* mips-tdep.c (mips_gdbarch_init): Use Tag_GNU_MIPS_ABI_FP to
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
13437d4b
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
13437d4b 22
13437d4b
KB
23#include "defs.h"
24
13437d4b 25#include "elf/external.h"
21479ded 26#include "elf/common.h"
f7856c8f 27#include "elf/mips.h"
13437d4b
KB
28
29#include "symtab.h"
30#include "bfd.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbcore.h"
13437d4b 34#include "target.h"
13437d4b 35#include "inferior.h"
13437d4b 36
4b188b9f
MK
37#include "gdb_assert.h"
38
13437d4b 39#include "solist.h"
bba93f6c 40#include "solib.h"
13437d4b
KB
41#include "solib-svr4.h"
42
2f4950cd 43#include "bfd-target.h"
cc10cae3 44#include "elf-bfd.h"
2f4950cd
AC
45#include "exec.h"
46
e5e2b9ff 47static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 48static int svr4_have_link_map_offsets (void);
1c4dcb57 49
4b188b9f
MK
50/* This hook is set to a function that provides native link map
51 offsets if the code in solib-legacy.c is linked in. */
52struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
21479ded 53
13437d4b
KB
54/* Link map info to include in an allocated so_list entry */
55
56struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
4066fc10 61 gdb_byte *lm;
cc10cae3
AO
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
13437d4b
KB
69 };
70
71/* On SVR4 systems, a list of symbols in the dynamic linker where
72 GDB can try to place a breakpoint to monitor shared library
73 events.
74
75 If none of these symbols are found, or other errors occur, then
76 SVR4 systems will fall back to using a symbol as the "startup
77 mapping complete" breakpoint address. */
78
13437d4b
KB
79static char *solib_break_names[] =
80{
81 "r_debug_state",
82 "_r_debug_state",
83 "_dl_debug_state",
84 "rtld_db_dlactivity",
1f72e589 85 "_rtld_debug_state",
4c0122c8 86
13437d4b
KB
87 NULL
88};
13437d4b
KB
89
90#define BKPT_AT_SYMBOL 1
91
ab31aa69 92#if defined (BKPT_AT_SYMBOL)
13437d4b
KB
93static char *bkpt_names[] =
94{
95#ifdef SOLIB_BKPT_NAME
96 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
97#endif
98 "_start",
ad3dcc5c 99 "__start",
13437d4b
KB
100 "main",
101 NULL
102};
103#endif
104
13437d4b
KB
105static char *main_name_list[] =
106{
107 "main_$main",
108 NULL
109};
110
13437d4b
KB
111/* link map access functions */
112
113static CORE_ADDR
cc10cae3 114LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 115{
4b188b9f 116 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 117
cfaefc65
AS
118 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
119 builtin_type_void_data_ptr);
13437d4b
KB
120}
121
cc10cae3
AO
122static int
123HAS_LM_DYNAMIC_FROM_LINK_MAP ()
124{
125 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
126
cfaefc65 127 return lmo->l_ld_offset >= 0;
cc10cae3
AO
128}
129
130static CORE_ADDR
131LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
132{
133 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
134
cfaefc65
AS
135 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
136 builtin_type_void_data_ptr);
cc10cae3
AO
137}
138
139static CORE_ADDR
140LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
141{
142 if (so->lm_info->l_addr == (CORE_ADDR)-1)
143 {
144 struct bfd_section *dyninfo_sect;
145 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
146
147 l_addr = LM_ADDR_FROM_LINK_MAP (so);
148
149 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
150 goto set_addr;
151
152 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
153
154 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
155 if (dyninfo_sect == NULL)
156 goto set_addr;
157
158 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
159
160 if (dynaddr + l_addr != l_dynaddr)
161 {
cc10cae3
AO
162 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
163 {
164 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
165 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
166 int i;
167
168 align = 1;
169
170 for (i = 0; i < ehdr->e_phnum; i++)
171 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
172 align = phdr[i].p_align;
173 }
174
175 /* Turn it into a mask. */
176 align--;
177
178 /* If the changes match the alignment requirements, we
179 assume we're using a core file that was generated by the
180 same binary, just prelinked with a different base offset.
181 If it doesn't match, we may have a different binary, the
182 same binary with the dynamic table loaded at an unrelated
183 location, or anything, really. To avoid regressions,
184 don't adjust the base offset in the latter case, although
185 odds are that, if things really changed, debugging won't
186 quite work. */
f1e55806 187 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
188 {
189 l_addr = l_dynaddr - dynaddr;
79d4c408
DJ
190
191 warning (_(".dynamic section for \"%s\" "
192 "is not at the expected address"), so->so_name);
cc10cae3
AO
193 warning (_("difference appears to be caused by prelink, "
194 "adjusting expectations"));
195 }
79d4c408
DJ
196 else
197 warning (_(".dynamic section for \"%s\" "
198 "is not at the expected address "
199 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
200 }
201
202 set_addr:
203 so->lm_info->l_addr = l_addr;
204 }
205
206 return so->lm_info->l_addr;
207}
208
13437d4b
KB
209static CORE_ADDR
210LM_NEXT (struct so_list *so)
211{
4b188b9f 212 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 213
cfaefc65
AS
214 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
215 builtin_type_void_data_ptr);
13437d4b
KB
216}
217
218static CORE_ADDR
219LM_NAME (struct so_list *so)
220{
4b188b9f 221 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 222
cfaefc65
AS
223 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
224 builtin_type_void_data_ptr);
13437d4b
KB
225}
226
13437d4b
KB
227static int
228IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
229{
4b188b9f 230 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 231
e499d0f1
DJ
232 /* Assume that everything is a library if the dynamic loader was loaded
233 late by a static executable. */
234 if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
235 return 0;
236
cfaefc65
AS
237 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
238 builtin_type_void_data_ptr) == 0;
13437d4b
KB
239}
240
13437d4b 241static CORE_ADDR debug_base; /* Base of dynamic linker structures */
13437d4b 242
34439770
DJ
243/* Validity flag for debug_loader_offset. */
244static int debug_loader_offset_p;
245
246/* Load address for the dynamic linker, inferred. */
247static CORE_ADDR debug_loader_offset;
248
249/* Name of the dynamic linker, valid if debug_loader_offset_p. */
250static char *debug_loader_name;
251
13437d4b
KB
252/* Local function prototypes */
253
254static int match_main (char *);
255
2bbe3cc1 256static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
13437d4b
KB
257
258/*
259
260 LOCAL FUNCTION
261
262 bfd_lookup_symbol -- lookup the value for a specific symbol
263
264 SYNOPSIS
265
2bbe3cc1 266 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
267
268 DESCRIPTION
269
270 An expensive way to lookup the value of a single symbol for
271 bfd's that are only temporary anyway. This is used by the
272 shared library support to find the address of the debugger
2bbe3cc1 273 notification routine in the shared library.
13437d4b 274
2bbe3cc1
DJ
275 The returned symbol may be in a code or data section; functions
276 will normally be in a code section, but may be in a data section
277 if this architecture uses function descriptors.
87f84c9d 278
13437d4b
KB
279 Note that 0 is specifically allowed as an error return (no
280 such symbol).
281 */
282
283static CORE_ADDR
2bbe3cc1 284bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b 285{
435b259c 286 long storage_needed;
13437d4b
KB
287 asymbol *sym;
288 asymbol **symbol_table;
289 unsigned int number_of_symbols;
290 unsigned int i;
291 struct cleanup *back_to;
292 CORE_ADDR symaddr = 0;
293
294 storage_needed = bfd_get_symtab_upper_bound (abfd);
295
296 if (storage_needed > 0)
297 {
298 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 299 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
300 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
301
302 for (i = 0; i < number_of_symbols; i++)
303 {
304 sym = *symbol_table++;
6314a349 305 if (strcmp (sym->name, symname) == 0
2bbe3cc1 306 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 307 {
2bbe3cc1 308 /* BFD symbols are section relative. */
13437d4b
KB
309 symaddr = sym->value + sym->section->vma;
310 break;
311 }
312 }
313 do_cleanups (back_to);
314 }
315
316 if (symaddr)
317 return symaddr;
318
319 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
320 have to check the dynamic string table too. */
321
322 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
323
324 if (storage_needed > 0)
325 {
326 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 327 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
328 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
329
330 for (i = 0; i < number_of_symbols; i++)
331 {
332 sym = *symbol_table++;
87f84c9d 333
6314a349 334 if (strcmp (sym->name, symname) == 0
2bbe3cc1 335 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 336 {
2bbe3cc1 337 /* BFD symbols are section relative. */
13437d4b
KB
338 symaddr = sym->value + sym->section->vma;
339 break;
340 }
341 }
342 do_cleanups (back_to);
343 }
344
345 return symaddr;
346}
347
3a40aaa0
UW
348/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
349 returned and the corresponding PTR is set. */
350
351static int
352scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
353{
354 int arch_size, step, sect_size;
355 long dyn_tag;
356 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 357 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
358 Elf32_External_Dyn *x_dynp_32;
359 Elf64_External_Dyn *x_dynp_64;
360 struct bfd_section *sect;
361
362 if (abfd == NULL)
363 return 0;
364 arch_size = bfd_get_arch_size (abfd);
365 if (arch_size == -1)
366 return 0;
367
368 /* Find the start address of the .dynamic section. */
369 sect = bfd_get_section_by_name (abfd, ".dynamic");
370 if (sect == NULL)
371 return 0;
372 dyn_addr = bfd_section_vma (abfd, sect);
373
65728c26
DJ
374 /* Read in .dynamic from the BFD. We will get the actual value
375 from memory later. */
3a40aaa0 376 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
377 buf = bufstart = alloca (sect_size);
378 if (!bfd_get_section_contents (abfd, sect,
379 buf, 0, sect_size))
380 return 0;
3a40aaa0
UW
381
382 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
383 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
384 : sizeof (Elf64_External_Dyn);
385 for (bufend = buf + sect_size;
386 buf < bufend;
387 buf += step)
388 {
389 if (arch_size == 32)
390 {
391 x_dynp_32 = (Elf32_External_Dyn *) buf;
392 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
393 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
394 }
65728c26 395 else
3a40aaa0
UW
396 {
397 x_dynp_64 = (Elf64_External_Dyn *) buf;
398 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
399 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
400 }
401 if (dyn_tag == DT_NULL)
402 return 0;
403 if (dyn_tag == dyntag)
404 {
65728c26
DJ
405 /* If requested, try to read the runtime value of this .dynamic
406 entry. */
3a40aaa0 407 if (ptr)
65728c26
DJ
408 {
409 gdb_byte ptr_buf[8];
410 CORE_ADDR ptr_addr;
411
412 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
413 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
414 dyn_ptr = extract_typed_address (ptr_buf,
415 builtin_type_void_data_ptr);
416 *ptr = dyn_ptr;
417 }
418 return 1;
3a40aaa0
UW
419 }
420 }
421
422 return 0;
423}
424
425
13437d4b
KB
426/*
427
428 LOCAL FUNCTION
429
430 elf_locate_base -- locate the base address of dynamic linker structs
431 for SVR4 elf targets.
432
433 SYNOPSIS
434
435 CORE_ADDR elf_locate_base (void)
436
437 DESCRIPTION
438
439 For SVR4 elf targets the address of the dynamic linker's runtime
440 structure is contained within the dynamic info section in the
441 executable file. The dynamic section is also mapped into the
442 inferior address space. Because the runtime loader fills in the
443 real address before starting the inferior, we have to read in the
444 dynamic info section from the inferior address space.
445 If there are any errors while trying to find the address, we
446 silently return 0, otherwise the found address is returned.
447
448 */
449
450static CORE_ADDR
451elf_locate_base (void)
452{
3a40aaa0
UW
453 struct minimal_symbol *msymbol;
454 CORE_ADDR dyn_ptr;
13437d4b 455
65728c26
DJ
456 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
457 instead of DT_DEBUG, although they sometimes contain an unused
458 DT_DEBUG. */
3a40aaa0
UW
459 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr))
460 {
461 gdb_byte *pbuf;
462 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
463 pbuf = alloca (pbuf_size);
464 /* DT_MIPS_RLD_MAP contains a pointer to the address
465 of the dynamic link structure. */
466 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 467 return 0;
3a40aaa0 468 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
e499d0f1
DJ
469 }
470
65728c26
DJ
471 /* Find DT_DEBUG. */
472 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr))
473 return dyn_ptr;
474
3a40aaa0
UW
475 /* This may be a static executable. Look for the symbol
476 conventionally named _r_debug, as a last resort. */
477 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
478 if (msymbol != NULL)
479 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
480
481 /* DT_DEBUG entry not found. */
482 return 0;
483}
484
13437d4b
KB
485/*
486
487 LOCAL FUNCTION
488
489 locate_base -- locate the base address of dynamic linker structs
490
491 SYNOPSIS
492
493 CORE_ADDR locate_base (void)
494
495 DESCRIPTION
496
497 For both the SunOS and SVR4 shared library implementations, if the
498 inferior executable has been linked dynamically, there is a single
499 address somewhere in the inferior's data space which is the key to
500 locating all of the dynamic linker's runtime structures. This
501 address is the value of the debug base symbol. The job of this
502 function is to find and return that address, or to return 0 if there
503 is no such address (the executable is statically linked for example).
504
505 For SunOS, the job is almost trivial, since the dynamic linker and
506 all of it's structures are statically linked to the executable at
507 link time. Thus the symbol for the address we are looking for has
508 already been added to the minimal symbol table for the executable's
509 objfile at the time the symbol file's symbols were read, and all we
510 have to do is look it up there. Note that we explicitly do NOT want
511 to find the copies in the shared library.
512
513 The SVR4 version is a bit more complicated because the address
514 is contained somewhere in the dynamic info section. We have to go
515 to a lot more work to discover the address of the debug base symbol.
516 Because of this complexity, we cache the value we find and return that
517 value on subsequent invocations. Note there is no copy in the
518 executable symbol tables.
519
520 */
521
522static CORE_ADDR
523locate_base (void)
524{
13437d4b
KB
525 /* Check to see if we have a currently valid address, and if so, avoid
526 doing all this work again and just return the cached address. If
527 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
528 section for ELF executables. There's no point in doing any of this
529 though if we don't have some link map offsets to work with. */
13437d4b 530
d5a921c9 531 if (debug_base == 0 && svr4_have_link_map_offsets ())
13437d4b
KB
532 {
533 if (exec_bfd != NULL
534 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
535 debug_base = elf_locate_base ();
13437d4b
KB
536 }
537 return (debug_base);
13437d4b
KB
538}
539
e4cd0d6a
MK
540/* Find the first element in the inferior's dynamic link map, and
541 return its address in the inferior.
13437d4b 542
e4cd0d6a
MK
543 FIXME: Perhaps we should validate the info somehow, perhaps by
544 checking r_version for a known version number, or r_state for
545 RT_CONSISTENT. */
13437d4b
KB
546
547static CORE_ADDR
e4cd0d6a 548solib_svr4_r_map (void)
13437d4b 549{
4b188b9f 550 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 551
e4cd0d6a
MK
552 return read_memory_typed_address (debug_base + lmo->r_map_offset,
553 builtin_type_void_data_ptr);
554}
13437d4b 555
e4cd0d6a
MK
556/* Find the link map for the dynamic linker (if it is not in the
557 normal list of loaded shared objects). */
13437d4b 558
e4cd0d6a
MK
559static CORE_ADDR
560solib_svr4_r_ldsomap (void)
561{
562 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
563 ULONGEST version;
13437d4b 564
e4cd0d6a
MK
565 /* Check version, and return zero if `struct r_debug' doesn't have
566 the r_ldsomap member. */
567 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
568 lmo->r_version_size);
569 if (version < 2 || lmo->r_ldsomap_offset == -1)
570 return 0;
13437d4b 571
e4cd0d6a
MK
572 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
573 builtin_type_void_data_ptr);
13437d4b
KB
574}
575
13437d4b
KB
576/*
577
578 LOCAL FUNCTION
579
580 open_symbol_file_object
581
582 SYNOPSIS
583
584 void open_symbol_file_object (void *from_tty)
585
586 DESCRIPTION
587
588 If no open symbol file, attempt to locate and open the main symbol
589 file. On SVR4 systems, this is the first link map entry. If its
590 name is here, we can open it. Useful when attaching to a process
591 without first loading its symbol file.
592
593 If FROM_TTYP dereferences to a non-zero integer, allow messages to
594 be printed. This parameter is a pointer rather than an int because
595 open_symbol_file_object() is called via catch_errors() and
596 catch_errors() requires a pointer argument. */
597
598static int
599open_symbol_file_object (void *from_ttyp)
600{
601 CORE_ADDR lm, l_name;
602 char *filename;
603 int errcode;
604 int from_tty = *(int *)from_ttyp;
4b188b9f 605 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
cfaefc65
AS
606 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
607 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 608 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
609
610 if (symfile_objfile)
611 if (!query ("Attempt to reload symbols from process? "))
612 return 0;
613
614 if ((debug_base = locate_base ()) == 0)
615 return 0; /* failed somehow... */
616
617 /* First link map member should be the executable. */
e4cd0d6a
MK
618 lm = solib_svr4_r_map ();
619 if (lm == 0)
13437d4b
KB
620 return 0; /* failed somehow... */
621
622 /* Read address of name from target memory to GDB. */
cfaefc65 623 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 624
cfaefc65
AS
625 /* Convert the address to host format. */
626 l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
13437d4b
KB
627
628 /* Free l_name_buf. */
629 do_cleanups (cleanups);
630
631 if (l_name == 0)
632 return 0; /* No filename. */
633
634 /* Now fetch the filename from target memory. */
635 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 636 make_cleanup (xfree, filename);
13437d4b
KB
637
638 if (errcode)
639 {
8a3fe4f8 640 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
641 safe_strerror (errcode));
642 return 0;
643 }
644
13437d4b 645 /* Have a pathname: read the symbol file. */
1adeb98a 646 symbol_file_add_main (filename, from_tty);
13437d4b
KB
647
648 return 1;
649}
13437d4b 650
34439770
DJ
651/* If no shared library information is available from the dynamic
652 linker, build a fallback list from other sources. */
653
654static struct so_list *
655svr4_default_sos (void)
656{
657 struct so_list *head = NULL;
658 struct so_list **link_ptr = &head;
659
660 if (debug_loader_offset_p)
661 {
662 struct so_list *new = XZALLOC (struct so_list);
663
664 new->lm_info = xmalloc (sizeof (struct lm_info));
665
666 /* Nothing will ever check the cached copy of the link
667 map if we set l_addr. */
668 new->lm_info->l_addr = debug_loader_offset;
669 new->lm_info->lm = NULL;
670
671 strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
672 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
673 strcpy (new->so_original_name, new->so_name);
674
675 *link_ptr = new;
676 link_ptr = &new->next;
677 }
678
679 return head;
680}
681
13437d4b
KB
682/* LOCAL FUNCTION
683
684 current_sos -- build a list of currently loaded shared objects
685
686 SYNOPSIS
687
688 struct so_list *current_sos ()
689
690 DESCRIPTION
691
692 Build a list of `struct so_list' objects describing the shared
693 objects currently loaded in the inferior. This list does not
694 include an entry for the main executable file.
695
696 Note that we only gather information directly available from the
697 inferior --- we don't examine any of the shared library files
698 themselves. The declaration of `struct so_list' says which fields
699 we provide values for. */
700
701static struct so_list *
702svr4_current_sos (void)
703{
704 CORE_ADDR lm;
705 struct so_list *head = 0;
706 struct so_list **link_ptr = &head;
e4cd0d6a 707 CORE_ADDR ldsomap = 0;
13437d4b
KB
708
709 /* Make sure we've looked up the inferior's dynamic linker's base
710 structure. */
711 if (! debug_base)
712 {
713 debug_base = locate_base ();
714
715 /* If we can't find the dynamic linker's base structure, this
716 must not be a dynamically linked executable. Hmm. */
717 if (! debug_base)
34439770 718 return svr4_default_sos ();
13437d4b
KB
719 }
720
721 /* Walk the inferior's link map list, and build our list of
722 `struct so_list' nodes. */
e4cd0d6a 723 lm = solib_svr4_r_map ();
34439770 724
13437d4b
KB
725 while (lm)
726 {
4b188b9f 727 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 728 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 729 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 730
13437d4b 731 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 732 make_cleanup (xfree, new->lm_info);
13437d4b 733
831004b7 734 new->lm_info->l_addr = (CORE_ADDR)-1;
f4456994 735 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 736 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
737
738 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
739
740 lm = LM_NEXT (new);
741
742 /* For SVR4 versions, the first entry in the link map is for the
743 inferior executable, so we must ignore it. For some versions of
744 SVR4, it has no name. For others (Solaris 2.3 for example), it
745 does have a name, so we can no longer use a missing name to
746 decide when to ignore it. */
e4cd0d6a 747 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
13437d4b
KB
748 free_so (new);
749 else
750 {
751 int errcode;
752 char *buffer;
753
754 /* Extract this shared object's name. */
755 target_read_string (LM_NAME (new), &buffer,
756 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
757 if (errcode != 0)
8a3fe4f8
AC
758 warning (_("Can't read pathname for load map: %s."),
759 safe_strerror (errcode));
13437d4b
KB
760 else
761 {
762 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
763 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
764 strcpy (new->so_original_name, new->so_name);
765 }
ea5bf0a1 766 xfree (buffer);
13437d4b
KB
767
768 /* If this entry has no name, or its name matches the name
769 for the main executable, don't include it in the list. */
770 if (! new->so_name[0]
771 || match_main (new->so_name))
772 free_so (new);
773 else
774 {
775 new->next = 0;
776 *link_ptr = new;
777 link_ptr = &new->next;
778 }
779 }
780
e4cd0d6a
MK
781 /* On Solaris, the dynamic linker is not in the normal list of
782 shared objects, so make sure we pick it up too. Having
783 symbol information for the dynamic linker is quite crucial
784 for skipping dynamic linker resolver code. */
785 if (lm == 0 && ldsomap == 0)
786 lm = ldsomap = solib_svr4_r_ldsomap ();
787
13437d4b
KB
788 discard_cleanups (old_chain);
789 }
790
34439770
DJ
791 if (head == NULL)
792 return svr4_default_sos ();
793
13437d4b
KB
794 return head;
795}
796
bc4a16ae
EZ
797/* Get the address of the link_map for a given OBJFILE. Loop through
798 the link maps, and return the address of the one corresponding to
799 the given objfile. Note that this function takes into account that
800 objfile can be the main executable, not just a shared library. The
801 main executable has always an empty name field in the linkmap. */
802
803CORE_ADDR
804svr4_fetch_objfile_link_map (struct objfile *objfile)
805{
806 CORE_ADDR lm;
807
808 if ((debug_base = locate_base ()) == 0)
809 return 0; /* failed somehow... */
810
811 /* Position ourselves on the first link map. */
e4cd0d6a 812 lm = solib_svr4_r_map ();
bc4a16ae
EZ
813 while (lm)
814 {
815 /* Get info on the layout of the r_debug and link_map structures. */
4b188b9f 816 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
bc4a16ae
EZ
817 int errcode;
818 char *buffer;
819 struct lm_info objfile_lm_info;
820 struct cleanup *old_chain;
821 CORE_ADDR name_address;
cfaefc65
AS
822 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
823 gdb_byte *l_name_buf = xmalloc (l_name_size);
bc4a16ae
EZ
824 old_chain = make_cleanup (xfree, l_name_buf);
825
826 /* Set up the buffer to contain the portion of the link_map
827 structure that gdb cares about. Note that this is not the
828 whole link_map structure. */
f4456994 829 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
bc4a16ae 830 make_cleanup (xfree, objfile_lm_info.lm);
bc4a16ae
EZ
831
832 /* Read the link map into our internal structure. */
833 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
834
835 /* Read address of name from target memory to GDB. */
cfaefc65 836 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
bc4a16ae 837
cfaefc65
AS
838 /* Extract this object's name. */
839 name_address = extract_typed_address (l_name_buf,
840 builtin_type_void_data_ptr);
bc4a16ae
EZ
841 target_read_string (name_address, &buffer,
842 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
843 make_cleanup (xfree, buffer);
844 if (errcode != 0)
8a3fe4f8
AC
845 warning (_("Can't read pathname for load map: %s."),
846 safe_strerror (errcode));
bc4a16ae
EZ
847 else
848 {
849 /* Is this the linkmap for the file we want? */
850 /* If the file is not a shared library and has no name,
851 we are sure it is the main executable, so we return that. */
f52df7d9
MS
852
853 if (buffer
854 && ((strcmp (buffer, objfile->name) == 0)
855 || (!(objfile->flags & OBJF_SHARED)
856 && (strcmp (buffer, "") == 0))))
bc4a16ae
EZ
857 {
858 do_cleanups (old_chain);
859 return lm;
860 }
861 }
cfaefc65
AS
862 /* Not the file we wanted, continue checking. */
863 lm = extract_typed_address (objfile_lm_info.lm + lmo->l_next_offset,
864 builtin_type_void_data_ptr);
bc4a16ae
EZ
865 do_cleanups (old_chain);
866 }
867 return 0;
868}
13437d4b
KB
869
870/* On some systems, the only way to recognize the link map entry for
871 the main executable file is by looking at its name. Return
872 non-zero iff SONAME matches one of the known main executable names. */
873
874static int
875match_main (char *soname)
876{
877 char **mainp;
878
879 for (mainp = main_name_list; *mainp != NULL; mainp++)
880 {
881 if (strcmp (soname, *mainp) == 0)
882 return (1);
883 }
884
885 return (0);
886}
887
13437d4b
KB
888/* Return 1 if PC lies in the dynamic symbol resolution code of the
889 SVR4 run time loader. */
13437d4b
KB
890static CORE_ADDR interp_text_sect_low;
891static CORE_ADDR interp_text_sect_high;
892static CORE_ADDR interp_plt_sect_low;
893static CORE_ADDR interp_plt_sect_high;
894
7d522c90 895int
d7fa2ae2 896svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
897{
898 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
899 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
900 || in_plt_section (pc, NULL));
901}
13437d4b 902
2f4950cd
AC
903/* Given an executable's ABFD and target, compute the entry-point
904 address. */
905
906static CORE_ADDR
907exec_entry_point (struct bfd *abfd, struct target_ops *targ)
908{
909 /* KevinB wrote ... for most targets, the address returned by
910 bfd_get_start_address() is the entry point for the start
911 function. But, for some targets, bfd_get_start_address() returns
912 the address of a function descriptor from which the entry point
913 address may be extracted. This address is extracted by
914 gdbarch_convert_from_func_ptr_addr(). The method
915 gdbarch_convert_from_func_ptr_addr() is the merely the identify
916 function for targets which don't use function descriptors. */
917 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
918 bfd_get_start_address (abfd),
919 targ);
920}
13437d4b
KB
921
922/*
923
924 LOCAL FUNCTION
925
926 enable_break -- arrange for dynamic linker to hit breakpoint
927
928 SYNOPSIS
929
930 int enable_break (void)
931
932 DESCRIPTION
933
934 Both the SunOS and the SVR4 dynamic linkers have, as part of their
935 debugger interface, support for arranging for the inferior to hit
936 a breakpoint after mapping in the shared libraries. This function
937 enables that breakpoint.
938
939 For SunOS, there is a special flag location (in_debugger) which we
940 set to 1. When the dynamic linker sees this flag set, it will set
941 a breakpoint at a location known only to itself, after saving the
942 original contents of that place and the breakpoint address itself,
943 in it's own internal structures. When we resume the inferior, it
944 will eventually take a SIGTRAP when it runs into the breakpoint.
945 We handle this (in a different place) by restoring the contents of
946 the breakpointed location (which is only known after it stops),
947 chasing around to locate the shared libraries that have been
948 loaded, then resuming.
949
950 For SVR4, the debugger interface structure contains a member (r_brk)
951 which is statically initialized at the time the shared library is
952 built, to the offset of a function (_r_debug_state) which is guaran-
953 teed to be called once before mapping in a library, and again when
954 the mapping is complete. At the time we are examining this member,
955 it contains only the unrelocated offset of the function, so we have
956 to do our own relocation. Later, when the dynamic linker actually
957 runs, it relocates r_brk to be the actual address of _r_debug_state().
958
959 The debugger interface structure also contains an enumeration which
960 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
961 depending upon whether or not the library is being mapped or unmapped,
962 and then set to RT_CONSISTENT after the library is mapped/unmapped.
963 */
964
965static int
966enable_break (void)
967{
13437d4b
KB
968#ifdef BKPT_AT_SYMBOL
969
970 struct minimal_symbol *msymbol;
971 char **bkpt_namep;
972 asection *interp_sect;
973
974 /* First, remove all the solib event breakpoints. Their addresses
975 may have changed since the last time we ran the program. */
976 remove_solib_event_breakpoints ();
977
13437d4b
KB
978 interp_text_sect_low = interp_text_sect_high = 0;
979 interp_plt_sect_low = interp_plt_sect_high = 0;
980
981 /* Find the .interp section; if not found, warn the user and drop
982 into the old breakpoint at symbol code. */
983 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
984 if (interp_sect)
985 {
986 unsigned int interp_sect_size;
987 char *buf;
8ad2fcde
KB
988 CORE_ADDR load_addr = 0;
989 int load_addr_found = 0;
f8766ec1 990 struct so_list *so;
e4f7b8c8 991 bfd *tmp_bfd = NULL;
2f4950cd 992 struct target_ops *tmp_bfd_target;
e4f7b8c8
MS
993 int tmp_fd = -1;
994 char *tmp_pathname = NULL;
13437d4b
KB
995 CORE_ADDR sym_addr = 0;
996
997 /* Read the contents of the .interp section into a local buffer;
998 the contents specify the dynamic linker this program uses. */
999 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1000 buf = alloca (interp_sect_size);
1001 bfd_get_section_contents (exec_bfd, interp_sect,
1002 buf, 0, interp_sect_size);
1003
1004 /* Now we need to figure out where the dynamic linker was
1005 loaded so that we can load its symbols and place a breakpoint
1006 in the dynamic linker itself.
1007
1008 This address is stored on the stack. However, I've been unable
1009 to find any magic formula to find it for Solaris (appears to
1010 be trivial on GNU/Linux). Therefore, we have to try an alternate
1011 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1012
34439770
DJ
1013 /* TODO drow/2006-09-12: This is somewhat fragile, because it
1014 relies on read_pc. On both Solaris and GNU/Linux we can use
1015 the AT_BASE auxilliary entry, which GDB now knows how to
1016 access, to find the base address. */
1017
1018 tmp_fd = solib_open (buf, &tmp_pathname);
e4f7b8c8 1019 if (tmp_fd >= 0)
9f76c2cd 1020 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
e4f7b8c8 1021
13437d4b
KB
1022 if (tmp_bfd == NULL)
1023 goto bkpt_at_symbol;
1024
1025 /* Make sure the dynamic linker's really a useful object. */
1026 if (!bfd_check_format (tmp_bfd, bfd_object))
1027 {
8a3fe4f8 1028 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
13437d4b
KB
1029 bfd_close (tmp_bfd);
1030 goto bkpt_at_symbol;
1031 }
1032
2f4950cd
AC
1033 /* Now convert the TMP_BFD into a target. That way target, as
1034 well as BFD operations can be used. Note that closing the
1035 target will also close the underlying bfd. */
1036 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1037
f8766ec1
KB
1038 /* On a running target, we can get the dynamic linker's base
1039 address from the shared library table. */
2bbe3cc1 1040 solib_add (NULL, 0, &current_target, auto_solib_add);
f8766ec1
KB
1041 so = master_so_list ();
1042 while (so)
8ad2fcde 1043 {
f8766ec1 1044 if (strcmp (buf, so->so_original_name) == 0)
8ad2fcde
KB
1045 {
1046 load_addr_found = 1;
cc10cae3 1047 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1048 break;
1049 }
f8766ec1 1050 so = so->next;
8ad2fcde
KB
1051 }
1052
1053 /* Otherwise we find the dynamic linker's base address by examining
1054 the current pc (which should point at the entry point for the
1055 dynamic linker) and subtracting the offset of the entry point. */
1056 if (!load_addr_found)
34439770
DJ
1057 {
1058 load_addr = (read_pc ()
1059 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1060 debug_loader_name = xstrdup (buf);
1061 debug_loader_offset_p = 1;
1062 debug_loader_offset = load_addr;
2bbe3cc1 1063 solib_add (NULL, 0, &current_target, auto_solib_add);
34439770 1064 }
13437d4b
KB
1065
1066 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1067 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1068 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1069 if (interp_sect)
1070 {
1071 interp_text_sect_low =
1072 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1073 interp_text_sect_high =
1074 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1075 }
1076 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1077 if (interp_sect)
1078 {
1079 interp_plt_sect_low =
1080 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1081 interp_plt_sect_high =
1082 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1083 }
1084
1085 /* Now try to set a breakpoint in the dynamic linker. */
1086 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1087 {
2bbe3cc1 1088 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1089 if (sym_addr != 0)
1090 break;
1091 }
1092
2bbe3cc1
DJ
1093 if (sym_addr != 0)
1094 /* Convert 'sym_addr' from a function pointer to an address.
1095 Because we pass tmp_bfd_target instead of the current
1096 target, this will always produce an unrelocated value. */
1097 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1098 sym_addr,
1099 tmp_bfd_target);
1100
2f4950cd
AC
1101 /* We're done with both the temporary bfd and target. Remember,
1102 closing the target closes the underlying bfd. */
1103 target_close (tmp_bfd_target, 0);
13437d4b
KB
1104
1105 if (sym_addr != 0)
1106 {
1107 create_solib_event_breakpoint (load_addr + sym_addr);
1108 return 1;
1109 }
1110
1111 /* For whatever reason we couldn't set a breakpoint in the dynamic
1112 linker. Warn and drop into the old code. */
1113 bkpt_at_symbol:
518f9d3c 1114 xfree (tmp_pathname);
82d03102
PG
1115 warning (_("Unable to find dynamic linker breakpoint function.\n"
1116 "GDB will be unable to debug shared library initializers\n"
1117 "and track explicitly loaded dynamic code."));
13437d4b 1118 }
13437d4b 1119
e499d0f1
DJ
1120 /* Scan through the lists of symbols, trying to look up the symbol and
1121 set a breakpoint there. Terminate loop when we/if we succeed. */
1122
1123 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1124 {
1125 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1126 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1127 {
1128 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1129 return 1;
1130 }
1131 }
13437d4b 1132
13437d4b
KB
1133 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1134 {
1135 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1136 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1137 {
1138 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1139 return 1;
1140 }
1141 }
13437d4b
KB
1142#endif /* BKPT_AT_SYMBOL */
1143
542c95c2 1144 return 0;
13437d4b
KB
1145}
1146
1147/*
1148
1149 LOCAL FUNCTION
1150
1151 special_symbol_handling -- additional shared library symbol handling
1152
1153 SYNOPSIS
1154
1155 void special_symbol_handling ()
1156
1157 DESCRIPTION
1158
1159 Once the symbols from a shared object have been loaded in the usual
1160 way, we are called to do any system specific symbol handling that
1161 is needed.
1162
ab31aa69 1163 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1164 linkers structures to find symbol definitions for "common" symbols
1165 and adding them to the minimal symbol table for the runtime common
1166 objfile.
1167
ab31aa69
KB
1168 However, for SVR4, there's nothing to do.
1169
13437d4b
KB
1170 */
1171
1172static void
1173svr4_special_symbol_handling (void)
1174{
13437d4b
KB
1175}
1176
e2a44558
KB
1177/* Relocate the main executable. This function should be called upon
1178 stopping the inferior process at the entry point to the program.
1179 The entry point from BFD is compared to the PC and if they are
1180 different, the main executable is relocated by the proper amount.
1181
1182 As written it will only attempt to relocate executables which
1183 lack interpreter sections. It seems likely that only dynamic
1184 linker executables will get relocated, though it should work
1185 properly for a position-independent static executable as well. */
1186
1187static void
1188svr4_relocate_main_executable (void)
1189{
1190 asection *interp_sect;
1191 CORE_ADDR pc = read_pc ();
1192
1193 /* Decide if the objfile needs to be relocated. As indicated above,
1194 we will only be here when execution is stopped at the beginning
1195 of the program. Relocation is necessary if the address at which
1196 we are presently stopped differs from the start address stored in
1197 the executable AND there's no interpreter section. The condition
1198 regarding the interpreter section is very important because if
1199 there *is* an interpreter section, execution will begin there
1200 instead. When there is an interpreter section, the start address
1201 is (presumably) used by the interpreter at some point to start
1202 execution of the program.
1203
1204 If there is an interpreter, it is normal for it to be set to an
1205 arbitrary address at the outset. The job of finding it is
1206 handled in enable_break().
1207
1208 So, to summarize, relocations are necessary when there is no
1209 interpreter section and the start address obtained from the
1210 executable is different from the address at which GDB is
1211 currently stopped.
1212
1213 [ The astute reader will note that we also test to make sure that
1214 the executable in question has the DYNAMIC flag set. It is my
1215 opinion that this test is unnecessary (undesirable even). It
1216 was added to avoid inadvertent relocation of an executable
1217 whose e_type member in the ELF header is not ET_DYN. There may
1218 be a time in the future when it is desirable to do relocations
1219 on other types of files as well in which case this condition
1220 should either be removed or modified to accomodate the new file
1221 type. (E.g, an ET_EXEC executable which has been built to be
1222 position-independent could safely be relocated by the OS if
1223 desired. It is true that this violates the ABI, but the ABI
1224 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1225 */
1226
1227 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1228 if (interp_sect == NULL
1229 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1230 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1231 {
1232 struct cleanup *old_chain;
1233 struct section_offsets *new_offsets;
1234 int i, changed;
1235 CORE_ADDR displacement;
1236
1237 /* It is necessary to relocate the objfile. The amount to
1238 relocate by is simply the address at which we are stopped
1239 minus the starting address from the executable.
1240
1241 We relocate all of the sections by the same amount. This
1242 behavior is mandated by recent editions of the System V ABI.
1243 According to the System V Application Binary Interface,
1244 Edition 4.1, page 5-5:
1245
1246 ... Though the system chooses virtual addresses for
1247 individual processes, it maintains the segments' relative
1248 positions. Because position-independent code uses relative
1249 addressesing between segments, the difference between
1250 virtual addresses in memory must match the difference
1251 between virtual addresses in the file. The difference
1252 between the virtual address of any segment in memory and
1253 the corresponding virtual address in the file is thus a
1254 single constant value for any one executable or shared
1255 object in a given process. This difference is the base
1256 address. One use of the base address is to relocate the
1257 memory image of the program during dynamic linking.
1258
1259 The same language also appears in Edition 4.0 of the System V
1260 ABI and is left unspecified in some of the earlier editions. */
1261
2f4950cd 1262 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1263 changed = 0;
1264
13fc0c2f
KB
1265 new_offsets = xcalloc (symfile_objfile->num_sections,
1266 sizeof (struct section_offsets));
b8c9b27d 1267 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1268
1269 for (i = 0; i < symfile_objfile->num_sections; i++)
1270 {
1271 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1272 changed = 1;
1273 new_offsets->offsets[i] = displacement;
1274 }
1275
1276 if (changed)
1277 objfile_relocate (symfile_objfile, new_offsets);
1278
1279 do_cleanups (old_chain);
1280 }
1281}
1282
13437d4b
KB
1283/*
1284
1285 GLOBAL FUNCTION
1286
1287 svr4_solib_create_inferior_hook -- shared library startup support
1288
1289 SYNOPSIS
1290
7095b863 1291 void svr4_solib_create_inferior_hook ()
13437d4b
KB
1292
1293 DESCRIPTION
1294
1295 When gdb starts up the inferior, it nurses it along (through the
1296 shell) until it is ready to execute it's first instruction. At this
1297 point, this function gets called via expansion of the macro
1298 SOLIB_CREATE_INFERIOR_HOOK.
1299
1300 For SunOS executables, this first instruction is typically the
1301 one at "_start", or a similar text label, regardless of whether
1302 the executable is statically or dynamically linked. The runtime
1303 startup code takes care of dynamically linking in any shared
1304 libraries, once gdb allows the inferior to continue.
1305
1306 For SVR4 executables, this first instruction is either the first
1307 instruction in the dynamic linker (for dynamically linked
1308 executables) or the instruction at "start" for statically linked
1309 executables. For dynamically linked executables, the system
1310 first exec's /lib/libc.so.N, which contains the dynamic linker,
1311 and starts it running. The dynamic linker maps in any needed
1312 shared libraries, maps in the actual user executable, and then
1313 jumps to "start" in the user executable.
1314
1315 For both SunOS shared libraries, and SVR4 shared libraries, we
1316 can arrange to cooperate with the dynamic linker to discover the
1317 names of shared libraries that are dynamically linked, and the
1318 base addresses to which they are linked.
1319
1320 This function is responsible for discovering those names and
1321 addresses, and saving sufficient information about them to allow
1322 their symbols to be read at a later time.
1323
1324 FIXME
1325
1326 Between enable_break() and disable_break(), this code does not
1327 properly handle hitting breakpoints which the user might have
1328 set in the startup code or in the dynamic linker itself. Proper
1329 handling will probably have to wait until the implementation is
1330 changed to use the "breakpoint handler function" method.
1331
1332 Also, what if child has exit()ed? Must exit loop somehow.
1333 */
1334
e2a44558 1335static void
13437d4b
KB
1336svr4_solib_create_inferior_hook (void)
1337{
e2a44558
KB
1338 /* Relocate the main executable if necessary. */
1339 svr4_relocate_main_executable ();
1340
d5a921c9 1341 if (!svr4_have_link_map_offsets ())
513f5903 1342 return;
d5a921c9 1343
13437d4b 1344 if (!enable_break ())
542c95c2 1345 return;
13437d4b 1346
ab31aa69
KB
1347#if defined(_SCO_DS)
1348 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1349 special shared library breakpoints and the shared library breakpoint
1350 service routine.
1351
1352 Now run the target. It will eventually hit the breakpoint, at
1353 which point all of the libraries will have been mapped in and we
1354 can go groveling around in the dynamic linker structures to find
1355 out what we need to know about them. */
1356
1357 clear_proceed_status ();
c0236d92 1358 stop_soon = STOP_QUIETLY;
13437d4b
KB
1359 stop_signal = TARGET_SIGNAL_0;
1360 do
1361 {
39f77062 1362 target_resume (pid_to_ptid (-1), 0, stop_signal);
13437d4b
KB
1363 wait_for_inferior ();
1364 }
1365 while (stop_signal != TARGET_SIGNAL_TRAP);
c0236d92 1366 stop_soon = NO_STOP_QUIETLY;
ab31aa69 1367#endif /* defined(_SCO_DS) */
13437d4b
KB
1368}
1369
1370static void
1371svr4_clear_solib (void)
1372{
1373 debug_base = 0;
34439770
DJ
1374 debug_loader_offset_p = 0;
1375 debug_loader_offset = 0;
1376 xfree (debug_loader_name);
1377 debug_loader_name = NULL;
13437d4b
KB
1378}
1379
1380static void
1381svr4_free_so (struct so_list *so)
1382{
b8c9b27d
KB
1383 xfree (so->lm_info->lm);
1384 xfree (so->lm_info);
13437d4b
KB
1385}
1386
6bb7be43
JB
1387
1388/* Clear any bits of ADDR that wouldn't fit in a target-format
1389 data pointer. "Data pointer" here refers to whatever sort of
1390 address the dynamic linker uses to manage its sections. At the
1391 moment, we don't support shared libraries on any processors where
1392 code and data pointers are different sizes.
1393
1394 This isn't really the right solution. What we really need here is
1395 a way to do arithmetic on CORE_ADDR values that respects the
1396 natural pointer/address correspondence. (For example, on the MIPS,
1397 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1398 sign-extend the value. There, simply truncating the bits above
819844ad 1399 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
1400 be a new gdbarch method or something. */
1401static CORE_ADDR
1402svr4_truncate_ptr (CORE_ADDR addr)
1403{
819844ad 1404 if (gdbarch_ptr_bit (current_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
1405 /* We don't need to truncate anything, and the bit twiddling below
1406 will fail due to overflow problems. */
1407 return addr;
1408 else
819844ad 1409 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (current_gdbarch)) - 1);
6bb7be43
JB
1410}
1411
1412
749499cb
KB
1413static void
1414svr4_relocate_section_addresses (struct so_list *so,
1415 struct section_table *sec)
1416{
cc10cae3
AO
1417 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1418 sec->bfd));
1419 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1420 sec->bfd));
749499cb 1421}
4b188b9f 1422\f
749499cb 1423
4b188b9f 1424/* Architecture-specific operations. */
6bb7be43 1425
4b188b9f
MK
1426/* Per-architecture data key. */
1427static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1428
4b188b9f 1429struct solib_svr4_ops
e5e2b9ff 1430{
4b188b9f
MK
1431 /* Return a description of the layout of `struct link_map'. */
1432 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1433};
e5e2b9ff 1434
4b188b9f 1435/* Return a default for the architecture-specific operations. */
e5e2b9ff 1436
4b188b9f
MK
1437static void *
1438solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1439{
4b188b9f 1440 struct solib_svr4_ops *ops;
e5e2b9ff 1441
4b188b9f
MK
1442 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1443 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1444 return ops;
e5e2b9ff
KB
1445}
1446
4b188b9f
MK
1447/* Set the architecture-specific `struct link_map_offsets' fetcher for
1448 GDBARCH to FLMO. */
1c4dcb57 1449
21479ded 1450void
e5e2b9ff
KB
1451set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1452 struct link_map_offsets *(*flmo) (void))
21479ded 1453{
4b188b9f
MK
1454 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1455
1456 ops->fetch_link_map_offsets = flmo;
21479ded
KB
1457}
1458
4b188b9f
MK
1459/* Fetch a link_map_offsets structure using the architecture-specific
1460 `struct link_map_offsets' fetcher. */
1c4dcb57 1461
4b188b9f
MK
1462static struct link_map_offsets *
1463svr4_fetch_link_map_offsets (void)
21479ded 1464{
4b188b9f
MK
1465 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1466
1467 gdb_assert (ops->fetch_link_map_offsets);
1468 return ops->fetch_link_map_offsets ();
21479ded
KB
1469}
1470
4b188b9f
MK
1471/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1472
1473static int
1474svr4_have_link_map_offsets (void)
1475{
1476 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1477 return (ops->fetch_link_map_offsets != NULL);
1478}
1479\f
1480
e4bbbda8
MK
1481/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1482 `struct r_debug' and a `struct link_map' that are binary compatible
1483 with the origional SVR4 implementation. */
1484
1485/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1486 for an ILP32 SVR4 system. */
1487
1488struct link_map_offsets *
1489svr4_ilp32_fetch_link_map_offsets (void)
1490{
1491 static struct link_map_offsets lmo;
1492 static struct link_map_offsets *lmp = NULL;
1493
1494 if (lmp == NULL)
1495 {
1496 lmp = &lmo;
1497
e4cd0d6a
MK
1498 lmo.r_version_offset = 0;
1499 lmo.r_version_size = 4;
e4bbbda8 1500 lmo.r_map_offset = 4;
e4cd0d6a 1501 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1502
1503 /* Everything we need is in the first 20 bytes. */
1504 lmo.link_map_size = 20;
1505 lmo.l_addr_offset = 0;
e4bbbda8 1506 lmo.l_name_offset = 4;
cc10cae3 1507 lmo.l_ld_offset = 8;
e4bbbda8 1508 lmo.l_next_offset = 12;
e4bbbda8 1509 lmo.l_prev_offset = 16;
e4bbbda8
MK
1510 }
1511
1512 return lmp;
1513}
1514
1515/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1516 for an LP64 SVR4 system. */
1517
1518struct link_map_offsets *
1519svr4_lp64_fetch_link_map_offsets (void)
1520{
1521 static struct link_map_offsets lmo;
1522 static struct link_map_offsets *lmp = NULL;
1523
1524 if (lmp == NULL)
1525 {
1526 lmp = &lmo;
1527
e4cd0d6a
MK
1528 lmo.r_version_offset = 0;
1529 lmo.r_version_size = 4;
e4bbbda8 1530 lmo.r_map_offset = 8;
e4cd0d6a 1531 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1532
1533 /* Everything we need is in the first 40 bytes. */
1534 lmo.link_map_size = 40;
1535 lmo.l_addr_offset = 0;
e4bbbda8 1536 lmo.l_name_offset = 8;
cc10cae3 1537 lmo.l_ld_offset = 16;
e4bbbda8 1538 lmo.l_next_offset = 24;
e4bbbda8 1539 lmo.l_prev_offset = 32;
e4bbbda8
MK
1540 }
1541
1542 return lmp;
1543}
1544\f
1545
7d522c90 1546struct target_so_ops svr4_so_ops;
13437d4b 1547
3a40aaa0
UW
1548/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1549 different rule for symbol lookup. The lookup begins here in the DSO, not in
1550 the main executable. */
1551
1552static struct symbol *
1553elf_lookup_lib_symbol (const struct objfile *objfile,
1554 const char *name,
1555 const char *linkage_name,
1556 const domain_enum domain, struct symtab **symtab)
1557{
1558 if (objfile->obfd == NULL
1559 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1560 return NULL;
1561
65728c26 1562 return lookup_global_symbol_from_objfile
3a40aaa0
UW
1563 (objfile, name, linkage_name, domain, symtab);
1564}
1565
a78f21af
AC
1566extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1567
13437d4b
KB
1568void
1569_initialize_svr4_solib (void)
1570{
4b188b9f
MK
1571 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1572
749499cb 1573 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1574 svr4_so_ops.free_so = svr4_free_so;
1575 svr4_so_ops.clear_solib = svr4_clear_solib;
1576 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1577 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1578 svr4_so_ops.current_sos = svr4_current_sos;
1579 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1580 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3a40aaa0 1581 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
13437d4b
KB
1582
1583 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1584 current_target_so_ops = &svr4_so_ops;
1585}
This page took 0.727928 seconds and 4 git commands to generate.