Split breakpoint_from_pc to breakpoint_kind_from_pc and sw_breakpoint_from_kind
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
618f726f 3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
55ff77ac
CV
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
55ff77ac
CV
22
23#include "defs.h"
24#include "frame.h"
c30dc700
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
55ff77ac 28#include "symtab.h"
55ff77ac
CV
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
34#include "inferior.h"
55ff77ac 35#include "arch-utils.h"
55ff77ac 36#include "regcache.h"
55ff77ac 37#include "osabi.h"
79a45b7d 38#include "valprint.h"
55ff77ac
CV
39
40#include "elf-bfd.h"
55ff77ac
CV
41
42/* sh flags */
43#include "elf/sh.h"
c378eb4e 44/* Register numbers shared with the simulator. */
55ff77ac 45#include "gdb/sim-sh.h"
d8ca156b 46#include "language.h"
04dcf5fa 47#include "sh64-tdep.h"
325fac50 48#include <algorithm>
55ff77ac 49
7bb11558 50/* Information that is dependent on the processor variant. */
55ff77ac
CV
51enum sh_abi
52 {
53 SH_ABI_UNKNOWN,
54 SH_ABI_32,
55 SH_ABI_64
56 };
57
58struct gdbarch_tdep
59 {
60 enum sh_abi sh_abi;
61 };
62
c30dc700
CV
63struct sh64_frame_cache
64{
65 /* Base address. */
66 CORE_ADDR base;
67 LONGEST sp_offset;
68 CORE_ADDR pc;
69
c378eb4e 70 /* Flag showing that a frame has been created in the prologue code. */
c30dc700
CV
71 int uses_fp;
72
73 int media_mode;
74
75 /* Saved registers. */
76 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
77 CORE_ADDR saved_sp;
78};
79
55ff77ac
CV
80/* Registers of SH5 */
81enum
82 {
83 R0_REGNUM = 0,
84 DEFAULT_RETURN_REGNUM = 2,
85 STRUCT_RETURN_REGNUM = 2,
86 ARG0_REGNUM = 2,
87 ARGLAST_REGNUM = 9,
88 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 89 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
90 PR_REGNUM = 18,
91 SR_REGNUM = 65,
92 DR0_REGNUM = 141,
93 DR_LAST_REGNUM = 172,
94 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 95 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
c378eb4e 96 point register. Unfortunately on the sh5, the floating point
7bb11558 97 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
98 FPP0_REGNUM = 173,
99 FPP_LAST_REGNUM = 204,
100 FV0_REGNUM = 205,
101 FV_LAST_REGNUM = 220,
102 R0_C_REGNUM = 221,
103 R_LAST_C_REGNUM = 236,
104 PC_C_REGNUM = 237,
105 GBR_C_REGNUM = 238,
106 MACH_C_REGNUM = 239,
107 MACL_C_REGNUM = 240,
108 PR_C_REGNUM = 241,
109 T_C_REGNUM = 242,
110 FPSCR_C_REGNUM = 243,
111 FPUL_C_REGNUM = 244,
112 FP0_C_REGNUM = 245,
113 FP_LAST_C_REGNUM = 260,
114 DR0_C_REGNUM = 261,
115 DR_LAST_C_REGNUM = 268,
116 FV0_C_REGNUM = 269,
117 FV_LAST_C_REGNUM = 272,
118 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
119 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
120 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
121 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
122 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
123 };
124
55ff77ac 125static const char *
d93859e2 126sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac
CV
127{
128 static char *register_names[] =
129 {
130 /* SH MEDIA MODE (ISA 32) */
131 /* general registers (64-bit) 0-63 */
132 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
133 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
134 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
135 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
136 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
137 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
138 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
139 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
140
141 /* pc (64-bit) 64 */
142 "pc",
143
144 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
145 "sr", "ssr", "spc",
146
c378eb4e 147 /* target registers (64-bit) 68-75 */
55ff77ac
CV
148 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
149
150 /* floating point state control register (32-bit) 76 */
151 "fpscr",
152
c378eb4e 153 /* single precision floating point registers (32-bit) 77-140 */
55ff77ac
CV
154 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
155 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
156 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
157 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
158 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
159 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
160 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
161 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
162
163 /* double precision registers (pseudo) 141-172 */
164 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
165 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
166 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
167 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
168
c378eb4e 169 /* floating point pairs (pseudo) 173-204 */
55ff77ac
CV
170 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
171 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
172 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
173 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
174
c378eb4e 175 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
55ff77ac
CV
176 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
177 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
178
c378eb4e 179 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
55ff77ac
CV
180 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
181 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
182 "pc_c",
183 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
184 "fpscr_c", "fpul_c",
c378eb4e
MS
185 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
186 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
187 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
188 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
189 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
190 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
55ff77ac 191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
c378eb4e 192 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
55ff77ac
CV
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200}
201
202#define NUM_PSEUDO_REGS_SH_MEDIA 80
203#define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205/* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 207 symbol's "info" field is used for this purpose.
55ff77ac 208
95f1da47
UW
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 211 minimal symbol to mark it as a 32-bit function
f594e5e9 212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
213
214#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 215 MSYMBOL_TARGET_FLAG_1 (msym)
55ff77ac
CV
216
217static void
218sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219{
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
b887350f 225 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
77e371c0 226 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
55ff77ac
CV
227 }
228}
229
230/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232#define IS_ISA32_ADDR(addr) ((addr) & 1)
233#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236static int
237pc_is_isa32 (bfd_vma memaddr)
238{
7cbd4a93 239 struct bound_minimal_symbol sym;
55ff77ac
CV
240
241 /* If bit 0 of the address is set, assume this is a
7bb11558 242 ISA32 (shmedia) address. */
55ff77ac
CV
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
250 if (sym.minsym)
251 return MSYMBOL_IS_SPECIAL (sym.minsym);
55ff77ac
CV
252 else
253 return 0;
254}
255
d19280ad
YQ
256static int
257sh64_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
55ff77ac 258{
d19280ad
YQ
259 if (pc_is_isa32 (*pcptr))
260 {
261 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
262 return 4;
263 }
264 else
265 return 2;
266}
267
268static const gdb_byte *
269sh64_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
270{
271 *size = kind;
272
273 /* The BRK instruction for shmedia is
55ff77ac
CV
274 01101111 11110101 11111111 11110000
275 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
276 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
277
278 /* The BRK instruction for shcompact is
279 00000000 00111011
280 which translates in big endian mode to 0x0, 0x3b
c378eb4e 281 and in little endian mode to 0x3b, 0x0 */
55ff77ac 282
d19280ad 283 if (kind == 4)
55ff77ac 284 {
d19280ad
YQ
285 static unsigned char big_breakpoint_media[] = {
286 0x6f, 0xf5, 0xff, 0xf0
287 };
288 static unsigned char little_breakpoint_media[] = {
289 0xf0, 0xff, 0xf5, 0x6f
290 };
291
292 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
293 return big_breakpoint_media;
55ff77ac 294 else
d19280ad 295 return little_breakpoint_media;
55ff77ac
CV
296 }
297 else
298 {
d19280ad
YQ
299 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
300 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
301
302 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
303 return big_breakpoint_compact;
55ff77ac 304 else
d19280ad 305 return little_breakpoint_compact;
55ff77ac
CV
306 }
307}
308
d19280ad
YQ
309GDBARCH_BREAKPOINT_FROM_PC (sh64)
310
55ff77ac
CV
311/* Prologue looks like
312 [mov.l <regs>,@-r15]...
313 [sts.l pr,@-r15]
314 [mov.l r14,@-r15]
315 [mov r15,r14]
316
317 Actually it can be more complicated than this. For instance, with
318 newer gcc's:
319
320 mov.l r14,@-r15
321 add #-12,r15
322 mov r15,r14
323 mov r4,r1
324 mov r5,r2
325 mov.l r6,@(4,r14)
326 mov.l r7,@(8,r14)
327 mov.b r1,@r14
328 mov r14,r1
329 mov r14,r1
330 add #2,r1
331 mov.w r2,@r1
332
333 */
334
335/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
336 with l=1 and n = 18 0110101111110001010010100aaa0000 */
337#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
338
339/* STS.L PR,@-r0 0100000000100010
340 r0-4-->r0, PR-->(r0) */
341#define IS_STS_R0(x) ((x) == 0x4022)
342
343/* STS PR, Rm 0000mmmm00101010
344 PR-->Rm */
345#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
346
347/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
348 Rm-->(dispx4+r15) */
349#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
350
351/* MOV.L R14,@(disp,r15) 000111111110dddd
352 R14-->(dispx4+r15) */
353#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
354
355/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
356 R18-->(dispx8+R14) */
357#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
358
359/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
360 R18-->(dispx8+R15) */
361#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
362
363/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
364 R18-->(dispx4+R15) */
365#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
366
367/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
368 R14-->(dispx8+R15) */
369#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
370
371/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
372 R14-->(dispx4+R15) */
373#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
374
375/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
376 R15 + imm --> R15 */
377#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
378
379/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
380 R15 + imm --> R15 */
381#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
382
383/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
384 R15 + R63 --> R14 */
385#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
386
387/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
388 R15 + R63 --> R14 */
389#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
390
c378eb4e
MS
391#define IS_MOV_SP_FP_MEDIA(x) \
392 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
55ff77ac
CV
393
394/* MOV #imm, R0 1110 0000 ssss ssss
395 #imm-->R0 */
396#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
397
398/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
399#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
400
401/* ADD r15,r0 0011 0000 1111 1100
402 r15+r0-->r0 */
403#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
404
405/* MOV.L R14 @-R0 0010 0000 1110 0110
406 R14-->(R0-4), R0-4-->R0 */
407#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
408
409/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 410 where Rm is one of r2-r9 which are the argument registers. */
c378eb4e 411/* FIXME: Recognize the float and double register moves too! */
55ff77ac 412#define IS_MEDIA_IND_ARG_MOV(x) \
c378eb4e
MS
413 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
414 && (((x) & 0x03f00000) >= 0x00200000 \
415 && ((x) & 0x03f00000) <= 0x00900000))
55ff77ac
CV
416
417/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
418 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 419 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
420#define IS_MEDIA_ARG_MOV(x) \
421(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
422 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
423
c378eb4e
MS
424/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
425/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
426/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
427/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
428/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
55ff77ac
CV
429#define IS_MEDIA_MOV_TO_R14(x) \
430((((x) & 0xfffffc0f) == 0xa0e00000) \
431|| (((x) & 0xfffffc0f) == 0xa4e00000) \
432|| (((x) & 0xfffffc0f) == 0xa8e00000) \
433|| (((x) & 0xfffffc0f) == 0xb4e00000) \
434|| (((x) & 0xfffffc0f) == 0xbce00000))
435
436/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
437 where Rm is r2-r9 */
438#define IS_COMPACT_IND_ARG_MOV(x) \
c378eb4e
MS
439 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
440 && (((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
441
442/* compact direct arg move!
443 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
444#define IS_COMPACT_ARG_MOV(x) \
c378eb4e
MS
445 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
446 && ((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
447
448/* MOV.B Rm, @R14 0010 1110 mmmm 0000
449 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
450#define IS_COMPACT_MOV_TO_R14(x) \
451((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
452
453#define IS_JSR_R0(x) ((x) == 0x400b)
454#define IS_NOP(x) ((x) == 0x0009)
455
456
457/* MOV r15,r14 0110111011110011
458 r15-->r14 */
459#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
460
461/* ADD #imm,r15 01111111iiiiiiii
462 r15+imm-->r15 */
463#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
464
c378eb4e 465/* Skip any prologue before the guts of a function. */
55ff77ac 466
7bb11558
MS
467/* Skip the prologue using the debug information. If this fails we'll
468 fall back on the 'guess' method below. */
55ff77ac
CV
469static CORE_ADDR
470after_prologue (CORE_ADDR pc)
471{
472 struct symtab_and_line sal;
473 CORE_ADDR func_addr, func_end;
474
475 /* If we can not find the symbol in the partial symbol table, then
476 there is no hope we can determine the function's start address
477 with this code. */
478 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
479 return 0;
480
c30dc700 481
55ff77ac
CV
482 /* Get the line associated with FUNC_ADDR. */
483 sal = find_pc_line (func_addr, 0);
484
485 /* There are only two cases to consider. First, the end of the source line
486 is within the function bounds. In that case we return the end of the
487 source line. Second is the end of the source line extends beyond the
488 bounds of the current function. We need to use the slow code to
489 examine instructions in that case. */
490 if (sal.end < func_end)
491 return sal.end;
492 else
493 return 0;
494}
495
496static CORE_ADDR
e17a4113
UW
497look_for_args_moves (struct gdbarch *gdbarch,
498 CORE_ADDR start_pc, int media_mode)
55ff77ac 499{
e17a4113 500 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
501 CORE_ADDR here, end;
502 int w;
503 int insn_size = (media_mode ? 4 : 2);
504
505 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
506 {
507 if (media_mode)
508 {
e17a4113
UW
509 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
510 insn_size, byte_order);
55ff77ac
CV
511 here += insn_size;
512 if (IS_MEDIA_IND_ARG_MOV (w))
513 {
514 /* This must be followed by a store to r14, so the argument
c378eb4e 515 is where the debug info says it is. This can happen after
7bb11558 516 the SP has been saved, unfortunately. */
55ff77ac
CV
517
518 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
e17a4113 519 insn_size, byte_order);
55ff77ac
CV
520 here += insn_size;
521 if (IS_MEDIA_MOV_TO_R14 (next_insn))
522 start_pc = here;
523 }
524 else if (IS_MEDIA_ARG_MOV (w))
525 {
7bb11558 526 /* These instructions store directly the argument in r14. */
55ff77ac
CV
527 start_pc = here;
528 }
529 else
530 break;
531 }
532 else
533 {
e17a4113 534 w = read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
535 w = w & 0xffff;
536 here += insn_size;
537 if (IS_COMPACT_IND_ARG_MOV (w))
538 {
539 /* This must be followed by a store to r14, so the argument
c378eb4e 540 is where the debug info says it is. This can happen after
7bb11558 541 the SP has been saved, unfortunately. */
55ff77ac 542
e17a4113
UW
543 int next_insn = 0xffff & read_memory_integer (here, insn_size,
544 byte_order);
55ff77ac
CV
545 here += insn_size;
546 if (IS_COMPACT_MOV_TO_R14 (next_insn))
547 start_pc = here;
548 }
549 else if (IS_COMPACT_ARG_MOV (w))
550 {
7bb11558 551 /* These instructions store directly the argument in r14. */
55ff77ac
CV
552 start_pc = here;
553 }
554 else if (IS_MOVL_R0 (w))
555 {
556 /* There is a function that gcc calls to get the arguments
c378eb4e 557 passed correctly to the function. Only after this
55ff77ac 558 function call the arguments will be found at the place
c378eb4e 559 where they are supposed to be. This happens in case the
55ff77ac
CV
560 argument has to be stored into a 64-bit register (for
561 instance doubles, long longs). SHcompact doesn't have
562 access to the full 64-bits, so we store the register in
563 stack slot and store the address of the stack slot in
564 the register, then do a call through a wrapper that
565 loads the memory value into the register. A SHcompact
566 callee calls an argument decoder
567 (GCC_shcompact_incoming_args) that stores the 64-bit
568 value in a stack slot and stores the address of the
569 stack slot in the register. GCC thinks the argument is
570 just passed by transparent reference, but this is only
c378eb4e 571 true after the argument decoder is called. Such a call
7bb11558 572 needs to be considered part of the prologue. */
55ff77ac
CV
573
574 /* This must be followed by a JSR @r0 instruction and by
c378eb4e 575 a NOP instruction. After these, the prologue is over! */
55ff77ac 576
e17a4113
UW
577 int next_insn = 0xffff & read_memory_integer (here, insn_size,
578 byte_order);
55ff77ac
CV
579 here += insn_size;
580 if (IS_JSR_R0 (next_insn))
581 {
e17a4113
UW
582 next_insn = 0xffff & read_memory_integer (here, insn_size,
583 byte_order);
55ff77ac
CV
584 here += insn_size;
585
586 if (IS_NOP (next_insn))
587 start_pc = here;
588 }
589 }
590 else
591 break;
592 }
593 }
594
595 return start_pc;
596}
597
598static CORE_ADDR
e17a4113 599sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
55ff77ac 600{
e17a4113 601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
602 CORE_ADDR here, end;
603 int updated_fp = 0;
604 int insn_size = 4;
605 int media_mode = 1;
606
607 if (!start_pc)
608 return 0;
609
610 if (pc_is_isa32 (start_pc) == 0)
611 {
612 insn_size = 2;
613 media_mode = 0;
614 }
615
616 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
617 {
618
619 if (media_mode)
620 {
e17a4113
UW
621 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
622 insn_size, byte_order);
55ff77ac
CV
623 here += insn_size;
624 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
625 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
c378eb4e
MS
626 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
627 || IS_PTABSL_R18 (w))
55ff77ac
CV
628 {
629 start_pc = here;
630 }
631 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
632 {
633 start_pc = here;
634 updated_fp = 1;
635 }
636 else
637 if (updated_fp)
638 {
639 /* Don't bail out yet, we may have arguments stored in
640 registers here, according to the debug info, so that
7bb11558 641 gdb can print the frames correctly. */
e17a4113
UW
642 start_pc = look_for_args_moves (gdbarch,
643 here - insn_size, media_mode);
55ff77ac
CV
644 break;
645 }
646 }
647 else
648 {
e17a4113 649 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
650 here += insn_size;
651
652 if (IS_STS_R0 (w) || IS_STS_PR (w)
653 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
654 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
655 {
656 start_pc = here;
657 }
658 else if (IS_MOV_SP_FP (w))
659 {
660 start_pc = here;
661 updated_fp = 1;
662 }
663 else
664 if (updated_fp)
665 {
666 /* Don't bail out yet, we may have arguments stored in
667 registers here, according to the debug info, so that
7bb11558 668 gdb can print the frames correctly. */
e17a4113
UW
669 start_pc = look_for_args_moves (gdbarch,
670 here - insn_size, media_mode);
55ff77ac
CV
671 break;
672 }
673 }
674 }
675
676 return start_pc;
677}
678
679static CORE_ADDR
6093d2eb 680sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
681{
682 CORE_ADDR post_prologue_pc;
683
684 /* See if we can determine the end of the prologue via the symbol table.
685 If so, then return either PC, or the PC after the prologue, whichever
686 is greater. */
687 post_prologue_pc = after_prologue (pc);
688
689 /* If after_prologue returned a useful address, then use it. Else
7bb11558 690 fall back on the instruction skipping code. */
55ff77ac 691 if (post_prologue_pc != 0)
325fac50 692 return std::max (pc, post_prologue_pc);
55ff77ac 693 else
e17a4113 694 return sh64_skip_prologue_hard_way (gdbarch, pc);
55ff77ac
CV
695}
696
55ff77ac
CV
697/* Should call_function allocate stack space for a struct return? */
698static int
c30dc700 699sh64_use_struct_convention (struct type *type)
55ff77ac
CV
700{
701 return (TYPE_LENGTH (type) > 8);
702}
703
7bb11558 704/* For vectors of 4 floating point registers. */
55ff77ac 705static int
d93859e2 706sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
707{
708 int fp_regnum;
709
d93859e2 710 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
711 return fp_regnum;
712}
713
c378eb4e 714/* For double precision floating point registers, i.e 2 fp regs. */
55ff77ac 715static int
d93859e2 716sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
717{
718 int fp_regnum;
719
d93859e2 720 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
721 return fp_regnum;
722}
723
c378eb4e 724/* For pairs of floating point registers. */
55ff77ac 725static int
d93859e2 726sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
727{
728 int fp_regnum;
729
d93859e2 730 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
731 return fp_regnum;
732}
733
55ff77ac
CV
734/* *INDENT-OFF* */
735/*
736 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
737 GDB_REGNUM BASE_REGNUM
738 r0_c 221 0
739 r1_c 222 1
740 r2_c 223 2
741 r3_c 224 3
742 r4_c 225 4
743 r5_c 226 5
744 r6_c 227 6
745 r7_c 228 7
746 r8_c 229 8
747 r9_c 230 9
748 r10_c 231 10
749 r11_c 232 11
750 r12_c 233 12
751 r13_c 234 13
752 r14_c 235 14
753 r15_c 236 15
754
755 pc_c 237 64
756 gbr_c 238 16
757 mach_c 239 17
758 macl_c 240 17
759 pr_c 241 18
760 t_c 242 19
761 fpscr_c 243 76
762 fpul_c 244 109
763
764 fr0_c 245 77
765 fr1_c 246 78
766 fr2_c 247 79
767 fr3_c 248 80
768 fr4_c 249 81
769 fr5_c 250 82
770 fr6_c 251 83
771 fr7_c 252 84
772 fr8_c 253 85
773 fr9_c 254 86
774 fr10_c 255 87
775 fr11_c 256 88
776 fr12_c 257 89
777 fr13_c 258 90
778 fr14_c 259 91
779 fr15_c 260 92
780
781 dr0_c 261 77
782 dr2_c 262 79
783 dr4_c 263 81
784 dr6_c 264 83
785 dr8_c 265 85
786 dr10_c 266 87
787 dr12_c 267 89
788 dr14_c 268 91
789
790 fv0_c 269 77
791 fv4_c 270 81
792 fv8_c 271 85
793 fv12_c 272 91
794*/
795/* *INDENT-ON* */
796static int
d93859e2 797sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 798{
c30dc700 799 int base_regnum = reg_nr;
55ff77ac
CV
800
801 /* general register N maps to general register N */
802 if (reg_nr >= R0_C_REGNUM
803 && reg_nr <= R_LAST_C_REGNUM)
804 base_regnum = reg_nr - R0_C_REGNUM;
805
806 /* floating point register N maps to floating point register N */
807 else if (reg_nr >= FP0_C_REGNUM
808 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 809 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
810
811 /* double prec register N maps to base regnum for double prec register N */
812 else if (reg_nr >= DR0_C_REGNUM
813 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
814 base_regnum = sh64_dr_reg_base_num (gdbarch,
815 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
816
817 /* vector N maps to base regnum for vector register N */
818 else if (reg_nr >= FV0_C_REGNUM
819 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
820 base_regnum = sh64_fv_reg_base_num (gdbarch,
821 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
822
823 else if (reg_nr == PC_C_REGNUM)
d93859e2 824 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
825
826 else if (reg_nr == GBR_C_REGNUM)
827 base_regnum = 16;
828
829 else if (reg_nr == MACH_C_REGNUM
830 || reg_nr == MACL_C_REGNUM)
831 base_regnum = 17;
832
833 else if (reg_nr == PR_C_REGNUM)
c30dc700 834 base_regnum = PR_REGNUM;
55ff77ac
CV
835
836 else if (reg_nr == T_C_REGNUM)
837 base_regnum = 19;
838
839 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 840 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
841
842 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 843 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
844
845 return base_regnum;
846}
847
55ff77ac
CV
848static int
849sign_extend (int value, int bits)
850{
851 value = value & ((1 << bits) - 1);
852 return (value & (1 << (bits - 1))
853 ? value | (~((1 << bits) - 1))
854 : value);
855}
856
857static void
c30dc700
CV
858sh64_analyze_prologue (struct gdbarch *gdbarch,
859 struct sh64_frame_cache *cache,
860 CORE_ADDR func_pc,
861 CORE_ADDR current_pc)
55ff77ac 862{
55ff77ac
CV
863 int pc;
864 int opc;
865 int insn;
866 int r0_val = 0;
55ff77ac 867 int insn_size;
e17a4113 868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 869
c30dc700 870 cache->sp_offset = 0;
55ff77ac
CV
871
872 /* Loop around examining the prologue insns until we find something
873 that does not appear to be part of the prologue. But give up
7bb11558 874 after 20 of them, since we're getting silly then. */
55ff77ac 875
c30dc700 876 pc = func_pc;
55ff77ac 877
c30dc700
CV
878 if (cache->media_mode)
879 insn_size = 4;
55ff77ac 880 else
c30dc700 881 insn_size = 2;
55ff77ac 882
c30dc700
CV
883 opc = pc + (insn_size * 28);
884 if (opc > current_pc)
885 opc = current_pc;
886 for ( ; pc <= opc; pc += insn_size)
55ff77ac 887 {
c30dc700
CV
888 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
889 : pc,
e17a4113 890 insn_size, byte_order);
55ff77ac 891
c30dc700 892 if (!cache->media_mode)
55ff77ac
CV
893 {
894 if (IS_STS_PR (insn))
895 {
e17a4113
UW
896 int next_insn = read_memory_integer (pc + insn_size,
897 insn_size, byte_order);
55ff77ac
CV
898 if (IS_MOV_TO_R15 (next_insn))
899 {
c378eb4e
MS
900 cache->saved_regs[PR_REGNUM]
901 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
902 - 0x8) << 2);
55ff77ac
CV
903 pc += insn_size;
904 }
905 }
c30dc700 906
55ff77ac 907 else if (IS_MOV_R14 (insn))
9ca10714
JB
908 {
909 cache->saved_regs[MEDIA_FP_REGNUM] =
910 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
911 cache->uses_fp = 1;
912 }
55ff77ac
CV
913
914 else if (IS_MOV_R0 (insn))
915 {
916 /* Put in R0 the offset from SP at which to store some
c378eb4e 917 registers. We are interested in this value, because it
55ff77ac
CV
918 will tell us where the given registers are stored within
919 the frame. */
920 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
921 }
c30dc700 922
55ff77ac
CV
923 else if (IS_ADD_SP_R0 (insn))
924 {
925 /* This instruction still prepares r0, but we don't care.
7bb11558 926 We already have the offset in r0_val. */
55ff77ac 927 }
c30dc700 928
55ff77ac
CV
929 else if (IS_STS_R0 (insn))
930 {
c378eb4e 931 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700 932 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 933 r0_val -= 4;
55ff77ac 934 }
c30dc700 935
55ff77ac
CV
936 else if (IS_MOV_R14_R0 (insn))
937 {
c378eb4e 938 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700
CV
939 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
940 - (r0_val - 4);
9ca10714 941 cache->uses_fp = 1;
55ff77ac
CV
942 r0_val -= 4;
943 }
944
945 else if (IS_ADD_SP (insn))
c30dc700
CV
946 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
947
55ff77ac
CV
948 else if (IS_MOV_SP_FP (insn))
949 break;
950 }
951 else
952 {
c30dc700
CV
953 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
954 cache->sp_offset -=
955 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
956
957 else if (IS_STQ_R18_R15 (insn))
c378eb4e
MS
958 cache->saved_regs[PR_REGNUM]
959 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
960 9) << 3);
55ff77ac
CV
961
962 else if (IS_STL_R18_R15 (insn))
c378eb4e
MS
963 cache->saved_regs[PR_REGNUM]
964 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
965 9) << 2);
55ff77ac
CV
966
967 else if (IS_STQ_R14_R15 (insn))
9ca10714
JB
968 {
969 cache->saved_regs[MEDIA_FP_REGNUM]
970 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
971 9) << 3);
972 cache->uses_fp = 1;
973 }
55ff77ac
CV
974
975 else if (IS_STL_R14_R15 (insn))
9ca10714
JB
976 {
977 cache->saved_regs[MEDIA_FP_REGNUM]
978 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
979 9) << 2);
980 cache->uses_fp = 1;
981 }
55ff77ac
CV
982
983 else if (IS_MOV_SP_FP_MEDIA (insn))
984 break;
985 }
986 }
55ff77ac
CV
987}
988
55ff77ac 989static CORE_ADDR
c30dc700 990sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 991{
c30dc700 992 return sp & ~7;
55ff77ac
CV
993}
994
c30dc700 995/* Function: push_dummy_call
55ff77ac
CV
996 Setup the function arguments for calling a function in the inferior.
997
85a453d5 998 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
999 which are dedicated for passing function arguments. Up to the first
1000 four arguments (depending on size) may go into these registers.
1001 The rest go on the stack.
1002
1003 Arguments that are smaller than 4 bytes will still take up a whole
1004 register or a whole 32-bit word on the stack, and will be
1005 right-justified in the register or the stack word. This includes
1006 chars, shorts, and small aggregate types.
1007
1008 Arguments that are larger than 4 bytes may be split between two or
1009 more registers. If there are not enough registers free, an argument
1010 may be passed partly in a register (or registers), and partly on the
c378eb4e 1011 stack. This includes doubles, long longs, and larger aggregates.
55ff77ac
CV
1012 As far as I know, there is no upper limit to the size of aggregates
1013 that will be passed in this way; in other words, the convention of
1014 passing a pointer to a large aggregate instead of a copy is not used.
1015
1016 An exceptional case exists for struct arguments (and possibly other
1017 aggregates such as arrays) if the size is larger than 4 bytes but
1018 not a multiple of 4 bytes. In this case the argument is never split
1019 between the registers and the stack, but instead is copied in its
1020 entirety onto the stack, AND also copied into as many registers as
1021 there is room for. In other words, space in registers permitting,
1022 two copies of the same argument are passed in. As far as I can tell,
1023 only the one on the stack is used, although that may be a function
1024 of the level of compiler optimization. I suspect this is a compiler
1025 bug. Arguments of these odd sizes are left-justified within the
1026 word (as opposed to arguments smaller than 4 bytes, which are
1027 right-justified).
1028
1029 If the function is to return an aggregate type such as a struct, it
1030 is either returned in the normal return value register R0 (if its
1031 size is no greater than one byte), or else the caller must allocate
1032 space into which the callee will copy the return value (if the size
1033 is greater than one byte). In this case, a pointer to the return
1034 value location is passed into the callee in register R2, which does
1035 not displace any of the other arguments passed in via registers R4
c378eb4e 1036 to R7. */
55ff77ac
CV
1037
1038/* R2-R9 for integer types and integer equivalent (char, pointers) and
1039 non-scalar (struct, union) elements (even if the elements are
1040 floats).
1041 FR0-FR11 for single precision floating point (float)
1042 DR0-DR10 for double precision floating point (double)
1043
1044 If a float is argument number 3 (for instance) and arguments number
1045 1,2, and 4 are integer, the mapping will be:
c378eb4e 1046 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
55ff77ac
CV
1047
1048 If a float is argument number 10 (for instance) and arguments number
1049 1 through 10 are integer, the mapping will be:
1050 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
c378eb4e
MS
1051 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1052 arg11->stack(16,SP). I.e. there is hole in the stack.
55ff77ac
CV
1053
1054 Different rules apply for variable arguments functions, and for functions
7bb11558 1055 for which the prototype is not known. */
55ff77ac
CV
1056
1057static CORE_ADDR
c30dc700
CV
1058sh64_push_dummy_call (struct gdbarch *gdbarch,
1059 struct value *function,
1060 struct regcache *regcache,
1061 CORE_ADDR bp_addr,
1062 int nargs, struct value **args,
1063 CORE_ADDR sp, int struct_return,
1064 CORE_ADDR struct_addr)
55ff77ac 1065{
e17a4113 1066 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1067 int stack_offset, stack_alloc;
1068 int int_argreg;
55ff77ac
CV
1069 int float_arg_index = 0;
1070 int double_arg_index = 0;
1071 int argnum;
1072 struct type *type;
1073 CORE_ADDR regval;
948f8e3d
PA
1074 const gdb_byte *val;
1075 gdb_byte valbuf[8];
55ff77ac
CV
1076 int len;
1077 int argreg_size;
1078 int fp_args[12];
55ff77ac
CV
1079
1080 memset (fp_args, 0, sizeof (fp_args));
1081
c378eb4e 1082 /* First force sp to a 8-byte alignment. */
c30dc700 1083 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1084
1085 /* The "struct return pointer" pseudo-argument has its own dedicated
c378eb4e 1086 register. */
55ff77ac
CV
1087
1088 if (struct_return)
c30dc700
CV
1089 regcache_cooked_write_unsigned (regcache,
1090 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac 1091
c378eb4e 1092 /* Now make sure there's space on the stack. */
55ff77ac 1093 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1094 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
c378eb4e 1095 sp -= stack_alloc; /* Make room on stack for args. */
55ff77ac
CV
1096
1097 /* Now load as many as possible of the first arguments into
1098 registers, and push the rest onto the stack. There are 64 bytes
1099 in eight registers available. Loop thru args from first to last. */
1100
1101 int_argreg = ARG0_REGNUM;
55ff77ac
CV
1102
1103 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1104 {
4991999e 1105 type = value_type (args[argnum]);
55ff77ac
CV
1106 len = TYPE_LENGTH (type);
1107 memset (valbuf, 0, sizeof (valbuf));
1108
1109 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1110 {
58643501 1111 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1112
1113 if (len < argreg_size)
1114 {
c378eb4e 1115 /* value gets right-justified in the register or stack word. */
58643501 1116 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1117 memcpy (valbuf + argreg_size - len,
948f8e3d 1118 value_contents (args[argnum]), len);
55ff77ac 1119 else
948f8e3d 1120 memcpy (valbuf, value_contents (args[argnum]), len);
55ff77ac
CV
1121
1122 val = valbuf;
1123 }
1124 else
948f8e3d 1125 val = value_contents (args[argnum]);
55ff77ac
CV
1126
1127 while (len > 0)
1128 {
1129 if (int_argreg > ARGLAST_REGNUM)
1130 {
c378eb4e 1131 /* Must go on the stack. */
948f8e3d 1132 write_memory (sp + stack_offset, val, argreg_size);
55ff77ac
CV
1133 stack_offset += 8;/*argreg_size;*/
1134 }
1135 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1136 That's because some *&^%$ things get passed on the stack
1137 AND in the registers! */
1138 if (int_argreg <= ARGLAST_REGNUM)
1139 {
c378eb4e 1140 /* There's room in a register. */
e17a4113
UW
1141 regval = extract_unsigned_integer (val, argreg_size,
1142 byte_order);
c378eb4e
MS
1143 regcache_cooked_write_unsigned (regcache,
1144 int_argreg, regval);
55ff77ac
CV
1145 }
1146 /* Store the value 8 bytes at a time. This means that
1147 things larger than 8 bytes may go partly in registers
c378eb4e 1148 and partly on the stack. FIXME: argreg is incremented
7bb11558 1149 before we use its size. */
55ff77ac
CV
1150 len -= argreg_size;
1151 val += argreg_size;
1152 int_argreg++;
1153 }
1154 }
1155 else
1156 {
948f8e3d 1157 val = value_contents (args[argnum]);
55ff77ac
CV
1158 if (len == 4)
1159 {
c378eb4e 1160 /* Where is it going to be stored? */
55ff77ac
CV
1161 while (fp_args[float_arg_index])
1162 float_arg_index ++;
1163
1164 /* Now float_argreg points to the register where it
1165 should be stored. Are we still within the allowed
c378eb4e 1166 register set? */
55ff77ac
CV
1167 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1168 {
1169 /* Goes in FR0...FR11 */
c30dc700 1170 regcache_cooked_write (regcache,
58643501 1171 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1172 + float_arg_index,
c30dc700 1173 val);
55ff77ac 1174 fp_args[float_arg_index] = 1;
7bb11558 1175 /* Skip the corresponding general argument register. */
55ff77ac
CV
1176 int_argreg ++;
1177 }
1178 else
d4fb63e1
TT
1179 {
1180 /* Store it as the integers, 8 bytes at the time, if
1181 necessary spilling on the stack. */
1182 }
55ff77ac
CV
1183 }
1184 else if (len == 8)
1185 {
c378eb4e 1186 /* Where is it going to be stored? */
55ff77ac
CV
1187 while (fp_args[double_arg_index])
1188 double_arg_index += 2;
1189 /* Now double_argreg points to the register
1190 where it should be stored.
c378eb4e 1191 Are we still within the allowed register set? */
55ff77ac
CV
1192 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1193 {
1194 /* Goes in DR0...DR10 */
1195 /* The numbering of the DRi registers is consecutive,
7bb11558 1196 i.e. includes odd numbers. */
55ff77ac 1197 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1198 int regnum = DR0_REGNUM + double_register_offset;
1199 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1200 fp_args[double_arg_index] = 1;
1201 fp_args[double_arg_index + 1] = 1;
7bb11558 1202 /* Skip the corresponding general argument register. */
55ff77ac
CV
1203 int_argreg ++;
1204 }
1205 else
d4fb63e1
TT
1206 {
1207 /* Store it as the integers, 8 bytes at the time, if
1208 necessary spilling on the stack. */
1209 }
55ff77ac
CV
1210 }
1211 }
1212 }
c378eb4e 1213 /* Store return address. */
c30dc700 1214 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1215
c30dc700 1216 /* Update stack pointer. */
3e8c568d 1217 regcache_cooked_write_unsigned (regcache,
58643501 1218 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1219
55ff77ac
CV
1220 return sp;
1221}
1222
1223/* Find a function's return value in the appropriate registers (in
1224 regbuf), and copy it into valbuf. Extract from an array REGBUF
1225 containing the (raw) register state a function return value of type
1226 TYPE, and copy that, in virtual format, into VALBUF. */
1227static void
c30dc700 1228sh64_extract_return_value (struct type *type, struct regcache *regcache,
7c543f7b 1229 gdb_byte *valbuf)
55ff77ac 1230{
d93859e2 1231 struct gdbarch *gdbarch = get_regcache_arch (regcache);
55ff77ac 1232 int len = TYPE_LENGTH (type);
d93859e2 1233
55ff77ac
CV
1234 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1235 {
1236 if (len == 4)
1237 {
c378eb4e 1238 /* Return value stored in gdbarch_fp0_regnum. */
3e8c568d 1239 regcache_raw_read (regcache,
d93859e2 1240 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1241 }
1242 else if (len == 8)
1243 {
c378eb4e 1244 /* return value stored in DR0_REGNUM. */
55ff77ac 1245 DOUBLEST val;
18cf8b5b 1246 gdb_byte buf[8];
55ff77ac 1247
18cf8b5b 1248 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1249
d93859e2 1250 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
55ff77ac 1251 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1252 buf, &val);
55ff77ac
CV
1253 else
1254 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1255 buf, &val);
7bb11558 1256 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1257 }
1258 }
1259 else
1260 {
1261 if (len <= 8)
1262 {
c30dc700 1263 int offset;
e362b510 1264 gdb_byte buf[8];
c378eb4e 1265 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1266 at the most significant end. */
c30dc700
CV
1267 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1268
d93859e2
UW
1269 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1270 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1271 - len;
55ff77ac 1272 else
c30dc700
CV
1273 offset = 0;
1274 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1275 }
1276 else
a73c6dcd 1277 error (_("bad size for return value"));
55ff77ac
CV
1278 }
1279}
1280
1281/* Write into appropriate registers a function return value
1282 of type TYPE, given in virtual format.
1283 If the architecture is sh4 or sh3e, store a function's return value
1284 in the R0 general register or in the FP0 floating point register,
c378eb4e 1285 depending on the type of the return value. In all the other cases
7bb11558 1286 the result is stored in r0, left-justified. */
55ff77ac
CV
1287
1288static void
c30dc700 1289sh64_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1290 const gdb_byte *valbuf)
55ff77ac 1291{
d93859e2 1292 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e362b510 1293 gdb_byte buf[64]; /* more than enough... */
55ff77ac
CV
1294 int len = TYPE_LENGTH (type);
1295
1296 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1297 {
d93859e2 1298 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1299 for (i = 0; i < len; i += 4)
d93859e2 1300 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700 1301 regcache_raw_write (regcache, regnum++,
948f8e3d 1302 valbuf + len - 4 - i);
c30dc700 1303 else
948f8e3d 1304 regcache_raw_write (regcache, regnum++, valbuf + i);
55ff77ac
CV
1305 }
1306 else
1307 {
1308 int return_register = DEFAULT_RETURN_REGNUM;
1309 int offset = 0;
1310
d93859e2 1311 if (len <= register_size (gdbarch, return_register))
55ff77ac 1312 {
7bb11558 1313 /* Pad with zeros. */
d93859e2
UW
1314 memset (buf, 0, register_size (gdbarch, return_register));
1315 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1316 offset = 0; /*register_size (gdbarch,
7bb11558 1317 return_register) - len;*/
55ff77ac 1318 else
d93859e2 1319 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1320
1321 memcpy (buf + offset, valbuf, len);
c30dc700 1322 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1323 }
1324 else
c30dc700 1325 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1326 }
1327}
1328
c30dc700 1329static enum return_value_convention
6a3a010b 1330sh64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 1331 struct type *type, struct regcache *regcache,
18cf8b5b 1332 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1333{
1334 if (sh64_use_struct_convention (type))
1335 return RETURN_VALUE_STRUCT_CONVENTION;
1336 if (writebuf)
1337 sh64_store_return_value (type, regcache, writebuf);
1338 else if (readbuf)
1339 sh64_extract_return_value (type, regcache, readbuf);
1340 return RETURN_VALUE_REGISTER_CONVENTION;
1341}
1342
55ff77ac
CV
1343/* *INDENT-OFF* */
1344/*
1345 SH MEDIA MODE (ISA 32)
1346 general registers (64-bit) 0-63
13470 r0, r1, r2, r3, r4, r5, r6, r7,
134864 r8, r9, r10, r11, r12, r13, r14, r15,
1349128 r16, r17, r18, r19, r20, r21, r22, r23,
1350192 r24, r25, r26, r27, r28, r29, r30, r31,
1351256 r32, r33, r34, r35, r36, r37, r38, r39,
1352320 r40, r41, r42, r43, r44, r45, r46, r47,
1353384 r48, r49, r50, r51, r52, r53, r54, r55,
1354448 r56, r57, r58, r59, r60, r61, r62, r63,
1355
1356 pc (64-bit) 64
1357512 pc,
1358
1359 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1360520 sr, ssr, spc,
1361
1362 target registers (64-bit) 68-75
1363544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1364
1365 floating point state control register (32-bit) 76
1366608 fpscr,
1367
1368 single precision floating point registers (32-bit) 77-140
1369612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1370644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1371676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1372708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1373740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1374772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1375804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1376836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1377
1378TOTAL SPACE FOR REGISTERS: 868 bytes
1379
1380From here on they are all pseudo registers: no memory allocated.
1381REGISTER_BYTE returns the register byte for the base register.
1382
1383 double precision registers (pseudo) 141-172
1384 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1385 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1386 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1387 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1388
1389 floating point pairs (pseudo) 173-204
1390 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1391 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1392 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1393 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1394
1395 floating point vectors (4 floating point regs) (pseudo) 205-220
1396 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1397 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1398
1399 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1400 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1401 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1402 pc_c,
1403 gbr_c, mach_c, macl_c, pr_c, t_c,
1404 fpscr_c, fpul_c,
1405 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1406 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1407 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1408 fv0_c, fv4_c, fv8_c, fv12_c
1409*/
55ff77ac 1410
55ff77ac 1411static struct type *
0dfff4cb 1412sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
55ff77ac 1413{
e3506a9f
UW
1414 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1415 0, high);
55ff77ac
CV
1416}
1417
7bb11558
MS
1418/* Return the GDB type object for the "standard" data type
1419 of data in register REG_NR. */
55ff77ac 1420static struct type *
7bb11558 1421sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1422{
58643501 1423 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1424 && reg_nr <= FP_LAST_REGNUM)
1425 || (reg_nr >= FP0_C_REGNUM
1426 && reg_nr <= FP_LAST_C_REGNUM))
0dfff4cb 1427 return builtin_type (gdbarch)->builtin_float;
55ff77ac
CV
1428 else if ((reg_nr >= DR0_REGNUM
1429 && reg_nr <= DR_LAST_REGNUM)
1430 || (reg_nr >= DR0_C_REGNUM
1431 && reg_nr <= DR_LAST_C_REGNUM))
0dfff4cb 1432 return builtin_type (gdbarch)->builtin_double;
55ff77ac
CV
1433 else if (reg_nr >= FPP0_REGNUM
1434 && reg_nr <= FPP_LAST_REGNUM)
0dfff4cb 1435 return sh64_build_float_register_type (gdbarch, 1);
55ff77ac
CV
1436 else if ((reg_nr >= FV0_REGNUM
1437 && reg_nr <= FV_LAST_REGNUM)
1438 ||(reg_nr >= FV0_C_REGNUM
1439 && reg_nr <= FV_LAST_C_REGNUM))
0dfff4cb 1440 return sh64_build_float_register_type (gdbarch, 3);
55ff77ac 1441 else if (reg_nr == FPSCR_REGNUM)
0dfff4cb 1442 return builtin_type (gdbarch)->builtin_int;
55ff77ac
CV
1443 else if (reg_nr >= R0_C_REGNUM
1444 && reg_nr < FP0_C_REGNUM)
0dfff4cb 1445 return builtin_type (gdbarch)->builtin_int;
55ff77ac 1446 else
0dfff4cb 1447 return builtin_type (gdbarch)->builtin_long_long;
55ff77ac
CV
1448}
1449
1450static void
d93859e2 1451sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1452 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1453{
d93859e2 1454 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1455 {
7bb11558 1456 /* It is a no-op. */
d93859e2 1457 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1458 return;
1459 }
1460
1461 if ((regnum >= DR0_REGNUM
1462 && regnum <= DR_LAST_REGNUM)
1463 || (regnum >= DR0_C_REGNUM
1464 && regnum <= DR_LAST_C_REGNUM))
1465 {
1466 DOUBLEST val;
7bb11558
MS
1467 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1468 from, &val);
39add00a 1469 store_typed_floating (to, type, val);
55ff77ac
CV
1470 }
1471 else
a73c6dcd
MS
1472 error (_("sh64_register_convert_to_virtual "
1473 "called with non DR register number"));
55ff77ac
CV
1474}
1475
1476static void
d93859e2
UW
1477sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1478 int regnum, const void *from, void *to)
55ff77ac 1479{
d93859e2 1480 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1481 {
7bb11558 1482 /* It is a no-op. */
d93859e2 1483 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1484 return;
1485 }
1486
1487 if ((regnum >= DR0_REGNUM
1488 && regnum <= DR_LAST_REGNUM)
1489 || (regnum >= DR0_C_REGNUM
1490 && regnum <= DR_LAST_C_REGNUM))
1491 {
e035e373 1492 DOUBLEST val = extract_typed_floating (from, type);
7bb11558
MS
1493 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1494 &val, to);
55ff77ac
CV
1495 }
1496 else
a73c6dcd
MS
1497 error (_("sh64_register_convert_to_raw called "
1498 "with non DR register number"));
55ff77ac
CV
1499}
1500
05d1431c
PA
1501/* Concatenate PORTIONS contiguous raw registers starting at
1502 BASE_REGNUM into BUFFER. */
1503
1504static enum register_status
1505pseudo_register_read_portions (struct gdbarch *gdbarch,
1506 struct regcache *regcache,
1507 int portions,
1508 int base_regnum, gdb_byte *buffer)
1509{
1510 int portion;
1511
1512 for (portion = 0; portion < portions; portion++)
1513 {
1514 enum register_status status;
1515 gdb_byte *b;
1516
1517 b = buffer + register_size (gdbarch, base_regnum) * portion;
1518 status = regcache_raw_read (regcache, base_regnum + portion, b);
1519 if (status != REG_VALID)
1520 return status;
1521 }
1522
1523 return REG_VALID;
1524}
1525
1526static enum register_status
55ff77ac 1527sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1528 int reg_nr, gdb_byte *buffer)
55ff77ac 1529{
e17a4113 1530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1531 int base_regnum;
55ff77ac 1532 int offset = 0;
948f8e3d 1533 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
05d1431c 1534 enum register_status status;
55ff77ac
CV
1535
1536 if (reg_nr >= DR0_REGNUM
1537 && reg_nr <= DR_LAST_REGNUM)
1538 {
d93859e2 1539 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1540
7bb11558 1541 /* Build the value in the provided buffer. */
55ff77ac 1542 /* DR regs are double precision registers obtained by
7bb11558 1543 concatenating 2 single precision floating point registers. */
05d1431c
PA
1544 status = pseudo_register_read_portions (gdbarch, regcache,
1545 2, base_regnum, temp_buffer);
1546 if (status == REG_VALID)
1547 {
1548 /* We must pay attention to the endianness. */
1549 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1550 register_type (gdbarch, reg_nr),
1551 temp_buffer, buffer);
1552 }
55ff77ac 1553
05d1431c 1554 return status;
55ff77ac
CV
1555 }
1556
05d1431c 1557 else if (reg_nr >= FPP0_REGNUM
55ff77ac
CV
1558 && reg_nr <= FPP_LAST_REGNUM)
1559 {
d93859e2 1560 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1561
7bb11558 1562 /* Build the value in the provided buffer. */
55ff77ac 1563 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1564 concatenating 2 single precision floating point registers. */
05d1431c
PA
1565 return pseudo_register_read_portions (gdbarch, regcache,
1566 2, base_regnum, buffer);
55ff77ac
CV
1567 }
1568
1569 else if (reg_nr >= FV0_REGNUM
1570 && reg_nr <= FV_LAST_REGNUM)
1571 {
d93859e2 1572 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1573
7bb11558 1574 /* Build the value in the provided buffer. */
55ff77ac 1575 /* FV regs are vectors of single precision registers obtained by
7bb11558 1576 concatenating 4 single precision floating point registers. */
05d1431c
PA
1577 return pseudo_register_read_portions (gdbarch, regcache,
1578 4, base_regnum, buffer);
55ff77ac
CV
1579 }
1580
c378eb4e 1581 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
55ff77ac
CV
1582 else if (reg_nr >= R0_C_REGNUM
1583 && reg_nr <= T_C_REGNUM)
1584 {
d93859e2 1585 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1586
7bb11558 1587 /* Build the value in the provided buffer. */
05d1431c
PA
1588 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1589 if (status != REG_VALID)
1590 return status;
58643501 1591 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1592 offset = 4;
c378eb4e
MS
1593 memcpy (buffer,
1594 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
05d1431c 1595 return REG_VALID;
55ff77ac
CV
1596 }
1597
1598 else if (reg_nr >= FP0_C_REGNUM
1599 && reg_nr <= FP_LAST_C_REGNUM)
1600 {
d93859e2 1601 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1602
7bb11558 1603 /* Build the value in the provided buffer. */
55ff77ac 1604 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1605 they have the same size and endianness. */
05d1431c 1606 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac
CV
1607 }
1608
1609 else if (reg_nr >= DR0_C_REGNUM
1610 && reg_nr <= DR_LAST_C_REGNUM)
1611 {
d93859e2 1612 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1613
1614 /* DR_C regs are double precision registers obtained by
7bb11558 1615 concatenating 2 single precision floating point registers. */
05d1431c
PA
1616 status = pseudo_register_read_portions (gdbarch, regcache,
1617 2, base_regnum, temp_buffer);
1618 if (status == REG_VALID)
1619 {
1620 /* We must pay attention to the endianness. */
1621 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1622 register_type (gdbarch, reg_nr),
1623 temp_buffer, buffer);
1624 }
1625 return status;
55ff77ac
CV
1626 }
1627
1628 else if (reg_nr >= FV0_C_REGNUM
1629 && reg_nr <= FV_LAST_C_REGNUM)
1630 {
d93859e2 1631 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1632
7bb11558 1633 /* Build the value in the provided buffer. */
55ff77ac 1634 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1635 concatenating 4 single precision floating point registers. */
05d1431c
PA
1636 return pseudo_register_read_portions (gdbarch, regcache,
1637 4, base_regnum, buffer);
55ff77ac
CV
1638 }
1639
1640 else if (reg_nr == FPSCR_C_REGNUM)
1641 {
1642 int fpscr_base_regnum;
1643 int sr_base_regnum;
1644 unsigned int fpscr_value;
1645 unsigned int sr_value;
1646 unsigned int fpscr_c_value;
1647 unsigned int fpscr_c_part1_value;
1648 unsigned int fpscr_c_part2_value;
1649
1650 fpscr_base_regnum = FPSCR_REGNUM;
1651 sr_base_regnum = SR_REGNUM;
1652
7bb11558 1653 /* Build the value in the provided buffer. */
55ff77ac
CV
1654 /* FPSCR_C is a very weird register that contains sparse bits
1655 from the FPSCR and the SR architectural registers.
1656 Specifically: */
1657 /* *INDENT-OFF* */
1658 /*
1659 FPSRC_C bit
1660 0 Bit 0 of FPSCR
1661 1 reserved
1662 2-17 Bit 2-18 of FPSCR
1663 18-20 Bits 12,13,14 of SR
1664 21-31 reserved
1665 */
1666 /* *INDENT-ON* */
c378eb4e 1667 /* Get FPSCR into a local buffer. */
05d1431c
PA
1668 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1669 if (status != REG_VALID)
1670 return status;
7bb11558 1671 /* Get value as an int. */
e17a4113 1672 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac 1673 /* Get SR into a local buffer */
05d1431c
PA
1674 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1675 if (status != REG_VALID)
1676 return status;
7bb11558 1677 /* Get value as an int. */
e17a4113 1678 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
7bb11558 1679 /* Build the new value. */
55ff77ac
CV
1680 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1681 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1682 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
c378eb4e 1683 /* Store that in out buffer!!! */
e17a4113 1684 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
7bb11558 1685 /* FIXME There is surely an endianness gotcha here. */
05d1431c
PA
1686
1687 return REG_VALID;
55ff77ac
CV
1688 }
1689
1690 else if (reg_nr == FPUL_C_REGNUM)
1691 {
d93859e2 1692 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1693
1694 /* FPUL_C register is floating point register 32,
7bb11558 1695 same size, same endianness. */
05d1431c 1696 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac 1697 }
05d1431c
PA
1698 else
1699 gdb_assert_not_reached ("invalid pseudo register number");
55ff77ac
CV
1700}
1701
1702static void
1703sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1704 int reg_nr, const gdb_byte *buffer)
55ff77ac 1705{
e17a4113 1706 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1707 int base_regnum, portion;
1708 int offset;
948f8e3d 1709 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1710
1711 if (reg_nr >= DR0_REGNUM
1712 && reg_nr <= DR_LAST_REGNUM)
1713 {
d93859e2 1714 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1715 /* We must pay attention to the endianness. */
d93859e2 1716 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1717 reg_nr,
1718 buffer, temp_buffer);
55ff77ac
CV
1719
1720 /* Write the real regs for which this one is an alias. */
1721 for (portion = 0; portion < 2; portion++)
1722 regcache_raw_write (regcache, base_regnum + portion,
1723 (temp_buffer
948f8e3d 1724 + register_size (gdbarch,
7bb11558 1725 base_regnum) * portion));
55ff77ac
CV
1726 }
1727
1728 else if (reg_nr >= FPP0_REGNUM
1729 && reg_nr <= FPP_LAST_REGNUM)
1730 {
d93859e2 1731 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1732
1733 /* Write the real regs for which this one is an alias. */
1734 for (portion = 0; portion < 2; portion++)
1735 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1736 (buffer + register_size (gdbarch,
1737 base_regnum) * portion));
55ff77ac
CV
1738 }
1739
1740 else if (reg_nr >= FV0_REGNUM
1741 && reg_nr <= FV_LAST_REGNUM)
1742 {
d93859e2 1743 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1744
1745 /* Write the real regs for which this one is an alias. */
1746 for (portion = 0; portion < 4; portion++)
1747 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1748 (buffer + register_size (gdbarch,
1749 base_regnum) * portion));
55ff77ac
CV
1750 }
1751
c378eb4e 1752 /* sh compact general pseudo registers. 1-to-1 with a shmedia
55ff77ac
CV
1753 register but only 4 bytes of it. */
1754 else if (reg_nr >= R0_C_REGNUM
1755 && reg_nr <= T_C_REGNUM)
1756 {
d93859e2 1757 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1758 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1759 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1760 offset = 4;
1761 else
1762 offset = 0;
1763 /* Let's read the value of the base register into a temporary
1764 buffer, so that overwriting the last four bytes with the new
7bb11558 1765 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac 1766 regcache_raw_read (regcache, base_regnum, temp_buffer);
c378eb4e 1767 /* Write as an 8 byte quantity. */
55ff77ac
CV
1768 memcpy (temp_buffer + offset, buffer, 4);
1769 regcache_raw_write (regcache, base_regnum, temp_buffer);
1770 }
1771
c378eb4e
MS
1772 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1773 registers. Both are 4 bytes. */
55ff77ac
CV
1774 else if (reg_nr >= FP0_C_REGNUM
1775 && reg_nr <= FP_LAST_C_REGNUM)
1776 {
d93859e2 1777 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1778 regcache_raw_write (regcache, base_regnum, buffer);
1779 }
1780
1781 else if (reg_nr >= DR0_C_REGNUM
1782 && reg_nr <= DR_LAST_C_REGNUM)
1783 {
d93859e2 1784 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1785 for (portion = 0; portion < 2; portion++)
1786 {
7bb11558 1787 /* We must pay attention to the endianness. */
d93859e2
UW
1788 sh64_register_convert_to_raw (gdbarch,
1789 register_type (gdbarch, reg_nr),
39add00a
MS
1790 reg_nr,
1791 buffer, temp_buffer);
55ff77ac
CV
1792
1793 regcache_raw_write (regcache, base_regnum + portion,
1794 (temp_buffer
7bb11558
MS
1795 + register_size (gdbarch,
1796 base_regnum) * portion));
55ff77ac
CV
1797 }
1798 }
1799
1800 else if (reg_nr >= FV0_C_REGNUM
1801 && reg_nr <= FV_LAST_C_REGNUM)
1802 {
d93859e2 1803 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1804
1805 for (portion = 0; portion < 4; portion++)
1806 {
1807 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d 1808 (buffer
7bb11558
MS
1809 + register_size (gdbarch,
1810 base_regnum) * portion));
55ff77ac
CV
1811 }
1812 }
1813
1814 else if (reg_nr == FPSCR_C_REGNUM)
1815 {
1816 int fpscr_base_regnum;
1817 int sr_base_regnum;
1818 unsigned int fpscr_value;
1819 unsigned int sr_value;
1820 unsigned int old_fpscr_value;
1821 unsigned int old_sr_value;
1822 unsigned int fpscr_c_value;
1823 unsigned int fpscr_mask;
1824 unsigned int sr_mask;
1825
1826 fpscr_base_regnum = FPSCR_REGNUM;
1827 sr_base_regnum = SR_REGNUM;
1828
1829 /* FPSCR_C is a very weird register that contains sparse bits
1830 from the FPSCR and the SR architectural registers.
1831 Specifically: */
1832 /* *INDENT-OFF* */
1833 /*
1834 FPSRC_C bit
1835 0 Bit 0 of FPSCR
1836 1 reserved
1837 2-17 Bit 2-18 of FPSCR
1838 18-20 Bits 12,13,14 of SR
1839 21-31 reserved
1840 */
1841 /* *INDENT-ON* */
7bb11558 1842 /* Get value as an int. */
e17a4113 1843 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
55ff77ac 1844
7bb11558 1845 /* Build the new values. */
55ff77ac
CV
1846 fpscr_mask = 0x0003fffd;
1847 sr_mask = 0x001c0000;
1848
1849 fpscr_value = fpscr_c_value & fpscr_mask;
1850 sr_value = (fpscr_value & sr_mask) >> 6;
1851
1852 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
e17a4113 1853 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1854 old_fpscr_value &= 0xfffc0002;
1855 fpscr_value |= old_fpscr_value;
e17a4113 1856 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
55ff77ac
CV
1857 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1858
1859 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
e17a4113 1860 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1861 old_sr_value &= 0xffff8fff;
1862 sr_value |= old_sr_value;
e17a4113 1863 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
55ff77ac
CV
1864 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1865 }
1866
1867 else if (reg_nr == FPUL_C_REGNUM)
1868 {
d93859e2 1869 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1870 regcache_raw_write (regcache, base_regnum, buffer);
1871 }
1872}
1873
55ff77ac 1874/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1875 shmedia REGISTERS. */
1876/* Control registers, compact mode. */
55ff77ac 1877static void
c30dc700
CV
1878sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1879 int cr_c_regnum)
55ff77ac
CV
1880{
1881 switch (cr_c_regnum)
1882 {
c30dc700
CV
1883 case PC_C_REGNUM:
1884 fprintf_filtered (file, "pc_c\t0x%08x\n",
1885 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1886 break;
c30dc700
CV
1887 case GBR_C_REGNUM:
1888 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1889 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1890 break;
c30dc700
CV
1891 case MACH_C_REGNUM:
1892 fprintf_filtered (file, "mach_c\t0x%08x\n",
1893 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1894 break;
c30dc700
CV
1895 case MACL_C_REGNUM:
1896 fprintf_filtered (file, "macl_c\t0x%08x\n",
1897 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1898 break;
c30dc700
CV
1899 case PR_C_REGNUM:
1900 fprintf_filtered (file, "pr_c\t0x%08x\n",
1901 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1902 break;
c30dc700
CV
1903 case T_C_REGNUM:
1904 fprintf_filtered (file, "t_c\t0x%08x\n",
1905 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1906 break;
c30dc700
CV
1907 case FPSCR_C_REGNUM:
1908 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1909 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1910 break;
c30dc700
CV
1911 case FPUL_C_REGNUM:
1912 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1913 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1914 break;
1915 }
1916}
1917
1918static void
c30dc700
CV
1919sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1920 struct frame_info *frame, int regnum)
c378eb4e 1921{ /* Do values for FP (float) regs. */
079c8cd0 1922 unsigned char *raw_buffer;
c378eb4e 1923 double flt; /* Double extracted from raw hex data. */
55ff77ac 1924 int inv;
55ff77ac 1925
7bb11558 1926 /* Allocate space for the float. */
c378eb4e
MS
1927 raw_buffer = (unsigned char *)
1928 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
55ff77ac
CV
1929
1930 /* Get the data in raw format. */
ca9d61b9 1931 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
a73c6dcd 1932 error (_("can't read register %d (%s)"),
58643501 1933 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac 1934
c378eb4e
MS
1935 /* Get the register as a number. */
1936 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1937 raw_buffer, &inv);
55ff77ac 1938
7bb11558 1939 /* Print the name and some spaces. */
58643501 1940 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 1941 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 1942 (gdbarch, regnum)), file);
55ff77ac 1943
7bb11558 1944 /* Print the value. */
55ff77ac
CV
1945 if (inv)
1946 fprintf_filtered (file, "<invalid float>");
1947 else
1948 fprintf_filtered (file, "%-10.9g", flt);
1949
7bb11558 1950 /* Print the fp register as hex. */
2cc762b5
AB
1951 fprintf_filtered (file, "\t(raw ");
1952 print_hex_chars (file, raw_buffer,
1953 register_size (gdbarch, regnum),
1954 gdbarch_byte_order (gdbarch));
55ff77ac
CV
1955 fprintf_filtered (file, ")");
1956 fprintf_filtered (file, "\n");
1957}
1958
1959static void
c30dc700
CV
1960sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1961 struct frame_info *frame, int regnum)
55ff77ac 1962{
7bb11558 1963 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 1964
58643501
UW
1965 if (regnum < gdbarch_num_regs (gdbarch)
1966 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
1967 + NUM_PSEUDO_REGS_SH_MEDIA
1968 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 1969 internal_error (__FILE__, __LINE__,
e2e0b3e5 1970 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 1971
c30dc700
CV
1972 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1973 {
d93859e2 1974 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
1975 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1976 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1977 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1978 }
55ff77ac 1979
c30dc700
CV
1980 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1981 {
d93859e2 1982 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1983 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1984 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1985 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1986 }
55ff77ac 1987
c30dc700
CV
1988 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1989 {
d93859e2 1990 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
1991 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1992 regnum - FV0_REGNUM,
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1995 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1996 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1997 }
55ff77ac 1998
c30dc700
CV
1999 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2000 {
d93859e2 2001 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2002 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2003 regnum - FV0_C_REGNUM,
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2005 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2006 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2007 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2008 }
2009
2010 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2011 {
d93859e2 2012 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2013 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2014 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2015 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2016 }
2017
2018 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2019 {
d93859e2 2020 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2021 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2022 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2023 }
2024 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2025 /* This should work also for pseudoregs. */
c30dc700
CV
2026 sh64_do_fp_register (gdbarch, file, frame, regnum);
2027 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2028 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2029}
2030
2031static void
c30dc700
CV
2032sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2033 struct frame_info *frame, int regnum)
55ff77ac 2034{
079c8cd0 2035 unsigned char raw_buffer[MAX_REGISTER_SIZE];
79a45b7d 2036 struct value_print_options opts;
55ff77ac 2037
58643501 2038 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2039 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2040 (gdbarch, regnum)), file);
55ff77ac
CV
2041
2042 /* Get the data in raw format. */
ca9d61b9 2043 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
47061676
AB
2044 {
2045 fprintf_filtered (file, "*value not available*\n");
2046 return;
2047 }
79a45b7d
TT
2048
2049 get_formatted_print_options (&opts, 'x');
2050 opts.deref_ref = 1;
7b9ee6a8 2051 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2052 file, 0, NULL, &opts, current_language);
55ff77ac 2053 fprintf_filtered (file, "\t");
79a45b7d
TT
2054 get_formatted_print_options (&opts, 0);
2055 opts.deref_ref = 1;
7b9ee6a8 2056 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2057 file, 0, NULL, &opts, current_language);
55ff77ac
CV
2058 fprintf_filtered (file, "\n");
2059}
2060
2061static void
c30dc700
CV
2062sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2063 struct frame_info *frame, int regnum)
55ff77ac 2064{
58643501
UW
2065 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2066 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2067 internal_error (__FILE__, __LINE__,
e2e0b3e5 2068 _("Invalid register number %d\n"), regnum);
55ff77ac 2069
58643501 2070 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2071 {
7b9ee6a8 2072 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2073 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2074 else
c30dc700 2075 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2076 }
2077
58643501
UW
2078 else if (regnum < gdbarch_num_regs (gdbarch)
2079 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2080 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2081}
2082
2083static void
c30dc700
CV
2084sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2085 struct frame_info *frame, int regnum,
2086 int fpregs)
55ff77ac 2087{
c378eb4e 2088 if (regnum != -1) /* Do one specified register. */
55ff77ac 2089 {
58643501 2090 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2091 error (_("Not a valid register for the current processor type"));
55ff77ac 2092
c30dc700 2093 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2094 }
2095 else
c378eb4e 2096 /* Do all (or most) registers. */
55ff77ac
CV
2097 {
2098 regnum = 0;
58643501 2099 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2100 {
2101 /* If the register name is empty, it is undefined for this
2102 processor, so don't display anything. */
58643501
UW
2103 if (gdbarch_register_name (gdbarch, regnum) == NULL
2104 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2105 {
2106 regnum++;
2107 continue;
2108 }
2109
7b9ee6a8 2110 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2111 == TYPE_CODE_FLT)
55ff77ac
CV
2112 {
2113 if (fpregs)
2114 {
c378eb4e 2115 /* true for "INFO ALL-REGISTERS" command. */
c30dc700 2116 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2117 regnum ++;
2118 }
2119 else
58643501 2120 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2121 /* skip FP regs */
55ff77ac
CV
2122 }
2123 else
2124 {
c30dc700 2125 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2126 regnum++;
2127 }
2128 }
2129
2130 if (fpregs)
58643501
UW
2131 while (regnum < gdbarch_num_regs (gdbarch)
2132 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2133 {
c30dc700 2134 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2135 regnum++;
2136 }
2137 }
2138}
2139
2140static void
c30dc700
CV
2141sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2142 struct ui_file *file,
2143 struct frame_info *frame, int regnum,
2144 int fpregs)
55ff77ac 2145{
c378eb4e 2146 if (regnum != -1) /* Do one specified register. */
55ff77ac 2147 {
58643501 2148 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2149 error (_("Not a valid register for the current processor type"));
55ff77ac
CV
2150
2151 if (regnum >= 0 && regnum < R0_C_REGNUM)
a73c6dcd 2152 error (_("Not a valid register for the current processor mode."));
55ff77ac 2153
c30dc700 2154 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2155 }
2156 else
c378eb4e 2157 /* Do all compact registers. */
55ff77ac
CV
2158 {
2159 regnum = R0_C_REGNUM;
58643501
UW
2160 while (regnum < gdbarch_num_regs (gdbarch)
2161 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2162 {
c30dc700 2163 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2164 regnum++;
2165 }
2166 }
2167}
2168
2169static void
c30dc700
CV
2170sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2171 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2172{
c30dc700
CV
2173 if (pc_is_isa32 (get_frame_pc (frame)))
2174 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2175 else
c30dc700 2176 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2177}
2178
c30dc700
CV
2179static struct sh64_frame_cache *
2180sh64_alloc_frame_cache (void)
2181{
2182 struct sh64_frame_cache *cache;
2183 int i;
2184
2185 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2186
2187 /* Base address. */
2188 cache->base = 0;
2189 cache->saved_sp = 0;
2190 cache->sp_offset = 0;
2191 cache->pc = 0;
55ff77ac 2192
c30dc700
CV
2193 /* Frameless until proven otherwise. */
2194 cache->uses_fp = 0;
55ff77ac 2195
c30dc700
CV
2196 /* Saved registers. We initialize these to -1 since zero is a valid
2197 offset (that's where fp is supposed to be stored). */
2198 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2199 {
2200 cache->saved_regs[i] = -1;
2201 }
2202
2203 return cache;
2204}
2205
2206static struct sh64_frame_cache *
94afd7a6 2207sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2208{
58643501 2209 struct gdbarch *gdbarch;
c30dc700
CV
2210 struct sh64_frame_cache *cache;
2211 CORE_ADDR current_pc;
2212 int i;
55ff77ac 2213
c30dc700 2214 if (*this_cache)
19ba03f4 2215 return (struct sh64_frame_cache *) *this_cache;
c30dc700 2216
94afd7a6 2217 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2218 cache = sh64_alloc_frame_cache ();
2219 *this_cache = cache;
2220
94afd7a6 2221 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2222 cache->media_mode = pc_is_isa32 (current_pc);
2223
2224 /* In principle, for normal frames, fp holds the frame pointer,
2225 which holds the base address for the current stack frame.
2226 However, for functions that don't need it, the frame pointer is
2227 optional. For these "frameless" functions the frame pointer is
c378eb4e 2228 actually the frame pointer of the calling frame. */
94afd7a6 2229 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2230 if (cache->base == 0)
2231 return cache;
2232
94afd7a6 2233 cache->pc = get_frame_func (this_frame);
c30dc700 2234 if (cache->pc != 0)
58643501 2235 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2236
2237 if (!cache->uses_fp)
55ff77ac 2238 {
c30dc700
CV
2239 /* We didn't find a valid frame, which means that CACHE->base
2240 currently holds the frame pointer for our calling frame. If
2241 we're at the start of a function, or somewhere half-way its
2242 prologue, the function's frame probably hasn't been fully
2243 setup yet. Try to reconstruct the base address for the stack
2244 frame by looking at the stack pointer. For truly "frameless"
2245 functions this might work too. */
94afd7a6
UW
2246 cache->base = get_frame_register_unsigned
2247 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2248 }
55ff77ac 2249
c30dc700
CV
2250 /* Now that we have the base address for the stack frame we can
2251 calculate the value of sp in the calling frame. */
2252 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2253
c30dc700
CV
2254 /* Adjust all the saved registers such that they contain addresses
2255 instead of offsets. */
2256 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2257 if (cache->saved_regs[i] != -1)
2258 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2259
c30dc700
CV
2260 return cache;
2261}
55ff77ac 2262
94afd7a6
UW
2263static struct value *
2264sh64_frame_prev_register (struct frame_info *this_frame,
2265 void **this_cache, int regnum)
c30dc700 2266{
94afd7a6
UW
2267 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2268 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2269 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 2270
c30dc700 2271 gdb_assert (regnum >= 0);
55ff77ac 2272
58643501 2273 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2274 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2275
2276 /* The PC of the previous frame is stored in the PR register of
2277 the current frame. Frob regnum so that we pull the value from
2278 the correct place. */
58643501 2279 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2280 regnum = PR_REGNUM;
2281
2282 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2283 {
58643501 2284 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2285 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2286 {
94afd7a6 2287 CORE_ADDR val;
e17a4113
UW
2288 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2289 4, byte_order);
94afd7a6 2290 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2291 }
94afd7a6
UW
2292
2293 return frame_unwind_got_memory (this_frame, regnum,
2294 cache->saved_regs[regnum]);
55ff77ac
CV
2295 }
2296
94afd7a6 2297 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2298}
55ff77ac 2299
c30dc700 2300static void
94afd7a6 2301sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2302 struct frame_id *this_id)
2303{
94afd7a6 2304 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2305
2306 /* This marks the outermost frame. */
2307 if (cache->base == 0)
2308 return;
2309
2310 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2311}
2312
2313static const struct frame_unwind sh64_frame_unwind = {
2314 NORMAL_FRAME,
8fbca658 2315 default_frame_unwind_stop_reason,
c30dc700 2316 sh64_frame_this_id,
94afd7a6
UW
2317 sh64_frame_prev_register,
2318 NULL,
2319 default_frame_sniffer
c30dc700
CV
2320};
2321
c30dc700
CV
2322static CORE_ADDR
2323sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2324{
3e8c568d 2325 return frame_unwind_register_unsigned (next_frame,
58643501 2326 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2327}
2328
2329static CORE_ADDR
2330sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2331{
3e8c568d 2332 return frame_unwind_register_unsigned (next_frame,
58643501 2333 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2334}
2335
2336static struct frame_id
94afd7a6 2337sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2338{
94afd7a6
UW
2339 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2340 gdbarch_sp_regnum (gdbarch));
2341 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2342}
2343
2344static CORE_ADDR
94afd7a6 2345sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2346{
94afd7a6 2347 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2348
2349 return cache->base;
2350}
2351
2352static const struct frame_base sh64_frame_base = {
2353 &sh64_frame_unwind,
2354 sh64_frame_base_address,
2355 sh64_frame_base_address,
2356 sh64_frame_base_address
2357};
2358
55ff77ac
CV
2359
2360struct gdbarch *
2361sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2362{
55ff77ac
CV
2363 struct gdbarch *gdbarch;
2364 struct gdbarch_tdep *tdep;
2365
2366 /* If there is already a candidate, use it. */
2367 arches = gdbarch_list_lookup_by_info (arches, &info);
2368 if (arches != NULL)
2369 return arches->gdbarch;
2370
2371 /* None found, create a new architecture from the information
7bb11558 2372 provided. */
70ba0933 2373 tdep = XNEW (struct gdbarch_tdep);
55ff77ac
CV
2374 gdbarch = gdbarch_alloc (&info, tdep);
2375
55ff77ac
CV
2376 /* Determine the ABI */
2377 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2378 {
7bb11558 2379 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2380 tdep->sh_abi = SH_ABI_64;
2381 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2382 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2383 }
2384 else
2385 {
2386 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2387 compact. */
55ff77ac
CV
2388 tdep->sh_abi = SH_ABI_32;
2389 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2390 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2391 }
2392
2393 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2394 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2395 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2396 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2397 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2398 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2399 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2400
c30dc700
CV
2401 /* The number of real registers is the same whether we are in
2402 ISA16(compact) or ISA32(media). */
2403 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2404 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2405 set_gdbarch_pc_regnum (gdbarch, 64);
2406 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2407 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2408 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2409
c30dc700
CV
2410 set_gdbarch_register_name (gdbarch, sh64_register_name);
2411 set_gdbarch_register_type (gdbarch, sh64_register_type);
2412
2413 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2414 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2415
d19280ad 2416 SET_GDBARCH_BREAKPOINT_MANIPULATION (sh64);
c30dc700 2417
9dae60cc 2418 set_gdbarch_print_insn (gdbarch, print_insn_sh);
55ff77ac
CV
2419 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2420
c30dc700 2421 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2422
c30dc700
CV
2423 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2424 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2425
c30dc700 2426 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2427
c30dc700 2428 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2429
c30dc700
CV
2430 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2431 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2432 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2433 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2434 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2435
c30dc700 2436 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2437
55ff77ac
CV
2438 set_gdbarch_elf_make_msymbol_special (gdbarch,
2439 sh64_elf_make_msymbol_special);
2440
2441 /* Hook in ABI-specific overrides, if they have been registered. */
2442 gdbarch_init_osabi (info, gdbarch);
2443
94afd7a6
UW
2444 dwarf2_append_unwinders (gdbarch);
2445 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2446
55ff77ac
CV
2447 return gdbarch;
2448}
This page took 1.508079 seconds and 4 git commands to generate.