add autom4te.cache to .cvsignore
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
6aba47ca
DJ
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
55ff77ac
CV
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
55ff77ac
CV
22
23/*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28#include "defs.h"
29#include "frame.h"
c30dc700
CV
30#include "frame-base.h"
31#include "frame-unwind.h"
32#include "dwarf2-frame.h"
55ff77ac 33#include "symtab.h"
55ff77ac
CV
34#include "gdbtypes.h"
35#include "gdbcmd.h"
36#include "gdbcore.h"
37#include "value.h"
38#include "dis-asm.h"
39#include "inferior.h"
40#include "gdb_string.h"
c30dc700 41#include "gdb_assert.h"
55ff77ac 42#include "arch-utils.h"
55ff77ac 43#include "regcache.h"
55ff77ac
CV
44#include "osabi.h"
45
46#include "elf-bfd.h"
55ff77ac
CV
47
48/* sh flags */
49#include "elf/sh.h"
50/* registers numbers shared with the simulator */
51#include "gdb/sim-sh.h"
52
7bb11558 53/* Information that is dependent on the processor variant. */
55ff77ac
CV
54enum sh_abi
55 {
56 SH_ABI_UNKNOWN,
57 SH_ABI_32,
58 SH_ABI_64
59 };
60
61struct gdbarch_tdep
62 {
63 enum sh_abi sh_abi;
64 };
65
c30dc700
CV
66struct sh64_frame_cache
67{
68 /* Base address. */
69 CORE_ADDR base;
70 LONGEST sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 int media_mode;
77
78 /* Saved registers. */
79 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
80 CORE_ADDR saved_sp;
81};
82
55ff77ac
CV
83/* Registers of SH5 */
84enum
85 {
86 R0_REGNUM = 0,
87 DEFAULT_RETURN_REGNUM = 2,
88 STRUCT_RETURN_REGNUM = 2,
89 ARG0_REGNUM = 2,
90 ARGLAST_REGNUM = 9,
91 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 92 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
93 PR_REGNUM = 18,
94 SR_REGNUM = 65,
95 DR0_REGNUM = 141,
96 DR_LAST_REGNUM = 172,
97 /* FPP stands for Floating Point Pair, to avoid confusion with
98 GDB's FP0_REGNUM, which is the number of the first Floating
99 point register. Unfortunately on the sh5, the floating point
7bb11558 100 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
101 FPP0_REGNUM = 173,
102 FPP_LAST_REGNUM = 204,
103 FV0_REGNUM = 205,
104 FV_LAST_REGNUM = 220,
105 R0_C_REGNUM = 221,
106 R_LAST_C_REGNUM = 236,
107 PC_C_REGNUM = 237,
108 GBR_C_REGNUM = 238,
109 MACH_C_REGNUM = 239,
110 MACL_C_REGNUM = 240,
111 PR_C_REGNUM = 241,
112 T_C_REGNUM = 242,
113 FPSCR_C_REGNUM = 243,
114 FPUL_C_REGNUM = 244,
115 FP0_C_REGNUM = 245,
116 FP_LAST_C_REGNUM = 260,
117 DR0_C_REGNUM = 261,
118 DR_LAST_C_REGNUM = 268,
119 FV0_C_REGNUM = 269,
120 FV_LAST_C_REGNUM = 272,
121 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
122 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
123 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
124 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
125 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
126 };
127
55ff77ac 128static const char *
39add00a 129sh64_register_name (int reg_nr)
55ff77ac
CV
130{
131 static char *register_names[] =
132 {
133 /* SH MEDIA MODE (ISA 32) */
134 /* general registers (64-bit) 0-63 */
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
138 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
139 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
141 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
142 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
143
144 /* pc (64-bit) 64 */
145 "pc",
146
147 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
148 "sr", "ssr", "spc",
149
150 /* target registers (64-bit) 68-75*/
151 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
152
153 /* floating point state control register (32-bit) 76 */
154 "fpscr",
155
156 /* single precision floating point registers (32-bit) 77-140*/
157 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
158 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
159 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
160 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
161 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
162 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
163 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
164 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
165
166 /* double precision registers (pseudo) 141-172 */
167 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
168 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
169 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
170 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
171
172 /* floating point pairs (pseudo) 173-204*/
173 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
174 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
175 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
176 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
177
178 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
179 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
180 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
181
182 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
183 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
184 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
185 "pc_c",
186 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
187 "fpscr_c", "fpul_c",
188 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200}
201
202#define NUM_PSEUDO_REGS_SH_MEDIA 80
203#define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205/* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 207 symbol's "info" field is used for this purpose.
55ff77ac
CV
208
209 ELF_MAKE_MSYMBOL_SPECIAL
210 tests whether an ELF symbol is "special", i.e. refers
211 to a 32-bit function, and sets a "special" bit in a
212 minimal symbol to mark it as a 32-bit function
f594e5e9 213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
214
215#define MSYMBOL_IS_SPECIAL(msym) \
216 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
217
218static void
219sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
220{
221 if (msym == NULL)
222 return;
223
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 {
226 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
227 SYMBOL_VALUE_ADDRESS (msym) |= 1;
228 }
229}
230
231/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233#define IS_ISA32_ADDR(addr) ((addr) & 1)
234#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236
237static int
238pc_is_isa32 (bfd_vma memaddr)
239{
240 struct minimal_symbol *sym;
241
242 /* If bit 0 of the address is set, assume this is a
7bb11558 243 ISA32 (shmedia) address. */
55ff77ac
CV
244 if (IS_ISA32_ADDR (memaddr))
245 return 1;
246
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
249 ISA16 or ISA32. */
250 sym = lookup_minimal_symbol_by_pc (memaddr);
251 if (sym)
252 return MSYMBOL_IS_SPECIAL (sym);
253 else
254 return 0;
255}
256
257static const unsigned char *
39add00a 258sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
55ff77ac
CV
259{
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264
265 /* The BRK instruction for shcompact is
266 00000000 00111011
267 which translates in big endian mode to 0x0, 0x3b
268 and in little endian mode to 0x3b, 0x0*/
269
270 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
271 {
272 if (pc_is_isa32 (*pcptr))
273 {
274 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
275 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
276 *lenptr = sizeof (big_breakpoint_media);
277 return big_breakpoint_media;
278 }
279 else
280 {
281 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
282 *lenptr = sizeof (big_breakpoint_compact);
283 return big_breakpoint_compact;
284 }
285 }
286 else
287 {
288 if (pc_is_isa32 (*pcptr))
289 {
290 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
291 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
292 *lenptr = sizeof (little_breakpoint_media);
293 return little_breakpoint_media;
294 }
295 else
296 {
297 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
298 *lenptr = sizeof (little_breakpoint_compact);
299 return little_breakpoint_compact;
300 }
301 }
302}
303
304/* Prologue looks like
305 [mov.l <regs>,@-r15]...
306 [sts.l pr,@-r15]
307 [mov.l r14,@-r15]
308 [mov r15,r14]
309
310 Actually it can be more complicated than this. For instance, with
311 newer gcc's:
312
313 mov.l r14,@-r15
314 add #-12,r15
315 mov r15,r14
316 mov r4,r1
317 mov r5,r2
318 mov.l r6,@(4,r14)
319 mov.l r7,@(8,r14)
320 mov.b r1,@r14
321 mov r14,r1
322 mov r14,r1
323 add #2,r1
324 mov.w r2,@r1
325
326 */
327
328/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
329 with l=1 and n = 18 0110101111110001010010100aaa0000 */
330#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
331
332/* STS.L PR,@-r0 0100000000100010
333 r0-4-->r0, PR-->(r0) */
334#define IS_STS_R0(x) ((x) == 0x4022)
335
336/* STS PR, Rm 0000mmmm00101010
337 PR-->Rm */
338#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
339
340/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
341 Rm-->(dispx4+r15) */
342#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
343
344/* MOV.L R14,@(disp,r15) 000111111110dddd
345 R14-->(dispx4+r15) */
346#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
347
348/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
349 R18-->(dispx8+R14) */
350#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
351
352/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
353 R18-->(dispx8+R15) */
354#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
355
356/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
357 R18-->(dispx4+R15) */
358#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
359
360/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
361 R14-->(dispx8+R15) */
362#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
363
364/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx4+R15) */
366#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
367
368/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
369 R15 + imm --> R15 */
370#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
371
372/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
373 R15 + imm --> R15 */
374#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
375
376/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
377 R15 + R63 --> R14 */
378#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
379
380/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
381 R15 + R63 --> R14 */
382#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
383
384#define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
385
386/* MOV #imm, R0 1110 0000 ssss ssss
387 #imm-->R0 */
388#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
389
390/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
391#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
392
393/* ADD r15,r0 0011 0000 1111 1100
394 r15+r0-->r0 */
395#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
396
397/* MOV.L R14 @-R0 0010 0000 1110 0110
398 R14-->(R0-4), R0-4-->R0 */
399#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
400
401/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 402 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
403/* FIXME: Recognize the float and double register moves too! */
404#define IS_MEDIA_IND_ARG_MOV(x) \
405((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
406
407/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
408 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 409 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
410#define IS_MEDIA_ARG_MOV(x) \
411(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
412 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
413
414/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
415/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
416/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
417/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
418/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
419#define IS_MEDIA_MOV_TO_R14(x) \
420((((x) & 0xfffffc0f) == 0xa0e00000) \
421|| (((x) & 0xfffffc0f) == 0xa4e00000) \
422|| (((x) & 0xfffffc0f) == 0xa8e00000) \
423|| (((x) & 0xfffffc0f) == 0xb4e00000) \
424|| (((x) & 0xfffffc0f) == 0xbce00000))
425
426/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
427 where Rm is r2-r9 */
428#define IS_COMPACT_IND_ARG_MOV(x) \
429((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
430
431/* compact direct arg move!
432 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
433#define IS_COMPACT_ARG_MOV(x) \
434(((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
435
436/* MOV.B Rm, @R14 0010 1110 mmmm 0000
437 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
438#define IS_COMPACT_MOV_TO_R14(x) \
439((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
440
441#define IS_JSR_R0(x) ((x) == 0x400b)
442#define IS_NOP(x) ((x) == 0x0009)
443
444
445/* MOV r15,r14 0110111011110011
446 r15-->r14 */
447#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
448
449/* ADD #imm,r15 01111111iiiiiiii
450 r15+imm-->r15 */
451#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
452
453/* Skip any prologue before the guts of a function */
454
7bb11558
MS
455/* Skip the prologue using the debug information. If this fails we'll
456 fall back on the 'guess' method below. */
55ff77ac
CV
457static CORE_ADDR
458after_prologue (CORE_ADDR pc)
459{
460 struct symtab_and_line sal;
461 CORE_ADDR func_addr, func_end;
462
463 /* If we can not find the symbol in the partial symbol table, then
464 there is no hope we can determine the function's start address
465 with this code. */
466 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
467 return 0;
468
c30dc700 469
55ff77ac
CV
470 /* Get the line associated with FUNC_ADDR. */
471 sal = find_pc_line (func_addr, 0);
472
473 /* There are only two cases to consider. First, the end of the source line
474 is within the function bounds. In that case we return the end of the
475 source line. Second is the end of the source line extends beyond the
476 bounds of the current function. We need to use the slow code to
477 examine instructions in that case. */
478 if (sal.end < func_end)
479 return sal.end;
480 else
481 return 0;
482}
483
484static CORE_ADDR
485look_for_args_moves (CORE_ADDR start_pc, int media_mode)
486{
487 CORE_ADDR here, end;
488 int w;
489 int insn_size = (media_mode ? 4 : 2);
490
491 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
492 {
493 if (media_mode)
494 {
495 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
496 here += insn_size;
497 if (IS_MEDIA_IND_ARG_MOV (w))
498 {
499 /* This must be followed by a store to r14, so the argument
500 is where the debug info says it is. This can happen after
7bb11558 501 the SP has been saved, unfortunately. */
55ff77ac
CV
502
503 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
504 insn_size);
505 here += insn_size;
506 if (IS_MEDIA_MOV_TO_R14 (next_insn))
507 start_pc = here;
508 }
509 else if (IS_MEDIA_ARG_MOV (w))
510 {
7bb11558 511 /* These instructions store directly the argument in r14. */
55ff77ac
CV
512 start_pc = here;
513 }
514 else
515 break;
516 }
517 else
518 {
519 w = read_memory_integer (here, insn_size);
520 w = w & 0xffff;
521 here += insn_size;
522 if (IS_COMPACT_IND_ARG_MOV (w))
523 {
524 /* This must be followed by a store to r14, so the argument
525 is where the debug info says it is. This can happen after
7bb11558 526 the SP has been saved, unfortunately. */
55ff77ac
CV
527
528 int next_insn = 0xffff & read_memory_integer (here, insn_size);
529 here += insn_size;
530 if (IS_COMPACT_MOV_TO_R14 (next_insn))
531 start_pc = here;
532 }
533 else if (IS_COMPACT_ARG_MOV (w))
534 {
7bb11558 535 /* These instructions store directly the argument in r14. */
55ff77ac
CV
536 start_pc = here;
537 }
538 else if (IS_MOVL_R0 (w))
539 {
540 /* There is a function that gcc calls to get the arguments
541 passed correctly to the function. Only after this
542 function call the arguments will be found at the place
543 where they are supposed to be. This happens in case the
544 argument has to be stored into a 64-bit register (for
545 instance doubles, long longs). SHcompact doesn't have
546 access to the full 64-bits, so we store the register in
547 stack slot and store the address of the stack slot in
548 the register, then do a call through a wrapper that
549 loads the memory value into the register. A SHcompact
550 callee calls an argument decoder
551 (GCC_shcompact_incoming_args) that stores the 64-bit
552 value in a stack slot and stores the address of the
553 stack slot in the register. GCC thinks the argument is
554 just passed by transparent reference, but this is only
555 true after the argument decoder is called. Such a call
7bb11558 556 needs to be considered part of the prologue. */
55ff77ac
CV
557
558 /* This must be followed by a JSR @r0 instruction and by
559 a NOP instruction. After these, the prologue is over! */
560
561 int next_insn = 0xffff & read_memory_integer (here, insn_size);
562 here += insn_size;
563 if (IS_JSR_R0 (next_insn))
564 {
565 next_insn = 0xffff & read_memory_integer (here, insn_size);
566 here += insn_size;
567
568 if (IS_NOP (next_insn))
569 start_pc = here;
570 }
571 }
572 else
573 break;
574 }
575 }
576
577 return start_pc;
578}
579
580static CORE_ADDR
581sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
582{
583 CORE_ADDR here, end;
584 int updated_fp = 0;
585 int insn_size = 4;
586 int media_mode = 1;
587
588 if (!start_pc)
589 return 0;
590
591 if (pc_is_isa32 (start_pc) == 0)
592 {
593 insn_size = 2;
594 media_mode = 0;
595 }
596
597 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
598 {
599
600 if (media_mode)
601 {
602 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
603 here += insn_size;
604 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
605 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
606 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
607 {
608 start_pc = here;
609 }
610 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
611 {
612 start_pc = here;
613 updated_fp = 1;
614 }
615 else
616 if (updated_fp)
617 {
618 /* Don't bail out yet, we may have arguments stored in
619 registers here, according to the debug info, so that
7bb11558 620 gdb can print the frames correctly. */
55ff77ac
CV
621 start_pc = look_for_args_moves (here - insn_size, media_mode);
622 break;
623 }
624 }
625 else
626 {
627 int w = 0xffff & read_memory_integer (here, insn_size);
628 here += insn_size;
629
630 if (IS_STS_R0 (w) || IS_STS_PR (w)
631 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
632 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
633 {
634 start_pc = here;
635 }
636 else if (IS_MOV_SP_FP (w))
637 {
638 start_pc = here;
639 updated_fp = 1;
640 }
641 else
642 if (updated_fp)
643 {
644 /* Don't bail out yet, we may have arguments stored in
645 registers here, according to the debug info, so that
7bb11558 646 gdb can print the frames correctly. */
55ff77ac
CV
647 start_pc = look_for_args_moves (here - insn_size, media_mode);
648 break;
649 }
650 }
651 }
652
653 return start_pc;
654}
655
656static CORE_ADDR
c30dc700 657sh64_skip_prologue (CORE_ADDR pc)
55ff77ac
CV
658{
659 CORE_ADDR post_prologue_pc;
660
661 /* See if we can determine the end of the prologue via the symbol table.
662 If so, then return either PC, or the PC after the prologue, whichever
663 is greater. */
664 post_prologue_pc = after_prologue (pc);
665
666 /* If after_prologue returned a useful address, then use it. Else
7bb11558 667 fall back on the instruction skipping code. */
55ff77ac
CV
668 if (post_prologue_pc != 0)
669 return max (pc, post_prologue_pc);
670 else
671 return sh64_skip_prologue_hard_way (pc);
672}
673
55ff77ac
CV
674/* Should call_function allocate stack space for a struct return? */
675static int
c30dc700 676sh64_use_struct_convention (struct type *type)
55ff77ac
CV
677{
678 return (TYPE_LENGTH (type) > 8);
679}
680
55ff77ac
CV
681/* Disassemble an instruction. */
682static int
c30dc700 683gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
55ff77ac
CV
684{
685 info->endian = TARGET_BYTE_ORDER;
686 return print_insn_sh (memaddr, info);
687}
688
7bb11558 689/* For vectors of 4 floating point registers. */
55ff77ac 690static int
c30dc700 691sh64_fv_reg_base_num (int fv_regnum)
55ff77ac
CV
692{
693 int fp_regnum;
694
695 fp_regnum = FP0_REGNUM +
696 (fv_regnum - FV0_REGNUM) * 4;
697 return fp_regnum;
698}
699
700/* For double precision floating point registers, i.e 2 fp regs.*/
701static int
c30dc700 702sh64_dr_reg_base_num (int dr_regnum)
55ff77ac
CV
703{
704 int fp_regnum;
705
706 fp_regnum = FP0_REGNUM +
707 (dr_regnum - DR0_REGNUM) * 2;
708 return fp_regnum;
709}
710
711/* For pairs of floating point registers */
712static int
c30dc700 713sh64_fpp_reg_base_num (int fpp_regnum)
55ff77ac
CV
714{
715 int fp_regnum;
716
717 fp_regnum = FP0_REGNUM +
718 (fpp_regnum - FPP0_REGNUM) * 2;
719 return fp_regnum;
720}
721
55ff77ac
CV
722/* *INDENT-OFF* */
723/*
724 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
725 GDB_REGNUM BASE_REGNUM
726 r0_c 221 0
727 r1_c 222 1
728 r2_c 223 2
729 r3_c 224 3
730 r4_c 225 4
731 r5_c 226 5
732 r6_c 227 6
733 r7_c 228 7
734 r8_c 229 8
735 r9_c 230 9
736 r10_c 231 10
737 r11_c 232 11
738 r12_c 233 12
739 r13_c 234 13
740 r14_c 235 14
741 r15_c 236 15
742
743 pc_c 237 64
744 gbr_c 238 16
745 mach_c 239 17
746 macl_c 240 17
747 pr_c 241 18
748 t_c 242 19
749 fpscr_c 243 76
750 fpul_c 244 109
751
752 fr0_c 245 77
753 fr1_c 246 78
754 fr2_c 247 79
755 fr3_c 248 80
756 fr4_c 249 81
757 fr5_c 250 82
758 fr6_c 251 83
759 fr7_c 252 84
760 fr8_c 253 85
761 fr9_c 254 86
762 fr10_c 255 87
763 fr11_c 256 88
764 fr12_c 257 89
765 fr13_c 258 90
766 fr14_c 259 91
767 fr15_c 260 92
768
769 dr0_c 261 77
770 dr2_c 262 79
771 dr4_c 263 81
772 dr6_c 264 83
773 dr8_c 265 85
774 dr10_c 266 87
775 dr12_c 267 89
776 dr14_c 268 91
777
778 fv0_c 269 77
779 fv4_c 270 81
780 fv8_c 271 85
781 fv12_c 272 91
782*/
783/* *INDENT-ON* */
784static int
785sh64_compact_reg_base_num (int reg_nr)
786{
c30dc700 787 int base_regnum = reg_nr;
55ff77ac
CV
788
789 /* general register N maps to general register N */
790 if (reg_nr >= R0_C_REGNUM
791 && reg_nr <= R_LAST_C_REGNUM)
792 base_regnum = reg_nr - R0_C_REGNUM;
793
794 /* floating point register N maps to floating point register N */
795 else if (reg_nr >= FP0_C_REGNUM
796 && reg_nr <= FP_LAST_C_REGNUM)
797 base_regnum = reg_nr - FP0_C_REGNUM + FP0_REGNUM;
798
799 /* double prec register N maps to base regnum for double prec register N */
800 else if (reg_nr >= DR0_C_REGNUM
801 && reg_nr <= DR_LAST_C_REGNUM)
c30dc700 802 base_regnum = sh64_dr_reg_base_num (DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
803
804 /* vector N maps to base regnum for vector register N */
805 else if (reg_nr >= FV0_C_REGNUM
806 && reg_nr <= FV_LAST_C_REGNUM)
c30dc700 807 base_regnum = sh64_fv_reg_base_num (FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
808
809 else if (reg_nr == PC_C_REGNUM)
810 base_regnum = PC_REGNUM;
811
812 else if (reg_nr == GBR_C_REGNUM)
813 base_regnum = 16;
814
815 else if (reg_nr == MACH_C_REGNUM
816 || reg_nr == MACL_C_REGNUM)
817 base_regnum = 17;
818
819 else if (reg_nr == PR_C_REGNUM)
c30dc700 820 base_regnum = PR_REGNUM;
55ff77ac
CV
821
822 else if (reg_nr == T_C_REGNUM)
823 base_regnum = 19;
824
825 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 826 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
827
828 else if (reg_nr == FPUL_C_REGNUM)
829 base_regnum = FP0_REGNUM + 32;
830
831 return base_regnum;
832}
833
55ff77ac
CV
834static int
835sign_extend (int value, int bits)
836{
837 value = value & ((1 << bits) - 1);
838 return (value & (1 << (bits - 1))
839 ? value | (~((1 << bits) - 1))
840 : value);
841}
842
843static void
c30dc700
CV
844sh64_analyze_prologue (struct gdbarch *gdbarch,
845 struct sh64_frame_cache *cache,
846 CORE_ADDR func_pc,
847 CORE_ADDR current_pc)
55ff77ac 848{
c30dc700 849 int reg_nr;
55ff77ac
CV
850 int pc;
851 int opc;
852 int insn;
853 int r0_val = 0;
55ff77ac
CV
854 int insn_size;
855 int gdb_register_number;
856 int register_number;
c30dc700 857 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
55ff77ac 858
c30dc700 859 cache->sp_offset = 0;
55ff77ac
CV
860
861 /* Loop around examining the prologue insns until we find something
862 that does not appear to be part of the prologue. But give up
7bb11558 863 after 20 of them, since we're getting silly then. */
55ff77ac 864
c30dc700 865 pc = func_pc;
55ff77ac 866
c30dc700
CV
867 if (cache->media_mode)
868 insn_size = 4;
55ff77ac 869 else
c30dc700 870 insn_size = 2;
55ff77ac 871
c30dc700
CV
872 opc = pc + (insn_size * 28);
873 if (opc > current_pc)
874 opc = current_pc;
875 for ( ; pc <= opc; pc += insn_size)
55ff77ac 876 {
c30dc700
CV
877 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
878 : pc,
55ff77ac
CV
879 insn_size);
880
c30dc700 881 if (!cache->media_mode)
55ff77ac
CV
882 {
883 if (IS_STS_PR (insn))
884 {
885 int next_insn = read_memory_integer (pc + insn_size, insn_size);
886 if (IS_MOV_TO_R15 (next_insn))
887 {
c30dc700
CV
888 cache->saved_regs[PR_REGNUM] =
889 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
890 pc += insn_size;
891 }
892 }
c30dc700 893
55ff77ac 894 else if (IS_MOV_R14 (insn))
c30dc700
CV
895 cache->saved_regs[MEDIA_FP_REGNUM] =
896 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
897
898 else if (IS_MOV_R0 (insn))
899 {
900 /* Put in R0 the offset from SP at which to store some
901 registers. We are interested in this value, because it
902 will tell us where the given registers are stored within
903 the frame. */
904 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
905 }
c30dc700 906
55ff77ac
CV
907 else if (IS_ADD_SP_R0 (insn))
908 {
909 /* This instruction still prepares r0, but we don't care.
7bb11558 910 We already have the offset in r0_val. */
55ff77ac 911 }
c30dc700 912
55ff77ac
CV
913 else if (IS_STS_R0 (insn))
914 {
915 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
c30dc700 916 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 917 r0_val -= 4;
55ff77ac 918 }
c30dc700 919
55ff77ac
CV
920 else if (IS_MOV_R14_R0 (insn))
921 {
922 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
c30dc700
CV
923 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
924 - (r0_val - 4);
55ff77ac
CV
925 r0_val -= 4;
926 }
927
928 else if (IS_ADD_SP (insn))
c30dc700
CV
929 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
930
55ff77ac
CV
931 else if (IS_MOV_SP_FP (insn))
932 break;
933 }
934 else
935 {
c30dc700
CV
936 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
937 cache->sp_offset -=
938 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
939
940 else if (IS_STQ_R18_R15 (insn))
c30dc700
CV
941 cache->saved_regs[PR_REGNUM] =
942 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
55ff77ac
CV
943
944 else if (IS_STL_R18_R15 (insn))
c30dc700
CV
945 cache->saved_regs[PR_REGNUM] =
946 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
55ff77ac
CV
947
948 else if (IS_STQ_R14_R15 (insn))
c30dc700
CV
949 cache->saved_regs[MEDIA_FP_REGNUM] =
950 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
55ff77ac
CV
951
952 else if (IS_STL_R14_R15 (insn))
c30dc700
CV
953 cache->saved_regs[MEDIA_FP_REGNUM] =
954 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
55ff77ac
CV
955
956 else if (IS_MOV_SP_FP_MEDIA (insn))
957 break;
958 }
959 }
960
c30dc700
CV
961 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
962 cache->uses_fp = 1;
55ff77ac
CV
963}
964
965static CORE_ADDR
07be497a 966sh64_extract_struct_value_address (struct regcache *regcache)
55ff77ac 967{
07be497a
AC
968 /* FIXME: cagney/2004-01-17: Does the ABI guarantee that the return
969 address regster is preserved across function calls? Probably
970 not, making this function wrong. */
971 ULONGEST val;
972 regcache_raw_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &val);
973 return val;
55ff77ac
CV
974}
975
976static CORE_ADDR
c30dc700 977sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 978{
c30dc700 979 return sp & ~7;
55ff77ac
CV
980}
981
c30dc700 982/* Function: push_dummy_call
55ff77ac
CV
983 Setup the function arguments for calling a function in the inferior.
984
85a453d5 985 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
986 which are dedicated for passing function arguments. Up to the first
987 four arguments (depending on size) may go into these registers.
988 The rest go on the stack.
989
990 Arguments that are smaller than 4 bytes will still take up a whole
991 register or a whole 32-bit word on the stack, and will be
992 right-justified in the register or the stack word. This includes
993 chars, shorts, and small aggregate types.
994
995 Arguments that are larger than 4 bytes may be split between two or
996 more registers. If there are not enough registers free, an argument
997 may be passed partly in a register (or registers), and partly on the
998 stack. This includes doubles, long longs, and larger aggregates.
999 As far as I know, there is no upper limit to the size of aggregates
1000 that will be passed in this way; in other words, the convention of
1001 passing a pointer to a large aggregate instead of a copy is not used.
1002
1003 An exceptional case exists for struct arguments (and possibly other
1004 aggregates such as arrays) if the size is larger than 4 bytes but
1005 not a multiple of 4 bytes. In this case the argument is never split
1006 between the registers and the stack, but instead is copied in its
1007 entirety onto the stack, AND also copied into as many registers as
1008 there is room for. In other words, space in registers permitting,
1009 two copies of the same argument are passed in. As far as I can tell,
1010 only the one on the stack is used, although that may be a function
1011 of the level of compiler optimization. I suspect this is a compiler
1012 bug. Arguments of these odd sizes are left-justified within the
1013 word (as opposed to arguments smaller than 4 bytes, which are
1014 right-justified).
1015
1016 If the function is to return an aggregate type such as a struct, it
1017 is either returned in the normal return value register R0 (if its
1018 size is no greater than one byte), or else the caller must allocate
1019 space into which the callee will copy the return value (if the size
1020 is greater than one byte). In this case, a pointer to the return
1021 value location is passed into the callee in register R2, which does
1022 not displace any of the other arguments passed in via registers R4
1023 to R7. */
1024
1025/* R2-R9 for integer types and integer equivalent (char, pointers) and
1026 non-scalar (struct, union) elements (even if the elements are
1027 floats).
1028 FR0-FR11 for single precision floating point (float)
1029 DR0-DR10 for double precision floating point (double)
1030
1031 If a float is argument number 3 (for instance) and arguments number
1032 1,2, and 4 are integer, the mapping will be:
1033 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1034
1035 If a float is argument number 10 (for instance) and arguments number
1036 1 through 10 are integer, the mapping will be:
1037 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1038 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1039 I.e. there is hole in the stack.
1040
1041 Different rules apply for variable arguments functions, and for functions
7bb11558 1042 for which the prototype is not known. */
55ff77ac
CV
1043
1044static CORE_ADDR
c30dc700
CV
1045sh64_push_dummy_call (struct gdbarch *gdbarch,
1046 struct value *function,
1047 struct regcache *regcache,
1048 CORE_ADDR bp_addr,
1049 int nargs, struct value **args,
1050 CORE_ADDR sp, int struct_return,
1051 CORE_ADDR struct_addr)
55ff77ac
CV
1052{
1053 int stack_offset, stack_alloc;
1054 int int_argreg;
1055 int float_argreg;
1056 int double_argreg;
1057 int float_arg_index = 0;
1058 int double_arg_index = 0;
1059 int argnum;
1060 struct type *type;
1061 CORE_ADDR regval;
1062 char *val;
1063 char valbuf[8];
1064 char valbuf_tmp[8];
1065 int len;
1066 int argreg_size;
1067 int fp_args[12];
55ff77ac
CV
1068
1069 memset (fp_args, 0, sizeof (fp_args));
1070
1071 /* first force sp to a 8-byte alignment */
c30dc700 1072 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1073
1074 /* The "struct return pointer" pseudo-argument has its own dedicated
1075 register */
1076
1077 if (struct_return)
c30dc700
CV
1078 regcache_cooked_write_unsigned (regcache,
1079 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac
CV
1080
1081 /* Now make sure there's space on the stack */
1082 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1083 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
55ff77ac
CV
1084 sp -= stack_alloc; /* make room on stack for args */
1085
1086 /* Now load as many as possible of the first arguments into
1087 registers, and push the rest onto the stack. There are 64 bytes
1088 in eight registers available. Loop thru args from first to last. */
1089
1090 int_argreg = ARG0_REGNUM;
1091 float_argreg = FP0_REGNUM;
1092 double_argreg = DR0_REGNUM;
1093
1094 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1095 {
4991999e 1096 type = value_type (args[argnum]);
55ff77ac
CV
1097 len = TYPE_LENGTH (type);
1098 memset (valbuf, 0, sizeof (valbuf));
1099
1100 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1101 {
7bb11558 1102 argreg_size = register_size (current_gdbarch, int_argreg);
55ff77ac
CV
1103
1104 if (len < argreg_size)
1105 {
1106 /* value gets right-justified in the register or stack word */
1107 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1108 memcpy (valbuf + argreg_size - len,
0fd88904 1109 (char *) value_contents (args[argnum]), len);
55ff77ac 1110 else
0fd88904 1111 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
55ff77ac
CV
1112
1113 val = valbuf;
1114 }
1115 else
0fd88904 1116 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1117
1118 while (len > 0)
1119 {
1120 if (int_argreg > ARGLAST_REGNUM)
1121 {
1122 /* must go on the stack */
079c8cd0
CV
1123 write_memory (sp + stack_offset, (const bfd_byte *) val,
1124 argreg_size);
55ff77ac
CV
1125 stack_offset += 8;/*argreg_size;*/
1126 }
1127 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1128 That's because some *&^%$ things get passed on the stack
1129 AND in the registers! */
1130 if (int_argreg <= ARGLAST_REGNUM)
1131 {
1132 /* there's room in a register */
1133 regval = extract_unsigned_integer (val, argreg_size);
c30dc700 1134 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
55ff77ac
CV
1135 }
1136 /* Store the value 8 bytes at a time. This means that
1137 things larger than 8 bytes may go partly in registers
1138 and partly on the stack. FIXME: argreg is incremented
7bb11558 1139 before we use its size. */
55ff77ac
CV
1140 len -= argreg_size;
1141 val += argreg_size;
1142 int_argreg++;
1143 }
1144 }
1145 else
1146 {
0fd88904 1147 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1148 if (len == 4)
1149 {
1150 /* Where is it going to be stored? */
1151 while (fp_args[float_arg_index])
1152 float_arg_index ++;
1153
1154 /* Now float_argreg points to the register where it
1155 should be stored. Are we still within the allowed
1156 register set? */
1157 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1158 {
1159 /* Goes in FR0...FR11 */
c30dc700
CV
1160 regcache_cooked_write (regcache,
1161 FP0_REGNUM + float_arg_index,
1162 val);
55ff77ac 1163 fp_args[float_arg_index] = 1;
7bb11558 1164 /* Skip the corresponding general argument register. */
55ff77ac
CV
1165 int_argreg ++;
1166 }
1167 else
1168 ;
1169 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1170 necessary spilling on the stack. */
55ff77ac
CV
1171
1172 }
1173 else if (len == 8)
1174 {
1175 /* Where is it going to be stored? */
1176 while (fp_args[double_arg_index])
1177 double_arg_index += 2;
1178 /* Now double_argreg points to the register
1179 where it should be stored.
1180 Are we still within the allowed register set? */
1181 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1182 {
1183 /* Goes in DR0...DR10 */
1184 /* The numbering of the DRi registers is consecutive,
7bb11558 1185 i.e. includes odd numbers. */
55ff77ac 1186 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1187 int regnum = DR0_REGNUM + double_register_offset;
1188 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1189 fp_args[double_arg_index] = 1;
1190 fp_args[double_arg_index + 1] = 1;
7bb11558 1191 /* Skip the corresponding general argument register. */
55ff77ac
CV
1192 int_argreg ++;
1193 }
1194 else
1195 ;
1196 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1197 necessary spilling on the stack. */
55ff77ac
CV
1198 }
1199 }
1200 }
c30dc700
CV
1201 /* Store return address. */
1202 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1203
c30dc700
CV
1204 /* Update stack pointer. */
1205 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
55ff77ac 1206
55ff77ac
CV
1207 return sp;
1208}
1209
1210/* Find a function's return value in the appropriate registers (in
1211 regbuf), and copy it into valbuf. Extract from an array REGBUF
1212 containing the (raw) register state a function return value of type
1213 TYPE, and copy that, in virtual format, into VALBUF. */
1214static void
c30dc700
CV
1215sh64_extract_return_value (struct type *type, struct regcache *regcache,
1216 void *valbuf)
55ff77ac 1217{
55ff77ac 1218 int len = TYPE_LENGTH (type);
55ff77ac
CV
1219
1220 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1221 {
1222 if (len == 4)
1223 {
1224 /* Return value stored in FP0_REGNUM */
c30dc700 1225 regcache_raw_read (regcache, FP0_REGNUM, valbuf);
55ff77ac
CV
1226 }
1227 else if (len == 8)
1228 {
1229 /* return value stored in DR0_REGNUM */
1230 DOUBLEST val;
18cf8b5b 1231 gdb_byte buf[8];
55ff77ac 1232
18cf8b5b 1233 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac
CV
1234
1235 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1236 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1237 buf, &val);
55ff77ac
CV
1238 else
1239 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1240 buf, &val);
7bb11558 1241 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1242 }
1243 }
1244 else
1245 {
1246 if (len <= 8)
1247 {
c30dc700
CV
1248 int offset;
1249 char buf[8];
55ff77ac 1250 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1251 at the most significant end. */
c30dc700
CV
1252 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1253
55ff77ac 1254 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c30dc700
CV
1255 offset = register_size (current_gdbarch, DEFAULT_RETURN_REGNUM)
1256 - len;
55ff77ac 1257 else
c30dc700
CV
1258 offset = 0;
1259 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1260 }
1261 else
1262 error ("bad size for return value");
1263 }
1264}
1265
1266/* Write into appropriate registers a function return value
1267 of type TYPE, given in virtual format.
1268 If the architecture is sh4 or sh3e, store a function's return value
1269 in the R0 general register or in the FP0 floating point register,
1270 depending on the type of the return value. In all the other cases
7bb11558 1271 the result is stored in r0, left-justified. */
55ff77ac
CV
1272
1273static void
c30dc700
CV
1274sh64_store_return_value (struct type *type, struct regcache *regcache,
1275 const void *valbuf)
55ff77ac 1276{
7bb11558 1277 char buf[64]; /* more than enough... */
55ff77ac
CV
1278 int len = TYPE_LENGTH (type);
1279
1280 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1281 {
c30dc700
CV
1282 int i, regnum = FP0_REGNUM;
1283 for (i = 0; i < len; i += 4)
1284 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1285 regcache_raw_write (regcache, regnum++,
1286 (char *) valbuf + len - 4 - i);
1287 else
1288 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
55ff77ac
CV
1289 }
1290 else
1291 {
1292 int return_register = DEFAULT_RETURN_REGNUM;
1293 int offset = 0;
1294
7bb11558 1295 if (len <= register_size (current_gdbarch, return_register))
55ff77ac 1296 {
7bb11558
MS
1297 /* Pad with zeros. */
1298 memset (buf, 0, register_size (current_gdbarch, return_register));
55ff77ac 1299 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
7bb11558
MS
1300 offset = 0; /*register_size (current_gdbarch,
1301 return_register) - len;*/
55ff77ac 1302 else
7bb11558 1303 offset = register_size (current_gdbarch, return_register) - len;
55ff77ac
CV
1304
1305 memcpy (buf + offset, valbuf, len);
c30dc700 1306 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1307 }
1308 else
c30dc700 1309 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1310 }
1311}
1312
c30dc700
CV
1313static enum return_value_convention
1314sh64_return_value (struct gdbarch *gdbarch, struct type *type,
1315 struct regcache *regcache,
18cf8b5b 1316 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1317{
1318 if (sh64_use_struct_convention (type))
1319 return RETURN_VALUE_STRUCT_CONVENTION;
1320 if (writebuf)
1321 sh64_store_return_value (type, regcache, writebuf);
1322 else if (readbuf)
1323 sh64_extract_return_value (type, regcache, readbuf);
1324 return RETURN_VALUE_REGISTER_CONVENTION;
1325}
1326
55ff77ac
CV
1327static void
1328sh64_show_media_regs (void)
1329{
1330 int i;
55ff77ac
CV
1331
1332 printf_filtered ("PC=%s SR=%016llx \n",
1333 paddr (read_register (PC_REGNUM)),
1334 (long long) read_register (SR_REGNUM));
1335
1336 printf_filtered ("SSR=%016llx SPC=%016llx \n",
1337 (long long) read_register (SSR_REGNUM),
1338 (long long) read_register (SPC_REGNUM));
1339 printf_filtered ("FPSCR=%016lx\n ",
1340 (long) read_register (FPSCR_REGNUM));
1341
1342 for (i = 0; i < 64; i = i + 4)
1343 printf_filtered ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1344 i, i + 3,
1345 (long long) read_register (i + 0),
1346 (long long) read_register (i + 1),
1347 (long long) read_register (i + 2),
1348 (long long) read_register (i + 3));
1349
1350 printf_filtered ("\n");
1351
1352 for (i = 0; i < 64; i = i + 8)
1353 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1354 i, i + 7,
1355 (long) read_register (FP0_REGNUM + i + 0),
1356 (long) read_register (FP0_REGNUM + i + 1),
1357 (long) read_register (FP0_REGNUM + i + 2),
1358 (long) read_register (FP0_REGNUM + i + 3),
1359 (long) read_register (FP0_REGNUM + i + 4),
1360 (long) read_register (FP0_REGNUM + i + 5),
1361 (long) read_register (FP0_REGNUM + i + 6),
1362 (long) read_register (FP0_REGNUM + i + 7));
1363}
1364
1365static void
1366sh64_show_compact_regs (void)
1367{
1368 int i;
55ff77ac
CV
1369
1370 printf_filtered ("PC=%s \n",
1371 paddr (read_register (PC_C_REGNUM)));
1372
1373 printf_filtered ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1374 (long) read_register (GBR_C_REGNUM),
1375 (long) read_register (MACH_C_REGNUM),
1376 (long) read_register (MACL_C_REGNUM),
1377 (long) read_register (PR_C_REGNUM),
1378 (long) read_register (T_C_REGNUM));
1379 printf_filtered ("FPSCR=%08lx FPUL=%08lx\n",
1380 (long) read_register (FPSCR_C_REGNUM),
1381 (long) read_register (FPUL_C_REGNUM));
1382
1383 for (i = 0; i < 16; i = i + 4)
1384 printf_filtered ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1385 i, i + 3,
1386 (long) read_register (i + 0),
1387 (long) read_register (i + 1),
1388 (long) read_register (i + 2),
1389 (long) read_register (i + 3));
1390
1391 printf_filtered ("\n");
1392
1393 for (i = 0; i < 16; i = i + 8)
1394 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1395 i, i + 7,
1396 (long) read_register (FP0_REGNUM + i + 0),
1397 (long) read_register (FP0_REGNUM + i + 1),
1398 (long) read_register (FP0_REGNUM + i + 2),
1399 (long) read_register (FP0_REGNUM + i + 3),
1400 (long) read_register (FP0_REGNUM + i + 4),
1401 (long) read_register (FP0_REGNUM + i + 5),
1402 (long) read_register (FP0_REGNUM + i + 6),
1403 (long) read_register (FP0_REGNUM + i + 7));
1404}
1405
7bb11558
MS
1406/* FIXME!!! This only shows the registers for shmedia, excluding the
1407 pseudo registers. */
55ff77ac
CV
1408void
1409sh64_show_regs (void)
1410{
1411 if (deprecated_selected_frame
1412 && pc_is_isa32 (get_frame_pc (deprecated_selected_frame)))
1413 sh64_show_media_regs ();
1414 else
1415 sh64_show_compact_regs ();
1416}
1417
1418/* *INDENT-OFF* */
1419/*
1420 SH MEDIA MODE (ISA 32)
1421 general registers (64-bit) 0-63
14220 r0, r1, r2, r3, r4, r5, r6, r7,
142364 r8, r9, r10, r11, r12, r13, r14, r15,
1424128 r16, r17, r18, r19, r20, r21, r22, r23,
1425192 r24, r25, r26, r27, r28, r29, r30, r31,
1426256 r32, r33, r34, r35, r36, r37, r38, r39,
1427320 r40, r41, r42, r43, r44, r45, r46, r47,
1428384 r48, r49, r50, r51, r52, r53, r54, r55,
1429448 r56, r57, r58, r59, r60, r61, r62, r63,
1430
1431 pc (64-bit) 64
1432512 pc,
1433
1434 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1435520 sr, ssr, spc,
1436
1437 target registers (64-bit) 68-75
1438544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1439
1440 floating point state control register (32-bit) 76
1441608 fpscr,
1442
1443 single precision floating point registers (32-bit) 77-140
1444612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1445644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1446676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1447708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1448740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1449772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1450804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1451836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1452
1453TOTAL SPACE FOR REGISTERS: 868 bytes
1454
1455From here on they are all pseudo registers: no memory allocated.
1456REGISTER_BYTE returns the register byte for the base register.
1457
1458 double precision registers (pseudo) 141-172
1459 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1460 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1461 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1462 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1463
1464 floating point pairs (pseudo) 173-204
1465 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1466 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1467 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1468 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1469
1470 floating point vectors (4 floating point regs) (pseudo) 205-220
1471 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1472 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1473
1474 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1475 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1476 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1477 pc_c,
1478 gbr_c, mach_c, macl_c, pr_c, t_c,
1479 fpscr_c, fpul_c,
1480 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1481 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1482 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1483 fv0_c, fv4_c, fv8_c, fv12_c
1484*/
55ff77ac 1485
55ff77ac 1486static struct type *
39add00a 1487sh64_build_float_register_type (int high)
55ff77ac
CV
1488{
1489 struct type *temp;
1490
1491 temp = create_range_type (NULL, builtin_type_int, 0, high);
1492 return create_array_type (NULL, builtin_type_float, temp);
1493}
1494
7bb11558
MS
1495/* Return the GDB type object for the "standard" data type
1496 of data in register REG_NR. */
55ff77ac 1497static struct type *
7bb11558 1498sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1499{
55ff77ac
CV
1500 if ((reg_nr >= FP0_REGNUM
1501 && reg_nr <= FP_LAST_REGNUM)
1502 || (reg_nr >= FP0_C_REGNUM
1503 && reg_nr <= FP_LAST_C_REGNUM))
1504 return builtin_type_float;
1505 else if ((reg_nr >= DR0_REGNUM
1506 && reg_nr <= DR_LAST_REGNUM)
1507 || (reg_nr >= DR0_C_REGNUM
1508 && reg_nr <= DR_LAST_C_REGNUM))
1509 return builtin_type_double;
1510 else if (reg_nr >= FPP0_REGNUM
1511 && reg_nr <= FPP_LAST_REGNUM)
39add00a 1512 return sh64_build_float_register_type (1);
55ff77ac
CV
1513 else if ((reg_nr >= FV0_REGNUM
1514 && reg_nr <= FV_LAST_REGNUM)
1515 ||(reg_nr >= FV0_C_REGNUM
1516 && reg_nr <= FV_LAST_C_REGNUM))
39add00a 1517 return sh64_build_float_register_type (3);
55ff77ac
CV
1518 else if (reg_nr == FPSCR_REGNUM)
1519 return builtin_type_int;
1520 else if (reg_nr >= R0_C_REGNUM
1521 && reg_nr < FP0_C_REGNUM)
1522 return builtin_type_int;
1523 else
1524 return builtin_type_long_long;
1525}
1526
1527static void
39add00a 1528sh64_register_convert_to_virtual (int regnum, struct type *type,
55ff77ac
CV
1529 char *from, char *to)
1530{
55ff77ac
CV
1531 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
1532 {
7bb11558
MS
1533 /* It is a no-op. */
1534 memcpy (to, from, register_size (current_gdbarch, regnum));
55ff77ac
CV
1535 return;
1536 }
1537
1538 if ((regnum >= DR0_REGNUM
1539 && regnum <= DR_LAST_REGNUM)
1540 || (regnum >= DR0_C_REGNUM
1541 && regnum <= DR_LAST_C_REGNUM))
1542 {
1543 DOUBLEST val;
7bb11558
MS
1544 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1545 from, &val);
39add00a 1546 store_typed_floating (to, type, val);
55ff77ac
CV
1547 }
1548 else
39add00a 1549 error ("sh64_register_convert_to_virtual called with non DR register number");
55ff77ac
CV
1550}
1551
1552static void
39add00a 1553sh64_register_convert_to_raw (struct type *type, int regnum,
55ff77ac
CV
1554 const void *from, void *to)
1555{
55ff77ac
CV
1556 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
1557 {
7bb11558
MS
1558 /* It is a no-op. */
1559 memcpy (to, from, register_size (current_gdbarch, regnum));
55ff77ac
CV
1560 return;
1561 }
1562
1563 if ((regnum >= DR0_REGNUM
1564 && regnum <= DR_LAST_REGNUM)
1565 || (regnum >= DR0_C_REGNUM
1566 && regnum <= DR_LAST_C_REGNUM))
1567 {
1568 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
7bb11558
MS
1569 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1570 &val, to);
55ff77ac
CV
1571 }
1572 else
39add00a 1573 error ("sh64_register_convert_to_raw called with non DR register number");
55ff77ac
CV
1574}
1575
1576static void
1577sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1578 int reg_nr, gdb_byte *buffer)
55ff77ac
CV
1579{
1580 int base_regnum;
1581 int portion;
1582 int offset = 0;
1583 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1584
1585 if (reg_nr >= DR0_REGNUM
1586 && reg_nr <= DR_LAST_REGNUM)
1587 {
c30dc700 1588 base_regnum = sh64_dr_reg_base_num (reg_nr);
55ff77ac 1589
7bb11558 1590 /* Build the value in the provided buffer. */
55ff77ac 1591 /* DR regs are double precision registers obtained by
7bb11558 1592 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1593 for (portion = 0; portion < 2; portion++)
1594 regcache_raw_read (regcache, base_regnum + portion,
1595 (temp_buffer
7bb11558 1596 + register_size (gdbarch, base_regnum) * portion));
55ff77ac 1597
7bb11558 1598 /* We must pay attention to the endianness. */
39add00a 1599 sh64_register_convert_to_virtual (reg_nr,
7b9ee6a8 1600 register_type (gdbarch, reg_nr),
39add00a 1601 temp_buffer, buffer);
55ff77ac
CV
1602
1603 }
1604
1605 else if (reg_nr >= FPP0_REGNUM
1606 && reg_nr <= FPP_LAST_REGNUM)
1607 {
c30dc700 1608 base_regnum = sh64_fpp_reg_base_num (reg_nr);
55ff77ac 1609
7bb11558 1610 /* Build the value in the provided buffer. */
55ff77ac 1611 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1612 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1613 for (portion = 0; portion < 2; portion++)
1614 regcache_raw_read (regcache, base_regnum + portion,
1615 ((char *) buffer
7bb11558 1616 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1617 }
1618
1619 else if (reg_nr >= FV0_REGNUM
1620 && reg_nr <= FV_LAST_REGNUM)
1621 {
c30dc700 1622 base_regnum = sh64_fv_reg_base_num (reg_nr);
55ff77ac 1623
7bb11558 1624 /* Build the value in the provided buffer. */
55ff77ac 1625 /* FV regs are vectors of single precision registers obtained by
7bb11558 1626 concatenating 4 single precision floating point registers. */
55ff77ac
CV
1627 for (portion = 0; portion < 4; portion++)
1628 regcache_raw_read (regcache, base_regnum + portion,
1629 ((char *) buffer
7bb11558 1630 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1631 }
1632
1633 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1634 else if (reg_nr >= R0_C_REGNUM
1635 && reg_nr <= T_C_REGNUM)
1636 {
1637 base_regnum = sh64_compact_reg_base_num (reg_nr);
1638
7bb11558 1639 /* Build the value in the provided buffer. */
55ff77ac
CV
1640 regcache_raw_read (regcache, base_regnum, temp_buffer);
1641 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1642 offset = 4;
1643 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1644 }
1645
1646 else if (reg_nr >= FP0_C_REGNUM
1647 && reg_nr <= FP_LAST_C_REGNUM)
1648 {
1649 base_regnum = sh64_compact_reg_base_num (reg_nr);
1650
7bb11558 1651 /* Build the value in the provided buffer. */
55ff77ac 1652 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1653 they have the same size and endianness. */
55ff77ac
CV
1654 regcache_raw_read (regcache, base_regnum, buffer);
1655 }
1656
1657 else if (reg_nr >= DR0_C_REGNUM
1658 && reg_nr <= DR_LAST_C_REGNUM)
1659 {
1660 base_regnum = sh64_compact_reg_base_num (reg_nr);
1661
1662 /* DR_C regs are double precision registers obtained by
7bb11558 1663 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1664 for (portion = 0; portion < 2; portion++)
1665 regcache_raw_read (regcache, base_regnum + portion,
1666 (temp_buffer
7bb11558 1667 + register_size (gdbarch, base_regnum) * portion));
55ff77ac 1668
7bb11558 1669 /* We must pay attention to the endianness. */
39add00a 1670 sh64_register_convert_to_virtual (reg_nr,
7b9ee6a8 1671 register_type (gdbarch, reg_nr),
39add00a 1672 temp_buffer, buffer);
55ff77ac
CV
1673 }
1674
1675 else if (reg_nr >= FV0_C_REGNUM
1676 && reg_nr <= FV_LAST_C_REGNUM)
1677 {
1678 base_regnum = sh64_compact_reg_base_num (reg_nr);
1679
7bb11558 1680 /* Build the value in the provided buffer. */
55ff77ac 1681 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1682 concatenating 4 single precision floating point registers. */
55ff77ac
CV
1683 for (portion = 0; portion < 4; portion++)
1684 regcache_raw_read (regcache, base_regnum + portion,
1685 ((char *) buffer
7bb11558 1686 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1687 }
1688
1689 else if (reg_nr == FPSCR_C_REGNUM)
1690 {
1691 int fpscr_base_regnum;
1692 int sr_base_regnum;
1693 unsigned int fpscr_value;
1694 unsigned int sr_value;
1695 unsigned int fpscr_c_value;
1696 unsigned int fpscr_c_part1_value;
1697 unsigned int fpscr_c_part2_value;
1698
1699 fpscr_base_regnum = FPSCR_REGNUM;
1700 sr_base_regnum = SR_REGNUM;
1701
7bb11558 1702 /* Build the value in the provided buffer. */
55ff77ac
CV
1703 /* FPSCR_C is a very weird register that contains sparse bits
1704 from the FPSCR and the SR architectural registers.
1705 Specifically: */
1706 /* *INDENT-OFF* */
1707 /*
1708 FPSRC_C bit
1709 0 Bit 0 of FPSCR
1710 1 reserved
1711 2-17 Bit 2-18 of FPSCR
1712 18-20 Bits 12,13,14 of SR
1713 21-31 reserved
1714 */
1715 /* *INDENT-ON* */
1716 /* Get FPSCR into a local buffer */
1717 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
7bb11558 1718 /* Get value as an int. */
55ff77ac
CV
1719 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1720 /* Get SR into a local buffer */
1721 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
7bb11558 1722 /* Get value as an int. */
55ff77ac 1723 sr_value = extract_unsigned_integer (temp_buffer, 4);
7bb11558 1724 /* Build the new value. */
55ff77ac
CV
1725 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1726 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1727 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1728 /* Store that in out buffer!!! */
1729 store_unsigned_integer (buffer, 4, fpscr_c_value);
7bb11558 1730 /* FIXME There is surely an endianness gotcha here. */
55ff77ac
CV
1731 }
1732
1733 else if (reg_nr == FPUL_C_REGNUM)
1734 {
1735 base_regnum = sh64_compact_reg_base_num (reg_nr);
1736
1737 /* FPUL_C register is floating point register 32,
7bb11558 1738 same size, same endianness. */
55ff77ac
CV
1739 regcache_raw_read (regcache, base_regnum, buffer);
1740 }
1741}
1742
1743static void
1744sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1745 int reg_nr, const gdb_byte *buffer)
55ff77ac
CV
1746{
1747 int base_regnum, portion;
1748 int offset;
1749 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1750
1751 if (reg_nr >= DR0_REGNUM
1752 && reg_nr <= DR_LAST_REGNUM)
1753 {
c30dc700 1754 base_regnum = sh64_dr_reg_base_num (reg_nr);
7bb11558 1755 /* We must pay attention to the endianness. */
7b9ee6a8 1756 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
39add00a
MS
1757 reg_nr,
1758 buffer, temp_buffer);
55ff77ac
CV
1759
1760 /* Write the real regs for which this one is an alias. */
1761 for (portion = 0; portion < 2; portion++)
1762 regcache_raw_write (regcache, base_regnum + portion,
1763 (temp_buffer
7bb11558
MS
1764 + register_size (gdbarch,
1765 base_regnum) * portion));
55ff77ac
CV
1766 }
1767
1768 else if (reg_nr >= FPP0_REGNUM
1769 && reg_nr <= FPP_LAST_REGNUM)
1770 {
c30dc700 1771 base_regnum = sh64_fpp_reg_base_num (reg_nr);
55ff77ac
CV
1772
1773 /* Write the real regs for which this one is an alias. */
1774 for (portion = 0; portion < 2; portion++)
1775 regcache_raw_write (regcache, base_regnum + portion,
1776 ((char *) buffer
7bb11558
MS
1777 + register_size (gdbarch,
1778 base_regnum) * portion));
55ff77ac
CV
1779 }
1780
1781 else if (reg_nr >= FV0_REGNUM
1782 && reg_nr <= FV_LAST_REGNUM)
1783 {
c30dc700 1784 base_regnum = sh64_fv_reg_base_num (reg_nr);
55ff77ac
CV
1785
1786 /* Write the real regs for which this one is an alias. */
1787 for (portion = 0; portion < 4; portion++)
1788 regcache_raw_write (regcache, base_regnum + portion,
1789 ((char *) buffer
7bb11558
MS
1790 + register_size (gdbarch,
1791 base_regnum) * portion));
55ff77ac
CV
1792 }
1793
1794 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1795 register but only 4 bytes of it. */
1796 else if (reg_nr >= R0_C_REGNUM
1797 && reg_nr <= T_C_REGNUM)
1798 {
1799 base_regnum = sh64_compact_reg_base_num (reg_nr);
7bb11558 1800 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
55ff77ac
CV
1801 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1802 offset = 4;
1803 else
1804 offset = 0;
1805 /* Let's read the value of the base register into a temporary
1806 buffer, so that overwriting the last four bytes with the new
7bb11558 1807 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac
CV
1808 regcache_raw_read (regcache, base_regnum, temp_buffer);
1809 /* Write as an 8 byte quantity */
1810 memcpy (temp_buffer + offset, buffer, 4);
1811 regcache_raw_write (regcache, base_regnum, temp_buffer);
1812 }
1813
1814 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
7bb11558 1815 registers. Both are 4 bytes. */
55ff77ac
CV
1816 else if (reg_nr >= FP0_C_REGNUM
1817 && reg_nr <= FP_LAST_C_REGNUM)
1818 {
1819 base_regnum = sh64_compact_reg_base_num (reg_nr);
1820 regcache_raw_write (regcache, base_regnum, buffer);
1821 }
1822
1823 else if (reg_nr >= DR0_C_REGNUM
1824 && reg_nr <= DR_LAST_C_REGNUM)
1825 {
1826 base_regnum = sh64_compact_reg_base_num (reg_nr);
1827 for (portion = 0; portion < 2; portion++)
1828 {
7bb11558 1829 /* We must pay attention to the endianness. */
7b9ee6a8 1830 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
39add00a
MS
1831 reg_nr,
1832 buffer, temp_buffer);
55ff77ac
CV
1833
1834 regcache_raw_write (regcache, base_regnum + portion,
1835 (temp_buffer
7bb11558
MS
1836 + register_size (gdbarch,
1837 base_regnum) * portion));
55ff77ac
CV
1838 }
1839 }
1840
1841 else if (reg_nr >= FV0_C_REGNUM
1842 && reg_nr <= FV_LAST_C_REGNUM)
1843 {
1844 base_regnum = sh64_compact_reg_base_num (reg_nr);
1845
1846 for (portion = 0; portion < 4; portion++)
1847 {
1848 regcache_raw_write (regcache, base_regnum + portion,
1849 ((char *) buffer
7bb11558
MS
1850 + register_size (gdbarch,
1851 base_regnum) * portion));
55ff77ac
CV
1852 }
1853 }
1854
1855 else if (reg_nr == FPSCR_C_REGNUM)
1856 {
1857 int fpscr_base_regnum;
1858 int sr_base_regnum;
1859 unsigned int fpscr_value;
1860 unsigned int sr_value;
1861 unsigned int old_fpscr_value;
1862 unsigned int old_sr_value;
1863 unsigned int fpscr_c_value;
1864 unsigned int fpscr_mask;
1865 unsigned int sr_mask;
1866
1867 fpscr_base_regnum = FPSCR_REGNUM;
1868 sr_base_regnum = SR_REGNUM;
1869
1870 /* FPSCR_C is a very weird register that contains sparse bits
1871 from the FPSCR and the SR architectural registers.
1872 Specifically: */
1873 /* *INDENT-OFF* */
1874 /*
1875 FPSRC_C bit
1876 0 Bit 0 of FPSCR
1877 1 reserved
1878 2-17 Bit 2-18 of FPSCR
1879 18-20 Bits 12,13,14 of SR
1880 21-31 reserved
1881 */
1882 /* *INDENT-ON* */
7bb11558 1883 /* Get value as an int. */
55ff77ac
CV
1884 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1885
7bb11558 1886 /* Build the new values. */
55ff77ac
CV
1887 fpscr_mask = 0x0003fffd;
1888 sr_mask = 0x001c0000;
1889
1890 fpscr_value = fpscr_c_value & fpscr_mask;
1891 sr_value = (fpscr_value & sr_mask) >> 6;
1892
1893 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1894 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1895 old_fpscr_value &= 0xfffc0002;
1896 fpscr_value |= old_fpscr_value;
1897 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1898 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1899
1900 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1901 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1902 old_sr_value &= 0xffff8fff;
1903 sr_value |= old_sr_value;
1904 store_unsigned_integer (temp_buffer, 4, sr_value);
1905 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1906 }
1907
1908 else if (reg_nr == FPUL_C_REGNUM)
1909 {
1910 base_regnum = sh64_compact_reg_base_num (reg_nr);
1911 regcache_raw_write (regcache, base_regnum, buffer);
1912 }
1913}
1914
55ff77ac 1915/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1916 shmedia REGISTERS. */
1917/* Control registers, compact mode. */
55ff77ac 1918static void
c30dc700
CV
1919sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1920 int cr_c_regnum)
55ff77ac
CV
1921{
1922 switch (cr_c_regnum)
1923 {
c30dc700
CV
1924 case PC_C_REGNUM:
1925 fprintf_filtered (file, "pc_c\t0x%08x\n",
1926 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1927 break;
c30dc700
CV
1928 case GBR_C_REGNUM:
1929 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1930 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1931 break;
c30dc700
CV
1932 case MACH_C_REGNUM:
1933 fprintf_filtered (file, "mach_c\t0x%08x\n",
1934 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1935 break;
c30dc700
CV
1936 case MACL_C_REGNUM:
1937 fprintf_filtered (file, "macl_c\t0x%08x\n",
1938 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1939 break;
c30dc700
CV
1940 case PR_C_REGNUM:
1941 fprintf_filtered (file, "pr_c\t0x%08x\n",
1942 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1943 break;
c30dc700
CV
1944 case T_C_REGNUM:
1945 fprintf_filtered (file, "t_c\t0x%08x\n",
1946 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1947 break;
c30dc700
CV
1948 case FPSCR_C_REGNUM:
1949 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1950 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1951 break;
c30dc700
CV
1952 case FPUL_C_REGNUM:
1953 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1954 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1955 break;
1956 }
1957}
1958
1959static void
c30dc700
CV
1960sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1961 struct frame_info *frame, int regnum)
55ff77ac 1962{ /* do values for FP (float) regs */
079c8cd0 1963 unsigned char *raw_buffer;
55ff77ac
CV
1964 double flt; /* double extracted from raw hex data */
1965 int inv;
1966 int j;
1967
7bb11558 1968 /* Allocate space for the float. */
079c8cd0 1969 raw_buffer = (unsigned char *) alloca (register_size (gdbarch, FP0_REGNUM));
55ff77ac
CV
1970
1971 /* Get the data in raw format. */
c30dc700 1972 if (!frame_register_read (frame, regnum, raw_buffer))
55ff77ac
CV
1973 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
1974
1975 /* Get the register as a number */
1976 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1977
7bb11558 1978 /* Print the name and some spaces. */
55ff77ac
CV
1979 fputs_filtered (REGISTER_NAME (regnum), file);
1980 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
1981
7bb11558 1982 /* Print the value. */
55ff77ac
CV
1983 if (inv)
1984 fprintf_filtered (file, "<invalid float>");
1985 else
1986 fprintf_filtered (file, "%-10.9g", flt);
1987
7bb11558 1988 /* Print the fp register as hex. */
55ff77ac
CV
1989 fprintf_filtered (file, "\t(raw 0x");
1990 for (j = 0; j < register_size (gdbarch, regnum); j++)
1991 {
aa1ee363 1992 int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
55ff77ac 1993 : register_size (gdbarch, regnum) - 1 - j;
079c8cd0 1994 fprintf_filtered (file, "%02x", raw_buffer[idx]);
55ff77ac
CV
1995 }
1996 fprintf_filtered (file, ")");
1997 fprintf_filtered (file, "\n");
1998}
1999
2000static void
c30dc700
CV
2001sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2002 struct frame_info *frame, int regnum)
55ff77ac 2003{
7bb11558 2004 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac
CV
2005
2006 if (regnum < NUM_REGS
c30dc700
CV
2007 || regnum >= NUM_REGS + NUM_PSEUDO_REGS_SH_MEDIA
2008 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 2009 internal_error (__FILE__, __LINE__,
e2e0b3e5 2010 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 2011
c30dc700
CV
2012 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2013 {
2014 int fp_regnum = sh64_dr_reg_base_num (regnum);
2015 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2016 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2017 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2018 }
55ff77ac 2019
c30dc700
CV
2020 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2021 {
2022 int fp_regnum = sh64_compact_reg_base_num (regnum);
2023 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2024 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2025 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2026 }
55ff77ac 2027
c30dc700
CV
2028 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2029 {
2030 int fp_regnum = sh64_fv_reg_base_num (regnum);
2031 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2032 regnum - FV0_REGNUM,
2033 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2034 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2035 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2036 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2037 }
55ff77ac 2038
c30dc700
CV
2039 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2040 {
2041 int fp_regnum = sh64_compact_reg_base_num (regnum);
2042 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2043 regnum - FV0_C_REGNUM,
2044 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2045 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2046 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2047 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2048 }
2049
2050 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2051 {
2052 int fp_regnum = sh64_fpp_reg_base_num (regnum);
2053 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2054 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2055 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2056 }
2057
2058 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2059 {
2060 int c_regnum = sh64_compact_reg_base_num (regnum);
2061 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2062 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2063 }
2064 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2065 /* This should work also for pseudoregs. */
c30dc700
CV
2066 sh64_do_fp_register (gdbarch, file, frame, regnum);
2067 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2068 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2069}
2070
2071static void
c30dc700
CV
2072sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2073 struct frame_info *frame, int regnum)
55ff77ac 2074{
079c8cd0 2075 unsigned char raw_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
2076
2077 fputs_filtered (REGISTER_NAME (regnum), file);
2078 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
2079
2080 /* Get the data in raw format. */
c30dc700 2081 if (!frame_register_read (frame, regnum, raw_buffer))
55ff77ac
CV
2082 fprintf_filtered (file, "*value not available*\n");
2083
7b9ee6a8 2084 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
55ff77ac
CV
2085 file, 'x', 1, 0, Val_pretty_default);
2086 fprintf_filtered (file, "\t");
7b9ee6a8 2087 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
55ff77ac
CV
2088 file, 0, 1, 0, Val_pretty_default);
2089 fprintf_filtered (file, "\n");
2090}
2091
2092static void
c30dc700
CV
2093sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2094 struct frame_info *frame, int regnum)
55ff77ac
CV
2095{
2096 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
2097 internal_error (__FILE__, __LINE__,
e2e0b3e5 2098 _("Invalid register number %d\n"), regnum);
55ff77ac
CV
2099
2100 else if (regnum >= 0 && regnum < NUM_REGS)
2101 {
7b9ee6a8 2102 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2103 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2104 else
c30dc700 2105 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2106 }
2107
2108 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c30dc700 2109 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2110}
2111
2112static void
c30dc700
CV
2113sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2114 struct frame_info *frame, int regnum,
2115 int fpregs)
55ff77ac
CV
2116{
2117 if (regnum != -1) /* do one specified register */
2118 {
2119 if (*(REGISTER_NAME (regnum)) == '\0')
2120 error ("Not a valid register for the current processor type");
2121
c30dc700 2122 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2123 }
2124 else
2125 /* do all (or most) registers */
2126 {
2127 regnum = 0;
2128 while (regnum < NUM_REGS)
2129 {
2130 /* If the register name is empty, it is undefined for this
2131 processor, so don't display anything. */
2132 if (REGISTER_NAME (regnum) == NULL
2133 || *(REGISTER_NAME (regnum)) == '\0')
2134 {
2135 regnum++;
2136 continue;
2137 }
2138
7b9ee6a8 2139 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2140 == TYPE_CODE_FLT)
55ff77ac
CV
2141 {
2142 if (fpregs)
2143 {
2144 /* true for "INFO ALL-REGISTERS" command */
c30dc700 2145 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2146 regnum ++;
2147 }
2148 else
2149 regnum += FP_LAST_REGNUM - FP0_REGNUM; /* skip FP regs */
2150 }
2151 else
2152 {
c30dc700 2153 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2154 regnum++;
2155 }
2156 }
2157
2158 if (fpregs)
2159 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2160 {
c30dc700 2161 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2162 regnum++;
2163 }
2164 }
2165}
2166
2167static void
c30dc700
CV
2168sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2169 struct ui_file *file,
2170 struct frame_info *frame, int regnum,
2171 int fpregs)
55ff77ac 2172{
55ff77ac
CV
2173 if (regnum != -1) /* do one specified register */
2174 {
2175 if (*(REGISTER_NAME (regnum)) == '\0')
2176 error ("Not a valid register for the current processor type");
2177
2178 if (regnum >= 0 && regnum < R0_C_REGNUM)
2179 error ("Not a valid register for the current processor mode.");
2180
c30dc700 2181 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2182 }
2183 else
2184 /* do all compact registers */
2185 {
2186 regnum = R0_C_REGNUM;
2187 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2188 {
c30dc700 2189 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2190 regnum++;
2191 }
2192 }
2193}
2194
2195static void
c30dc700
CV
2196sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2197 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2198{
c30dc700
CV
2199 if (pc_is_isa32 (get_frame_pc (frame)))
2200 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2201 else
c30dc700 2202 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2203}
2204
c30dc700
CV
2205static struct sh64_frame_cache *
2206sh64_alloc_frame_cache (void)
2207{
2208 struct sh64_frame_cache *cache;
2209 int i;
2210
2211 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2212
2213 /* Base address. */
2214 cache->base = 0;
2215 cache->saved_sp = 0;
2216 cache->sp_offset = 0;
2217 cache->pc = 0;
55ff77ac 2218
c30dc700
CV
2219 /* Frameless until proven otherwise. */
2220 cache->uses_fp = 0;
55ff77ac 2221
c30dc700
CV
2222 /* Saved registers. We initialize these to -1 since zero is a valid
2223 offset (that's where fp is supposed to be stored). */
2224 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2225 {
2226 cache->saved_regs[i] = -1;
2227 }
2228
2229 return cache;
2230}
2231
2232static struct sh64_frame_cache *
2233sh64_frame_cache (struct frame_info *next_frame, void **this_cache)
55ff77ac 2234{
c30dc700
CV
2235 struct sh64_frame_cache *cache;
2236 CORE_ADDR current_pc;
2237 int i;
55ff77ac 2238
c30dc700
CV
2239 if (*this_cache)
2240 return *this_cache;
2241
2242 cache = sh64_alloc_frame_cache ();
2243 *this_cache = cache;
2244
2245 current_pc = frame_pc_unwind (next_frame);
2246 cache->media_mode = pc_is_isa32 (current_pc);
2247
2248 /* In principle, for normal frames, fp holds the frame pointer,
2249 which holds the base address for the current stack frame.
2250 However, for functions that don't need it, the frame pointer is
2251 optional. For these "frameless" functions the frame pointer is
2252 actually the frame pointer of the calling frame. */
2253 cache->base = frame_unwind_register_unsigned (next_frame, MEDIA_FP_REGNUM);
2254 if (cache->base == 0)
2255 return cache;
2256
2257 cache->pc = frame_func_unwind (next_frame);
2258 if (cache->pc != 0)
2259 sh64_analyze_prologue (current_gdbarch, cache, cache->pc, current_pc);
2260
2261 if (!cache->uses_fp)
55ff77ac 2262 {
c30dc700
CV
2263 /* We didn't find a valid frame, which means that CACHE->base
2264 currently holds the frame pointer for our calling frame. If
2265 we're at the start of a function, or somewhere half-way its
2266 prologue, the function's frame probably hasn't been fully
2267 setup yet. Try to reconstruct the base address for the stack
2268 frame by looking at the stack pointer. For truly "frameless"
2269 functions this might work too. */
2270 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2271 }
55ff77ac 2272
c30dc700
CV
2273 /* Now that we have the base address for the stack frame we can
2274 calculate the value of sp in the calling frame. */
2275 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2276
c30dc700
CV
2277 /* Adjust all the saved registers such that they contain addresses
2278 instead of offsets. */
2279 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2280 if (cache->saved_regs[i] != -1)
2281 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2282
c30dc700
CV
2283 return cache;
2284}
55ff77ac 2285
c30dc700
CV
2286static void
2287sh64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2288 int regnum, int *optimizedp,
2289 enum lval_type *lvalp, CORE_ADDR *addrp,
18cf8b5b 2290 int *realnump, gdb_byte *valuep)
c30dc700
CV
2291{
2292 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
55ff77ac 2293
c30dc700 2294 gdb_assert (regnum >= 0);
55ff77ac 2295
c30dc700
CV
2296 if (regnum == SP_REGNUM && cache->saved_sp)
2297 {
2298 *optimizedp = 0;
2299 *lvalp = not_lval;
2300 *addrp = 0;
2301 *realnump = -1;
2302 if (valuep)
2303 {
2304 /* Store the value. */
2305 store_unsigned_integer (valuep,
2306 register_size (current_gdbarch, SP_REGNUM),
2307 cache->saved_sp);
2308 }
2309 return;
2310 }
2311
2312 /* The PC of the previous frame is stored in the PR register of
2313 the current frame. Frob regnum so that we pull the value from
2314 the correct place. */
2315 if (regnum == PC_REGNUM)
2316 regnum = PR_REGNUM;
2317
2318 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2319 {
2320 int reg_size = register_size (current_gdbarch, regnum);
2321 int size;
55ff77ac 2322
c30dc700
CV
2323 *optimizedp = 0;
2324 *lvalp = lval_memory;
2325 *addrp = cache->saved_regs[regnum];
2326 *realnump = -1;
2327 if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32
2328 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2329 size = 4;
2330 else
2331 size = reg_size;
2332 if (valuep)
2333 {
2334 memset (valuep, 0, reg_size);
2335 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
2336 read_memory (*addrp, valuep, size);
2337 else
2338 read_memory (*addrp, (char *) valuep + reg_size - size, size);
2339 }
2340 return;
55ff77ac
CV
2341 }
2342
c30dc700
CV
2343 *optimizedp = 0;
2344 *lvalp = lval_register;
2345 *addrp = 0;
2346 *realnump = regnum;
2347 if (valuep)
2348 frame_unwind_register (next_frame, (*realnump), valuep);
55ff77ac 2349}
55ff77ac 2350
c30dc700
CV
2351static void
2352sh64_frame_this_id (struct frame_info *next_frame, void **this_cache,
2353 struct frame_id *this_id)
2354{
2355 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2356
2357 /* This marks the outermost frame. */
2358 if (cache->base == 0)
2359 return;
2360
2361 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2362}
2363
2364static const struct frame_unwind sh64_frame_unwind = {
2365 NORMAL_FRAME,
2366 sh64_frame_this_id,
2367 sh64_frame_prev_register
2368};
2369
2370static const struct frame_unwind *
2371sh64_frame_sniffer (struct frame_info *next_frame)
2372{
2373 return &sh64_frame_unwind;
2374}
2375
2376static CORE_ADDR
2377sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2378{
2379 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2380}
2381
2382static CORE_ADDR
2383sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2384{
2385 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2386}
2387
2388static struct frame_id
2389sh64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2390{
2391 return frame_id_build (sh64_unwind_sp (gdbarch, next_frame),
2392 frame_pc_unwind (next_frame));
2393}
2394
2395static CORE_ADDR
2396sh64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2397{
2398 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2399
2400 return cache->base;
2401}
2402
2403static const struct frame_base sh64_frame_base = {
2404 &sh64_frame_unwind,
2405 sh64_frame_base_address,
2406 sh64_frame_base_address,
2407 sh64_frame_base_address
2408};
2409
55ff77ac
CV
2410
2411struct gdbarch *
2412sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2413{
55ff77ac
CV
2414 struct gdbarch *gdbarch;
2415 struct gdbarch_tdep *tdep;
2416
2417 /* If there is already a candidate, use it. */
2418 arches = gdbarch_list_lookup_by_info (arches, &info);
2419 if (arches != NULL)
2420 return arches->gdbarch;
2421
2422 /* None found, create a new architecture from the information
7bb11558 2423 provided. */
55ff77ac
CV
2424 tdep = XMALLOC (struct gdbarch_tdep);
2425 gdbarch = gdbarch_alloc (&info, tdep);
2426
55ff77ac
CV
2427 /* Determine the ABI */
2428 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2429 {
7bb11558 2430 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2431 tdep->sh_abi = SH_ABI_64;
2432 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2433 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2434 }
2435 else
2436 {
2437 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2438 compact. */
55ff77ac
CV
2439 tdep->sh_abi = SH_ABI_32;
2440 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2441 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2442 }
2443
2444 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2445 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2446 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2447 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2448 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2449 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2450 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2451
c30dc700
CV
2452 /* The number of real registers is the same whether we are in
2453 ISA16(compact) or ISA32(media). */
2454 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2455 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2456 set_gdbarch_pc_regnum (gdbarch, 64);
2457 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2458 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2459 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2460
c30dc700
CV
2461 set_gdbarch_register_name (gdbarch, sh64_register_name);
2462 set_gdbarch_register_type (gdbarch, sh64_register_type);
2463
2464 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2465 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2466
2467 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2468
2469 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
55ff77ac
CV
2470 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2471
2472 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2473
c30dc700
CV
2474 set_gdbarch_return_value (gdbarch, sh64_return_value);
2475 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2476 sh64_extract_struct_value_address);
55ff77ac 2477
c30dc700
CV
2478 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2479 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2480
c30dc700 2481 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2482
c30dc700 2483 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2484
c30dc700
CV
2485 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2486 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2487 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2488 set_gdbarch_unwind_dummy_id (gdbarch, sh64_unwind_dummy_id);
2489 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2490
c30dc700 2491 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2492
55ff77ac
CV
2493 set_gdbarch_elf_make_msymbol_special (gdbarch,
2494 sh64_elf_make_msymbol_special);
2495
2496 /* Hook in ABI-specific overrides, if they have been registered. */
2497 gdbarch_init_osabi (info, gdbarch);
2498
c30dc700
CV
2499 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2500 frame_unwind_append_sniffer (gdbarch, sh64_frame_sniffer);
2501
55ff77ac
CV
2502 return gdbarch;
2503}
This page took 0.475043 seconds and 4 git commands to generate.