Add enum for mips breakpoint kinds
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
618f726f 3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
55ff77ac
CV
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
55ff77ac
CV
22
23#include "defs.h"
24#include "frame.h"
c30dc700
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
55ff77ac 28#include "symtab.h"
55ff77ac
CV
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
34#include "inferior.h"
55ff77ac 35#include "arch-utils.h"
55ff77ac 36#include "regcache.h"
55ff77ac 37#include "osabi.h"
79a45b7d 38#include "valprint.h"
55ff77ac
CV
39
40#include "elf-bfd.h"
55ff77ac
CV
41
42/* sh flags */
43#include "elf/sh.h"
c378eb4e 44/* Register numbers shared with the simulator. */
55ff77ac 45#include "gdb/sim-sh.h"
d8ca156b 46#include "language.h"
04dcf5fa 47#include "sh64-tdep.h"
325fac50 48#include <algorithm>
55ff77ac 49
7bb11558 50/* Information that is dependent on the processor variant. */
55ff77ac
CV
51enum sh_abi
52 {
53 SH_ABI_UNKNOWN,
54 SH_ABI_32,
55 SH_ABI_64
56 };
57
58struct gdbarch_tdep
59 {
60 enum sh_abi sh_abi;
61 };
62
c30dc700
CV
63struct sh64_frame_cache
64{
65 /* Base address. */
66 CORE_ADDR base;
67 LONGEST sp_offset;
68 CORE_ADDR pc;
69
c378eb4e 70 /* Flag showing that a frame has been created in the prologue code. */
c30dc700
CV
71 int uses_fp;
72
73 int media_mode;
74
75 /* Saved registers. */
76 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
77 CORE_ADDR saved_sp;
78};
79
55ff77ac
CV
80/* Registers of SH5 */
81enum
82 {
83 R0_REGNUM = 0,
84 DEFAULT_RETURN_REGNUM = 2,
85 STRUCT_RETURN_REGNUM = 2,
86 ARG0_REGNUM = 2,
87 ARGLAST_REGNUM = 9,
88 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 89 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
90 PR_REGNUM = 18,
91 SR_REGNUM = 65,
92 DR0_REGNUM = 141,
93 DR_LAST_REGNUM = 172,
94 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 95 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
c378eb4e 96 point register. Unfortunately on the sh5, the floating point
7bb11558 97 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
98 FPP0_REGNUM = 173,
99 FPP_LAST_REGNUM = 204,
100 FV0_REGNUM = 205,
101 FV_LAST_REGNUM = 220,
102 R0_C_REGNUM = 221,
103 R_LAST_C_REGNUM = 236,
104 PC_C_REGNUM = 237,
105 GBR_C_REGNUM = 238,
106 MACH_C_REGNUM = 239,
107 MACL_C_REGNUM = 240,
108 PR_C_REGNUM = 241,
109 T_C_REGNUM = 242,
110 FPSCR_C_REGNUM = 243,
111 FPUL_C_REGNUM = 244,
112 FP0_C_REGNUM = 245,
113 FP_LAST_C_REGNUM = 260,
114 DR0_C_REGNUM = 261,
115 DR_LAST_C_REGNUM = 268,
116 FV0_C_REGNUM = 269,
117 FV_LAST_C_REGNUM = 272,
118 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
119 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
120 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
121 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
122 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
123 };
124
55ff77ac 125static const char *
d93859e2 126sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac
CV
127{
128 static char *register_names[] =
129 {
130 /* SH MEDIA MODE (ISA 32) */
131 /* general registers (64-bit) 0-63 */
132 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
133 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
134 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
135 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
136 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
137 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
138 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
139 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
140
141 /* pc (64-bit) 64 */
142 "pc",
143
144 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
145 "sr", "ssr", "spc",
146
c378eb4e 147 /* target registers (64-bit) 68-75 */
55ff77ac
CV
148 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
149
150 /* floating point state control register (32-bit) 76 */
151 "fpscr",
152
c378eb4e 153 /* single precision floating point registers (32-bit) 77-140 */
55ff77ac
CV
154 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
155 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
156 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
157 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
158 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
159 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
160 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
161 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
162
163 /* double precision registers (pseudo) 141-172 */
164 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
165 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
166 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
167 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
168
c378eb4e 169 /* floating point pairs (pseudo) 173-204 */
55ff77ac
CV
170 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
171 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
172 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
173 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
174
c378eb4e 175 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
55ff77ac
CV
176 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
177 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
178
c378eb4e 179 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
55ff77ac
CV
180 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
181 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
182 "pc_c",
183 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
184 "fpscr_c", "fpul_c",
c378eb4e
MS
185 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
186 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
187 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
188 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
189 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
190 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
55ff77ac 191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
c378eb4e 192 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
55ff77ac
CV
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200}
201
202#define NUM_PSEUDO_REGS_SH_MEDIA 80
203#define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205/* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 207 symbol's "info" field is used for this purpose.
55ff77ac 208
95f1da47
UW
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 211 minimal symbol to mark it as a 32-bit function
f594e5e9 212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
213
214#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 215 MSYMBOL_TARGET_FLAG_1 (msym)
55ff77ac
CV
216
217static void
218sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219{
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
b887350f 225 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
77e371c0 226 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
55ff77ac
CV
227 }
228}
229
230/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232#define IS_ISA32_ADDR(addr) ((addr) & 1)
233#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236static int
237pc_is_isa32 (bfd_vma memaddr)
238{
7cbd4a93 239 struct bound_minimal_symbol sym;
55ff77ac
CV
240
241 /* If bit 0 of the address is set, assume this is a
7bb11558 242 ISA32 (shmedia) address. */
55ff77ac
CV
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
250 if (sym.minsym)
251 return MSYMBOL_IS_SPECIAL (sym.minsym);
55ff77ac
CV
252 else
253 return 0;
254}
255
256static const unsigned char *
c378eb4e
MS
257sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
258 CORE_ADDR *pcptr, int *lenptr)
55ff77ac
CV
259{
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264
265 /* The BRK instruction for shcompact is
266 00000000 00111011
267 which translates in big endian mode to 0x0, 0x3b
c378eb4e 268 and in little endian mode to 0x3b, 0x0 */
55ff77ac 269
67d57894 270 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
271 {
272 if (pc_is_isa32 (*pcptr))
273 {
c378eb4e
MS
274 static unsigned char big_breakpoint_media[] = {
275 0x6f, 0xf5, 0xff, 0xf0
276 };
55ff77ac
CV
277 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
278 *lenptr = sizeof (big_breakpoint_media);
279 return big_breakpoint_media;
280 }
281 else
282 {
283 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
284 *lenptr = sizeof (big_breakpoint_compact);
285 return big_breakpoint_compact;
286 }
287 }
288 else
289 {
290 if (pc_is_isa32 (*pcptr))
291 {
c378eb4e
MS
292 static unsigned char little_breakpoint_media[] = {
293 0xf0, 0xff, 0xf5, 0x6f
294 };
55ff77ac
CV
295 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
296 *lenptr = sizeof (little_breakpoint_media);
297 return little_breakpoint_media;
298 }
299 else
300 {
301 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
302 *lenptr = sizeof (little_breakpoint_compact);
303 return little_breakpoint_compact;
304 }
305 }
306}
307
308/* Prologue looks like
309 [mov.l <regs>,@-r15]...
310 [sts.l pr,@-r15]
311 [mov.l r14,@-r15]
312 [mov r15,r14]
313
314 Actually it can be more complicated than this. For instance, with
315 newer gcc's:
316
317 mov.l r14,@-r15
318 add #-12,r15
319 mov r15,r14
320 mov r4,r1
321 mov r5,r2
322 mov.l r6,@(4,r14)
323 mov.l r7,@(8,r14)
324 mov.b r1,@r14
325 mov r14,r1
326 mov r14,r1
327 add #2,r1
328 mov.w r2,@r1
329
330 */
331
332/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
333 with l=1 and n = 18 0110101111110001010010100aaa0000 */
334#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
335
336/* STS.L PR,@-r0 0100000000100010
337 r0-4-->r0, PR-->(r0) */
338#define IS_STS_R0(x) ((x) == 0x4022)
339
340/* STS PR, Rm 0000mmmm00101010
341 PR-->Rm */
342#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
343
344/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
345 Rm-->(dispx4+r15) */
346#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
347
348/* MOV.L R14,@(disp,r15) 000111111110dddd
349 R14-->(dispx4+r15) */
350#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
351
352/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
353 R18-->(dispx8+R14) */
354#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
355
356/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
357 R18-->(dispx8+R15) */
358#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
359
360/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
361 R18-->(dispx4+R15) */
362#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
363
364/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx8+R15) */
366#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
367
368/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
369 R14-->(dispx4+R15) */
370#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
371
372/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
373 R15 + imm --> R15 */
374#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
375
376/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
377 R15 + imm --> R15 */
378#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
379
380/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
381 R15 + R63 --> R14 */
382#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
383
384/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
385 R15 + R63 --> R14 */
386#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
387
c378eb4e
MS
388#define IS_MOV_SP_FP_MEDIA(x) \
389 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
55ff77ac
CV
390
391/* MOV #imm, R0 1110 0000 ssss ssss
392 #imm-->R0 */
393#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
394
395/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
396#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
397
398/* ADD r15,r0 0011 0000 1111 1100
399 r15+r0-->r0 */
400#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
401
402/* MOV.L R14 @-R0 0010 0000 1110 0110
403 R14-->(R0-4), R0-4-->R0 */
404#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
405
406/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 407 where Rm is one of r2-r9 which are the argument registers. */
c378eb4e 408/* FIXME: Recognize the float and double register moves too! */
55ff77ac 409#define IS_MEDIA_IND_ARG_MOV(x) \
c378eb4e
MS
410 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
411 && (((x) & 0x03f00000) >= 0x00200000 \
412 && ((x) & 0x03f00000) <= 0x00900000))
55ff77ac
CV
413
414/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
415 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 416 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
417#define IS_MEDIA_ARG_MOV(x) \
418(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
419 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
420
c378eb4e
MS
421/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
422/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
423/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
424/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
425/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
55ff77ac
CV
426#define IS_MEDIA_MOV_TO_R14(x) \
427((((x) & 0xfffffc0f) == 0xa0e00000) \
428|| (((x) & 0xfffffc0f) == 0xa4e00000) \
429|| (((x) & 0xfffffc0f) == 0xa8e00000) \
430|| (((x) & 0xfffffc0f) == 0xb4e00000) \
431|| (((x) & 0xfffffc0f) == 0xbce00000))
432
433/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
434 where Rm is r2-r9 */
435#define IS_COMPACT_IND_ARG_MOV(x) \
c378eb4e
MS
436 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
437 && (((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
438
439/* compact direct arg move!
440 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
441#define IS_COMPACT_ARG_MOV(x) \
c378eb4e
MS
442 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
443 && ((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
444
445/* MOV.B Rm, @R14 0010 1110 mmmm 0000
446 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
447#define IS_COMPACT_MOV_TO_R14(x) \
448((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
449
450#define IS_JSR_R0(x) ((x) == 0x400b)
451#define IS_NOP(x) ((x) == 0x0009)
452
453
454/* MOV r15,r14 0110111011110011
455 r15-->r14 */
456#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
457
458/* ADD #imm,r15 01111111iiiiiiii
459 r15+imm-->r15 */
460#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
461
c378eb4e 462/* Skip any prologue before the guts of a function. */
55ff77ac 463
7bb11558
MS
464/* Skip the prologue using the debug information. If this fails we'll
465 fall back on the 'guess' method below. */
55ff77ac
CV
466static CORE_ADDR
467after_prologue (CORE_ADDR pc)
468{
469 struct symtab_and_line sal;
470 CORE_ADDR func_addr, func_end;
471
472 /* If we can not find the symbol in the partial symbol table, then
473 there is no hope we can determine the function's start address
474 with this code. */
475 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
476 return 0;
477
c30dc700 478
55ff77ac
CV
479 /* Get the line associated with FUNC_ADDR. */
480 sal = find_pc_line (func_addr, 0);
481
482 /* There are only two cases to consider. First, the end of the source line
483 is within the function bounds. In that case we return the end of the
484 source line. Second is the end of the source line extends beyond the
485 bounds of the current function. We need to use the slow code to
486 examine instructions in that case. */
487 if (sal.end < func_end)
488 return sal.end;
489 else
490 return 0;
491}
492
493static CORE_ADDR
e17a4113
UW
494look_for_args_moves (struct gdbarch *gdbarch,
495 CORE_ADDR start_pc, int media_mode)
55ff77ac 496{
e17a4113 497 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
498 CORE_ADDR here, end;
499 int w;
500 int insn_size = (media_mode ? 4 : 2);
501
502 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
503 {
504 if (media_mode)
505 {
e17a4113
UW
506 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
507 insn_size, byte_order);
55ff77ac
CV
508 here += insn_size;
509 if (IS_MEDIA_IND_ARG_MOV (w))
510 {
511 /* This must be followed by a store to r14, so the argument
c378eb4e 512 is where the debug info says it is. This can happen after
7bb11558 513 the SP has been saved, unfortunately. */
55ff77ac
CV
514
515 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
e17a4113 516 insn_size, byte_order);
55ff77ac
CV
517 here += insn_size;
518 if (IS_MEDIA_MOV_TO_R14 (next_insn))
519 start_pc = here;
520 }
521 else if (IS_MEDIA_ARG_MOV (w))
522 {
7bb11558 523 /* These instructions store directly the argument in r14. */
55ff77ac
CV
524 start_pc = here;
525 }
526 else
527 break;
528 }
529 else
530 {
e17a4113 531 w = read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
532 w = w & 0xffff;
533 here += insn_size;
534 if (IS_COMPACT_IND_ARG_MOV (w))
535 {
536 /* This must be followed by a store to r14, so the argument
c378eb4e 537 is where the debug info says it is. This can happen after
7bb11558 538 the SP has been saved, unfortunately. */
55ff77ac 539
e17a4113
UW
540 int next_insn = 0xffff & read_memory_integer (here, insn_size,
541 byte_order);
55ff77ac
CV
542 here += insn_size;
543 if (IS_COMPACT_MOV_TO_R14 (next_insn))
544 start_pc = here;
545 }
546 else if (IS_COMPACT_ARG_MOV (w))
547 {
7bb11558 548 /* These instructions store directly the argument in r14. */
55ff77ac
CV
549 start_pc = here;
550 }
551 else if (IS_MOVL_R0 (w))
552 {
553 /* There is a function that gcc calls to get the arguments
c378eb4e 554 passed correctly to the function. Only after this
55ff77ac 555 function call the arguments will be found at the place
c378eb4e 556 where they are supposed to be. This happens in case the
55ff77ac
CV
557 argument has to be stored into a 64-bit register (for
558 instance doubles, long longs). SHcompact doesn't have
559 access to the full 64-bits, so we store the register in
560 stack slot and store the address of the stack slot in
561 the register, then do a call through a wrapper that
562 loads the memory value into the register. A SHcompact
563 callee calls an argument decoder
564 (GCC_shcompact_incoming_args) that stores the 64-bit
565 value in a stack slot and stores the address of the
566 stack slot in the register. GCC thinks the argument is
567 just passed by transparent reference, but this is only
c378eb4e 568 true after the argument decoder is called. Such a call
7bb11558 569 needs to be considered part of the prologue. */
55ff77ac
CV
570
571 /* This must be followed by a JSR @r0 instruction and by
c378eb4e 572 a NOP instruction. After these, the prologue is over! */
55ff77ac 573
e17a4113
UW
574 int next_insn = 0xffff & read_memory_integer (here, insn_size,
575 byte_order);
55ff77ac
CV
576 here += insn_size;
577 if (IS_JSR_R0 (next_insn))
578 {
e17a4113
UW
579 next_insn = 0xffff & read_memory_integer (here, insn_size,
580 byte_order);
55ff77ac
CV
581 here += insn_size;
582
583 if (IS_NOP (next_insn))
584 start_pc = here;
585 }
586 }
587 else
588 break;
589 }
590 }
591
592 return start_pc;
593}
594
595static CORE_ADDR
e17a4113 596sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
55ff77ac 597{
e17a4113 598 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
599 CORE_ADDR here, end;
600 int updated_fp = 0;
601 int insn_size = 4;
602 int media_mode = 1;
603
604 if (!start_pc)
605 return 0;
606
607 if (pc_is_isa32 (start_pc) == 0)
608 {
609 insn_size = 2;
610 media_mode = 0;
611 }
612
613 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
614 {
615
616 if (media_mode)
617 {
e17a4113
UW
618 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
619 insn_size, byte_order);
55ff77ac
CV
620 here += insn_size;
621 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
622 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
c378eb4e
MS
623 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
624 || IS_PTABSL_R18 (w))
55ff77ac
CV
625 {
626 start_pc = here;
627 }
628 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
629 {
630 start_pc = here;
631 updated_fp = 1;
632 }
633 else
634 if (updated_fp)
635 {
636 /* Don't bail out yet, we may have arguments stored in
637 registers here, according to the debug info, so that
7bb11558 638 gdb can print the frames correctly. */
e17a4113
UW
639 start_pc = look_for_args_moves (gdbarch,
640 here - insn_size, media_mode);
55ff77ac
CV
641 break;
642 }
643 }
644 else
645 {
e17a4113 646 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
647 here += insn_size;
648
649 if (IS_STS_R0 (w) || IS_STS_PR (w)
650 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
651 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
652 {
653 start_pc = here;
654 }
655 else if (IS_MOV_SP_FP (w))
656 {
657 start_pc = here;
658 updated_fp = 1;
659 }
660 else
661 if (updated_fp)
662 {
663 /* Don't bail out yet, we may have arguments stored in
664 registers here, according to the debug info, so that
7bb11558 665 gdb can print the frames correctly. */
e17a4113
UW
666 start_pc = look_for_args_moves (gdbarch,
667 here - insn_size, media_mode);
55ff77ac
CV
668 break;
669 }
670 }
671 }
672
673 return start_pc;
674}
675
676static CORE_ADDR
6093d2eb 677sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
678{
679 CORE_ADDR post_prologue_pc;
680
681 /* See if we can determine the end of the prologue via the symbol table.
682 If so, then return either PC, or the PC after the prologue, whichever
683 is greater. */
684 post_prologue_pc = after_prologue (pc);
685
686 /* If after_prologue returned a useful address, then use it. Else
7bb11558 687 fall back on the instruction skipping code. */
55ff77ac 688 if (post_prologue_pc != 0)
325fac50 689 return std::max (pc, post_prologue_pc);
55ff77ac 690 else
e17a4113 691 return sh64_skip_prologue_hard_way (gdbarch, pc);
55ff77ac
CV
692}
693
55ff77ac
CV
694/* Should call_function allocate stack space for a struct return? */
695static int
c30dc700 696sh64_use_struct_convention (struct type *type)
55ff77ac
CV
697{
698 return (TYPE_LENGTH (type) > 8);
699}
700
7bb11558 701/* For vectors of 4 floating point registers. */
55ff77ac 702static int
d93859e2 703sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
704{
705 int fp_regnum;
706
d93859e2 707 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
708 return fp_regnum;
709}
710
c378eb4e 711/* For double precision floating point registers, i.e 2 fp regs. */
55ff77ac 712static int
d93859e2 713sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
714{
715 int fp_regnum;
716
d93859e2 717 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
718 return fp_regnum;
719}
720
c378eb4e 721/* For pairs of floating point registers. */
55ff77ac 722static int
d93859e2 723sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
724{
725 int fp_regnum;
726
d93859e2 727 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
728 return fp_regnum;
729}
730
55ff77ac
CV
731/* *INDENT-OFF* */
732/*
733 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
734 GDB_REGNUM BASE_REGNUM
735 r0_c 221 0
736 r1_c 222 1
737 r2_c 223 2
738 r3_c 224 3
739 r4_c 225 4
740 r5_c 226 5
741 r6_c 227 6
742 r7_c 228 7
743 r8_c 229 8
744 r9_c 230 9
745 r10_c 231 10
746 r11_c 232 11
747 r12_c 233 12
748 r13_c 234 13
749 r14_c 235 14
750 r15_c 236 15
751
752 pc_c 237 64
753 gbr_c 238 16
754 mach_c 239 17
755 macl_c 240 17
756 pr_c 241 18
757 t_c 242 19
758 fpscr_c 243 76
759 fpul_c 244 109
760
761 fr0_c 245 77
762 fr1_c 246 78
763 fr2_c 247 79
764 fr3_c 248 80
765 fr4_c 249 81
766 fr5_c 250 82
767 fr6_c 251 83
768 fr7_c 252 84
769 fr8_c 253 85
770 fr9_c 254 86
771 fr10_c 255 87
772 fr11_c 256 88
773 fr12_c 257 89
774 fr13_c 258 90
775 fr14_c 259 91
776 fr15_c 260 92
777
778 dr0_c 261 77
779 dr2_c 262 79
780 dr4_c 263 81
781 dr6_c 264 83
782 dr8_c 265 85
783 dr10_c 266 87
784 dr12_c 267 89
785 dr14_c 268 91
786
787 fv0_c 269 77
788 fv4_c 270 81
789 fv8_c 271 85
790 fv12_c 272 91
791*/
792/* *INDENT-ON* */
793static int
d93859e2 794sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 795{
c30dc700 796 int base_regnum = reg_nr;
55ff77ac
CV
797
798 /* general register N maps to general register N */
799 if (reg_nr >= R0_C_REGNUM
800 && reg_nr <= R_LAST_C_REGNUM)
801 base_regnum = reg_nr - R0_C_REGNUM;
802
803 /* floating point register N maps to floating point register N */
804 else if (reg_nr >= FP0_C_REGNUM
805 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 806 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
807
808 /* double prec register N maps to base regnum for double prec register N */
809 else if (reg_nr >= DR0_C_REGNUM
810 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
811 base_regnum = sh64_dr_reg_base_num (gdbarch,
812 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
813
814 /* vector N maps to base regnum for vector register N */
815 else if (reg_nr >= FV0_C_REGNUM
816 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
817 base_regnum = sh64_fv_reg_base_num (gdbarch,
818 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
819
820 else if (reg_nr == PC_C_REGNUM)
d93859e2 821 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
822
823 else if (reg_nr == GBR_C_REGNUM)
824 base_regnum = 16;
825
826 else if (reg_nr == MACH_C_REGNUM
827 || reg_nr == MACL_C_REGNUM)
828 base_regnum = 17;
829
830 else if (reg_nr == PR_C_REGNUM)
c30dc700 831 base_regnum = PR_REGNUM;
55ff77ac
CV
832
833 else if (reg_nr == T_C_REGNUM)
834 base_regnum = 19;
835
836 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 837 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
838
839 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 840 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
841
842 return base_regnum;
843}
844
55ff77ac
CV
845static int
846sign_extend (int value, int bits)
847{
848 value = value & ((1 << bits) - 1);
849 return (value & (1 << (bits - 1))
850 ? value | (~((1 << bits) - 1))
851 : value);
852}
853
854static void
c30dc700
CV
855sh64_analyze_prologue (struct gdbarch *gdbarch,
856 struct sh64_frame_cache *cache,
857 CORE_ADDR func_pc,
858 CORE_ADDR current_pc)
55ff77ac 859{
55ff77ac
CV
860 int pc;
861 int opc;
862 int insn;
863 int r0_val = 0;
55ff77ac 864 int insn_size;
e17a4113 865 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 866
c30dc700 867 cache->sp_offset = 0;
55ff77ac
CV
868
869 /* Loop around examining the prologue insns until we find something
870 that does not appear to be part of the prologue. But give up
7bb11558 871 after 20 of them, since we're getting silly then. */
55ff77ac 872
c30dc700 873 pc = func_pc;
55ff77ac 874
c30dc700
CV
875 if (cache->media_mode)
876 insn_size = 4;
55ff77ac 877 else
c30dc700 878 insn_size = 2;
55ff77ac 879
c30dc700
CV
880 opc = pc + (insn_size * 28);
881 if (opc > current_pc)
882 opc = current_pc;
883 for ( ; pc <= opc; pc += insn_size)
55ff77ac 884 {
c30dc700
CV
885 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
886 : pc,
e17a4113 887 insn_size, byte_order);
55ff77ac 888
c30dc700 889 if (!cache->media_mode)
55ff77ac
CV
890 {
891 if (IS_STS_PR (insn))
892 {
e17a4113
UW
893 int next_insn = read_memory_integer (pc + insn_size,
894 insn_size, byte_order);
55ff77ac
CV
895 if (IS_MOV_TO_R15 (next_insn))
896 {
c378eb4e
MS
897 cache->saved_regs[PR_REGNUM]
898 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
899 - 0x8) << 2);
55ff77ac
CV
900 pc += insn_size;
901 }
902 }
c30dc700 903
55ff77ac 904 else if (IS_MOV_R14 (insn))
9ca10714
JB
905 {
906 cache->saved_regs[MEDIA_FP_REGNUM] =
907 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
908 cache->uses_fp = 1;
909 }
55ff77ac
CV
910
911 else if (IS_MOV_R0 (insn))
912 {
913 /* Put in R0 the offset from SP at which to store some
c378eb4e 914 registers. We are interested in this value, because it
55ff77ac
CV
915 will tell us where the given registers are stored within
916 the frame. */
917 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
918 }
c30dc700 919
55ff77ac
CV
920 else if (IS_ADD_SP_R0 (insn))
921 {
922 /* This instruction still prepares r0, but we don't care.
7bb11558 923 We already have the offset in r0_val. */
55ff77ac 924 }
c30dc700 925
55ff77ac
CV
926 else if (IS_STS_R0 (insn))
927 {
c378eb4e 928 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700 929 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 930 r0_val -= 4;
55ff77ac 931 }
c30dc700 932
55ff77ac
CV
933 else if (IS_MOV_R14_R0 (insn))
934 {
c378eb4e 935 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700
CV
936 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
937 - (r0_val - 4);
9ca10714 938 cache->uses_fp = 1;
55ff77ac
CV
939 r0_val -= 4;
940 }
941
942 else if (IS_ADD_SP (insn))
c30dc700
CV
943 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
944
55ff77ac
CV
945 else if (IS_MOV_SP_FP (insn))
946 break;
947 }
948 else
949 {
c30dc700
CV
950 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
951 cache->sp_offset -=
952 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
953
954 else if (IS_STQ_R18_R15 (insn))
c378eb4e
MS
955 cache->saved_regs[PR_REGNUM]
956 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
957 9) << 3);
55ff77ac
CV
958
959 else if (IS_STL_R18_R15 (insn))
c378eb4e
MS
960 cache->saved_regs[PR_REGNUM]
961 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
962 9) << 2);
55ff77ac
CV
963
964 else if (IS_STQ_R14_R15 (insn))
9ca10714
JB
965 {
966 cache->saved_regs[MEDIA_FP_REGNUM]
967 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
968 9) << 3);
969 cache->uses_fp = 1;
970 }
55ff77ac
CV
971
972 else if (IS_STL_R14_R15 (insn))
9ca10714
JB
973 {
974 cache->saved_regs[MEDIA_FP_REGNUM]
975 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
976 9) << 2);
977 cache->uses_fp = 1;
978 }
55ff77ac
CV
979
980 else if (IS_MOV_SP_FP_MEDIA (insn))
981 break;
982 }
983 }
55ff77ac
CV
984}
985
55ff77ac 986static CORE_ADDR
c30dc700 987sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 988{
c30dc700 989 return sp & ~7;
55ff77ac
CV
990}
991
c30dc700 992/* Function: push_dummy_call
55ff77ac
CV
993 Setup the function arguments for calling a function in the inferior.
994
85a453d5 995 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
996 which are dedicated for passing function arguments. Up to the first
997 four arguments (depending on size) may go into these registers.
998 The rest go on the stack.
999
1000 Arguments that are smaller than 4 bytes will still take up a whole
1001 register or a whole 32-bit word on the stack, and will be
1002 right-justified in the register or the stack word. This includes
1003 chars, shorts, and small aggregate types.
1004
1005 Arguments that are larger than 4 bytes may be split between two or
1006 more registers. If there are not enough registers free, an argument
1007 may be passed partly in a register (or registers), and partly on the
c378eb4e 1008 stack. This includes doubles, long longs, and larger aggregates.
55ff77ac
CV
1009 As far as I know, there is no upper limit to the size of aggregates
1010 that will be passed in this way; in other words, the convention of
1011 passing a pointer to a large aggregate instead of a copy is not used.
1012
1013 An exceptional case exists for struct arguments (and possibly other
1014 aggregates such as arrays) if the size is larger than 4 bytes but
1015 not a multiple of 4 bytes. In this case the argument is never split
1016 between the registers and the stack, but instead is copied in its
1017 entirety onto the stack, AND also copied into as many registers as
1018 there is room for. In other words, space in registers permitting,
1019 two copies of the same argument are passed in. As far as I can tell,
1020 only the one on the stack is used, although that may be a function
1021 of the level of compiler optimization. I suspect this is a compiler
1022 bug. Arguments of these odd sizes are left-justified within the
1023 word (as opposed to arguments smaller than 4 bytes, which are
1024 right-justified).
1025
1026 If the function is to return an aggregate type such as a struct, it
1027 is either returned in the normal return value register R0 (if its
1028 size is no greater than one byte), or else the caller must allocate
1029 space into which the callee will copy the return value (if the size
1030 is greater than one byte). In this case, a pointer to the return
1031 value location is passed into the callee in register R2, which does
1032 not displace any of the other arguments passed in via registers R4
c378eb4e 1033 to R7. */
55ff77ac
CV
1034
1035/* R2-R9 for integer types and integer equivalent (char, pointers) and
1036 non-scalar (struct, union) elements (even if the elements are
1037 floats).
1038 FR0-FR11 for single precision floating point (float)
1039 DR0-DR10 for double precision floating point (double)
1040
1041 If a float is argument number 3 (for instance) and arguments number
1042 1,2, and 4 are integer, the mapping will be:
c378eb4e 1043 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
55ff77ac
CV
1044
1045 If a float is argument number 10 (for instance) and arguments number
1046 1 through 10 are integer, the mapping will be:
1047 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
c378eb4e
MS
1048 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1049 arg11->stack(16,SP). I.e. there is hole in the stack.
55ff77ac
CV
1050
1051 Different rules apply for variable arguments functions, and for functions
7bb11558 1052 for which the prototype is not known. */
55ff77ac
CV
1053
1054static CORE_ADDR
c30dc700
CV
1055sh64_push_dummy_call (struct gdbarch *gdbarch,
1056 struct value *function,
1057 struct regcache *regcache,
1058 CORE_ADDR bp_addr,
1059 int nargs, struct value **args,
1060 CORE_ADDR sp, int struct_return,
1061 CORE_ADDR struct_addr)
55ff77ac 1062{
e17a4113 1063 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1064 int stack_offset, stack_alloc;
1065 int int_argreg;
55ff77ac
CV
1066 int float_arg_index = 0;
1067 int double_arg_index = 0;
1068 int argnum;
1069 struct type *type;
1070 CORE_ADDR regval;
948f8e3d
PA
1071 const gdb_byte *val;
1072 gdb_byte valbuf[8];
55ff77ac
CV
1073 int len;
1074 int argreg_size;
1075 int fp_args[12];
55ff77ac
CV
1076
1077 memset (fp_args, 0, sizeof (fp_args));
1078
c378eb4e 1079 /* First force sp to a 8-byte alignment. */
c30dc700 1080 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1081
1082 /* The "struct return pointer" pseudo-argument has its own dedicated
c378eb4e 1083 register. */
55ff77ac
CV
1084
1085 if (struct_return)
c30dc700
CV
1086 regcache_cooked_write_unsigned (regcache,
1087 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac 1088
c378eb4e 1089 /* Now make sure there's space on the stack. */
55ff77ac 1090 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1091 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
c378eb4e 1092 sp -= stack_alloc; /* Make room on stack for args. */
55ff77ac
CV
1093
1094 /* Now load as many as possible of the first arguments into
1095 registers, and push the rest onto the stack. There are 64 bytes
1096 in eight registers available. Loop thru args from first to last. */
1097
1098 int_argreg = ARG0_REGNUM;
55ff77ac
CV
1099
1100 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1101 {
4991999e 1102 type = value_type (args[argnum]);
55ff77ac
CV
1103 len = TYPE_LENGTH (type);
1104 memset (valbuf, 0, sizeof (valbuf));
1105
1106 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1107 {
58643501 1108 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1109
1110 if (len < argreg_size)
1111 {
c378eb4e 1112 /* value gets right-justified in the register or stack word. */
58643501 1113 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1114 memcpy (valbuf + argreg_size - len,
948f8e3d 1115 value_contents (args[argnum]), len);
55ff77ac 1116 else
948f8e3d 1117 memcpy (valbuf, value_contents (args[argnum]), len);
55ff77ac
CV
1118
1119 val = valbuf;
1120 }
1121 else
948f8e3d 1122 val = value_contents (args[argnum]);
55ff77ac
CV
1123
1124 while (len > 0)
1125 {
1126 if (int_argreg > ARGLAST_REGNUM)
1127 {
c378eb4e 1128 /* Must go on the stack. */
948f8e3d 1129 write_memory (sp + stack_offset, val, argreg_size);
55ff77ac
CV
1130 stack_offset += 8;/*argreg_size;*/
1131 }
1132 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1133 That's because some *&^%$ things get passed on the stack
1134 AND in the registers! */
1135 if (int_argreg <= ARGLAST_REGNUM)
1136 {
c378eb4e 1137 /* There's room in a register. */
e17a4113
UW
1138 regval = extract_unsigned_integer (val, argreg_size,
1139 byte_order);
c378eb4e
MS
1140 regcache_cooked_write_unsigned (regcache,
1141 int_argreg, regval);
55ff77ac
CV
1142 }
1143 /* Store the value 8 bytes at a time. This means that
1144 things larger than 8 bytes may go partly in registers
c378eb4e 1145 and partly on the stack. FIXME: argreg is incremented
7bb11558 1146 before we use its size. */
55ff77ac
CV
1147 len -= argreg_size;
1148 val += argreg_size;
1149 int_argreg++;
1150 }
1151 }
1152 else
1153 {
948f8e3d 1154 val = value_contents (args[argnum]);
55ff77ac
CV
1155 if (len == 4)
1156 {
c378eb4e 1157 /* Where is it going to be stored? */
55ff77ac
CV
1158 while (fp_args[float_arg_index])
1159 float_arg_index ++;
1160
1161 /* Now float_argreg points to the register where it
1162 should be stored. Are we still within the allowed
c378eb4e 1163 register set? */
55ff77ac
CV
1164 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1165 {
1166 /* Goes in FR0...FR11 */
c30dc700 1167 regcache_cooked_write (regcache,
58643501 1168 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1169 + float_arg_index,
c30dc700 1170 val);
55ff77ac 1171 fp_args[float_arg_index] = 1;
7bb11558 1172 /* Skip the corresponding general argument register. */
55ff77ac
CV
1173 int_argreg ++;
1174 }
1175 else
d4fb63e1
TT
1176 {
1177 /* Store it as the integers, 8 bytes at the time, if
1178 necessary spilling on the stack. */
1179 }
55ff77ac
CV
1180 }
1181 else if (len == 8)
1182 {
c378eb4e 1183 /* Where is it going to be stored? */
55ff77ac
CV
1184 while (fp_args[double_arg_index])
1185 double_arg_index += 2;
1186 /* Now double_argreg points to the register
1187 where it should be stored.
c378eb4e 1188 Are we still within the allowed register set? */
55ff77ac
CV
1189 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1190 {
1191 /* Goes in DR0...DR10 */
1192 /* The numbering of the DRi registers is consecutive,
7bb11558 1193 i.e. includes odd numbers. */
55ff77ac 1194 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1195 int regnum = DR0_REGNUM + double_register_offset;
1196 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1197 fp_args[double_arg_index] = 1;
1198 fp_args[double_arg_index + 1] = 1;
7bb11558 1199 /* Skip the corresponding general argument register. */
55ff77ac
CV
1200 int_argreg ++;
1201 }
1202 else
d4fb63e1
TT
1203 {
1204 /* Store it as the integers, 8 bytes at the time, if
1205 necessary spilling on the stack. */
1206 }
55ff77ac
CV
1207 }
1208 }
1209 }
c378eb4e 1210 /* Store return address. */
c30dc700 1211 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1212
c30dc700 1213 /* Update stack pointer. */
3e8c568d 1214 regcache_cooked_write_unsigned (regcache,
58643501 1215 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1216
55ff77ac
CV
1217 return sp;
1218}
1219
1220/* Find a function's return value in the appropriate registers (in
1221 regbuf), and copy it into valbuf. Extract from an array REGBUF
1222 containing the (raw) register state a function return value of type
1223 TYPE, and copy that, in virtual format, into VALBUF. */
1224static void
c30dc700 1225sh64_extract_return_value (struct type *type, struct regcache *regcache,
7c543f7b 1226 gdb_byte *valbuf)
55ff77ac 1227{
d93859e2 1228 struct gdbarch *gdbarch = get_regcache_arch (regcache);
55ff77ac 1229 int len = TYPE_LENGTH (type);
d93859e2 1230
55ff77ac
CV
1231 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1232 {
1233 if (len == 4)
1234 {
c378eb4e 1235 /* Return value stored in gdbarch_fp0_regnum. */
3e8c568d 1236 regcache_raw_read (regcache,
d93859e2 1237 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1238 }
1239 else if (len == 8)
1240 {
c378eb4e 1241 /* return value stored in DR0_REGNUM. */
55ff77ac 1242 DOUBLEST val;
18cf8b5b 1243 gdb_byte buf[8];
55ff77ac 1244
18cf8b5b 1245 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1246
d93859e2 1247 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
55ff77ac 1248 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1249 buf, &val);
55ff77ac
CV
1250 else
1251 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1252 buf, &val);
7bb11558 1253 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1254 }
1255 }
1256 else
1257 {
1258 if (len <= 8)
1259 {
c30dc700 1260 int offset;
e362b510 1261 gdb_byte buf[8];
c378eb4e 1262 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1263 at the most significant end. */
c30dc700
CV
1264 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1265
d93859e2
UW
1266 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1267 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1268 - len;
55ff77ac 1269 else
c30dc700
CV
1270 offset = 0;
1271 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1272 }
1273 else
a73c6dcd 1274 error (_("bad size for return value"));
55ff77ac
CV
1275 }
1276}
1277
1278/* Write into appropriate registers a function return value
1279 of type TYPE, given in virtual format.
1280 If the architecture is sh4 or sh3e, store a function's return value
1281 in the R0 general register or in the FP0 floating point register,
c378eb4e 1282 depending on the type of the return value. In all the other cases
7bb11558 1283 the result is stored in r0, left-justified. */
55ff77ac
CV
1284
1285static void
c30dc700 1286sh64_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1287 const gdb_byte *valbuf)
55ff77ac 1288{
d93859e2 1289 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e362b510 1290 gdb_byte buf[64]; /* more than enough... */
55ff77ac
CV
1291 int len = TYPE_LENGTH (type);
1292
1293 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1294 {
d93859e2 1295 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1296 for (i = 0; i < len; i += 4)
d93859e2 1297 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700 1298 regcache_raw_write (regcache, regnum++,
948f8e3d 1299 valbuf + len - 4 - i);
c30dc700 1300 else
948f8e3d 1301 regcache_raw_write (regcache, regnum++, valbuf + i);
55ff77ac
CV
1302 }
1303 else
1304 {
1305 int return_register = DEFAULT_RETURN_REGNUM;
1306 int offset = 0;
1307
d93859e2 1308 if (len <= register_size (gdbarch, return_register))
55ff77ac 1309 {
7bb11558 1310 /* Pad with zeros. */
d93859e2
UW
1311 memset (buf, 0, register_size (gdbarch, return_register));
1312 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1313 offset = 0; /*register_size (gdbarch,
7bb11558 1314 return_register) - len;*/
55ff77ac 1315 else
d93859e2 1316 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1317
1318 memcpy (buf + offset, valbuf, len);
c30dc700 1319 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1320 }
1321 else
c30dc700 1322 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1323 }
1324}
1325
c30dc700 1326static enum return_value_convention
6a3a010b 1327sh64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 1328 struct type *type, struct regcache *regcache,
18cf8b5b 1329 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1330{
1331 if (sh64_use_struct_convention (type))
1332 return RETURN_VALUE_STRUCT_CONVENTION;
1333 if (writebuf)
1334 sh64_store_return_value (type, regcache, writebuf);
1335 else if (readbuf)
1336 sh64_extract_return_value (type, regcache, readbuf);
1337 return RETURN_VALUE_REGISTER_CONVENTION;
1338}
1339
55ff77ac
CV
1340/* *INDENT-OFF* */
1341/*
1342 SH MEDIA MODE (ISA 32)
1343 general registers (64-bit) 0-63
13440 r0, r1, r2, r3, r4, r5, r6, r7,
134564 r8, r9, r10, r11, r12, r13, r14, r15,
1346128 r16, r17, r18, r19, r20, r21, r22, r23,
1347192 r24, r25, r26, r27, r28, r29, r30, r31,
1348256 r32, r33, r34, r35, r36, r37, r38, r39,
1349320 r40, r41, r42, r43, r44, r45, r46, r47,
1350384 r48, r49, r50, r51, r52, r53, r54, r55,
1351448 r56, r57, r58, r59, r60, r61, r62, r63,
1352
1353 pc (64-bit) 64
1354512 pc,
1355
1356 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1357520 sr, ssr, spc,
1358
1359 target registers (64-bit) 68-75
1360544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1361
1362 floating point state control register (32-bit) 76
1363608 fpscr,
1364
1365 single precision floating point registers (32-bit) 77-140
1366612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1367644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1368676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1369708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1370740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1371772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1372804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1373836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1374
1375TOTAL SPACE FOR REGISTERS: 868 bytes
1376
1377From here on they are all pseudo registers: no memory allocated.
1378REGISTER_BYTE returns the register byte for the base register.
1379
1380 double precision registers (pseudo) 141-172
1381 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1382 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1383 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1384 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1385
1386 floating point pairs (pseudo) 173-204
1387 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1388 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1389 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1390 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1391
1392 floating point vectors (4 floating point regs) (pseudo) 205-220
1393 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1394 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1395
1396 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1397 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1398 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1399 pc_c,
1400 gbr_c, mach_c, macl_c, pr_c, t_c,
1401 fpscr_c, fpul_c,
1402 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1403 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1404 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1405 fv0_c, fv4_c, fv8_c, fv12_c
1406*/
55ff77ac 1407
55ff77ac 1408static struct type *
0dfff4cb 1409sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
55ff77ac 1410{
e3506a9f
UW
1411 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1412 0, high);
55ff77ac
CV
1413}
1414
7bb11558
MS
1415/* Return the GDB type object for the "standard" data type
1416 of data in register REG_NR. */
55ff77ac 1417static struct type *
7bb11558 1418sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1419{
58643501 1420 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1421 && reg_nr <= FP_LAST_REGNUM)
1422 || (reg_nr >= FP0_C_REGNUM
1423 && reg_nr <= FP_LAST_C_REGNUM))
0dfff4cb 1424 return builtin_type (gdbarch)->builtin_float;
55ff77ac
CV
1425 else if ((reg_nr >= DR0_REGNUM
1426 && reg_nr <= DR_LAST_REGNUM)
1427 || (reg_nr >= DR0_C_REGNUM
1428 && reg_nr <= DR_LAST_C_REGNUM))
0dfff4cb 1429 return builtin_type (gdbarch)->builtin_double;
55ff77ac
CV
1430 else if (reg_nr >= FPP0_REGNUM
1431 && reg_nr <= FPP_LAST_REGNUM)
0dfff4cb 1432 return sh64_build_float_register_type (gdbarch, 1);
55ff77ac
CV
1433 else if ((reg_nr >= FV0_REGNUM
1434 && reg_nr <= FV_LAST_REGNUM)
1435 ||(reg_nr >= FV0_C_REGNUM
1436 && reg_nr <= FV_LAST_C_REGNUM))
0dfff4cb 1437 return sh64_build_float_register_type (gdbarch, 3);
55ff77ac 1438 else if (reg_nr == FPSCR_REGNUM)
0dfff4cb 1439 return builtin_type (gdbarch)->builtin_int;
55ff77ac
CV
1440 else if (reg_nr >= R0_C_REGNUM
1441 && reg_nr < FP0_C_REGNUM)
0dfff4cb 1442 return builtin_type (gdbarch)->builtin_int;
55ff77ac 1443 else
0dfff4cb 1444 return builtin_type (gdbarch)->builtin_long_long;
55ff77ac
CV
1445}
1446
1447static void
d93859e2 1448sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1449 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1450{
d93859e2 1451 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1452 {
7bb11558 1453 /* It is a no-op. */
d93859e2 1454 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1455 return;
1456 }
1457
1458 if ((regnum >= DR0_REGNUM
1459 && regnum <= DR_LAST_REGNUM)
1460 || (regnum >= DR0_C_REGNUM
1461 && regnum <= DR_LAST_C_REGNUM))
1462 {
1463 DOUBLEST val;
7bb11558
MS
1464 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1465 from, &val);
39add00a 1466 store_typed_floating (to, type, val);
55ff77ac
CV
1467 }
1468 else
a73c6dcd
MS
1469 error (_("sh64_register_convert_to_virtual "
1470 "called with non DR register number"));
55ff77ac
CV
1471}
1472
1473static void
d93859e2
UW
1474sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1475 int regnum, const void *from, void *to)
55ff77ac 1476{
d93859e2 1477 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1478 {
7bb11558 1479 /* It is a no-op. */
d93859e2 1480 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1481 return;
1482 }
1483
1484 if ((regnum >= DR0_REGNUM
1485 && regnum <= DR_LAST_REGNUM)
1486 || (regnum >= DR0_C_REGNUM
1487 && regnum <= DR_LAST_C_REGNUM))
1488 {
e035e373 1489 DOUBLEST val = extract_typed_floating (from, type);
7bb11558
MS
1490 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1491 &val, to);
55ff77ac
CV
1492 }
1493 else
a73c6dcd
MS
1494 error (_("sh64_register_convert_to_raw called "
1495 "with non DR register number"));
55ff77ac
CV
1496}
1497
05d1431c
PA
1498/* Concatenate PORTIONS contiguous raw registers starting at
1499 BASE_REGNUM into BUFFER. */
1500
1501static enum register_status
1502pseudo_register_read_portions (struct gdbarch *gdbarch,
1503 struct regcache *regcache,
1504 int portions,
1505 int base_regnum, gdb_byte *buffer)
1506{
1507 int portion;
1508
1509 for (portion = 0; portion < portions; portion++)
1510 {
1511 enum register_status status;
1512 gdb_byte *b;
1513
1514 b = buffer + register_size (gdbarch, base_regnum) * portion;
1515 status = regcache_raw_read (regcache, base_regnum + portion, b);
1516 if (status != REG_VALID)
1517 return status;
1518 }
1519
1520 return REG_VALID;
1521}
1522
1523static enum register_status
55ff77ac 1524sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1525 int reg_nr, gdb_byte *buffer)
55ff77ac 1526{
e17a4113 1527 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1528 int base_regnum;
55ff77ac 1529 int offset = 0;
948f8e3d 1530 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
05d1431c 1531 enum register_status status;
55ff77ac
CV
1532
1533 if (reg_nr >= DR0_REGNUM
1534 && reg_nr <= DR_LAST_REGNUM)
1535 {
d93859e2 1536 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1537
7bb11558 1538 /* Build the value in the provided buffer. */
55ff77ac 1539 /* DR regs are double precision registers obtained by
7bb11558 1540 concatenating 2 single precision floating point registers. */
05d1431c
PA
1541 status = pseudo_register_read_portions (gdbarch, regcache,
1542 2, base_regnum, temp_buffer);
1543 if (status == REG_VALID)
1544 {
1545 /* We must pay attention to the endianness. */
1546 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1547 register_type (gdbarch, reg_nr),
1548 temp_buffer, buffer);
1549 }
55ff77ac 1550
05d1431c 1551 return status;
55ff77ac
CV
1552 }
1553
05d1431c 1554 else if (reg_nr >= FPP0_REGNUM
55ff77ac
CV
1555 && reg_nr <= FPP_LAST_REGNUM)
1556 {
d93859e2 1557 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1558
7bb11558 1559 /* Build the value in the provided buffer. */
55ff77ac 1560 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1561 concatenating 2 single precision floating point registers. */
05d1431c
PA
1562 return pseudo_register_read_portions (gdbarch, regcache,
1563 2, base_regnum, buffer);
55ff77ac
CV
1564 }
1565
1566 else if (reg_nr >= FV0_REGNUM
1567 && reg_nr <= FV_LAST_REGNUM)
1568 {
d93859e2 1569 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1570
7bb11558 1571 /* Build the value in the provided buffer. */
55ff77ac 1572 /* FV regs are vectors of single precision registers obtained by
7bb11558 1573 concatenating 4 single precision floating point registers. */
05d1431c
PA
1574 return pseudo_register_read_portions (gdbarch, regcache,
1575 4, base_regnum, buffer);
55ff77ac
CV
1576 }
1577
c378eb4e 1578 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
55ff77ac
CV
1579 else if (reg_nr >= R0_C_REGNUM
1580 && reg_nr <= T_C_REGNUM)
1581 {
d93859e2 1582 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1583
7bb11558 1584 /* Build the value in the provided buffer. */
05d1431c
PA
1585 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1586 if (status != REG_VALID)
1587 return status;
58643501 1588 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1589 offset = 4;
c378eb4e
MS
1590 memcpy (buffer,
1591 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
05d1431c 1592 return REG_VALID;
55ff77ac
CV
1593 }
1594
1595 else if (reg_nr >= FP0_C_REGNUM
1596 && reg_nr <= FP_LAST_C_REGNUM)
1597 {
d93859e2 1598 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1599
7bb11558 1600 /* Build the value in the provided buffer. */
55ff77ac 1601 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1602 they have the same size and endianness. */
05d1431c 1603 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac
CV
1604 }
1605
1606 else if (reg_nr >= DR0_C_REGNUM
1607 && reg_nr <= DR_LAST_C_REGNUM)
1608 {
d93859e2 1609 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1610
1611 /* DR_C regs are double precision registers obtained by
7bb11558 1612 concatenating 2 single precision floating point registers. */
05d1431c
PA
1613 status = pseudo_register_read_portions (gdbarch, regcache,
1614 2, base_regnum, temp_buffer);
1615 if (status == REG_VALID)
1616 {
1617 /* We must pay attention to the endianness. */
1618 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1619 register_type (gdbarch, reg_nr),
1620 temp_buffer, buffer);
1621 }
1622 return status;
55ff77ac
CV
1623 }
1624
1625 else if (reg_nr >= FV0_C_REGNUM
1626 && reg_nr <= FV_LAST_C_REGNUM)
1627 {
d93859e2 1628 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1629
7bb11558 1630 /* Build the value in the provided buffer. */
55ff77ac 1631 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1632 concatenating 4 single precision floating point registers. */
05d1431c
PA
1633 return pseudo_register_read_portions (gdbarch, regcache,
1634 4, base_regnum, buffer);
55ff77ac
CV
1635 }
1636
1637 else if (reg_nr == FPSCR_C_REGNUM)
1638 {
1639 int fpscr_base_regnum;
1640 int sr_base_regnum;
1641 unsigned int fpscr_value;
1642 unsigned int sr_value;
1643 unsigned int fpscr_c_value;
1644 unsigned int fpscr_c_part1_value;
1645 unsigned int fpscr_c_part2_value;
1646
1647 fpscr_base_regnum = FPSCR_REGNUM;
1648 sr_base_regnum = SR_REGNUM;
1649
7bb11558 1650 /* Build the value in the provided buffer. */
55ff77ac
CV
1651 /* FPSCR_C is a very weird register that contains sparse bits
1652 from the FPSCR and the SR architectural registers.
1653 Specifically: */
1654 /* *INDENT-OFF* */
1655 /*
1656 FPSRC_C bit
1657 0 Bit 0 of FPSCR
1658 1 reserved
1659 2-17 Bit 2-18 of FPSCR
1660 18-20 Bits 12,13,14 of SR
1661 21-31 reserved
1662 */
1663 /* *INDENT-ON* */
c378eb4e 1664 /* Get FPSCR into a local buffer. */
05d1431c
PA
1665 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1666 if (status != REG_VALID)
1667 return status;
7bb11558 1668 /* Get value as an int. */
e17a4113 1669 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac 1670 /* Get SR into a local buffer */
05d1431c
PA
1671 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1672 if (status != REG_VALID)
1673 return status;
7bb11558 1674 /* Get value as an int. */
e17a4113 1675 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
7bb11558 1676 /* Build the new value. */
55ff77ac
CV
1677 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1678 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1679 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
c378eb4e 1680 /* Store that in out buffer!!! */
e17a4113 1681 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
7bb11558 1682 /* FIXME There is surely an endianness gotcha here. */
05d1431c
PA
1683
1684 return REG_VALID;
55ff77ac
CV
1685 }
1686
1687 else if (reg_nr == FPUL_C_REGNUM)
1688 {
d93859e2 1689 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1690
1691 /* FPUL_C register is floating point register 32,
7bb11558 1692 same size, same endianness. */
05d1431c 1693 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac 1694 }
05d1431c
PA
1695 else
1696 gdb_assert_not_reached ("invalid pseudo register number");
55ff77ac
CV
1697}
1698
1699static void
1700sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1701 int reg_nr, const gdb_byte *buffer)
55ff77ac 1702{
e17a4113 1703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1704 int base_regnum, portion;
1705 int offset;
948f8e3d 1706 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1707
1708 if (reg_nr >= DR0_REGNUM
1709 && reg_nr <= DR_LAST_REGNUM)
1710 {
d93859e2 1711 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1712 /* We must pay attention to the endianness. */
d93859e2 1713 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1714 reg_nr,
1715 buffer, temp_buffer);
55ff77ac
CV
1716
1717 /* Write the real regs for which this one is an alias. */
1718 for (portion = 0; portion < 2; portion++)
1719 regcache_raw_write (regcache, base_regnum + portion,
1720 (temp_buffer
948f8e3d 1721 + register_size (gdbarch,
7bb11558 1722 base_regnum) * portion));
55ff77ac
CV
1723 }
1724
1725 else if (reg_nr >= FPP0_REGNUM
1726 && reg_nr <= FPP_LAST_REGNUM)
1727 {
d93859e2 1728 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1729
1730 /* Write the real regs for which this one is an alias. */
1731 for (portion = 0; portion < 2; portion++)
1732 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1733 (buffer + register_size (gdbarch,
1734 base_regnum) * portion));
55ff77ac
CV
1735 }
1736
1737 else if (reg_nr >= FV0_REGNUM
1738 && reg_nr <= FV_LAST_REGNUM)
1739 {
d93859e2 1740 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1741
1742 /* Write the real regs for which this one is an alias. */
1743 for (portion = 0; portion < 4; portion++)
1744 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1745 (buffer + register_size (gdbarch,
1746 base_regnum) * portion));
55ff77ac
CV
1747 }
1748
c378eb4e 1749 /* sh compact general pseudo registers. 1-to-1 with a shmedia
55ff77ac
CV
1750 register but only 4 bytes of it. */
1751 else if (reg_nr >= R0_C_REGNUM
1752 && reg_nr <= T_C_REGNUM)
1753 {
d93859e2 1754 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1755 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1756 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1757 offset = 4;
1758 else
1759 offset = 0;
1760 /* Let's read the value of the base register into a temporary
1761 buffer, so that overwriting the last four bytes with the new
7bb11558 1762 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac 1763 regcache_raw_read (regcache, base_regnum, temp_buffer);
c378eb4e 1764 /* Write as an 8 byte quantity. */
55ff77ac
CV
1765 memcpy (temp_buffer + offset, buffer, 4);
1766 regcache_raw_write (regcache, base_regnum, temp_buffer);
1767 }
1768
c378eb4e
MS
1769 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1770 registers. Both are 4 bytes. */
55ff77ac
CV
1771 else if (reg_nr >= FP0_C_REGNUM
1772 && reg_nr <= FP_LAST_C_REGNUM)
1773 {
d93859e2 1774 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1775 regcache_raw_write (regcache, base_regnum, buffer);
1776 }
1777
1778 else if (reg_nr >= DR0_C_REGNUM
1779 && reg_nr <= DR_LAST_C_REGNUM)
1780 {
d93859e2 1781 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1782 for (portion = 0; portion < 2; portion++)
1783 {
7bb11558 1784 /* We must pay attention to the endianness. */
d93859e2
UW
1785 sh64_register_convert_to_raw (gdbarch,
1786 register_type (gdbarch, reg_nr),
39add00a
MS
1787 reg_nr,
1788 buffer, temp_buffer);
55ff77ac
CV
1789
1790 regcache_raw_write (regcache, base_regnum + portion,
1791 (temp_buffer
7bb11558
MS
1792 + register_size (gdbarch,
1793 base_regnum) * portion));
55ff77ac
CV
1794 }
1795 }
1796
1797 else if (reg_nr >= FV0_C_REGNUM
1798 && reg_nr <= FV_LAST_C_REGNUM)
1799 {
d93859e2 1800 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1801
1802 for (portion = 0; portion < 4; portion++)
1803 {
1804 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d 1805 (buffer
7bb11558
MS
1806 + register_size (gdbarch,
1807 base_regnum) * portion));
55ff77ac
CV
1808 }
1809 }
1810
1811 else if (reg_nr == FPSCR_C_REGNUM)
1812 {
1813 int fpscr_base_regnum;
1814 int sr_base_regnum;
1815 unsigned int fpscr_value;
1816 unsigned int sr_value;
1817 unsigned int old_fpscr_value;
1818 unsigned int old_sr_value;
1819 unsigned int fpscr_c_value;
1820 unsigned int fpscr_mask;
1821 unsigned int sr_mask;
1822
1823 fpscr_base_regnum = FPSCR_REGNUM;
1824 sr_base_regnum = SR_REGNUM;
1825
1826 /* FPSCR_C is a very weird register that contains sparse bits
1827 from the FPSCR and the SR architectural registers.
1828 Specifically: */
1829 /* *INDENT-OFF* */
1830 /*
1831 FPSRC_C bit
1832 0 Bit 0 of FPSCR
1833 1 reserved
1834 2-17 Bit 2-18 of FPSCR
1835 18-20 Bits 12,13,14 of SR
1836 21-31 reserved
1837 */
1838 /* *INDENT-ON* */
7bb11558 1839 /* Get value as an int. */
e17a4113 1840 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
55ff77ac 1841
7bb11558 1842 /* Build the new values. */
55ff77ac
CV
1843 fpscr_mask = 0x0003fffd;
1844 sr_mask = 0x001c0000;
1845
1846 fpscr_value = fpscr_c_value & fpscr_mask;
1847 sr_value = (fpscr_value & sr_mask) >> 6;
1848
1849 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
e17a4113 1850 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1851 old_fpscr_value &= 0xfffc0002;
1852 fpscr_value |= old_fpscr_value;
e17a4113 1853 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
55ff77ac
CV
1854 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1855
1856 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
e17a4113 1857 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1858 old_sr_value &= 0xffff8fff;
1859 sr_value |= old_sr_value;
e17a4113 1860 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
55ff77ac
CV
1861 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1862 }
1863
1864 else if (reg_nr == FPUL_C_REGNUM)
1865 {
d93859e2 1866 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1867 regcache_raw_write (regcache, base_regnum, buffer);
1868 }
1869}
1870
55ff77ac 1871/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1872 shmedia REGISTERS. */
1873/* Control registers, compact mode. */
55ff77ac 1874static void
c30dc700
CV
1875sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1876 int cr_c_regnum)
55ff77ac
CV
1877{
1878 switch (cr_c_regnum)
1879 {
c30dc700
CV
1880 case PC_C_REGNUM:
1881 fprintf_filtered (file, "pc_c\t0x%08x\n",
1882 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1883 break;
c30dc700
CV
1884 case GBR_C_REGNUM:
1885 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1886 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1887 break;
c30dc700
CV
1888 case MACH_C_REGNUM:
1889 fprintf_filtered (file, "mach_c\t0x%08x\n",
1890 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1891 break;
c30dc700
CV
1892 case MACL_C_REGNUM:
1893 fprintf_filtered (file, "macl_c\t0x%08x\n",
1894 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1895 break;
c30dc700
CV
1896 case PR_C_REGNUM:
1897 fprintf_filtered (file, "pr_c\t0x%08x\n",
1898 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1899 break;
c30dc700
CV
1900 case T_C_REGNUM:
1901 fprintf_filtered (file, "t_c\t0x%08x\n",
1902 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1903 break;
c30dc700
CV
1904 case FPSCR_C_REGNUM:
1905 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1906 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1907 break;
c30dc700
CV
1908 case FPUL_C_REGNUM:
1909 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1910 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1911 break;
1912 }
1913}
1914
1915static void
c30dc700
CV
1916sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1917 struct frame_info *frame, int regnum)
c378eb4e 1918{ /* Do values for FP (float) regs. */
079c8cd0 1919 unsigned char *raw_buffer;
c378eb4e 1920 double flt; /* Double extracted from raw hex data. */
55ff77ac 1921 int inv;
55ff77ac 1922
7bb11558 1923 /* Allocate space for the float. */
c378eb4e
MS
1924 raw_buffer = (unsigned char *)
1925 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
55ff77ac
CV
1926
1927 /* Get the data in raw format. */
ca9d61b9 1928 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
a73c6dcd 1929 error (_("can't read register %d (%s)"),
58643501 1930 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac 1931
c378eb4e
MS
1932 /* Get the register as a number. */
1933 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1934 raw_buffer, &inv);
55ff77ac 1935
7bb11558 1936 /* Print the name and some spaces. */
58643501 1937 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 1938 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 1939 (gdbarch, regnum)), file);
55ff77ac 1940
7bb11558 1941 /* Print the value. */
55ff77ac
CV
1942 if (inv)
1943 fprintf_filtered (file, "<invalid float>");
1944 else
1945 fprintf_filtered (file, "%-10.9g", flt);
1946
7bb11558 1947 /* Print the fp register as hex. */
2cc762b5
AB
1948 fprintf_filtered (file, "\t(raw ");
1949 print_hex_chars (file, raw_buffer,
1950 register_size (gdbarch, regnum),
1951 gdbarch_byte_order (gdbarch));
55ff77ac
CV
1952 fprintf_filtered (file, ")");
1953 fprintf_filtered (file, "\n");
1954}
1955
1956static void
c30dc700
CV
1957sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1958 struct frame_info *frame, int regnum)
55ff77ac 1959{
7bb11558 1960 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 1961
58643501
UW
1962 if (regnum < gdbarch_num_regs (gdbarch)
1963 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
1964 + NUM_PSEUDO_REGS_SH_MEDIA
1965 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 1966 internal_error (__FILE__, __LINE__,
e2e0b3e5 1967 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 1968
c30dc700
CV
1969 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1970 {
d93859e2 1971 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
1972 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1973 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1974 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1975 }
55ff77ac 1976
c30dc700
CV
1977 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1978 {
d93859e2 1979 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1980 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1981 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1982 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1983 }
55ff77ac 1984
c30dc700
CV
1985 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1986 {
d93859e2 1987 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
1988 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1989 regnum - FV0_REGNUM,
1990 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1991 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1992 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1994 }
55ff77ac 1995
c30dc700
CV
1996 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1997 {
d93859e2 1998 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1999 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2000 regnum - FV0_C_REGNUM,
2001 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2002 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2005 }
2006
2007 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2008 {
d93859e2 2009 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2010 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2011 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2012 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2013 }
2014
2015 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2016 {
d93859e2 2017 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2018 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2019 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2020 }
2021 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2022 /* This should work also for pseudoregs. */
c30dc700
CV
2023 sh64_do_fp_register (gdbarch, file, frame, regnum);
2024 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2025 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2026}
2027
2028static void
c30dc700
CV
2029sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2030 struct frame_info *frame, int regnum)
55ff77ac 2031{
079c8cd0 2032 unsigned char raw_buffer[MAX_REGISTER_SIZE];
79a45b7d 2033 struct value_print_options opts;
55ff77ac 2034
58643501 2035 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2036 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2037 (gdbarch, regnum)), file);
55ff77ac
CV
2038
2039 /* Get the data in raw format. */
ca9d61b9 2040 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
47061676
AB
2041 {
2042 fprintf_filtered (file, "*value not available*\n");
2043 return;
2044 }
79a45b7d
TT
2045
2046 get_formatted_print_options (&opts, 'x');
2047 opts.deref_ref = 1;
7b9ee6a8 2048 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2049 file, 0, NULL, &opts, current_language);
55ff77ac 2050 fprintf_filtered (file, "\t");
79a45b7d
TT
2051 get_formatted_print_options (&opts, 0);
2052 opts.deref_ref = 1;
7b9ee6a8 2053 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2054 file, 0, NULL, &opts, current_language);
55ff77ac
CV
2055 fprintf_filtered (file, "\n");
2056}
2057
2058static void
c30dc700
CV
2059sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2060 struct frame_info *frame, int regnum)
55ff77ac 2061{
58643501
UW
2062 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2063 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2064 internal_error (__FILE__, __LINE__,
e2e0b3e5 2065 _("Invalid register number %d\n"), regnum);
55ff77ac 2066
58643501 2067 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2068 {
7b9ee6a8 2069 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2070 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2071 else
c30dc700 2072 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2073 }
2074
58643501
UW
2075 else if (regnum < gdbarch_num_regs (gdbarch)
2076 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2077 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2078}
2079
2080static void
c30dc700
CV
2081sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2082 struct frame_info *frame, int regnum,
2083 int fpregs)
55ff77ac 2084{
c378eb4e 2085 if (regnum != -1) /* Do one specified register. */
55ff77ac 2086 {
58643501 2087 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2088 error (_("Not a valid register for the current processor type"));
55ff77ac 2089
c30dc700 2090 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2091 }
2092 else
c378eb4e 2093 /* Do all (or most) registers. */
55ff77ac
CV
2094 {
2095 regnum = 0;
58643501 2096 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2097 {
2098 /* If the register name is empty, it is undefined for this
2099 processor, so don't display anything. */
58643501
UW
2100 if (gdbarch_register_name (gdbarch, regnum) == NULL
2101 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2102 {
2103 regnum++;
2104 continue;
2105 }
2106
7b9ee6a8 2107 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2108 == TYPE_CODE_FLT)
55ff77ac
CV
2109 {
2110 if (fpregs)
2111 {
c378eb4e 2112 /* true for "INFO ALL-REGISTERS" command. */
c30dc700 2113 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2114 regnum ++;
2115 }
2116 else
58643501 2117 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2118 /* skip FP regs */
55ff77ac
CV
2119 }
2120 else
2121 {
c30dc700 2122 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2123 regnum++;
2124 }
2125 }
2126
2127 if (fpregs)
58643501
UW
2128 while (regnum < gdbarch_num_regs (gdbarch)
2129 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2130 {
c30dc700 2131 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2132 regnum++;
2133 }
2134 }
2135}
2136
2137static void
c30dc700
CV
2138sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2139 struct ui_file *file,
2140 struct frame_info *frame, int regnum,
2141 int fpregs)
55ff77ac 2142{
c378eb4e 2143 if (regnum != -1) /* Do one specified register. */
55ff77ac 2144 {
58643501 2145 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2146 error (_("Not a valid register for the current processor type"));
55ff77ac
CV
2147
2148 if (regnum >= 0 && regnum < R0_C_REGNUM)
a73c6dcd 2149 error (_("Not a valid register for the current processor mode."));
55ff77ac 2150
c30dc700 2151 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2152 }
2153 else
c378eb4e 2154 /* Do all compact registers. */
55ff77ac
CV
2155 {
2156 regnum = R0_C_REGNUM;
58643501
UW
2157 while (regnum < gdbarch_num_regs (gdbarch)
2158 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2159 {
c30dc700 2160 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2161 regnum++;
2162 }
2163 }
2164}
2165
2166static void
c30dc700
CV
2167sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2168 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2169{
c30dc700
CV
2170 if (pc_is_isa32 (get_frame_pc (frame)))
2171 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2172 else
c30dc700 2173 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2174}
2175
c30dc700
CV
2176static struct sh64_frame_cache *
2177sh64_alloc_frame_cache (void)
2178{
2179 struct sh64_frame_cache *cache;
2180 int i;
2181
2182 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2183
2184 /* Base address. */
2185 cache->base = 0;
2186 cache->saved_sp = 0;
2187 cache->sp_offset = 0;
2188 cache->pc = 0;
55ff77ac 2189
c30dc700
CV
2190 /* Frameless until proven otherwise. */
2191 cache->uses_fp = 0;
55ff77ac 2192
c30dc700
CV
2193 /* Saved registers. We initialize these to -1 since zero is a valid
2194 offset (that's where fp is supposed to be stored). */
2195 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2196 {
2197 cache->saved_regs[i] = -1;
2198 }
2199
2200 return cache;
2201}
2202
2203static struct sh64_frame_cache *
94afd7a6 2204sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2205{
58643501 2206 struct gdbarch *gdbarch;
c30dc700
CV
2207 struct sh64_frame_cache *cache;
2208 CORE_ADDR current_pc;
2209 int i;
55ff77ac 2210
c30dc700 2211 if (*this_cache)
19ba03f4 2212 return (struct sh64_frame_cache *) *this_cache;
c30dc700 2213
94afd7a6 2214 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2215 cache = sh64_alloc_frame_cache ();
2216 *this_cache = cache;
2217
94afd7a6 2218 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2219 cache->media_mode = pc_is_isa32 (current_pc);
2220
2221 /* In principle, for normal frames, fp holds the frame pointer,
2222 which holds the base address for the current stack frame.
2223 However, for functions that don't need it, the frame pointer is
2224 optional. For these "frameless" functions the frame pointer is
c378eb4e 2225 actually the frame pointer of the calling frame. */
94afd7a6 2226 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2227 if (cache->base == 0)
2228 return cache;
2229
94afd7a6 2230 cache->pc = get_frame_func (this_frame);
c30dc700 2231 if (cache->pc != 0)
58643501 2232 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2233
2234 if (!cache->uses_fp)
55ff77ac 2235 {
c30dc700
CV
2236 /* We didn't find a valid frame, which means that CACHE->base
2237 currently holds the frame pointer for our calling frame. If
2238 we're at the start of a function, or somewhere half-way its
2239 prologue, the function's frame probably hasn't been fully
2240 setup yet. Try to reconstruct the base address for the stack
2241 frame by looking at the stack pointer. For truly "frameless"
2242 functions this might work too. */
94afd7a6
UW
2243 cache->base = get_frame_register_unsigned
2244 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2245 }
55ff77ac 2246
c30dc700
CV
2247 /* Now that we have the base address for the stack frame we can
2248 calculate the value of sp in the calling frame. */
2249 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2250
c30dc700
CV
2251 /* Adjust all the saved registers such that they contain addresses
2252 instead of offsets. */
2253 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2254 if (cache->saved_regs[i] != -1)
2255 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2256
c30dc700
CV
2257 return cache;
2258}
55ff77ac 2259
94afd7a6
UW
2260static struct value *
2261sh64_frame_prev_register (struct frame_info *this_frame,
2262 void **this_cache, int regnum)
c30dc700 2263{
94afd7a6
UW
2264 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2265 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2266 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 2267
c30dc700 2268 gdb_assert (regnum >= 0);
55ff77ac 2269
58643501 2270 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2271 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2272
2273 /* The PC of the previous frame is stored in the PR register of
2274 the current frame. Frob regnum so that we pull the value from
2275 the correct place. */
58643501 2276 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2277 regnum = PR_REGNUM;
2278
2279 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2280 {
58643501 2281 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2282 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2283 {
94afd7a6 2284 CORE_ADDR val;
e17a4113
UW
2285 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2286 4, byte_order);
94afd7a6 2287 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2288 }
94afd7a6
UW
2289
2290 return frame_unwind_got_memory (this_frame, regnum,
2291 cache->saved_regs[regnum]);
55ff77ac
CV
2292 }
2293
94afd7a6 2294 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2295}
55ff77ac 2296
c30dc700 2297static void
94afd7a6 2298sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2299 struct frame_id *this_id)
2300{
94afd7a6 2301 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2302
2303 /* This marks the outermost frame. */
2304 if (cache->base == 0)
2305 return;
2306
2307 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2308}
2309
2310static const struct frame_unwind sh64_frame_unwind = {
2311 NORMAL_FRAME,
8fbca658 2312 default_frame_unwind_stop_reason,
c30dc700 2313 sh64_frame_this_id,
94afd7a6
UW
2314 sh64_frame_prev_register,
2315 NULL,
2316 default_frame_sniffer
c30dc700
CV
2317};
2318
c30dc700
CV
2319static CORE_ADDR
2320sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2321{
3e8c568d 2322 return frame_unwind_register_unsigned (next_frame,
58643501 2323 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2324}
2325
2326static CORE_ADDR
2327sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2328{
3e8c568d 2329 return frame_unwind_register_unsigned (next_frame,
58643501 2330 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2331}
2332
2333static struct frame_id
94afd7a6 2334sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2335{
94afd7a6
UW
2336 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2337 gdbarch_sp_regnum (gdbarch));
2338 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2339}
2340
2341static CORE_ADDR
94afd7a6 2342sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2343{
94afd7a6 2344 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2345
2346 return cache->base;
2347}
2348
2349static const struct frame_base sh64_frame_base = {
2350 &sh64_frame_unwind,
2351 sh64_frame_base_address,
2352 sh64_frame_base_address,
2353 sh64_frame_base_address
2354};
2355
55ff77ac
CV
2356
2357struct gdbarch *
2358sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2359{
55ff77ac
CV
2360 struct gdbarch *gdbarch;
2361 struct gdbarch_tdep *tdep;
2362
2363 /* If there is already a candidate, use it. */
2364 arches = gdbarch_list_lookup_by_info (arches, &info);
2365 if (arches != NULL)
2366 return arches->gdbarch;
2367
2368 /* None found, create a new architecture from the information
7bb11558 2369 provided. */
70ba0933 2370 tdep = XNEW (struct gdbarch_tdep);
55ff77ac
CV
2371 gdbarch = gdbarch_alloc (&info, tdep);
2372
55ff77ac
CV
2373 /* Determine the ABI */
2374 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2375 {
7bb11558 2376 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2377 tdep->sh_abi = SH_ABI_64;
2378 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2379 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2380 }
2381 else
2382 {
2383 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2384 compact. */
55ff77ac
CV
2385 tdep->sh_abi = SH_ABI_32;
2386 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2387 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2388 }
2389
2390 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2391 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2392 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2393 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2394 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2395 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2396 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2397
c30dc700
CV
2398 /* The number of real registers is the same whether we are in
2399 ISA16(compact) or ISA32(media). */
2400 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2401 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2402 set_gdbarch_pc_regnum (gdbarch, 64);
2403 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2404 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2405 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2406
c30dc700
CV
2407 set_gdbarch_register_name (gdbarch, sh64_register_name);
2408 set_gdbarch_register_type (gdbarch, sh64_register_type);
2409
2410 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2411 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2412
2413 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2414
9dae60cc 2415 set_gdbarch_print_insn (gdbarch, print_insn_sh);
55ff77ac
CV
2416 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2417
c30dc700 2418 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2419
c30dc700
CV
2420 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2421 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2422
c30dc700 2423 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2424
c30dc700 2425 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2426
c30dc700
CV
2427 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2428 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2429 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2430 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2431 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2432
c30dc700 2433 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2434
55ff77ac
CV
2435 set_gdbarch_elf_make_msymbol_special (gdbarch,
2436 sh64_elf_make_msymbol_special);
2437
2438 /* Hook in ABI-specific overrides, if they have been registered. */
2439 gdbarch_init_osabi (info, gdbarch);
2440
94afd7a6
UW
2441 dwarf2_append_unwinders (gdbarch);
2442 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2443
55ff77ac
CV
2444 return gdbarch;
2445}
This page took 1.443092 seconds and 4 git commands to generate.