add bug number to previous commit
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
28e7fd62 3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
fb14de7b 33#include "regcache.h"
2020b7ab 34#include "gdbthread.h"
1a816a87 35#include "observer.h"
13437d4b 36
4b188b9f
MK
37#include "gdb_assert.h"
38
13437d4b 39#include "solist.h"
bba93f6c 40#include "solib.h"
13437d4b
KB
41#include "solib-svr4.h"
42
2f4950cd 43#include "bfd-target.h"
cc10cae3 44#include "elf-bfd.h"
2f4950cd 45#include "exec.h"
8d4e36ba 46#include "auxv.h"
f1838a98 47#include "exceptions.h"
695c3173 48#include "gdb_bfd.h"
2f4950cd 49
e5e2b9ff 50static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 51static int svr4_have_link_map_offsets (void);
9f2982ff 52static void svr4_relocate_main_executable (void);
1c4dcb57 53
c378eb4e 54/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
55
56struct lm_info
57 {
cc10cae3 58 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
64 iff L_ADDR_P. */
65 CORE_ADDR l_addr, l_addr_inferior;
66 unsigned int l_addr_p : 1;
93a57060
DJ
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
3957565a
JK
70
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
3957565a
JK
143static struct lm_info *
144lm_info_read (CORE_ADDR lm_addr)
13437d4b 145{
4b188b9f 146 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
147 gdb_byte *lm;
148 struct lm_info *lm_info;
149 struct cleanup *back_to;
150
151 lm = xmalloc (lmo->link_map_size);
152 back_to = make_cleanup (xfree, lm);
153
154 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
155 {
156 warning (_("Error reading shared library list entry at %s"),
f5656ead 157 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
158 lm_info = NULL;
159 }
160 else
161 {
f5656ead 162 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 163
3957565a
JK
164 lm_info = xzalloc (sizeof (*lm_info));
165 lm_info->lm_addr = lm_addr;
166
167 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
168 ptr_type);
169 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
170 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
171 ptr_type);
172 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
173 ptr_type);
174 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
175 ptr_type);
176 }
177
178 do_cleanups (back_to);
179
180 return lm_info;
13437d4b
KB
181}
182
cc10cae3 183static int
b23518f0 184has_lm_dynamic_from_link_map (void)
cc10cae3
AO
185{
186 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
187
cfaefc65 188 return lmo->l_ld_offset >= 0;
cc10cae3
AO
189}
190
cc10cae3 191static CORE_ADDR
b23518f0 192lm_addr_check (struct so_list *so, bfd *abfd)
cc10cae3 193{
3957565a 194 if (!so->lm_info->l_addr_p)
cc10cae3
AO
195 {
196 struct bfd_section *dyninfo_sect;
28f34a8f 197 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 198
3957565a 199 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 200
b23518f0 201 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
202 goto set_addr;
203
3957565a 204 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
205
206 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
207 if (dyninfo_sect == NULL)
208 goto set_addr;
209
210 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
211
212 if (dynaddr + l_addr != l_dynaddr)
213 {
28f34a8f 214 CORE_ADDR align = 0x1000;
4e1fc9c9 215 CORE_ADDR minpagesize = align;
28f34a8f 216
cc10cae3
AO
217 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
218 {
219 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
220 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
221 int i;
222
223 align = 1;
224
225 for (i = 0; i < ehdr->e_phnum; i++)
226 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
227 align = phdr[i].p_align;
4e1fc9c9
JK
228
229 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
230 }
231
232 /* Turn it into a mask. */
233 align--;
234
235 /* If the changes match the alignment requirements, we
236 assume we're using a core file that was generated by the
237 same binary, just prelinked with a different base offset.
238 If it doesn't match, we may have a different binary, the
239 same binary with the dynamic table loaded at an unrelated
240 location, or anything, really. To avoid regressions,
241 don't adjust the base offset in the latter case, although
242 odds are that, if things really changed, debugging won't
5c0d192f
JK
243 quite work.
244
245 One could expect more the condition
246 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
247 but the one below is relaxed for PPC. The PPC kernel supports
248 either 4k or 64k page sizes. To be prepared for 64k pages,
249 PPC ELF files are built using an alignment requirement of 64k.
250 However, when running on a kernel supporting 4k pages, the memory
251 mapping of the library may not actually happen on a 64k boundary!
252
253 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
254 equivalent to the possibly expected check above.)
255
256 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 257
02835898
JK
258 l_addr = l_dynaddr - dynaddr;
259
4e1fc9c9
JK
260 if ((l_addr & (minpagesize - 1)) == 0
261 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 262 {
701ed6dc 263 if (info_verbose)
ccf26247
JK
264 printf_unfiltered (_("Using PIC (Position Independent Code) "
265 "prelink displacement %s for \"%s\".\n"),
f5656ead 266 paddress (target_gdbarch (), l_addr),
ccf26247 267 so->so_name);
cc10cae3 268 }
79d4c408 269 else
02835898
JK
270 {
271 /* There is no way to verify the library file matches. prelink
272 can during prelinking of an unprelinked file (or unprelinking
273 of a prelinked file) shift the DYNAMIC segment by arbitrary
274 offset without any page size alignment. There is no way to
275 find out the ELF header and/or Program Headers for a limited
276 verification if it they match. One could do a verification
277 of the DYNAMIC segment. Still the found address is the best
278 one GDB could find. */
279
280 warning (_(".dynamic section for \"%s\" "
281 "is not at the expected address "
282 "(wrong library or version mismatch?)"), so->so_name);
283 }
cc10cae3
AO
284 }
285
286 set_addr:
287 so->lm_info->l_addr = l_addr;
3957565a 288 so->lm_info->l_addr_p = 1;
cc10cae3
AO
289 }
290
291 return so->lm_info->l_addr;
292}
293
6c95b8df 294/* Per pspace SVR4 specific data. */
13437d4b 295
1a816a87
PA
296struct svr4_info
297{
c378eb4e 298 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
299
300 /* Validity flag for debug_loader_offset. */
301 int debug_loader_offset_p;
302
303 /* Load address for the dynamic linker, inferred. */
304 CORE_ADDR debug_loader_offset;
305
306 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
307 char *debug_loader_name;
308
309 /* Load map address for the main executable. */
310 CORE_ADDR main_lm_addr;
1a816a87 311
6c95b8df
PA
312 CORE_ADDR interp_text_sect_low;
313 CORE_ADDR interp_text_sect_high;
314 CORE_ADDR interp_plt_sect_low;
315 CORE_ADDR interp_plt_sect_high;
316};
1a816a87 317
6c95b8df
PA
318/* Per-program-space data key. */
319static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 320
6c95b8df
PA
321static void
322svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 323{
6c95b8df 324 struct svr4_info *info;
1a816a87 325
6c95b8df
PA
326 info = program_space_data (pspace, solib_svr4_pspace_data);
327 xfree (info);
1a816a87
PA
328}
329
6c95b8df
PA
330/* Get the current svr4 data. If none is found yet, add it now. This
331 function always returns a valid object. */
34439770 332
6c95b8df
PA
333static struct svr4_info *
334get_svr4_info (void)
1a816a87 335{
6c95b8df 336 struct svr4_info *info;
1a816a87 337
6c95b8df
PA
338 info = program_space_data (current_program_space, solib_svr4_pspace_data);
339 if (info != NULL)
340 return info;
34439770 341
6c95b8df
PA
342 info = XZALLOC (struct svr4_info);
343 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
344 return info;
1a816a87 345}
93a57060 346
13437d4b
KB
347/* Local function prototypes */
348
bc043ef3 349static int match_main (const char *);
13437d4b 350
97ec2c2f
UW
351/* Read program header TYPE from inferior memory. The header is found
352 by scanning the OS auxillary vector.
353
09919ac2
JK
354 If TYPE == -1, return the program headers instead of the contents of
355 one program header.
356
97ec2c2f
UW
357 Return a pointer to allocated memory holding the program header contents,
358 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
359 size of those contents is returned to P_SECT_SIZE. Likewise, the target
360 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
361
362static gdb_byte *
363read_program_header (int type, int *p_sect_size, int *p_arch_size)
364{
f5656ead 365 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 366 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
367 int arch_size, sect_size;
368 CORE_ADDR sect_addr;
369 gdb_byte *buf;
43136979 370 int pt_phdr_p = 0;
97ec2c2f
UW
371
372 /* Get required auxv elements from target. */
373 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
374 return 0;
375 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
376 return 0;
377 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
378 return 0;
379 if (!at_phdr || !at_phnum)
380 return 0;
381
382 /* Determine ELF architecture type. */
383 if (at_phent == sizeof (Elf32_External_Phdr))
384 arch_size = 32;
385 else if (at_phent == sizeof (Elf64_External_Phdr))
386 arch_size = 64;
387 else
388 return 0;
389
09919ac2
JK
390 /* Find the requested segment. */
391 if (type == -1)
392 {
393 sect_addr = at_phdr;
394 sect_size = at_phent * at_phnum;
395 }
396 else if (arch_size == 32)
97ec2c2f
UW
397 {
398 Elf32_External_Phdr phdr;
399 int i;
400
401 /* Search for requested PHDR. */
402 for (i = 0; i < at_phnum; i++)
403 {
43136979
AR
404 int p_type;
405
97ec2c2f
UW
406 if (target_read_memory (at_phdr + i * sizeof (phdr),
407 (gdb_byte *)&phdr, sizeof (phdr)))
408 return 0;
409
43136979
AR
410 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
411 4, byte_order);
412
413 if (p_type == PT_PHDR)
414 {
415 pt_phdr_p = 1;
416 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
417 4, byte_order);
418 }
419
420 if (p_type == type)
97ec2c2f
UW
421 break;
422 }
423
424 if (i == at_phnum)
425 return 0;
426
427 /* Retrieve address and size. */
e17a4113
UW
428 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
429 4, byte_order);
430 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
431 4, byte_order);
97ec2c2f
UW
432 }
433 else
434 {
435 Elf64_External_Phdr phdr;
436 int i;
437
438 /* Search for requested PHDR. */
439 for (i = 0; i < at_phnum; i++)
440 {
43136979
AR
441 int p_type;
442
97ec2c2f
UW
443 if (target_read_memory (at_phdr + i * sizeof (phdr),
444 (gdb_byte *)&phdr, sizeof (phdr)))
445 return 0;
446
43136979
AR
447 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
448 4, byte_order);
449
450 if (p_type == PT_PHDR)
451 {
452 pt_phdr_p = 1;
453 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
454 8, byte_order);
455 }
456
457 if (p_type == type)
97ec2c2f
UW
458 break;
459 }
460
461 if (i == at_phnum)
462 return 0;
463
464 /* Retrieve address and size. */
e17a4113
UW
465 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
466 8, byte_order);
467 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
468 8, byte_order);
97ec2c2f
UW
469 }
470
43136979
AR
471 /* PT_PHDR is optional, but we really need it
472 for PIE to make this work in general. */
473
474 if (pt_phdr_p)
475 {
476 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
477 Relocation offset is the difference between the two. */
478 sect_addr = sect_addr + (at_phdr - pt_phdr);
479 }
480
97ec2c2f
UW
481 /* Read in requested program header. */
482 buf = xmalloc (sect_size);
483 if (target_read_memory (sect_addr, buf, sect_size))
484 {
485 xfree (buf);
486 return NULL;
487 }
488
489 if (p_arch_size)
490 *p_arch_size = arch_size;
491 if (p_sect_size)
492 *p_sect_size = sect_size;
493
494 return buf;
495}
496
497
498/* Return program interpreter string. */
499static gdb_byte *
500find_program_interpreter (void)
501{
502 gdb_byte *buf = NULL;
503
504 /* If we have an exec_bfd, use its section table. */
505 if (exec_bfd
506 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
507 {
508 struct bfd_section *interp_sect;
509
510 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
511 if (interp_sect != NULL)
512 {
97ec2c2f
UW
513 int sect_size = bfd_section_size (exec_bfd, interp_sect);
514
515 buf = xmalloc (sect_size);
516 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
517 }
518 }
519
520 /* If we didn't find it, use the target auxillary vector. */
521 if (!buf)
522 buf = read_program_header (PT_INTERP, NULL, NULL);
523
524 return buf;
525}
526
527
c378eb4e 528/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
529 returned and the corresponding PTR is set. */
530
531static int
532scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
533{
534 int arch_size, step, sect_size;
535 long dyn_tag;
b381ea14 536 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 537 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
538 Elf32_External_Dyn *x_dynp_32;
539 Elf64_External_Dyn *x_dynp_64;
540 struct bfd_section *sect;
61f0d762 541 struct target_section *target_section;
3a40aaa0
UW
542
543 if (abfd == NULL)
544 return 0;
0763ab81
PA
545
546 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
547 return 0;
548
3a40aaa0
UW
549 arch_size = bfd_get_arch_size (abfd);
550 if (arch_size == -1)
0763ab81 551 return 0;
3a40aaa0
UW
552
553 /* Find the start address of the .dynamic section. */
554 sect = bfd_get_section_by_name (abfd, ".dynamic");
555 if (sect == NULL)
556 return 0;
61f0d762
JK
557
558 for (target_section = current_target_sections->sections;
559 target_section < current_target_sections->sections_end;
560 target_section++)
561 if (sect == target_section->the_bfd_section)
562 break;
b381ea14
JK
563 if (target_section < current_target_sections->sections_end)
564 dyn_addr = target_section->addr;
565 else
566 {
567 /* ABFD may come from OBJFILE acting only as a symbol file without being
568 loaded into the target (see add_symbol_file_command). This case is
569 such fallback to the file VMA address without the possibility of
570 having the section relocated to its actual in-memory address. */
571
572 dyn_addr = bfd_section_vma (abfd, sect);
573 }
3a40aaa0 574
65728c26
DJ
575 /* Read in .dynamic from the BFD. We will get the actual value
576 from memory later. */
3a40aaa0 577 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
578 buf = bufstart = alloca (sect_size);
579 if (!bfd_get_section_contents (abfd, sect,
580 buf, 0, sect_size))
581 return 0;
3a40aaa0
UW
582
583 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
584 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
585 : sizeof (Elf64_External_Dyn);
586 for (bufend = buf + sect_size;
587 buf < bufend;
588 buf += step)
589 {
590 if (arch_size == 32)
591 {
592 x_dynp_32 = (Elf32_External_Dyn *) buf;
593 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
594 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
595 }
65728c26 596 else
3a40aaa0
UW
597 {
598 x_dynp_64 = (Elf64_External_Dyn *) buf;
599 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
600 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
601 }
602 if (dyn_tag == DT_NULL)
603 return 0;
604 if (dyn_tag == dyntag)
605 {
65728c26
DJ
606 /* If requested, try to read the runtime value of this .dynamic
607 entry. */
3a40aaa0 608 if (ptr)
65728c26 609 {
b6da22b0 610 struct type *ptr_type;
65728c26
DJ
611 gdb_byte ptr_buf[8];
612 CORE_ADDR ptr_addr;
613
f5656ead 614 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b381ea14 615 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 616 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 617 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
618 *ptr = dyn_ptr;
619 }
620 return 1;
3a40aaa0
UW
621 }
622 }
623
624 return 0;
625}
626
97ec2c2f
UW
627/* Scan for DYNTAG in .dynamic section of the target's main executable,
628 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
629 returned and the corresponding PTR is set. */
630
631static int
632scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
633{
f5656ead 634 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f
UW
635 int sect_size, arch_size, step;
636 long dyn_tag;
637 CORE_ADDR dyn_ptr;
638 gdb_byte *bufend, *bufstart, *buf;
639
640 /* Read in .dynamic section. */
641 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
642 if (!buf)
643 return 0;
644
645 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
646 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
647 : sizeof (Elf64_External_Dyn);
648 for (bufend = buf + sect_size;
649 buf < bufend;
650 buf += step)
651 {
652 if (arch_size == 32)
653 {
654 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 655
e17a4113
UW
656 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
657 4, byte_order);
658 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
659 4, byte_order);
97ec2c2f
UW
660 }
661 else
662 {
663 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 664
e17a4113
UW
665 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
666 8, byte_order);
667 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
668 8, byte_order);
97ec2c2f
UW
669 }
670 if (dyn_tag == DT_NULL)
671 break;
672
673 if (dyn_tag == dyntag)
674 {
675 if (ptr)
676 *ptr = dyn_ptr;
677
678 xfree (bufstart);
679 return 1;
680 }
681 }
682
683 xfree (bufstart);
684 return 0;
685}
686
7f86f058
PA
687/* Locate the base address of dynamic linker structs for SVR4 elf
688 targets.
13437d4b
KB
689
690 For SVR4 elf targets the address of the dynamic linker's runtime
691 structure is contained within the dynamic info section in the
692 executable file. The dynamic section is also mapped into the
693 inferior address space. Because the runtime loader fills in the
694 real address before starting the inferior, we have to read in the
695 dynamic info section from the inferior address space.
696 If there are any errors while trying to find the address, we
7f86f058 697 silently return 0, otherwise the found address is returned. */
13437d4b
KB
698
699static CORE_ADDR
700elf_locate_base (void)
701{
3a40aaa0
UW
702 struct minimal_symbol *msymbol;
703 CORE_ADDR dyn_ptr;
13437d4b 704
65728c26
DJ
705 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
706 instead of DT_DEBUG, although they sometimes contain an unused
707 DT_DEBUG. */
97ec2c2f
UW
708 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
709 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 710 {
f5656ead 711 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 712 gdb_byte *pbuf;
b6da22b0 713 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 714
3a40aaa0
UW
715 pbuf = alloca (pbuf_size);
716 /* DT_MIPS_RLD_MAP contains a pointer to the address
717 of the dynamic link structure. */
718 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 719 return 0;
b6da22b0 720 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
721 }
722
65728c26 723 /* Find DT_DEBUG. */
97ec2c2f
UW
724 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
725 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
726 return dyn_ptr;
727
3a40aaa0
UW
728 /* This may be a static executable. Look for the symbol
729 conventionally named _r_debug, as a last resort. */
730 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
731 if (msymbol != NULL)
732 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
733
734 /* DT_DEBUG entry not found. */
735 return 0;
736}
737
7f86f058 738/* Locate the base address of dynamic linker structs.
13437d4b
KB
739
740 For both the SunOS and SVR4 shared library implementations, if the
741 inferior executable has been linked dynamically, there is a single
742 address somewhere in the inferior's data space which is the key to
743 locating all of the dynamic linker's runtime structures. This
744 address is the value of the debug base symbol. The job of this
745 function is to find and return that address, or to return 0 if there
746 is no such address (the executable is statically linked for example).
747
748 For SunOS, the job is almost trivial, since the dynamic linker and
749 all of it's structures are statically linked to the executable at
750 link time. Thus the symbol for the address we are looking for has
751 already been added to the minimal symbol table for the executable's
752 objfile at the time the symbol file's symbols were read, and all we
753 have to do is look it up there. Note that we explicitly do NOT want
754 to find the copies in the shared library.
755
756 The SVR4 version is a bit more complicated because the address
757 is contained somewhere in the dynamic info section. We have to go
758 to a lot more work to discover the address of the debug base symbol.
759 Because of this complexity, we cache the value we find and return that
760 value on subsequent invocations. Note there is no copy in the
7f86f058 761 executable symbol tables. */
13437d4b
KB
762
763static CORE_ADDR
1a816a87 764locate_base (struct svr4_info *info)
13437d4b 765{
13437d4b
KB
766 /* Check to see if we have a currently valid address, and if so, avoid
767 doing all this work again and just return the cached address. If
768 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
769 section for ELF executables. There's no point in doing any of this
770 though if we don't have some link map offsets to work with. */
13437d4b 771
1a816a87 772 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 773 info->debug_base = elf_locate_base ();
1a816a87 774 return info->debug_base;
13437d4b
KB
775}
776
e4cd0d6a 777/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
778 return its address in the inferior. Return zero if the address
779 could not be determined.
13437d4b 780
e4cd0d6a
MK
781 FIXME: Perhaps we should validate the info somehow, perhaps by
782 checking r_version for a known version number, or r_state for
783 RT_CONSISTENT. */
13437d4b
KB
784
785static CORE_ADDR
1a816a87 786solib_svr4_r_map (struct svr4_info *info)
13437d4b 787{
4b188b9f 788 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 789 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104
JB
790 CORE_ADDR addr = 0;
791 volatile struct gdb_exception ex;
13437d4b 792
08597104
JB
793 TRY_CATCH (ex, RETURN_MASK_ERROR)
794 {
795 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
796 ptr_type);
797 }
798 exception_print (gdb_stderr, ex);
799 return addr;
e4cd0d6a 800}
13437d4b 801
7cd25cfc
DJ
802/* Find r_brk from the inferior's debug base. */
803
804static CORE_ADDR
1a816a87 805solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
806{
807 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 808 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 809
1a816a87
PA
810 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
811 ptr_type);
7cd25cfc
DJ
812}
813
e4cd0d6a
MK
814/* Find the link map for the dynamic linker (if it is not in the
815 normal list of loaded shared objects). */
13437d4b 816
e4cd0d6a 817static CORE_ADDR
1a816a87 818solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
819{
820 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
821 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
822 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
e4cd0d6a 823 ULONGEST version;
13437d4b 824
e4cd0d6a
MK
825 /* Check version, and return zero if `struct r_debug' doesn't have
826 the r_ldsomap member. */
1a816a87
PA
827 version
828 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 829 lmo->r_version_size, byte_order);
e4cd0d6a
MK
830 if (version < 2 || lmo->r_ldsomap_offset == -1)
831 return 0;
13437d4b 832
1a816a87 833 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 834 ptr_type);
13437d4b
KB
835}
836
de18c1d8
JM
837/* On Solaris systems with some versions of the dynamic linker,
838 ld.so's l_name pointer points to the SONAME in the string table
839 rather than into writable memory. So that GDB can find shared
840 libraries when loading a core file generated by gcore, ensure that
841 memory areas containing the l_name string are saved in the core
842 file. */
843
844static int
845svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
846{
847 struct svr4_info *info;
848 CORE_ADDR ldsomap;
849 struct so_list *new;
850 struct cleanup *old_chain;
851 struct link_map_offsets *lmo;
74de0234 852 CORE_ADDR name_lm;
de18c1d8
JM
853
854 info = get_svr4_info ();
855
856 info->debug_base = 0;
857 locate_base (info);
858 if (!info->debug_base)
859 return 0;
860
861 ldsomap = solib_svr4_r_ldsomap (info);
862 if (!ldsomap)
863 return 0;
864
865 lmo = svr4_fetch_link_map_offsets ();
866 new = XZALLOC (struct so_list);
867 old_chain = make_cleanup (xfree, new);
3957565a 868 new->lm_info = lm_info_read (ldsomap);
de18c1d8 869 make_cleanup (xfree, new->lm_info);
3957565a 870 name_lm = new->lm_info ? new->lm_info->l_name : 0;
de18c1d8
JM
871 do_cleanups (old_chain);
872
74de0234 873 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
874}
875
7f86f058 876/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 877
7f86f058
PA
878 If no open symbol file, attempt to locate and open the main symbol
879 file. On SVR4 systems, this is the first link map entry. If its
880 name is here, we can open it. Useful when attaching to a process
881 without first loading its symbol file. */
13437d4b
KB
882
883static int
884open_symbol_file_object (void *from_ttyp)
885{
886 CORE_ADDR lm, l_name;
887 char *filename;
888 int errcode;
889 int from_tty = *(int *)from_ttyp;
4b188b9f 890 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 891 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 892 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 893 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 894 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 895 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
896
897 if (symfile_objfile)
9e2f0ad4 898 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
899 {
900 do_cleanups (cleanups);
901 return 0;
902 }
13437d4b 903
7cd25cfc 904 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
905 info->debug_base = 0;
906 if (locate_base (info) == 0)
3bb47e8b
TT
907 {
908 do_cleanups (cleanups);
909 return 0; /* failed somehow... */
910 }
13437d4b
KB
911
912 /* First link map member should be the executable. */
1a816a87 913 lm = solib_svr4_r_map (info);
e4cd0d6a 914 if (lm == 0)
3bb47e8b
TT
915 {
916 do_cleanups (cleanups);
917 return 0; /* failed somehow... */
918 }
13437d4b
KB
919
920 /* Read address of name from target memory to GDB. */
cfaefc65 921 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 922
cfaefc65 923 /* Convert the address to host format. */
b6da22b0 924 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 925
13437d4b 926 if (l_name == 0)
3bb47e8b
TT
927 {
928 do_cleanups (cleanups);
929 return 0; /* No filename. */
930 }
13437d4b
KB
931
932 /* Now fetch the filename from target memory. */
933 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 934 make_cleanup (xfree, filename);
13437d4b
KB
935
936 if (errcode)
937 {
8a3fe4f8 938 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 939 safe_strerror (errcode));
3bb47e8b 940 do_cleanups (cleanups);
13437d4b
KB
941 return 0;
942 }
943
13437d4b 944 /* Have a pathname: read the symbol file. */
1adeb98a 945 symbol_file_add_main (filename, from_tty);
13437d4b 946
3bb47e8b 947 do_cleanups (cleanups);
13437d4b
KB
948 return 1;
949}
13437d4b 950
2268b414
JK
951/* Data exchange structure for the XML parser as returned by
952 svr4_current_sos_via_xfer_libraries. */
953
954struct svr4_library_list
955{
956 struct so_list *head, **tailp;
957
958 /* Inferior address of struct link_map used for the main executable. It is
959 NULL if not known. */
960 CORE_ADDR main_lm;
961};
962
93f2a35e
JK
963/* Implementation for target_so_ops.free_so. */
964
965static void
966svr4_free_so (struct so_list *so)
967{
968 xfree (so->lm_info);
969}
970
971/* Free so_list built so far (called via cleanup). */
972
973static void
974svr4_free_library_list (void *p_list)
975{
976 struct so_list *list = *(struct so_list **) p_list;
977
978 while (list != NULL)
979 {
980 struct so_list *next = list->next;
981
3756ef7e 982 free_so (list);
93f2a35e
JK
983 list = next;
984 }
985}
986
2268b414
JK
987#ifdef HAVE_LIBEXPAT
988
989#include "xml-support.h"
990
991/* Handle the start of a <library> element. Note: new elements are added
992 at the tail of the list, keeping the list in order. */
993
994static void
995library_list_start_library (struct gdb_xml_parser *parser,
996 const struct gdb_xml_element *element,
997 void *user_data, VEC(gdb_xml_value_s) *attributes)
998{
999 struct svr4_library_list *list = user_data;
1000 const char *name = xml_find_attribute (attributes, "name")->value;
1001 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1002 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1003 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1004 struct so_list *new_elem;
1005
1006 new_elem = XZALLOC (struct so_list);
1007 new_elem->lm_info = XZALLOC (struct lm_info);
1008 new_elem->lm_info->lm_addr = *lmp;
1009 new_elem->lm_info->l_addr_inferior = *l_addrp;
1010 new_elem->lm_info->l_ld = *l_ldp;
1011
1012 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1013 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1014 strcpy (new_elem->so_original_name, new_elem->so_name);
1015
1016 *list->tailp = new_elem;
1017 list->tailp = &new_elem->next;
1018}
1019
1020/* Handle the start of a <library-list-svr4> element. */
1021
1022static void
1023svr4_library_list_start_list (struct gdb_xml_parser *parser,
1024 const struct gdb_xml_element *element,
1025 void *user_data, VEC(gdb_xml_value_s) *attributes)
1026{
1027 struct svr4_library_list *list = user_data;
1028 const char *version = xml_find_attribute (attributes, "version")->value;
1029 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1030
1031 if (strcmp (version, "1.0") != 0)
1032 gdb_xml_error (parser,
1033 _("SVR4 Library list has unsupported version \"%s\""),
1034 version);
1035
1036 if (main_lm)
1037 list->main_lm = *(ULONGEST *) main_lm->value;
1038}
1039
1040/* The allowed elements and attributes for an XML library list.
1041 The root element is a <library-list>. */
1042
1043static const struct gdb_xml_attribute svr4_library_attributes[] =
1044{
1045 { "name", GDB_XML_AF_NONE, NULL, NULL },
1046 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1047 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1048 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1049 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1050};
1051
1052static const struct gdb_xml_element svr4_library_list_children[] =
1053{
1054 {
1055 "library", svr4_library_attributes, NULL,
1056 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1057 library_list_start_library, NULL
1058 },
1059 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1060};
1061
1062static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1063{
1064 { "version", GDB_XML_AF_NONE, NULL, NULL },
1065 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1066 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1067};
1068
1069static const struct gdb_xml_element svr4_library_list_elements[] =
1070{
1071 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1072 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1073 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1074};
1075
2268b414
JK
1076/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1077
1078 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1079 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1080 empty, caller is responsible for freeing all its entries. */
1081
1082static int
1083svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1084{
1085 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1086 &list->head);
1087
1088 memset (list, 0, sizeof (*list));
1089 list->tailp = &list->head;
1090 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1091 svr4_library_list_elements, document, list) == 0)
1092 {
1093 /* Parsed successfully, keep the result. */
1094 discard_cleanups (back_to);
1095 return 1;
1096 }
1097
1098 do_cleanups (back_to);
1099 return 0;
1100}
1101
1102/* Attempt to get so_list from target via qXfer:libraries:read packet.
1103
1104 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1105 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1106 empty, caller is responsible for freeing all its entries. */
1107
1108static int
1109svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1110{
1111 char *svr4_library_document;
1112 int result;
1113 struct cleanup *back_to;
1114
1115 /* Fetch the list of shared libraries. */
1116 svr4_library_document = target_read_stralloc (&current_target,
1117 TARGET_OBJECT_LIBRARIES_SVR4,
1118 NULL);
1119 if (svr4_library_document == NULL)
1120 return 0;
1121
1122 back_to = make_cleanup (xfree, svr4_library_document);
1123 result = svr4_parse_libraries (svr4_library_document, list);
1124 do_cleanups (back_to);
1125
1126 return result;
1127}
1128
1129#else
1130
1131static int
1132svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1133{
1134 return 0;
1135}
1136
1137#endif
1138
34439770
DJ
1139/* If no shared library information is available from the dynamic
1140 linker, build a fallback list from other sources. */
1141
1142static struct so_list *
1143svr4_default_sos (void)
1144{
6c95b8df 1145 struct svr4_info *info = get_svr4_info ();
8e5c319d 1146 struct so_list *new;
1a816a87 1147
8e5c319d
JK
1148 if (!info->debug_loader_offset_p)
1149 return NULL;
34439770 1150
8e5c319d 1151 new = XZALLOC (struct so_list);
34439770 1152
3957565a 1153 new->lm_info = xzalloc (sizeof (struct lm_info));
34439770 1154
3957565a 1155 /* Nothing will ever check the other fields if we set l_addr_p. */
8e5c319d 1156 new->lm_info->l_addr = info->debug_loader_offset;
3957565a 1157 new->lm_info->l_addr_p = 1;
34439770 1158
8e5c319d
JK
1159 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1160 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1161 strcpy (new->so_original_name, new->so_name);
34439770 1162
8e5c319d 1163 return new;
34439770
DJ
1164}
1165
cb08cc53
JK
1166/* Read the whole inferior libraries chain starting at address LM. Add the
1167 entries to the tail referenced by LINK_PTR_PTR. Ignore the first entry if
1168 IGNORE_FIRST and set global MAIN_LM_ADDR according to it. */
13437d4b 1169
cb08cc53
JK
1170static void
1171svr4_read_so_list (CORE_ADDR lm, struct so_list ***link_ptr_ptr,
1172 int ignore_first)
13437d4b 1173{
cb08cc53 1174 CORE_ADDR prev_lm = 0, next_lm;
13437d4b 1175
cb08cc53 1176 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1177 {
4b188b9f 1178 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
cb08cc53
JK
1179 struct so_list *new;
1180 struct cleanup *old_chain;
1181 int errcode;
1182 char *buffer;
13437d4b 1183
cb08cc53
JK
1184 new = XZALLOC (struct so_list);
1185 old_chain = make_cleanup_free_so (new);
13437d4b 1186
3957565a
JK
1187 new->lm_info = lm_info_read (lm);
1188 if (new->lm_info == NULL)
1189 {
1190 do_cleanups (old_chain);
1191 break;
1192 }
13437d4b 1193
3957565a 1194 next_lm = new->lm_info->l_next;
492928e4 1195
3957565a 1196 if (new->lm_info->l_prev != prev_lm)
492928e4 1197 {
2268b414 1198 warning (_("Corrupted shared library list: %s != %s"),
f5656ead
TT
1199 paddress (target_gdbarch (), prev_lm),
1200 paddress (target_gdbarch (), new->lm_info->l_prev));
cb08cc53
JK
1201 do_cleanups (old_chain);
1202 break;
492928e4 1203 }
13437d4b
KB
1204
1205 /* For SVR4 versions, the first entry in the link map is for the
1206 inferior executable, so we must ignore it. For some versions of
1207 SVR4, it has no name. For others (Solaris 2.3 for example), it
1208 does have a name, so we can no longer use a missing name to
c378eb4e 1209 decide when to ignore it. */
3957565a 1210 if (ignore_first && new->lm_info->l_prev == 0)
93a57060 1211 {
cb08cc53
JK
1212 struct svr4_info *info = get_svr4_info ();
1213
1a816a87 1214 info->main_lm_addr = new->lm_info->lm_addr;
cb08cc53
JK
1215 do_cleanups (old_chain);
1216 continue;
93a57060 1217 }
13437d4b 1218
cb08cc53 1219 /* Extract this shared object's name. */
3957565a 1220 target_read_string (new->lm_info->l_name, &buffer,
cb08cc53
JK
1221 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1222 if (errcode != 0)
1223 {
1224 warning (_("Can't read pathname for load map: %s."),
1225 safe_strerror (errcode));
1226 do_cleanups (old_chain);
1227 continue;
13437d4b
KB
1228 }
1229
cb08cc53
JK
1230 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1231 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1232 strcpy (new->so_original_name, new->so_name);
1233 xfree (buffer);
492928e4 1234
cb08cc53
JK
1235 /* If this entry has no name, or its name matches the name
1236 for the main executable, don't include it in the list. */
1237 if (! new->so_name[0] || match_main (new->so_name))
492928e4 1238 {
cb08cc53
JK
1239 do_cleanups (old_chain);
1240 continue;
492928e4 1241 }
e4cd0d6a 1242
13437d4b 1243 discard_cleanups (old_chain);
cb08cc53
JK
1244 new->next = 0;
1245 **link_ptr_ptr = new;
1246 *link_ptr_ptr = &new->next;
13437d4b 1247 }
cb08cc53
JK
1248}
1249
1250/* Implement the "current_sos" target_so_ops method. */
1251
1252static struct so_list *
1253svr4_current_sos (void)
1254{
1255 CORE_ADDR lm;
1256 struct so_list *head = NULL;
1257 struct so_list **link_ptr = &head;
1258 struct svr4_info *info;
1259 struct cleanup *back_to;
1260 int ignore_first;
2268b414
JK
1261 struct svr4_library_list library_list;
1262
0c5bf5a9
JK
1263 /* Fall back to manual examination of the target if the packet is not
1264 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1265 tests a case where gdbserver cannot find the shared libraries list while
1266 GDB itself is able to find it via SYMFILE_OBJFILE.
1267
1268 Unfortunately statically linked inferiors will also fall back through this
1269 suboptimal code path. */
1270
2268b414
JK
1271 if (svr4_current_sos_via_xfer_libraries (&library_list))
1272 {
1273 if (library_list.main_lm)
1274 {
1275 info = get_svr4_info ();
1276 info->main_lm_addr = library_list.main_lm;
1277 }
1278
1279 return library_list.head ? library_list.head : svr4_default_sos ();
1280 }
cb08cc53
JK
1281
1282 info = get_svr4_info ();
1283
1284 /* Always locate the debug struct, in case it has moved. */
1285 info->debug_base = 0;
1286 locate_base (info);
1287
1288 /* If we can't find the dynamic linker's base structure, this
1289 must not be a dynamically linked executable. Hmm. */
1290 if (! info->debug_base)
1291 return svr4_default_sos ();
1292
1293 /* Assume that everything is a library if the dynamic loader was loaded
1294 late by a static executable. */
1295 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1296 ignore_first = 0;
1297 else
1298 ignore_first = 1;
1299
1300 back_to = make_cleanup (svr4_free_library_list, &head);
1301
1302 /* Walk the inferior's link map list, and build our list of
1303 `struct so_list' nodes. */
1304 lm = solib_svr4_r_map (info);
1305 if (lm)
1306 svr4_read_so_list (lm, &link_ptr, ignore_first);
1307
1308 /* On Solaris, the dynamic linker is not in the normal list of
1309 shared objects, so make sure we pick it up too. Having
1310 symbol information for the dynamic linker is quite crucial
1311 for skipping dynamic linker resolver code. */
1312 lm = solib_svr4_r_ldsomap (info);
1313 if (lm)
1314 svr4_read_so_list (lm, &link_ptr, 0);
1315
1316 discard_cleanups (back_to);
13437d4b 1317
34439770
DJ
1318 if (head == NULL)
1319 return svr4_default_sos ();
1320
13437d4b
KB
1321 return head;
1322}
1323
93a57060 1324/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1325
1326CORE_ADDR
1327svr4_fetch_objfile_link_map (struct objfile *objfile)
1328{
93a57060 1329 struct so_list *so;
6c95b8df 1330 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1331
93a57060 1332 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1333 if (info->main_lm_addr == 0)
93a57060 1334 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1335
93a57060
DJ
1336 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1337 if (objfile == symfile_objfile)
1a816a87 1338 return info->main_lm_addr;
93a57060
DJ
1339
1340 /* The other link map addresses may be found by examining the list
1341 of shared libraries. */
1342 for (so = master_so_list (); so; so = so->next)
1343 if (so->objfile == objfile)
1344 return so->lm_info->lm_addr;
1345
1346 /* Not found! */
bc4a16ae
EZ
1347 return 0;
1348}
13437d4b
KB
1349
1350/* On some systems, the only way to recognize the link map entry for
1351 the main executable file is by looking at its name. Return
1352 non-zero iff SONAME matches one of the known main executable names. */
1353
1354static int
bc043ef3 1355match_main (const char *soname)
13437d4b 1356{
bc043ef3 1357 const char * const *mainp;
13437d4b
KB
1358
1359 for (mainp = main_name_list; *mainp != NULL; mainp++)
1360 {
1361 if (strcmp (soname, *mainp) == 0)
1362 return (1);
1363 }
1364
1365 return (0);
1366}
1367
13437d4b
KB
1368/* Return 1 if PC lies in the dynamic symbol resolution code of the
1369 SVR4 run time loader. */
13437d4b 1370
7d522c90 1371int
d7fa2ae2 1372svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1373{
6c95b8df
PA
1374 struct svr4_info *info = get_svr4_info ();
1375
1376 return ((pc >= info->interp_text_sect_low
1377 && pc < info->interp_text_sect_high)
1378 || (pc >= info->interp_plt_sect_low
1379 && pc < info->interp_plt_sect_high)
0875794a
JK
1380 || in_plt_section (pc, NULL)
1381 || in_gnu_ifunc_stub (pc));
13437d4b 1382}
13437d4b 1383
2f4950cd
AC
1384/* Given an executable's ABFD and target, compute the entry-point
1385 address. */
1386
1387static CORE_ADDR
1388exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1389{
8c2b9656
YQ
1390 CORE_ADDR addr;
1391
2f4950cd
AC
1392 /* KevinB wrote ... for most targets, the address returned by
1393 bfd_get_start_address() is the entry point for the start
1394 function. But, for some targets, bfd_get_start_address() returns
1395 the address of a function descriptor from which the entry point
1396 address may be extracted. This address is extracted by
1397 gdbarch_convert_from_func_ptr_addr(). The method
1398 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1399 function for targets which don't use function descriptors. */
8c2b9656 1400 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1401 bfd_get_start_address (abfd),
1402 targ);
8c2b9656 1403 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1404}
13437d4b 1405
cb457ae2
YQ
1406/* Helper function for gdb_bfd_lookup_symbol. */
1407
1408static int
1409cmp_name_and_sec_flags (asymbol *sym, void *data)
1410{
1411 return (strcmp (sym->name, (const char *) data) == 0
1412 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
1413}
7f86f058 1414/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
1415
1416 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1417 debugger interface, support for arranging for the inferior to hit
1418 a breakpoint after mapping in the shared libraries. This function
1419 enables that breakpoint.
1420
1421 For SunOS, there is a special flag location (in_debugger) which we
1422 set to 1. When the dynamic linker sees this flag set, it will set
1423 a breakpoint at a location known only to itself, after saving the
1424 original contents of that place and the breakpoint address itself,
1425 in it's own internal structures. When we resume the inferior, it
1426 will eventually take a SIGTRAP when it runs into the breakpoint.
1427 We handle this (in a different place) by restoring the contents of
1428 the breakpointed location (which is only known after it stops),
1429 chasing around to locate the shared libraries that have been
1430 loaded, then resuming.
1431
1432 For SVR4, the debugger interface structure contains a member (r_brk)
1433 which is statically initialized at the time the shared library is
1434 built, to the offset of a function (_r_debug_state) which is guaran-
1435 teed to be called once before mapping in a library, and again when
1436 the mapping is complete. At the time we are examining this member,
1437 it contains only the unrelocated offset of the function, so we have
1438 to do our own relocation. Later, when the dynamic linker actually
1439 runs, it relocates r_brk to be the actual address of _r_debug_state().
1440
1441 The debugger interface structure also contains an enumeration which
1442 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1443 depending upon whether or not the library is being mapped or unmapped,
7f86f058 1444 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
1445
1446static int
268a4a75 1447enable_break (struct svr4_info *info, int from_tty)
13437d4b 1448{
13437d4b 1449 struct minimal_symbol *msymbol;
bc043ef3 1450 const char * const *bkpt_namep;
13437d4b 1451 asection *interp_sect;
97ec2c2f 1452 gdb_byte *interp_name;
7cd25cfc 1453 CORE_ADDR sym_addr;
13437d4b 1454
6c95b8df
PA
1455 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1456 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1457
7cd25cfc
DJ
1458 /* If we already have a shared library list in the target, and
1459 r_debug contains r_brk, set the breakpoint there - this should
1460 mean r_brk has already been relocated. Assume the dynamic linker
1461 is the object containing r_brk. */
1462
268a4a75 1463 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1464 sym_addr = 0;
1a816a87
PA
1465 if (info->debug_base && solib_svr4_r_map (info) != 0)
1466 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1467
1468 if (sym_addr != 0)
1469 {
1470 struct obj_section *os;
1471
b36ec657 1472 sym_addr = gdbarch_addr_bits_remove
f5656ead 1473 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
1474 sym_addr,
1475 &current_target));
b36ec657 1476
48379de6
DE
1477 /* On at least some versions of Solaris there's a dynamic relocation
1478 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1479 we get control before the dynamic linker has self-relocated.
1480 Check if SYM_ADDR is in a known section, if it is assume we can
1481 trust its value. This is just a heuristic though, it could go away
1482 or be replaced if it's getting in the way.
1483
1484 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1485 however it's spelled in your particular system) is ARM or Thumb.
1486 That knowledge is encoded in the address, if it's Thumb the low bit
1487 is 1. However, we've stripped that info above and it's not clear
1488 what all the consequences are of passing a non-addr_bits_remove'd
1489 address to create_solib_event_breakpoint. The call to
1490 find_pc_section verifies we know about the address and have some
1491 hope of computing the right kind of breakpoint to use (via
1492 symbol info). It does mean that GDB needs to be pointed at a
1493 non-stripped version of the dynamic linker in order to obtain
1494 information it already knows about. Sigh. */
1495
7cd25cfc
DJ
1496 os = find_pc_section (sym_addr);
1497 if (os != NULL)
1498 {
1499 /* Record the relocated start and end address of the dynamic linker
1500 text and plt section for svr4_in_dynsym_resolve_code. */
1501 bfd *tmp_bfd;
1502 CORE_ADDR load_addr;
1503
1504 tmp_bfd = os->objfile->obfd;
1505 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 1506 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
1507
1508 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1509 if (interp_sect)
1510 {
6c95b8df 1511 info->interp_text_sect_low =
7cd25cfc 1512 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1513 info->interp_text_sect_high =
1514 info->interp_text_sect_low
1515 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1516 }
1517 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1518 if (interp_sect)
1519 {
6c95b8df 1520 info->interp_plt_sect_low =
7cd25cfc 1521 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1522 info->interp_plt_sect_high =
1523 info->interp_plt_sect_low
1524 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1525 }
1526
f5656ead 1527 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
7cd25cfc
DJ
1528 return 1;
1529 }
1530 }
1531
97ec2c2f 1532 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1533 into the old breakpoint at symbol code. */
97ec2c2f
UW
1534 interp_name = find_program_interpreter ();
1535 if (interp_name)
13437d4b 1536 {
8ad2fcde
KB
1537 CORE_ADDR load_addr = 0;
1538 int load_addr_found = 0;
2ec9a4f8 1539 int loader_found_in_list = 0;
f8766ec1 1540 struct so_list *so;
e4f7b8c8 1541 bfd *tmp_bfd = NULL;
2f4950cd 1542 struct target_ops *tmp_bfd_target;
f1838a98 1543 volatile struct gdb_exception ex;
13437d4b 1544
7cd25cfc 1545 sym_addr = 0;
13437d4b
KB
1546
1547 /* Now we need to figure out where the dynamic linker was
1548 loaded so that we can load its symbols and place a breakpoint
1549 in the dynamic linker itself.
1550
1551 This address is stored on the stack. However, I've been unable
1552 to find any magic formula to find it for Solaris (appears to
1553 be trivial on GNU/Linux). Therefore, we have to try an alternate
1554 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1555
f1838a98
UW
1556 TRY_CATCH (ex, RETURN_MASK_ALL)
1557 {
97ec2c2f 1558 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1559 }
13437d4b
KB
1560 if (tmp_bfd == NULL)
1561 goto bkpt_at_symbol;
1562
2f4950cd 1563 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 1564 well as BFD operations can be used. */
2f4950cd 1565 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
1566 /* target_bfd_reopen acquired its own reference, so we can
1567 release ours now. */
1568 gdb_bfd_unref (tmp_bfd);
2f4950cd 1569
f8766ec1
KB
1570 /* On a running target, we can get the dynamic linker's base
1571 address from the shared library table. */
f8766ec1
KB
1572 so = master_so_list ();
1573 while (so)
8ad2fcde 1574 {
97ec2c2f 1575 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1576 {
1577 load_addr_found = 1;
2ec9a4f8 1578 loader_found_in_list = 1;
b23518f0 1579 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
1580 break;
1581 }
f8766ec1 1582 so = so->next;
8ad2fcde
KB
1583 }
1584
8d4e36ba
JB
1585 /* If we were not able to find the base address of the loader
1586 from our so_list, then try using the AT_BASE auxilliary entry. */
1587 if (!load_addr_found)
1588 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 1589 {
f5656ead 1590 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
1591
1592 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1593 that `+ load_addr' will overflow CORE_ADDR width not creating
1594 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1595 GDB. */
1596
d182d057 1597 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1598 {
d182d057 1599 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1600 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1601 tmp_bfd_target);
1602
1603 gdb_assert (load_addr < space_size);
1604
1605 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1606 64bit ld.so with 32bit executable, it should not happen. */
1607
1608 if (tmp_entry_point < space_size
1609 && tmp_entry_point + load_addr >= space_size)
1610 load_addr -= space_size;
1611 }
1612
1613 load_addr_found = 1;
1614 }
8d4e36ba 1615
8ad2fcde
KB
1616 /* Otherwise we find the dynamic linker's base address by examining
1617 the current pc (which should point at the entry point for the
8d4e36ba
JB
1618 dynamic linker) and subtracting the offset of the entry point.
1619
1620 This is more fragile than the previous approaches, but is a good
1621 fallback method because it has actually been working well in
1622 most cases. */
8ad2fcde 1623 if (!load_addr_found)
fb14de7b 1624 {
c2250ad1 1625 struct regcache *regcache
f5656ead 1626 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 1627
fb14de7b
UW
1628 load_addr = (regcache_read_pc (regcache)
1629 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1630 }
2ec9a4f8
DJ
1631
1632 if (!loader_found_in_list)
34439770 1633 {
1a816a87
PA
1634 info->debug_loader_name = xstrdup (interp_name);
1635 info->debug_loader_offset_p = 1;
1636 info->debug_loader_offset = load_addr;
268a4a75 1637 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1638 }
13437d4b
KB
1639
1640 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1641 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1642 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1643 if (interp_sect)
1644 {
6c95b8df 1645 info->interp_text_sect_low =
13437d4b 1646 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1647 info->interp_text_sect_high =
1648 info->interp_text_sect_low
1649 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1650 }
1651 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1652 if (interp_sect)
1653 {
6c95b8df 1654 info->interp_plt_sect_low =
13437d4b 1655 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1656 info->interp_plt_sect_high =
1657 info->interp_plt_sect_low
1658 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1659 }
1660
1661 /* Now try to set a breakpoint in the dynamic linker. */
1662 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1663 {
cb457ae2
YQ
1664 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
1665 (void *) *bkpt_namep);
13437d4b
KB
1666 if (sym_addr != 0)
1667 break;
1668 }
1669
2bbe3cc1
DJ
1670 if (sym_addr != 0)
1671 /* Convert 'sym_addr' from a function pointer to an address.
1672 Because we pass tmp_bfd_target instead of the current
1673 target, this will always produce an unrelocated value. */
f5656ead 1674 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
1675 sym_addr,
1676 tmp_bfd_target);
1677
695c3173
TT
1678 /* We're done with both the temporary bfd and target. Closing
1679 the target closes the underlying bfd, because it holds the
1680 only remaining reference. */
2f4950cd 1681 target_close (tmp_bfd_target, 0);
13437d4b
KB
1682
1683 if (sym_addr != 0)
1684 {
f5656ead 1685 create_solib_event_breakpoint (target_gdbarch (), load_addr + sym_addr);
97ec2c2f 1686 xfree (interp_name);
13437d4b
KB
1687 return 1;
1688 }
1689
1690 /* For whatever reason we couldn't set a breakpoint in the dynamic
1691 linker. Warn and drop into the old code. */
1692 bkpt_at_symbol:
97ec2c2f 1693 xfree (interp_name);
82d03102
PG
1694 warning (_("Unable to find dynamic linker breakpoint function.\n"
1695 "GDB will be unable to debug shared library initializers\n"
1696 "and track explicitly loaded dynamic code."));
13437d4b 1697 }
13437d4b 1698
e499d0f1
DJ
1699 /* Scan through the lists of symbols, trying to look up the symbol and
1700 set a breakpoint there. Terminate loop when we/if we succeed. */
1701
1702 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1703 {
1704 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1705 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1706 {
de64a9ac 1707 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 1708 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
1709 sym_addr,
1710 &current_target);
f5656ead 1711 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
e499d0f1
DJ
1712 return 1;
1713 }
1714 }
13437d4b 1715
fb139f32 1716 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 1717 {
c6490bf2 1718 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1719 {
c6490bf2
KB
1720 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1721 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1722 {
1723 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 1724 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
1725 sym_addr,
1726 &current_target);
f5656ead 1727 create_solib_event_breakpoint (target_gdbarch (), sym_addr);
c6490bf2
KB
1728 return 1;
1729 }
13437d4b
KB
1730 }
1731 }
542c95c2 1732 return 0;
13437d4b
KB
1733}
1734
7f86f058 1735/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
1736
1737static void
1738svr4_special_symbol_handling (void)
1739{
7f86f058 1740 /* Nothing to do. */
13437d4b
KB
1741}
1742
09919ac2
JK
1743/* Read the ELF program headers from ABFD. Return the contents and
1744 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1745
09919ac2
JK
1746static gdb_byte *
1747read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1748{
09919ac2
JK
1749 Elf_Internal_Ehdr *ehdr;
1750 gdb_byte *buf;
e2a44558 1751
09919ac2 1752 ehdr = elf_elfheader (abfd);
b8040f19 1753
09919ac2
JK
1754 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1755 if (*phdrs_size == 0)
1756 return NULL;
1757
1758 buf = xmalloc (*phdrs_size);
1759 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1760 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1761 {
1762 xfree (buf);
1763 return NULL;
1764 }
1765
1766 return buf;
b8040f19
JK
1767}
1768
01c30d6e
JK
1769/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1770 exec_bfd. Otherwise return 0.
1771
1772 We relocate all of the sections by the same amount. This
c378eb4e 1773 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
1774 According to the System V Application Binary Interface,
1775 Edition 4.1, page 5-5:
1776
1777 ... Though the system chooses virtual addresses for
1778 individual processes, it maintains the segments' relative
1779 positions. Because position-independent code uses relative
1780 addressesing between segments, the difference between
1781 virtual addresses in memory must match the difference
1782 between virtual addresses in the file. The difference
1783 between the virtual address of any segment in memory and
1784 the corresponding virtual address in the file is thus a
1785 single constant value for any one executable or shared
1786 object in a given process. This difference is the base
1787 address. One use of the base address is to relocate the
1788 memory image of the program during dynamic linking.
1789
1790 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1791 ABI and is left unspecified in some of the earlier editions.
1792
1793 Decide if the objfile needs to be relocated. As indicated above, we will
1794 only be here when execution is stopped. But during attachment PC can be at
1795 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1796 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1797 regcache_read_pc would point to the interpreter and not the main executable.
1798
1799 So, to summarize, relocations are necessary when the start address obtained
1800 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 1801
09919ac2
JK
1802 [ The astute reader will note that we also test to make sure that
1803 the executable in question has the DYNAMIC flag set. It is my
1804 opinion that this test is unnecessary (undesirable even). It
1805 was added to avoid inadvertent relocation of an executable
1806 whose e_type member in the ELF header is not ET_DYN. There may
1807 be a time in the future when it is desirable to do relocations
1808 on other types of files as well in which case this condition
1809 should either be removed or modified to accomodate the new file
1810 type. - Kevin, Nov 2000. ] */
b8040f19 1811
01c30d6e
JK
1812static int
1813svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1814{
41752192
JK
1815 /* ENTRY_POINT is a possible function descriptor - before
1816 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1817 CORE_ADDR entry_point, displacement;
b8040f19
JK
1818
1819 if (exec_bfd == NULL)
1820 return 0;
1821
09919ac2
JK
1822 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1823 being executed themselves and PIE (Position Independent Executable)
1824 executables are ET_DYN. */
1825
1826 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1827 return 0;
1828
1829 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1830 return 0;
1831
1832 displacement = entry_point - bfd_get_start_address (exec_bfd);
1833
1834 /* Verify the DISPLACEMENT candidate complies with the required page
1835 alignment. It is cheaper than the program headers comparison below. */
1836
1837 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1838 {
1839 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1840
1841 /* p_align of PT_LOAD segments does not specify any alignment but
1842 only congruency of addresses:
1843 p_offset % p_align == p_vaddr % p_align
1844 Kernel is free to load the executable with lower alignment. */
1845
1846 if ((displacement & (elf->minpagesize - 1)) != 0)
1847 return 0;
1848 }
1849
1850 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1851 comparing their program headers. If the program headers in the auxilliary
1852 vector do not match the program headers in the executable, then we are
1853 looking at a different file than the one used by the kernel - for
1854 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1855
1856 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1857 {
1858 /* Be optimistic and clear OK only if GDB was able to verify the headers
1859 really do not match. */
1860 int phdrs_size, phdrs2_size, ok = 1;
1861 gdb_byte *buf, *buf2;
0a1e94c7 1862 int arch_size;
09919ac2 1863
0a1e94c7 1864 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1865 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1866 if (buf != NULL && buf2 != NULL)
1867 {
f5656ead 1868 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
1869
1870 /* We are dealing with three different addresses. EXEC_BFD
1871 represents current address in on-disk file. target memory content
1872 may be different from EXEC_BFD as the file may have been prelinked
1873 to a different address after the executable has been loaded.
1874 Moreover the address of placement in target memory can be
3e43a32a
MS
1875 different from what the program headers in target memory say -
1876 this is the goal of PIE.
0a1e94c7
JK
1877
1878 Detected DISPLACEMENT covers both the offsets of PIE placement and
1879 possible new prelink performed after start of the program. Here
1880 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1881 content offset for the verification purpose. */
1882
1883 if (phdrs_size != phdrs2_size
1884 || bfd_get_arch_size (exec_bfd) != arch_size)
1885 ok = 0;
3e43a32a
MS
1886 else if (arch_size == 32
1887 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1888 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1889 {
1890 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1891 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1892 CORE_ADDR displacement = 0;
1893 int i;
1894
1895 /* DISPLACEMENT could be found more easily by the difference of
1896 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1897 already have enough information to compute that displacement
1898 with what we've read. */
1899
1900 for (i = 0; i < ehdr2->e_phnum; i++)
1901 if (phdr2[i].p_type == PT_LOAD)
1902 {
1903 Elf32_External_Phdr *phdrp;
1904 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1905 CORE_ADDR vaddr, paddr;
1906 CORE_ADDR displacement_vaddr = 0;
1907 CORE_ADDR displacement_paddr = 0;
1908
1909 phdrp = &((Elf32_External_Phdr *) buf)[i];
1910 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1911 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1912
1913 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1914 byte_order);
1915 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1916
1917 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1918 byte_order);
1919 displacement_paddr = paddr - phdr2[i].p_paddr;
1920
1921 if (displacement_vaddr == displacement_paddr)
1922 displacement = displacement_vaddr;
1923
1924 break;
1925 }
1926
1927 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1928
1929 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1930 {
1931 Elf32_External_Phdr *phdrp;
1932 Elf32_External_Phdr *phdr2p;
1933 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1934 CORE_ADDR vaddr, paddr;
43b8e241 1935 asection *plt2_asect;
0a1e94c7
JK
1936
1937 phdrp = &((Elf32_External_Phdr *) buf)[i];
1938 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1939 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1940 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1941
1942 /* PT_GNU_STACK is an exception by being never relocated by
1943 prelink as its addresses are always zero. */
1944
1945 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1946 continue;
1947
1948 /* Check also other adjustment combinations - PR 11786. */
1949
3e43a32a
MS
1950 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1951 byte_order);
0a1e94c7
JK
1952 vaddr -= displacement;
1953 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1954
3e43a32a
MS
1955 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1956 byte_order);
0a1e94c7
JK
1957 paddr -= displacement;
1958 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1959
1960 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1961 continue;
1962
43b8e241
JK
1963 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1964 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1965 if (plt2_asect)
1966 {
1967 int content2;
1968 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1969 CORE_ADDR filesz;
1970
1971 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1972 & SEC_HAS_CONTENTS) != 0;
1973
1974 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1975 byte_order);
1976
1977 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1978 FILESZ is from the in-memory image. */
1979 if (content2)
1980 filesz += bfd_get_section_size (plt2_asect);
1981 else
1982 filesz -= bfd_get_section_size (plt2_asect);
1983
1984 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1985 filesz);
1986
1987 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1988 continue;
1989 }
1990
0a1e94c7
JK
1991 ok = 0;
1992 break;
1993 }
1994 }
3e43a32a
MS
1995 else if (arch_size == 64
1996 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
1997 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1998 {
1999 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2000 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2001 CORE_ADDR displacement = 0;
2002 int i;
2003
2004 /* DISPLACEMENT could be found more easily by the difference of
2005 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2006 already have enough information to compute that displacement
2007 with what we've read. */
2008
2009 for (i = 0; i < ehdr2->e_phnum; i++)
2010 if (phdr2[i].p_type == PT_LOAD)
2011 {
2012 Elf64_External_Phdr *phdrp;
2013 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2014 CORE_ADDR vaddr, paddr;
2015 CORE_ADDR displacement_vaddr = 0;
2016 CORE_ADDR displacement_paddr = 0;
2017
2018 phdrp = &((Elf64_External_Phdr *) buf)[i];
2019 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2020 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2021
2022 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2023 byte_order);
2024 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2025
2026 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2027 byte_order);
2028 displacement_paddr = paddr - phdr2[i].p_paddr;
2029
2030 if (displacement_vaddr == displacement_paddr)
2031 displacement = displacement_vaddr;
2032
2033 break;
2034 }
2035
2036 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2037
2038 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2039 {
2040 Elf64_External_Phdr *phdrp;
2041 Elf64_External_Phdr *phdr2p;
2042 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2043 CORE_ADDR vaddr, paddr;
43b8e241 2044 asection *plt2_asect;
0a1e94c7
JK
2045
2046 phdrp = &((Elf64_External_Phdr *) buf)[i];
2047 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2048 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2049 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2050
2051 /* PT_GNU_STACK is an exception by being never relocated by
2052 prelink as its addresses are always zero. */
2053
2054 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2055 continue;
2056
2057 /* Check also other adjustment combinations - PR 11786. */
2058
3e43a32a
MS
2059 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2060 byte_order);
0a1e94c7
JK
2061 vaddr -= displacement;
2062 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2063
3e43a32a
MS
2064 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2065 byte_order);
0a1e94c7
JK
2066 paddr -= displacement;
2067 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2068
2069 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2070 continue;
2071
43b8e241
JK
2072 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2073 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2074 if (plt2_asect)
2075 {
2076 int content2;
2077 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2078 CORE_ADDR filesz;
2079
2080 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2081 & SEC_HAS_CONTENTS) != 0;
2082
2083 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2084 byte_order);
2085
2086 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2087 FILESZ is from the in-memory image. */
2088 if (content2)
2089 filesz += bfd_get_section_size (plt2_asect);
2090 else
2091 filesz -= bfd_get_section_size (plt2_asect);
2092
2093 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2094 filesz);
2095
2096 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2097 continue;
2098 }
2099
0a1e94c7
JK
2100 ok = 0;
2101 break;
2102 }
2103 }
2104 else
2105 ok = 0;
2106 }
09919ac2
JK
2107
2108 xfree (buf);
2109 xfree (buf2);
2110
2111 if (!ok)
2112 return 0;
2113 }
b8040f19 2114
ccf26247
JK
2115 if (info_verbose)
2116 {
2117 /* It can be printed repeatedly as there is no easy way to check
2118 the executable symbols/file has been already relocated to
2119 displacement. */
2120
2121 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2122 "displacement %s for \"%s\".\n"),
f5656ead 2123 paddress (target_gdbarch (), displacement),
ccf26247
JK
2124 bfd_get_filename (exec_bfd));
2125 }
2126
01c30d6e
JK
2127 *displacementp = displacement;
2128 return 1;
b8040f19
JK
2129}
2130
2131/* Relocate the main executable. This function should be called upon
c378eb4e 2132 stopping the inferior process at the entry point to the program.
b8040f19
JK
2133 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2134 different, the main executable is relocated by the proper amount. */
2135
2136static void
2137svr4_relocate_main_executable (void)
2138{
01c30d6e
JK
2139 CORE_ADDR displacement;
2140
4e5799b6
JK
2141 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2142 probably contains the offsets computed using the PIE displacement
2143 from the previous run, which of course are irrelevant for this run.
2144 So we need to determine the new PIE displacement and recompute the
2145 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2146 already contains pre-computed offsets.
01c30d6e 2147
4e5799b6 2148 If we cannot compute the PIE displacement, either:
01c30d6e 2149
4e5799b6
JK
2150 - The executable is not PIE.
2151
2152 - SYMFILE_OBJFILE does not match the executable started in the target.
2153 This can happen for main executable symbols loaded at the host while
2154 `ld.so --ld-args main-executable' is loaded in the target.
2155
2156 Then we leave the section offsets untouched and use them as is for
2157 this run. Either:
2158
2159 - These section offsets were properly reset earlier, and thus
2160 already contain the correct values. This can happen for instance
2161 when reconnecting via the remote protocol to a target that supports
2162 the `qOffsets' packet.
2163
2164 - The section offsets were not reset earlier, and the best we can
c378eb4e 2165 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2166
2167 if (! svr4_exec_displacement (&displacement))
2168 return;
b8040f19 2169
01c30d6e
JK
2170 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2171 addresses. */
b8040f19
JK
2172
2173 if (symfile_objfile)
e2a44558 2174 {
e2a44558 2175 struct section_offsets *new_offsets;
b8040f19 2176 int i;
e2a44558 2177
b8040f19
JK
2178 new_offsets = alloca (symfile_objfile->num_sections
2179 * sizeof (*new_offsets));
e2a44558 2180
b8040f19
JK
2181 for (i = 0; i < symfile_objfile->num_sections; i++)
2182 new_offsets->offsets[i] = displacement;
e2a44558 2183
b8040f19 2184 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2185 }
51bee8e9
JK
2186 else if (exec_bfd)
2187 {
2188 asection *asect;
2189
2190 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2191 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2192 (bfd_section_vma (exec_bfd, asect)
2193 + displacement));
2194 }
e2a44558
KB
2195}
2196
7f86f058 2197/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2198
2199 For SVR4 executables, this first instruction is either the first
2200 instruction in the dynamic linker (for dynamically linked
2201 executables) or the instruction at "start" for statically linked
2202 executables. For dynamically linked executables, the system
2203 first exec's /lib/libc.so.N, which contains the dynamic linker,
2204 and starts it running. The dynamic linker maps in any needed
2205 shared libraries, maps in the actual user executable, and then
2206 jumps to "start" in the user executable.
2207
7f86f058
PA
2208 We can arrange to cooperate with the dynamic linker to discover the
2209 names of shared libraries that are dynamically linked, and the base
2210 addresses to which they are linked.
13437d4b
KB
2211
2212 This function is responsible for discovering those names and
2213 addresses, and saving sufficient information about them to allow
d2e5c99a 2214 their symbols to be read at a later time. */
13437d4b 2215
e2a44558 2216static void
268a4a75 2217svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2218{
1a816a87
PA
2219 struct svr4_info *info;
2220
6c95b8df 2221 info = get_svr4_info ();
2020b7ab 2222
e2a44558 2223 /* Relocate the main executable if necessary. */
86e4bafc 2224 svr4_relocate_main_executable ();
e2a44558 2225
c91c8c16
PA
2226 /* No point setting a breakpoint in the dynamic linker if we can't
2227 hit it (e.g., a core file, or a trace file). */
2228 if (!target_has_execution)
2229 return;
2230
d5a921c9 2231 if (!svr4_have_link_map_offsets ())
513f5903 2232 return;
d5a921c9 2233
268a4a75 2234 if (!enable_break (info, from_tty))
542c95c2 2235 return;
13437d4b
KB
2236}
2237
2238static void
2239svr4_clear_solib (void)
2240{
6c95b8df
PA
2241 struct svr4_info *info;
2242
2243 info = get_svr4_info ();
2244 info->debug_base = 0;
2245 info->debug_loader_offset_p = 0;
2246 info->debug_loader_offset = 0;
2247 xfree (info->debug_loader_name);
2248 info->debug_loader_name = NULL;
13437d4b
KB
2249}
2250
6bb7be43
JB
2251/* Clear any bits of ADDR that wouldn't fit in a target-format
2252 data pointer. "Data pointer" here refers to whatever sort of
2253 address the dynamic linker uses to manage its sections. At the
2254 moment, we don't support shared libraries on any processors where
2255 code and data pointers are different sizes.
2256
2257 This isn't really the right solution. What we really need here is
2258 a way to do arithmetic on CORE_ADDR values that respects the
2259 natural pointer/address correspondence. (For example, on the MIPS,
2260 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2261 sign-extend the value. There, simply truncating the bits above
819844ad 2262 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2263 be a new gdbarch method or something. */
2264static CORE_ADDR
2265svr4_truncate_ptr (CORE_ADDR addr)
2266{
f5656ead 2267 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2268 /* We don't need to truncate anything, and the bit twiddling below
2269 will fail due to overflow problems. */
2270 return addr;
2271 else
f5656ead 2272 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
2273}
2274
2275
749499cb
KB
2276static void
2277svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2278 struct target_section *sec)
749499cb 2279{
b23518f0 2280 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
cc10cae3 2281 sec->bfd));
b23518f0 2282 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
cc10cae3 2283 sec->bfd));
749499cb 2284}
4b188b9f 2285\f
749499cb 2286
4b188b9f 2287/* Architecture-specific operations. */
6bb7be43 2288
4b188b9f
MK
2289/* Per-architecture data key. */
2290static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2291
4b188b9f 2292struct solib_svr4_ops
e5e2b9ff 2293{
4b188b9f
MK
2294 /* Return a description of the layout of `struct link_map'. */
2295 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2296};
e5e2b9ff 2297
4b188b9f 2298/* Return a default for the architecture-specific operations. */
e5e2b9ff 2299
4b188b9f
MK
2300static void *
2301solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2302{
4b188b9f 2303 struct solib_svr4_ops *ops;
e5e2b9ff 2304
4b188b9f 2305 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2306 ops->fetch_link_map_offsets = NULL;
4b188b9f 2307 return ops;
e5e2b9ff
KB
2308}
2309
4b188b9f 2310/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2311 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2312
21479ded 2313void
e5e2b9ff
KB
2314set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2315 struct link_map_offsets *(*flmo) (void))
21479ded 2316{
4b188b9f
MK
2317 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2318
2319 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2320
2321 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2322}
2323
4b188b9f
MK
2324/* Fetch a link_map_offsets structure using the architecture-specific
2325 `struct link_map_offsets' fetcher. */
1c4dcb57 2326
4b188b9f
MK
2327static struct link_map_offsets *
2328svr4_fetch_link_map_offsets (void)
21479ded 2329{
f5656ead 2330 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
4b188b9f
MK
2331
2332 gdb_assert (ops->fetch_link_map_offsets);
2333 return ops->fetch_link_map_offsets ();
21479ded
KB
2334}
2335
4b188b9f
MK
2336/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2337
2338static int
2339svr4_have_link_map_offsets (void)
2340{
f5656ead 2341 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
433759f7 2342
4b188b9f
MK
2343 return (ops->fetch_link_map_offsets != NULL);
2344}
2345\f
2346
e4bbbda8
MK
2347/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2348 `struct r_debug' and a `struct link_map' that are binary compatible
2349 with the origional SVR4 implementation. */
2350
2351/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2352 for an ILP32 SVR4 system. */
d989b283 2353
e4bbbda8
MK
2354struct link_map_offsets *
2355svr4_ilp32_fetch_link_map_offsets (void)
2356{
2357 static struct link_map_offsets lmo;
2358 static struct link_map_offsets *lmp = NULL;
2359
2360 if (lmp == NULL)
2361 {
2362 lmp = &lmo;
2363
e4cd0d6a
MK
2364 lmo.r_version_offset = 0;
2365 lmo.r_version_size = 4;
e4bbbda8 2366 lmo.r_map_offset = 4;
7cd25cfc 2367 lmo.r_brk_offset = 8;
e4cd0d6a 2368 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2369
2370 /* Everything we need is in the first 20 bytes. */
2371 lmo.link_map_size = 20;
2372 lmo.l_addr_offset = 0;
e4bbbda8 2373 lmo.l_name_offset = 4;
cc10cae3 2374 lmo.l_ld_offset = 8;
e4bbbda8 2375 lmo.l_next_offset = 12;
e4bbbda8 2376 lmo.l_prev_offset = 16;
e4bbbda8
MK
2377 }
2378
2379 return lmp;
2380}
2381
2382/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2383 for an LP64 SVR4 system. */
d989b283 2384
e4bbbda8
MK
2385struct link_map_offsets *
2386svr4_lp64_fetch_link_map_offsets (void)
2387{
2388 static struct link_map_offsets lmo;
2389 static struct link_map_offsets *lmp = NULL;
2390
2391 if (lmp == NULL)
2392 {
2393 lmp = &lmo;
2394
e4cd0d6a
MK
2395 lmo.r_version_offset = 0;
2396 lmo.r_version_size = 4;
e4bbbda8 2397 lmo.r_map_offset = 8;
7cd25cfc 2398 lmo.r_brk_offset = 16;
e4cd0d6a 2399 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2400
2401 /* Everything we need is in the first 40 bytes. */
2402 lmo.link_map_size = 40;
2403 lmo.l_addr_offset = 0;
e4bbbda8 2404 lmo.l_name_offset = 8;
cc10cae3 2405 lmo.l_ld_offset = 16;
e4bbbda8 2406 lmo.l_next_offset = 24;
e4bbbda8 2407 lmo.l_prev_offset = 32;
e4bbbda8
MK
2408 }
2409
2410 return lmp;
2411}
2412\f
2413
7d522c90 2414struct target_so_ops svr4_so_ops;
13437d4b 2415
c378eb4e 2416/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
2417 different rule for symbol lookup. The lookup begins here in the DSO, not in
2418 the main executable. */
2419
2420static struct symbol *
2421elf_lookup_lib_symbol (const struct objfile *objfile,
2422 const char *name,
21b556f4 2423 const domain_enum domain)
3a40aaa0 2424{
61f0d762
JK
2425 bfd *abfd;
2426
2427 if (objfile == symfile_objfile)
2428 abfd = exec_bfd;
2429 else
2430 {
2431 /* OBJFILE should have been passed as the non-debug one. */
2432 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2433
2434 abfd = objfile->obfd;
2435 }
2436
2437 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2438 return NULL;
2439
94af9270 2440 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2441}
2442
a78f21af
AC
2443extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2444
13437d4b
KB
2445void
2446_initialize_svr4_solib (void)
2447{
4b188b9f 2448 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 2449 solib_svr4_pspace_data
8e260fc0 2450 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 2451
749499cb 2452 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2453 svr4_so_ops.free_so = svr4_free_so;
2454 svr4_so_ops.clear_solib = svr4_clear_solib;
2455 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2456 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2457 svr4_so_ops.current_sos = svr4_current_sos;
2458 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2459 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2460 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2461 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2462 svr4_so_ops.same = svr4_same;
de18c1d8 2463 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2464}
This page took 1.426724 seconds and 4 git commands to generate.