* breakpoint.c (update_breakpoints_after_exec, print_it_typical)
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
13437d4b
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
13437d4b 22
13437d4b
KB
23#include "defs.h"
24
13437d4b 25#include "elf/external.h"
21479ded 26#include "elf/common.h"
f7856c8f 27#include "elf/mips.h"
13437d4b
KB
28
29#include "symtab.h"
30#include "bfd.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbcore.h"
13437d4b 34#include "target.h"
13437d4b 35#include "inferior.h"
13437d4b 36
4b188b9f
MK
37#include "gdb_assert.h"
38
13437d4b 39#include "solist.h"
bba93f6c 40#include "solib.h"
13437d4b
KB
41#include "solib-svr4.h"
42
2f4950cd 43#include "bfd-target.h"
cc10cae3 44#include "elf-bfd.h"
2f4950cd
AC
45#include "exec.h"
46
e5e2b9ff 47static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 48static int svr4_have_link_map_offsets (void);
1c4dcb57 49
4b188b9f
MK
50/* This hook is set to a function that provides native link map
51 offsets if the code in solib-legacy.c is linked in. */
52struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
21479ded 53
13437d4b
KB
54/* Link map info to include in an allocated so_list entry */
55
56struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
4066fc10 61 gdb_byte *lm;
cc10cae3
AO
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
13437d4b
KB
69 };
70
71/* On SVR4 systems, a list of symbols in the dynamic linker where
72 GDB can try to place a breakpoint to monitor shared library
73 events.
74
75 If none of these symbols are found, or other errors occur, then
76 SVR4 systems will fall back to using a symbol as the "startup
77 mapping complete" breakpoint address. */
78
13437d4b
KB
79static char *solib_break_names[] =
80{
81 "r_debug_state",
82 "_r_debug_state",
83 "_dl_debug_state",
84 "rtld_db_dlactivity",
1f72e589 85 "_rtld_debug_state",
4c0122c8
JB
86
87 /* On the 64-bit PowerPC, the linker symbol with the same name as
88 the C function points to a function descriptor, not to the entry
89 point. The linker symbol whose name is the C function name
90 prefixed with a '.' points to the function's entry point. So
91 when we look through this table, we ignore symbols that point
92 into the data section (thus skipping the descriptor's symbol),
93 and eventually try this one, giving us the real entry point
94 address. */
95 "._dl_debug_state",
96
13437d4b
KB
97 NULL
98};
13437d4b
KB
99
100#define BKPT_AT_SYMBOL 1
101
ab31aa69 102#if defined (BKPT_AT_SYMBOL)
13437d4b
KB
103static char *bkpt_names[] =
104{
105#ifdef SOLIB_BKPT_NAME
106 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
107#endif
108 "_start",
ad3dcc5c 109 "__start",
13437d4b
KB
110 "main",
111 NULL
112};
113#endif
114
13437d4b
KB
115static char *main_name_list[] =
116{
117 "main_$main",
118 NULL
119};
120
13437d4b
KB
121/* link map access functions */
122
123static CORE_ADDR
cc10cae3 124LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 125{
4b188b9f 126 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 127
cfaefc65
AS
128 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
129 builtin_type_void_data_ptr);
13437d4b
KB
130}
131
cc10cae3
AO
132static int
133HAS_LM_DYNAMIC_FROM_LINK_MAP ()
134{
135 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
136
cfaefc65 137 return lmo->l_ld_offset >= 0;
cc10cae3
AO
138}
139
140static CORE_ADDR
141LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
142{
143 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
144
cfaefc65
AS
145 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
146 builtin_type_void_data_ptr);
cc10cae3
AO
147}
148
149static CORE_ADDR
150LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
151{
152 if (so->lm_info->l_addr == (CORE_ADDR)-1)
153 {
154 struct bfd_section *dyninfo_sect;
155 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
156
157 l_addr = LM_ADDR_FROM_LINK_MAP (so);
158
159 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
160 goto set_addr;
161
162 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
163
164 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
165 if (dyninfo_sect == NULL)
166 goto set_addr;
167
168 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
169
170 if (dynaddr + l_addr != l_dynaddr)
171 {
cc10cae3
AO
172 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
173 {
174 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
175 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
176 int i;
177
178 align = 1;
179
180 for (i = 0; i < ehdr->e_phnum; i++)
181 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
182 align = phdr[i].p_align;
183 }
184
185 /* Turn it into a mask. */
186 align--;
187
188 /* If the changes match the alignment requirements, we
189 assume we're using a core file that was generated by the
190 same binary, just prelinked with a different base offset.
191 If it doesn't match, we may have a different binary, the
192 same binary with the dynamic table loaded at an unrelated
193 location, or anything, really. To avoid regressions,
194 don't adjust the base offset in the latter case, although
195 odds are that, if things really changed, debugging won't
196 quite work. */
197 if ((l_addr & align) == 0 && ((dynaddr - l_dynaddr) & align) == 0)
198 {
199 l_addr = l_dynaddr - dynaddr;
79d4c408
DJ
200
201 warning (_(".dynamic section for \"%s\" "
202 "is not at the expected address"), so->so_name);
cc10cae3
AO
203 warning (_("difference appears to be caused by prelink, "
204 "adjusting expectations"));
205 }
79d4c408
DJ
206 else
207 warning (_(".dynamic section for \"%s\" "
208 "is not at the expected address "
209 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
210 }
211
212 set_addr:
213 so->lm_info->l_addr = l_addr;
214 }
215
216 return so->lm_info->l_addr;
217}
218
13437d4b
KB
219static CORE_ADDR
220LM_NEXT (struct so_list *so)
221{
4b188b9f 222 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 223
cfaefc65
AS
224 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
225 builtin_type_void_data_ptr);
13437d4b
KB
226}
227
228static CORE_ADDR
229LM_NAME (struct so_list *so)
230{
4b188b9f 231 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 232
cfaefc65
AS
233 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
234 builtin_type_void_data_ptr);
13437d4b
KB
235}
236
13437d4b
KB
237static int
238IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
239{
4b188b9f 240 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 241
cfaefc65
AS
242 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
243 builtin_type_void_data_ptr) == 0;
13437d4b
KB
244}
245
13437d4b
KB
246static CORE_ADDR debug_base; /* Base of dynamic linker structures */
247static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
248
34439770
DJ
249/* Validity flag for debug_loader_offset. */
250static int debug_loader_offset_p;
251
252/* Load address for the dynamic linker, inferred. */
253static CORE_ADDR debug_loader_offset;
254
255/* Name of the dynamic linker, valid if debug_loader_offset_p. */
256static char *debug_loader_name;
257
13437d4b
KB
258/* Local function prototypes */
259
260static int match_main (char *);
261
87f84c9d 262static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
13437d4b
KB
263
264/*
265
266 LOCAL FUNCTION
267
268 bfd_lookup_symbol -- lookup the value for a specific symbol
269
270 SYNOPSIS
271
87f84c9d 272 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
13437d4b
KB
273
274 DESCRIPTION
275
276 An expensive way to lookup the value of a single symbol for
277 bfd's that are only temporary anyway. This is used by the
278 shared library support to find the address of the debugger
279 interface structures in the shared library.
280
87f84c9d
JB
281 If SECT_FLAGS is non-zero, only match symbols in sections whose
282 flags include all those in SECT_FLAGS.
283
13437d4b
KB
284 Note that 0 is specifically allowed as an error return (no
285 such symbol).
286 */
287
288static CORE_ADDR
87f84c9d 289bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
13437d4b 290{
435b259c 291 long storage_needed;
13437d4b
KB
292 asymbol *sym;
293 asymbol **symbol_table;
294 unsigned int number_of_symbols;
295 unsigned int i;
296 struct cleanup *back_to;
297 CORE_ADDR symaddr = 0;
298
299 storage_needed = bfd_get_symtab_upper_bound (abfd);
300
301 if (storage_needed > 0)
302 {
303 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 304 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
305 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
306
307 for (i = 0; i < number_of_symbols; i++)
308 {
309 sym = *symbol_table++;
6314a349 310 if (strcmp (sym->name, symname) == 0
87f84c9d 311 && (sym->section->flags & sect_flags) == sect_flags)
13437d4b
KB
312 {
313 /* Bfd symbols are section relative. */
314 symaddr = sym->value + sym->section->vma;
315 break;
316 }
317 }
318 do_cleanups (back_to);
319 }
320
321 if (symaddr)
322 return symaddr;
323
324 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
325 have to check the dynamic string table too. */
326
327 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
328
329 if (storage_needed > 0)
330 {
331 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 332 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
333 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
334
335 for (i = 0; i < number_of_symbols; i++)
336 {
337 sym = *symbol_table++;
87f84c9d 338
6314a349 339 if (strcmp (sym->name, symname) == 0
87f84c9d 340 && (sym->section->flags & sect_flags) == sect_flags)
13437d4b
KB
341 {
342 /* Bfd symbols are section relative. */
343 symaddr = sym->value + sym->section->vma;
344 break;
345 }
346 }
347 do_cleanups (back_to);
348 }
349
350 return symaddr;
351}
352
13437d4b
KB
353/*
354
355 LOCAL FUNCTION
356
357 elf_locate_base -- locate the base address of dynamic linker structs
358 for SVR4 elf targets.
359
360 SYNOPSIS
361
362 CORE_ADDR elf_locate_base (void)
363
364 DESCRIPTION
365
366 For SVR4 elf targets the address of the dynamic linker's runtime
367 structure is contained within the dynamic info section in the
368 executable file. The dynamic section is also mapped into the
369 inferior address space. Because the runtime loader fills in the
370 real address before starting the inferior, we have to read in the
371 dynamic info section from the inferior address space.
372 If there are any errors while trying to find the address, we
373 silently return 0, otherwise the found address is returned.
374
375 */
376
377static CORE_ADDR
378elf_locate_base (void)
379{
7be0c536 380 struct bfd_section *dyninfo_sect;
13437d4b
KB
381 int dyninfo_sect_size;
382 CORE_ADDR dyninfo_addr;
4066fc10
MI
383 gdb_byte *buf;
384 gdb_byte *bufend;
13437d4b
KB
385 int arch_size;
386
387 /* Find the start address of the .dynamic section. */
388 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
389 if (dyninfo_sect == NULL)
390 return 0;
391 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
392
393 /* Read in .dynamic section, silently ignore errors. */
394 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
395 buf = alloca (dyninfo_sect_size);
396 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
397 return 0;
398
399 /* Find the DT_DEBUG entry in the the .dynamic section.
400 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
401 no DT_DEBUG entries. */
402
403 arch_size = bfd_get_arch_size (exec_bfd);
404 if (arch_size == -1) /* failure */
405 return 0;
406
407 if (arch_size == 32)
408 { /* 32-bit elf */
409 for (bufend = buf + dyninfo_sect_size;
410 buf < bufend;
411 buf += sizeof (Elf32_External_Dyn))
412 {
413 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
414 long dyn_tag;
415 CORE_ADDR dyn_ptr;
416
417 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
418 if (dyn_tag == DT_NULL)
419 break;
420 else if (dyn_tag == DT_DEBUG)
421 {
422 dyn_ptr = bfd_h_get_32 (exec_bfd,
423 (bfd_byte *) x_dynp->d_un.d_ptr);
424 return dyn_ptr;
425 }
13437d4b
KB
426 else if (dyn_tag == DT_MIPS_RLD_MAP)
427 {
4066fc10 428 gdb_byte *pbuf;
cfaefc65 429 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
13437d4b 430
743b930b 431 pbuf = alloca (pbuf_size);
13437d4b
KB
432 /* DT_MIPS_RLD_MAP contains a pointer to the address
433 of the dynamic link structure. */
434 dyn_ptr = bfd_h_get_32 (exec_bfd,
435 (bfd_byte *) x_dynp->d_un.d_ptr);
743b930b 436 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
13437d4b 437 return 0;
cfaefc65 438 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
13437d4b 439 }
13437d4b
KB
440 }
441 }
442 else /* 64-bit elf */
443 {
444 for (bufend = buf + dyninfo_sect_size;
445 buf < bufend;
446 buf += sizeof (Elf64_External_Dyn))
447 {
448 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
449 long dyn_tag;
450 CORE_ADDR dyn_ptr;
451
452 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
453 if (dyn_tag == DT_NULL)
454 break;
455 else if (dyn_tag == DT_DEBUG)
456 {
457 dyn_ptr = bfd_h_get_64 (exec_bfd,
458 (bfd_byte *) x_dynp->d_un.d_ptr);
459 return dyn_ptr;
460 }
743b930b
KB
461 else if (dyn_tag == DT_MIPS_RLD_MAP)
462 {
4066fc10 463 gdb_byte *pbuf;
cfaefc65 464 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
743b930b
KB
465
466 pbuf = alloca (pbuf_size);
467 /* DT_MIPS_RLD_MAP contains a pointer to the address
468 of the dynamic link structure. */
469 dyn_ptr = bfd_h_get_64 (exec_bfd,
470 (bfd_byte *) x_dynp->d_un.d_ptr);
471 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
472 return 0;
cfaefc65 473 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
743b930b 474 }
13437d4b
KB
475 }
476 }
477
478 /* DT_DEBUG entry not found. */
479 return 0;
480}
481
13437d4b
KB
482/*
483
484 LOCAL FUNCTION
485
486 locate_base -- locate the base address of dynamic linker structs
487
488 SYNOPSIS
489
490 CORE_ADDR locate_base (void)
491
492 DESCRIPTION
493
494 For both the SunOS and SVR4 shared library implementations, if the
495 inferior executable has been linked dynamically, there is a single
496 address somewhere in the inferior's data space which is the key to
497 locating all of the dynamic linker's runtime structures. This
498 address is the value of the debug base symbol. The job of this
499 function is to find and return that address, or to return 0 if there
500 is no such address (the executable is statically linked for example).
501
502 For SunOS, the job is almost trivial, since the dynamic linker and
503 all of it's structures are statically linked to the executable at
504 link time. Thus the symbol for the address we are looking for has
505 already been added to the minimal symbol table for the executable's
506 objfile at the time the symbol file's symbols were read, and all we
507 have to do is look it up there. Note that we explicitly do NOT want
508 to find the copies in the shared library.
509
510 The SVR4 version is a bit more complicated because the address
511 is contained somewhere in the dynamic info section. We have to go
512 to a lot more work to discover the address of the debug base symbol.
513 Because of this complexity, we cache the value we find and return that
514 value on subsequent invocations. Note there is no copy in the
515 executable symbol tables.
516
517 */
518
519static CORE_ADDR
520locate_base (void)
521{
13437d4b
KB
522 /* Check to see if we have a currently valid address, and if so, avoid
523 doing all this work again and just return the cached address. If
524 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
525 section for ELF executables. There's no point in doing any of this
526 though if we don't have some link map offsets to work with. */
13437d4b 527
d5a921c9 528 if (debug_base == 0 && svr4_have_link_map_offsets ())
13437d4b
KB
529 {
530 if (exec_bfd != NULL
531 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
532 debug_base = elf_locate_base ();
13437d4b
KB
533 }
534 return (debug_base);
13437d4b
KB
535}
536
e4cd0d6a
MK
537/* Find the first element in the inferior's dynamic link map, and
538 return its address in the inferior.
13437d4b 539
e4cd0d6a
MK
540 FIXME: Perhaps we should validate the info somehow, perhaps by
541 checking r_version for a known version number, or r_state for
542 RT_CONSISTENT. */
13437d4b
KB
543
544static CORE_ADDR
e4cd0d6a 545solib_svr4_r_map (void)
13437d4b 546{
4b188b9f 547 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 548
e4cd0d6a
MK
549 return read_memory_typed_address (debug_base + lmo->r_map_offset,
550 builtin_type_void_data_ptr);
551}
13437d4b 552
e4cd0d6a
MK
553/* Find the link map for the dynamic linker (if it is not in the
554 normal list of loaded shared objects). */
13437d4b 555
e4cd0d6a
MK
556static CORE_ADDR
557solib_svr4_r_ldsomap (void)
558{
559 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
560 ULONGEST version;
13437d4b 561
e4cd0d6a
MK
562 /* Check version, and return zero if `struct r_debug' doesn't have
563 the r_ldsomap member. */
564 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
565 lmo->r_version_size);
566 if (version < 2 || lmo->r_ldsomap_offset == -1)
567 return 0;
13437d4b 568
e4cd0d6a
MK
569 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
570 builtin_type_void_data_ptr);
13437d4b
KB
571}
572
13437d4b
KB
573/*
574
575 LOCAL FUNCTION
576
577 open_symbol_file_object
578
579 SYNOPSIS
580
581 void open_symbol_file_object (void *from_tty)
582
583 DESCRIPTION
584
585 If no open symbol file, attempt to locate and open the main symbol
586 file. On SVR4 systems, this is the first link map entry. If its
587 name is here, we can open it. Useful when attaching to a process
588 without first loading its symbol file.
589
590 If FROM_TTYP dereferences to a non-zero integer, allow messages to
591 be printed. This parameter is a pointer rather than an int because
592 open_symbol_file_object() is called via catch_errors() and
593 catch_errors() requires a pointer argument. */
594
595static int
596open_symbol_file_object (void *from_ttyp)
597{
598 CORE_ADDR lm, l_name;
599 char *filename;
600 int errcode;
601 int from_tty = *(int *)from_ttyp;
4b188b9f 602 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
cfaefc65
AS
603 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
604 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 605 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
606
607 if (symfile_objfile)
608 if (!query ("Attempt to reload symbols from process? "))
609 return 0;
610
611 if ((debug_base = locate_base ()) == 0)
612 return 0; /* failed somehow... */
613
614 /* First link map member should be the executable. */
e4cd0d6a
MK
615 lm = solib_svr4_r_map ();
616 if (lm == 0)
13437d4b
KB
617 return 0; /* failed somehow... */
618
619 /* Read address of name from target memory to GDB. */
cfaefc65 620 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 621
cfaefc65
AS
622 /* Convert the address to host format. */
623 l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
13437d4b
KB
624
625 /* Free l_name_buf. */
626 do_cleanups (cleanups);
627
628 if (l_name == 0)
629 return 0; /* No filename. */
630
631 /* Now fetch the filename from target memory. */
632 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
633
634 if (errcode)
635 {
8a3fe4f8 636 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
637 safe_strerror (errcode));
638 return 0;
639 }
640
b8c9b27d 641 make_cleanup (xfree, filename);
13437d4b 642 /* Have a pathname: read the symbol file. */
1adeb98a 643 symbol_file_add_main (filename, from_tty);
13437d4b
KB
644
645 return 1;
646}
13437d4b 647
34439770
DJ
648/* If no shared library information is available from the dynamic
649 linker, build a fallback list from other sources. */
650
651static struct so_list *
652svr4_default_sos (void)
653{
654 struct so_list *head = NULL;
655 struct so_list **link_ptr = &head;
656
657 if (debug_loader_offset_p)
658 {
659 struct so_list *new = XZALLOC (struct so_list);
660
661 new->lm_info = xmalloc (sizeof (struct lm_info));
662
663 /* Nothing will ever check the cached copy of the link
664 map if we set l_addr. */
665 new->lm_info->l_addr = debug_loader_offset;
666 new->lm_info->lm = NULL;
667
668 strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
669 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
670 strcpy (new->so_original_name, new->so_name);
671
672 *link_ptr = new;
673 link_ptr = &new->next;
674 }
675
676 return head;
677}
678
13437d4b
KB
679/* LOCAL FUNCTION
680
681 current_sos -- build a list of currently loaded shared objects
682
683 SYNOPSIS
684
685 struct so_list *current_sos ()
686
687 DESCRIPTION
688
689 Build a list of `struct so_list' objects describing the shared
690 objects currently loaded in the inferior. This list does not
691 include an entry for the main executable file.
692
693 Note that we only gather information directly available from the
694 inferior --- we don't examine any of the shared library files
695 themselves. The declaration of `struct so_list' says which fields
696 we provide values for. */
697
698static struct so_list *
699svr4_current_sos (void)
700{
701 CORE_ADDR lm;
702 struct so_list *head = 0;
703 struct so_list **link_ptr = &head;
e4cd0d6a 704 CORE_ADDR ldsomap = 0;
13437d4b
KB
705
706 /* Make sure we've looked up the inferior's dynamic linker's base
707 structure. */
708 if (! debug_base)
709 {
710 debug_base = locate_base ();
711
712 /* If we can't find the dynamic linker's base structure, this
713 must not be a dynamically linked executable. Hmm. */
714 if (! debug_base)
34439770 715 return svr4_default_sos ();
13437d4b
KB
716 }
717
718 /* Walk the inferior's link map list, and build our list of
719 `struct so_list' nodes. */
e4cd0d6a 720 lm = solib_svr4_r_map ();
34439770 721
13437d4b
KB
722 while (lm)
723 {
4b188b9f 724 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 725 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 726 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 727
13437d4b 728 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 729 make_cleanup (xfree, new->lm_info);
13437d4b 730
831004b7 731 new->lm_info->l_addr = (CORE_ADDR)-1;
f4456994 732 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 733 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
734
735 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
736
737 lm = LM_NEXT (new);
738
739 /* For SVR4 versions, the first entry in the link map is for the
740 inferior executable, so we must ignore it. For some versions of
741 SVR4, it has no name. For others (Solaris 2.3 for example), it
742 does have a name, so we can no longer use a missing name to
743 decide when to ignore it. */
e4cd0d6a 744 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
13437d4b
KB
745 free_so (new);
746 else
747 {
748 int errcode;
749 char *buffer;
750
751 /* Extract this shared object's name. */
752 target_read_string (LM_NAME (new), &buffer,
753 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
754 if (errcode != 0)
8a3fe4f8
AC
755 warning (_("Can't read pathname for load map: %s."),
756 safe_strerror (errcode));
13437d4b
KB
757 else
758 {
759 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
760 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
b8c9b27d 761 xfree (buffer);
13437d4b
KB
762 strcpy (new->so_original_name, new->so_name);
763 }
764
765 /* If this entry has no name, or its name matches the name
766 for the main executable, don't include it in the list. */
767 if (! new->so_name[0]
768 || match_main (new->so_name))
769 free_so (new);
770 else
771 {
772 new->next = 0;
773 *link_ptr = new;
774 link_ptr = &new->next;
775 }
776 }
777
e4cd0d6a
MK
778 /* On Solaris, the dynamic linker is not in the normal list of
779 shared objects, so make sure we pick it up too. Having
780 symbol information for the dynamic linker is quite crucial
781 for skipping dynamic linker resolver code. */
782 if (lm == 0 && ldsomap == 0)
783 lm = ldsomap = solib_svr4_r_ldsomap ();
784
13437d4b
KB
785 discard_cleanups (old_chain);
786 }
787
34439770
DJ
788 if (head == NULL)
789 return svr4_default_sos ();
790
13437d4b
KB
791 return head;
792}
793
bc4a16ae
EZ
794/* Get the address of the link_map for a given OBJFILE. Loop through
795 the link maps, and return the address of the one corresponding to
796 the given objfile. Note that this function takes into account that
797 objfile can be the main executable, not just a shared library. The
798 main executable has always an empty name field in the linkmap. */
799
800CORE_ADDR
801svr4_fetch_objfile_link_map (struct objfile *objfile)
802{
803 CORE_ADDR lm;
804
805 if ((debug_base = locate_base ()) == 0)
806 return 0; /* failed somehow... */
807
808 /* Position ourselves on the first link map. */
e4cd0d6a 809 lm = solib_svr4_r_map ();
bc4a16ae
EZ
810 while (lm)
811 {
812 /* Get info on the layout of the r_debug and link_map structures. */
4b188b9f 813 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
bc4a16ae
EZ
814 int errcode;
815 char *buffer;
816 struct lm_info objfile_lm_info;
817 struct cleanup *old_chain;
818 CORE_ADDR name_address;
cfaefc65
AS
819 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
820 gdb_byte *l_name_buf = xmalloc (l_name_size);
bc4a16ae
EZ
821 old_chain = make_cleanup (xfree, l_name_buf);
822
823 /* Set up the buffer to contain the portion of the link_map
824 structure that gdb cares about. Note that this is not the
825 whole link_map structure. */
f4456994 826 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
bc4a16ae 827 make_cleanup (xfree, objfile_lm_info.lm);
bc4a16ae
EZ
828
829 /* Read the link map into our internal structure. */
830 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
831
832 /* Read address of name from target memory to GDB. */
cfaefc65 833 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
bc4a16ae 834
cfaefc65
AS
835 /* Extract this object's name. */
836 name_address = extract_typed_address (l_name_buf,
837 builtin_type_void_data_ptr);
bc4a16ae
EZ
838 target_read_string (name_address, &buffer,
839 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
840 make_cleanup (xfree, buffer);
841 if (errcode != 0)
8a3fe4f8
AC
842 warning (_("Can't read pathname for load map: %s."),
843 safe_strerror (errcode));
bc4a16ae
EZ
844 else
845 {
846 /* Is this the linkmap for the file we want? */
847 /* If the file is not a shared library and has no name,
848 we are sure it is the main executable, so we return that. */
849 if ((buffer && strcmp (buffer, objfile->name) == 0)
850 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
851 {
852 do_cleanups (old_chain);
853 return lm;
854 }
855 }
cfaefc65
AS
856 /* Not the file we wanted, continue checking. */
857 lm = extract_typed_address (objfile_lm_info.lm + lmo->l_next_offset,
858 builtin_type_void_data_ptr);
bc4a16ae
EZ
859 do_cleanups (old_chain);
860 }
861 return 0;
862}
13437d4b
KB
863
864/* On some systems, the only way to recognize the link map entry for
865 the main executable file is by looking at its name. Return
866 non-zero iff SONAME matches one of the known main executable names. */
867
868static int
869match_main (char *soname)
870{
871 char **mainp;
872
873 for (mainp = main_name_list; *mainp != NULL; mainp++)
874 {
875 if (strcmp (soname, *mainp) == 0)
876 return (1);
877 }
878
879 return (0);
880}
881
13437d4b
KB
882/* Return 1 if PC lies in the dynamic symbol resolution code of the
883 SVR4 run time loader. */
13437d4b
KB
884static CORE_ADDR interp_text_sect_low;
885static CORE_ADDR interp_text_sect_high;
886static CORE_ADDR interp_plt_sect_low;
887static CORE_ADDR interp_plt_sect_high;
888
d7fa2ae2
KB
889static int
890svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
891{
892 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
893 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
894 || in_plt_section (pc, NULL));
895}
13437d4b 896
2f4950cd
AC
897/* Given an executable's ABFD and target, compute the entry-point
898 address. */
899
900static CORE_ADDR
901exec_entry_point (struct bfd *abfd, struct target_ops *targ)
902{
903 /* KevinB wrote ... for most targets, the address returned by
904 bfd_get_start_address() is the entry point for the start
905 function. But, for some targets, bfd_get_start_address() returns
906 the address of a function descriptor from which the entry point
907 address may be extracted. This address is extracted by
908 gdbarch_convert_from_func_ptr_addr(). The method
909 gdbarch_convert_from_func_ptr_addr() is the merely the identify
910 function for targets which don't use function descriptors. */
911 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
912 bfd_get_start_address (abfd),
913 targ);
914}
13437d4b
KB
915
916/*
917
918 LOCAL FUNCTION
919
920 enable_break -- arrange for dynamic linker to hit breakpoint
921
922 SYNOPSIS
923
924 int enable_break (void)
925
926 DESCRIPTION
927
928 Both the SunOS and the SVR4 dynamic linkers have, as part of their
929 debugger interface, support for arranging for the inferior to hit
930 a breakpoint after mapping in the shared libraries. This function
931 enables that breakpoint.
932
933 For SunOS, there is a special flag location (in_debugger) which we
934 set to 1. When the dynamic linker sees this flag set, it will set
935 a breakpoint at a location known only to itself, after saving the
936 original contents of that place and the breakpoint address itself,
937 in it's own internal structures. When we resume the inferior, it
938 will eventually take a SIGTRAP when it runs into the breakpoint.
939 We handle this (in a different place) by restoring the contents of
940 the breakpointed location (which is only known after it stops),
941 chasing around to locate the shared libraries that have been
942 loaded, then resuming.
943
944 For SVR4, the debugger interface structure contains a member (r_brk)
945 which is statically initialized at the time the shared library is
946 built, to the offset of a function (_r_debug_state) which is guaran-
947 teed to be called once before mapping in a library, and again when
948 the mapping is complete. At the time we are examining this member,
949 it contains only the unrelocated offset of the function, so we have
950 to do our own relocation. Later, when the dynamic linker actually
951 runs, it relocates r_brk to be the actual address of _r_debug_state().
952
953 The debugger interface structure also contains an enumeration which
954 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
955 depending upon whether or not the library is being mapped or unmapped,
956 and then set to RT_CONSISTENT after the library is mapped/unmapped.
957 */
958
959static int
960enable_break (void)
961{
13437d4b
KB
962#ifdef BKPT_AT_SYMBOL
963
964 struct minimal_symbol *msymbol;
965 char **bkpt_namep;
966 asection *interp_sect;
967
968 /* First, remove all the solib event breakpoints. Their addresses
969 may have changed since the last time we ran the program. */
970 remove_solib_event_breakpoints ();
971
13437d4b
KB
972 interp_text_sect_low = interp_text_sect_high = 0;
973 interp_plt_sect_low = interp_plt_sect_high = 0;
974
975 /* Find the .interp section; if not found, warn the user and drop
976 into the old breakpoint at symbol code. */
977 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
978 if (interp_sect)
979 {
980 unsigned int interp_sect_size;
981 char *buf;
8ad2fcde
KB
982 CORE_ADDR load_addr = 0;
983 int load_addr_found = 0;
f8766ec1 984 struct so_list *so;
e4f7b8c8 985 bfd *tmp_bfd = NULL;
2f4950cd 986 struct target_ops *tmp_bfd_target;
e4f7b8c8
MS
987 int tmp_fd = -1;
988 char *tmp_pathname = NULL;
13437d4b
KB
989 CORE_ADDR sym_addr = 0;
990
991 /* Read the contents of the .interp section into a local buffer;
992 the contents specify the dynamic linker this program uses. */
993 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
994 buf = alloca (interp_sect_size);
995 bfd_get_section_contents (exec_bfd, interp_sect,
996 buf, 0, interp_sect_size);
997
998 /* Now we need to figure out where the dynamic linker was
999 loaded so that we can load its symbols and place a breakpoint
1000 in the dynamic linker itself.
1001
1002 This address is stored on the stack. However, I've been unable
1003 to find any magic formula to find it for Solaris (appears to
1004 be trivial on GNU/Linux). Therefore, we have to try an alternate
1005 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1006
34439770
DJ
1007 /* TODO drow/2006-09-12: This is somewhat fragile, because it
1008 relies on read_pc. On both Solaris and GNU/Linux we can use
1009 the AT_BASE auxilliary entry, which GDB now knows how to
1010 access, to find the base address. */
1011
1012 tmp_fd = solib_open (buf, &tmp_pathname);
e4f7b8c8 1013 if (tmp_fd >= 0)
9f76c2cd 1014 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
e4f7b8c8 1015
13437d4b
KB
1016 if (tmp_bfd == NULL)
1017 goto bkpt_at_symbol;
1018
1019 /* Make sure the dynamic linker's really a useful object. */
1020 if (!bfd_check_format (tmp_bfd, bfd_object))
1021 {
8a3fe4f8 1022 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
13437d4b
KB
1023 bfd_close (tmp_bfd);
1024 goto bkpt_at_symbol;
1025 }
1026
2f4950cd
AC
1027 /* Now convert the TMP_BFD into a target. That way target, as
1028 well as BFD operations can be used. Note that closing the
1029 target will also close the underlying bfd. */
1030 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1031
f8766ec1
KB
1032 /* On a running target, we can get the dynamic linker's base
1033 address from the shared library table. */
1034 solib_add (NULL, 0, NULL, auto_solib_add);
1035 so = master_so_list ();
1036 while (so)
8ad2fcde 1037 {
f8766ec1 1038 if (strcmp (buf, so->so_original_name) == 0)
8ad2fcde
KB
1039 {
1040 load_addr_found = 1;
cc10cae3 1041 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1042 break;
1043 }
f8766ec1 1044 so = so->next;
8ad2fcde
KB
1045 }
1046
1047 /* Otherwise we find the dynamic linker's base address by examining
1048 the current pc (which should point at the entry point for the
1049 dynamic linker) and subtracting the offset of the entry point. */
1050 if (!load_addr_found)
34439770
DJ
1051 {
1052 load_addr = (read_pc ()
1053 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1054 debug_loader_name = xstrdup (buf);
1055 debug_loader_offset_p = 1;
1056 debug_loader_offset = load_addr;
1057 solib_add (NULL, 0, NULL, auto_solib_add);
1058 }
13437d4b
KB
1059
1060 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1061 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1062 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1063 if (interp_sect)
1064 {
1065 interp_text_sect_low =
1066 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1067 interp_text_sect_high =
1068 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1069 }
1070 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1071 if (interp_sect)
1072 {
1073 interp_plt_sect_low =
1074 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1075 interp_plt_sect_high =
1076 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1077 }
1078
1079 /* Now try to set a breakpoint in the dynamic linker. */
1080 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1081 {
87f84c9d
JB
1082 /* On ABI's that use function descriptors, there are usually
1083 two linker symbols associated with each C function: one
1084 pointing at the actual entry point of the machine code,
1085 and one pointing at the function's descriptor. The
1086 latter symbol has the same name as the C function.
1087
1088 What we're looking for here is the machine code entry
1089 point, so we are only interested in symbols in code
1090 sections. */
1091 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE);
13437d4b
KB
1092 if (sym_addr != 0)
1093 break;
1094 }
1095
2f4950cd
AC
1096 /* We're done with both the temporary bfd and target. Remember,
1097 closing the target closes the underlying bfd. */
1098 target_close (tmp_bfd_target, 0);
13437d4b
KB
1099
1100 if (sym_addr != 0)
1101 {
1102 create_solib_event_breakpoint (load_addr + sym_addr);
1103 return 1;
1104 }
1105
1106 /* For whatever reason we couldn't set a breakpoint in the dynamic
1107 linker. Warn and drop into the old code. */
1108 bkpt_at_symbol:
82d03102
PG
1109 warning (_("Unable to find dynamic linker breakpoint function.\n"
1110 "GDB will be unable to debug shared library initializers\n"
1111 "and track explicitly loaded dynamic code."));
13437d4b 1112 }
13437d4b
KB
1113
1114 /* Scan through the list of symbols, trying to look up the symbol and
1115 set a breakpoint there. Terminate loop when we/if we succeed. */
1116
1117 breakpoint_addr = 0;
1118 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1119 {
1120 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1121 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1122 {
1123 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1124 return 1;
1125 }
1126 }
13437d4b
KB
1127#endif /* BKPT_AT_SYMBOL */
1128
542c95c2 1129 return 0;
13437d4b
KB
1130}
1131
1132/*
1133
1134 LOCAL FUNCTION
1135
1136 special_symbol_handling -- additional shared library symbol handling
1137
1138 SYNOPSIS
1139
1140 void special_symbol_handling ()
1141
1142 DESCRIPTION
1143
1144 Once the symbols from a shared object have been loaded in the usual
1145 way, we are called to do any system specific symbol handling that
1146 is needed.
1147
ab31aa69 1148 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1149 linkers structures to find symbol definitions for "common" symbols
1150 and adding them to the minimal symbol table for the runtime common
1151 objfile.
1152
ab31aa69
KB
1153 However, for SVR4, there's nothing to do.
1154
13437d4b
KB
1155 */
1156
1157static void
1158svr4_special_symbol_handling (void)
1159{
13437d4b
KB
1160}
1161
e2a44558
KB
1162/* Relocate the main executable. This function should be called upon
1163 stopping the inferior process at the entry point to the program.
1164 The entry point from BFD is compared to the PC and if they are
1165 different, the main executable is relocated by the proper amount.
1166
1167 As written it will only attempt to relocate executables which
1168 lack interpreter sections. It seems likely that only dynamic
1169 linker executables will get relocated, though it should work
1170 properly for a position-independent static executable as well. */
1171
1172static void
1173svr4_relocate_main_executable (void)
1174{
1175 asection *interp_sect;
1176 CORE_ADDR pc = read_pc ();
1177
1178 /* Decide if the objfile needs to be relocated. As indicated above,
1179 we will only be here when execution is stopped at the beginning
1180 of the program. Relocation is necessary if the address at which
1181 we are presently stopped differs from the start address stored in
1182 the executable AND there's no interpreter section. The condition
1183 regarding the interpreter section is very important because if
1184 there *is* an interpreter section, execution will begin there
1185 instead. When there is an interpreter section, the start address
1186 is (presumably) used by the interpreter at some point to start
1187 execution of the program.
1188
1189 If there is an interpreter, it is normal for it to be set to an
1190 arbitrary address at the outset. The job of finding it is
1191 handled in enable_break().
1192
1193 So, to summarize, relocations are necessary when there is no
1194 interpreter section and the start address obtained from the
1195 executable is different from the address at which GDB is
1196 currently stopped.
1197
1198 [ The astute reader will note that we also test to make sure that
1199 the executable in question has the DYNAMIC flag set. It is my
1200 opinion that this test is unnecessary (undesirable even). It
1201 was added to avoid inadvertent relocation of an executable
1202 whose e_type member in the ELF header is not ET_DYN. There may
1203 be a time in the future when it is desirable to do relocations
1204 on other types of files as well in which case this condition
1205 should either be removed or modified to accomodate the new file
1206 type. (E.g, an ET_EXEC executable which has been built to be
1207 position-independent could safely be relocated by the OS if
1208 desired. It is true that this violates the ABI, but the ABI
1209 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1210 */
1211
1212 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1213 if (interp_sect == NULL
1214 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1215 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1216 {
1217 struct cleanup *old_chain;
1218 struct section_offsets *new_offsets;
1219 int i, changed;
1220 CORE_ADDR displacement;
1221
1222 /* It is necessary to relocate the objfile. The amount to
1223 relocate by is simply the address at which we are stopped
1224 minus the starting address from the executable.
1225
1226 We relocate all of the sections by the same amount. This
1227 behavior is mandated by recent editions of the System V ABI.
1228 According to the System V Application Binary Interface,
1229 Edition 4.1, page 5-5:
1230
1231 ... Though the system chooses virtual addresses for
1232 individual processes, it maintains the segments' relative
1233 positions. Because position-independent code uses relative
1234 addressesing between segments, the difference between
1235 virtual addresses in memory must match the difference
1236 between virtual addresses in the file. The difference
1237 between the virtual address of any segment in memory and
1238 the corresponding virtual address in the file is thus a
1239 single constant value for any one executable or shared
1240 object in a given process. This difference is the base
1241 address. One use of the base address is to relocate the
1242 memory image of the program during dynamic linking.
1243
1244 The same language also appears in Edition 4.0 of the System V
1245 ABI and is left unspecified in some of the earlier editions. */
1246
2f4950cd 1247 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1248 changed = 0;
1249
13fc0c2f
KB
1250 new_offsets = xcalloc (symfile_objfile->num_sections,
1251 sizeof (struct section_offsets));
b8c9b27d 1252 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1253
1254 for (i = 0; i < symfile_objfile->num_sections; i++)
1255 {
1256 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1257 changed = 1;
1258 new_offsets->offsets[i] = displacement;
1259 }
1260
1261 if (changed)
1262 objfile_relocate (symfile_objfile, new_offsets);
1263
1264 do_cleanups (old_chain);
1265 }
1266}
1267
13437d4b
KB
1268/*
1269
1270 GLOBAL FUNCTION
1271
1272 svr4_solib_create_inferior_hook -- shared library startup support
1273
1274 SYNOPSIS
1275
7095b863 1276 void svr4_solib_create_inferior_hook ()
13437d4b
KB
1277
1278 DESCRIPTION
1279
1280 When gdb starts up the inferior, it nurses it along (through the
1281 shell) until it is ready to execute it's first instruction. At this
1282 point, this function gets called via expansion of the macro
1283 SOLIB_CREATE_INFERIOR_HOOK.
1284
1285 For SunOS executables, this first instruction is typically the
1286 one at "_start", or a similar text label, regardless of whether
1287 the executable is statically or dynamically linked. The runtime
1288 startup code takes care of dynamically linking in any shared
1289 libraries, once gdb allows the inferior to continue.
1290
1291 For SVR4 executables, this first instruction is either the first
1292 instruction in the dynamic linker (for dynamically linked
1293 executables) or the instruction at "start" for statically linked
1294 executables. For dynamically linked executables, the system
1295 first exec's /lib/libc.so.N, which contains the dynamic linker,
1296 and starts it running. The dynamic linker maps in any needed
1297 shared libraries, maps in the actual user executable, and then
1298 jumps to "start" in the user executable.
1299
1300 For both SunOS shared libraries, and SVR4 shared libraries, we
1301 can arrange to cooperate with the dynamic linker to discover the
1302 names of shared libraries that are dynamically linked, and the
1303 base addresses to which they are linked.
1304
1305 This function is responsible for discovering those names and
1306 addresses, and saving sufficient information about them to allow
1307 their symbols to be read at a later time.
1308
1309 FIXME
1310
1311 Between enable_break() and disable_break(), this code does not
1312 properly handle hitting breakpoints which the user might have
1313 set in the startup code or in the dynamic linker itself. Proper
1314 handling will probably have to wait until the implementation is
1315 changed to use the "breakpoint handler function" method.
1316
1317 Also, what if child has exit()ed? Must exit loop somehow.
1318 */
1319
e2a44558 1320static void
13437d4b
KB
1321svr4_solib_create_inferior_hook (void)
1322{
e2a44558
KB
1323 /* Relocate the main executable if necessary. */
1324 svr4_relocate_main_executable ();
1325
d5a921c9
KB
1326 if (!svr4_have_link_map_offsets ())
1327 {
8a3fe4f8 1328 warning (_("no shared library support for this OS / ABI"));
d5a921c9
KB
1329 return;
1330
1331 }
1332
13437d4b 1333 if (!enable_break ())
542c95c2 1334 return;
13437d4b 1335
ab31aa69
KB
1336#if defined(_SCO_DS)
1337 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1338 special shared library breakpoints and the shared library breakpoint
1339 service routine.
1340
1341 Now run the target. It will eventually hit the breakpoint, at
1342 which point all of the libraries will have been mapped in and we
1343 can go groveling around in the dynamic linker structures to find
1344 out what we need to know about them. */
1345
1346 clear_proceed_status ();
c0236d92 1347 stop_soon = STOP_QUIETLY;
13437d4b
KB
1348 stop_signal = TARGET_SIGNAL_0;
1349 do
1350 {
39f77062 1351 target_resume (pid_to_ptid (-1), 0, stop_signal);
13437d4b
KB
1352 wait_for_inferior ();
1353 }
1354 while (stop_signal != TARGET_SIGNAL_TRAP);
c0236d92 1355 stop_soon = NO_STOP_QUIETLY;
ab31aa69 1356#endif /* defined(_SCO_DS) */
13437d4b
KB
1357}
1358
1359static void
1360svr4_clear_solib (void)
1361{
1362 debug_base = 0;
34439770
DJ
1363 debug_loader_offset_p = 0;
1364 debug_loader_offset = 0;
1365 xfree (debug_loader_name);
1366 debug_loader_name = NULL;
13437d4b
KB
1367}
1368
1369static void
1370svr4_free_so (struct so_list *so)
1371{
b8c9b27d
KB
1372 xfree (so->lm_info->lm);
1373 xfree (so->lm_info);
13437d4b
KB
1374}
1375
6bb7be43
JB
1376
1377/* Clear any bits of ADDR that wouldn't fit in a target-format
1378 data pointer. "Data pointer" here refers to whatever sort of
1379 address the dynamic linker uses to manage its sections. At the
1380 moment, we don't support shared libraries on any processors where
1381 code and data pointers are different sizes.
1382
1383 This isn't really the right solution. What we really need here is
1384 a way to do arithmetic on CORE_ADDR values that respects the
1385 natural pointer/address correspondence. (For example, on the MIPS,
1386 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1387 sign-extend the value. There, simply truncating the bits above
1388 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1389 be a new gdbarch method or something. */
1390static CORE_ADDR
1391svr4_truncate_ptr (CORE_ADDR addr)
1392{
1393 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1394 /* We don't need to truncate anything, and the bit twiddling below
1395 will fail due to overflow problems. */
1396 return addr;
1397 else
1398 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1399}
1400
1401
749499cb
KB
1402static void
1403svr4_relocate_section_addresses (struct so_list *so,
1404 struct section_table *sec)
1405{
cc10cae3
AO
1406 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1407 sec->bfd));
1408 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1409 sec->bfd));
749499cb 1410}
4b188b9f 1411\f
749499cb 1412
4b188b9f 1413/* Architecture-specific operations. */
6bb7be43 1414
4b188b9f
MK
1415/* Per-architecture data key. */
1416static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1417
4b188b9f 1418struct solib_svr4_ops
e5e2b9ff 1419{
4b188b9f
MK
1420 /* Return a description of the layout of `struct link_map'. */
1421 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1422};
e5e2b9ff 1423
4b188b9f 1424/* Return a default for the architecture-specific operations. */
e5e2b9ff 1425
4b188b9f
MK
1426static void *
1427solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1428{
4b188b9f 1429 struct solib_svr4_ops *ops;
e5e2b9ff 1430
4b188b9f
MK
1431 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1432 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1433 return ops;
e5e2b9ff
KB
1434}
1435
4b188b9f
MK
1436/* Set the architecture-specific `struct link_map_offsets' fetcher for
1437 GDBARCH to FLMO. */
1c4dcb57 1438
21479ded 1439void
e5e2b9ff
KB
1440set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1441 struct link_map_offsets *(*flmo) (void))
21479ded 1442{
4b188b9f
MK
1443 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1444
1445 ops->fetch_link_map_offsets = flmo;
21479ded
KB
1446}
1447
4b188b9f
MK
1448/* Fetch a link_map_offsets structure using the architecture-specific
1449 `struct link_map_offsets' fetcher. */
1c4dcb57 1450
4b188b9f
MK
1451static struct link_map_offsets *
1452svr4_fetch_link_map_offsets (void)
21479ded 1453{
4b188b9f
MK
1454 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1455
1456 gdb_assert (ops->fetch_link_map_offsets);
1457 return ops->fetch_link_map_offsets ();
21479ded
KB
1458}
1459
4b188b9f
MK
1460/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1461
1462static int
1463svr4_have_link_map_offsets (void)
1464{
1465 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1466 return (ops->fetch_link_map_offsets != NULL);
1467}
1468\f
1469
e4bbbda8
MK
1470/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1471 `struct r_debug' and a `struct link_map' that are binary compatible
1472 with the origional SVR4 implementation. */
1473
1474/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1475 for an ILP32 SVR4 system. */
1476
1477struct link_map_offsets *
1478svr4_ilp32_fetch_link_map_offsets (void)
1479{
1480 static struct link_map_offsets lmo;
1481 static struct link_map_offsets *lmp = NULL;
1482
1483 if (lmp == NULL)
1484 {
1485 lmp = &lmo;
1486
e4cd0d6a
MK
1487 lmo.r_version_offset = 0;
1488 lmo.r_version_size = 4;
e4bbbda8 1489 lmo.r_map_offset = 4;
e4cd0d6a 1490 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1491
1492 /* Everything we need is in the first 20 bytes. */
1493 lmo.link_map_size = 20;
1494 lmo.l_addr_offset = 0;
e4bbbda8 1495 lmo.l_name_offset = 4;
cc10cae3 1496 lmo.l_ld_offset = 8;
e4bbbda8 1497 lmo.l_next_offset = 12;
e4bbbda8 1498 lmo.l_prev_offset = 16;
e4bbbda8
MK
1499 }
1500
1501 return lmp;
1502}
1503
1504/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1505 for an LP64 SVR4 system. */
1506
1507struct link_map_offsets *
1508svr4_lp64_fetch_link_map_offsets (void)
1509{
1510 static struct link_map_offsets lmo;
1511 static struct link_map_offsets *lmp = NULL;
1512
1513 if (lmp == NULL)
1514 {
1515 lmp = &lmo;
1516
e4cd0d6a
MK
1517 lmo.r_version_offset = 0;
1518 lmo.r_version_size = 4;
e4bbbda8 1519 lmo.r_map_offset = 8;
e4cd0d6a 1520 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1521
1522 /* Everything we need is in the first 40 bytes. */
1523 lmo.link_map_size = 40;
1524 lmo.l_addr_offset = 0;
e4bbbda8 1525 lmo.l_name_offset = 8;
cc10cae3 1526 lmo.l_ld_offset = 16;
e4bbbda8 1527 lmo.l_next_offset = 24;
e4bbbda8 1528 lmo.l_prev_offset = 32;
e4bbbda8
MK
1529 }
1530
1531 return lmp;
1532}
1533\f
1534
13437d4b
KB
1535static struct target_so_ops svr4_so_ops;
1536
a78f21af
AC
1537extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1538
13437d4b
KB
1539void
1540_initialize_svr4_solib (void)
1541{
4b188b9f
MK
1542 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1543
749499cb 1544 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1545 svr4_so_ops.free_so = svr4_free_so;
1546 svr4_so_ops.clear_solib = svr4_clear_solib;
1547 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1548 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1549 svr4_so_ops.current_sos = svr4_current_sos;
1550 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1551 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
13437d4b
KB
1552
1553 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1554 current_target_so_ops = &svr4_so_ops;
1555}
This page took 0.81627 seconds and 4 git commands to generate.