Avoid the use of gdb_start_cmd in gdb.ada/*.exp testcases.
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
6aba47ca 3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
7b6bb8da
JB
4 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
55ff77ac
CV
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac
CV
21
22/*
23 Contributed by Steve Chamberlain
24 sac@cygnus.com
25 */
26
27#include "defs.h"
28#include "frame.h"
c30dc700
CV
29#include "frame-base.h"
30#include "frame-unwind.h"
31#include "dwarf2-frame.h"
55ff77ac 32#include "symtab.h"
55ff77ac
CV
33#include "gdbtypes.h"
34#include "gdbcmd.h"
35#include "gdbcore.h"
36#include "value.h"
37#include "dis-asm.h"
38#include "inferior.h"
39#include "gdb_string.h"
c30dc700 40#include "gdb_assert.h"
55ff77ac 41#include "arch-utils.h"
55ff77ac 42#include "regcache.h"
55ff77ac 43#include "osabi.h"
79a45b7d 44#include "valprint.h"
55ff77ac
CV
45
46#include "elf-bfd.h"
55ff77ac
CV
47
48/* sh flags */
49#include "elf/sh.h"
50/* registers numbers shared with the simulator */
51#include "gdb/sim-sh.h"
d8ca156b 52#include "language.h"
55ff77ac 53
7bb11558 54/* Information that is dependent on the processor variant. */
55ff77ac
CV
55enum sh_abi
56 {
57 SH_ABI_UNKNOWN,
58 SH_ABI_32,
59 SH_ABI_64
60 };
61
62struct gdbarch_tdep
63 {
64 enum sh_abi sh_abi;
65 };
66
c30dc700
CV
67struct sh64_frame_cache
68{
69 /* Base address. */
70 CORE_ADDR base;
71 LONGEST sp_offset;
72 CORE_ADDR pc;
73
74 /* Flag showing that a frame has been created in the prologue code. */
75 int uses_fp;
76
77 int media_mode;
78
79 /* Saved registers. */
80 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
81 CORE_ADDR saved_sp;
82};
83
55ff77ac
CV
84/* Registers of SH5 */
85enum
86 {
87 R0_REGNUM = 0,
88 DEFAULT_RETURN_REGNUM = 2,
89 STRUCT_RETURN_REGNUM = 2,
90 ARG0_REGNUM = 2,
91 ARGLAST_REGNUM = 9,
92 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 93 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
94 PR_REGNUM = 18,
95 SR_REGNUM = 65,
96 DR0_REGNUM = 141,
97 DR_LAST_REGNUM = 172,
98 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 99 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
55ff77ac 100 point register. Unfortunately on the sh5, the floating point
7bb11558 101 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
102 FPP0_REGNUM = 173,
103 FPP_LAST_REGNUM = 204,
104 FV0_REGNUM = 205,
105 FV_LAST_REGNUM = 220,
106 R0_C_REGNUM = 221,
107 R_LAST_C_REGNUM = 236,
108 PC_C_REGNUM = 237,
109 GBR_C_REGNUM = 238,
110 MACH_C_REGNUM = 239,
111 MACL_C_REGNUM = 240,
112 PR_C_REGNUM = 241,
113 T_C_REGNUM = 242,
114 FPSCR_C_REGNUM = 243,
115 FPUL_C_REGNUM = 244,
116 FP0_C_REGNUM = 245,
117 FP_LAST_C_REGNUM = 260,
118 DR0_C_REGNUM = 261,
119 DR_LAST_C_REGNUM = 268,
120 FV0_C_REGNUM = 269,
121 FV_LAST_C_REGNUM = 272,
122 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
123 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
124 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
125 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
126 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
127 };
128
55ff77ac 129static const char *
d93859e2 130sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac
CV
131{
132 static char *register_names[] =
133 {
134 /* SH MEDIA MODE (ISA 32) */
135 /* general registers (64-bit) 0-63 */
136 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
137 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
138 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
139 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
140 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
141 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
142 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
143 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
144
145 /* pc (64-bit) 64 */
146 "pc",
147
148 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
149 "sr", "ssr", "spc",
150
151 /* target registers (64-bit) 68-75*/
152 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
153
154 /* floating point state control register (32-bit) 76 */
155 "fpscr",
156
157 /* single precision floating point registers (32-bit) 77-140*/
158 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
159 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
160 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
161 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
162 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
163 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
164 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
165 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
166
167 /* double precision registers (pseudo) 141-172 */
168 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
169 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
170 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
171 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
172
173 /* floating point pairs (pseudo) 173-204*/
174 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
175 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
176 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
177 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
178
179 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
180 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
181 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
182
183 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
184 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
185 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
186 "pc_c",
187 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
188 "fpscr_c", "fpul_c",
189 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
190 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
191 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
192 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
193 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
194 };
195
196 if (reg_nr < 0)
197 return NULL;
198 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return NULL;
200 return register_names[reg_nr];
201}
202
203#define NUM_PSEUDO_REGS_SH_MEDIA 80
204#define NUM_PSEUDO_REGS_SH_COMPACT 51
205
206/* Macros and functions for setting and testing a bit in a minimal
207 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 208 symbol's "info" field is used for this purpose.
55ff77ac 209
95f1da47
UW
210 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
211 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 212 minimal symbol to mark it as a 32-bit function
f594e5e9 213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
214
215#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 216 MSYMBOL_TARGET_FLAG_1 (msym)
55ff77ac
CV
217
218static void
219sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
220{
221 if (msym == NULL)
222 return;
223
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 {
b887350f 226 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
55ff77ac
CV
227 SYMBOL_VALUE_ADDRESS (msym) |= 1;
228 }
229}
230
231/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233#define IS_ISA32_ADDR(addr) ((addr) & 1)
234#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236
237static int
238pc_is_isa32 (bfd_vma memaddr)
239{
240 struct minimal_symbol *sym;
241
242 /* If bit 0 of the address is set, assume this is a
7bb11558 243 ISA32 (shmedia) address. */
55ff77ac
CV
244 if (IS_ISA32_ADDR (memaddr))
245 return 1;
246
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
249 ISA16 or ISA32. */
250 sym = lookup_minimal_symbol_by_pc (memaddr);
251 if (sym)
252 return MSYMBOL_IS_SPECIAL (sym);
253 else
254 return 0;
255}
256
257static const unsigned char *
67d57894 258sh64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
55ff77ac
CV
259{
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264
265 /* The BRK instruction for shcompact is
266 00000000 00111011
267 which translates in big endian mode to 0x0, 0x3b
268 and in little endian mode to 0x3b, 0x0*/
269
67d57894 270 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
271 {
272 if (pc_is_isa32 (*pcptr))
273 {
274 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
275 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
276 *lenptr = sizeof (big_breakpoint_media);
277 return big_breakpoint_media;
278 }
279 else
280 {
281 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
282 *lenptr = sizeof (big_breakpoint_compact);
283 return big_breakpoint_compact;
284 }
285 }
286 else
287 {
288 if (pc_is_isa32 (*pcptr))
289 {
290 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
291 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
292 *lenptr = sizeof (little_breakpoint_media);
293 return little_breakpoint_media;
294 }
295 else
296 {
297 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
298 *lenptr = sizeof (little_breakpoint_compact);
299 return little_breakpoint_compact;
300 }
301 }
302}
303
304/* Prologue looks like
305 [mov.l <regs>,@-r15]...
306 [sts.l pr,@-r15]
307 [mov.l r14,@-r15]
308 [mov r15,r14]
309
310 Actually it can be more complicated than this. For instance, with
311 newer gcc's:
312
313 mov.l r14,@-r15
314 add #-12,r15
315 mov r15,r14
316 mov r4,r1
317 mov r5,r2
318 mov.l r6,@(4,r14)
319 mov.l r7,@(8,r14)
320 mov.b r1,@r14
321 mov r14,r1
322 mov r14,r1
323 add #2,r1
324 mov.w r2,@r1
325
326 */
327
328/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
329 with l=1 and n = 18 0110101111110001010010100aaa0000 */
330#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
331
332/* STS.L PR,@-r0 0100000000100010
333 r0-4-->r0, PR-->(r0) */
334#define IS_STS_R0(x) ((x) == 0x4022)
335
336/* STS PR, Rm 0000mmmm00101010
337 PR-->Rm */
338#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
339
340/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
341 Rm-->(dispx4+r15) */
342#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
343
344/* MOV.L R14,@(disp,r15) 000111111110dddd
345 R14-->(dispx4+r15) */
346#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
347
348/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
349 R18-->(dispx8+R14) */
350#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
351
352/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
353 R18-->(dispx8+R15) */
354#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
355
356/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
357 R18-->(dispx4+R15) */
358#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
359
360/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
361 R14-->(dispx8+R15) */
362#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
363
364/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx4+R15) */
366#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
367
368/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
369 R15 + imm --> R15 */
370#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
371
372/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
373 R15 + imm --> R15 */
374#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
375
376/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
377 R15 + R63 --> R14 */
378#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
379
380/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
381 R15 + R63 --> R14 */
382#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
383
384#define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
385
386/* MOV #imm, R0 1110 0000 ssss ssss
387 #imm-->R0 */
388#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
389
390/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
391#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
392
393/* ADD r15,r0 0011 0000 1111 1100
394 r15+r0-->r0 */
395#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
396
397/* MOV.L R14 @-R0 0010 0000 1110 0110
398 R14-->(R0-4), R0-4-->R0 */
399#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
400
401/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 402 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
403/* FIXME: Recognize the float and double register moves too! */
404#define IS_MEDIA_IND_ARG_MOV(x) \
405((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
406
407/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
408 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 409 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
410#define IS_MEDIA_ARG_MOV(x) \
411(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
412 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
413
414/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
415/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
416/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
417/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
418/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
419#define IS_MEDIA_MOV_TO_R14(x) \
420((((x) & 0xfffffc0f) == 0xa0e00000) \
421|| (((x) & 0xfffffc0f) == 0xa4e00000) \
422|| (((x) & 0xfffffc0f) == 0xa8e00000) \
423|| (((x) & 0xfffffc0f) == 0xb4e00000) \
424|| (((x) & 0xfffffc0f) == 0xbce00000))
425
426/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
427 where Rm is r2-r9 */
428#define IS_COMPACT_IND_ARG_MOV(x) \
429((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
430
431/* compact direct arg move!
432 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
433#define IS_COMPACT_ARG_MOV(x) \
434(((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
435
436/* MOV.B Rm, @R14 0010 1110 mmmm 0000
437 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
438#define IS_COMPACT_MOV_TO_R14(x) \
439((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
440
441#define IS_JSR_R0(x) ((x) == 0x400b)
442#define IS_NOP(x) ((x) == 0x0009)
443
444
445/* MOV r15,r14 0110111011110011
446 r15-->r14 */
447#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
448
449/* ADD #imm,r15 01111111iiiiiiii
450 r15+imm-->r15 */
451#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
452
453/* Skip any prologue before the guts of a function */
454
7bb11558
MS
455/* Skip the prologue using the debug information. If this fails we'll
456 fall back on the 'guess' method below. */
55ff77ac
CV
457static CORE_ADDR
458after_prologue (CORE_ADDR pc)
459{
460 struct symtab_and_line sal;
461 CORE_ADDR func_addr, func_end;
462
463 /* If we can not find the symbol in the partial symbol table, then
464 there is no hope we can determine the function's start address
465 with this code. */
466 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
467 return 0;
468
c30dc700 469
55ff77ac
CV
470 /* Get the line associated with FUNC_ADDR. */
471 sal = find_pc_line (func_addr, 0);
472
473 /* There are only two cases to consider. First, the end of the source line
474 is within the function bounds. In that case we return the end of the
475 source line. Second is the end of the source line extends beyond the
476 bounds of the current function. We need to use the slow code to
477 examine instructions in that case. */
478 if (sal.end < func_end)
479 return sal.end;
480 else
481 return 0;
482}
483
484static CORE_ADDR
e17a4113
UW
485look_for_args_moves (struct gdbarch *gdbarch,
486 CORE_ADDR start_pc, int media_mode)
55ff77ac 487{
e17a4113 488 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
489 CORE_ADDR here, end;
490 int w;
491 int insn_size = (media_mode ? 4 : 2);
492
493 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
494 {
495 if (media_mode)
496 {
e17a4113
UW
497 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
498 insn_size, byte_order);
55ff77ac
CV
499 here += insn_size;
500 if (IS_MEDIA_IND_ARG_MOV (w))
501 {
502 /* This must be followed by a store to r14, so the argument
503 is where the debug info says it is. This can happen after
7bb11558 504 the SP has been saved, unfortunately. */
55ff77ac
CV
505
506 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
e17a4113 507 insn_size, byte_order);
55ff77ac
CV
508 here += insn_size;
509 if (IS_MEDIA_MOV_TO_R14 (next_insn))
510 start_pc = here;
511 }
512 else if (IS_MEDIA_ARG_MOV (w))
513 {
7bb11558 514 /* These instructions store directly the argument in r14. */
55ff77ac
CV
515 start_pc = here;
516 }
517 else
518 break;
519 }
520 else
521 {
e17a4113 522 w = read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
523 w = w & 0xffff;
524 here += insn_size;
525 if (IS_COMPACT_IND_ARG_MOV (w))
526 {
527 /* This must be followed by a store to r14, so the argument
528 is where the debug info says it is. This can happen after
7bb11558 529 the SP has been saved, unfortunately. */
55ff77ac 530
e17a4113
UW
531 int next_insn = 0xffff & read_memory_integer (here, insn_size,
532 byte_order);
55ff77ac
CV
533 here += insn_size;
534 if (IS_COMPACT_MOV_TO_R14 (next_insn))
535 start_pc = here;
536 }
537 else if (IS_COMPACT_ARG_MOV (w))
538 {
7bb11558 539 /* These instructions store directly the argument in r14. */
55ff77ac
CV
540 start_pc = here;
541 }
542 else if (IS_MOVL_R0 (w))
543 {
544 /* There is a function that gcc calls to get the arguments
545 passed correctly to the function. Only after this
546 function call the arguments will be found at the place
547 where they are supposed to be. This happens in case the
548 argument has to be stored into a 64-bit register (for
549 instance doubles, long longs). SHcompact doesn't have
550 access to the full 64-bits, so we store the register in
551 stack slot and store the address of the stack slot in
552 the register, then do a call through a wrapper that
553 loads the memory value into the register. A SHcompact
554 callee calls an argument decoder
555 (GCC_shcompact_incoming_args) that stores the 64-bit
556 value in a stack slot and stores the address of the
557 stack slot in the register. GCC thinks the argument is
558 just passed by transparent reference, but this is only
559 true after the argument decoder is called. Such a call
7bb11558 560 needs to be considered part of the prologue. */
55ff77ac
CV
561
562 /* This must be followed by a JSR @r0 instruction and by
563 a NOP instruction. After these, the prologue is over! */
564
e17a4113
UW
565 int next_insn = 0xffff & read_memory_integer (here, insn_size,
566 byte_order);
55ff77ac
CV
567 here += insn_size;
568 if (IS_JSR_R0 (next_insn))
569 {
e17a4113
UW
570 next_insn = 0xffff & read_memory_integer (here, insn_size,
571 byte_order);
55ff77ac
CV
572 here += insn_size;
573
574 if (IS_NOP (next_insn))
575 start_pc = here;
576 }
577 }
578 else
579 break;
580 }
581 }
582
583 return start_pc;
584}
585
586static CORE_ADDR
e17a4113 587sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
55ff77ac 588{
e17a4113 589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
590 CORE_ADDR here, end;
591 int updated_fp = 0;
592 int insn_size = 4;
593 int media_mode = 1;
594
595 if (!start_pc)
596 return 0;
597
598 if (pc_is_isa32 (start_pc) == 0)
599 {
600 insn_size = 2;
601 media_mode = 0;
602 }
603
604 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
605 {
606
607 if (media_mode)
608 {
e17a4113
UW
609 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
610 insn_size, byte_order);
55ff77ac
CV
611 here += insn_size;
612 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
613 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
614 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
615 {
616 start_pc = here;
617 }
618 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
619 {
620 start_pc = here;
621 updated_fp = 1;
622 }
623 else
624 if (updated_fp)
625 {
626 /* Don't bail out yet, we may have arguments stored in
627 registers here, according to the debug info, so that
7bb11558 628 gdb can print the frames correctly. */
e17a4113
UW
629 start_pc = look_for_args_moves (gdbarch,
630 here - insn_size, media_mode);
55ff77ac
CV
631 break;
632 }
633 }
634 else
635 {
e17a4113 636 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
637 here += insn_size;
638
639 if (IS_STS_R0 (w) || IS_STS_PR (w)
640 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
641 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
642 {
643 start_pc = here;
644 }
645 else if (IS_MOV_SP_FP (w))
646 {
647 start_pc = here;
648 updated_fp = 1;
649 }
650 else
651 if (updated_fp)
652 {
653 /* Don't bail out yet, we may have arguments stored in
654 registers here, according to the debug info, so that
7bb11558 655 gdb can print the frames correctly. */
e17a4113
UW
656 start_pc = look_for_args_moves (gdbarch,
657 here - insn_size, media_mode);
55ff77ac
CV
658 break;
659 }
660 }
661 }
662
663 return start_pc;
664}
665
666static CORE_ADDR
6093d2eb 667sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
668{
669 CORE_ADDR post_prologue_pc;
670
671 /* See if we can determine the end of the prologue via the symbol table.
672 If so, then return either PC, or the PC after the prologue, whichever
673 is greater. */
674 post_prologue_pc = after_prologue (pc);
675
676 /* If after_prologue returned a useful address, then use it. Else
7bb11558 677 fall back on the instruction skipping code. */
55ff77ac
CV
678 if (post_prologue_pc != 0)
679 return max (pc, post_prologue_pc);
680 else
e17a4113 681 return sh64_skip_prologue_hard_way (gdbarch, pc);
55ff77ac
CV
682}
683
55ff77ac
CV
684/* Should call_function allocate stack space for a struct return? */
685static int
c30dc700 686sh64_use_struct_convention (struct type *type)
55ff77ac
CV
687{
688 return (TYPE_LENGTH (type) > 8);
689}
690
7bb11558 691/* For vectors of 4 floating point registers. */
55ff77ac 692static int
d93859e2 693sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
694{
695 int fp_regnum;
696
d93859e2 697 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
698 return fp_regnum;
699}
700
701/* For double precision floating point registers, i.e 2 fp regs.*/
702static int
d93859e2 703sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
704{
705 int fp_regnum;
706
d93859e2 707 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
708 return fp_regnum;
709}
710
711/* For pairs of floating point registers */
712static int
d93859e2 713sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
714{
715 int fp_regnum;
716
d93859e2 717 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
718 return fp_regnum;
719}
720
55ff77ac
CV
721/* *INDENT-OFF* */
722/*
723 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
724 GDB_REGNUM BASE_REGNUM
725 r0_c 221 0
726 r1_c 222 1
727 r2_c 223 2
728 r3_c 224 3
729 r4_c 225 4
730 r5_c 226 5
731 r6_c 227 6
732 r7_c 228 7
733 r8_c 229 8
734 r9_c 230 9
735 r10_c 231 10
736 r11_c 232 11
737 r12_c 233 12
738 r13_c 234 13
739 r14_c 235 14
740 r15_c 236 15
741
742 pc_c 237 64
743 gbr_c 238 16
744 mach_c 239 17
745 macl_c 240 17
746 pr_c 241 18
747 t_c 242 19
748 fpscr_c 243 76
749 fpul_c 244 109
750
751 fr0_c 245 77
752 fr1_c 246 78
753 fr2_c 247 79
754 fr3_c 248 80
755 fr4_c 249 81
756 fr5_c 250 82
757 fr6_c 251 83
758 fr7_c 252 84
759 fr8_c 253 85
760 fr9_c 254 86
761 fr10_c 255 87
762 fr11_c 256 88
763 fr12_c 257 89
764 fr13_c 258 90
765 fr14_c 259 91
766 fr15_c 260 92
767
768 dr0_c 261 77
769 dr2_c 262 79
770 dr4_c 263 81
771 dr6_c 264 83
772 dr8_c 265 85
773 dr10_c 266 87
774 dr12_c 267 89
775 dr14_c 268 91
776
777 fv0_c 269 77
778 fv4_c 270 81
779 fv8_c 271 85
780 fv12_c 272 91
781*/
782/* *INDENT-ON* */
783static int
d93859e2 784sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 785{
c30dc700 786 int base_regnum = reg_nr;
55ff77ac
CV
787
788 /* general register N maps to general register N */
789 if (reg_nr >= R0_C_REGNUM
790 && reg_nr <= R_LAST_C_REGNUM)
791 base_regnum = reg_nr - R0_C_REGNUM;
792
793 /* floating point register N maps to floating point register N */
794 else if (reg_nr >= FP0_C_REGNUM
795 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 796 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
797
798 /* double prec register N maps to base regnum for double prec register N */
799 else if (reg_nr >= DR0_C_REGNUM
800 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
801 base_regnum = sh64_dr_reg_base_num (gdbarch,
802 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
803
804 /* vector N maps to base regnum for vector register N */
805 else if (reg_nr >= FV0_C_REGNUM
806 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
807 base_regnum = sh64_fv_reg_base_num (gdbarch,
808 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
809
810 else if (reg_nr == PC_C_REGNUM)
d93859e2 811 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
812
813 else if (reg_nr == GBR_C_REGNUM)
814 base_regnum = 16;
815
816 else if (reg_nr == MACH_C_REGNUM
817 || reg_nr == MACL_C_REGNUM)
818 base_regnum = 17;
819
820 else if (reg_nr == PR_C_REGNUM)
c30dc700 821 base_regnum = PR_REGNUM;
55ff77ac
CV
822
823 else if (reg_nr == T_C_REGNUM)
824 base_regnum = 19;
825
826 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 827 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
828
829 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 830 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
831
832 return base_regnum;
833}
834
55ff77ac
CV
835static int
836sign_extend (int value, int bits)
837{
838 value = value & ((1 << bits) - 1);
839 return (value & (1 << (bits - 1))
840 ? value | (~((1 << bits) - 1))
841 : value);
842}
843
844static void
c30dc700
CV
845sh64_analyze_prologue (struct gdbarch *gdbarch,
846 struct sh64_frame_cache *cache,
847 CORE_ADDR func_pc,
848 CORE_ADDR current_pc)
55ff77ac 849{
c30dc700 850 int reg_nr;
55ff77ac
CV
851 int pc;
852 int opc;
853 int insn;
854 int r0_val = 0;
55ff77ac
CV
855 int insn_size;
856 int gdb_register_number;
857 int register_number;
c30dc700 858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 859 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 860
c30dc700 861 cache->sp_offset = 0;
55ff77ac
CV
862
863 /* Loop around examining the prologue insns until we find something
864 that does not appear to be part of the prologue. But give up
7bb11558 865 after 20 of them, since we're getting silly then. */
55ff77ac 866
c30dc700 867 pc = func_pc;
55ff77ac 868
c30dc700
CV
869 if (cache->media_mode)
870 insn_size = 4;
55ff77ac 871 else
c30dc700 872 insn_size = 2;
55ff77ac 873
c30dc700
CV
874 opc = pc + (insn_size * 28);
875 if (opc > current_pc)
876 opc = current_pc;
877 for ( ; pc <= opc; pc += insn_size)
55ff77ac 878 {
c30dc700
CV
879 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
880 : pc,
e17a4113 881 insn_size, byte_order);
55ff77ac 882
c30dc700 883 if (!cache->media_mode)
55ff77ac
CV
884 {
885 if (IS_STS_PR (insn))
886 {
e17a4113
UW
887 int next_insn = read_memory_integer (pc + insn_size,
888 insn_size, byte_order);
55ff77ac
CV
889 if (IS_MOV_TO_R15 (next_insn))
890 {
c30dc700
CV
891 cache->saved_regs[PR_REGNUM] =
892 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
893 pc += insn_size;
894 }
895 }
c30dc700 896
55ff77ac 897 else if (IS_MOV_R14 (insn))
c30dc700
CV
898 cache->saved_regs[MEDIA_FP_REGNUM] =
899 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
900
901 else if (IS_MOV_R0 (insn))
902 {
903 /* Put in R0 the offset from SP at which to store some
904 registers. We are interested in this value, because it
905 will tell us where the given registers are stored within
906 the frame. */
907 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
908 }
c30dc700 909
55ff77ac
CV
910 else if (IS_ADD_SP_R0 (insn))
911 {
912 /* This instruction still prepares r0, but we don't care.
7bb11558 913 We already have the offset in r0_val. */
55ff77ac 914 }
c30dc700 915
55ff77ac
CV
916 else if (IS_STS_R0 (insn))
917 {
918 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
c30dc700 919 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 920 r0_val -= 4;
55ff77ac 921 }
c30dc700 922
55ff77ac
CV
923 else if (IS_MOV_R14_R0 (insn))
924 {
925 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
c30dc700
CV
926 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
927 - (r0_val - 4);
55ff77ac
CV
928 r0_val -= 4;
929 }
930
931 else if (IS_ADD_SP (insn))
c30dc700
CV
932 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
933
55ff77ac
CV
934 else if (IS_MOV_SP_FP (insn))
935 break;
936 }
937 else
938 {
c30dc700
CV
939 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
940 cache->sp_offset -=
941 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
942
943 else if (IS_STQ_R18_R15 (insn))
c30dc700
CV
944 cache->saved_regs[PR_REGNUM] =
945 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
55ff77ac
CV
946
947 else if (IS_STL_R18_R15 (insn))
c30dc700
CV
948 cache->saved_regs[PR_REGNUM] =
949 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
55ff77ac
CV
950
951 else if (IS_STQ_R14_R15 (insn))
c30dc700
CV
952 cache->saved_regs[MEDIA_FP_REGNUM] =
953 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
55ff77ac
CV
954
955 else if (IS_STL_R14_R15 (insn))
c30dc700
CV
956 cache->saved_regs[MEDIA_FP_REGNUM] =
957 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
55ff77ac
CV
958
959 else if (IS_MOV_SP_FP_MEDIA (insn))
960 break;
961 }
962 }
963
c30dc700
CV
964 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
965 cache->uses_fp = 1;
55ff77ac
CV
966}
967
55ff77ac 968static CORE_ADDR
c30dc700 969sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 970{
c30dc700 971 return sp & ~7;
55ff77ac
CV
972}
973
c30dc700 974/* Function: push_dummy_call
55ff77ac
CV
975 Setup the function arguments for calling a function in the inferior.
976
85a453d5 977 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
978 which are dedicated for passing function arguments. Up to the first
979 four arguments (depending on size) may go into these registers.
980 The rest go on the stack.
981
982 Arguments that are smaller than 4 bytes will still take up a whole
983 register or a whole 32-bit word on the stack, and will be
984 right-justified in the register or the stack word. This includes
985 chars, shorts, and small aggregate types.
986
987 Arguments that are larger than 4 bytes may be split between two or
988 more registers. If there are not enough registers free, an argument
989 may be passed partly in a register (or registers), and partly on the
990 stack. This includes doubles, long longs, and larger aggregates.
991 As far as I know, there is no upper limit to the size of aggregates
992 that will be passed in this way; in other words, the convention of
993 passing a pointer to a large aggregate instead of a copy is not used.
994
995 An exceptional case exists for struct arguments (and possibly other
996 aggregates such as arrays) if the size is larger than 4 bytes but
997 not a multiple of 4 bytes. In this case the argument is never split
998 between the registers and the stack, but instead is copied in its
999 entirety onto the stack, AND also copied into as many registers as
1000 there is room for. In other words, space in registers permitting,
1001 two copies of the same argument are passed in. As far as I can tell,
1002 only the one on the stack is used, although that may be a function
1003 of the level of compiler optimization. I suspect this is a compiler
1004 bug. Arguments of these odd sizes are left-justified within the
1005 word (as opposed to arguments smaller than 4 bytes, which are
1006 right-justified).
1007
1008 If the function is to return an aggregate type such as a struct, it
1009 is either returned in the normal return value register R0 (if its
1010 size is no greater than one byte), or else the caller must allocate
1011 space into which the callee will copy the return value (if the size
1012 is greater than one byte). In this case, a pointer to the return
1013 value location is passed into the callee in register R2, which does
1014 not displace any of the other arguments passed in via registers R4
1015 to R7. */
1016
1017/* R2-R9 for integer types and integer equivalent (char, pointers) and
1018 non-scalar (struct, union) elements (even if the elements are
1019 floats).
1020 FR0-FR11 for single precision floating point (float)
1021 DR0-DR10 for double precision floating point (double)
1022
1023 If a float is argument number 3 (for instance) and arguments number
1024 1,2, and 4 are integer, the mapping will be:
1025 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1026
1027 If a float is argument number 10 (for instance) and arguments number
1028 1 through 10 are integer, the mapping will be:
1029 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1030 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1031 I.e. there is hole in the stack.
1032
1033 Different rules apply for variable arguments functions, and for functions
7bb11558 1034 for which the prototype is not known. */
55ff77ac
CV
1035
1036static CORE_ADDR
c30dc700
CV
1037sh64_push_dummy_call (struct gdbarch *gdbarch,
1038 struct value *function,
1039 struct regcache *regcache,
1040 CORE_ADDR bp_addr,
1041 int nargs, struct value **args,
1042 CORE_ADDR sp, int struct_return,
1043 CORE_ADDR struct_addr)
55ff77ac 1044{
e17a4113 1045 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1046 int stack_offset, stack_alloc;
1047 int int_argreg;
1048 int float_argreg;
1049 int double_argreg;
1050 int float_arg_index = 0;
1051 int double_arg_index = 0;
1052 int argnum;
1053 struct type *type;
1054 CORE_ADDR regval;
1055 char *val;
1056 char valbuf[8];
1057 char valbuf_tmp[8];
1058 int len;
1059 int argreg_size;
1060 int fp_args[12];
55ff77ac
CV
1061
1062 memset (fp_args, 0, sizeof (fp_args));
1063
1064 /* first force sp to a 8-byte alignment */
c30dc700 1065 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1066
1067 /* The "struct return pointer" pseudo-argument has its own dedicated
1068 register */
1069
1070 if (struct_return)
c30dc700
CV
1071 regcache_cooked_write_unsigned (regcache,
1072 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac
CV
1073
1074 /* Now make sure there's space on the stack */
1075 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1076 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
55ff77ac
CV
1077 sp -= stack_alloc; /* make room on stack for args */
1078
1079 /* Now load as many as possible of the first arguments into
1080 registers, and push the rest onto the stack. There are 64 bytes
1081 in eight registers available. Loop thru args from first to last. */
1082
1083 int_argreg = ARG0_REGNUM;
58643501 1084 float_argreg = gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
1085 double_argreg = DR0_REGNUM;
1086
1087 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1088 {
4991999e 1089 type = value_type (args[argnum]);
55ff77ac
CV
1090 len = TYPE_LENGTH (type);
1091 memset (valbuf, 0, sizeof (valbuf));
1092
1093 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1094 {
58643501 1095 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1096
1097 if (len < argreg_size)
1098 {
1099 /* value gets right-justified in the register or stack word */
58643501 1100 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1101 memcpy (valbuf + argreg_size - len,
0fd88904 1102 (char *) value_contents (args[argnum]), len);
55ff77ac 1103 else
0fd88904 1104 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
55ff77ac
CV
1105
1106 val = valbuf;
1107 }
1108 else
0fd88904 1109 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1110
1111 while (len > 0)
1112 {
1113 if (int_argreg > ARGLAST_REGNUM)
1114 {
1115 /* must go on the stack */
079c8cd0
CV
1116 write_memory (sp + stack_offset, (const bfd_byte *) val,
1117 argreg_size);
55ff77ac
CV
1118 stack_offset += 8;/*argreg_size;*/
1119 }
1120 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1121 That's because some *&^%$ things get passed on the stack
1122 AND in the registers! */
1123 if (int_argreg <= ARGLAST_REGNUM)
1124 {
1125 /* there's room in a register */
e17a4113
UW
1126 regval = extract_unsigned_integer (val, argreg_size,
1127 byte_order);
c30dc700 1128 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
55ff77ac
CV
1129 }
1130 /* Store the value 8 bytes at a time. This means that
1131 things larger than 8 bytes may go partly in registers
1132 and partly on the stack. FIXME: argreg is incremented
7bb11558 1133 before we use its size. */
55ff77ac
CV
1134 len -= argreg_size;
1135 val += argreg_size;
1136 int_argreg++;
1137 }
1138 }
1139 else
1140 {
0fd88904 1141 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1142 if (len == 4)
1143 {
1144 /* Where is it going to be stored? */
1145 while (fp_args[float_arg_index])
1146 float_arg_index ++;
1147
1148 /* Now float_argreg points to the register where it
1149 should be stored. Are we still within the allowed
1150 register set? */
1151 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1152 {
1153 /* Goes in FR0...FR11 */
c30dc700 1154 regcache_cooked_write (regcache,
58643501 1155 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1156 + float_arg_index,
c30dc700 1157 val);
55ff77ac 1158 fp_args[float_arg_index] = 1;
7bb11558 1159 /* Skip the corresponding general argument register. */
55ff77ac
CV
1160 int_argreg ++;
1161 }
1162 else
1163 ;
1164 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1165 necessary spilling on the stack. */
55ff77ac
CV
1166
1167 }
1168 else if (len == 8)
1169 {
1170 /* Where is it going to be stored? */
1171 while (fp_args[double_arg_index])
1172 double_arg_index += 2;
1173 /* Now double_argreg points to the register
1174 where it should be stored.
1175 Are we still within the allowed register set? */
1176 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1177 {
1178 /* Goes in DR0...DR10 */
1179 /* The numbering of the DRi registers is consecutive,
7bb11558 1180 i.e. includes odd numbers. */
55ff77ac 1181 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1182 int regnum = DR0_REGNUM + double_register_offset;
1183 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1184 fp_args[double_arg_index] = 1;
1185 fp_args[double_arg_index + 1] = 1;
7bb11558 1186 /* Skip the corresponding general argument register. */
55ff77ac
CV
1187 int_argreg ++;
1188 }
1189 else
1190 ;
1191 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1192 necessary spilling on the stack. */
55ff77ac
CV
1193 }
1194 }
1195 }
c30dc700
CV
1196 /* Store return address. */
1197 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1198
c30dc700 1199 /* Update stack pointer. */
3e8c568d 1200 regcache_cooked_write_unsigned (regcache,
58643501 1201 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1202
55ff77ac
CV
1203 return sp;
1204}
1205
1206/* Find a function's return value in the appropriate registers (in
1207 regbuf), and copy it into valbuf. Extract from an array REGBUF
1208 containing the (raw) register state a function return value of type
1209 TYPE, and copy that, in virtual format, into VALBUF. */
1210static void
c30dc700
CV
1211sh64_extract_return_value (struct type *type, struct regcache *regcache,
1212 void *valbuf)
55ff77ac 1213{
d93859e2 1214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 1215 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1216 int len = TYPE_LENGTH (type);
d93859e2 1217
55ff77ac
CV
1218 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1219 {
1220 if (len == 4)
1221 {
3e8c568d
UW
1222 /* Return value stored in gdbarch_fp0_regnum */
1223 regcache_raw_read (regcache,
d93859e2 1224 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1225 }
1226 else if (len == 8)
1227 {
1228 /* return value stored in DR0_REGNUM */
1229 DOUBLEST val;
18cf8b5b 1230 gdb_byte buf[8];
55ff77ac 1231
18cf8b5b 1232 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1233
d93859e2 1234 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
55ff77ac 1235 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1236 buf, &val);
55ff77ac
CV
1237 else
1238 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1239 buf, &val);
7bb11558 1240 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1241 }
1242 }
1243 else
1244 {
1245 if (len <= 8)
1246 {
c30dc700
CV
1247 int offset;
1248 char buf[8];
55ff77ac 1249 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1250 at the most significant end. */
c30dc700
CV
1251 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1252
d93859e2
UW
1253 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1254 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1255 - len;
55ff77ac 1256 else
c30dc700
CV
1257 offset = 0;
1258 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1259 }
1260 else
1261 error ("bad size for return value");
1262 }
1263}
1264
1265/* Write into appropriate registers a function return value
1266 of type TYPE, given in virtual format.
1267 If the architecture is sh4 or sh3e, store a function's return value
1268 in the R0 general register or in the FP0 floating point register,
1269 depending on the type of the return value. In all the other cases
7bb11558 1270 the result is stored in r0, left-justified. */
55ff77ac
CV
1271
1272static void
c30dc700
CV
1273sh64_store_return_value (struct type *type, struct regcache *regcache,
1274 const void *valbuf)
55ff77ac 1275{
d93859e2 1276 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7bb11558 1277 char buf[64]; /* more than enough... */
55ff77ac
CV
1278 int len = TYPE_LENGTH (type);
1279
1280 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1281 {
d93859e2 1282 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1283 for (i = 0; i < len; i += 4)
d93859e2 1284 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700
CV
1285 regcache_raw_write (regcache, regnum++,
1286 (char *) valbuf + len - 4 - i);
1287 else
1288 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
55ff77ac
CV
1289 }
1290 else
1291 {
1292 int return_register = DEFAULT_RETURN_REGNUM;
1293 int offset = 0;
1294
d93859e2 1295 if (len <= register_size (gdbarch, return_register))
55ff77ac 1296 {
7bb11558 1297 /* Pad with zeros. */
d93859e2
UW
1298 memset (buf, 0, register_size (gdbarch, return_register));
1299 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1300 offset = 0; /*register_size (gdbarch,
7bb11558 1301 return_register) - len;*/
55ff77ac 1302 else
d93859e2 1303 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1304
1305 memcpy (buf + offset, valbuf, len);
c30dc700 1306 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1307 }
1308 else
c30dc700 1309 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1310 }
1311}
1312
c30dc700 1313static enum return_value_convention
c055b101
CV
1314sh64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1315 struct type *type, struct regcache *regcache,
18cf8b5b 1316 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1317{
1318 if (sh64_use_struct_convention (type))
1319 return RETURN_VALUE_STRUCT_CONVENTION;
1320 if (writebuf)
1321 sh64_store_return_value (type, regcache, writebuf);
1322 else if (readbuf)
1323 sh64_extract_return_value (type, regcache, readbuf);
1324 return RETURN_VALUE_REGISTER_CONVENTION;
1325}
1326
55ff77ac 1327static void
c458d6db 1328sh64_show_media_regs (struct frame_info *frame)
55ff77ac 1329{
58643501 1330 struct gdbarch *gdbarch = get_frame_arch (frame);
55ff77ac 1331 int i;
55ff77ac 1332
c458d6db 1333 printf_filtered
cce7e648 1334 ("PC=%s SR=%s\n",
5af949e3
UW
1335 phex (get_frame_register_unsigned (frame,
1336 gdbarch_pc_regnum (gdbarch)), 8),
2244ba2e 1337 phex (get_frame_register_unsigned (frame, SR_REGNUM), 8));
55ff77ac 1338
c458d6db 1339 printf_filtered
cce7e648 1340 ("SSR=%s SPC=%s\n",
2244ba2e
PM
1341 phex (get_frame_register_unsigned (frame, SSR_REGNUM), 8),
1342 phex (get_frame_register_unsigned (frame, SPC_REGNUM), 8));
c458d6db 1343 printf_filtered
2244ba2e
PM
1344 ("FPSCR=%s\n ",
1345 phex (get_frame_register_unsigned (frame, FPSCR_REGNUM), 8));
55ff77ac
CV
1346
1347 for (i = 0; i < 64; i = i + 4)
c458d6db 1348 printf_filtered
2244ba2e 1349 ("\nR%d-R%d %s %s %s %s\n",
c458d6db 1350 i, i + 3,
2244ba2e
PM
1351 phex (get_frame_register_unsigned (frame, i + 0), 8),
1352 phex (get_frame_register_unsigned (frame, i + 1), 8),
1353 phex (get_frame_register_unsigned (frame, i + 2), 8),
1354 phex (get_frame_register_unsigned (frame, i + 3), 8));
55ff77ac
CV
1355
1356 printf_filtered ("\n");
1357
1358 for (i = 0; i < 64; i = i + 8)
c458d6db
UW
1359 printf_filtered
1360 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1361 i, i + 7,
3e8c568d 1362 (long) get_frame_register_unsigned
58643501 1363 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
3e8c568d 1364 (long) get_frame_register_unsigned
58643501 1365 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
3e8c568d 1366 (long) get_frame_register_unsigned
58643501 1367 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
3e8c568d 1368 (long) get_frame_register_unsigned
58643501 1369 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
3e8c568d 1370 (long) get_frame_register_unsigned
58643501 1371 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
3e8c568d 1372 (long) get_frame_register_unsigned
58643501 1373 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
3e8c568d 1374 (long) get_frame_register_unsigned
58643501 1375 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
3e8c568d 1376 (long) get_frame_register_unsigned
58643501 1377 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
55ff77ac
CV
1378}
1379
1380static void
c458d6db 1381sh64_show_compact_regs (struct frame_info *frame)
55ff77ac 1382{
58643501 1383 struct gdbarch *gdbarch = get_frame_arch (frame);
55ff77ac 1384 int i;
55ff77ac 1385
c458d6db 1386 printf_filtered
cce7e648 1387 ("PC=%s\n",
5af949e3 1388 phex (get_frame_register_unsigned (frame, PC_C_REGNUM), 8));
c458d6db
UW
1389
1390 printf_filtered
1391 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1392 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1393 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1394 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1395 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1396 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1397 printf_filtered
1398 ("FPSCR=%08lx FPUL=%08lx\n",
1399 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1400 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
55ff77ac
CV
1401
1402 for (i = 0; i < 16; i = i + 4)
c458d6db
UW
1403 printf_filtered
1404 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1405 i, i + 3,
1406 (long) get_frame_register_unsigned (frame, i + 0),
1407 (long) get_frame_register_unsigned (frame, i + 1),
1408 (long) get_frame_register_unsigned (frame, i + 2),
1409 (long) get_frame_register_unsigned (frame, i + 3));
55ff77ac
CV
1410
1411 printf_filtered ("\n");
1412
1413 for (i = 0; i < 16; i = i + 8)
c458d6db
UW
1414 printf_filtered
1415 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1416 i, i + 7,
3e8c568d 1417 (long) get_frame_register_unsigned
58643501 1418 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
3e8c568d 1419 (long) get_frame_register_unsigned
58643501 1420 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
3e8c568d 1421 (long) get_frame_register_unsigned
58643501 1422 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
3e8c568d 1423 (long) get_frame_register_unsigned
58643501 1424 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
3e8c568d 1425 (long) get_frame_register_unsigned
58643501 1426 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
3e8c568d 1427 (long) get_frame_register_unsigned
58643501 1428 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
3e8c568d 1429 (long) get_frame_register_unsigned
58643501 1430 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
3e8c568d 1431 (long) get_frame_register_unsigned
58643501 1432 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
55ff77ac
CV
1433}
1434
7bb11558
MS
1435/* FIXME!!! This only shows the registers for shmedia, excluding the
1436 pseudo registers. */
55ff77ac 1437void
c458d6db 1438sh64_show_regs (struct frame_info *frame)
55ff77ac 1439{
c458d6db
UW
1440 if (pc_is_isa32 (get_frame_pc (frame)))
1441 sh64_show_media_regs (frame);
55ff77ac 1442 else
c458d6db 1443 sh64_show_compact_regs (frame);
55ff77ac
CV
1444}
1445
1446/* *INDENT-OFF* */
1447/*
1448 SH MEDIA MODE (ISA 32)
1449 general registers (64-bit) 0-63
14500 r0, r1, r2, r3, r4, r5, r6, r7,
145164 r8, r9, r10, r11, r12, r13, r14, r15,
1452128 r16, r17, r18, r19, r20, r21, r22, r23,
1453192 r24, r25, r26, r27, r28, r29, r30, r31,
1454256 r32, r33, r34, r35, r36, r37, r38, r39,
1455320 r40, r41, r42, r43, r44, r45, r46, r47,
1456384 r48, r49, r50, r51, r52, r53, r54, r55,
1457448 r56, r57, r58, r59, r60, r61, r62, r63,
1458
1459 pc (64-bit) 64
1460512 pc,
1461
1462 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1463520 sr, ssr, spc,
1464
1465 target registers (64-bit) 68-75
1466544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1467
1468 floating point state control register (32-bit) 76
1469608 fpscr,
1470
1471 single precision floating point registers (32-bit) 77-140
1472612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1473644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1474676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1475708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1476740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1477772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1478804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1479836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1480
1481TOTAL SPACE FOR REGISTERS: 868 bytes
1482
1483From here on they are all pseudo registers: no memory allocated.
1484REGISTER_BYTE returns the register byte for the base register.
1485
1486 double precision registers (pseudo) 141-172
1487 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1488 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1489 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1490 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1491
1492 floating point pairs (pseudo) 173-204
1493 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1494 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1495 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1496 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1497
1498 floating point vectors (4 floating point regs) (pseudo) 205-220
1499 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1500 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1501
1502 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1503 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1504 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1505 pc_c,
1506 gbr_c, mach_c, macl_c, pr_c, t_c,
1507 fpscr_c, fpul_c,
1508 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1509 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1510 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1511 fv0_c, fv4_c, fv8_c, fv12_c
1512*/
55ff77ac 1513
55ff77ac 1514static struct type *
0dfff4cb 1515sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
55ff77ac 1516{
e3506a9f
UW
1517 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1518 0, high);
55ff77ac
CV
1519}
1520
7bb11558
MS
1521/* Return the GDB type object for the "standard" data type
1522 of data in register REG_NR. */
55ff77ac 1523static struct type *
7bb11558 1524sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1525{
58643501 1526 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1527 && reg_nr <= FP_LAST_REGNUM)
1528 || (reg_nr >= FP0_C_REGNUM
1529 && reg_nr <= FP_LAST_C_REGNUM))
0dfff4cb 1530 return builtin_type (gdbarch)->builtin_float;
55ff77ac
CV
1531 else if ((reg_nr >= DR0_REGNUM
1532 && reg_nr <= DR_LAST_REGNUM)
1533 || (reg_nr >= DR0_C_REGNUM
1534 && reg_nr <= DR_LAST_C_REGNUM))
0dfff4cb 1535 return builtin_type (gdbarch)->builtin_double;
55ff77ac
CV
1536 else if (reg_nr >= FPP0_REGNUM
1537 && reg_nr <= FPP_LAST_REGNUM)
0dfff4cb 1538 return sh64_build_float_register_type (gdbarch, 1);
55ff77ac
CV
1539 else if ((reg_nr >= FV0_REGNUM
1540 && reg_nr <= FV_LAST_REGNUM)
1541 ||(reg_nr >= FV0_C_REGNUM
1542 && reg_nr <= FV_LAST_C_REGNUM))
0dfff4cb 1543 return sh64_build_float_register_type (gdbarch, 3);
55ff77ac 1544 else if (reg_nr == FPSCR_REGNUM)
0dfff4cb 1545 return builtin_type (gdbarch)->builtin_int;
55ff77ac
CV
1546 else if (reg_nr >= R0_C_REGNUM
1547 && reg_nr < FP0_C_REGNUM)
0dfff4cb 1548 return builtin_type (gdbarch)->builtin_int;
55ff77ac 1549 else
0dfff4cb 1550 return builtin_type (gdbarch)->builtin_long_long;
55ff77ac
CV
1551}
1552
1553static void
d93859e2
UW
1554sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1555 struct type *type, char *from, char *to)
55ff77ac 1556{
d93859e2 1557 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1558 {
7bb11558 1559 /* It is a no-op. */
d93859e2 1560 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1561 return;
1562 }
1563
1564 if ((regnum >= DR0_REGNUM
1565 && regnum <= DR_LAST_REGNUM)
1566 || (regnum >= DR0_C_REGNUM
1567 && regnum <= DR_LAST_C_REGNUM))
1568 {
1569 DOUBLEST val;
7bb11558
MS
1570 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1571 from, &val);
39add00a 1572 store_typed_floating (to, type, val);
55ff77ac
CV
1573 }
1574 else
39add00a 1575 error ("sh64_register_convert_to_virtual called with non DR register number");
55ff77ac
CV
1576}
1577
1578static void
d93859e2
UW
1579sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1580 int regnum, const void *from, void *to)
55ff77ac 1581{
d93859e2 1582 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1583 {
7bb11558 1584 /* It is a no-op. */
d93859e2 1585 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1586 return;
1587 }
1588
1589 if ((regnum >= DR0_REGNUM
1590 && regnum <= DR_LAST_REGNUM)
1591 || (regnum >= DR0_C_REGNUM
1592 && regnum <= DR_LAST_C_REGNUM))
1593 {
e035e373 1594 DOUBLEST val = extract_typed_floating (from, type);
7bb11558
MS
1595 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1596 &val, to);
55ff77ac
CV
1597 }
1598 else
39add00a 1599 error ("sh64_register_convert_to_raw called with non DR register number");
55ff77ac
CV
1600}
1601
1602static void
1603sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1604 int reg_nr, gdb_byte *buffer)
55ff77ac 1605{
e17a4113 1606 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1607 int base_regnum;
1608 int portion;
1609 int offset = 0;
1610 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1611
1612 if (reg_nr >= DR0_REGNUM
1613 && reg_nr <= DR_LAST_REGNUM)
1614 {
d93859e2 1615 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1616
7bb11558 1617 /* Build the value in the provided buffer. */
55ff77ac 1618 /* DR regs are double precision registers obtained by
7bb11558 1619 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1620 for (portion = 0; portion < 2; portion++)
1621 regcache_raw_read (regcache, base_regnum + portion,
1622 (temp_buffer
7bb11558 1623 + register_size (gdbarch, base_regnum) * portion));
55ff77ac 1624
7bb11558 1625 /* We must pay attention to the endianness. */
d93859e2 1626 sh64_register_convert_to_virtual (gdbarch, reg_nr,
7b9ee6a8 1627 register_type (gdbarch, reg_nr),
39add00a 1628 temp_buffer, buffer);
55ff77ac
CV
1629
1630 }
1631
1632 else if (reg_nr >= FPP0_REGNUM
1633 && reg_nr <= FPP_LAST_REGNUM)
1634 {
d93859e2 1635 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1636
7bb11558 1637 /* Build the value in the provided buffer. */
55ff77ac 1638 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1639 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1640 for (portion = 0; portion < 2; portion++)
1641 regcache_raw_read (regcache, base_regnum + portion,
1642 ((char *) buffer
7bb11558 1643 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1644 }
1645
1646 else if (reg_nr >= FV0_REGNUM
1647 && reg_nr <= FV_LAST_REGNUM)
1648 {
d93859e2 1649 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1650
7bb11558 1651 /* Build the value in the provided buffer. */
55ff77ac 1652 /* FV regs are vectors of single precision registers obtained by
7bb11558 1653 concatenating 4 single precision floating point registers. */
55ff77ac
CV
1654 for (portion = 0; portion < 4; portion++)
1655 regcache_raw_read (regcache, base_regnum + portion,
1656 ((char *) buffer
7bb11558 1657 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1658 }
1659
1660 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1661 else if (reg_nr >= R0_C_REGNUM
1662 && reg_nr <= T_C_REGNUM)
1663 {
d93859e2 1664 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1665
7bb11558 1666 /* Build the value in the provided buffer. */
55ff77ac 1667 regcache_raw_read (regcache, base_regnum, temp_buffer);
58643501 1668 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1669 offset = 4;
1670 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1671 }
1672
1673 else if (reg_nr >= FP0_C_REGNUM
1674 && reg_nr <= FP_LAST_C_REGNUM)
1675 {
d93859e2 1676 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1677
7bb11558 1678 /* Build the value in the provided buffer. */
55ff77ac 1679 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1680 they have the same size and endianness. */
55ff77ac
CV
1681 regcache_raw_read (regcache, base_regnum, buffer);
1682 }
1683
1684 else if (reg_nr >= DR0_C_REGNUM
1685 && reg_nr <= DR_LAST_C_REGNUM)
1686 {
d93859e2 1687 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1688
1689 /* DR_C regs are double precision registers obtained by
7bb11558 1690 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1691 for (portion = 0; portion < 2; portion++)
1692 regcache_raw_read (regcache, base_regnum + portion,
1693 (temp_buffer
7bb11558 1694 + register_size (gdbarch, base_regnum) * portion));
55ff77ac 1695
7bb11558 1696 /* We must pay attention to the endianness. */
d93859e2 1697 sh64_register_convert_to_virtual (gdbarch, reg_nr,
7b9ee6a8 1698 register_type (gdbarch, reg_nr),
39add00a 1699 temp_buffer, buffer);
55ff77ac
CV
1700 }
1701
1702 else if (reg_nr >= FV0_C_REGNUM
1703 && reg_nr <= FV_LAST_C_REGNUM)
1704 {
d93859e2 1705 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1706
7bb11558 1707 /* Build the value in the provided buffer. */
55ff77ac 1708 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1709 concatenating 4 single precision floating point registers. */
55ff77ac
CV
1710 for (portion = 0; portion < 4; portion++)
1711 regcache_raw_read (regcache, base_regnum + portion,
1712 ((char *) buffer
7bb11558 1713 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1714 }
1715
1716 else if (reg_nr == FPSCR_C_REGNUM)
1717 {
1718 int fpscr_base_regnum;
1719 int sr_base_regnum;
1720 unsigned int fpscr_value;
1721 unsigned int sr_value;
1722 unsigned int fpscr_c_value;
1723 unsigned int fpscr_c_part1_value;
1724 unsigned int fpscr_c_part2_value;
1725
1726 fpscr_base_regnum = FPSCR_REGNUM;
1727 sr_base_regnum = SR_REGNUM;
1728
7bb11558 1729 /* Build the value in the provided buffer. */
55ff77ac
CV
1730 /* FPSCR_C is a very weird register that contains sparse bits
1731 from the FPSCR and the SR architectural registers.
1732 Specifically: */
1733 /* *INDENT-OFF* */
1734 /*
1735 FPSRC_C bit
1736 0 Bit 0 of FPSCR
1737 1 reserved
1738 2-17 Bit 2-18 of FPSCR
1739 18-20 Bits 12,13,14 of SR
1740 21-31 reserved
1741 */
1742 /* *INDENT-ON* */
1743 /* Get FPSCR into a local buffer */
1744 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
7bb11558 1745 /* Get value as an int. */
e17a4113 1746 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1747 /* Get SR into a local buffer */
1748 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
7bb11558 1749 /* Get value as an int. */
e17a4113 1750 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
7bb11558 1751 /* Build the new value. */
55ff77ac
CV
1752 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1753 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1754 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1755 /* Store that in out buffer!!! */
e17a4113 1756 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
7bb11558 1757 /* FIXME There is surely an endianness gotcha here. */
55ff77ac
CV
1758 }
1759
1760 else if (reg_nr == FPUL_C_REGNUM)
1761 {
d93859e2 1762 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1763
1764 /* FPUL_C register is floating point register 32,
7bb11558 1765 same size, same endianness. */
55ff77ac
CV
1766 regcache_raw_read (regcache, base_regnum, buffer);
1767 }
1768}
1769
1770static void
1771sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1772 int reg_nr, const gdb_byte *buffer)
55ff77ac 1773{
e17a4113 1774 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1775 int base_regnum, portion;
1776 int offset;
1777 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1778
1779 if (reg_nr >= DR0_REGNUM
1780 && reg_nr <= DR_LAST_REGNUM)
1781 {
d93859e2 1782 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1783 /* We must pay attention to the endianness. */
d93859e2 1784 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1785 reg_nr,
1786 buffer, temp_buffer);
55ff77ac
CV
1787
1788 /* Write the real regs for which this one is an alias. */
1789 for (portion = 0; portion < 2; portion++)
1790 regcache_raw_write (regcache, base_regnum + portion,
1791 (temp_buffer
7bb11558
MS
1792 + register_size (gdbarch,
1793 base_regnum) * portion));
55ff77ac
CV
1794 }
1795
1796 else if (reg_nr >= FPP0_REGNUM
1797 && reg_nr <= FPP_LAST_REGNUM)
1798 {
d93859e2 1799 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1800
1801 /* Write the real regs for which this one is an alias. */
1802 for (portion = 0; portion < 2; portion++)
1803 regcache_raw_write (regcache, base_regnum + portion,
1804 ((char *) buffer
7bb11558
MS
1805 + register_size (gdbarch,
1806 base_regnum) * portion));
55ff77ac
CV
1807 }
1808
1809 else if (reg_nr >= FV0_REGNUM
1810 && reg_nr <= FV_LAST_REGNUM)
1811 {
d93859e2 1812 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1813
1814 /* Write the real regs for which this one is an alias. */
1815 for (portion = 0; portion < 4; portion++)
1816 regcache_raw_write (regcache, base_regnum + portion,
1817 ((char *) buffer
7bb11558
MS
1818 + register_size (gdbarch,
1819 base_regnum) * portion));
55ff77ac
CV
1820 }
1821
1822 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1823 register but only 4 bytes of it. */
1824 else if (reg_nr >= R0_C_REGNUM
1825 && reg_nr <= T_C_REGNUM)
1826 {
d93859e2 1827 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1828 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1829 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1830 offset = 4;
1831 else
1832 offset = 0;
1833 /* Let's read the value of the base register into a temporary
1834 buffer, so that overwriting the last four bytes with the new
7bb11558 1835 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac
CV
1836 regcache_raw_read (regcache, base_regnum, temp_buffer);
1837 /* Write as an 8 byte quantity */
1838 memcpy (temp_buffer + offset, buffer, 4);
1839 regcache_raw_write (regcache, base_regnum, temp_buffer);
1840 }
1841
1842 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
7bb11558 1843 registers. Both are 4 bytes. */
55ff77ac
CV
1844 else if (reg_nr >= FP0_C_REGNUM
1845 && reg_nr <= FP_LAST_C_REGNUM)
1846 {
d93859e2 1847 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1848 regcache_raw_write (regcache, base_regnum, buffer);
1849 }
1850
1851 else if (reg_nr >= DR0_C_REGNUM
1852 && reg_nr <= DR_LAST_C_REGNUM)
1853 {
d93859e2 1854 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1855 for (portion = 0; portion < 2; portion++)
1856 {
7bb11558 1857 /* We must pay attention to the endianness. */
d93859e2
UW
1858 sh64_register_convert_to_raw (gdbarch,
1859 register_type (gdbarch, reg_nr),
39add00a
MS
1860 reg_nr,
1861 buffer, temp_buffer);
55ff77ac
CV
1862
1863 regcache_raw_write (regcache, base_regnum + portion,
1864 (temp_buffer
7bb11558
MS
1865 + register_size (gdbarch,
1866 base_regnum) * portion));
55ff77ac
CV
1867 }
1868 }
1869
1870 else if (reg_nr >= FV0_C_REGNUM
1871 && reg_nr <= FV_LAST_C_REGNUM)
1872 {
d93859e2 1873 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1874
1875 for (portion = 0; portion < 4; portion++)
1876 {
1877 regcache_raw_write (regcache, base_regnum + portion,
1878 ((char *) buffer
7bb11558
MS
1879 + register_size (gdbarch,
1880 base_regnum) * portion));
55ff77ac
CV
1881 }
1882 }
1883
1884 else if (reg_nr == FPSCR_C_REGNUM)
1885 {
1886 int fpscr_base_regnum;
1887 int sr_base_regnum;
1888 unsigned int fpscr_value;
1889 unsigned int sr_value;
1890 unsigned int old_fpscr_value;
1891 unsigned int old_sr_value;
1892 unsigned int fpscr_c_value;
1893 unsigned int fpscr_mask;
1894 unsigned int sr_mask;
1895
1896 fpscr_base_regnum = FPSCR_REGNUM;
1897 sr_base_regnum = SR_REGNUM;
1898
1899 /* FPSCR_C is a very weird register that contains sparse bits
1900 from the FPSCR and the SR architectural registers.
1901 Specifically: */
1902 /* *INDENT-OFF* */
1903 /*
1904 FPSRC_C bit
1905 0 Bit 0 of FPSCR
1906 1 reserved
1907 2-17 Bit 2-18 of FPSCR
1908 18-20 Bits 12,13,14 of SR
1909 21-31 reserved
1910 */
1911 /* *INDENT-ON* */
7bb11558 1912 /* Get value as an int. */
e17a4113 1913 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
55ff77ac 1914
7bb11558 1915 /* Build the new values. */
55ff77ac
CV
1916 fpscr_mask = 0x0003fffd;
1917 sr_mask = 0x001c0000;
1918
1919 fpscr_value = fpscr_c_value & fpscr_mask;
1920 sr_value = (fpscr_value & sr_mask) >> 6;
1921
1922 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
e17a4113 1923 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1924 old_fpscr_value &= 0xfffc0002;
1925 fpscr_value |= old_fpscr_value;
e17a4113 1926 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
55ff77ac
CV
1927 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1928
1929 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
e17a4113 1930 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1931 old_sr_value &= 0xffff8fff;
1932 sr_value |= old_sr_value;
e17a4113 1933 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
55ff77ac
CV
1934 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1935 }
1936
1937 else if (reg_nr == FPUL_C_REGNUM)
1938 {
d93859e2 1939 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1940 regcache_raw_write (regcache, base_regnum, buffer);
1941 }
1942}
1943
55ff77ac 1944/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1945 shmedia REGISTERS. */
1946/* Control registers, compact mode. */
55ff77ac 1947static void
c30dc700
CV
1948sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1949 int cr_c_regnum)
55ff77ac
CV
1950{
1951 switch (cr_c_regnum)
1952 {
c30dc700
CV
1953 case PC_C_REGNUM:
1954 fprintf_filtered (file, "pc_c\t0x%08x\n",
1955 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1956 break;
c30dc700
CV
1957 case GBR_C_REGNUM:
1958 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1959 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1960 break;
c30dc700
CV
1961 case MACH_C_REGNUM:
1962 fprintf_filtered (file, "mach_c\t0x%08x\n",
1963 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1964 break;
c30dc700
CV
1965 case MACL_C_REGNUM:
1966 fprintf_filtered (file, "macl_c\t0x%08x\n",
1967 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1968 break;
c30dc700
CV
1969 case PR_C_REGNUM:
1970 fprintf_filtered (file, "pr_c\t0x%08x\n",
1971 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1972 break;
c30dc700
CV
1973 case T_C_REGNUM:
1974 fprintf_filtered (file, "t_c\t0x%08x\n",
1975 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1976 break;
c30dc700
CV
1977 case FPSCR_C_REGNUM:
1978 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1979 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1980 break;
c30dc700
CV
1981 case FPUL_C_REGNUM:
1982 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1983 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1984 break;
1985 }
1986}
1987
1988static void
c30dc700
CV
1989sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1990 struct frame_info *frame, int regnum)
55ff77ac 1991{ /* do values for FP (float) regs */
079c8cd0 1992 unsigned char *raw_buffer;
55ff77ac
CV
1993 double flt; /* double extracted from raw hex data */
1994 int inv;
1995 int j;
1996
7bb11558 1997 /* Allocate space for the float. */
3e8c568d
UW
1998 raw_buffer = (unsigned char *) alloca
1999 (register_size (gdbarch,
2000 gdbarch_fp0_regnum
58643501 2001 (gdbarch)));
55ff77ac
CV
2002
2003 /* Get the data in raw format. */
c30dc700 2004 if (!frame_register_read (frame, regnum, raw_buffer))
c9f4d572 2005 error ("can't read register %d (%s)",
58643501 2006 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac
CV
2007
2008 /* Get the register as a number */
0dfff4cb 2009 flt = unpack_double (builtin_type (gdbarch)->builtin_float, raw_buffer, &inv);
55ff77ac 2010
7bb11558 2011 /* Print the name and some spaces. */
58643501 2012 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2013 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2014 (gdbarch, regnum)), file);
55ff77ac 2015
7bb11558 2016 /* Print the value. */
55ff77ac
CV
2017 if (inv)
2018 fprintf_filtered (file, "<invalid float>");
2019 else
2020 fprintf_filtered (file, "%-10.9g", flt);
2021
7bb11558 2022 /* Print the fp register as hex. */
55ff77ac
CV
2023 fprintf_filtered (file, "\t(raw 0x");
2024 for (j = 0; j < register_size (gdbarch, regnum); j++)
2025 {
58643501 2026 int idx = gdbarch_byte_order (gdbarch)
4c6b5505
UW
2027 == BFD_ENDIAN_BIG ? j : register_size
2028 (gdbarch, regnum) - 1 - j;
079c8cd0 2029 fprintf_filtered (file, "%02x", raw_buffer[idx]);
55ff77ac
CV
2030 }
2031 fprintf_filtered (file, ")");
2032 fprintf_filtered (file, "\n");
2033}
2034
2035static void
c30dc700
CV
2036sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2037 struct frame_info *frame, int regnum)
55ff77ac 2038{
7bb11558 2039 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 2040
58643501
UW
2041 if (regnum < gdbarch_num_regs (gdbarch)
2042 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
2043 + NUM_PSEUDO_REGS_SH_MEDIA
2044 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 2045 internal_error (__FILE__, __LINE__,
e2e0b3e5 2046 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 2047
c30dc700
CV
2048 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2049 {
d93859e2 2050 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
2051 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2052 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2053 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2054 }
55ff77ac 2055
c30dc700
CV
2056 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2057 {
d93859e2 2058 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2059 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2060 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2061 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2062 }
55ff77ac 2063
c30dc700
CV
2064 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2065 {
d93859e2 2066 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
2067 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2068 regnum - FV0_REGNUM,
2069 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2070 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2071 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2072 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2073 }
55ff77ac 2074
c30dc700
CV
2075 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2076 {
d93859e2 2077 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2078 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2079 regnum - FV0_C_REGNUM,
2080 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2081 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2082 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2083 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2084 }
2085
2086 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2087 {
d93859e2 2088 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2089 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2090 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2091 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2092 }
2093
2094 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2095 {
d93859e2 2096 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2097 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2098 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2099 }
2100 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2101 /* This should work also for pseudoregs. */
c30dc700
CV
2102 sh64_do_fp_register (gdbarch, file, frame, regnum);
2103 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2104 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2105}
2106
2107static void
c30dc700
CV
2108sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2109 struct frame_info *frame, int regnum)
55ff77ac 2110{
079c8cd0 2111 unsigned char raw_buffer[MAX_REGISTER_SIZE];
79a45b7d 2112 struct value_print_options opts;
55ff77ac 2113
58643501 2114 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2115 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2116 (gdbarch, regnum)), file);
55ff77ac
CV
2117
2118 /* Get the data in raw format. */
c30dc700 2119 if (!frame_register_read (frame, regnum, raw_buffer))
55ff77ac 2120 fprintf_filtered (file, "*value not available*\n");
79a45b7d
TT
2121
2122 get_formatted_print_options (&opts, 'x');
2123 opts.deref_ref = 1;
7b9ee6a8 2124 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2125 file, 0, NULL, &opts, current_language);
55ff77ac 2126 fprintf_filtered (file, "\t");
79a45b7d
TT
2127 get_formatted_print_options (&opts, 0);
2128 opts.deref_ref = 1;
7b9ee6a8 2129 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2130 file, 0, NULL, &opts, current_language);
55ff77ac
CV
2131 fprintf_filtered (file, "\n");
2132}
2133
2134static void
c30dc700
CV
2135sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2136 struct frame_info *frame, int regnum)
55ff77ac 2137{
58643501
UW
2138 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2139 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2140 internal_error (__FILE__, __LINE__,
e2e0b3e5 2141 _("Invalid register number %d\n"), regnum);
55ff77ac 2142
58643501 2143 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2144 {
7b9ee6a8 2145 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2146 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2147 else
c30dc700 2148 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2149 }
2150
58643501
UW
2151 else if (regnum < gdbarch_num_regs (gdbarch)
2152 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2153 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2154}
2155
2156static void
c30dc700
CV
2157sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2158 struct frame_info *frame, int regnum,
2159 int fpregs)
55ff77ac
CV
2160{
2161 if (regnum != -1) /* do one specified register */
2162 {
58643501 2163 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2164 error ("Not a valid register for the current processor type");
2165
c30dc700 2166 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2167 }
2168 else
2169 /* do all (or most) registers */
2170 {
2171 regnum = 0;
58643501 2172 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2173 {
2174 /* If the register name is empty, it is undefined for this
2175 processor, so don't display anything. */
58643501
UW
2176 if (gdbarch_register_name (gdbarch, regnum) == NULL
2177 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2178 {
2179 regnum++;
2180 continue;
2181 }
2182
7b9ee6a8 2183 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2184 == TYPE_CODE_FLT)
55ff77ac
CV
2185 {
2186 if (fpregs)
2187 {
2188 /* true for "INFO ALL-REGISTERS" command */
c30dc700 2189 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2190 regnum ++;
2191 }
2192 else
58643501 2193 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2194 /* skip FP regs */
55ff77ac
CV
2195 }
2196 else
2197 {
c30dc700 2198 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2199 regnum++;
2200 }
2201 }
2202
2203 if (fpregs)
58643501
UW
2204 while (regnum < gdbarch_num_regs (gdbarch)
2205 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2206 {
c30dc700 2207 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2208 regnum++;
2209 }
2210 }
2211}
2212
2213static void
c30dc700
CV
2214sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2215 struct ui_file *file,
2216 struct frame_info *frame, int regnum,
2217 int fpregs)
55ff77ac 2218{
55ff77ac
CV
2219 if (regnum != -1) /* do one specified register */
2220 {
58643501 2221 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2222 error ("Not a valid register for the current processor type");
2223
2224 if (regnum >= 0 && regnum < R0_C_REGNUM)
2225 error ("Not a valid register for the current processor mode.");
2226
c30dc700 2227 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2228 }
2229 else
2230 /* do all compact registers */
2231 {
2232 regnum = R0_C_REGNUM;
58643501
UW
2233 while (regnum < gdbarch_num_regs (gdbarch)
2234 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2235 {
c30dc700 2236 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2237 regnum++;
2238 }
2239 }
2240}
2241
2242static void
c30dc700
CV
2243sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2244 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2245{
c30dc700
CV
2246 if (pc_is_isa32 (get_frame_pc (frame)))
2247 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2248 else
c30dc700 2249 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2250}
2251
c30dc700
CV
2252static struct sh64_frame_cache *
2253sh64_alloc_frame_cache (void)
2254{
2255 struct sh64_frame_cache *cache;
2256 int i;
2257
2258 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2259
2260 /* Base address. */
2261 cache->base = 0;
2262 cache->saved_sp = 0;
2263 cache->sp_offset = 0;
2264 cache->pc = 0;
55ff77ac 2265
c30dc700
CV
2266 /* Frameless until proven otherwise. */
2267 cache->uses_fp = 0;
55ff77ac 2268
c30dc700
CV
2269 /* Saved registers. We initialize these to -1 since zero is a valid
2270 offset (that's where fp is supposed to be stored). */
2271 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2272 {
2273 cache->saved_regs[i] = -1;
2274 }
2275
2276 return cache;
2277}
2278
2279static struct sh64_frame_cache *
94afd7a6 2280sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2281{
58643501 2282 struct gdbarch *gdbarch;
c30dc700
CV
2283 struct sh64_frame_cache *cache;
2284 CORE_ADDR current_pc;
2285 int i;
55ff77ac 2286
c30dc700
CV
2287 if (*this_cache)
2288 return *this_cache;
2289
94afd7a6 2290 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2291 cache = sh64_alloc_frame_cache ();
2292 *this_cache = cache;
2293
94afd7a6 2294 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2295 cache->media_mode = pc_is_isa32 (current_pc);
2296
2297 /* In principle, for normal frames, fp holds the frame pointer,
2298 which holds the base address for the current stack frame.
2299 However, for functions that don't need it, the frame pointer is
2300 optional. For these "frameless" functions the frame pointer is
2301 actually the frame pointer of the calling frame. */
94afd7a6 2302 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2303 if (cache->base == 0)
2304 return cache;
2305
94afd7a6 2306 cache->pc = get_frame_func (this_frame);
c30dc700 2307 if (cache->pc != 0)
58643501 2308 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2309
2310 if (!cache->uses_fp)
55ff77ac 2311 {
c30dc700
CV
2312 /* We didn't find a valid frame, which means that CACHE->base
2313 currently holds the frame pointer for our calling frame. If
2314 we're at the start of a function, or somewhere half-way its
2315 prologue, the function's frame probably hasn't been fully
2316 setup yet. Try to reconstruct the base address for the stack
2317 frame by looking at the stack pointer. For truly "frameless"
2318 functions this might work too. */
94afd7a6
UW
2319 cache->base = get_frame_register_unsigned
2320 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2321 }
55ff77ac 2322
c30dc700
CV
2323 /* Now that we have the base address for the stack frame we can
2324 calculate the value of sp in the calling frame. */
2325 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2326
c30dc700
CV
2327 /* Adjust all the saved registers such that they contain addresses
2328 instead of offsets. */
2329 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2330 if (cache->saved_regs[i] != -1)
2331 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2332
c30dc700
CV
2333 return cache;
2334}
55ff77ac 2335
94afd7a6
UW
2336static struct value *
2337sh64_frame_prev_register (struct frame_info *this_frame,
2338 void **this_cache, int regnum)
c30dc700 2339{
94afd7a6
UW
2340 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2341 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 2343
c30dc700 2344 gdb_assert (regnum >= 0);
55ff77ac 2345
58643501 2346 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2347 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2348
2349 /* The PC of the previous frame is stored in the PR register of
2350 the current frame. Frob regnum so that we pull the value from
2351 the correct place. */
58643501 2352 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2353 regnum = PR_REGNUM;
2354
2355 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2356 {
58643501 2357 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2358 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2359 {
94afd7a6 2360 CORE_ADDR val;
e17a4113
UW
2361 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2362 4, byte_order);
94afd7a6 2363 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2364 }
94afd7a6
UW
2365
2366 return frame_unwind_got_memory (this_frame, regnum,
2367 cache->saved_regs[regnum]);
55ff77ac
CV
2368 }
2369
94afd7a6 2370 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2371}
55ff77ac 2372
c30dc700 2373static void
94afd7a6 2374sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2375 struct frame_id *this_id)
2376{
94afd7a6 2377 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2378
2379 /* This marks the outermost frame. */
2380 if (cache->base == 0)
2381 return;
2382
2383 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2384}
2385
2386static const struct frame_unwind sh64_frame_unwind = {
2387 NORMAL_FRAME,
2388 sh64_frame_this_id,
94afd7a6
UW
2389 sh64_frame_prev_register,
2390 NULL,
2391 default_frame_sniffer
c30dc700
CV
2392};
2393
c30dc700
CV
2394static CORE_ADDR
2395sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2396{
3e8c568d 2397 return frame_unwind_register_unsigned (next_frame,
58643501 2398 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2399}
2400
2401static CORE_ADDR
2402sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2403{
3e8c568d 2404 return frame_unwind_register_unsigned (next_frame,
58643501 2405 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2406}
2407
2408static struct frame_id
94afd7a6 2409sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2410{
94afd7a6
UW
2411 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2412 gdbarch_sp_regnum (gdbarch));
2413 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2414}
2415
2416static CORE_ADDR
94afd7a6 2417sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2418{
94afd7a6 2419 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2420
2421 return cache->base;
2422}
2423
2424static const struct frame_base sh64_frame_base = {
2425 &sh64_frame_unwind,
2426 sh64_frame_base_address,
2427 sh64_frame_base_address,
2428 sh64_frame_base_address
2429};
2430
55ff77ac
CV
2431
2432struct gdbarch *
2433sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2434{
55ff77ac
CV
2435 struct gdbarch *gdbarch;
2436 struct gdbarch_tdep *tdep;
2437
2438 /* If there is already a candidate, use it. */
2439 arches = gdbarch_list_lookup_by_info (arches, &info);
2440 if (arches != NULL)
2441 return arches->gdbarch;
2442
2443 /* None found, create a new architecture from the information
7bb11558 2444 provided. */
55ff77ac
CV
2445 tdep = XMALLOC (struct gdbarch_tdep);
2446 gdbarch = gdbarch_alloc (&info, tdep);
2447
55ff77ac
CV
2448 /* Determine the ABI */
2449 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2450 {
7bb11558 2451 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2452 tdep->sh_abi = SH_ABI_64;
2453 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2454 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2455 }
2456 else
2457 {
2458 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2459 compact. */
55ff77ac
CV
2460 tdep->sh_abi = SH_ABI_32;
2461 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2462 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2463 }
2464
2465 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2466 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2467 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2468 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2469 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2470 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2471 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2472
c30dc700
CV
2473 /* The number of real registers is the same whether we are in
2474 ISA16(compact) or ISA32(media). */
2475 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2476 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2477 set_gdbarch_pc_regnum (gdbarch, 64);
2478 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2479 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2480 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2481
c30dc700
CV
2482 set_gdbarch_register_name (gdbarch, sh64_register_name);
2483 set_gdbarch_register_type (gdbarch, sh64_register_type);
2484
2485 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2486 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2487
2488 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2489
9dae60cc 2490 set_gdbarch_print_insn (gdbarch, print_insn_sh);
55ff77ac
CV
2491 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2492
c30dc700 2493 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2494
c30dc700
CV
2495 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2496 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2497
c30dc700 2498 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2499
c30dc700 2500 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2501
c30dc700
CV
2502 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2503 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2504 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2505 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2506 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2507
c30dc700 2508 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2509
55ff77ac
CV
2510 set_gdbarch_elf_make_msymbol_special (gdbarch,
2511 sh64_elf_make_msymbol_special);
2512
2513 /* Hook in ABI-specific overrides, if they have been registered. */
2514 gdbarch_init_osabi (info, gdbarch);
2515
94afd7a6
UW
2516 dwarf2_append_unwinders (gdbarch);
2517 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2518
55ff77ac
CV
2519 return gdbarch;
2520}
This page took 0.797615 seconds and 4 git commands to generate.