Update copyright year in gdbarch.sh doc/gdb.texinfo and doc/refcard.tex
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
CommitLineData
c4d10515 1/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
b811d2c2 2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
c4d10515
KB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
c4d10515
KB
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c4d10515
KB
18
19
20#include "defs.h"
c4d10515
KB
21#include "inferior.h"
22#include "gdbcore.h"
cb5c8c39 23#include "solib.h"
c4d10515
KB
24#include "solist.h"
25#include "frv-tdep.h"
26#include "objfiles.h"
27#include "symtab.h"
28#include "language.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "elf/frv.h"
cbb099e8 32#include "gdb_bfd.h"
c4d10515
KB
33
34/* Flag which indicates whether internal debug messages should be printed. */
ccce17b0 35static unsigned int solib_frv_debug;
c4d10515
KB
36
37/* FR-V pointers are four bytes wide. */
38enum { FRV_PTR_SIZE = 4 };
39
40/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42/* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
e2b7c966
KB
45typedef gdb_byte ext_Elf32_Half[2];
46typedef gdb_byte ext_Elf32_Addr[4];
47typedef gdb_byte ext_Elf32_Word[4];
c4d10515
KB
48
49struct ext_elf32_fdpic_loadseg
50{
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57};
58
59struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66};
67
68/* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71struct int_elf32_fdpic_loadseg
72{
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79};
80
81struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88};
89
90/* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96static struct int_elf32_fdpic_loadmap *
97fetch_loadmap (CORE_ADDR ldmaddr)
98{
f5656ead 99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
e2b7c966 107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
c4d10515
KB
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
e2b7c966 115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
e17a4113
UW
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
c4d10515
KB
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
e2b7c966 125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
e17a4113
UW
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
c4d10515 128
9bc7b6c6
KB
129 if (nsegs <= 0)
130 return NULL;
131
c4d10515
KB
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
224c3ddb 135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
c4d10515
KB
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
e2b7c966 142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
c4d10515
KB
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
224c3ddb 154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
c4d10515
KB
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
e2b7c966 162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
e17a4113
UW
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
c4d10515 165 int_ldmbuf->segs[seg].p_vaddr
e2b7c966 166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
e17a4113
UW
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
c4d10515 169 int_ldmbuf->segs[seg].p_memsz
e2b7c966 170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
e17a4113
UW
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
c4d10515
KB
173 }
174
d5c560f7 175 xfree (ext_ldmbuf);
c4d10515
KB
176 return int_ldmbuf;
177}
178
179/* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
e2b7c966 181typedef gdb_byte ext_ptr[4];
c4d10515
KB
182
183struct ext_elf32_fdpic_loadaddr
184{
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187};
188
189struct ext_link_map
190{
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201};
202
c378eb4e 203/* Link map info to include in an allocated so_list entry. */
c4d10515 204
d0e449a1 205struct lm_info_frv : public lm_info_base
af43057b 206{
4023ae76
SM
207 ~lm_info_frv ()
208 {
209 xfree (this->map);
210 xfree (this->dyn_syms);
211 xfree (this->dyn_relocs);
212 }
af43057b
SM
213
214 /* The loadmap, digested into an easier to use form. */
4023ae76 215 int_elf32_fdpic_loadmap *map = NULL;
af43057b 216 /* The GOT address for this link map entry. */
4023ae76 217 CORE_ADDR got_value = 0;
af43057b 218 /* The link map address, needed for frv_fetch_objfile_link_map(). */
4023ae76 219 CORE_ADDR lm_addr = 0;
af43057b
SM
220
221 /* Cached dynamic symbol table and dynamic relocs initialized and
222 used only by find_canonical_descriptor_in_load_object().
223
224 Note: kevinb/2004-02-26: It appears that calls to
225 bfd_canonicalize_dynamic_reloc() will use the same symbols as
226 those supplied to the first call to this function. Therefore,
227 it's important to NOT free the asymbol ** data structure
228 supplied to the first call. Thus the caching of the dynamic
229 symbols (dyn_syms) is critical for correct operation. The
230 caching of the dynamic relocations could be dispensed with. */
4023ae76
SM
231 asymbol **dyn_syms = NULL;
232 arelent **dyn_relocs = NULL;
233 int dyn_reloc_count = 0; /* Number of dynamic relocs. */
af43057b 234};
c4d10515
KB
235
236/* The load map, got value, etc. are not available from the chain
237 of loaded shared objects. ``main_executable_lm_info'' provides
238 a way to get at this information so that it doesn't need to be
239 frequently recomputed. Initialized by frv_relocate_main_executable(). */
d0e449a1 240static lm_info_frv *main_executable_lm_info;
c4d10515
KB
241
242static void frv_relocate_main_executable (void);
243static CORE_ADDR main_got (void);
244static int enable_break2 (void);
245
7f86f058 246/* Implement the "open_symbol_file_object" target_so_ops method. */
c4d10515
KB
247
248static int
bf469271 249open_symbol_file_object (int from_tty)
c4d10515
KB
250{
251 /* Unimplemented. */
252 return 0;
253}
254
255/* Cached value for lm_base(), below. */
256static CORE_ADDR lm_base_cache = 0;
257
186993b4
KB
258/* Link map address for main module. */
259static CORE_ADDR main_lm_addr = 0;
260
c4d10515
KB
261/* Return the address from which the link map chain may be found. On
262 the FR-V, this may be found in a number of ways. Assuming that the
263 main executable has already been relocated, the easiest way to find
264 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
265 pointer to the start of the link map will be located at the word found
266 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
267 reserve area mandated by the ABI.) */
268
269static CORE_ADDR
270lm_base (void)
271{
f5656ead 272 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3b7344d5 273 struct bound_minimal_symbol got_sym;
c4d10515 274 CORE_ADDR addr;
e2b7c966 275 gdb_byte buf[FRV_PTR_SIZE];
c4d10515 276
89a7ee67
KB
277 /* One of our assumptions is that the main executable has been relocated.
278 Bail out if this has not happened. (Note that post_create_inferior()
279 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
280 If we allow this to happen, lm_base_cache will be initialized with
281 a bogus value. */
282 if (main_executable_lm_info == 0)
283 return 0;
284
c4d10515
KB
285 /* If we already have a cached value, return it. */
286 if (lm_base_cache)
287 return lm_base_cache;
288
289 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
290 symfile_objfile);
3b7344d5 291 if (got_sym.minsym == 0)
c4d10515
KB
292 {
293 if (solib_frv_debug)
294 fprintf_unfiltered (gdb_stdlog,
295 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
296 return 0;
297 }
298
77e371c0 299 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
c4d10515
KB
300
301 if (solib_frv_debug)
302 fprintf_unfiltered (gdb_stdlog,
303 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
bb599908 304 hex_string_custom (addr, 8));
c4d10515
KB
305
306 if (target_read_memory (addr, buf, sizeof buf) != 0)
307 return 0;
e17a4113 308 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
309
310 if (solib_frv_debug)
311 fprintf_unfiltered (gdb_stdlog,
312 "lm_base: lm_base_cache = %s\n",
bb599908 313 hex_string_custom (lm_base_cache, 8));
c4d10515
KB
314
315 return lm_base_cache;
316}
317
318
7f86f058 319/* Implement the "current_sos" target_so_ops method. */
c4d10515
KB
320
321static struct so_list *
322frv_current_sos (void)
323{
f5656ead 324 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
325 CORE_ADDR lm_addr, mgot;
326 struct so_list *sos_head = NULL;
327 struct so_list **sos_next_ptr = &sos_head;
328
7c699b81
KB
329 /* Make sure that the main executable has been relocated. This is
330 required in order to find the address of the global offset table,
331 which in turn is used to find the link map info. (See lm_base()
332 for details.)
333
334 Note that the relocation of the main executable is also performed
4d1eb6b4 335 by solib_create_inferior_hook(), however, in the case of core
7c699b81 336 files, this hook is called too late in order to be of benefit to
4d1eb6b4 337 solib_add. solib_add eventually calls this this function,
7c699b81 338 frv_current_sos, and also precedes the call to
4d1eb6b4 339 solib_create_inferior_hook(). (See post_create_inferior() in
7c699b81
KB
340 infcmd.c.) */
341 if (main_executable_lm_info == 0 && core_bfd != NULL)
342 frv_relocate_main_executable ();
343
344 /* Fetch the GOT corresponding to the main executable. */
c4d10515
KB
345 mgot = main_got ();
346
347 /* Locate the address of the first link map struct. */
348 lm_addr = lm_base ();
349
b021a221 350 /* We have at least one link map entry. Fetch the lot of them,
c4d10515
KB
351 building the solist chain. */
352 while (lm_addr)
353 {
354 struct ext_link_map lm_buf;
355 CORE_ADDR got_addr;
356
357 if (solib_frv_debug)
358 fprintf_unfiltered (gdb_stdlog,
359 "current_sos: reading link_map entry at %s\n",
bb599908 360 hex_string_custom (lm_addr, 8));
c4d10515 361
3e43a32a
MS
362 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
363 sizeof (lm_buf)) != 0)
c4d10515 364 {
3e43a32a
MS
365 warning (_("frv_current_sos: Unable to read link map entry. "
366 "Shared object chain may be incomplete."));
c4d10515
KB
367 break;
368 }
369
370 got_addr
e2b7c966 371 = extract_unsigned_integer (lm_buf.l_addr.got_value,
e17a4113
UW
372 sizeof (lm_buf.l_addr.got_value),
373 byte_order);
c4d10515
KB
374 /* If the got_addr is the same as mgotr, then we're looking at the
375 entry for the main executable. By convention, we don't include
376 this in the list of shared objects. */
377 if (got_addr != mgot)
378 {
379 int errcode;
e83e4e24 380 gdb::unique_xmalloc_ptr<char> name_buf;
c4d10515
KB
381 struct int_elf32_fdpic_loadmap *loadmap;
382 struct so_list *sop;
383 CORE_ADDR addr;
384
385 /* Fetch the load map address. */
e2b7c966 386 addr = extract_unsigned_integer (lm_buf.l_addr.map,
e17a4113
UW
387 sizeof lm_buf.l_addr.map,
388 byte_order);
c4d10515
KB
389 loadmap = fetch_loadmap (addr);
390 if (loadmap == NULL)
391 {
3e43a32a
MS
392 warning (_("frv_current_sos: Unable to fetch load map. "
393 "Shared object chain may be incomplete."));
c4d10515
KB
394 break;
395 }
396
8d749320 397 sop = XCNEW (struct so_list);
4023ae76 398 lm_info_frv *li = new lm_info_frv;
d0e449a1
SM
399 sop->lm_info = li;
400 li->map = loadmap;
401 li->got_value = got_addr;
402 li->lm_addr = lm_addr;
c4d10515 403 /* Fetch the name. */
e2b7c966 404 addr = extract_unsigned_integer (lm_buf.l_name,
e17a4113
UW
405 sizeof (lm_buf.l_name),
406 byte_order);
c4d10515
KB
407 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
408 &errcode);
409
410 if (solib_frv_debug)
411 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
e83e4e24 412 name_buf.get ());
c4d10515
KB
413
414 if (errcode != 0)
8a3fe4f8
AC
415 warning (_("Can't read pathname for link map entry: %s."),
416 safe_strerror (errcode));
c4d10515
KB
417 else
418 {
e83e4e24
TT
419 strncpy (sop->so_name, name_buf.get (),
420 SO_NAME_MAX_PATH_SIZE - 1);
c4d10515 421 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
c4d10515
KB
422 strcpy (sop->so_original_name, sop->so_name);
423 }
424
425 *sos_next_ptr = sop;
426 sos_next_ptr = &sop->next;
427 }
186993b4
KB
428 else
429 {
430 main_lm_addr = lm_addr;
431 }
c4d10515 432
e17a4113
UW
433 lm_addr = extract_unsigned_integer (lm_buf.l_next,
434 sizeof (lm_buf.l_next), byte_order);
c4d10515
KB
435 }
436
437 enable_break2 ();
438
439 return sos_head;
440}
441
442
443/* Return 1 if PC lies in the dynamic symbol resolution code of the
444 run time loader. */
445
446static CORE_ADDR interp_text_sect_low;
447static CORE_ADDR interp_text_sect_high;
448static CORE_ADDR interp_plt_sect_low;
449static CORE_ADDR interp_plt_sect_high;
450
451static int
452frv_in_dynsym_resolve_code (CORE_ADDR pc)
453{
454 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
455 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
3e5d3a5a 456 || in_plt_section (pc));
c4d10515
KB
457}
458
459/* Given a loadmap and an address, return the displacement needed
460 to relocate the address. */
461
63807e1d 462static CORE_ADDR
c4d10515
KB
463displacement_from_map (struct int_elf32_fdpic_loadmap *map,
464 CORE_ADDR addr)
465{
466 int seg;
467
468 for (seg = 0; seg < map->nsegs; seg++)
469 {
470 if (map->segs[seg].p_vaddr <= addr
471 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
472 {
473 return map->segs[seg].addr - map->segs[seg].p_vaddr;
474 }
475 }
476
477 return 0;
478}
479
480/* Print a warning about being unable to set the dynamic linker
481 breakpoint. */
482
483static void
484enable_break_failure_warning (void)
485{
8a3fe4f8 486 warning (_("Unable to find dynamic linker breakpoint function.\n"
c4d10515 487 "GDB will be unable to debug shared library initializers\n"
8a3fe4f8 488 "and track explicitly loaded dynamic code."));
c4d10515
KB
489}
490
cb457ae2
YQ
491/* Helper function for gdb_bfd_lookup_symbol. */
492
493static int
3953f15c 494cmp_name (const asymbol *sym, const void *data)
cb457ae2
YQ
495{
496 return (strcmp (sym->name, (const char *) data) == 0);
497}
498
7f86f058 499/* Arrange for dynamic linker to hit breakpoint.
c4d10515
KB
500
501 The dynamic linkers has, as part of its debugger interface, support
502 for arranging for the inferior to hit a breakpoint after mapping in
503 the shared libraries. This function enables that breakpoint.
504
505 On the FR-V, using the shared library (FDPIC) ABI, the symbol
506 _dl_debug_addr points to the r_debug struct which contains
507 a field called r_brk. r_brk is the address of the function
508 descriptor upon which a breakpoint must be placed. Being a
509 function descriptor, we must extract the entry point in order
510 to set the breakpoint.
511
512 Our strategy will be to get the .interp section from the
513 executable. This section will provide us with the name of the
514 interpreter. We'll open the interpreter and then look up
515 the address of _dl_debug_addr. We then relocate this address
516 using the interpreter's loadmap. Once the relocated address
517 is known, we fetch the value (address) corresponding to r_brk
518 and then use that value to fetch the entry point of the function
7f86f058 519 we're interested in. */
c4d10515 520
c4d10515
KB
521static int enable_break2_done = 0;
522
523static int
524enable_break2 (void)
525{
f5656ead 526 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
527 asection *interp_sect;
528
cb7db0f2 529 if (enable_break2_done)
c4d10515
KB
530 return 1;
531
c4d10515
KB
532 interp_text_sect_low = interp_text_sect_high = 0;
533 interp_plt_sect_low = interp_plt_sect_high = 0;
534
535 /* Find the .interp section; if not found, warn the user and drop
536 into the old breakpoint at symbol code. */
537 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
538 if (interp_sect)
539 {
540 unsigned int interp_sect_size;
001f13d8 541 char *buf;
c4d10515
KB
542 int status;
543 CORE_ADDR addr, interp_loadmap_addr;
e2b7c966 544 gdb_byte addr_buf[FRV_PTR_SIZE];
c4d10515
KB
545 struct int_elf32_fdpic_loadmap *ldm;
546
547 /* Read the contents of the .interp section into a local buffer;
548 the contents specify the dynamic linker this program uses. */
fd361982 549 interp_sect_size = bfd_section_size (interp_sect);
224c3ddb 550 buf = (char *) alloca (interp_sect_size);
c4d10515
KB
551 bfd_get_section_contents (exec_bfd, interp_sect,
552 buf, 0, interp_sect_size);
553
554 /* Now we need to figure out where the dynamic linker was
555 loaded so that we can load its symbols and place a breakpoint
556 in the dynamic linker itself.
557
558 This address is stored on the stack. However, I've been unable
559 to find any magic formula to find it for Solaris (appears to
560 be trivial on GNU/Linux). Therefore, we have to try an alternate
561 mechanism to find the dynamic linker's base address. */
562
192b62ce 563 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 564 try
f1838a98
UW
565 {
566 tmp_bfd = solib_bfd_open (buf);
567 }
230d2906 568 catch (const gdb_exception &ex)
492d29ea
PA
569 {
570 }
492d29ea 571
c4d10515
KB
572 if (tmp_bfd == NULL)
573 {
574 enable_break_failure_warning ();
575 return 0;
576 }
577
f5656ead 578 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
c4d10515
KB
579 &interp_loadmap_addr, 0);
580 if (status < 0)
581 {
8a3fe4f8 582 warning (_("Unable to determine dynamic linker loadmap address."));
c4d10515 583 enable_break_failure_warning ();
c4d10515
KB
584 return 0;
585 }
586
587 if (solib_frv_debug)
588 fprintf_unfiltered (gdb_stdlog,
589 "enable_break: interp_loadmap_addr = %s\n",
bb599908 590 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
591
592 ldm = fetch_loadmap (interp_loadmap_addr);
593 if (ldm == NULL)
594 {
8a3fe4f8 595 warning (_("Unable to load dynamic linker loadmap at address %s."),
bb599908 596 hex_string_custom (interp_loadmap_addr, 8));
c4d10515 597 enable_break_failure_warning ();
c4d10515
KB
598 return 0;
599 }
600
601 /* Record the relocated start and end address of the dynamic linker
602 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 603 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
c4d10515
KB
604 if (interp_sect)
605 {
fd361982 606 interp_text_sect_low = bfd_section_vma (interp_sect);
c4d10515
KB
607 interp_text_sect_low
608 += displacement_from_map (ldm, interp_text_sect_low);
609 interp_text_sect_high
fd361982 610 = interp_text_sect_low + bfd_section_size (interp_sect);
c4d10515 611 }
192b62ce 612 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
c4d10515
KB
613 if (interp_sect)
614 {
fd361982 615 interp_plt_sect_low = bfd_section_vma (interp_sect);
c4d10515
KB
616 interp_plt_sect_low
617 += displacement_from_map (ldm, interp_plt_sect_low);
618 interp_plt_sect_high =
fd361982 619 interp_plt_sect_low + bfd_section_size (interp_sect);
c4d10515
KB
620 }
621
192b62ce 622 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
cb457ae2 623
c4d10515
KB
624 if (addr == 0)
625 {
3e43a32a
MS
626 warning (_("Could not find symbol _dl_debug_addr "
627 "in dynamic linker"));
c4d10515 628 enable_break_failure_warning ();
c4d10515
KB
629 return 0;
630 }
631
632 if (solib_frv_debug)
633 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
634 "enable_break: _dl_debug_addr "
635 "(prior to relocation) = %s\n",
bb599908 636 hex_string_custom (addr, 8));
c4d10515
KB
637
638 addr += displacement_from_map (ldm, addr);
639
640 if (solib_frv_debug)
641 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
642 "enable_break: _dl_debug_addr "
643 "(after relocation) = %s\n",
bb599908 644 hex_string_custom (addr, 8));
c4d10515
KB
645
646 /* Fetch the address of the r_debug struct. */
647 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
648 {
3e43a32a
MS
649 warning (_("Unable to fetch contents of _dl_debug_addr "
650 "(at address %s) from dynamic linker"),
bb599908 651 hex_string_custom (addr, 8));
c4d10515 652 }
e17a4113 653 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 654
cb7db0f2
MF
655 if (solib_frv_debug)
656 fprintf_unfiltered (gdb_stdlog,
657 "enable_break: _dl_debug_addr[0..3] = %s\n",
658 hex_string_custom (addr, 8));
659
660 /* If it's zero, then the ldso hasn't initialized yet, and so
661 there are no shared libs yet loaded. */
662 if (addr == 0)
663 {
664 if (solib_frv_debug)
665 fprintf_unfiltered (gdb_stdlog,
666 "enable_break: ldso not yet initialized\n");
667 /* Do not warn, but mark to run again. */
668 return 0;
669 }
670
c4d10515
KB
671 /* Fetch the r_brk field. It's 8 bytes from the start of
672 _dl_debug_addr. */
673 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
674 {
3e43a32a
MS
675 warning (_("Unable to fetch _dl_debug_addr->r_brk "
676 "(at address %s) from dynamic linker"),
bb599908 677 hex_string_custom (addr + 8, 8));
c4d10515 678 enable_break_failure_warning ();
c4d10515
KB
679 return 0;
680 }
e17a4113 681 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
682
683 /* Now fetch the function entry point. */
684 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
685 {
3e43a32a
MS
686 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
687 "(at address %s) from dynamic linker"),
bb599908 688 hex_string_custom (addr, 8));
c4d10515 689 enable_break_failure_warning ();
c4d10515
KB
690 return 0;
691 }
e17a4113 692 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 693
192b62ce 694 /* We're done with the loadmap. */
c4d10515
KB
695 xfree (ldm);
696
cb7db0f2
MF
697 /* Remove all the solib event breakpoints. Their addresses
698 may have changed since the last time we ran the program. */
699 remove_solib_event_breakpoints ();
700
c4d10515 701 /* Now (finally!) create the solib breakpoint. */
f5656ead 702 create_solib_event_breakpoint (target_gdbarch (), addr);
c4d10515 703
cb7db0f2
MF
704 enable_break2_done = 1;
705
c4d10515
KB
706 return 1;
707 }
708
709 /* Tell the user we couldn't set a dynamic linker breakpoint. */
710 enable_break_failure_warning ();
711
712 /* Failure return. */
713 return 0;
714}
715
716static int
717enable_break (void)
718{
719 asection *interp_sect;
d56e56aa 720 CORE_ADDR entry_point;
c4d10515 721
abd0a5fa 722 if (symfile_objfile == NULL)
c4d10515 723 {
abd0a5fa
JK
724 if (solib_frv_debug)
725 fprintf_unfiltered (gdb_stdlog,
726 "enable_break: No symbol file found.\n");
727 return 0;
728 }
c4d10515 729
d56e56aa 730 if (!entry_point_address_query (&entry_point))
abd0a5fa 731 {
c4d10515
KB
732 if (solib_frv_debug)
733 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
734 "enable_break: Symbol file has no entry point.\n");
735 return 0;
c4d10515 736 }
abd0a5fa
JK
737
738 /* Check for the presence of a .interp section. If there is no
739 such section, the executable is statically linked. */
740
741 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
742
743 if (interp_sect == NULL)
c4d10515
KB
744 {
745 if (solib_frv_debug)
746 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
747 "enable_break: No .interp section found.\n");
748 return 0;
c4d10515
KB
749 }
750
d56e56aa 751 create_solib_event_breakpoint (target_gdbarch (), entry_point);
abd0a5fa
JK
752
753 if (solib_frv_debug)
754 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
755 "enable_break: solib event breakpoint "
756 "placed at entry point: %s\n",
d56e56aa 757 hex_string_custom (entry_point, 8));
c4d10515
KB
758 return 1;
759}
760
c4d10515
KB
761static void
762frv_relocate_main_executable (void)
763{
764 int status;
9bc7b6c6 765 CORE_ADDR exec_addr, interp_addr;
c4d10515 766 struct int_elf32_fdpic_loadmap *ldm;
c4d10515
KB
767 int changed;
768 struct obj_section *osect;
769
f5656ead 770 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
9bc7b6c6 771 &interp_addr, &exec_addr);
c4d10515 772
9bc7b6c6 773 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
c4d10515
KB
774 {
775 /* Not using FDPIC ABI, so do nothing. */
776 return;
777 }
778
779 /* Fetch the loadmap located at ``exec_addr''. */
780 ldm = fetch_loadmap (exec_addr);
781 if (ldm == NULL)
8a3fe4f8 782 error (_("Unable to load the executable's loadmap."));
c4d10515 783
4023ae76
SM
784 delete main_executable_lm_info;
785 main_executable_lm_info = new lm_info_frv;
c4d10515
KB
786 main_executable_lm_info->map = ldm;
787
309822ca
TT
788 gdb::unique_xmalloc_ptr<struct section_offsets> new_offsets
789 (XCNEWVEC (struct section_offsets, symfile_objfile->num_sections));
c4d10515
KB
790 changed = 0;
791
792 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
793 {
794 CORE_ADDR orig_addr, addr, offset;
795 int osect_idx;
796 int seg;
797
65cf3563 798 osect_idx = osect - symfile_objfile->sections;
c4d10515
KB
799
800 /* Current address of section. */
aded6f54 801 addr = obj_section_addr (osect);
c4d10515
KB
802 /* Offset from where this section started. */
803 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
804 /* Original address prior to any past relocations. */
805 orig_addr = addr - offset;
806
807 for (seg = 0; seg < ldm->nsegs; seg++)
808 {
809 if (ldm->segs[seg].p_vaddr <= orig_addr
810 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
811 {
812 new_offsets->offsets[osect_idx]
813 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
814
815 if (new_offsets->offsets[osect_idx] != offset)
816 changed = 1;
817 break;
818 }
819 }
820 }
821
822 if (changed)
309822ca 823 objfile_relocate (symfile_objfile, new_offsets.get ());
c4d10515
KB
824
825 /* Now that symfile_objfile has been relocated, we can compute the
826 GOT value and stash it away. */
827 main_executable_lm_info->got_value = main_got ();
828}
829
7f86f058 830/* Implement the "create_inferior_hook" target_solib_ops method.
c4d10515 831
7f86f058
PA
832 For the FR-V shared library ABI (FDPIC), the main executable needs
833 to be relocated. The shared library breakpoints also need to be
834 enabled. */
c4d10515
KB
835
836static void
268a4a75 837frv_solib_create_inferior_hook (int from_tty)
c4d10515
KB
838{
839 /* Relocate main executable. */
840 frv_relocate_main_executable ();
841
842 /* Enable shared library breakpoints. */
843 if (!enable_break ())
844 {
8a3fe4f8 845 warning (_("shared library handler failed to enable breakpoint"));
c4d10515
KB
846 return;
847 }
848}
849
850static void
851frv_clear_solib (void)
852{
853 lm_base_cache = 0;
c4d10515 854 enable_break2_done = 0;
186993b4 855 main_lm_addr = 0;
4023ae76
SM
856
857 delete main_executable_lm_info;
858 main_executable_lm_info = NULL;
c4d10515
KB
859}
860
861static void
862frv_free_so (struct so_list *so)
863{
d0e449a1
SM
864 lm_info_frv *li = (lm_info_frv *) so->lm_info;
865
4023ae76 866 delete li;
c4d10515
KB
867}
868
869static void
870frv_relocate_section_addresses (struct so_list *so,
0542c86d 871 struct target_section *sec)
c4d10515
KB
872{
873 int seg;
d0e449a1
SM
874 lm_info_frv *li = (lm_info_frv *) so->lm_info;
875 int_elf32_fdpic_loadmap *map = li->map;
c4d10515
KB
876
877 for (seg = 0; seg < map->nsegs; seg++)
878 {
879 if (map->segs[seg].p_vaddr <= sec->addr
880 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
881 {
882 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
433759f7 883
c4d10515
KB
884 sec->addr += displ;
885 sec->endaddr += displ;
886 break;
887 }
888 }
889}
890
891/* Return the GOT address associated with the main executable. Return
892 0 if it can't be found. */
893
894static CORE_ADDR
895main_got (void)
896{
3b7344d5 897 struct bound_minimal_symbol got_sym;
c4d10515 898
3e43a32a
MS
899 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
900 NULL, symfile_objfile);
3b7344d5 901 if (got_sym.minsym == 0)
c4d10515
KB
902 return 0;
903
77e371c0 904 return BMSYMBOL_VALUE_ADDRESS (got_sym);
c4d10515
KB
905}
906
907/* Find the global pointer for the given function address ADDR. */
908
909CORE_ADDR
910frv_fdpic_find_global_pointer (CORE_ADDR addr)
911{
912 struct so_list *so;
913
914 so = master_so_list ();
915 while (so)
916 {
917 int seg;
d0e449a1
SM
918 lm_info_frv *li = (lm_info_frv *) so->lm_info;
919 int_elf32_fdpic_loadmap *map = li->map;
c4d10515
KB
920
921 for (seg = 0; seg < map->nsegs; seg++)
922 {
923 if (map->segs[seg].addr <= addr
924 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
d0e449a1 925 return li->got_value;
c4d10515
KB
926 }
927
928 so = so->next;
929 }
930
7a9dd1b2 931 /* Didn't find it in any of the shared objects. So assume it's in the
c4d10515
KB
932 main executable. */
933 return main_got ();
934}
935
936/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
937static CORE_ADDR find_canonical_descriptor_in_load_object
d0e449a1 938 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
c4d10515
KB
939
940/* Given a function entry point, attempt to find the canonical descriptor
941 associated with that entry point. Return 0 if no canonical descriptor
942 could be found. */
943
944CORE_ADDR
945frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
946{
0d5cff50 947 const char *name;
c4d10515
KB
948 CORE_ADDR addr;
949 CORE_ADDR got_value;
c4d10515 950 struct symbol *sym;
c4d10515
KB
951
952 /* Fetch the corresponding global pointer for the entry point. */
953 got_value = frv_fdpic_find_global_pointer (entry_point);
954
955 /* Attempt to find the name of the function. If the name is available,
956 it'll be used as an aid in finding matching functions in the dynamic
957 symbol table. */
958 sym = find_pc_function (entry_point);
959 if (sym == 0)
960 name = 0;
961 else
987012b8 962 name = sym->linkage_name ();
c4d10515
KB
963
964 /* Check the main executable. */
965 addr = find_canonical_descriptor_in_load_object
966 (entry_point, got_value, name, symfile_objfile->obfd,
967 main_executable_lm_info);
968
969 /* If descriptor not found via main executable, check each load object
970 in list of shared objects. */
971 if (addr == 0)
972 {
973 struct so_list *so;
974
975 so = master_so_list ();
976 while (so)
977 {
d0e449a1
SM
978 lm_info_frv *li = (lm_info_frv *) so->lm_info;
979
c4d10515 980 addr = find_canonical_descriptor_in_load_object
d0e449a1 981 (entry_point, got_value, name, so->abfd, li);
c4d10515
KB
982
983 if (addr != 0)
984 break;
985
986 so = so->next;
987 }
988 }
989
990 return addr;
991}
992
993static CORE_ADDR
994find_canonical_descriptor_in_load_object
0d5cff50 995 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
d0e449a1 996 lm_info_frv *lm)
c4d10515 997{
f5656ead 998 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
999 arelent *rel;
1000 unsigned int i;
1001 CORE_ADDR addr = 0;
1002
1003 /* Nothing to do if no bfd. */
1004 if (abfd == 0)
1005 return 0;
1006
35e08e03
KB
1007 /* Nothing to do if no link map. */
1008 if (lm == 0)
1009 return 0;
1010
c4d10515
KB
1011 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1012 (More about this later.) But in order to fetch the relocs, we
1013 need to first fetch the dynamic symbols. These symbols need to
1014 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1015 works. (See the comments in the declaration of struct lm_info
1016 for more information.) */
1017 if (lm->dyn_syms == NULL)
1018 {
1019 long storage_needed;
1020 unsigned int number_of_symbols;
1021
1022 /* Determine amount of space needed to hold the dynamic symbol table. */
1023 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1024
1025 /* If there are no dynamic symbols, there's nothing to do. */
1026 if (storage_needed <= 0)
1027 return 0;
1028
1029 /* Allocate space for the dynamic symbol table. */
1030 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1031
1032 /* Fetch the dynamic symbol table. */
1033 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1034
1035 if (number_of_symbols == 0)
1036 return 0;
1037 }
1038
1039 /* Fetch the dynamic relocations if not already cached. */
1040 if (lm->dyn_relocs == NULL)
1041 {
1042 long storage_needed;
1043
1044 /* Determine amount of space needed to hold the dynamic relocs. */
1045 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1046
1047 /* Bail out if there are no dynamic relocs. */
1048 if (storage_needed <= 0)
1049 return 0;
1050
1051 /* Allocate space for the relocs. */
1052 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1053
1054 /* Fetch the dynamic relocs. */
1055 lm->dyn_reloc_count
1056 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1057 }
1058
1059 /* Search the dynamic relocs. */
1060 for (i = 0; i < lm->dyn_reloc_count; i++)
1061 {
1062 rel = lm->dyn_relocs[i];
1063
1064 /* Relocs of interest are those which meet the following
1065 criteria:
1066
1067 - the names match (assuming the caller could provide
1068 a name which matches ``entry_point'').
1069 - the relocation type must be R_FRV_FUNCDESC. Relocs
1070 of this type are used (by the dynamic linker) to
1071 look up the address of a canonical descriptor (allocating
1072 it if need be) and initializing the GOT entry referred
1073 to by the offset to the address of the descriptor.
1074
1075 These relocs of interest may be used to obtain a
1076 candidate descriptor by first adjusting the reloc's
1077 address according to the link map and then dereferencing
1078 this address (which is a GOT entry) to obtain a descriptor
1079 address. */
1080 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1081 && rel->howto->type == R_FRV_FUNCDESC)
1082 {
e2b7c966 1083 gdb_byte buf [FRV_PTR_SIZE];
c4d10515
KB
1084
1085 /* Compute address of address of candidate descriptor. */
1086 addr = rel->address + displacement_from_map (lm->map, rel->address);
1087
1088 /* Fetch address of candidate descriptor. */
1089 if (target_read_memory (addr, buf, sizeof buf) != 0)
1090 continue;
e17a4113 1091 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
1092
1093 /* Check for matching entry point. */
1094 if (target_read_memory (addr, buf, sizeof buf) != 0)
1095 continue;
e17a4113
UW
1096 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1097 != entry_point)
c4d10515
KB
1098 continue;
1099
1100 /* Check for matching got value. */
1101 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1102 continue;
e17a4113
UW
1103 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1104 != got_value)
c4d10515
KB
1105 continue;
1106
1107 /* Match was successful! Exit loop. */
1108 break;
1109 }
1110 }
1111
1112 return addr;
1113}
1114
186993b4
KB
1115/* Given an objfile, return the address of its link map. This value is
1116 needed for TLS support. */
1117CORE_ADDR
1118frv_fetch_objfile_link_map (struct objfile *objfile)
1119{
1120 struct so_list *so;
1121
1122 /* Cause frv_current_sos() to be run if it hasn't been already. */
1123 if (main_lm_addr == 0)
e696b3ad 1124 solib_add (0, 0, 1);
186993b4
KB
1125
1126 /* frv_current_sos() will set main_lm_addr for the main executable. */
1127 if (objfile == symfile_objfile)
1128 return main_lm_addr;
1129
1130 /* The other link map addresses may be found by examining the list
1131 of shared libraries. */
1132 for (so = master_so_list (); so; so = so->next)
1133 {
d0e449a1
SM
1134 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1135
186993b4 1136 if (so->objfile == objfile)
d0e449a1 1137 return li->lm_addr;
186993b4
KB
1138 }
1139
1140 /* Not found! */
1141 return 0;
1142}
1143
917630e4 1144struct target_so_ops frv_so_ops;
c4d10515
KB
1145
1146void
1147_initialize_frv_solib (void)
1148{
1149 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1150 frv_so_ops.free_so = frv_free_so;
1151 frv_so_ops.clear_solib = frv_clear_solib;
1152 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
c4d10515
KB
1153 frv_so_ops.current_sos = frv_current_sos;
1154 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1155 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
831a0c44 1156 frv_so_ops.bfd_open = solib_bfd_open;
c4d10515 1157
c4d10515 1158 /* Debug this file's internals. */
ccce17b0
YQ
1159 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1160 &solib_frv_debug, _("\
85c07804
AC
1161Set internal debugging of shared library code for FR-V."), _("\
1162Show internal debugging of shared library code for FR-V."), _("\
1163When non-zero, FR-V solib specific internal debugging is enabled."),
ccce17b0
YQ
1164 NULL,
1165 NULL, /* FIXME: i18n: */
1166 &setdebuglist, &showdebuglist);
c4d10515 1167}
This page took 4.607022 seconds and 4 git commands to generate.