[gdbserver] Don't assume vCont;r ADDR1,ADDR2 comes with a ptid attached.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
28e7fd62 3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
fb14de7b 33#include "regcache.h"
2020b7ab 34#include "gdbthread.h"
1a816a87 35#include "observer.h"
13437d4b 36
4b188b9f
MK
37#include "gdb_assert.h"
38
13437d4b 39#include "solist.h"
bba93f6c 40#include "solib.h"
13437d4b
KB
41#include "solib-svr4.h"
42
2f4950cd 43#include "bfd-target.h"
cc10cae3 44#include "elf-bfd.h"
2f4950cd 45#include "exec.h"
8d4e36ba 46#include "auxv.h"
f1838a98 47#include "exceptions.h"
695c3173 48#include "gdb_bfd.h"
2f4950cd 49
e5e2b9ff 50static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 51static int svr4_have_link_map_offsets (void);
9f2982ff 52static void svr4_relocate_main_executable (void);
1c4dcb57 53
c378eb4e 54/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
55
56struct lm_info
57 {
cc10cae3 58 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
64 iff L_ADDR_P. */
65 CORE_ADDR l_addr, l_addr_inferior;
66 unsigned int l_addr_p : 1;
93a57060
DJ
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
3957565a
JK
70
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
3957565a
JK
143static struct lm_info *
144lm_info_read (CORE_ADDR lm_addr)
13437d4b 145{
4b188b9f 146 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
147 gdb_byte *lm;
148 struct lm_info *lm_info;
149 struct cleanup *back_to;
150
151 lm = xmalloc (lmo->link_map_size);
152 back_to = make_cleanup (xfree, lm);
153
154 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
155 {
156 warning (_("Error reading shared library list entry at %s"),
f5656ead 157 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
158 lm_info = NULL;
159 }
160 else
161 {
f5656ead 162 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 163
3957565a
JK
164 lm_info = xzalloc (sizeof (*lm_info));
165 lm_info->lm_addr = lm_addr;
166
167 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
168 ptr_type);
169 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
170 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
171 ptr_type);
172 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
173 ptr_type);
174 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
175 ptr_type);
176 }
177
178 do_cleanups (back_to);
179
180 return lm_info;
13437d4b
KB
181}
182
cc10cae3 183static int
b23518f0 184has_lm_dynamic_from_link_map (void)
cc10cae3
AO
185{
186 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
187
cfaefc65 188 return lmo->l_ld_offset >= 0;
cc10cae3
AO
189}
190
cc10cae3 191static CORE_ADDR
f65ce5fb 192lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 193{
3957565a 194 if (!so->lm_info->l_addr_p)
cc10cae3
AO
195 {
196 struct bfd_section *dyninfo_sect;
28f34a8f 197 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 198
3957565a 199 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 200
b23518f0 201 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
202 goto set_addr;
203
3957565a 204 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
205
206 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
207 if (dyninfo_sect == NULL)
208 goto set_addr;
209
210 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
211
212 if (dynaddr + l_addr != l_dynaddr)
213 {
28f34a8f 214 CORE_ADDR align = 0x1000;
4e1fc9c9 215 CORE_ADDR minpagesize = align;
28f34a8f 216
cc10cae3
AO
217 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
218 {
219 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
220 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
221 int i;
222
223 align = 1;
224
225 for (i = 0; i < ehdr->e_phnum; i++)
226 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
227 align = phdr[i].p_align;
4e1fc9c9
JK
228
229 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
230 }
231
232 /* Turn it into a mask. */
233 align--;
234
235 /* If the changes match the alignment requirements, we
236 assume we're using a core file that was generated by the
237 same binary, just prelinked with a different base offset.
238 If it doesn't match, we may have a different binary, the
239 same binary with the dynamic table loaded at an unrelated
240 location, or anything, really. To avoid regressions,
241 don't adjust the base offset in the latter case, although
242 odds are that, if things really changed, debugging won't
5c0d192f
JK
243 quite work.
244
245 One could expect more the condition
246 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
247 but the one below is relaxed for PPC. The PPC kernel supports
248 either 4k or 64k page sizes. To be prepared for 64k pages,
249 PPC ELF files are built using an alignment requirement of 64k.
250 However, when running on a kernel supporting 4k pages, the memory
251 mapping of the library may not actually happen on a 64k boundary!
252
253 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
254 equivalent to the possibly expected check above.)
255
256 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 257
02835898
JK
258 l_addr = l_dynaddr - dynaddr;
259
4e1fc9c9
JK
260 if ((l_addr & (minpagesize - 1)) == 0
261 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 262 {
701ed6dc 263 if (info_verbose)
ccf26247
JK
264 printf_unfiltered (_("Using PIC (Position Independent Code) "
265 "prelink displacement %s for \"%s\".\n"),
f5656ead 266 paddress (target_gdbarch (), l_addr),
ccf26247 267 so->so_name);
cc10cae3 268 }
79d4c408 269 else
02835898
JK
270 {
271 /* There is no way to verify the library file matches. prelink
272 can during prelinking of an unprelinked file (or unprelinking
273 of a prelinked file) shift the DYNAMIC segment by arbitrary
274 offset without any page size alignment. There is no way to
275 find out the ELF header and/or Program Headers for a limited
276 verification if it they match. One could do a verification
277 of the DYNAMIC segment. Still the found address is the best
278 one GDB could find. */
279
280 warning (_(".dynamic section for \"%s\" "
281 "is not at the expected address "
282 "(wrong library or version mismatch?)"), so->so_name);
283 }
cc10cae3
AO
284 }
285
286 set_addr:
287 so->lm_info->l_addr = l_addr;
3957565a 288 so->lm_info->l_addr_p = 1;
cc10cae3
AO
289 }
290
291 return so->lm_info->l_addr;
292}
293
6c95b8df 294/* Per pspace SVR4 specific data. */
13437d4b 295
1a816a87
PA
296struct svr4_info
297{
c378eb4e 298 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
299
300 /* Validity flag for debug_loader_offset. */
301 int debug_loader_offset_p;
302
303 /* Load address for the dynamic linker, inferred. */
304 CORE_ADDR debug_loader_offset;
305
306 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
307 char *debug_loader_name;
308
309 /* Load map address for the main executable. */
310 CORE_ADDR main_lm_addr;
1a816a87 311
6c95b8df
PA
312 CORE_ADDR interp_text_sect_low;
313 CORE_ADDR interp_text_sect_high;
314 CORE_ADDR interp_plt_sect_low;
315 CORE_ADDR interp_plt_sect_high;
316};
1a816a87 317
6c95b8df
PA
318/* Per-program-space data key. */
319static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 320
6c95b8df
PA
321static void
322svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 323{
6c95b8df 324 struct svr4_info *info;
1a816a87 325
6c95b8df
PA
326 info = program_space_data (pspace, solib_svr4_pspace_data);
327 xfree (info);
1a816a87
PA
328}
329
6c95b8df
PA
330/* Get the current svr4 data. If none is found yet, add it now. This
331 function always returns a valid object. */
34439770 332
6c95b8df
PA
333static struct svr4_info *
334get_svr4_info (void)
1a816a87 335{
6c95b8df 336 struct svr4_info *info;
1a816a87 337
6c95b8df
PA
338 info = program_space_data (current_program_space, solib_svr4_pspace_data);
339 if (info != NULL)
340 return info;
34439770 341
6c95b8df
PA
342 info = XZALLOC (struct svr4_info);
343 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
344 return info;
1a816a87 345}
93a57060 346
13437d4b
KB
347/* Local function prototypes */
348
bc043ef3 349static int match_main (const char *);
13437d4b 350
97ec2c2f
UW
351/* Read program header TYPE from inferior memory. The header is found
352 by scanning the OS auxillary vector.
353
09919ac2
JK
354 If TYPE == -1, return the program headers instead of the contents of
355 one program header.
356
97ec2c2f
UW
357 Return a pointer to allocated memory holding the program header contents,
358 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
359 size of those contents is returned to P_SECT_SIZE. Likewise, the target
360 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
361
362static gdb_byte *
363read_program_header (int type, int *p_sect_size, int *p_arch_size)
364{
f5656ead 365 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 366 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
367 int arch_size, sect_size;
368 CORE_ADDR sect_addr;
369 gdb_byte *buf;
43136979 370 int pt_phdr_p = 0;
97ec2c2f
UW
371
372 /* Get required auxv elements from target. */
373 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
374 return 0;
375 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
376 return 0;
377 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
378 return 0;
379 if (!at_phdr || !at_phnum)
380 return 0;
381
382 /* Determine ELF architecture type. */
383 if (at_phent == sizeof (Elf32_External_Phdr))
384 arch_size = 32;
385 else if (at_phent == sizeof (Elf64_External_Phdr))
386 arch_size = 64;
387 else
388 return 0;
389
09919ac2
JK
390 /* Find the requested segment. */
391 if (type == -1)
392 {
393 sect_addr = at_phdr;
394 sect_size = at_phent * at_phnum;
395 }
396 else if (arch_size == 32)
97ec2c2f
UW
397 {
398 Elf32_External_Phdr phdr;
399 int i;
400
401 /* Search for requested PHDR. */
402 for (i = 0; i < at_phnum; i++)
403 {
43136979
AR
404 int p_type;
405
97ec2c2f
UW
406 if (target_read_memory (at_phdr + i * sizeof (phdr),
407 (gdb_byte *)&phdr, sizeof (phdr)))
408 return 0;
409
43136979
AR
410 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
411 4, byte_order);
412
413 if (p_type == PT_PHDR)
414 {
415 pt_phdr_p = 1;
416 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
417 4, byte_order);
418 }
419
420 if (p_type == type)
97ec2c2f
UW
421 break;
422 }
423
424 if (i == at_phnum)
425 return 0;
426
427 /* Retrieve address and size. */
e17a4113
UW
428 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
429 4, byte_order);
430 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
431 4, byte_order);
97ec2c2f
UW
432 }
433 else
434 {
435 Elf64_External_Phdr phdr;
436 int i;
437
438 /* Search for requested PHDR. */
439 for (i = 0; i < at_phnum; i++)
440 {
43136979
AR
441 int p_type;
442
97ec2c2f
UW
443 if (target_read_memory (at_phdr + i * sizeof (phdr),
444 (gdb_byte *)&phdr, sizeof (phdr)))
445 return 0;
446
43136979
AR
447 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
448 4, byte_order);
449
450 if (p_type == PT_PHDR)
451 {
452 pt_phdr_p = 1;
453 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
454 8, byte_order);
455 }
456
457 if (p_type == type)
97ec2c2f
UW
458 break;
459 }
460
461 if (i == at_phnum)
462 return 0;
463
464 /* Retrieve address and size. */
e17a4113
UW
465 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
466 8, byte_order);
467 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
468 8, byte_order);
97ec2c2f
UW
469 }
470
43136979
AR
471 /* PT_PHDR is optional, but we really need it
472 for PIE to make this work in general. */
473
474 if (pt_phdr_p)
475 {
476 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
477 Relocation offset is the difference between the two. */
478 sect_addr = sect_addr + (at_phdr - pt_phdr);
479 }
480
97ec2c2f
UW
481 /* Read in requested program header. */
482 buf = xmalloc (sect_size);
483 if (target_read_memory (sect_addr, buf, sect_size))
484 {
485 xfree (buf);
486 return NULL;
487 }
488
489 if (p_arch_size)
490 *p_arch_size = arch_size;
491 if (p_sect_size)
492 *p_sect_size = sect_size;
493
494 return buf;
495}
496
497
498/* Return program interpreter string. */
001f13d8 499static char *
97ec2c2f
UW
500find_program_interpreter (void)
501{
502 gdb_byte *buf = NULL;
503
504 /* If we have an exec_bfd, use its section table. */
505 if (exec_bfd
506 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
507 {
508 struct bfd_section *interp_sect;
509
510 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
511 if (interp_sect != NULL)
512 {
97ec2c2f
UW
513 int sect_size = bfd_section_size (exec_bfd, interp_sect);
514
515 buf = xmalloc (sect_size);
516 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
517 }
518 }
519
520 /* If we didn't find it, use the target auxillary vector. */
521 if (!buf)
522 buf = read_program_header (PT_INTERP, NULL, NULL);
523
001f13d8 524 return (char *) buf;
97ec2c2f
UW
525}
526
527
c378eb4e 528/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
529 returned and the corresponding PTR is set. */
530
531static int
532scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
533{
534 int arch_size, step, sect_size;
535 long dyn_tag;
b381ea14 536 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 537 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
538 Elf32_External_Dyn *x_dynp_32;
539 Elf64_External_Dyn *x_dynp_64;
540 struct bfd_section *sect;
61f0d762 541 struct target_section *target_section;
3a40aaa0
UW
542
543 if (abfd == NULL)
544 return 0;
0763ab81
PA
545
546 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
547 return 0;
548
3a40aaa0
UW
549 arch_size = bfd_get_arch_size (abfd);
550 if (arch_size == -1)
0763ab81 551 return 0;
3a40aaa0
UW
552
553 /* Find the start address of the .dynamic section. */
554 sect = bfd_get_section_by_name (abfd, ".dynamic");
555 if (sect == NULL)
556 return 0;
61f0d762
JK
557
558 for (target_section = current_target_sections->sections;
559 target_section < current_target_sections->sections_end;
560 target_section++)
561 if (sect == target_section->the_bfd_section)
562 break;
b381ea14
JK
563 if (target_section < current_target_sections->sections_end)
564 dyn_addr = target_section->addr;
565 else
566 {
567 /* ABFD may come from OBJFILE acting only as a symbol file without being
568 loaded into the target (see add_symbol_file_command). This case is
569 such fallback to the file VMA address without the possibility of
570 having the section relocated to its actual in-memory address. */
571
572 dyn_addr = bfd_section_vma (abfd, sect);
573 }
3a40aaa0 574
65728c26
DJ
575 /* Read in .dynamic from the BFD. We will get the actual value
576 from memory later. */
3a40aaa0 577 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
578 buf = bufstart = alloca (sect_size);
579 if (!bfd_get_section_contents (abfd, sect,
580 buf, 0, sect_size))
581 return 0;
3a40aaa0
UW
582
583 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
584 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
585 : sizeof (Elf64_External_Dyn);
586 for (bufend = buf + sect_size;
587 buf < bufend;
588 buf += step)
589 {
590 if (arch_size == 32)
591 {
592 x_dynp_32 = (Elf32_External_Dyn *) buf;
593 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
594 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
595 }
65728c26 596 else
3a40aaa0
UW
597 {
598 x_dynp_64 = (Elf64_External_Dyn *) buf;
599 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
600 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
601 }
602 if (dyn_tag == DT_NULL)
603 return 0;
604 if (dyn_tag == dyntag)
605 {
65728c26
DJ
606 /* If requested, try to read the runtime value of this .dynamic
607 entry. */
3a40aaa0 608 if (ptr)
65728c26 609 {
b6da22b0 610 struct type *ptr_type;
65728c26
DJ
611 gdb_byte ptr_buf[8];
612 CORE_ADDR ptr_addr;
613
f5656ead 614 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b381ea14 615 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 616 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 617 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
618 *ptr = dyn_ptr;
619 }
620 return 1;
3a40aaa0
UW
621 }
622 }
623
624 return 0;
625}
626
97ec2c2f
UW
627/* Scan for DYNTAG in .dynamic section of the target's main executable,
628 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
629 returned and the corresponding PTR is set. */
630
631static int
632scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
633{
f5656ead 634 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f
UW
635 int sect_size, arch_size, step;
636 long dyn_tag;
637 CORE_ADDR dyn_ptr;
638 gdb_byte *bufend, *bufstart, *buf;
639
640 /* Read in .dynamic section. */
641 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
642 if (!buf)
643 return 0;
644
645 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
646 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
647 : sizeof (Elf64_External_Dyn);
648 for (bufend = buf + sect_size;
649 buf < bufend;
650 buf += step)
651 {
652 if (arch_size == 32)
653 {
654 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 655
e17a4113
UW
656 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
657 4, byte_order);
658 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
659 4, byte_order);
97ec2c2f
UW
660 }
661 else
662 {
663 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 664
e17a4113
UW
665 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
666 8, byte_order);
667 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
668 8, byte_order);
97ec2c2f
UW
669 }
670 if (dyn_tag == DT_NULL)
671 break;
672
673 if (dyn_tag == dyntag)
674 {
675 if (ptr)
676 *ptr = dyn_ptr;
677
678 xfree (bufstart);
679 return 1;
680 }
681 }
682
683 xfree (bufstart);
684 return 0;
685}
686
7f86f058
PA
687/* Locate the base address of dynamic linker structs for SVR4 elf
688 targets.
13437d4b
KB
689
690 For SVR4 elf targets the address of the dynamic linker's runtime
691 structure is contained within the dynamic info section in the
692 executable file. The dynamic section is also mapped into the
693 inferior address space. Because the runtime loader fills in the
694 real address before starting the inferior, we have to read in the
695 dynamic info section from the inferior address space.
696 If there are any errors while trying to find the address, we
7f86f058 697 silently return 0, otherwise the found address is returned. */
13437d4b
KB
698
699static CORE_ADDR
700elf_locate_base (void)
701{
3a40aaa0
UW
702 struct minimal_symbol *msymbol;
703 CORE_ADDR dyn_ptr;
13437d4b 704
65728c26
DJ
705 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
706 instead of DT_DEBUG, although they sometimes contain an unused
707 DT_DEBUG. */
97ec2c2f
UW
708 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
709 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 710 {
f5656ead 711 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 712 gdb_byte *pbuf;
b6da22b0 713 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 714
3a40aaa0
UW
715 pbuf = alloca (pbuf_size);
716 /* DT_MIPS_RLD_MAP contains a pointer to the address
717 of the dynamic link structure. */
718 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 719 return 0;
b6da22b0 720 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
721 }
722
65728c26 723 /* Find DT_DEBUG. */
97ec2c2f
UW
724 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
725 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
726 return dyn_ptr;
727
3a40aaa0
UW
728 /* This may be a static executable. Look for the symbol
729 conventionally named _r_debug, as a last resort. */
730 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
731 if (msymbol != NULL)
732 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
733
734 /* DT_DEBUG entry not found. */
735 return 0;
736}
737
7f86f058 738/* Locate the base address of dynamic linker structs.
13437d4b
KB
739
740 For both the SunOS and SVR4 shared library implementations, if the
741 inferior executable has been linked dynamically, there is a single
742 address somewhere in the inferior's data space which is the key to
743 locating all of the dynamic linker's runtime structures. This
744 address is the value of the debug base symbol. The job of this
745 function is to find and return that address, or to return 0 if there
746 is no such address (the executable is statically linked for example).
747
748 For SunOS, the job is almost trivial, since the dynamic linker and
749 all of it's structures are statically linked to the executable at
750 link time. Thus the symbol for the address we are looking for has
751 already been added to the minimal symbol table for the executable's
752 objfile at the time the symbol file's symbols were read, and all we
753 have to do is look it up there. Note that we explicitly do NOT want
754 to find the copies in the shared library.
755
756 The SVR4 version is a bit more complicated because the address
757 is contained somewhere in the dynamic info section. We have to go
758 to a lot more work to discover the address of the debug base symbol.
759 Because of this complexity, we cache the value we find and return that
760 value on subsequent invocations. Note there is no copy in the
7f86f058 761 executable symbol tables. */
13437d4b
KB
762
763static CORE_ADDR
1a816a87 764locate_base (struct svr4_info *info)
13437d4b 765{
13437d4b
KB
766 /* Check to see if we have a currently valid address, and if so, avoid
767 doing all this work again and just return the cached address. If
768 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
769 section for ELF executables. There's no point in doing any of this
770 though if we don't have some link map offsets to work with. */
13437d4b 771
1a816a87 772 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 773 info->debug_base = elf_locate_base ();
1a816a87 774 return info->debug_base;
13437d4b
KB
775}
776
e4cd0d6a 777/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
778 return its address in the inferior. Return zero if the address
779 could not be determined.
13437d4b 780
e4cd0d6a
MK
781 FIXME: Perhaps we should validate the info somehow, perhaps by
782 checking r_version for a known version number, or r_state for
783 RT_CONSISTENT. */
13437d4b
KB
784
785static CORE_ADDR
1a816a87 786solib_svr4_r_map (struct svr4_info *info)
13437d4b 787{
4b188b9f 788 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 789 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104
JB
790 CORE_ADDR addr = 0;
791 volatile struct gdb_exception ex;
13437d4b 792
08597104
JB
793 TRY_CATCH (ex, RETURN_MASK_ERROR)
794 {
795 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
796 ptr_type);
797 }
798 exception_print (gdb_stderr, ex);
799 return addr;
e4cd0d6a 800}
13437d4b 801
7cd25cfc
DJ
802/* Find r_brk from the inferior's debug base. */
803
804static CORE_ADDR
1a816a87 805solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
806{
807 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 808 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 809
1a816a87
PA
810 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
811 ptr_type);
7cd25cfc
DJ
812}
813
e4cd0d6a
MK
814/* Find the link map for the dynamic linker (if it is not in the
815 normal list of loaded shared objects). */
13437d4b 816
e4cd0d6a 817static CORE_ADDR
1a816a87 818solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
819{
820 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
821 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
822 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
e4cd0d6a 823 ULONGEST version;
13437d4b 824
e4cd0d6a
MK
825 /* Check version, and return zero if `struct r_debug' doesn't have
826 the r_ldsomap member. */
1a816a87
PA
827 version
828 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 829 lmo->r_version_size, byte_order);
e4cd0d6a
MK
830 if (version < 2 || lmo->r_ldsomap_offset == -1)
831 return 0;
13437d4b 832
1a816a87 833 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 834 ptr_type);
13437d4b
KB
835}
836
de18c1d8
JM
837/* On Solaris systems with some versions of the dynamic linker,
838 ld.so's l_name pointer points to the SONAME in the string table
839 rather than into writable memory. So that GDB can find shared
840 libraries when loading a core file generated by gcore, ensure that
841 memory areas containing the l_name string are saved in the core
842 file. */
843
844static int
845svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
846{
847 struct svr4_info *info;
848 CORE_ADDR ldsomap;
849 struct so_list *new;
850 struct cleanup *old_chain;
74de0234 851 CORE_ADDR name_lm;
de18c1d8
JM
852
853 info = get_svr4_info ();
854
855 info->debug_base = 0;
856 locate_base (info);
857 if (!info->debug_base)
858 return 0;
859
860 ldsomap = solib_svr4_r_ldsomap (info);
861 if (!ldsomap)
862 return 0;
863
de18c1d8
JM
864 new = XZALLOC (struct so_list);
865 old_chain = make_cleanup (xfree, new);
3957565a 866 new->lm_info = lm_info_read (ldsomap);
de18c1d8 867 make_cleanup (xfree, new->lm_info);
3957565a 868 name_lm = new->lm_info ? new->lm_info->l_name : 0;
de18c1d8
JM
869 do_cleanups (old_chain);
870
74de0234 871 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
872}
873
7f86f058 874/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 875
7f86f058
PA
876 If no open symbol file, attempt to locate and open the main symbol
877 file. On SVR4 systems, this is the first link map entry. If its
878 name is here, we can open it. Useful when attaching to a process
879 without first loading its symbol file. */
13437d4b
KB
880
881static int
882open_symbol_file_object (void *from_ttyp)
883{
884 CORE_ADDR lm, l_name;
885 char *filename;
886 int errcode;
887 int from_tty = *(int *)from_ttyp;
4b188b9f 888 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 889 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 890 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 891 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 892 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 893 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
894
895 if (symfile_objfile)
9e2f0ad4 896 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
897 {
898 do_cleanups (cleanups);
899 return 0;
900 }
13437d4b 901
7cd25cfc 902 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
903 info->debug_base = 0;
904 if (locate_base (info) == 0)
3bb47e8b
TT
905 {
906 do_cleanups (cleanups);
907 return 0; /* failed somehow... */
908 }
13437d4b
KB
909
910 /* First link map member should be the executable. */
1a816a87 911 lm = solib_svr4_r_map (info);
e4cd0d6a 912 if (lm == 0)
3bb47e8b
TT
913 {
914 do_cleanups (cleanups);
915 return 0; /* failed somehow... */
916 }
13437d4b
KB
917
918 /* Read address of name from target memory to GDB. */
cfaefc65 919 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 920
cfaefc65 921 /* Convert the address to host format. */
b6da22b0 922 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 923
13437d4b 924 if (l_name == 0)
3bb47e8b
TT
925 {
926 do_cleanups (cleanups);
927 return 0; /* No filename. */
928 }
13437d4b
KB
929
930 /* Now fetch the filename from target memory. */
931 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 932 make_cleanup (xfree, filename);
13437d4b
KB
933
934 if (errcode)
935 {
8a3fe4f8 936 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 937 safe_strerror (errcode));
3bb47e8b 938 do_cleanups (cleanups);
13437d4b
KB
939 return 0;
940 }
941
13437d4b 942 /* Have a pathname: read the symbol file. */
1adeb98a 943 symbol_file_add_main (filename, from_tty);
13437d4b 944
3bb47e8b 945 do_cleanups (cleanups);
13437d4b
KB
946 return 1;
947}
13437d4b 948
2268b414
JK
949/* Data exchange structure for the XML parser as returned by
950 svr4_current_sos_via_xfer_libraries. */
951
952struct svr4_library_list
953{
954 struct so_list *head, **tailp;
955
956 /* Inferior address of struct link_map used for the main executable. It is
957 NULL if not known. */
958 CORE_ADDR main_lm;
959};
960
93f2a35e
JK
961/* Implementation for target_so_ops.free_so. */
962
963static void
964svr4_free_so (struct so_list *so)
965{
966 xfree (so->lm_info);
967}
968
0892cb63
DE
969/* Implement target_so_ops.clear_so. */
970
971static void
972svr4_clear_so (struct so_list *so)
973{
6dcc1893
PP
974 if (so->lm_info != NULL)
975 so->lm_info->l_addr_p = 0;
0892cb63
DE
976}
977
93f2a35e
JK
978/* Free so_list built so far (called via cleanup). */
979
980static void
981svr4_free_library_list (void *p_list)
982{
983 struct so_list *list = *(struct so_list **) p_list;
984
985 while (list != NULL)
986 {
987 struct so_list *next = list->next;
988
3756ef7e 989 free_so (list);
93f2a35e
JK
990 list = next;
991 }
992}
993
2268b414
JK
994#ifdef HAVE_LIBEXPAT
995
996#include "xml-support.h"
997
998/* Handle the start of a <library> element. Note: new elements are added
999 at the tail of the list, keeping the list in order. */
1000
1001static void
1002library_list_start_library (struct gdb_xml_parser *parser,
1003 const struct gdb_xml_element *element,
1004 void *user_data, VEC(gdb_xml_value_s) *attributes)
1005{
1006 struct svr4_library_list *list = user_data;
1007 const char *name = xml_find_attribute (attributes, "name")->value;
1008 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1009 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1010 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1011 struct so_list *new_elem;
1012
1013 new_elem = XZALLOC (struct so_list);
1014 new_elem->lm_info = XZALLOC (struct lm_info);
1015 new_elem->lm_info->lm_addr = *lmp;
1016 new_elem->lm_info->l_addr_inferior = *l_addrp;
1017 new_elem->lm_info->l_ld = *l_ldp;
1018
1019 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1020 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1021 strcpy (new_elem->so_original_name, new_elem->so_name);
1022
1023 *list->tailp = new_elem;
1024 list->tailp = &new_elem->next;
1025}
1026
1027/* Handle the start of a <library-list-svr4> element. */
1028
1029static void
1030svr4_library_list_start_list (struct gdb_xml_parser *parser,
1031 const struct gdb_xml_element *element,
1032 void *user_data, VEC(gdb_xml_value_s) *attributes)
1033{
1034 struct svr4_library_list *list = user_data;
1035 const char *version = xml_find_attribute (attributes, "version")->value;
1036 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1037
1038 if (strcmp (version, "1.0") != 0)
1039 gdb_xml_error (parser,
1040 _("SVR4 Library list has unsupported version \"%s\""),
1041 version);
1042
1043 if (main_lm)
1044 list->main_lm = *(ULONGEST *) main_lm->value;
1045}
1046
1047/* The allowed elements and attributes for an XML library list.
1048 The root element is a <library-list>. */
1049
1050static const struct gdb_xml_attribute svr4_library_attributes[] =
1051{
1052 { "name", GDB_XML_AF_NONE, NULL, NULL },
1053 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1054 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1055 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1056 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1057};
1058
1059static const struct gdb_xml_element svr4_library_list_children[] =
1060{
1061 {
1062 "library", svr4_library_attributes, NULL,
1063 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1064 library_list_start_library, NULL
1065 },
1066 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1067};
1068
1069static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1070{
1071 { "version", GDB_XML_AF_NONE, NULL, NULL },
1072 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1073 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1074};
1075
1076static const struct gdb_xml_element svr4_library_list_elements[] =
1077{
1078 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1079 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1080 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1081};
1082
2268b414
JK
1083/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1084
1085 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1086 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1087 empty, caller is responsible for freeing all its entries. */
1088
1089static int
1090svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1091{
1092 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1093 &list->head);
1094
1095 memset (list, 0, sizeof (*list));
1096 list->tailp = &list->head;
1097 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1098 svr4_library_list_elements, document, list) == 0)
1099 {
1100 /* Parsed successfully, keep the result. */
1101 discard_cleanups (back_to);
1102 return 1;
1103 }
1104
1105 do_cleanups (back_to);
1106 return 0;
1107}
1108
1109/* Attempt to get so_list from target via qXfer:libraries:read packet.
1110
1111 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1112 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1113 empty, caller is responsible for freeing all its entries. */
1114
1115static int
1116svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1117{
1118 char *svr4_library_document;
1119 int result;
1120 struct cleanup *back_to;
1121
1122 /* Fetch the list of shared libraries. */
1123 svr4_library_document = target_read_stralloc (&current_target,
1124 TARGET_OBJECT_LIBRARIES_SVR4,
1125 NULL);
1126 if (svr4_library_document == NULL)
1127 return 0;
1128
1129 back_to = make_cleanup (xfree, svr4_library_document);
1130 result = svr4_parse_libraries (svr4_library_document, list);
1131 do_cleanups (back_to);
1132
1133 return result;
1134}
1135
1136#else
1137
1138static int
1139svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1140{
1141 return 0;
1142}
1143
1144#endif
1145
34439770
DJ
1146/* If no shared library information is available from the dynamic
1147 linker, build a fallback list from other sources. */
1148
1149static struct so_list *
1150svr4_default_sos (void)
1151{
6c95b8df 1152 struct svr4_info *info = get_svr4_info ();
8e5c319d 1153 struct so_list *new;
1a816a87 1154
8e5c319d
JK
1155 if (!info->debug_loader_offset_p)
1156 return NULL;
34439770 1157
8e5c319d 1158 new = XZALLOC (struct so_list);
34439770 1159
3957565a 1160 new->lm_info = xzalloc (sizeof (struct lm_info));
34439770 1161
3957565a 1162 /* Nothing will ever check the other fields if we set l_addr_p. */
8e5c319d 1163 new->lm_info->l_addr = info->debug_loader_offset;
3957565a 1164 new->lm_info->l_addr_p = 1;
34439770 1165
8e5c319d
JK
1166 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1167 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1168 strcpy (new->so_original_name, new->so_name);
34439770 1169
8e5c319d 1170 return new;
34439770
DJ
1171}
1172
cb08cc53
JK
1173/* Read the whole inferior libraries chain starting at address LM. Add the
1174 entries to the tail referenced by LINK_PTR_PTR. Ignore the first entry if
1175 IGNORE_FIRST and set global MAIN_LM_ADDR according to it. */
13437d4b 1176
cb08cc53
JK
1177static void
1178svr4_read_so_list (CORE_ADDR lm, struct so_list ***link_ptr_ptr,
1179 int ignore_first)
13437d4b 1180{
cb08cc53 1181 CORE_ADDR prev_lm = 0, next_lm;
13437d4b 1182
cb08cc53 1183 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1184 {
cb08cc53
JK
1185 struct so_list *new;
1186 struct cleanup *old_chain;
1187 int errcode;
1188 char *buffer;
13437d4b 1189
cb08cc53
JK
1190 new = XZALLOC (struct so_list);
1191 old_chain = make_cleanup_free_so (new);
13437d4b 1192
3957565a
JK
1193 new->lm_info = lm_info_read (lm);
1194 if (new->lm_info == NULL)
1195 {
1196 do_cleanups (old_chain);
1197 break;
1198 }
13437d4b 1199
3957565a 1200 next_lm = new->lm_info->l_next;
492928e4 1201
3957565a 1202 if (new->lm_info->l_prev != prev_lm)
492928e4 1203 {
2268b414 1204 warning (_("Corrupted shared library list: %s != %s"),
f5656ead
TT
1205 paddress (target_gdbarch (), prev_lm),
1206 paddress (target_gdbarch (), new->lm_info->l_prev));
cb08cc53
JK
1207 do_cleanups (old_chain);
1208 break;
492928e4 1209 }
13437d4b
KB
1210
1211 /* For SVR4 versions, the first entry in the link map is for the
1212 inferior executable, so we must ignore it. For some versions of
1213 SVR4, it has no name. For others (Solaris 2.3 for example), it
1214 does have a name, so we can no longer use a missing name to
c378eb4e 1215 decide when to ignore it. */
3957565a 1216 if (ignore_first && new->lm_info->l_prev == 0)
93a57060 1217 {
cb08cc53
JK
1218 struct svr4_info *info = get_svr4_info ();
1219
1a816a87 1220 info->main_lm_addr = new->lm_info->lm_addr;
cb08cc53
JK
1221 do_cleanups (old_chain);
1222 continue;
93a57060 1223 }
13437d4b 1224
cb08cc53 1225 /* Extract this shared object's name. */
3957565a 1226 target_read_string (new->lm_info->l_name, &buffer,
cb08cc53
JK
1227 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1228 if (errcode != 0)
1229 {
1230 warning (_("Can't read pathname for load map: %s."),
1231 safe_strerror (errcode));
1232 do_cleanups (old_chain);
1233 continue;
13437d4b
KB
1234 }
1235
cb08cc53
JK
1236 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1237 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1238 strcpy (new->so_original_name, new->so_name);
1239 xfree (buffer);
492928e4 1240
cb08cc53
JK
1241 /* If this entry has no name, or its name matches the name
1242 for the main executable, don't include it in the list. */
1243 if (! new->so_name[0] || match_main (new->so_name))
492928e4 1244 {
cb08cc53
JK
1245 do_cleanups (old_chain);
1246 continue;
492928e4 1247 }
e4cd0d6a 1248
13437d4b 1249 discard_cleanups (old_chain);
cb08cc53
JK
1250 new->next = 0;
1251 **link_ptr_ptr = new;
1252 *link_ptr_ptr = &new->next;
13437d4b 1253 }
cb08cc53
JK
1254}
1255
1256/* Implement the "current_sos" target_so_ops method. */
1257
1258static struct so_list *
1259svr4_current_sos (void)
1260{
1261 CORE_ADDR lm;
1262 struct so_list *head = NULL;
1263 struct so_list **link_ptr = &head;
1264 struct svr4_info *info;
1265 struct cleanup *back_to;
1266 int ignore_first;
2268b414
JK
1267 struct svr4_library_list library_list;
1268
0c5bf5a9
JK
1269 /* Fall back to manual examination of the target if the packet is not
1270 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1271 tests a case where gdbserver cannot find the shared libraries list while
1272 GDB itself is able to find it via SYMFILE_OBJFILE.
1273
1274 Unfortunately statically linked inferiors will also fall back through this
1275 suboptimal code path. */
1276
2268b414
JK
1277 if (svr4_current_sos_via_xfer_libraries (&library_list))
1278 {
1279 if (library_list.main_lm)
1280 {
1281 info = get_svr4_info ();
1282 info->main_lm_addr = library_list.main_lm;
1283 }
1284
1285 return library_list.head ? library_list.head : svr4_default_sos ();
1286 }
cb08cc53
JK
1287
1288 info = get_svr4_info ();
1289
1290 /* Always locate the debug struct, in case it has moved. */
1291 info->debug_base = 0;
1292 locate_base (info);
1293
1294 /* If we can't find the dynamic linker's base structure, this
1295 must not be a dynamically linked executable. Hmm. */
1296 if (! info->debug_base)
1297 return svr4_default_sos ();
1298
1299 /* Assume that everything is a library if the dynamic loader was loaded
1300 late by a static executable. */
1301 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1302 ignore_first = 0;
1303 else
1304 ignore_first = 1;
1305
1306 back_to = make_cleanup (svr4_free_library_list, &head);
1307
1308 /* Walk the inferior's link map list, and build our list of
1309 `struct so_list' nodes. */
1310 lm = solib_svr4_r_map (info);
1311 if (lm)
1312 svr4_read_so_list (lm, &link_ptr, ignore_first);
1313
1314 /* On Solaris, the dynamic linker is not in the normal list of
1315 shared objects, so make sure we pick it up too. Having
1316 symbol information for the dynamic linker is quite crucial
1317 for skipping dynamic linker resolver code. */
1318 lm = solib_svr4_r_ldsomap (info);
1319 if (lm)
1320 svr4_read_so_list (lm, &link_ptr, 0);
1321
1322 discard_cleanups (back_to);
13437d4b 1323
34439770
DJ
1324 if (head == NULL)
1325 return svr4_default_sos ();
1326
13437d4b
KB
1327 return head;
1328}
1329
93a57060 1330/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1331
1332CORE_ADDR
1333svr4_fetch_objfile_link_map (struct objfile *objfile)
1334{
93a57060 1335 struct so_list *so;
6c95b8df 1336 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1337
93a57060 1338 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1339 if (info->main_lm_addr == 0)
93a57060 1340 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1341
93a57060
DJ
1342 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1343 if (objfile == symfile_objfile)
1a816a87 1344 return info->main_lm_addr;
93a57060
DJ
1345
1346 /* The other link map addresses may be found by examining the list
1347 of shared libraries. */
1348 for (so = master_so_list (); so; so = so->next)
1349 if (so->objfile == objfile)
1350 return so->lm_info->lm_addr;
1351
1352 /* Not found! */
bc4a16ae
EZ
1353 return 0;
1354}
13437d4b
KB
1355
1356/* On some systems, the only way to recognize the link map entry for
1357 the main executable file is by looking at its name. Return
1358 non-zero iff SONAME matches one of the known main executable names. */
1359
1360static int
bc043ef3 1361match_main (const char *soname)
13437d4b 1362{
bc043ef3 1363 const char * const *mainp;
13437d4b
KB
1364
1365 for (mainp = main_name_list; *mainp != NULL; mainp++)
1366 {
1367 if (strcmp (soname, *mainp) == 0)
1368 return (1);
1369 }
1370
1371 return (0);
1372}
1373
13437d4b
KB
1374/* Return 1 if PC lies in the dynamic symbol resolution code of the
1375 SVR4 run time loader. */
13437d4b 1376
7d522c90 1377int
d7fa2ae2 1378svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1379{
6c95b8df
PA
1380 struct svr4_info *info = get_svr4_info ();
1381
1382 return ((pc >= info->interp_text_sect_low
1383 && pc < info->interp_text_sect_high)
1384 || (pc >= info->interp_plt_sect_low
1385 && pc < info->interp_plt_sect_high)
0875794a
JK
1386 || in_plt_section (pc, NULL)
1387 || in_gnu_ifunc_stub (pc));
13437d4b 1388}
13437d4b 1389
2f4950cd
AC
1390/* Given an executable's ABFD and target, compute the entry-point
1391 address. */
1392
1393static CORE_ADDR
1394exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1395{
8c2b9656
YQ
1396 CORE_ADDR addr;
1397
2f4950cd
AC
1398 /* KevinB wrote ... for most targets, the address returned by
1399 bfd_get_start_address() is the entry point for the start
1400 function. But, for some targets, bfd_get_start_address() returns
1401 the address of a function descriptor from which the entry point
1402 address may be extracted. This address is extracted by
1403 gdbarch_convert_from_func_ptr_addr(). The method
1404 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1405 function for targets which don't use function descriptors. */
8c2b9656 1406 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1407 bfd_get_start_address (abfd),
1408 targ);
8c2b9656 1409 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1410}
13437d4b 1411
cb457ae2
YQ
1412/* Helper function for gdb_bfd_lookup_symbol. */
1413
1414static int
1415cmp_name_and_sec_flags (asymbol *sym, void *data)
1416{
1417 return (strcmp (sym->name, (const char *) data) == 0
1418 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
1419}
7f86f058 1420/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
1421
1422 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1423 debugger interface, support for arranging for the inferior to hit
1424 a breakpoint after mapping in the shared libraries. This function
1425 enables that breakpoint.
1426
1427 For SunOS, there is a special flag location (in_debugger) which we
1428 set to 1. When the dynamic linker sees this flag set, it will set
1429 a breakpoint at a location known only to itself, after saving the
1430 original contents of that place and the breakpoint address itself,
1431 in it's own internal structures. When we resume the inferior, it
1432 will eventually take a SIGTRAP when it runs into the breakpoint.
1433 We handle this (in a different place) by restoring the contents of
1434 the breakpointed location (which is only known after it stops),
1435 chasing around to locate the shared libraries that have been
1436 loaded, then resuming.
1437
1438 For SVR4, the debugger interface structure contains a member (r_brk)
1439 which is statically initialized at the time the shared library is
1440 built, to the offset of a function (_r_debug_state) which is guaran-
1441 teed to be called once before mapping in a library, and again when
1442 the mapping is complete. At the time we are examining this member,
1443 it contains only the unrelocated offset of the function, so we have
1444 to do our own relocation. Later, when the dynamic linker actually
1445 runs, it relocates r_brk to be the actual address of _r_debug_state().
1446
1447 The debugger interface structure also contains an enumeration which
1448 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1449 depending upon whether or not the library is being mapped or unmapped,
7f86f058 1450 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
1451
1452static int
268a4a75 1453enable_break (struct svr4_info *info, int from_tty)
13437d4b 1454{
13437d4b 1455 struct minimal_symbol *msymbol;
bc043ef3 1456 const char * const *bkpt_namep;
13437d4b 1457 asection *interp_sect;
001f13d8 1458 char *interp_name;
7cd25cfc 1459 CORE_ADDR sym_addr;
13437d4b 1460
6c95b8df
PA
1461 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1462 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1463
7cd25cfc
DJ
1464 /* If we already have a shared library list in the target, and
1465 r_debug contains r_brk, set the breakpoint there - this should
1466 mean r_brk has already been relocated. Assume the dynamic linker
1467 is the object containing r_brk. */
1468
268a4a75 1469 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1470 sym_addr = 0;
1a816a87
PA
1471 if (info->debug_base && solib_svr4_r_map (info) != 0)
1472 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1473
1474 if (sym_addr != 0)
1475 {
1476 struct obj_section *os;
1477
b36ec657 1478 sym_addr = gdbarch_addr_bits_remove
f5656ead 1479 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
1480 sym_addr,
1481 &current_target));
b36ec657 1482
48379de6
DE
1483 /* On at least some versions of Solaris there's a dynamic relocation
1484 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1485 we get control before the dynamic linker has self-relocated.
1486 Check if SYM_ADDR is in a known section, if it is assume we can
1487 trust its value. This is just a heuristic though, it could go away
1488 or be replaced if it's getting in the way.
1489
1490 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1491 however it's spelled in your particular system) is ARM or Thumb.
1492 That knowledge is encoded in the address, if it's Thumb the low bit
1493 is 1. However, we've stripped that info above and it's not clear
1494 what all the consequences are of passing a non-addr_bits_remove'd
1495 address to create_solib_event_breakpoint. The call to
1496 find_pc_section verifies we know about the address and have some
1497 hope of computing the right kind of breakpoint to use (via
1498 symbol info). It does mean that GDB needs to be pointed at a
1499 non-stripped version of the dynamic linker in order to obtain
1500 information it already knows about. Sigh. */
1501
7cd25cfc
DJ
1502 os = find_pc_section (sym_addr);
1503 if (os != NULL)
1504 {
1505 /* Record the relocated start and end address of the dynamic linker
1506 text and plt section for svr4_in_dynsym_resolve_code. */
1507 bfd *tmp_bfd;
1508 CORE_ADDR load_addr;
1509
1510 tmp_bfd = os->objfile->obfd;
1511 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 1512 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
1513
1514 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1515 if (interp_sect)
1516 {
6c95b8df 1517 info->interp_text_sect_low =
7cd25cfc 1518 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1519 info->interp_text_sect_high =
1520 info->interp_text_sect_low
1521 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1522 }
1523 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1524 if (interp_sect)
1525 {
6c95b8df 1526 info->interp_plt_sect_low =
7cd25cfc 1527 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1528 info->interp_plt_sect_high =
1529 info->interp_plt_sect_low
1530 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1531 }
1532
f5656ead 1533 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
7cd25cfc
DJ
1534 return 1;
1535 }
1536 }
1537
97ec2c2f 1538 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1539 into the old breakpoint at symbol code. */
97ec2c2f
UW
1540 interp_name = find_program_interpreter ();
1541 if (interp_name)
13437d4b 1542 {
8ad2fcde
KB
1543 CORE_ADDR load_addr = 0;
1544 int load_addr_found = 0;
2ec9a4f8 1545 int loader_found_in_list = 0;
f8766ec1 1546 struct so_list *so;
e4f7b8c8 1547 bfd *tmp_bfd = NULL;
2f4950cd 1548 struct target_ops *tmp_bfd_target;
f1838a98 1549 volatile struct gdb_exception ex;
13437d4b 1550
7cd25cfc 1551 sym_addr = 0;
13437d4b
KB
1552
1553 /* Now we need to figure out where the dynamic linker was
1554 loaded so that we can load its symbols and place a breakpoint
1555 in the dynamic linker itself.
1556
1557 This address is stored on the stack. However, I've been unable
1558 to find any magic formula to find it for Solaris (appears to
1559 be trivial on GNU/Linux). Therefore, we have to try an alternate
1560 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1561
f1838a98
UW
1562 TRY_CATCH (ex, RETURN_MASK_ALL)
1563 {
97ec2c2f 1564 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1565 }
13437d4b
KB
1566 if (tmp_bfd == NULL)
1567 goto bkpt_at_symbol;
1568
2f4950cd 1569 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 1570 well as BFD operations can be used. */
2f4950cd 1571 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
1572 /* target_bfd_reopen acquired its own reference, so we can
1573 release ours now. */
1574 gdb_bfd_unref (tmp_bfd);
2f4950cd 1575
f8766ec1
KB
1576 /* On a running target, we can get the dynamic linker's base
1577 address from the shared library table. */
f8766ec1
KB
1578 so = master_so_list ();
1579 while (so)
8ad2fcde 1580 {
97ec2c2f 1581 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1582 {
1583 load_addr_found = 1;
2ec9a4f8 1584 loader_found_in_list = 1;
b23518f0 1585 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
1586 break;
1587 }
f8766ec1 1588 so = so->next;
8ad2fcde
KB
1589 }
1590
8d4e36ba
JB
1591 /* If we were not able to find the base address of the loader
1592 from our so_list, then try using the AT_BASE auxilliary entry. */
1593 if (!load_addr_found)
1594 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 1595 {
f5656ead 1596 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
1597
1598 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1599 that `+ load_addr' will overflow CORE_ADDR width not creating
1600 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1601 GDB. */
1602
d182d057 1603 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1604 {
d182d057 1605 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1606 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1607 tmp_bfd_target);
1608
1609 gdb_assert (load_addr < space_size);
1610
1611 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1612 64bit ld.so with 32bit executable, it should not happen. */
1613
1614 if (tmp_entry_point < space_size
1615 && tmp_entry_point + load_addr >= space_size)
1616 load_addr -= space_size;
1617 }
1618
1619 load_addr_found = 1;
1620 }
8d4e36ba 1621
8ad2fcde
KB
1622 /* Otherwise we find the dynamic linker's base address by examining
1623 the current pc (which should point at the entry point for the
8d4e36ba
JB
1624 dynamic linker) and subtracting the offset of the entry point.
1625
1626 This is more fragile than the previous approaches, but is a good
1627 fallback method because it has actually been working well in
1628 most cases. */
8ad2fcde 1629 if (!load_addr_found)
fb14de7b 1630 {
c2250ad1 1631 struct regcache *regcache
f5656ead 1632 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 1633
fb14de7b
UW
1634 load_addr = (regcache_read_pc (regcache)
1635 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1636 }
2ec9a4f8
DJ
1637
1638 if (!loader_found_in_list)
34439770 1639 {
1a816a87
PA
1640 info->debug_loader_name = xstrdup (interp_name);
1641 info->debug_loader_offset_p = 1;
1642 info->debug_loader_offset = load_addr;
268a4a75 1643 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1644 }
13437d4b
KB
1645
1646 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1647 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1648 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1649 if (interp_sect)
1650 {
6c95b8df 1651 info->interp_text_sect_low =
13437d4b 1652 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1653 info->interp_text_sect_high =
1654 info->interp_text_sect_low
1655 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1656 }
1657 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1658 if (interp_sect)
1659 {
6c95b8df 1660 info->interp_plt_sect_low =
13437d4b 1661 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1662 info->interp_plt_sect_high =
1663 info->interp_plt_sect_low
1664 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1665 }
1666
1667 /* Now try to set a breakpoint in the dynamic linker. */
1668 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1669 {
cb457ae2
YQ
1670 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
1671 (void *) *bkpt_namep);
13437d4b
KB
1672 if (sym_addr != 0)
1673 break;
1674 }
1675
2bbe3cc1
DJ
1676 if (sym_addr != 0)
1677 /* Convert 'sym_addr' from a function pointer to an address.
1678 Because we pass tmp_bfd_target instead of the current
1679 target, this will always produce an unrelocated value. */
f5656ead 1680 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
1681 sym_addr,
1682 tmp_bfd_target);
1683
695c3173
TT
1684 /* We're done with both the temporary bfd and target. Closing
1685 the target closes the underlying bfd, because it holds the
1686 only remaining reference. */
460014f5 1687 target_close (tmp_bfd_target);
13437d4b
KB
1688
1689 if (sym_addr != 0)
1690 {
f5656ead 1691 create_solib_event_breakpoint (target_gdbarch (), load_addr + sym_addr);
97ec2c2f 1692 xfree (interp_name);
13437d4b
KB
1693 return 1;
1694 }
1695
1696 /* For whatever reason we couldn't set a breakpoint in the dynamic
1697 linker. Warn and drop into the old code. */
1698 bkpt_at_symbol:
97ec2c2f 1699 xfree (interp_name);
82d03102
PG
1700 warning (_("Unable to find dynamic linker breakpoint function.\n"
1701 "GDB will be unable to debug shared library initializers\n"
1702 "and track explicitly loaded dynamic code."));
13437d4b 1703 }
13437d4b 1704
e499d0f1
DJ
1705 /* Scan through the lists of symbols, trying to look up the symbol and
1706 set a breakpoint there. Terminate loop when we/if we succeed. */
1707
1708 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1709 {
1710 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1711 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1712 {
de64a9ac 1713 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 1714 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
1715 sym_addr,
1716 &current_target);
f5656ead 1717 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
e499d0f1
DJ
1718 return 1;
1719 }
1720 }
13437d4b 1721
fb139f32 1722 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 1723 {
c6490bf2 1724 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1725 {
c6490bf2
KB
1726 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1727 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1728 {
1729 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 1730 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
1731 sym_addr,
1732 &current_target);
f5656ead 1733 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
c6490bf2
KB
1734 return 1;
1735 }
13437d4b
KB
1736 }
1737 }
542c95c2 1738 return 0;
13437d4b
KB
1739}
1740
7f86f058 1741/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
1742
1743static void
1744svr4_special_symbol_handling (void)
1745{
7f86f058 1746 /* Nothing to do. */
13437d4b
KB
1747}
1748
09919ac2
JK
1749/* Read the ELF program headers from ABFD. Return the contents and
1750 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1751
09919ac2
JK
1752static gdb_byte *
1753read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1754{
09919ac2
JK
1755 Elf_Internal_Ehdr *ehdr;
1756 gdb_byte *buf;
e2a44558 1757
09919ac2 1758 ehdr = elf_elfheader (abfd);
b8040f19 1759
09919ac2
JK
1760 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1761 if (*phdrs_size == 0)
1762 return NULL;
1763
1764 buf = xmalloc (*phdrs_size);
1765 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1766 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1767 {
1768 xfree (buf);
1769 return NULL;
1770 }
1771
1772 return buf;
b8040f19
JK
1773}
1774
01c30d6e
JK
1775/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1776 exec_bfd. Otherwise return 0.
1777
1778 We relocate all of the sections by the same amount. This
c378eb4e 1779 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
1780 According to the System V Application Binary Interface,
1781 Edition 4.1, page 5-5:
1782
1783 ... Though the system chooses virtual addresses for
1784 individual processes, it maintains the segments' relative
1785 positions. Because position-independent code uses relative
1786 addressesing between segments, the difference between
1787 virtual addresses in memory must match the difference
1788 between virtual addresses in the file. The difference
1789 between the virtual address of any segment in memory and
1790 the corresponding virtual address in the file is thus a
1791 single constant value for any one executable or shared
1792 object in a given process. This difference is the base
1793 address. One use of the base address is to relocate the
1794 memory image of the program during dynamic linking.
1795
1796 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1797 ABI and is left unspecified in some of the earlier editions.
1798
1799 Decide if the objfile needs to be relocated. As indicated above, we will
1800 only be here when execution is stopped. But during attachment PC can be at
1801 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1802 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1803 regcache_read_pc would point to the interpreter and not the main executable.
1804
1805 So, to summarize, relocations are necessary when the start address obtained
1806 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 1807
09919ac2
JK
1808 [ The astute reader will note that we also test to make sure that
1809 the executable in question has the DYNAMIC flag set. It is my
1810 opinion that this test is unnecessary (undesirable even). It
1811 was added to avoid inadvertent relocation of an executable
1812 whose e_type member in the ELF header is not ET_DYN. There may
1813 be a time in the future when it is desirable to do relocations
1814 on other types of files as well in which case this condition
1815 should either be removed or modified to accomodate the new file
1816 type. - Kevin, Nov 2000. ] */
b8040f19 1817
01c30d6e
JK
1818static int
1819svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1820{
41752192
JK
1821 /* ENTRY_POINT is a possible function descriptor - before
1822 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1823 CORE_ADDR entry_point, displacement;
b8040f19
JK
1824
1825 if (exec_bfd == NULL)
1826 return 0;
1827
09919ac2
JK
1828 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1829 being executed themselves and PIE (Position Independent Executable)
1830 executables are ET_DYN. */
1831
1832 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1833 return 0;
1834
1835 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1836 return 0;
1837
1838 displacement = entry_point - bfd_get_start_address (exec_bfd);
1839
1840 /* Verify the DISPLACEMENT candidate complies with the required page
1841 alignment. It is cheaper than the program headers comparison below. */
1842
1843 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1844 {
1845 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1846
1847 /* p_align of PT_LOAD segments does not specify any alignment but
1848 only congruency of addresses:
1849 p_offset % p_align == p_vaddr % p_align
1850 Kernel is free to load the executable with lower alignment. */
1851
1852 if ((displacement & (elf->minpagesize - 1)) != 0)
1853 return 0;
1854 }
1855
1856 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1857 comparing their program headers. If the program headers in the auxilliary
1858 vector do not match the program headers in the executable, then we are
1859 looking at a different file than the one used by the kernel - for
1860 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1861
1862 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1863 {
1864 /* Be optimistic and clear OK only if GDB was able to verify the headers
1865 really do not match. */
1866 int phdrs_size, phdrs2_size, ok = 1;
1867 gdb_byte *buf, *buf2;
0a1e94c7 1868 int arch_size;
09919ac2 1869
0a1e94c7 1870 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1871 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1872 if (buf != NULL && buf2 != NULL)
1873 {
f5656ead 1874 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
1875
1876 /* We are dealing with three different addresses. EXEC_BFD
1877 represents current address in on-disk file. target memory content
1878 may be different from EXEC_BFD as the file may have been prelinked
1879 to a different address after the executable has been loaded.
1880 Moreover the address of placement in target memory can be
3e43a32a
MS
1881 different from what the program headers in target memory say -
1882 this is the goal of PIE.
0a1e94c7
JK
1883
1884 Detected DISPLACEMENT covers both the offsets of PIE placement and
1885 possible new prelink performed after start of the program. Here
1886 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1887 content offset for the verification purpose. */
1888
1889 if (phdrs_size != phdrs2_size
1890 || bfd_get_arch_size (exec_bfd) != arch_size)
1891 ok = 0;
3e43a32a
MS
1892 else if (arch_size == 32
1893 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1894 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1895 {
1896 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1897 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1898 CORE_ADDR displacement = 0;
1899 int i;
1900
1901 /* DISPLACEMENT could be found more easily by the difference of
1902 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1903 already have enough information to compute that displacement
1904 with what we've read. */
1905
1906 for (i = 0; i < ehdr2->e_phnum; i++)
1907 if (phdr2[i].p_type == PT_LOAD)
1908 {
1909 Elf32_External_Phdr *phdrp;
1910 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1911 CORE_ADDR vaddr, paddr;
1912 CORE_ADDR displacement_vaddr = 0;
1913 CORE_ADDR displacement_paddr = 0;
1914
1915 phdrp = &((Elf32_External_Phdr *) buf)[i];
1916 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1917 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1918
1919 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1920 byte_order);
1921 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1922
1923 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1924 byte_order);
1925 displacement_paddr = paddr - phdr2[i].p_paddr;
1926
1927 if (displacement_vaddr == displacement_paddr)
1928 displacement = displacement_vaddr;
1929
1930 break;
1931 }
1932
1933 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1934
1935 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1936 {
1937 Elf32_External_Phdr *phdrp;
1938 Elf32_External_Phdr *phdr2p;
1939 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1940 CORE_ADDR vaddr, paddr;
43b8e241 1941 asection *plt2_asect;
0a1e94c7
JK
1942
1943 phdrp = &((Elf32_External_Phdr *) buf)[i];
1944 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1945 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1946 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1947
1948 /* PT_GNU_STACK is an exception by being never relocated by
1949 prelink as its addresses are always zero. */
1950
1951 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1952 continue;
1953
1954 /* Check also other adjustment combinations - PR 11786. */
1955
3e43a32a
MS
1956 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1957 byte_order);
0a1e94c7
JK
1958 vaddr -= displacement;
1959 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1960
3e43a32a
MS
1961 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1962 byte_order);
0a1e94c7
JK
1963 paddr -= displacement;
1964 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1965
1966 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1967 continue;
1968
43b8e241
JK
1969 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1970 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1971 if (plt2_asect)
1972 {
1973 int content2;
1974 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1975 CORE_ADDR filesz;
1976
1977 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1978 & SEC_HAS_CONTENTS) != 0;
1979
1980 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1981 byte_order);
1982
1983 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1984 FILESZ is from the in-memory image. */
1985 if (content2)
1986 filesz += bfd_get_section_size (plt2_asect);
1987 else
1988 filesz -= bfd_get_section_size (plt2_asect);
1989
1990 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1991 filesz);
1992
1993 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1994 continue;
1995 }
1996
0a1e94c7
JK
1997 ok = 0;
1998 break;
1999 }
2000 }
3e43a32a
MS
2001 else if (arch_size == 64
2002 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2003 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2004 {
2005 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2006 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2007 CORE_ADDR displacement = 0;
2008 int i;
2009
2010 /* DISPLACEMENT could be found more easily by the difference of
2011 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2012 already have enough information to compute that displacement
2013 with what we've read. */
2014
2015 for (i = 0; i < ehdr2->e_phnum; i++)
2016 if (phdr2[i].p_type == PT_LOAD)
2017 {
2018 Elf64_External_Phdr *phdrp;
2019 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2020 CORE_ADDR vaddr, paddr;
2021 CORE_ADDR displacement_vaddr = 0;
2022 CORE_ADDR displacement_paddr = 0;
2023
2024 phdrp = &((Elf64_External_Phdr *) buf)[i];
2025 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2026 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2027
2028 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2029 byte_order);
2030 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2031
2032 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2033 byte_order);
2034 displacement_paddr = paddr - phdr2[i].p_paddr;
2035
2036 if (displacement_vaddr == displacement_paddr)
2037 displacement = displacement_vaddr;
2038
2039 break;
2040 }
2041
2042 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2043
2044 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2045 {
2046 Elf64_External_Phdr *phdrp;
2047 Elf64_External_Phdr *phdr2p;
2048 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2049 CORE_ADDR vaddr, paddr;
43b8e241 2050 asection *plt2_asect;
0a1e94c7
JK
2051
2052 phdrp = &((Elf64_External_Phdr *) buf)[i];
2053 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2054 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2055 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2056
2057 /* PT_GNU_STACK is an exception by being never relocated by
2058 prelink as its addresses are always zero. */
2059
2060 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2061 continue;
2062
2063 /* Check also other adjustment combinations - PR 11786. */
2064
3e43a32a
MS
2065 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2066 byte_order);
0a1e94c7
JK
2067 vaddr -= displacement;
2068 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2069
3e43a32a
MS
2070 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2071 byte_order);
0a1e94c7
JK
2072 paddr -= displacement;
2073 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2074
2075 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2076 continue;
2077
43b8e241
JK
2078 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2079 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2080 if (plt2_asect)
2081 {
2082 int content2;
2083 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2084 CORE_ADDR filesz;
2085
2086 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2087 & SEC_HAS_CONTENTS) != 0;
2088
2089 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2090 byte_order);
2091
2092 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2093 FILESZ is from the in-memory image. */
2094 if (content2)
2095 filesz += bfd_get_section_size (plt2_asect);
2096 else
2097 filesz -= bfd_get_section_size (plt2_asect);
2098
2099 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2100 filesz);
2101
2102 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2103 continue;
2104 }
2105
0a1e94c7
JK
2106 ok = 0;
2107 break;
2108 }
2109 }
2110 else
2111 ok = 0;
2112 }
09919ac2
JK
2113
2114 xfree (buf);
2115 xfree (buf2);
2116
2117 if (!ok)
2118 return 0;
2119 }
b8040f19 2120
ccf26247
JK
2121 if (info_verbose)
2122 {
2123 /* It can be printed repeatedly as there is no easy way to check
2124 the executable symbols/file has been already relocated to
2125 displacement. */
2126
2127 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2128 "displacement %s for \"%s\".\n"),
f5656ead 2129 paddress (target_gdbarch (), displacement),
ccf26247
JK
2130 bfd_get_filename (exec_bfd));
2131 }
2132
01c30d6e
JK
2133 *displacementp = displacement;
2134 return 1;
b8040f19
JK
2135}
2136
2137/* Relocate the main executable. This function should be called upon
c378eb4e 2138 stopping the inferior process at the entry point to the program.
b8040f19
JK
2139 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2140 different, the main executable is relocated by the proper amount. */
2141
2142static void
2143svr4_relocate_main_executable (void)
2144{
01c30d6e
JK
2145 CORE_ADDR displacement;
2146
4e5799b6
JK
2147 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2148 probably contains the offsets computed using the PIE displacement
2149 from the previous run, which of course are irrelevant for this run.
2150 So we need to determine the new PIE displacement and recompute the
2151 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2152 already contains pre-computed offsets.
01c30d6e 2153
4e5799b6 2154 If we cannot compute the PIE displacement, either:
01c30d6e 2155
4e5799b6
JK
2156 - The executable is not PIE.
2157
2158 - SYMFILE_OBJFILE does not match the executable started in the target.
2159 This can happen for main executable symbols loaded at the host while
2160 `ld.so --ld-args main-executable' is loaded in the target.
2161
2162 Then we leave the section offsets untouched and use them as is for
2163 this run. Either:
2164
2165 - These section offsets were properly reset earlier, and thus
2166 already contain the correct values. This can happen for instance
2167 when reconnecting via the remote protocol to a target that supports
2168 the `qOffsets' packet.
2169
2170 - The section offsets were not reset earlier, and the best we can
c378eb4e 2171 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2172
2173 if (! svr4_exec_displacement (&displacement))
2174 return;
b8040f19 2175
01c30d6e
JK
2176 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2177 addresses. */
b8040f19
JK
2178
2179 if (symfile_objfile)
e2a44558 2180 {
e2a44558 2181 struct section_offsets *new_offsets;
b8040f19 2182 int i;
e2a44558 2183
b8040f19
JK
2184 new_offsets = alloca (symfile_objfile->num_sections
2185 * sizeof (*new_offsets));
e2a44558 2186
b8040f19
JK
2187 for (i = 0; i < symfile_objfile->num_sections; i++)
2188 new_offsets->offsets[i] = displacement;
e2a44558 2189
b8040f19 2190 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2191 }
51bee8e9
JK
2192 else if (exec_bfd)
2193 {
2194 asection *asect;
2195
2196 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2197 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2198 (bfd_section_vma (exec_bfd, asect)
2199 + displacement));
2200 }
e2a44558
KB
2201}
2202
7f86f058 2203/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2204
2205 For SVR4 executables, this first instruction is either the first
2206 instruction in the dynamic linker (for dynamically linked
2207 executables) or the instruction at "start" for statically linked
2208 executables. For dynamically linked executables, the system
2209 first exec's /lib/libc.so.N, which contains the dynamic linker,
2210 and starts it running. The dynamic linker maps in any needed
2211 shared libraries, maps in the actual user executable, and then
2212 jumps to "start" in the user executable.
2213
7f86f058
PA
2214 We can arrange to cooperate with the dynamic linker to discover the
2215 names of shared libraries that are dynamically linked, and the base
2216 addresses to which they are linked.
13437d4b
KB
2217
2218 This function is responsible for discovering those names and
2219 addresses, and saving sufficient information about them to allow
d2e5c99a 2220 their symbols to be read at a later time. */
13437d4b 2221
e2a44558 2222static void
268a4a75 2223svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2224{
1a816a87
PA
2225 struct svr4_info *info;
2226
6c95b8df 2227 info = get_svr4_info ();
2020b7ab 2228
e2a44558 2229 /* Relocate the main executable if necessary. */
86e4bafc 2230 svr4_relocate_main_executable ();
e2a44558 2231
c91c8c16
PA
2232 /* No point setting a breakpoint in the dynamic linker if we can't
2233 hit it (e.g., a core file, or a trace file). */
2234 if (!target_has_execution)
2235 return;
2236
d5a921c9 2237 if (!svr4_have_link_map_offsets ())
513f5903 2238 return;
d5a921c9 2239
268a4a75 2240 if (!enable_break (info, from_tty))
542c95c2 2241 return;
13437d4b
KB
2242}
2243
2244static void
2245svr4_clear_solib (void)
2246{
6c95b8df
PA
2247 struct svr4_info *info;
2248
2249 info = get_svr4_info ();
2250 info->debug_base = 0;
2251 info->debug_loader_offset_p = 0;
2252 info->debug_loader_offset = 0;
2253 xfree (info->debug_loader_name);
2254 info->debug_loader_name = NULL;
13437d4b
KB
2255}
2256
6bb7be43
JB
2257/* Clear any bits of ADDR that wouldn't fit in a target-format
2258 data pointer. "Data pointer" here refers to whatever sort of
2259 address the dynamic linker uses to manage its sections. At the
2260 moment, we don't support shared libraries on any processors where
2261 code and data pointers are different sizes.
2262
2263 This isn't really the right solution. What we really need here is
2264 a way to do arithmetic on CORE_ADDR values that respects the
2265 natural pointer/address correspondence. (For example, on the MIPS,
2266 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2267 sign-extend the value. There, simply truncating the bits above
819844ad 2268 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2269 be a new gdbarch method or something. */
2270static CORE_ADDR
2271svr4_truncate_ptr (CORE_ADDR addr)
2272{
f5656ead 2273 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2274 /* We don't need to truncate anything, and the bit twiddling below
2275 will fail due to overflow problems. */
2276 return addr;
2277 else
f5656ead 2278 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
2279}
2280
2281
749499cb
KB
2282static void
2283svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2284 struct target_section *sec)
749499cb 2285{
b23518f0 2286 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
cc10cae3 2287 sec->bfd));
b23518f0 2288 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
cc10cae3 2289 sec->bfd));
749499cb 2290}
4b188b9f 2291\f
749499cb 2292
4b188b9f 2293/* Architecture-specific operations. */
6bb7be43 2294
4b188b9f
MK
2295/* Per-architecture data key. */
2296static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2297
4b188b9f 2298struct solib_svr4_ops
e5e2b9ff 2299{
4b188b9f
MK
2300 /* Return a description of the layout of `struct link_map'. */
2301 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2302};
e5e2b9ff 2303
4b188b9f 2304/* Return a default for the architecture-specific operations. */
e5e2b9ff 2305
4b188b9f
MK
2306static void *
2307solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2308{
4b188b9f 2309 struct solib_svr4_ops *ops;
e5e2b9ff 2310
4b188b9f 2311 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2312 ops->fetch_link_map_offsets = NULL;
4b188b9f 2313 return ops;
e5e2b9ff
KB
2314}
2315
4b188b9f 2316/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2317 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2318
21479ded 2319void
e5e2b9ff
KB
2320set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2321 struct link_map_offsets *(*flmo) (void))
21479ded 2322{
4b188b9f
MK
2323 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2324
2325 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2326
2327 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2328}
2329
4b188b9f
MK
2330/* Fetch a link_map_offsets structure using the architecture-specific
2331 `struct link_map_offsets' fetcher. */
1c4dcb57 2332
4b188b9f
MK
2333static struct link_map_offsets *
2334svr4_fetch_link_map_offsets (void)
21479ded 2335{
f5656ead 2336 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
4b188b9f
MK
2337
2338 gdb_assert (ops->fetch_link_map_offsets);
2339 return ops->fetch_link_map_offsets ();
21479ded
KB
2340}
2341
4b188b9f
MK
2342/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2343
2344static int
2345svr4_have_link_map_offsets (void)
2346{
f5656ead 2347 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
433759f7 2348
4b188b9f
MK
2349 return (ops->fetch_link_map_offsets != NULL);
2350}
2351\f
2352
e4bbbda8
MK
2353/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2354 `struct r_debug' and a `struct link_map' that are binary compatible
2355 with the origional SVR4 implementation. */
2356
2357/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2358 for an ILP32 SVR4 system. */
d989b283 2359
e4bbbda8
MK
2360struct link_map_offsets *
2361svr4_ilp32_fetch_link_map_offsets (void)
2362{
2363 static struct link_map_offsets lmo;
2364 static struct link_map_offsets *lmp = NULL;
2365
2366 if (lmp == NULL)
2367 {
2368 lmp = &lmo;
2369
e4cd0d6a
MK
2370 lmo.r_version_offset = 0;
2371 lmo.r_version_size = 4;
e4bbbda8 2372 lmo.r_map_offset = 4;
7cd25cfc 2373 lmo.r_brk_offset = 8;
e4cd0d6a 2374 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2375
2376 /* Everything we need is in the first 20 bytes. */
2377 lmo.link_map_size = 20;
2378 lmo.l_addr_offset = 0;
e4bbbda8 2379 lmo.l_name_offset = 4;
cc10cae3 2380 lmo.l_ld_offset = 8;
e4bbbda8 2381 lmo.l_next_offset = 12;
e4bbbda8 2382 lmo.l_prev_offset = 16;
e4bbbda8
MK
2383 }
2384
2385 return lmp;
2386}
2387
2388/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2389 for an LP64 SVR4 system. */
d989b283 2390
e4bbbda8
MK
2391struct link_map_offsets *
2392svr4_lp64_fetch_link_map_offsets (void)
2393{
2394 static struct link_map_offsets lmo;
2395 static struct link_map_offsets *lmp = NULL;
2396
2397 if (lmp == NULL)
2398 {
2399 lmp = &lmo;
2400
e4cd0d6a
MK
2401 lmo.r_version_offset = 0;
2402 lmo.r_version_size = 4;
e4bbbda8 2403 lmo.r_map_offset = 8;
7cd25cfc 2404 lmo.r_brk_offset = 16;
e4cd0d6a 2405 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2406
2407 /* Everything we need is in the first 40 bytes. */
2408 lmo.link_map_size = 40;
2409 lmo.l_addr_offset = 0;
e4bbbda8 2410 lmo.l_name_offset = 8;
cc10cae3 2411 lmo.l_ld_offset = 16;
e4bbbda8 2412 lmo.l_next_offset = 24;
e4bbbda8 2413 lmo.l_prev_offset = 32;
e4bbbda8
MK
2414 }
2415
2416 return lmp;
2417}
2418\f
2419
7d522c90 2420struct target_so_ops svr4_so_ops;
13437d4b 2421
c378eb4e 2422/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
2423 different rule for symbol lookup. The lookup begins here in the DSO, not in
2424 the main executable. */
2425
2426static struct symbol *
2427elf_lookup_lib_symbol (const struct objfile *objfile,
2428 const char *name,
21b556f4 2429 const domain_enum domain)
3a40aaa0 2430{
61f0d762
JK
2431 bfd *abfd;
2432
2433 if (objfile == symfile_objfile)
2434 abfd = exec_bfd;
2435 else
2436 {
2437 /* OBJFILE should have been passed as the non-debug one. */
2438 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2439
2440 abfd = objfile->obfd;
2441 }
2442
2443 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2444 return NULL;
2445
94af9270 2446 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2447}
2448
a78f21af
AC
2449extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2450
13437d4b
KB
2451void
2452_initialize_svr4_solib (void)
2453{
4b188b9f 2454 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 2455 solib_svr4_pspace_data
8e260fc0 2456 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 2457
749499cb 2458 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 2459 svr4_so_ops.free_so = svr4_free_so;
0892cb63 2460 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
2461 svr4_so_ops.clear_solib = svr4_clear_solib;
2462 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2463 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2464 svr4_so_ops.current_sos = svr4_current_sos;
2465 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2466 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2467 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2468 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2469 svr4_so_ops.same = svr4_same;
de18c1d8 2470 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2471}
This page took 1.471969 seconds and 4 git commands to generate.