register_names[reg_nr];
244}
245
fa88f677 246static const char *
cc17453a
EZ
247sh_sh_dsp_register_name (int reg_nr)
248{
617daa0e
CV
249 static char *register_names[] = {
250 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
251 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
252 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
253 "", "dsr",
254 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
255 "y0", "y1", "", "", "", "", "", "mod",
256 "", "",
257 "rs", "re", "", "", "", "", "", "",
258 "", "", "", "", "", "", "", "",
da962468 259 "", "", "", "", "", "", "", "",
cc17453a
EZ
260 };
261 if (reg_nr < 0)
262 return NULL;
263 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
264 return NULL;
265 return register_names[reg_nr];
266}
267
fa88f677 268static const char *
cc17453a
EZ
269sh_sh3_dsp_register_name (int reg_nr)
270{
617daa0e
CV
271 static char *register_names[] = {
272 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
273 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
274 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
275 "", "dsr",
276 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
277 "y0", "y1", "", "", "", "", "", "mod",
278 "ssr", "spc",
279 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
280 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
281 "", "", "", "", "", "", "", "",
da962468 282 "", "", "", "", "", "", "", "",
cc17453a
EZ
283 };
284 if (reg_nr < 0)
285 return NULL;
286 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
287 return NULL;
288 return register_names[reg_nr];
289}
290
fa88f677 291static const char *
53116e27
EZ
292sh_sh4_register_name (int reg_nr)
293{
617daa0e 294 static char *register_names[] = {
a38d2a54 295 /* general registers 0-15 */
617daa0e
CV
296 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
297 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
a38d2a54 298 /* 16 - 22 */
617daa0e 299 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
a38d2a54 300 /* 23, 24 */
53116e27 301 "fpul", "fpscr",
a38d2a54 302 /* floating point registers 25 - 40 */
617daa0e
CV
303 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
304 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
a38d2a54 305 /* 41, 42 */
617daa0e 306 "ssr", "spc",
a38d2a54 307 /* bank 0 43 - 50 */
53116e27 308 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
a38d2a54 309 /* bank 1 51 - 58 */
53116e27 310 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468
CV
311 "", "", "", "", "", "", "", "",
312 /* pseudo bank register. */
313 "",
a38d2a54 314 /* double precision (pseudo) 59 - 66 */
617daa0e 315 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
a38d2a54 316 /* vectors (pseudo) 67 - 70 */
617daa0e 317 "fv0", "fv4", "fv8", "fv12",
a38d2a54
EZ
318 /* FIXME: missing XF 71 - 86 */
319 /* FIXME: missing XD 87 - 94 */
53116e27
EZ
320 };
321 if (reg_nr < 0)
322 return NULL;
323 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
324 return NULL;
325 return register_names[reg_nr];
326}
327
474e5826
CV
328static const char *
329sh_sh4_nofpu_register_name (int reg_nr)
330{
331 static char *register_names[] = {
332 /* general registers 0-15 */
333 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
334 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
335 /* 16 - 22 */
336 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
337 /* 23, 24 */
338 "", "",
339 /* floating point registers 25 - 40 -- not for nofpu target */
340 "", "", "", "", "", "", "", "",
341 "", "", "", "", "", "", "", "",
342 /* 41, 42 */
343 "ssr", "spc",
344 /* bank 0 43 - 50 */
345 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
346 /* bank 1 51 - 58 */
347 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468
CV
348 "", "", "", "", "", "", "", "",
349 /* pseudo bank register. */
350 "",
474e5826
CV
351 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
352 "", "", "", "", "", "", "", "",
353 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
354 "", "", "", "",
355 };
356 if (reg_nr < 0)
357 return NULL;
358 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
359 return NULL;
360 return register_names[reg_nr];
361}
362
363static const char *
364sh_sh4al_dsp_register_name (int reg_nr)
365{
366 static char *register_names[] = {
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
369 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
370 "", "dsr",
371 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
372 "y0", "y1", "", "", "", "", "", "mod",
373 "ssr", "spc",
374 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
375 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
376 "", "", "", "", "", "", "", "",
da962468 377 "", "", "", "", "", "", "", "",
474e5826
CV
378 };
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
382 return NULL;
383 return register_names[reg_nr];
384}
385
3117ed25 386static const unsigned char *
fba45db2 387sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
cc17453a
EZ
388{
389 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
617daa0e
CV
390 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
391
bac718a6
UW
392 /* For remote stub targets, trapa #20 is used. */
393 if (strcmp (target_shortname, "remote") == 0)
394 {
395 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
396 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
397
398 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
399 {
400 *lenptr = sizeof (big_remote_breakpoint);
401 return big_remote_breakpoint;
402 }
403 else
404 {
405 *lenptr = sizeof (little_remote_breakpoint);
406 return little_remote_breakpoint;
407 }
408 }
409
cc17453a
EZ
410 *lenptr = sizeof (breakpoint);
411 return breakpoint;
412}
c906108c
SS
413
414/* Prologue looks like
1c0159e0
CV
415 mov.l r14,@-r15
416 sts.l pr,@-r15
417 mov.l <regs>,@-r15
418 sub <room_for_loca_vars>,r15
419 mov r15,r14
8db62801 420
1c0159e0 421 Actually it can be more complicated than this but that's it, basically.
c5aa993b 422 */
c906108c 423
1c0159e0
CV
424#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
425#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
426
5f883edd
FF
427/* JSR @Rm 0100mmmm00001011 */
428#define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
429
8db62801
EZ
430/* STS.L PR,@-r15 0100111100100010
431 r15-4-->r15, PR-->(r15) */
c906108c 432#define IS_STS(x) ((x) == 0x4f22)
8db62801 433
03131d99
CV
434/* STS.L MACL,@-r15 0100111100010010
435 r15-4-->r15, MACL-->(r15) */
436#define IS_MACL_STS(x) ((x) == 0x4f12)
437
8db62801
EZ
438/* MOV.L Rm,@-r15 00101111mmmm0110
439 r15-4-->r15, Rm-->(R15) */
c906108c 440#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
8db62801 441
8db62801
EZ
442/* MOV r15,r14 0110111011110011
443 r15-->r14 */
c906108c 444#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
8db62801
EZ
445
446/* ADD #imm,r15 01111111iiiiiiii
447 r15+imm-->r15 */
1c0159e0 448#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
8db62801 449
c906108c
SS
450#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
451#define IS_SHLL_R3(x) ((x) == 0x4300)
8db62801
EZ
452
453/* ADD r3,r15 0011111100111100
454 r15+r3-->r15 */
c906108c 455#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
8db62801
EZ
456
457/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
8db62801 458 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
8db62801 459 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
f2ea0907
CV
460/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
461 make this entirely clear. */
1c0159e0
CV
462/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
463#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
464
465/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
466#define IS_MOV_ARG_TO_REG(x) \
467 (((x) & 0xf00f) == 0x6003 && \
468 ((x) & 0x00f0) >= 0x0040 && \
469 ((x) & 0x00f0) <= 0x0070)
470/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
471#define IS_MOV_ARG_TO_IND_R14(x) \
472 (((x) & 0xff0f) == 0x2e02 && \
473 ((x) & 0x00f0) >= 0x0040 && \
474 ((x) & 0x00f0) <= 0x0070)
475/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
476#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
477 (((x) & 0xff00) == 0x1e00 && \
478 ((x) & 0x00f0) >= 0x0040 && \
479 ((x) & 0x00f0) <= 0x0070)
480
481/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
482#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
483/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
484#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
03131d99
CV
485/* MOVI20 #imm20,Rn 0000nnnniiii0000 */
486#define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
1c0159e0
CV
487/* SUB Rn,R15 00111111nnnn1000 */
488#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
8db62801 489
1c0159e0 490#define FPSCR_SZ (1 << 20)
cc17453a 491
1c0159e0
CV
492/* The following instructions are used for epilogue testing. */
493#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
494#define IS_RTS(x) ((x) == 0x000b)
495#define IS_LDS(x) ((x) == 0x4f26)
03131d99 496#define IS_MACL_LDS(x) ((x) == 0x4f16)
1c0159e0
CV
497#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
498#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
499#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
cc17453a 500
cc17453a
EZ
501/* Disassemble an instruction. */
502static int
617daa0e 503gdb_print_insn_sh (bfd_vma memaddr, disassemble_info * info)
c906108c 504{
1c509ca8
JR
505 info->endian = TARGET_BYTE_ORDER;
506 return print_insn_sh (memaddr, info);
283150cd
EZ
507}
508
cc17453a 509static CORE_ADDR
1c0159e0
CV
510sh_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
511 struct sh_frame_cache *cache)
617daa0e 512{
1c0159e0
CV
513 ULONGEST inst;
514 CORE_ADDR opc;
515 int offset;
516 int sav_offset = 0;
c906108c 517 int r3_val = 0;
1c0159e0 518 int reg, sav_reg = -1;
cc17453a 519
1c0159e0
CV
520 if (pc >= current_pc)
521 return current_pc;
cc17453a 522
1c0159e0 523 cache->uses_fp = 0;
cc17453a
EZ
524 for (opc = pc + (2 * 28); pc < opc; pc += 2)
525 {
1c0159e0 526 inst = read_memory_unsigned_integer (pc, 2);
cc17453a 527 /* See where the registers will be saved to */
f2ea0907 528 if (IS_PUSH (inst))
cc17453a 529 {
1c0159e0
CV
530 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
531 cache->sp_offset += 4;
cc17453a 532 }
f2ea0907 533 else if (IS_STS (inst))
cc17453a 534 {
1c0159e0
CV
535 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
536 cache->sp_offset += 4;
cc17453a 537 }
03131d99
CV
538 else if (IS_MACL_STS (inst))
539 {
540 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
541 cache->sp_offset += 4;
542 }
f2ea0907 543 else if (IS_MOV_R3 (inst))
cc17453a 544 {
f2ea0907 545 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
cc17453a 546 }
f2ea0907 547 else if (IS_SHLL_R3 (inst))
cc17453a
EZ
548 {
549 r3_val <<= 1;
550 }
f2ea0907 551 else if (IS_ADD_R3SP (inst))
cc17453a 552 {
1c0159e0 553 cache->sp_offset += -r3_val;
cc17453a 554 }
f2ea0907 555 else if (IS_ADD_IMM_SP (inst))
cc17453a 556 {
1c0159e0
CV
557 offset = ((inst & 0xff) ^ 0x80) - 0x80;
558 cache->sp_offset -= offset;
c906108c 559 }
1c0159e0 560 else if (IS_MOVW_PCREL_TO_REG (inst))
617daa0e 561 {
1c0159e0
CV
562 if (sav_reg < 0)
563 {
564 reg = GET_TARGET_REG (inst);
565 if (reg < 14)
566 {
567 sav_reg = reg;
a2b4a96c 568 offset = (inst & 0xff) << 1;
1c0159e0 569 sav_offset =
a2b4a96c 570 read_memory_integer ((pc + 4) + offset, 2);
1c0159e0
CV
571 }
572 }
c906108c 573 }
1c0159e0 574 else if (IS_MOVL_PCREL_TO_REG (inst))
617daa0e 575 {
1c0159e0
CV
576 if (sav_reg < 0)
577 {
a2b4a96c 578 reg = GET_TARGET_REG (inst);
1c0159e0
CV
579 if (reg < 14)
580 {
581 sav_reg = reg;
a2b4a96c 582 offset = (inst & 0xff) << 2;
1c0159e0 583 sav_offset =
a2b4a96c 584 read_memory_integer (((pc & 0xfffffffc) + 4) + offset, 4);
1c0159e0
CV
585 }
586 }
c906108c 587 }
03131d99
CV
588 else if (IS_MOVI20 (inst))
589 {
590 if (sav_reg < 0)
591 {
592 reg = GET_TARGET_REG (inst);
593 if (reg < 14)
594 {
595 sav_reg = reg;
596 sav_offset = GET_SOURCE_REG (inst) << 16;
597 /* MOVI20 is a 32 bit instruction! */
598 pc += 2;
599 sav_offset |= read_memory_unsigned_integer (pc, 2);
600 /* Now sav_offset contains an unsigned 20 bit value.
601 It must still get sign extended. */
602 if (sav_offset & 0x00080000)
603 sav_offset |= 0xfff00000;
604 }
605 }
606 }
1c0159e0 607 else if (IS_SUB_REG_FROM_SP (inst))
617daa0e 608 {
1c0159e0
CV
609 reg = GET_SOURCE_REG (inst);
610 if (sav_reg > 0 && reg == sav_reg)
611 {
612 sav_reg = -1;
613 }
614 cache->sp_offset += sav_offset;
c906108c 615 }
f2ea0907 616 else if (IS_FPUSH (inst))
c906108c 617 {
f2ea0907 618 if (read_register (FPSCR_REGNUM) & FPSCR_SZ)
c906108c 619 {
1c0159e0 620 cache->sp_offset += 8;
c906108c
SS
621 }
622 else
623 {
1c0159e0 624 cache->sp_offset += 4;
c906108c
SS
625 }
626 }
f2ea0907 627 else if (IS_MOV_SP_FP (inst))
617daa0e 628 {
960ccd7d 629 cache->uses_fp = 1;
1c0159e0
CV
630 /* At this point, only allow argument register moves to other
631 registers or argument register moves to @(X,fp) which are
632 moving the register arguments onto the stack area allocated
633 by a former add somenumber to SP call. Don't allow moving
634 to an fp indirect address above fp + cache->sp_offset. */
635 pc += 2;
636 for (opc = pc + 12; pc < opc; pc += 2)
637 {
638 inst = read_memory_integer (pc, 2);
639 if (IS_MOV_ARG_TO_IND_R14 (inst))
617daa0e 640 {
1c0159e0
CV
641 reg = GET_SOURCE_REG (inst);
642 if (cache->sp_offset > 0)
617daa0e 643 cache->saved_regs[reg] = cache->sp_offset;
1c0159e0
CV
644 }
645 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
617daa0e 646 {
1c0159e0
CV
647 reg = GET_SOURCE_REG (inst);
648 offset = (inst & 0xf) * 4;
649 if (cache->sp_offset > offset)
650 cache->saved_regs[reg] = cache->sp_offset - offset;
651 }
652 else if (IS_MOV_ARG_TO_REG (inst))
617daa0e 653 continue;
1c0159e0
CV
654 else
655 break;
656 }
657 break;
658 }
5f883edd
FF
659 else if (IS_JSR (inst))
660 {
661 /* We have found a jsr that has been scheduled into the prologue.
662 If we continue the scan and return a pc someplace after this,
663 then setting a breakpoint on this function will cause it to
664 appear to be called after the function it is calling via the
665 jsr, which will be very confusing. Most likely the next
666 instruction is going to be IS_MOV_SP_FP in the delay slot. If
667 so, note that before returning the current pc. */
668 inst = read_memory_integer (pc + 2, 2);
669 if (IS_MOV_SP_FP (inst))
670 cache->uses_fp = 1;
671 break;
672 }
617daa0e
CV
673#if 0 /* This used to just stop when it found an instruction that
674 was not considered part of the prologue. Now, we just
675 keep going looking for likely instructions. */
c906108c
SS
676 else
677 break;
2bfa91ee 678#endif
c906108c
SS
679 }
680
1c0159e0
CV
681 return pc;
682}
c906108c 683
1c0159e0 684/* Skip any prologue before the guts of a function */
c906108c 685
1c0159e0
CV
686/* Skip the prologue using the debug information. If this fails we'll
687 fall back on the 'guess' method below. */
688static CORE_ADDR
689after_prologue (CORE_ADDR pc)
690{
691 struct symtab_and_line sal;
692 CORE_ADDR func_addr, func_end;
c906108c 693
1c0159e0
CV
694 /* If we can not find the symbol in the partial symbol table, then
695 there is no hope we can determine the function's start address
696 with this code. */
697 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
698 return 0;
c906108c 699
1c0159e0
CV
700 /* Get the line associated with FUNC_ADDR. */
701 sal = find_pc_line (func_addr, 0);
702
703 /* There are only two cases to consider. First, the end of the source line
704 is within the function bounds. In that case we return the end of the
705 source line. Second is the end of the source line extends beyond the
706 bounds of the current function. We need to use the slow code to
707 examine instructions in that case. */
708 if (sal.end < func_end)
709 return sal.end;
710 else
711 return 0;
c906108c
SS
712}
713
1c0159e0
CV
714static CORE_ADDR
715sh_skip_prologue (CORE_ADDR start_pc)
c906108c 716{
1c0159e0
CV
717 CORE_ADDR pc;
718 struct sh_frame_cache cache;
719
720 /* See if we can determine the end of the prologue via the symbol table.
721 If so, then return either PC, or the PC after the prologue, whichever
722 is greater. */
723 pc = after_prologue (start_pc);
cc17453a 724
1c0159e0
CV
725 /* If after_prologue returned a useful address, then use it. Else
726 fall back on the instruction skipping code. */
727 if (pc)
728 return max (pc, start_pc);
c906108c 729
1c0159e0
CV
730 cache.sp_offset = -4;
731 pc = sh_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
732 if (!cache.uses_fp)
733 return start_pc;
c906108c 734
1c0159e0
CV
735 return pc;
736}
737
2e952408 738/* The ABI says:
9a5cef92
EZ
739
740 Aggregate types not bigger than 8 bytes that have the same size and
741 alignment as one of the integer scalar types are returned in the
742 same registers as the integer type they match.
743
744 For example, a 2-byte aligned structure with size 2 bytes has the
745 same size and alignment as a short int, and will be returned in R0.
746 A 4-byte aligned structure with size 8 bytes has the same size and
747 alignment as a long long int, and will be returned in R0 and R1.
748
749 When an aggregate type is returned in R0 and R1, R0 contains the
750 first four bytes of the aggregate, and R1 contains the
751 remainder. If the size of the aggregate type is not a multiple of 4
752 bytes, the aggregate is tail-padded up to a multiple of 4
753 bytes. The value of the padding is undefined. For little-endian
754 targets the padding will appear at the most significant end of the
755 last element, for big-endian targets the padding appears at the
756 least significant end of the last element.
757
758 All other aggregate types are returned by address. The caller
759 function passes the address of an area large enough to hold the
760 aggregate value in R2. The called function stores the result in
7fe958be 761 this location.
9a5cef92
EZ
762
763 To reiterate, structs smaller than 8 bytes could also be returned
764 in memory, if they don't pass the "same size and alignment as an
765 integer type" rule.
766
767 For example, in
768
769 struct s { char c[3]; } wibble;
770 struct s foo(void) { return wibble; }
771
772 the return value from foo() will be in memory, not
773 in R0, because there is no 3-byte integer type.
774
7fe958be
EZ
775 Similarly, in
776
777 struct s { char c[2]; } wibble;
778 struct s foo(void) { return wibble; }
779
780 because a struct containing two chars has alignment 1, that matches
781 type char, but size 2, that matches type short. There's no integer
782 type that has alignment 1 and size 2, so the struct is returned in
783 memory.
784
9a5cef92
EZ
785*/
786
1c0159e0
CV
787static int
788sh_use_struct_convention (int gcc_p, struct type *type)
789{
790 int len = TYPE_LENGTH (type);
791 int nelem = TYPE_NFIELDS (type);
3f997a97
CV
792
793 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
794 fit in two registers anyway) use struct convention. */
795 if (len != 1 && len != 2 && len != 4 && len != 8)
796 return 1;
797
798 /* Scalar types and aggregate types with exactly one field are aligned
799 by definition. They are returned in registers. */
800 if (nelem <= 1)
801 return 0;
802
803 /* If the first field in the aggregate has the same length as the entire
804 aggregate type, the type is returned in registers. */
805 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
806 return 0;
807
808 /* If the size of the aggregate is 8 bytes and the first field is
809 of size 4 bytes its alignment is equal to long long's alignment,
810 so it's returned in registers. */
811 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
812 return 0;
813
814 /* Otherwise use struct convention. */
815 return 1;
283150cd
EZ
816}
817
cc17453a
EZ
818/* Extract from an array REGBUF containing the (raw) register state
819 the address in which a function should return its structure value,
820 as a CORE_ADDR (or an expression that can be used as one). */
b3df3fff 821static CORE_ADDR
48db5a3c 822sh_extract_struct_value_address (struct regcache *regcache)
cc17453a 823{
48db5a3c 824 ULONGEST addr;
1c0159e0 825
48db5a3c
CV
826 regcache_cooked_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &addr);
827 return addr;
cc17453a
EZ
828}
829
19f59343
MS
830static CORE_ADDR
831sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
832{
833 return sp & ~3;
834}
835
55ff77ac 836/* Function: push_dummy_call (formerly push_arguments)
c906108c
SS
837 Setup the function arguments for calling a function in the inferior.
838
85a453d5 839 On the Renesas SH architecture, there are four registers (R4 to R7)
c906108c
SS
840 which are dedicated for passing function arguments. Up to the first
841 four arguments (depending on size) may go into these registers.
842 The rest go on the stack.
843
6df2bf50
MS
844 MVS: Except on SH variants that have floating point registers.
845 In that case, float and double arguments are passed in the same
846 manner, but using FP registers instead of GP registers.
847
c906108c
SS
848 Arguments that are smaller than 4 bytes will still take up a whole
849 register or a whole 32-bit word on the stack, and will be
850 right-justified in the register or the stack word. This includes
851 chars, shorts, and small aggregate types.
852
853 Arguments that are larger than 4 bytes may be split between two or
854 more registers. If there are not enough registers free, an argument
855 may be passed partly in a register (or registers), and partly on the
856 stack. This includes doubles, long longs, and larger aggregates.
857 As far as I know, there is no upper limit to the size of aggregates
858 that will be passed in this way; in other words, the convention of
859 passing a pointer to a large aggregate instead of a copy is not used.
860
6df2bf50 861 MVS: The above appears to be true for the SH variants that do not
55ff77ac 862 have an FPU, however those that have an FPU appear to copy the
6df2bf50
MS
863 aggregate argument onto the stack (and not place it in registers)
864 if it is larger than 16 bytes (four GP registers).
865
c906108c
SS
866 An exceptional case exists for struct arguments (and possibly other
867 aggregates such as arrays) if the size is larger than 4 bytes but
868 not a multiple of 4 bytes. In this case the argument is never split
869 between the registers and the stack, but instead is copied in its
870 entirety onto the stack, AND also copied into as many registers as
871 there is room for. In other words, space in registers permitting,
872 two copies of the same argument are passed in. As far as I can tell,
873 only the one on the stack is used, although that may be a function
874 of the level of compiler optimization. I suspect this is a compiler
875 bug. Arguments of these odd sizes are left-justified within the
876 word (as opposed to arguments smaller than 4 bytes, which are
877 right-justified).
c5aa993b 878
c906108c
SS
879 If the function is to return an aggregate type such as a struct, it
880 is either returned in the normal return value register R0 (if its
881 size is no greater than one byte), or else the caller must allocate
882 space into which the callee will copy the return value (if the size
883 is greater than one byte). In this case, a pointer to the return
884 value location is passed into the callee in register R2, which does
885 not displace any of the other arguments passed in via registers R4
886 to R7. */
887
e5e33cd9
CV
888/* Helper function to justify value in register according to endianess. */
889static char *
890sh_justify_value_in_reg (struct value *val, int len)
891{
892 static char valbuf[4];
893
617daa0e 894 memset (valbuf, 0, sizeof (valbuf));
e5e33cd9
CV
895 if (len < 4)
896 {
897 /* value gets right-justified in the register or stack word */
898 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
0fd88904 899 memcpy (valbuf + (4 - len), (char *) value_contents (val), len);
e5e33cd9 900 else
0fd88904 901 memcpy (valbuf, (char *) value_contents (val), len);
e5e33cd9
CV
902 return valbuf;
903 }
0fd88904 904 return (char *) value_contents (val);
617daa0e 905}
e5e33cd9
CV
906
907/* Helper function to eval number of bytes to allocate on stack. */
908static CORE_ADDR
909sh_stack_allocsize (int nargs, struct value **args)
910{
911 int stack_alloc = 0;
912 while (nargs-- > 0)
4991999e 913 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
e5e33cd9
CV
914 return stack_alloc;
915}
916
917/* Helper functions for getting the float arguments right. Registers usage
918 depends on the ABI and the endianess. The comments should enlighten how
919 it's intended to work. */
920
921/* This array stores which of the float arg registers are already in use. */
922static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
923
924/* This function just resets the above array to "no reg used so far". */
925static void
926sh_init_flt_argreg (void)
927{
928 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
929}
930
931/* This function returns the next register to use for float arg passing.
932 It returns either a valid value between FLOAT_ARG0_REGNUM and
933 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
934 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
935
936 Note that register number 0 in flt_argreg_array corresponds with the
937 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
938 29) the parity of the register number is preserved, which is important
939 for the double register passing test (see the "argreg & 1" test below). */
940static int
941sh_next_flt_argreg (int len)
942{
943 int argreg;
944
945 /* First search for the next free register. */
617daa0e
CV
946 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
947 ++argreg)
e5e33cd9
CV
948 if (!flt_argreg_array[argreg])
949 break;
950
951 /* No register left? */
952 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
953 return FLOAT_ARGLAST_REGNUM + 1;
954
955 if (len == 8)
956 {
957 /* Doubles are always starting in a even register number. */
958 if (argreg & 1)
617daa0e 959 {
e5e33cd9
CV
960 flt_argreg_array[argreg] = 1;
961
962 ++argreg;
963
617daa0e 964 /* No register left? */
e5e33cd9
CV
965 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
966 return FLOAT_ARGLAST_REGNUM + 1;
967 }
968 /* Also mark the next register as used. */
969 flt_argreg_array[argreg + 1] = 1;
970 }
971 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
972 {
973 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
974 if (!flt_argreg_array[argreg + 1])
975 ++argreg;
976 }
977 flt_argreg_array[argreg] = 1;
978 return FLOAT_ARG0_REGNUM + argreg;
979}
980
afce3d2a
CV
981/* Helper function which figures out, if a type is treated like a float type.
982
2e952408 983 The FPU ABIs have a special way how to treat types as float types.
afce3d2a
CV
984 Structures with exactly one member, which is of type float or double, are
985 treated exactly as the base types float or double:
986
987 struct sf {
988 float f;
989 };
990
991 struct sd {
992 double d;
993 };
994
995 are handled the same way as just
996
997 float f;
998
999 double d;
1000
1001 As a result, arguments of these struct types are pushed into floating point
1002 registers exactly as floats or doubles, using the same decision algorithm.
1003
1004 The same is valid if these types are used as function return types. The
1005 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1006 or even using struct convention as it is for other structs. */
1007
1008static int
1009sh_treat_as_flt_p (struct type *type)
1010{
1011 int len = TYPE_LENGTH (type);
1012
1013 /* Ordinary float types are obviously treated as float. */
1014 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1015 return 1;
1016 /* Otherwise non-struct types are not treated as float. */
1017 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1018 return 0;
1019 /* Otherwise structs with more than one memeber are not treated as float. */
1020 if (TYPE_NFIELDS (type) != 1)
1021 return 0;
1022 /* Otherwise if the type of that member is float, the whole type is
1023 treated as float. */
1024 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1025 return 1;
1026 /* Otherwise it's not treated as float. */
1027 return 0;
1028}
1029
cc17453a 1030static CORE_ADDR
617daa0e 1031sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
7d9b040b 1032 struct value *function,
617daa0e 1033 struct regcache *regcache,
6df2bf50 1034 CORE_ADDR bp_addr, int nargs,
617daa0e 1035 struct value **args,
6df2bf50
MS
1036 CORE_ADDR sp, int struct_return,
1037 CORE_ADDR struct_addr)
1038{
e5e33cd9
CV
1039 int stack_offset = 0;
1040 int argreg = ARG0_REGNUM;
8748518b 1041 int flt_argreg = 0;
6df2bf50
MS
1042 int argnum;
1043 struct type *type;
1044 CORE_ADDR regval;
1045 char *val;
8748518b 1046 int len, reg_size = 0;
afce3d2a
CV
1047 int pass_on_stack = 0;
1048 int treat_as_flt;
6df2bf50
MS
1049
1050 /* first force sp to a 4-byte alignment */
1051 sp = sh_frame_align (gdbarch, sp);
1052
6df2bf50 1053 if (struct_return)
1c0159e0 1054 regcache_cooked_write_unsigned (regcache,
617daa0e 1055 STRUCT_RETURN_REGNUM, struct_addr);
6df2bf50 1056
e5e33cd9
CV
1057 /* make room on stack for args */
1058 sp -= sh_stack_allocsize (nargs, args);
1059
1060 /* Initialize float argument mechanism. */
1061 sh_init_flt_argreg ();
6df2bf50
MS
1062
1063 /* Now load as many as possible of the first arguments into
1064 registers, and push the rest onto the stack. There are 16 bytes
1065 in four registers available. Loop thru args from first to last. */
e5e33cd9 1066 for (argnum = 0; argnum < nargs; argnum++)
6df2bf50 1067 {
4991999e 1068 type = value_type (args[argnum]);
6df2bf50 1069 len = TYPE_LENGTH (type);
e5e33cd9
CV
1070 val = sh_justify_value_in_reg (args[argnum], len);
1071
1072 /* Some decisions have to be made how various types are handled.
1073 This also differs in different ABIs. */
1074 pass_on_stack = 0;
e5e33cd9
CV
1075
1076 /* Find out the next register to use for a floating point value. */
afce3d2a
CV
1077 treat_as_flt = sh_treat_as_flt_p (type);
1078 if (treat_as_flt)
617daa0e 1079 flt_argreg = sh_next_flt_argreg (len);
afce3d2a
CV
1080 /* In contrast to non-FPU CPUs, arguments are never split between
1081 registers and stack. If an argument doesn't fit in the remaining
1082 registers it's always pushed entirely on the stack. */
1083 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1084 pass_on_stack = 1;
48db5a3c 1085
6df2bf50
MS
1086 while (len > 0)
1087 {
afce3d2a
CV
1088 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1089 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1090 || pass_on_stack)))
617daa0e 1091 {
afce3d2a 1092 /* The data goes entirely on the stack, 4-byte aligned. */
e5e33cd9
CV
1093 reg_size = (len + 3) & ~3;
1094 write_memory (sp + stack_offset, val, reg_size);
1095 stack_offset += reg_size;
6df2bf50 1096 }
afce3d2a 1097 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
6df2bf50 1098 {
e5e33cd9
CV
1099 /* Argument goes in a float argument register. */
1100 reg_size = register_size (gdbarch, flt_argreg);
1101 regval = extract_unsigned_integer (val, reg_size);
2e952408
CV
1102 /* In little endian mode, float types taking two registers
1103 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1104 be stored swapped in the argument registers. The below
1105 code first writes the first 32 bits in the next but one
1106 register, increments the val and len values accordingly
1107 and then proceeds as normal by writing the second 32 bits
1108 into the next register. */
1109 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE
1110 && TYPE_LENGTH (type) == 2 * reg_size)
1111 {
1112 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1113 regval);
1114 val += reg_size;
1115 len -= reg_size;
1116 regval = extract_unsigned_integer (val, reg_size);
1117 }
6df2bf50
MS
1118 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1119 }
afce3d2a 1120 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
e5e33cd9 1121 {
6df2bf50 1122 /* there's room in a register */
e5e33cd9
CV
1123 reg_size = register_size (gdbarch, argreg);
1124 regval = extract_unsigned_integer (val, reg_size);
6df2bf50
MS
1125 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1126 }
afce3d2a 1127 /* Store the value one register at a time or in one step on stack. */
e5e33cd9
CV
1128 len -= reg_size;
1129 val += reg_size;
6df2bf50
MS
1130 }
1131 }
1132
1133 /* Store return address. */
55ff77ac 1134 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
6df2bf50
MS
1135
1136 /* Update stack pointer. */
1137 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1138
1139 return sp;
1140}
1141
1142static CORE_ADDR
617daa0e 1143sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
7d9b040b 1144 struct value *function,
617daa0e
CV
1145 struct regcache *regcache,
1146 CORE_ADDR bp_addr,
1147 int nargs, struct value **args,
1148 CORE_ADDR sp, int struct_return,
6df2bf50 1149 CORE_ADDR struct_addr)
c906108c 1150{
e5e33cd9
CV
1151 int stack_offset = 0;
1152 int argreg = ARG0_REGNUM;
c906108c
SS
1153 int argnum;
1154 struct type *type;
1155 CORE_ADDR regval;
1156 char *val;
e5e33cd9 1157 int len, reg_size;
c906108c
SS
1158
1159 /* first force sp to a 4-byte alignment */
19f59343 1160 sp = sh_frame_align (gdbarch, sp);
c906108c 1161
c906108c 1162 if (struct_return)
55ff77ac 1163 regcache_cooked_write_unsigned (regcache,
617daa0e 1164 STRUCT_RETURN_REGNUM, struct_addr);
c906108c 1165
e5e33cd9
CV
1166 /* make room on stack for args */
1167 sp -= sh_stack_allocsize (nargs, args);
c906108c 1168
c906108c
SS
1169 /* Now load as many as possible of the first arguments into
1170 registers, and push the rest onto the stack. There are 16 bytes
1171 in four registers available. Loop thru args from first to last. */
e5e33cd9 1172 for (argnum = 0; argnum < nargs; argnum++)
617daa0e 1173 {
4991999e 1174 type = value_type (args[argnum]);
c5aa993b 1175 len = TYPE_LENGTH (type);
e5e33cd9 1176 val = sh_justify_value_in_reg (args[argnum], len);
c906108c 1177
c906108c
SS
1178 while (len > 0)
1179 {
e5e33cd9 1180 if (argreg > ARGLAST_REGNUM)
617daa0e 1181 {
e5e33cd9
CV
1182 /* The remainder of the data goes entirely on the stack,
1183 4-byte aligned. */
1184 reg_size = (len + 3) & ~3;
1185 write_memory (sp + stack_offset, val, reg_size);
617daa0e 1186 stack_offset += reg_size;
c906108c 1187 }
e5e33cd9 1188 else if (argreg <= ARGLAST_REGNUM)
617daa0e 1189 {
3bbfbb92 1190 /* there's room in a register */
e5e33cd9
CV
1191 reg_size = register_size (gdbarch, argreg);
1192 regval = extract_unsigned_integer (val, reg_size);
48db5a3c 1193 regcache_cooked_write_unsigned (regcache, argreg++, regval);
c906108c 1194 }
e5e33cd9
CV
1195 /* Store the value reg_size bytes at a time. This means that things
1196 larger than reg_size bytes may go partly in registers and partly
c906108c 1197 on the stack. */
e5e33cd9
CV
1198 len -= reg_size;
1199 val += reg_size;
c906108c
SS
1200 }
1201 }
48db5a3c
CV
1202
1203 /* Store return address. */
55ff77ac 1204 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
48db5a3c
CV
1205
1206 /* Update stack pointer. */
1207 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1208
c906108c
SS
1209 return sp;
1210}
1211
cc17453a
EZ
1212/* Find a function's return value in the appropriate registers (in
1213 regbuf), and copy it into valbuf. Extract from an array REGBUF
1214 containing the (raw) register state a function return value of type
1215 TYPE, and copy that, in virtual format, into VALBUF. */
1216static void
3ffc5b9b
CV
1217sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1218 void *valbuf)
c906108c 1219{
cc17453a 1220 int len = TYPE_LENGTH (type);
3116c80a
EZ
1221 int return_register = R0_REGNUM;
1222 int offset;
617daa0e 1223
cc17453a 1224 if (len <= 4)
3116c80a 1225 {
48db5a3c
CV
1226 ULONGEST c;
1227
1228 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1229 store_unsigned_integer (valbuf, len, c);
3116c80a 1230 }
48db5a3c 1231 else if (len == 8)
3116c80a 1232 {
48db5a3c
CV
1233 int i, regnum = R0_REGNUM;
1234 for (i = 0; i < len; i += 4)
617daa0e 1235 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
3116c80a
EZ
1236 }
1237 else
8a3fe4f8 1238 error (_("bad size for return value"));
3116c80a
EZ
1239}
1240
1241static void
3ffc5b9b
CV
1242sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1243 void *valbuf)
3116c80a 1244{
afce3d2a 1245 if (sh_treat_as_flt_p (type))
3116c80a 1246 {
48db5a3c
CV
1247 int len = TYPE_LENGTH (type);
1248 int i, regnum = FP0_REGNUM;
1249 for (i = 0; i < len; i += 4)
2e952408
CV
1250 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1251 regcache_raw_read (regcache, regnum++, (char *) valbuf + len - 4 - i);
1252 else
1253 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
3116c80a 1254 }
cc17453a 1255 else
3ffc5b9b 1256 sh_extract_return_value_nofpu (type, regcache, valbuf);
cc17453a 1257}
c906108c 1258
cc17453a
EZ
1259/* Write into appropriate registers a function return value
1260 of type TYPE, given in virtual format.
1261 If the architecture is sh4 or sh3e, store a function's return value
1262 in the R0 general register or in the FP0 floating point register,
1263 depending on the type of the return value. In all the other cases
3bbfbb92 1264 the result is stored in r0, left-justified. */
cc17453a 1265static void
3ffc5b9b
CV
1266sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1267 const void *valbuf)
cc17453a 1268{
48db5a3c
CV
1269 ULONGEST val;
1270 int len = TYPE_LENGTH (type);
d19b71be 1271
48db5a3c 1272 if (len <= 4)
d19b71be 1273 {
48db5a3c
CV
1274 val = extract_unsigned_integer (valbuf, len);
1275 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
d19b71be
MS
1276 }
1277 else
48db5a3c
CV
1278 {
1279 int i, regnum = R0_REGNUM;
1280 for (i = 0; i < len; i += 4)
617daa0e 1281 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
48db5a3c 1282 }
cc17453a 1283}
c906108c 1284
cc17453a 1285static void
3ffc5b9b
CV
1286sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1287 const void *valbuf)
cc17453a 1288{
afce3d2a 1289 if (sh_treat_as_flt_p (type))
48db5a3c
CV
1290 {
1291 int len = TYPE_LENGTH (type);
1292 int i, regnum = FP0_REGNUM;
1293 for (i = 0; i < len; i += 4)
c8a3b559
CV
1294 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1295 regcache_raw_write (regcache, regnum++,
1296 (char *) valbuf + len - 4 - i);
1297 else
1298 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
48db5a3c 1299 }
cc17453a 1300 else
3ffc5b9b 1301 sh_store_return_value_nofpu (type, regcache, valbuf);
c906108c
SS
1302}
1303
c0409442
CV
1304static enum return_value_convention
1305sh_return_value_nofpu (struct gdbarch *gdbarch, struct type *type,
1306 struct regcache *regcache,
18cf8b5b 1307 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442
CV
1308{
1309 if (sh_use_struct_convention (0, type))
1310 return RETURN_VALUE_STRUCT_CONVENTION;
1311 if (writebuf)
3ffc5b9b 1312 sh_store_return_value_nofpu (type, regcache, writebuf);
c0409442 1313 else if (readbuf)
3ffc5b9b 1314 sh_extract_return_value_nofpu (type, regcache, readbuf);
c0409442
CV
1315 return RETURN_VALUE_REGISTER_CONVENTION;
1316}
1317
1318static enum return_value_convention
1319sh_return_value_fpu (struct gdbarch *gdbarch, struct type *type,
1320 struct regcache *regcache,
18cf8b5b 1321 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442
CV
1322{
1323 if (sh_use_struct_convention (0, type))
1324 return RETURN_VALUE_STRUCT_CONVENTION;
1325 if (writebuf)
3ffc5b9b 1326 sh_store_return_value_fpu (type, regcache, writebuf);
c0409442 1327 else if (readbuf)
3ffc5b9b 1328 sh_extract_return_value_fpu (type, regcache, readbuf);
c0409442
CV
1329 return RETURN_VALUE_REGISTER_CONVENTION;
1330}
1331
c906108c
SS
1332/* Print the registers in a form similar to the E7000 */
1333
1334static void
fba45db2 1335sh_generic_show_regs (void)
c906108c 1336{
a6b0a3f3 1337 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
cc17453a 1338 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1339 (long) read_register (SR_REGNUM),
1340 (long) read_register (PR_REGNUM),
a6b0a3f3 1341 (long) read_register (MACH_REGNUM));
cc17453a 1342
a6b0a3f3
AS
1343 printf_filtered (
1344 " GBR %08lx VBR %08lx MACL %08lx\n",
cc17453a 1345 (long) read_register (GBR_REGNUM),
a6b0a3f3
AS
1346 (long) read_register (VBR_REGNUM),
1347 (long) read_register (MACL_REGNUM));
cc17453a 1348
617daa0e 1349 printf_filtered
a6b0a3f3 1350 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1351 (long) read_register (0), (long) read_register (1),
1352 (long) read_register (2), (long) read_register (3),
1353 (long) read_register (4), (long) read_register (5),
1354 (long) read_register (6), (long) read_register (7));
a6b0a3f3 1355 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1356 (long) read_register (8), (long) read_register (9),
1357 (long) read_register (10), (long) read_register (11),
1358 (long) read_register (12), (long) read_register (13),
1359 (long) read_register (14), (long) read_register (15));
cc17453a 1360}
c906108c 1361
cc17453a 1362static void
fba45db2 1363sh3_show_regs (void)
cc17453a 1364{
a6b0a3f3 1365 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
d4f3574e 1366 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1367 (long) read_register (SR_REGNUM),
1368 (long) read_register (PR_REGNUM),
a6b0a3f3 1369 (long) read_register (MACH_REGNUM));
d4f3574e 1370
a6b0a3f3
AS
1371 printf_filtered (
1372 " GBR %08lx VBR %08lx MACL %08lx\n",
d4f3574e 1373 (long) read_register (GBR_REGNUM),
a6b0a3f3
AS
1374 (long) read_register (VBR_REGNUM),
1375 (long) read_register (MACL_REGNUM));
1376 printf_filtered (" SSR %08lx SPC %08lx\n",
617daa0e 1377 (long) read_register (SSR_REGNUM),
f2ea0907 1378 (long) read_register (SPC_REGNUM));
c906108c 1379
617daa0e 1380 printf_filtered
a6b0a3f3 1381 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1382 (long) read_register (0), (long) read_register (1),
1383 (long) read_register (2), (long) read_register (3),
1384 (long) read_register (4), (long) read_register (5),
1385 (long) read_register (6), (long) read_register (7));
a6b0a3f3 1386 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1387 (long) read_register (8), (long) read_register (9),
1388 (long) read_register (10), (long) read_register (11),
1389 (long) read_register (12), (long) read_register (13),
1390 (long) read_register (14), (long) read_register (15));
c906108c
SS
1391}
1392
53116e27 1393
2d188dd3
NC
1394static void
1395sh2e_show_regs (void)
1396{
a6b0a3f3 1397 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
2d188dd3
NC
1398 paddr (read_register (PC_REGNUM)),
1399 (long) read_register (SR_REGNUM),
1400 (long) read_register (PR_REGNUM),
a6b0a3f3 1401 (long) read_register (MACH_REGNUM));
2d188dd3 1402
a6b0a3f3
AS
1403 printf_filtered (
1404 " GBR %08lx VBR %08lx MACL %08lx\n",
2d188dd3 1405 (long) read_register (GBR_REGNUM),
a6b0a3f3
AS
1406 (long) read_register (VBR_REGNUM),
1407 (long) read_register (MACL_REGNUM));
1408 printf_filtered (
1409 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1410 (long) read_register (SSR_REGNUM),
1411 (long) read_register (SPC_REGNUM),
617daa0e
CV
1412 (long) read_register (FPUL_REGNUM),
1413 (long) read_register (FPSCR_REGNUM));
1414
1415 printf_filtered
a6b0a3f3 1416 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1417 (long) read_register (0), (long) read_register (1),
1418 (long) read_register (2), (long) read_register (3),
1419 (long) read_register (4), (long) read_register (5),
1420 (long) read_register (6), (long) read_register (7));
a6b0a3f3 1421 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1422 (long) read_register (8), (long) read_register (9),
1423 (long) read_register (10), (long) read_register (11),
1424 (long) read_register (12), (long) read_register (13),
1425 (long) read_register (14), (long) read_register (15));
1426
a6b0a3f3
AS
1427 printf_filtered ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1428 (long) read_register (FP0_REGNUM + 0),
1429 (long) read_register (FP0_REGNUM + 1),
1430 (long) read_register (FP0_REGNUM + 2),
1431 (long) read_register (FP0_REGNUM + 3),
1432 (long) read_register (FP0_REGNUM + 4),
1433 (long) read_register (FP0_REGNUM + 5),
1434 (long) read_register (FP0_REGNUM + 6),
1435 (long) read_register (FP0_REGNUM + 7));
1436 printf_filtered ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1437 (long) read_register (FP0_REGNUM + 8),
1438 (long) read_register (FP0_REGNUM + 9),
1439 (long) read_register (FP0_REGNUM + 10),
1440 (long) read_register (FP0_REGNUM + 11),
1441 (long) read_register (FP0_REGNUM + 12),
1442 (long) read_register (FP0_REGNUM + 13),
1443 (long) read_register (FP0_REGNUM + 14),
1444 (long) read_register (FP0_REGNUM + 15));
2d188dd3
NC
1445}
1446
da962468
CV
1447static void
1448sh2a_show_regs (void)
1449{
1450 int pr = read_register (FPSCR_REGNUM) & 0x80000;
a6b0a3f3 1451 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
da962468
CV
1452 paddr (read_register (PC_REGNUM)),
1453 (long) read_register (SR_REGNUM),
1454 (long) read_register (PR_REGNUM),
a6b0a3f3 1455 (long) read_register (MACH_REGNUM));
da962468 1456
a6b0a3f3
AS
1457 printf_filtered (
1458 " GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
da962468
CV
1459 (long) read_register (GBR_REGNUM),
1460 (long) read_register (VBR_REGNUM),
a6b0a3f3
AS
1461 (long) read_register (TBR_REGNUM),
1462 (long) read_register (MACL_REGNUM));
1463 printf_filtered (
1464 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1465 (long) read_register (SSR_REGNUM),
1466 (long) read_register (SPC_REGNUM),
da962468
CV
1467 (long) read_register (FPUL_REGNUM),
1468 (long) read_register (FPSCR_REGNUM));
1469
a6b0a3f3 1470 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
da962468
CV
1471 (long) read_register (0), (long) read_register (1),
1472 (long) read_register (2), (long) read_register (3),
1473 (long) read_register (4), (long) read_register (5),
1474 (long) read_register (6), (long) read_register (7));
a6b0a3f3 1475 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
da962468
CV
1476 (long) read_register (8), (long) read_register (9),
1477 (long) read_register (10), (long) read_register (11),
1478 (long) read_register (12), (long) read_register (13),
1479 (long) read_register (14), (long) read_register (15));
1480
a6b0a3f3
AS
1481 printf_filtered (
1482 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1483 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
da962468
CV
1484 (long) read_register (FP0_REGNUM + 0),
1485 (long) read_register (FP0_REGNUM + 1),
1486 (long) read_register (FP0_REGNUM + 2),
1487 (long) read_register (FP0_REGNUM + 3),
1488 (long) read_register (FP0_REGNUM + 4),
1489 (long) read_register (FP0_REGNUM + 5),
1490 (long) read_register (FP0_REGNUM + 6),
1491 (long) read_register (FP0_REGNUM + 7));
a6b0a3f3
AS
1492 printf_filtered (
1493 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1494 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
da962468
CV
1495 (long) read_register (FP0_REGNUM + 8),
1496 (long) read_register (FP0_REGNUM + 9),
1497 (long) read_register (FP0_REGNUM + 10),
1498 (long) read_register (FP0_REGNUM + 11),
1499 (long) read_register (FP0_REGNUM + 12),
1500 (long) read_register (FP0_REGNUM + 13),
1501 (long) read_register (FP0_REGNUM + 14),
1502 (long) read_register (FP0_REGNUM + 15));
1503 printf_filtered ("BANK=%-3d\n", (int) read_register (BANK_REGNUM));
a6b0a3f3
AS
1504 printf_filtered (
1505 "R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
da962468
CV
1506 (long) read_register (R0_BANK0_REGNUM + 0),
1507 (long) read_register (R0_BANK0_REGNUM + 1),
1508 (long) read_register (R0_BANK0_REGNUM + 2),
1509 (long) read_register (R0_BANK0_REGNUM + 3),
1510 (long) read_register (R0_BANK0_REGNUM + 4),
1511 (long) read_register (R0_BANK0_REGNUM + 5),
1512 (long) read_register (R0_BANK0_REGNUM + 6),
1513 (long) read_register (R0_BANK0_REGNUM + 7));
a6b0a3f3 1514 printf_filtered ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
da962468
CV
1515 (long) read_register (R0_BANK0_REGNUM + 8),
1516 (long) read_register (R0_BANK0_REGNUM + 9),
1517 (long) read_register (R0_BANK0_REGNUM + 10),
1518 (long) read_register (R0_BANK0_REGNUM + 11),
1519 (long) read_register (R0_BANK0_REGNUM + 12),
1520 (long) read_register (R0_BANK0_REGNUM + 13),
1521 (long) read_register (R0_BANK0_REGNUM + 14));
1522 printf_filtered ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1523 (long) read_register (R0_BANK0_REGNUM + 15),
1524 (long) read_register (R0_BANK0_REGNUM + 16),
1525 (long) read_register (R0_BANK0_REGNUM + 17),
1526 (long) read_register (R0_BANK0_REGNUM + 18),
1527 (long) read_register (R0_BANK0_REGNUM + 19));
1528}
1529
1530static void
1531sh2a_nofpu_show_regs (void)
1532{
1533 int pr = read_register (FPSCR_REGNUM) & 0x80000;
a6b0a3f3 1534 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
da962468
CV
1535 paddr (read_register (PC_REGNUM)),
1536 (long) read_register (SR_REGNUM),
1537 (long) read_register (PR_REGNUM),
a6b0a3f3 1538 (long) read_register (MACH_REGNUM));
da962468 1539
a6b0a3f3
AS
1540 printf_filtered (
1541 " GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
da962468
CV
1542 (long) read_register (GBR_REGNUM),
1543 (long) read_register (VBR_REGNUM),
a6b0a3f3
AS
1544 (long) read_register (TBR_REGNUM),
1545 (long) read_register (MACL_REGNUM));
1546 printf_filtered (
1547 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1548 (long) read_register (SSR_REGNUM),
1549 (long) read_register (SPC_REGNUM),
da962468
CV
1550 (long) read_register (FPUL_REGNUM),
1551 (long) read_register (FPSCR_REGNUM));
1552
a6b0a3f3 1553 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
da962468
CV
1554 (long) read_register (0), (long) read_register (1),
1555 (long) read_register (2), (long) read_register (3),
1556 (long) read_register (4), (long) read_register (5),
1557 (long) read_register (6), (long) read_register (7));
a6b0a3f3 1558 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
da962468
CV
1559 (long) read_register (8), (long) read_register (9),
1560 (long) read_register (10), (long) read_register (11),
1561 (long) read_register (12), (long) read_register (13),
1562 (long) read_register (14), (long) read_register (15));
1563
1564 printf_filtered ("BANK=%-3d\n", (int) read_register (BANK_REGNUM));
a6b0a3f3
AS
1565 printf_filtered (
1566 "R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
da962468
CV
1567 (long) read_register (R0_BANK0_REGNUM + 0),
1568 (long) read_register (R0_BANK0_REGNUM + 1),
1569 (long) read_register (R0_BANK0_REGNUM + 2),
1570 (long) read_register (R0_BANK0_REGNUM + 3),
1571 (long) read_register (R0_BANK0_REGNUM + 4),
1572 (long) read_register (R0_BANK0_REGNUM + 5),
1573 (long) read_register (R0_BANK0_REGNUM + 6),
1574 (long) read_register (R0_BANK0_REGNUM + 7));
a6b0a3f3 1575 printf_filtered ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
da962468
CV
1576 (long) read_register (R0_BANK0_REGNUM + 8),
1577 (long) read_register (R0_BANK0_REGNUM + 9),
1578 (long) read_register (R0_BANK0_REGNUM + 10),
1579 (long) read_register (R0_BANK0_REGNUM + 11),
1580 (long) read_register (R0_BANK0_REGNUM + 12),
1581 (long) read_register (R0_BANK0_REGNUM + 13),
1582 (long) read_register (R0_BANK0_REGNUM + 14));
1583 printf_filtered ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1584 (long) read_register (R0_BANK0_REGNUM + 15),
1585 (long) read_register (R0_BANK0_REGNUM + 16),
1586 (long) read_register (R0_BANK0_REGNUM + 17),
1587 (long) read_register (R0_BANK0_REGNUM + 18),
1588 (long) read_register (R0_BANK0_REGNUM + 19));
1589}
1590
cc17453a 1591static void
fba45db2 1592sh3e_show_regs (void)
cc17453a 1593{
a6b0a3f3 1594 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
cc17453a 1595 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1596 (long) read_register (SR_REGNUM),
1597 (long) read_register (PR_REGNUM),
a6b0a3f3 1598 (long) read_register (MACH_REGNUM));
cc17453a 1599
a6b0a3f3
AS
1600 printf_filtered (
1601 " GBR %08lx VBR %08lx MACL %08lx\n",
cc17453a 1602 (long) read_register (GBR_REGNUM),
a6b0a3f3
AS
1603 (long) read_register (VBR_REGNUM),
1604 (long) read_register (MACL_REGNUM));
1605 printf_filtered (
1606 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
f2ea0907 1607 (long) read_register (SSR_REGNUM),
a6b0a3f3 1608 (long) read_register (SPC_REGNUM),
f2ea0907
CV
1609 (long) read_register (FPUL_REGNUM),
1610 (long) read_register (FPSCR_REGNUM));
c906108c 1611
617daa0e 1612 printf_filtered
a6b0a3f3 1613 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1614 (long) read_register (0), (long) read_register (1),
1615 (long) read_register (2), (long) read_register (3),
1616 (long) read_register (4), (long) read_register (5),
1617 (long) read_register (6), (long) read_register (7));
a6b0a3f3 1618 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1619 (long) read_register (8), (long) read_register (9),
1620 (long) read_register (10), (long) read_register (11),
1621 (long) read_register (12), (long) read_register (13),
1622 (long) read_register (14), (long) read_register (15));
1623
a6b0a3f3
AS
1624 printf_filtered ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1625 (long) read_register (FP0_REGNUM + 0),
1626 (long) read_register (FP0_REGNUM + 1),
1627 (long) read_register (FP0_REGNUM + 2),
1628 (long) read_register (FP0_REGNUM + 3),
1629 (long) read_register (FP0_REGNUM + 4),
1630 (long) read_register (FP0_REGNUM + 5),
1631 (long) read_register (FP0_REGNUM + 6),
1632 (long) read_register (FP0_REGNUM + 7));
1633 printf_filtered ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1634 (long) read_register (FP0_REGNUM + 8),
1635 (long) read_register (FP0_REGNUM + 9),
1636 (long) read_register (FP0_REGNUM + 10),
1637 (long) read_register (FP0_REGNUM + 11),
1638 (long) read_register (FP0_REGNUM + 12),
1639 (long) read_register (FP0_REGNUM + 13),
1640 (long) read_register (FP0_REGNUM + 14),
1641 (long) read_register (FP0_REGNUM + 15));
cc17453a
EZ
1642}
1643
1644static void
fba45db2 1645sh3_dsp_show_regs (void)
c906108c 1646{
a6b0a3f3 1647 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
cc17453a 1648 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1649 (long) read_register (SR_REGNUM),
1650 (long) read_register (PR_REGNUM),
a6b0a3f3 1651 (long) read_register (MACH_REGNUM));
c906108c 1652
a6b0a3f3
AS
1653 printf_filtered (
1654 " GBR %08lx VBR %08lx MACL %08lx\n",
cc17453a 1655 (long) read_register (GBR_REGNUM),
a6b0a3f3
AS
1656 (long) read_register (VBR_REGNUM),
1657 (long) read_register (MACL_REGNUM));
cc17453a 1658
a6b0a3f3 1659 printf_filtered (" SSR %08lx SPC %08lx DSR %08lx\n",
f2ea0907 1660 (long) read_register (SSR_REGNUM),
a6b0a3f3
AS
1661 (long) read_register (SPC_REGNUM),
1662 (long) read_register (DSR_REGNUM));
617daa0e
CV
1663
1664 printf_filtered
a6b0a3f3 1665 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1666 (long) read_register (0), (long) read_register (1),
1667 (long) read_register (2), (long) read_register (3),
1668 (long) read_register (4), (long) read_register (5),
1669 (long) read_register (6), (long) read_register (7));
a6b0a3f3 1670 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1671 (long) read_register (8), (long) read_register (9),
1672 (long) read_register (10), (long) read_register (11),
1673 (long) read_register (12), (long) read_register (13),
1674 (long) read_register (14), (long) read_register (15));
1675
1676 printf_filtered
1677 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1678 (long) read_register (A0G_REGNUM) & 0xff,
1679 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1680 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1681 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
cc17453a 1682 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
f2ea0907
CV
1683 (long) read_register (A1G_REGNUM) & 0xff,
1684 (long) read_register (A1_REGNUM),
1685 (long) read_register (M1_REGNUM),
1686 (long) read_register (X1_REGNUM),
1687 (long) read_register (Y1_REGNUM),
1688 (long) read_register (RE_REGNUM));
c906108c
SS
1689}
1690
cc17453a 1691static void
fba45db2 1692sh4_show_regs (void)
cc17453a 1693{
f2ea0907 1694 int pr = read_register (FPSCR_REGNUM) & 0x80000;
a6b0a3f3 1695 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
cc17453a 1696 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1697 (long) read_register (SR_REGNUM),
1698 (long) read_register (PR_REGNUM),
a6b0a3f3 1699 (long) read_register (MACH_REGNUM));
cc17453a 1700
a6b0a3f3
AS
1701 printf_filtered (
1702 " GBR %08lx VBR %08lx MACL %08lx\n",
cc17453a 1703 (long) read_register (GBR_REGNUM),
a6b0a3f3
AS
1704 (long) read_register (VBR_REGNUM),
1705 (long) read_register (MACL_REGNUM));
1706 printf_filtered (
1707 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
f2ea0907 1708 (long) read_register (SSR_REGNUM),
a6b0a3f3 1709 (long) read_register (SPC_REGNUM),
f2ea0907
CV
1710 (long) read_register (FPUL_REGNUM),
1711 (long) read_register (FPSCR_REGNUM));
cc17453a 1712
a6b0a3f3
AS
1713 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1714 (long) read_register (0), (long) read_register (1),
1715 (long) read_register (2), (long) read_register (3),
1716 (long) read_register (4), (long) read_register (5),
1717 (long) read_register (6), (long) read_register (7));
1718 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1719 (long) read_register (8), (long) read_register (9),
1720 (long) read_register (10), (long) read_register (11),
1721 (long) read_register (12), (long) read_register (13),
1722 (long) read_register (14), (long) read_register (15));
cc17453a 1723
a6b0a3f3
AS
1724 printf_filtered (
1725 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1726 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
cc17453a
EZ
1727 (long) read_register (FP0_REGNUM + 0),
1728 (long) read_register (FP0_REGNUM + 1),
1729 (long) read_register (FP0_REGNUM + 2),
1730 (long) read_register (FP0_REGNUM + 3),
1731 (long) read_register (FP0_REGNUM + 4),
1732 (long) read_register (FP0_REGNUM + 5),
1733 (long) read_register (FP0_REGNUM + 6),
1734 (long) read_register (FP0_REGNUM + 7));
a6b0a3f3
AS
1735 printf_filtered (
1736 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1737 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
cc17453a
EZ
1738 (long) read_register (FP0_REGNUM + 8),
1739 (long) read_register (FP0_REGNUM + 9),
1740 (long) read_register (FP0_REGNUM + 10),
1741 (long) read_register (FP0_REGNUM + 11),
1742 (long) read_register (FP0_REGNUM + 12),
1743 (long) read_register (FP0_REGNUM + 13),
1744 (long) read_register (FP0_REGNUM + 14),
1745 (long) read_register (FP0_REGNUM + 15));
1746}
1747
474e5826
CV
1748static void
1749sh4_nofpu_show_regs (void)
1750{
a6b0a3f3 1751 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
474e5826
CV
1752 paddr (read_register (PC_REGNUM)),
1753 (long) read_register (SR_REGNUM),
1754 (long) read_register (PR_REGNUM),
a6b0a3f3 1755 (long) read_register (MACH_REGNUM));
474e5826 1756
a6b0a3f3
AS
1757 printf_filtered (
1758 " GBR %08lx VBR %08lx MACL %08lx\n",
474e5826 1759 (long) read_register (GBR_REGNUM),
a6b0a3f3
AS
1760 (long) read_register (VBR_REGNUM),
1761 (long) read_register (MACL_REGNUM));
1762 printf_filtered (
1763 " SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
474e5826 1764 (long) read_register (SSR_REGNUM),
a6b0a3f3
AS
1765 (long) read_register (SPC_REGNUM),
1766 (long) read_register (FPUL_REGNUM),
1767 (long) read_register (FPSCR_REGNUM));
474e5826 1768
a6b0a3f3
AS
1769 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1770 (long) read_register (0), (long) read_register (1),
1771 (long) read_register (2), (long) read_register (3),
1772 (long) read_register (4), (long) read_register (5),
1773 (long) read_register (6), (long) read_register (7));
1774 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
474e5826
CV
1775 (long) read_register (8), (long) read_register (9),
1776 (long) read_register (10), (long) read_register (11),
1777 (long) read_register (12), (long) read_register (13),
1778 (long) read_register (14), (long) read_register (15));
1779}
1780
cc17453a 1781static void
fba45db2 1782sh_dsp_show_regs (void)
cc17453a 1783{
a6b0a3f3
AS
1784
1785 printf_filtered (" PC %s SR %08lx PR %08lx MACH %08lx\n",
cc17453a 1786 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1787 (long) read_register (SR_REGNUM),
1788 (long) read_register (PR_REGNUM),
a6b0a3f3 1789 (long) read_register (MACH_REGNUM));
cc17453a 1790
a6b0a3f3
AS
1791 printf_filtered (
1792 " GBR %08lx VBR %08lx DSR %08lx MACL %08lx\n",
cc17453a 1793 (long) read_register (GBR_REGNUM),
a6b0a3f3
AS
1794 (long) read_register (VBR_REGNUM),
1795 (long) read_register (DSR_REGNUM),
1796 (long) read_register (MACL_REGNUM));
617daa0e
CV
1797
1798 printf_filtered
a6b0a3f3 1799 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1800 (long) read_register (0), (long) read_register (1),
1801 (long) read_register (2), (long) read_register (3),
1802 (long) read_register (4), (long) read_register (5),
1803 (long) read_register (6), (long) read_register (7));
a6b0a3f3 1804 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1805 (long) read_register (8), (long) read_register (9),
1806 (long) read_register (10), (long) read_register (11),
1807 (long) read_register (12), (long) read_register (13),
1808 (long) read_register (14), (long) read_register (15));
1809
1810 printf_filtered
1811 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1812 (long) read_register (A0G_REGNUM) & 0xff,
1813 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1814 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1815 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
cc17453a 1816 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
f2ea0907
CV
1817 (long) read_register (A1G_REGNUM) & 0xff,
1818 (long) read_register (A1_REGNUM),
1819 (long) read_register (M1_REGNUM),
1820 (long) read_register (X1_REGNUM),
1821 (long) read_register (Y1_REGNUM),
1822 (long) read_register (RE_REGNUM));
cc17453a
EZ
1823}
1824
a78f21af
AC
1825static void
1826sh_show_regs_command (char *args, int from_tty)
53116e27
EZ
1827{
1828 if (sh_show_regs)
617daa0e 1829 (*sh_show_regs) ();
53116e27
EZ
1830}
1831
da962468
CV
1832static struct type *
1833sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1834{
1835 if ((reg_nr >= FP0_REGNUM
1836 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1837 return builtin_type_float;
1838 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1839 return builtin_type_double;
1840 else
1841 return builtin_type_int;
1842}
1843
cc17453a
EZ
1844/* Return the GDB type object for the "standard" data type
1845 of data in register N. */
cc17453a 1846static struct type *
48db5a3c 1847sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a
EZ
1848{
1849 if ((reg_nr >= FP0_REGNUM
617daa0e 1850 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
cc17453a 1851 return builtin_type_float;
8db62801 1852 else
cc17453a
EZ
1853 return builtin_type_int;
1854}
1855
7f4dbe94
EZ
1856static struct type *
1857sh_sh4_build_float_register_type (int high)
1858{
1859 struct type *temp;
1860
1861 temp = create_range_type (NULL, builtin_type_int, 0, high);
1862 return create_array_type (NULL, builtin_type_float, temp);
1863}
1864
53116e27 1865static struct type *
48db5a3c 1866sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
53116e27
EZ
1867{
1868 if ((reg_nr >= FP0_REGNUM
617daa0e 1869 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
53116e27 1870 return builtin_type_float;
617daa0e 1871 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27 1872 return builtin_type_double;
617daa0e 1873 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27
EZ
1874 return sh_sh4_build_float_register_type (3);
1875 else
1876 return builtin_type_int;
1877}
1878
cc17453a 1879static struct type *
48db5a3c 1880sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a
EZ
1881{
1882 return builtin_type_int;
1883}
1884
dda63807
AS
1885/* Is a register in a reggroup?
1886 The default code in reggroup.c doesn't identify system registers, some
1887 float registers or any of the vector registers.
1888 TODO: sh2a and dsp registers. */
1889int
1890sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1891 struct reggroup *reggroup)
1892{
1893 if (REGISTER_NAME (regnum) == NULL
1894 || *REGISTER_NAME (regnum) == '\0')
1895 return 0;
1896
1897 if (reggroup == float_reggroup
1898 && (regnum == FPUL_REGNUM
1899 || regnum == FPSCR_REGNUM))
1900 return 1;
1901
1902 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1903 {
1904 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1905 return 1;
1906 if (reggroup == general_reggroup)
1907 return 0;
1908 }
1909
1910 if (regnum == VBR_REGNUM
1911 || regnum == SR_REGNUM
1912 || regnum == FPSCR_REGNUM
1913 || regnum == SSR_REGNUM
1914 || regnum == SPC_REGNUM)
1915 {
1916 if (reggroup == system_reggroup)
1917 return 1;
1918 if (reggroup == general_reggroup)
1919 return 0;
1920 }
1921
1922 /* The default code can cope with any other registers. */
1923 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1924}
1925
fb409745
EZ
1926/* On the sh4, the DRi pseudo registers are problematic if the target
1927 is little endian. When the user writes one of those registers, for
1928 instance with 'ser var $dr0=1', we want the double to be stored
1929 like this:
1930 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1931 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1932
1933 This corresponds to little endian byte order & big endian word
1934 order. However if we let gdb write the register w/o conversion, it
1935 will write fr0 and fr1 this way:
1936 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1937 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1938 because it will consider fr0 and fr1 as a single LE stretch of memory.
1939
1940 To achieve what we want we must force gdb to store things in
1941 floatformat_ieee_double_littlebyte_bigword (which is defined in
1942 include/floatformat.h and libiberty/floatformat.c.
1943
1944 In case the target is big endian, there is no problem, the
1945 raw bytes will look like:
1946 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1947 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1948
1949 The other pseudo registers (the FVs) also don't pose a problem
1950 because they are stored as 4 individual FP elements. */
1951
7bd872fe 1952static void
b66ba949
CV
1953sh_register_convert_to_virtual (int regnum, struct type *type,
1954 char *from, char *to)
55ff77ac 1955{
617daa0e 1956 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd
EZ
1957 {
1958 DOUBLEST val;
617daa0e
CV
1959 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1960 from, &val);
55ff77ac 1961 store_typed_floating (to, type, val);
283150cd
EZ
1962 }
1963 else
617daa0e
CV
1964 error
1965 ("sh_register_convert_to_virtual called with non DR register number");
283150cd
EZ
1966}
1967
1968static void
b66ba949
CV
1969sh_register_convert_to_raw (struct type *type, int regnum,
1970 const void *from, void *to)
283150cd 1971{
617daa0e 1972 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd 1973 {
48db5a3c 1974 DOUBLEST val = extract_typed_floating (from, type);
617daa0e
CV
1975 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1976 &val, to);
283150cd
EZ
1977 }
1978 else
8a3fe4f8 1979 error (_("sh_register_convert_to_raw called with non DR register number"));
283150cd
EZ
1980}
1981
1c0159e0
CV
1982/* For vectors of 4 floating point registers. */
1983static int
1984fv_reg_base_num (int fv_regnum)
1985{
1986 int fp_regnum;
1987
617daa0e 1988 fp_regnum = FP0_REGNUM + (fv_regnum - FV0_REGNUM) * 4;
1c0159e0
CV
1989 return fp_regnum;
1990}
1991
1992/* For double precision floating point registers, i.e 2 fp regs.*/
1993static int
1994dr_reg_base_num (int dr_regnum)
1995{
1996 int fp_regnum;
1997
617daa0e 1998 fp_regnum = FP0_REGNUM + (dr_regnum - DR0_REGNUM) * 2;
1c0159e0
CV
1999 return fp_regnum;
2000}
2001
a78f21af 2002static void
d8124050 2003sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 2004 int reg_nr, gdb_byte *buffer)
53116e27
EZ
2005{
2006 int base_regnum, portion;
d9d9c31f 2007 char temp_buffer[MAX_REGISTER_SIZE];
53116e27 2008
9bed62d7
CV
2009 if (reg_nr == PSEUDO_BANK_REGNUM)
2010 regcache_raw_read (regcache, BANK_REGNUM, buffer);
2011 else
617daa0e 2012 if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
7bd872fe
EZ
2013 {
2014 base_regnum = dr_reg_base_num (reg_nr);
2015
617daa0e 2016 /* Build the value in the provided buffer. */
7bd872fe
EZ
2017 /* Read the real regs for which this one is an alias. */
2018 for (portion = 0; portion < 2; portion++)
617daa0e 2019 regcache_raw_read (regcache, base_regnum + portion,
0818c12a 2020 (temp_buffer
617daa0e
CV
2021 + register_size (gdbarch,
2022 base_regnum) * portion));
7bd872fe 2023 /* We must pay attention to the endiannes. */
b66ba949 2024 sh_register_convert_to_virtual (reg_nr,
7b9ee6a8 2025 register_type (gdbarch, reg_nr),
b66ba949 2026 temp_buffer, buffer);
7bd872fe 2027 }
617daa0e 2028 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 2029 {
7bd872fe
EZ
2030 base_regnum = fv_reg_base_num (reg_nr);
2031
2032 /* Read the real regs for which this one is an alias. */
2033 for (portion = 0; portion < 4; portion++)
617daa0e 2034 regcache_raw_read (regcache, base_regnum + portion,
d8124050 2035 ((char *) buffer
617daa0e
CV
2036 + register_size (gdbarch,
2037 base_regnum) * portion));
53116e27
EZ
2038 }
2039}
2040
a78f21af 2041static void
d8124050 2042sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 2043 int reg_nr, const gdb_byte *buffer)
53116e27
EZ
2044{
2045 int base_regnum, portion;
d9d9c31f 2046 char temp_buffer[MAX_REGISTER_SIZE];
53116e27 2047
9bed62d7
CV
2048 if (reg_nr == PSEUDO_BANK_REGNUM)
2049 {
2050 /* When the bank register is written to, the whole register bank
2051 is switched and all values in the bank registers must be read
2052 from the target/sim again. We're just invalidating the regcache
2053 so that a re-read happens next time it's necessary. */
2054 int bregnum;
2055
2056 regcache_raw_write (regcache, BANK_REGNUM, buffer);
2057 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
2058 set_register_cached (bregnum, 0);
2059 }
2060 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27
EZ
2061 {
2062 base_regnum = dr_reg_base_num (reg_nr);
2063
7bd872fe 2064 /* We must pay attention to the endiannes. */
7b9ee6a8 2065 sh_register_convert_to_raw (register_type (gdbarch, reg_nr),
b66ba949 2066 reg_nr, buffer, temp_buffer);
7bd872fe 2067
53116e27
EZ
2068 /* Write the real regs for which this one is an alias. */
2069 for (portion = 0; portion < 2; portion++)
617daa0e 2070 regcache_raw_write (regcache, base_regnum + portion,
0818c12a 2071 (temp_buffer
617daa0e
CV
2072 + register_size (gdbarch,
2073 base_regnum) * portion));
53116e27 2074 }
617daa0e 2075 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27
EZ
2076 {
2077 base_regnum = fv_reg_base_num (reg_nr);
2078
2079 /* Write the real regs for which this one is an alias. */
2080 for (portion = 0; portion < 4; portion++)
d8124050
AC
2081 regcache_raw_write (regcache, base_regnum + portion,
2082 ((char *) buffer
617daa0e
CV
2083 + register_size (gdbarch,
2084 base_regnum) * portion));
53116e27
EZ
2085 }
2086}
2087
2f14585c
JR
2088static int
2089sh_dsp_register_sim_regno (int nr)
2090{
2091 if (legacy_register_sim_regno (nr) < 0)
2092 return legacy_register_sim_regno (nr);
f2ea0907
CV
2093 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
2094 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
2095 if (nr == MOD_REGNUM)
2f14585c 2096 return SIM_SH_MOD_REGNUM;
f2ea0907 2097 if (nr == RS_REGNUM)
2f14585c 2098 return SIM_SH_RS_REGNUM;
f2ea0907 2099 if (nr == RE_REGNUM)
2f14585c 2100 return SIM_SH_RE_REGNUM;
76cd2bd9
CV
2101 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
2102 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2f14585c
JR
2103 return nr;
2104}
1c0159e0 2105
da962468
CV
2106static int
2107sh_sh2a_register_sim_regno (int nr)
2108{
2109 switch (nr)
2110 {
2111 case TBR_REGNUM:
2112 return SIM_SH_TBR_REGNUM;
2113 case IBNR_REGNUM:
2114 return SIM_SH_IBNR_REGNUM;
2115 case IBCR_REGNUM:
2116 return SIM_SH_IBCR_REGNUM;
2117 case BANK_REGNUM:
2118 return SIM_SH_BANK_REGNUM;
2119 case MACLB_REGNUM:
2120 return SIM_SH_BANK_MACL_REGNUM;
2121 case GBRB_REGNUM:
2122 return SIM_SH_BANK_GBR_REGNUM;
2123 case PRB_REGNUM:
2124 return SIM_SH_BANK_PR_REGNUM;
2125 case IVNB_REGNUM:
2126 return SIM_SH_BANK_IVN_REGNUM;
2127 case MACHB_REGNUM:
2128 return SIM_SH_BANK_MACH_REGNUM;
2129 default:
2130 break;
2131 }
2132 return legacy_register_sim_regno (nr);
2133}
2134
357d3800
AS
2135/* Set up the register unwinding such that call-clobbered registers are
2136 not displayed in frames >0 because the true value is not certain.
2137 The 'undefined' registers will show up as 'not available' unless the
2138 CFI says otherwise.
2139
2140 This function is currently set up for SH4 and compatible only. */
2141
2142static void
2143sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1
DM
2144 struct dwarf2_frame_state_reg *reg,
2145 struct frame_info *next_frame)
357d3800
AS
2146{
2147 /* Mark the PC as the destination for the return address. */
2148 if (regnum == PC_REGNUM)
2149 reg->how = DWARF2_FRAME_REG_RA;
2150
2151 /* Mark the stack pointer as the call frame address. */
2152 else if (regnum == SP_REGNUM)
2153 reg->how = DWARF2_FRAME_REG_CFA;
2154
2155 /* The above was taken from the default init_reg in dwarf2-frame.c
2156 while the below is SH specific. */
2157
2158 /* Caller save registers. */
2159 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
2160 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
2161 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
2162 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
2163 || (regnum == MACH_REGNUM)
2164 || (regnum == MACL_REGNUM)
2165 || (regnum == FPUL_REGNUM)
2166 || (regnum == SR_REGNUM))
2167 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2168
2169 /* Callee save registers. */
2170 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
2171 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
2172 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
2173 || (regnum == FV0_REGNUM+3))
2174 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2175
2176 /* Other registers. These are not in the ABI and may or may not
2177 mean anything in frames >0 so don't show them. */
2178 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
2179 || (regnum == GBR_REGNUM)
2180 || (regnum == VBR_REGNUM)
2181 || (regnum == FPSCR_REGNUM)
2182 || (regnum == SSR_REGNUM)
2183 || (regnum == SPC_REGNUM))
2184 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2185}
2186
1c0159e0
CV
2187static struct sh_frame_cache *
2188sh_alloc_frame_cache (void)
2189{
2190 struct sh_frame_cache *cache;
2191 int i;
2192
2193 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
2194
2195 /* Base address. */
2196 cache->base = 0;
2197 cache->saved_sp = 0;
2198 cache->sp_offset = 0;
2199 cache->pc = 0;
2200
2201 /* Frameless until proven otherwise. */
2202 cache->uses_fp = 0;
617daa0e 2203
1c0159e0
CV
2204 /* Saved registers. We initialize these to -1 since zero is a valid
2205 offset (that's where fp is supposed to be stored). */
2206 for (i = 0; i < SH_NUM_REGS; i++)
2207 {
2208 cache->saved_regs[i] = -1;
2209 }
617daa0e 2210
1c0159e0 2211 return cache;
617daa0e 2212}
1c0159e0
CV
2213
2214static struct sh_frame_cache *
2215sh_frame_cache (struct frame_info *next_frame, void **this_cache)
2216{
2217 struct sh_frame_cache *cache;
2218 CORE_ADDR current_pc;
2219 int i;
2220
2221 if (*this_cache)
2222 return *this_cache;
2223
2224 cache = sh_alloc_frame_cache ();
2225 *this_cache = cache;
2226
2227 /* In principle, for normal frames, fp holds the frame pointer,
2228 which holds the base address for the current stack frame.
2229 However, for functions that don't need it, the frame pointer is
2230 optional. For these "frameless" functions the frame pointer is
2231 actually the frame pointer of the calling frame. */
2232 cache->base = frame_unwind_register_unsigned (next_frame, FP_REGNUM);
2233 if (cache->base == 0)
2234 return cache;
2235
93d42b30 2236 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1c0159e0
CV
2237 current_pc = frame_pc_unwind (next_frame);
2238 if (cache->pc != 0)
2239 sh_analyze_prologue (cache->pc, current_pc, cache);
617daa0e 2240
1c0159e0
CV
2241 if (!cache->uses_fp)
2242 {
2243 /* We didn't find a valid frame, which means that CACHE->base
2244 currently holds the frame pointer for our calling frame. If
2245 we're at the start of a function, or somewhere half-way its
2246 prologue, the function's frame probably hasn't been fully
2247 setup yet. Try to reconstruct the base address for the stack
2248 frame by looking at the stack pointer. For truly "frameless"
2249 functions this might work too. */
2250 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2251 }
2252
2253 /* Now that we have the base address for the stack frame we can
2254 calculate the value of sp in the calling frame. */
2255 cache->saved_sp = cache->base + cache->sp_offset;
2256
2257 /* Adjust all the saved registers such that they contain addresses
2258 instead of offsets. */
2259 for (i = 0; i < SH_NUM_REGS; i++)
2260 if (cache->saved_regs[i] != -1)
2261 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
2262
2263 return cache;
2264}
2265
2266static void
2267sh_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2268 int regnum, int *optimizedp,
2269 enum lval_type *lvalp, CORE_ADDR *addrp,
18cf8b5b 2270 int *realnump, gdb_byte *valuep)
1c0159e0
CV
2271{
2272 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2273
2274 gdb_assert (regnum >= 0);
2275
2276 if (regnum == SP_REGNUM && cache->saved_sp)
2277 {
2278 *optimizedp = 0;
2279 *lvalp = not_lval;
2280 *addrp = 0;
2281 *realnump = -1;
2282 if (valuep)
617daa0e
CV
2283 {
2284 /* Store the value. */
2285 store_unsigned_integer (valuep, 4, cache->saved_sp);
2286 }
1c0159e0
CV
2287 return;
2288 }
2289
2290 /* The PC of the previous frame is stored in the PR register of
2291 the current frame. Frob regnum so that we pull the value from
2292 the correct place. */
2293 if (regnum == PC_REGNUM)
2294 regnum = PR_REGNUM;
2295
2296 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
2297 {
2298 *optimizedp = 0;
2299 *lvalp = lval_memory;
2300 *addrp = cache->saved_regs[regnum];
2301 *realnump = -1;
2302 if (valuep)
617daa0e
CV
2303 {
2304 /* Read the value in from memory. */
2305 read_memory (*addrp, valuep,
2306 register_size (current_gdbarch, regnum));
2307 }
1c0159e0
CV
2308 return;
2309 }
2310
00b25ff3
AC
2311 *optimizedp = 0;
2312 *lvalp = lval_register;
2313 *addrp = 0;
2314 *realnump = regnum;
2315 if (valuep)
2316 frame_unwind_register (next_frame, (*realnump), valuep);
1c0159e0
CV
2317}
2318
2319static void
2320sh_frame_this_id (struct frame_info *next_frame, void **this_cache,
617daa0e
CV
2321 struct frame_id *this_id)
2322{
1c0159e0
CV
2323 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2324
2325 /* This marks the outermost frame. */
2326 if (cache->base == 0)
2327 return;
2328
2329 *this_id = frame_id_build (cache->saved_sp, cache->pc);
617daa0e 2330}
1c0159e0 2331
617daa0e 2332static const struct frame_unwind sh_frame_unwind = {
1c0159e0
CV
2333 NORMAL_FRAME,
2334 sh_frame_this_id,
2335 sh_frame_prev_register
2336};
2337
2338static const struct frame_unwind *
2339sh_frame_sniffer (struct frame_info *next_frame)
2340{
2341 return &sh_frame_unwind;
2342}
2343
2344static CORE_ADDR
2345sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2346{
2347 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2348}
2349
2350static CORE_ADDR
2351sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2352{
2353 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2354}
2355
2356static struct frame_id
2357sh_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2358{
2359 return frame_id_build (sh_unwind_sp (gdbarch, next_frame),
2360 frame_pc_unwind (next_frame));
2361}
2362
2363static CORE_ADDR
2364sh_frame_base_address (struct frame_info *next_frame, void **this_cache)
617daa0e 2365{
1c0159e0 2366 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
617daa0e 2367
1c0159e0
CV
2368 return cache->base;
2369}
617daa0e
CV
2370
2371static const struct frame_base sh_frame_base = {
1c0159e0
CV
2372 &sh_frame_unwind,
2373 sh_frame_base_address,
2374 sh_frame_base_address,
2375 sh_frame_base_address
617daa0e 2376};
1c0159e0
CV
2377
2378/* The epilogue is defined here as the area at the end of a function,
2379 either on the `ret' instruction itself or after an instruction which
2380 destroys the function's stack frame. */
2381static int
2382sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2383{
2384 CORE_ADDR func_addr = 0, func_end = 0;
2385
2386 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2387 {
2388 ULONGEST inst;
2389 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2390 for a nop and some fixed data (e.g. big offsets) which are
617daa0e
CV
2391 unfortunately also treated as part of the function (which
2392 means, they are below func_end. */
1c0159e0
CV
2393 CORE_ADDR addr = func_end - 28;
2394 if (addr < func_addr + 4)
617daa0e 2395 addr = func_addr + 4;
1c0159e0
CV
2396 if (pc < addr)
2397 return 0;
2398
2399 /* First search forward until hitting an rts. */
2400 while (addr < func_end
617daa0e 2401 && !IS_RTS (read_memory_unsigned_integer (addr, 2)))
1c0159e0
CV
2402 addr += 2;
2403 if (addr >= func_end)
617daa0e 2404 return 0;
1c0159e0
CV
2405
2406 /* At this point we should find a mov.l @r15+,r14 instruction,
2407 either before or after the rts. If not, then the function has
617daa0e 2408 probably no "normal" epilogue and we bail out here. */
1c0159e0
CV
2409 inst = read_memory_unsigned_integer (addr - 2, 2);
2410 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2)))
617daa0e 2411 addr -= 2;
1c0159e0
CV
2412 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2)))
2413 return 0;
2414
1c0159e0 2415 inst = read_memory_unsigned_integer (addr - 2, 2);
03131d99
CV
2416
2417 /* Step over possible lds.l @r15+,macl. */
2418 if (IS_MACL_LDS (inst))
2419 {
2420 addr -= 2;
2421 inst = read_memory_unsigned_integer (addr - 2, 2);
2422 }
2423
2424 /* Step over possible lds.l @r15+,pr. */
1c0159e0 2425 if (IS_LDS (inst))
617daa0e 2426 {
1c0159e0
CV
2427 addr -= 2;
2428 inst = read_memory_unsigned_integer (addr - 2, 2);
2429 }
2430
2431 /* Step over possible mov r14,r15. */
2432 if (IS_MOV_FP_SP (inst))
617daa0e 2433 {
1c0159e0
CV
2434 addr -= 2;
2435 inst = read_memory_unsigned_integer (addr - 2, 2);
2436 }
2437
2438 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2439 instructions. */
2440 while (addr > func_addr + 4
617daa0e 2441 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
1c0159e0
CV
2442 {
2443 addr -= 2;
2444 inst = read_memory_unsigned_integer (addr - 2, 2);
2445 }
2446
03131d99
CV
2447 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2448 That's allowed for the epilogue. */
2449 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2450 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2451 && addr > func_addr + 6
2452 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2)))
2453 addr -= 4;
2454
1c0159e0
CV
2455 if (pc >= addr)
2456 return 1;
2457 }
2458 return 0;
2459}
ccf00f21 2460\f
cc17453a
EZ
2461
2462static struct gdbarch *
fba45db2 2463sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
cc17453a 2464{
cc17453a 2465 struct gdbarch *gdbarch;
d658f924 2466
55ff77ac
CV
2467 sh_show_regs = sh_generic_show_regs;
2468 switch (info.bfd_arch_info->mach)
2469 {
617daa0e
CV
2470 case bfd_mach_sh2e:
2471 sh_show_regs = sh2e_show_regs;
2472 break;
da962468
CV
2473 case bfd_mach_sh2a:
2474 sh_show_regs = sh2a_show_regs;
2475 break;
2476 case bfd_mach_sh2a_nofpu:
2477 sh_show_regs = sh2a_nofpu_show_regs;
2478 break;
617daa0e
CV
2479 case bfd_mach_sh_dsp:
2480 sh_show_regs = sh_dsp_show_regs;
2481 break;
55ff77ac 2482
617daa0e
CV
2483 case bfd_mach_sh3:
2484 sh_show_regs = sh3_show_regs;
2485 break;
55ff77ac 2486
617daa0e
CV
2487 case bfd_mach_sh3e:
2488 sh_show_regs = sh3e_show_regs;
2489 break;
55ff77ac 2490
617daa0e 2491 case bfd_mach_sh3_dsp:
474e5826 2492 case bfd_mach_sh4al_dsp:
617daa0e
CV
2493 sh_show_regs = sh3_dsp_show_regs;
2494 break;
55ff77ac 2495
617daa0e 2496 case bfd_mach_sh4:
474e5826 2497 case bfd_mach_sh4a:
617daa0e
CV
2498 sh_show_regs = sh4_show_regs;
2499 break;
55ff77ac 2500
474e5826
CV
2501 case bfd_mach_sh4_nofpu:
2502 case bfd_mach_sh4a_nofpu:
2503 sh_show_regs = sh4_nofpu_show_regs;
2504 break;
2505
617daa0e
CV
2506 case bfd_mach_sh5:
2507 sh_show_regs = sh64_show_regs;
2508 /* SH5 is handled entirely in sh64-tdep.c */
2509 return sh64_gdbarch_init (info, arches);
55ff77ac
CV
2510 }
2511
4be87837
DJ
2512 /* If there is already a candidate, use it. */
2513 arches = gdbarch_list_lookup_by_info (arches, &info);
2514 if (arches != NULL)
2515 return arches->gdbarch;
cc17453a
EZ
2516
2517 /* None found, create a new architecture from the information
2518 provided. */
f2ea0907 2519 gdbarch = gdbarch_alloc (&info, NULL);
cc17453a 2520
48db5a3c
CV
2521 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2522 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
ec920329 2523 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c
CV
2524 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2525 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2526 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2527 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
a38d2a54 2528 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2529
f2ea0907 2530 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
a38d2a54 2531 set_gdbarch_sp_regnum (gdbarch, 15);
a38d2a54 2532 set_gdbarch_pc_regnum (gdbarch, 16);
48db5a3c
CV
2533 set_gdbarch_fp0_regnum (gdbarch, -1);
2534 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2535
1c0159e0 2536 set_gdbarch_register_type (gdbarch, sh_default_register_type);
dda63807 2537 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
1c0159e0 2538
eaf90c5d 2539 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
48db5a3c 2540
2bf0cb65 2541 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
2f14585c 2542 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
48db5a3c
CV
2543
2544 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2545
c0409442
CV
2546 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2547 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2548 sh_extract_struct_value_address);
1c0159e0 2549
48db5a3c
CV
2550 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2551 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
48db5a3c 2552
1c0159e0
CV
2553 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2554
48db5a3c
CV
2555 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2556
19f59343 2557 set_gdbarch_frame_align (gdbarch, sh_frame_align);
1c0159e0
CV
2558 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2559 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2560 set_gdbarch_unwind_dummy_id (gdbarch, sh_unwind_dummy_id);
2561 frame_base_set_default (gdbarch, &sh_frame_base);
2562
617daa0e 2563 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
cc17453a 2564
357d3800
AS
2565 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2566
cc17453a 2567 switch (info.bfd_arch_info->mach)
8db62801 2568 {
cc17453a 2569 case bfd_mach_sh:
48db5a3c 2570 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2571 break;
1c0159e0 2572
cc17453a 2573 case bfd_mach_sh2:
48db5a3c 2574 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
617daa0e 2575 break;
1c0159e0 2576
2d188dd3 2577 case bfd_mach_sh2e:
48db5a3c
CV
2578 /* doubles on sh2e and sh3e are actually 4 byte. */
2579 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2580
2581 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
48db5a3c 2582 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2d188dd3 2583 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2584 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2585 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2d188dd3 2586 break;
1c0159e0 2587
da962468
CV
2588 case bfd_mach_sh2a:
2589 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2590 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2591 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2592
2593 set_gdbarch_fp0_regnum (gdbarch, 25);
2594 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2595 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2596 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2597 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
da962468
CV
2598 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2599 break;
2600
2601 case bfd_mach_sh2a_nofpu:
2602 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2603 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2604
2605 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2606 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2607 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2608 break;
2609
cc17453a 2610 case bfd_mach_sh_dsp:
48db5a3c 2611 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2f14585c 2612 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2613 break;
1c0159e0 2614
cc17453a 2615 case bfd_mach_sh3:
4e6cbc38
AS
2616 case bfd_mach_sh3_nommu:
2617 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
48db5a3c 2618 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
cc17453a 2619 break;
1c0159e0 2620
cc17453a 2621 case bfd_mach_sh3e:
4e6cbc38 2622 case bfd_mach_sh2a_or_sh3e:
48db5a3c
CV
2623 /* doubles on sh2e and sh3e are actually 4 byte. */
2624 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2625
2626 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
48db5a3c 2627 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
cc17453a 2628 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2629 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2630 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2631 break;
1c0159e0 2632
cc17453a 2633 case bfd_mach_sh3_dsp:
48db5a3c 2634 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
48db5a3c 2635 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2636 break;
1c0159e0 2637
cc17453a 2638 case bfd_mach_sh4:
474e5826 2639 case bfd_mach_sh4a:
48db5a3c 2640 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
48db5a3c 2641 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
cc17453a 2642 set_gdbarch_fp0_regnum (gdbarch, 25);
da962468 2643 set_gdbarch_num_pseudo_regs (gdbarch, 13);
d8124050
AC
2644 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2645 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2646 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2647 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2648 break;
1c0159e0 2649
474e5826
CV
2650 case bfd_mach_sh4_nofpu:
2651 case bfd_mach_sh4a_nofpu:
4e6cbc38
AS
2652 case bfd_mach_sh4_nommu_nofpu:
2653 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2654 case bfd_mach_sh2a_or_sh4:
474e5826
CV
2655 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2656 break;
2657
2658 case bfd_mach_sh4al_dsp:
2659 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2660 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2661 break;
2662
cc17453a 2663 default:
b58cbbf2 2664 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2665 break;
8db62801 2666 }
cc17453a 2667
4be87837
DJ
2668 /* Hook in ABI-specific overrides, if they have been registered. */
2669 gdbarch_init_osabi (info, gdbarch);
d658f924 2670
1c0159e0
CV
2671 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2672 frame_unwind_append_sniffer (gdbarch, sh_frame_sniffer);
2673
cc17453a 2674 return gdbarch;
8db62801
EZ
2675}
2676
617daa0e 2677extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
a78f21af 2678
c906108c 2679void
fba45db2 2680_initialize_sh_tdep (void)
c906108c
SS
2681{
2682 struct cmd_list_element *c;
617daa0e 2683
f2ea0907 2684 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
c906108c 2685
1bedd215 2686 add_com ("regs", class_vars, sh_show_regs_command, _("Print all registers"));
c906108c 2687}
This page took 0.865361 seconds and 4 git commands to generate.