2007-08-10 Michael Snyder <msnyder@access-company.com>
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
13437d4b
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
13437d4b 22
13437d4b
KB
23#include "defs.h"
24
13437d4b 25#include "elf/external.h"
21479ded 26#include "elf/common.h"
f7856c8f 27#include "elf/mips.h"
13437d4b
KB
28
29#include "symtab.h"
30#include "bfd.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbcore.h"
13437d4b 34#include "target.h"
13437d4b 35#include "inferior.h"
13437d4b 36
4b188b9f
MK
37#include "gdb_assert.h"
38
13437d4b 39#include "solist.h"
bba93f6c 40#include "solib.h"
13437d4b
KB
41#include "solib-svr4.h"
42
2f4950cd 43#include "bfd-target.h"
cc10cae3 44#include "elf-bfd.h"
2f4950cd
AC
45#include "exec.h"
46
e5e2b9ff 47static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 48static int svr4_have_link_map_offsets (void);
1c4dcb57 49
4b188b9f
MK
50/* This hook is set to a function that provides native link map
51 offsets if the code in solib-legacy.c is linked in. */
52struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
21479ded 53
13437d4b
KB
54/* Link map info to include in an allocated so_list entry */
55
56struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
4066fc10 61 gdb_byte *lm;
cc10cae3
AO
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
13437d4b
KB
69 };
70
71/* On SVR4 systems, a list of symbols in the dynamic linker where
72 GDB can try to place a breakpoint to monitor shared library
73 events.
74
75 If none of these symbols are found, or other errors occur, then
76 SVR4 systems will fall back to using a symbol as the "startup
77 mapping complete" breakpoint address. */
78
13437d4b
KB
79static char *solib_break_names[] =
80{
81 "r_debug_state",
82 "_r_debug_state",
83 "_dl_debug_state",
84 "rtld_db_dlactivity",
1f72e589 85 "_rtld_debug_state",
4c0122c8 86
13437d4b
KB
87 NULL
88};
13437d4b
KB
89
90#define BKPT_AT_SYMBOL 1
91
ab31aa69 92#if defined (BKPT_AT_SYMBOL)
13437d4b
KB
93static char *bkpt_names[] =
94{
95#ifdef SOLIB_BKPT_NAME
96 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
97#endif
98 "_start",
ad3dcc5c 99 "__start",
13437d4b
KB
100 "main",
101 NULL
102};
103#endif
104
13437d4b
KB
105static char *main_name_list[] =
106{
107 "main_$main",
108 NULL
109};
110
13437d4b
KB
111/* link map access functions */
112
113static CORE_ADDR
cc10cae3 114LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 115{
4b188b9f 116 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 117
cfaefc65
AS
118 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
119 builtin_type_void_data_ptr);
13437d4b
KB
120}
121
cc10cae3
AO
122static int
123HAS_LM_DYNAMIC_FROM_LINK_MAP ()
124{
125 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
126
cfaefc65 127 return lmo->l_ld_offset >= 0;
cc10cae3
AO
128}
129
130static CORE_ADDR
131LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
132{
133 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
134
cfaefc65
AS
135 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
136 builtin_type_void_data_ptr);
cc10cae3
AO
137}
138
139static CORE_ADDR
140LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
141{
142 if (so->lm_info->l_addr == (CORE_ADDR)-1)
143 {
144 struct bfd_section *dyninfo_sect;
145 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
146
147 l_addr = LM_ADDR_FROM_LINK_MAP (so);
148
149 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
150 goto set_addr;
151
152 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
153
154 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
155 if (dyninfo_sect == NULL)
156 goto set_addr;
157
158 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
159
160 if (dynaddr + l_addr != l_dynaddr)
161 {
cc10cae3
AO
162 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
163 {
164 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
165 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
166 int i;
167
168 align = 1;
169
170 for (i = 0; i < ehdr->e_phnum; i++)
171 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
172 align = phdr[i].p_align;
173 }
174
175 /* Turn it into a mask. */
176 align--;
177
178 /* If the changes match the alignment requirements, we
179 assume we're using a core file that was generated by the
180 same binary, just prelinked with a different base offset.
181 If it doesn't match, we may have a different binary, the
182 same binary with the dynamic table loaded at an unrelated
183 location, or anything, really. To avoid regressions,
184 don't adjust the base offset in the latter case, although
185 odds are that, if things really changed, debugging won't
186 quite work. */
f1e55806 187 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
188 {
189 l_addr = l_dynaddr - dynaddr;
79d4c408
DJ
190
191 warning (_(".dynamic section for \"%s\" "
192 "is not at the expected address"), so->so_name);
cc10cae3
AO
193 warning (_("difference appears to be caused by prelink, "
194 "adjusting expectations"));
195 }
79d4c408
DJ
196 else
197 warning (_(".dynamic section for \"%s\" "
198 "is not at the expected address "
199 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
200 }
201
202 set_addr:
203 so->lm_info->l_addr = l_addr;
204 }
205
206 return so->lm_info->l_addr;
207}
208
13437d4b
KB
209static CORE_ADDR
210LM_NEXT (struct so_list *so)
211{
4b188b9f 212 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 213
cfaefc65
AS
214 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
215 builtin_type_void_data_ptr);
13437d4b
KB
216}
217
218static CORE_ADDR
219LM_NAME (struct so_list *so)
220{
4b188b9f 221 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 222
cfaefc65
AS
223 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
224 builtin_type_void_data_ptr);
13437d4b
KB
225}
226
13437d4b
KB
227static int
228IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
229{
4b188b9f 230 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 231
e499d0f1
DJ
232 /* Assume that everything is a library if the dynamic loader was loaded
233 late by a static executable. */
234 if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
235 return 0;
236
cfaefc65
AS
237 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
238 builtin_type_void_data_ptr) == 0;
13437d4b
KB
239}
240
13437d4b 241static CORE_ADDR debug_base; /* Base of dynamic linker structures */
13437d4b 242
34439770
DJ
243/* Validity flag for debug_loader_offset. */
244static int debug_loader_offset_p;
245
246/* Load address for the dynamic linker, inferred. */
247static CORE_ADDR debug_loader_offset;
248
249/* Name of the dynamic linker, valid if debug_loader_offset_p. */
250static char *debug_loader_name;
251
13437d4b
KB
252/* Local function prototypes */
253
254static int match_main (char *);
255
2bbe3cc1 256static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
13437d4b
KB
257
258/*
259
260 LOCAL FUNCTION
261
262 bfd_lookup_symbol -- lookup the value for a specific symbol
263
264 SYNOPSIS
265
2bbe3cc1 266 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
267
268 DESCRIPTION
269
270 An expensive way to lookup the value of a single symbol for
271 bfd's that are only temporary anyway. This is used by the
272 shared library support to find the address of the debugger
2bbe3cc1 273 notification routine in the shared library.
13437d4b 274
2bbe3cc1
DJ
275 The returned symbol may be in a code or data section; functions
276 will normally be in a code section, but may be in a data section
277 if this architecture uses function descriptors.
87f84c9d 278
13437d4b
KB
279 Note that 0 is specifically allowed as an error return (no
280 such symbol).
281 */
282
283static CORE_ADDR
2bbe3cc1 284bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b 285{
435b259c 286 long storage_needed;
13437d4b
KB
287 asymbol *sym;
288 asymbol **symbol_table;
289 unsigned int number_of_symbols;
290 unsigned int i;
291 struct cleanup *back_to;
292 CORE_ADDR symaddr = 0;
293
294 storage_needed = bfd_get_symtab_upper_bound (abfd);
295
296 if (storage_needed > 0)
297 {
298 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 299 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
300 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
301
302 for (i = 0; i < number_of_symbols; i++)
303 {
304 sym = *symbol_table++;
6314a349 305 if (strcmp (sym->name, symname) == 0
2bbe3cc1 306 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 307 {
2bbe3cc1 308 /* BFD symbols are section relative. */
13437d4b
KB
309 symaddr = sym->value + sym->section->vma;
310 break;
311 }
312 }
313 do_cleanups (back_to);
314 }
315
316 if (symaddr)
317 return symaddr;
318
319 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
320 have to check the dynamic string table too. */
321
322 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
323
324 if (storage_needed > 0)
325 {
326 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 327 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
328 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
329
330 for (i = 0; i < number_of_symbols; i++)
331 {
332 sym = *symbol_table++;
87f84c9d 333
6314a349 334 if (strcmp (sym->name, symname) == 0
2bbe3cc1 335 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 336 {
2bbe3cc1 337 /* BFD symbols are section relative. */
13437d4b
KB
338 symaddr = sym->value + sym->section->vma;
339 break;
340 }
341 }
342 do_cleanups (back_to);
343 }
344
345 return symaddr;
346}
347
3a40aaa0
UW
348/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
349 returned and the corresponding PTR is set. */
350
351static int
352scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
353{
354 int arch_size, step, sect_size;
355 long dyn_tag;
356 CORE_ADDR dyn_ptr, dyn_addr;
357 gdb_byte *bufend, *buf;
358 Elf32_External_Dyn *x_dynp_32;
359 Elf64_External_Dyn *x_dynp_64;
360 struct bfd_section *sect;
361
362 if (abfd == NULL)
363 return 0;
364 arch_size = bfd_get_arch_size (abfd);
365 if (arch_size == -1)
366 return 0;
367
368 /* Find the start address of the .dynamic section. */
369 sect = bfd_get_section_by_name (abfd, ".dynamic");
370 if (sect == NULL)
371 return 0;
372 dyn_addr = bfd_section_vma (abfd, sect);
373
374 /* Read in .dynamic section, silently ignore errors. */
375 sect_size = bfd_section_size (abfd, sect);
376 buf = alloca (sect_size);
377 if (target_read_memory (dyn_addr, buf, sect_size))
378 {
379 /* If target_read_memory fails, try reading the BFD file. */
380 if (!bfd_get_section_contents (abfd, sect,
381 buf, 0, sect_size))
382 return 0;
383 }
384
385 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
386 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
387 : sizeof (Elf64_External_Dyn);
388 for (bufend = buf + sect_size;
389 buf < bufend;
390 buf += step)
391 {
392 if (arch_size == 32)
393 {
394 x_dynp_32 = (Elf32_External_Dyn *) buf;
395 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
396 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
397 }
398 else
399 {
400 x_dynp_64 = (Elf64_External_Dyn *) buf;
401 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
402 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
403 }
404 if (dyn_tag == DT_NULL)
405 return 0;
406 if (dyn_tag == dyntag)
407 {
408 if (ptr)
409 *ptr = dyn_ptr;
410 return 1;
411 }
412 }
413
414 return 0;
415}
416
417
13437d4b
KB
418/*
419
420 LOCAL FUNCTION
421
422 elf_locate_base -- locate the base address of dynamic linker structs
423 for SVR4 elf targets.
424
425 SYNOPSIS
426
427 CORE_ADDR elf_locate_base (void)
428
429 DESCRIPTION
430
431 For SVR4 elf targets the address of the dynamic linker's runtime
432 structure is contained within the dynamic info section in the
433 executable file. The dynamic section is also mapped into the
434 inferior address space. Because the runtime loader fills in the
435 real address before starting the inferior, we have to read in the
436 dynamic info section from the inferior address space.
437 If there are any errors while trying to find the address, we
438 silently return 0, otherwise the found address is returned.
439
440 */
441
442static CORE_ADDR
443elf_locate_base (void)
444{
3a40aaa0
UW
445 struct minimal_symbol *msymbol;
446 CORE_ADDR dyn_ptr;
13437d4b 447
3a40aaa0
UW
448 /* Find DT_DEBUG. */
449 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr))
450 return dyn_ptr;
e499d0f1 451
3a40aaa0
UW
452 /* Find DT_MIPS_RLD_MAP. */
453 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr))
454 {
455 gdb_byte *pbuf;
456 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
457 pbuf = alloca (pbuf_size);
458 /* DT_MIPS_RLD_MAP contains a pointer to the address
459 of the dynamic link structure. */
460 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 461 return 0;
3a40aaa0 462 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
e499d0f1
DJ
463 }
464
3a40aaa0
UW
465 /* This may be a static executable. Look for the symbol
466 conventionally named _r_debug, as a last resort. */
467 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
468 if (msymbol != NULL)
469 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
470
471 /* DT_DEBUG entry not found. */
472 return 0;
473}
474
13437d4b
KB
475/*
476
477 LOCAL FUNCTION
478
479 locate_base -- locate the base address of dynamic linker structs
480
481 SYNOPSIS
482
483 CORE_ADDR locate_base (void)
484
485 DESCRIPTION
486
487 For both the SunOS and SVR4 shared library implementations, if the
488 inferior executable has been linked dynamically, there is a single
489 address somewhere in the inferior's data space which is the key to
490 locating all of the dynamic linker's runtime structures. This
491 address is the value of the debug base symbol. The job of this
492 function is to find and return that address, or to return 0 if there
493 is no such address (the executable is statically linked for example).
494
495 For SunOS, the job is almost trivial, since the dynamic linker and
496 all of it's structures are statically linked to the executable at
497 link time. Thus the symbol for the address we are looking for has
498 already been added to the minimal symbol table for the executable's
499 objfile at the time the symbol file's symbols were read, and all we
500 have to do is look it up there. Note that we explicitly do NOT want
501 to find the copies in the shared library.
502
503 The SVR4 version is a bit more complicated because the address
504 is contained somewhere in the dynamic info section. We have to go
505 to a lot more work to discover the address of the debug base symbol.
506 Because of this complexity, we cache the value we find and return that
507 value on subsequent invocations. Note there is no copy in the
508 executable symbol tables.
509
510 */
511
512static CORE_ADDR
513locate_base (void)
514{
13437d4b
KB
515 /* Check to see if we have a currently valid address, and if so, avoid
516 doing all this work again and just return the cached address. If
517 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
518 section for ELF executables. There's no point in doing any of this
519 though if we don't have some link map offsets to work with. */
13437d4b 520
d5a921c9 521 if (debug_base == 0 && svr4_have_link_map_offsets ())
13437d4b
KB
522 {
523 if (exec_bfd != NULL
524 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
525 debug_base = elf_locate_base ();
13437d4b
KB
526 }
527 return (debug_base);
13437d4b
KB
528}
529
e4cd0d6a
MK
530/* Find the first element in the inferior's dynamic link map, and
531 return its address in the inferior.
13437d4b 532
e4cd0d6a
MK
533 FIXME: Perhaps we should validate the info somehow, perhaps by
534 checking r_version for a known version number, or r_state for
535 RT_CONSISTENT. */
13437d4b
KB
536
537static CORE_ADDR
e4cd0d6a 538solib_svr4_r_map (void)
13437d4b 539{
4b188b9f 540 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 541
e4cd0d6a
MK
542 return read_memory_typed_address (debug_base + lmo->r_map_offset,
543 builtin_type_void_data_ptr);
544}
13437d4b 545
e4cd0d6a
MK
546/* Find the link map for the dynamic linker (if it is not in the
547 normal list of loaded shared objects). */
13437d4b 548
e4cd0d6a
MK
549static CORE_ADDR
550solib_svr4_r_ldsomap (void)
551{
552 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
553 ULONGEST version;
13437d4b 554
e4cd0d6a
MK
555 /* Check version, and return zero if `struct r_debug' doesn't have
556 the r_ldsomap member. */
557 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
558 lmo->r_version_size);
559 if (version < 2 || lmo->r_ldsomap_offset == -1)
560 return 0;
13437d4b 561
e4cd0d6a
MK
562 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
563 builtin_type_void_data_ptr);
13437d4b
KB
564}
565
13437d4b
KB
566/*
567
568 LOCAL FUNCTION
569
570 open_symbol_file_object
571
572 SYNOPSIS
573
574 void open_symbol_file_object (void *from_tty)
575
576 DESCRIPTION
577
578 If no open symbol file, attempt to locate and open the main symbol
579 file. On SVR4 systems, this is the first link map entry. If its
580 name is here, we can open it. Useful when attaching to a process
581 without first loading its symbol file.
582
583 If FROM_TTYP dereferences to a non-zero integer, allow messages to
584 be printed. This parameter is a pointer rather than an int because
585 open_symbol_file_object() is called via catch_errors() and
586 catch_errors() requires a pointer argument. */
587
588static int
589open_symbol_file_object (void *from_ttyp)
590{
591 CORE_ADDR lm, l_name;
592 char *filename;
593 int errcode;
594 int from_tty = *(int *)from_ttyp;
4b188b9f 595 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
cfaefc65
AS
596 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
597 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 598 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
599
600 if (symfile_objfile)
601 if (!query ("Attempt to reload symbols from process? "))
602 return 0;
603
604 if ((debug_base = locate_base ()) == 0)
605 return 0; /* failed somehow... */
606
607 /* First link map member should be the executable. */
e4cd0d6a
MK
608 lm = solib_svr4_r_map ();
609 if (lm == 0)
13437d4b
KB
610 return 0; /* failed somehow... */
611
612 /* Read address of name from target memory to GDB. */
cfaefc65 613 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 614
cfaefc65
AS
615 /* Convert the address to host format. */
616 l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
13437d4b
KB
617
618 /* Free l_name_buf. */
619 do_cleanups (cleanups);
620
621 if (l_name == 0)
622 return 0; /* No filename. */
623
624 /* Now fetch the filename from target memory. */
625 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 626 make_cleanup (xfree, filename);
13437d4b
KB
627
628 if (errcode)
629 {
8a3fe4f8 630 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
631 safe_strerror (errcode));
632 return 0;
633 }
634
13437d4b 635 /* Have a pathname: read the symbol file. */
1adeb98a 636 symbol_file_add_main (filename, from_tty);
13437d4b
KB
637
638 return 1;
639}
13437d4b 640
34439770
DJ
641/* If no shared library information is available from the dynamic
642 linker, build a fallback list from other sources. */
643
644static struct so_list *
645svr4_default_sos (void)
646{
647 struct so_list *head = NULL;
648 struct so_list **link_ptr = &head;
649
650 if (debug_loader_offset_p)
651 {
652 struct so_list *new = XZALLOC (struct so_list);
653
654 new->lm_info = xmalloc (sizeof (struct lm_info));
655
656 /* Nothing will ever check the cached copy of the link
657 map if we set l_addr. */
658 new->lm_info->l_addr = debug_loader_offset;
659 new->lm_info->lm = NULL;
660
661 strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
662 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
663 strcpy (new->so_original_name, new->so_name);
664
665 *link_ptr = new;
666 link_ptr = &new->next;
667 }
668
669 return head;
670}
671
13437d4b
KB
672/* LOCAL FUNCTION
673
674 current_sos -- build a list of currently loaded shared objects
675
676 SYNOPSIS
677
678 struct so_list *current_sos ()
679
680 DESCRIPTION
681
682 Build a list of `struct so_list' objects describing the shared
683 objects currently loaded in the inferior. This list does not
684 include an entry for the main executable file.
685
686 Note that we only gather information directly available from the
687 inferior --- we don't examine any of the shared library files
688 themselves. The declaration of `struct so_list' says which fields
689 we provide values for. */
690
691static struct so_list *
692svr4_current_sos (void)
693{
694 CORE_ADDR lm;
695 struct so_list *head = 0;
696 struct so_list **link_ptr = &head;
e4cd0d6a 697 CORE_ADDR ldsomap = 0;
13437d4b
KB
698
699 /* Make sure we've looked up the inferior's dynamic linker's base
700 structure. */
701 if (! debug_base)
702 {
703 debug_base = locate_base ();
704
705 /* If we can't find the dynamic linker's base structure, this
706 must not be a dynamically linked executable. Hmm. */
707 if (! debug_base)
34439770 708 return svr4_default_sos ();
13437d4b
KB
709 }
710
711 /* Walk the inferior's link map list, and build our list of
712 `struct so_list' nodes. */
e4cd0d6a 713 lm = solib_svr4_r_map ();
34439770 714
13437d4b
KB
715 while (lm)
716 {
4b188b9f 717 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 718 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 719 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 720
13437d4b 721 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 722 make_cleanup (xfree, new->lm_info);
13437d4b 723
831004b7 724 new->lm_info->l_addr = (CORE_ADDR)-1;
f4456994 725 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 726 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
727
728 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
729
730 lm = LM_NEXT (new);
731
732 /* For SVR4 versions, the first entry in the link map is for the
733 inferior executable, so we must ignore it. For some versions of
734 SVR4, it has no name. For others (Solaris 2.3 for example), it
735 does have a name, so we can no longer use a missing name to
736 decide when to ignore it. */
e4cd0d6a 737 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
13437d4b
KB
738 free_so (new);
739 else
740 {
741 int errcode;
742 char *buffer;
743
744 /* Extract this shared object's name. */
745 target_read_string (LM_NAME (new), &buffer,
746 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
747 if (errcode != 0)
8a3fe4f8
AC
748 warning (_("Can't read pathname for load map: %s."),
749 safe_strerror (errcode));
13437d4b
KB
750 else
751 {
752 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
753 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
754 strcpy (new->so_original_name, new->so_name);
755 }
ea5bf0a1 756 xfree (buffer);
13437d4b
KB
757
758 /* If this entry has no name, or its name matches the name
759 for the main executable, don't include it in the list. */
760 if (! new->so_name[0]
761 || match_main (new->so_name))
762 free_so (new);
763 else
764 {
765 new->next = 0;
766 *link_ptr = new;
767 link_ptr = &new->next;
768 }
769 }
770
e4cd0d6a
MK
771 /* On Solaris, the dynamic linker is not in the normal list of
772 shared objects, so make sure we pick it up too. Having
773 symbol information for the dynamic linker is quite crucial
774 for skipping dynamic linker resolver code. */
775 if (lm == 0 && ldsomap == 0)
776 lm = ldsomap = solib_svr4_r_ldsomap ();
777
13437d4b
KB
778 discard_cleanups (old_chain);
779 }
780
34439770
DJ
781 if (head == NULL)
782 return svr4_default_sos ();
783
13437d4b
KB
784 return head;
785}
786
bc4a16ae
EZ
787/* Get the address of the link_map for a given OBJFILE. Loop through
788 the link maps, and return the address of the one corresponding to
789 the given objfile. Note that this function takes into account that
790 objfile can be the main executable, not just a shared library. The
791 main executable has always an empty name field in the linkmap. */
792
793CORE_ADDR
794svr4_fetch_objfile_link_map (struct objfile *objfile)
795{
796 CORE_ADDR lm;
797
798 if ((debug_base = locate_base ()) == 0)
799 return 0; /* failed somehow... */
800
801 /* Position ourselves on the first link map. */
e4cd0d6a 802 lm = solib_svr4_r_map ();
bc4a16ae
EZ
803 while (lm)
804 {
805 /* Get info on the layout of the r_debug and link_map structures. */
4b188b9f 806 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
bc4a16ae
EZ
807 int errcode;
808 char *buffer;
809 struct lm_info objfile_lm_info;
810 struct cleanup *old_chain;
811 CORE_ADDR name_address;
cfaefc65
AS
812 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
813 gdb_byte *l_name_buf = xmalloc (l_name_size);
bc4a16ae
EZ
814 old_chain = make_cleanup (xfree, l_name_buf);
815
816 /* Set up the buffer to contain the portion of the link_map
817 structure that gdb cares about. Note that this is not the
818 whole link_map structure. */
f4456994 819 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
bc4a16ae 820 make_cleanup (xfree, objfile_lm_info.lm);
bc4a16ae
EZ
821
822 /* Read the link map into our internal structure. */
823 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
824
825 /* Read address of name from target memory to GDB. */
cfaefc65 826 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
bc4a16ae 827
cfaefc65
AS
828 /* Extract this object's name. */
829 name_address = extract_typed_address (l_name_buf,
830 builtin_type_void_data_ptr);
bc4a16ae
EZ
831 target_read_string (name_address, &buffer,
832 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
833 make_cleanup (xfree, buffer);
834 if (errcode != 0)
8a3fe4f8
AC
835 warning (_("Can't read pathname for load map: %s."),
836 safe_strerror (errcode));
bc4a16ae
EZ
837 else
838 {
839 /* Is this the linkmap for the file we want? */
840 /* If the file is not a shared library and has no name,
841 we are sure it is the main executable, so we return that. */
f52df7d9
MS
842
843 if (buffer
844 && ((strcmp (buffer, objfile->name) == 0)
845 || (!(objfile->flags & OBJF_SHARED)
846 && (strcmp (buffer, "") == 0))))
bc4a16ae
EZ
847 {
848 do_cleanups (old_chain);
849 return lm;
850 }
851 }
cfaefc65
AS
852 /* Not the file we wanted, continue checking. */
853 lm = extract_typed_address (objfile_lm_info.lm + lmo->l_next_offset,
854 builtin_type_void_data_ptr);
bc4a16ae
EZ
855 do_cleanups (old_chain);
856 }
857 return 0;
858}
13437d4b
KB
859
860/* On some systems, the only way to recognize the link map entry for
861 the main executable file is by looking at its name. Return
862 non-zero iff SONAME matches one of the known main executable names. */
863
864static int
865match_main (char *soname)
866{
867 char **mainp;
868
869 for (mainp = main_name_list; *mainp != NULL; mainp++)
870 {
871 if (strcmp (soname, *mainp) == 0)
872 return (1);
873 }
874
875 return (0);
876}
877
13437d4b
KB
878/* Return 1 if PC lies in the dynamic symbol resolution code of the
879 SVR4 run time loader. */
13437d4b
KB
880static CORE_ADDR interp_text_sect_low;
881static CORE_ADDR interp_text_sect_high;
882static CORE_ADDR interp_plt_sect_low;
883static CORE_ADDR interp_plt_sect_high;
884
7d522c90 885int
d7fa2ae2 886svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
887{
888 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
889 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
890 || in_plt_section (pc, NULL));
891}
13437d4b 892
2f4950cd
AC
893/* Given an executable's ABFD and target, compute the entry-point
894 address. */
895
896static CORE_ADDR
897exec_entry_point (struct bfd *abfd, struct target_ops *targ)
898{
899 /* KevinB wrote ... for most targets, the address returned by
900 bfd_get_start_address() is the entry point for the start
901 function. But, for some targets, bfd_get_start_address() returns
902 the address of a function descriptor from which the entry point
903 address may be extracted. This address is extracted by
904 gdbarch_convert_from_func_ptr_addr(). The method
905 gdbarch_convert_from_func_ptr_addr() is the merely the identify
906 function for targets which don't use function descriptors. */
907 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
908 bfd_get_start_address (abfd),
909 targ);
910}
13437d4b
KB
911
912/*
913
914 LOCAL FUNCTION
915
916 enable_break -- arrange for dynamic linker to hit breakpoint
917
918 SYNOPSIS
919
920 int enable_break (void)
921
922 DESCRIPTION
923
924 Both the SunOS and the SVR4 dynamic linkers have, as part of their
925 debugger interface, support for arranging for the inferior to hit
926 a breakpoint after mapping in the shared libraries. This function
927 enables that breakpoint.
928
929 For SunOS, there is a special flag location (in_debugger) which we
930 set to 1. When the dynamic linker sees this flag set, it will set
931 a breakpoint at a location known only to itself, after saving the
932 original contents of that place and the breakpoint address itself,
933 in it's own internal structures. When we resume the inferior, it
934 will eventually take a SIGTRAP when it runs into the breakpoint.
935 We handle this (in a different place) by restoring the contents of
936 the breakpointed location (which is only known after it stops),
937 chasing around to locate the shared libraries that have been
938 loaded, then resuming.
939
940 For SVR4, the debugger interface structure contains a member (r_brk)
941 which is statically initialized at the time the shared library is
942 built, to the offset of a function (_r_debug_state) which is guaran-
943 teed to be called once before mapping in a library, and again when
944 the mapping is complete. At the time we are examining this member,
945 it contains only the unrelocated offset of the function, so we have
946 to do our own relocation. Later, when the dynamic linker actually
947 runs, it relocates r_brk to be the actual address of _r_debug_state().
948
949 The debugger interface structure also contains an enumeration which
950 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
951 depending upon whether or not the library is being mapped or unmapped,
952 and then set to RT_CONSISTENT after the library is mapped/unmapped.
953 */
954
955static int
956enable_break (void)
957{
13437d4b
KB
958#ifdef BKPT_AT_SYMBOL
959
960 struct minimal_symbol *msymbol;
961 char **bkpt_namep;
962 asection *interp_sect;
963
964 /* First, remove all the solib event breakpoints. Their addresses
965 may have changed since the last time we ran the program. */
966 remove_solib_event_breakpoints ();
967
13437d4b
KB
968 interp_text_sect_low = interp_text_sect_high = 0;
969 interp_plt_sect_low = interp_plt_sect_high = 0;
970
971 /* Find the .interp section; if not found, warn the user and drop
972 into the old breakpoint at symbol code. */
973 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
974 if (interp_sect)
975 {
976 unsigned int interp_sect_size;
977 char *buf;
8ad2fcde
KB
978 CORE_ADDR load_addr = 0;
979 int load_addr_found = 0;
f8766ec1 980 struct so_list *so;
e4f7b8c8 981 bfd *tmp_bfd = NULL;
2f4950cd 982 struct target_ops *tmp_bfd_target;
e4f7b8c8
MS
983 int tmp_fd = -1;
984 char *tmp_pathname = NULL;
13437d4b
KB
985 CORE_ADDR sym_addr = 0;
986
987 /* Read the contents of the .interp section into a local buffer;
988 the contents specify the dynamic linker this program uses. */
989 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
990 buf = alloca (interp_sect_size);
991 bfd_get_section_contents (exec_bfd, interp_sect,
992 buf, 0, interp_sect_size);
993
994 /* Now we need to figure out where the dynamic linker was
995 loaded so that we can load its symbols and place a breakpoint
996 in the dynamic linker itself.
997
998 This address is stored on the stack. However, I've been unable
999 to find any magic formula to find it for Solaris (appears to
1000 be trivial on GNU/Linux). Therefore, we have to try an alternate
1001 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1002
34439770
DJ
1003 /* TODO drow/2006-09-12: This is somewhat fragile, because it
1004 relies on read_pc. On both Solaris and GNU/Linux we can use
1005 the AT_BASE auxilliary entry, which GDB now knows how to
1006 access, to find the base address. */
1007
1008 tmp_fd = solib_open (buf, &tmp_pathname);
e4f7b8c8 1009 if (tmp_fd >= 0)
9f76c2cd 1010 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
e4f7b8c8 1011
13437d4b
KB
1012 if (tmp_bfd == NULL)
1013 goto bkpt_at_symbol;
1014
1015 /* Make sure the dynamic linker's really a useful object. */
1016 if (!bfd_check_format (tmp_bfd, bfd_object))
1017 {
8a3fe4f8 1018 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
13437d4b
KB
1019 bfd_close (tmp_bfd);
1020 goto bkpt_at_symbol;
1021 }
1022
2f4950cd
AC
1023 /* Now convert the TMP_BFD into a target. That way target, as
1024 well as BFD operations can be used. Note that closing the
1025 target will also close the underlying bfd. */
1026 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1027
f8766ec1
KB
1028 /* On a running target, we can get the dynamic linker's base
1029 address from the shared library table. */
2bbe3cc1 1030 solib_add (NULL, 0, &current_target, auto_solib_add);
f8766ec1
KB
1031 so = master_so_list ();
1032 while (so)
8ad2fcde 1033 {
f8766ec1 1034 if (strcmp (buf, so->so_original_name) == 0)
8ad2fcde
KB
1035 {
1036 load_addr_found = 1;
cc10cae3 1037 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1038 break;
1039 }
f8766ec1 1040 so = so->next;
8ad2fcde
KB
1041 }
1042
1043 /* Otherwise we find the dynamic linker's base address by examining
1044 the current pc (which should point at the entry point for the
1045 dynamic linker) and subtracting the offset of the entry point. */
1046 if (!load_addr_found)
34439770
DJ
1047 {
1048 load_addr = (read_pc ()
1049 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1050 debug_loader_name = xstrdup (buf);
1051 debug_loader_offset_p = 1;
1052 debug_loader_offset = load_addr;
2bbe3cc1 1053 solib_add (NULL, 0, &current_target, auto_solib_add);
34439770 1054 }
13437d4b
KB
1055
1056 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1057 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1058 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1059 if (interp_sect)
1060 {
1061 interp_text_sect_low =
1062 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1063 interp_text_sect_high =
1064 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1065 }
1066 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1067 if (interp_sect)
1068 {
1069 interp_plt_sect_low =
1070 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1071 interp_plt_sect_high =
1072 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1073 }
1074
1075 /* Now try to set a breakpoint in the dynamic linker. */
1076 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1077 {
2bbe3cc1 1078 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1079 if (sym_addr != 0)
1080 break;
1081 }
1082
2bbe3cc1
DJ
1083 if (sym_addr != 0)
1084 /* Convert 'sym_addr' from a function pointer to an address.
1085 Because we pass tmp_bfd_target instead of the current
1086 target, this will always produce an unrelocated value. */
1087 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1088 sym_addr,
1089 tmp_bfd_target);
1090
2f4950cd
AC
1091 /* We're done with both the temporary bfd and target. Remember,
1092 closing the target closes the underlying bfd. */
1093 target_close (tmp_bfd_target, 0);
13437d4b
KB
1094
1095 if (sym_addr != 0)
1096 {
1097 create_solib_event_breakpoint (load_addr + sym_addr);
1098 return 1;
1099 }
1100
1101 /* For whatever reason we couldn't set a breakpoint in the dynamic
1102 linker. Warn and drop into the old code. */
1103 bkpt_at_symbol:
518f9d3c 1104 xfree (tmp_pathname);
82d03102
PG
1105 warning (_("Unable to find dynamic linker breakpoint function.\n"
1106 "GDB will be unable to debug shared library initializers\n"
1107 "and track explicitly loaded dynamic code."));
13437d4b 1108 }
13437d4b 1109
e499d0f1
DJ
1110 /* Scan through the lists of symbols, trying to look up the symbol and
1111 set a breakpoint there. Terminate loop when we/if we succeed. */
1112
1113 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1114 {
1115 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1116 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1117 {
1118 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1119 return 1;
1120 }
1121 }
13437d4b 1122
13437d4b
KB
1123 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1124 {
1125 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1126 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1127 {
1128 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1129 return 1;
1130 }
1131 }
13437d4b
KB
1132#endif /* BKPT_AT_SYMBOL */
1133
542c95c2 1134 return 0;
13437d4b
KB
1135}
1136
1137/*
1138
1139 LOCAL FUNCTION
1140
1141 special_symbol_handling -- additional shared library symbol handling
1142
1143 SYNOPSIS
1144
1145 void special_symbol_handling ()
1146
1147 DESCRIPTION
1148
1149 Once the symbols from a shared object have been loaded in the usual
1150 way, we are called to do any system specific symbol handling that
1151 is needed.
1152
ab31aa69 1153 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1154 linkers structures to find symbol definitions for "common" symbols
1155 and adding them to the minimal symbol table for the runtime common
1156 objfile.
1157
ab31aa69
KB
1158 However, for SVR4, there's nothing to do.
1159
13437d4b
KB
1160 */
1161
1162static void
1163svr4_special_symbol_handling (void)
1164{
13437d4b
KB
1165}
1166
e2a44558
KB
1167/* Relocate the main executable. This function should be called upon
1168 stopping the inferior process at the entry point to the program.
1169 The entry point from BFD is compared to the PC and if they are
1170 different, the main executable is relocated by the proper amount.
1171
1172 As written it will only attempt to relocate executables which
1173 lack interpreter sections. It seems likely that only dynamic
1174 linker executables will get relocated, though it should work
1175 properly for a position-independent static executable as well. */
1176
1177static void
1178svr4_relocate_main_executable (void)
1179{
1180 asection *interp_sect;
1181 CORE_ADDR pc = read_pc ();
1182
1183 /* Decide if the objfile needs to be relocated. As indicated above,
1184 we will only be here when execution is stopped at the beginning
1185 of the program. Relocation is necessary if the address at which
1186 we are presently stopped differs from the start address stored in
1187 the executable AND there's no interpreter section. The condition
1188 regarding the interpreter section is very important because if
1189 there *is* an interpreter section, execution will begin there
1190 instead. When there is an interpreter section, the start address
1191 is (presumably) used by the interpreter at some point to start
1192 execution of the program.
1193
1194 If there is an interpreter, it is normal for it to be set to an
1195 arbitrary address at the outset. The job of finding it is
1196 handled in enable_break().
1197
1198 So, to summarize, relocations are necessary when there is no
1199 interpreter section and the start address obtained from the
1200 executable is different from the address at which GDB is
1201 currently stopped.
1202
1203 [ The astute reader will note that we also test to make sure that
1204 the executable in question has the DYNAMIC flag set. It is my
1205 opinion that this test is unnecessary (undesirable even). It
1206 was added to avoid inadvertent relocation of an executable
1207 whose e_type member in the ELF header is not ET_DYN. There may
1208 be a time in the future when it is desirable to do relocations
1209 on other types of files as well in which case this condition
1210 should either be removed or modified to accomodate the new file
1211 type. (E.g, an ET_EXEC executable which has been built to be
1212 position-independent could safely be relocated by the OS if
1213 desired. It is true that this violates the ABI, but the ABI
1214 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1215 */
1216
1217 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1218 if (interp_sect == NULL
1219 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1220 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1221 {
1222 struct cleanup *old_chain;
1223 struct section_offsets *new_offsets;
1224 int i, changed;
1225 CORE_ADDR displacement;
1226
1227 /* It is necessary to relocate the objfile. The amount to
1228 relocate by is simply the address at which we are stopped
1229 minus the starting address from the executable.
1230
1231 We relocate all of the sections by the same amount. This
1232 behavior is mandated by recent editions of the System V ABI.
1233 According to the System V Application Binary Interface,
1234 Edition 4.1, page 5-5:
1235
1236 ... Though the system chooses virtual addresses for
1237 individual processes, it maintains the segments' relative
1238 positions. Because position-independent code uses relative
1239 addressesing between segments, the difference between
1240 virtual addresses in memory must match the difference
1241 between virtual addresses in the file. The difference
1242 between the virtual address of any segment in memory and
1243 the corresponding virtual address in the file is thus a
1244 single constant value for any one executable or shared
1245 object in a given process. This difference is the base
1246 address. One use of the base address is to relocate the
1247 memory image of the program during dynamic linking.
1248
1249 The same language also appears in Edition 4.0 of the System V
1250 ABI and is left unspecified in some of the earlier editions. */
1251
2f4950cd 1252 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1253 changed = 0;
1254
13fc0c2f
KB
1255 new_offsets = xcalloc (symfile_objfile->num_sections,
1256 sizeof (struct section_offsets));
b8c9b27d 1257 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1258
1259 for (i = 0; i < symfile_objfile->num_sections; i++)
1260 {
1261 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1262 changed = 1;
1263 new_offsets->offsets[i] = displacement;
1264 }
1265
1266 if (changed)
1267 objfile_relocate (symfile_objfile, new_offsets);
1268
1269 do_cleanups (old_chain);
1270 }
1271}
1272
13437d4b
KB
1273/*
1274
1275 GLOBAL FUNCTION
1276
1277 svr4_solib_create_inferior_hook -- shared library startup support
1278
1279 SYNOPSIS
1280
7095b863 1281 void svr4_solib_create_inferior_hook ()
13437d4b
KB
1282
1283 DESCRIPTION
1284
1285 When gdb starts up the inferior, it nurses it along (through the
1286 shell) until it is ready to execute it's first instruction. At this
1287 point, this function gets called via expansion of the macro
1288 SOLIB_CREATE_INFERIOR_HOOK.
1289
1290 For SunOS executables, this first instruction is typically the
1291 one at "_start", or a similar text label, regardless of whether
1292 the executable is statically or dynamically linked. The runtime
1293 startup code takes care of dynamically linking in any shared
1294 libraries, once gdb allows the inferior to continue.
1295
1296 For SVR4 executables, this first instruction is either the first
1297 instruction in the dynamic linker (for dynamically linked
1298 executables) or the instruction at "start" for statically linked
1299 executables. For dynamically linked executables, the system
1300 first exec's /lib/libc.so.N, which contains the dynamic linker,
1301 and starts it running. The dynamic linker maps in any needed
1302 shared libraries, maps in the actual user executable, and then
1303 jumps to "start" in the user executable.
1304
1305 For both SunOS shared libraries, and SVR4 shared libraries, we
1306 can arrange to cooperate with the dynamic linker to discover the
1307 names of shared libraries that are dynamically linked, and the
1308 base addresses to which they are linked.
1309
1310 This function is responsible for discovering those names and
1311 addresses, and saving sufficient information about them to allow
1312 their symbols to be read at a later time.
1313
1314 FIXME
1315
1316 Between enable_break() and disable_break(), this code does not
1317 properly handle hitting breakpoints which the user might have
1318 set in the startup code or in the dynamic linker itself. Proper
1319 handling will probably have to wait until the implementation is
1320 changed to use the "breakpoint handler function" method.
1321
1322 Also, what if child has exit()ed? Must exit loop somehow.
1323 */
1324
e2a44558 1325static void
13437d4b
KB
1326svr4_solib_create_inferior_hook (void)
1327{
e2a44558
KB
1328 /* Relocate the main executable if necessary. */
1329 svr4_relocate_main_executable ();
1330
d5a921c9 1331 if (!svr4_have_link_map_offsets ())
513f5903 1332 return;
d5a921c9 1333
13437d4b 1334 if (!enable_break ())
542c95c2 1335 return;
13437d4b 1336
ab31aa69
KB
1337#if defined(_SCO_DS)
1338 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1339 special shared library breakpoints and the shared library breakpoint
1340 service routine.
1341
1342 Now run the target. It will eventually hit the breakpoint, at
1343 which point all of the libraries will have been mapped in and we
1344 can go groveling around in the dynamic linker structures to find
1345 out what we need to know about them. */
1346
1347 clear_proceed_status ();
c0236d92 1348 stop_soon = STOP_QUIETLY;
13437d4b
KB
1349 stop_signal = TARGET_SIGNAL_0;
1350 do
1351 {
39f77062 1352 target_resume (pid_to_ptid (-1), 0, stop_signal);
13437d4b
KB
1353 wait_for_inferior ();
1354 }
1355 while (stop_signal != TARGET_SIGNAL_TRAP);
c0236d92 1356 stop_soon = NO_STOP_QUIETLY;
ab31aa69 1357#endif /* defined(_SCO_DS) */
13437d4b
KB
1358}
1359
1360static void
1361svr4_clear_solib (void)
1362{
1363 debug_base = 0;
34439770
DJ
1364 debug_loader_offset_p = 0;
1365 debug_loader_offset = 0;
1366 xfree (debug_loader_name);
1367 debug_loader_name = NULL;
13437d4b
KB
1368}
1369
1370static void
1371svr4_free_so (struct so_list *so)
1372{
b8c9b27d
KB
1373 xfree (so->lm_info->lm);
1374 xfree (so->lm_info);
13437d4b
KB
1375}
1376
6bb7be43
JB
1377
1378/* Clear any bits of ADDR that wouldn't fit in a target-format
1379 data pointer. "Data pointer" here refers to whatever sort of
1380 address the dynamic linker uses to manage its sections. At the
1381 moment, we don't support shared libraries on any processors where
1382 code and data pointers are different sizes.
1383
1384 This isn't really the right solution. What we really need here is
1385 a way to do arithmetic on CORE_ADDR values that respects the
1386 natural pointer/address correspondence. (For example, on the MIPS,
1387 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1388 sign-extend the value. There, simply truncating the bits above
819844ad 1389 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
1390 be a new gdbarch method or something. */
1391static CORE_ADDR
1392svr4_truncate_ptr (CORE_ADDR addr)
1393{
819844ad 1394 if (gdbarch_ptr_bit (current_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
1395 /* We don't need to truncate anything, and the bit twiddling below
1396 will fail due to overflow problems. */
1397 return addr;
1398 else
819844ad 1399 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (current_gdbarch)) - 1);
6bb7be43
JB
1400}
1401
1402
749499cb
KB
1403static void
1404svr4_relocate_section_addresses (struct so_list *so,
1405 struct section_table *sec)
1406{
cc10cae3
AO
1407 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1408 sec->bfd));
1409 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1410 sec->bfd));
749499cb 1411}
4b188b9f 1412\f
749499cb 1413
4b188b9f 1414/* Architecture-specific operations. */
6bb7be43 1415
4b188b9f
MK
1416/* Per-architecture data key. */
1417static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1418
4b188b9f 1419struct solib_svr4_ops
e5e2b9ff 1420{
4b188b9f
MK
1421 /* Return a description of the layout of `struct link_map'. */
1422 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1423};
e5e2b9ff 1424
4b188b9f 1425/* Return a default for the architecture-specific operations. */
e5e2b9ff 1426
4b188b9f
MK
1427static void *
1428solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1429{
4b188b9f 1430 struct solib_svr4_ops *ops;
e5e2b9ff 1431
4b188b9f
MK
1432 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1433 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1434 return ops;
e5e2b9ff
KB
1435}
1436
4b188b9f
MK
1437/* Set the architecture-specific `struct link_map_offsets' fetcher for
1438 GDBARCH to FLMO. */
1c4dcb57 1439
21479ded 1440void
e5e2b9ff
KB
1441set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1442 struct link_map_offsets *(*flmo) (void))
21479ded 1443{
4b188b9f
MK
1444 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1445
1446 ops->fetch_link_map_offsets = flmo;
21479ded
KB
1447}
1448
4b188b9f
MK
1449/* Fetch a link_map_offsets structure using the architecture-specific
1450 `struct link_map_offsets' fetcher. */
1c4dcb57 1451
4b188b9f
MK
1452static struct link_map_offsets *
1453svr4_fetch_link_map_offsets (void)
21479ded 1454{
4b188b9f
MK
1455 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1456
1457 gdb_assert (ops->fetch_link_map_offsets);
1458 return ops->fetch_link_map_offsets ();
21479ded
KB
1459}
1460
4b188b9f
MK
1461/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1462
1463static int
1464svr4_have_link_map_offsets (void)
1465{
1466 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1467 return (ops->fetch_link_map_offsets != NULL);
1468}
1469\f
1470
e4bbbda8
MK
1471/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1472 `struct r_debug' and a `struct link_map' that are binary compatible
1473 with the origional SVR4 implementation. */
1474
1475/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1476 for an ILP32 SVR4 system. */
1477
1478struct link_map_offsets *
1479svr4_ilp32_fetch_link_map_offsets (void)
1480{
1481 static struct link_map_offsets lmo;
1482 static struct link_map_offsets *lmp = NULL;
1483
1484 if (lmp == NULL)
1485 {
1486 lmp = &lmo;
1487
e4cd0d6a
MK
1488 lmo.r_version_offset = 0;
1489 lmo.r_version_size = 4;
e4bbbda8 1490 lmo.r_map_offset = 4;
e4cd0d6a 1491 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1492
1493 /* Everything we need is in the first 20 bytes. */
1494 lmo.link_map_size = 20;
1495 lmo.l_addr_offset = 0;
e4bbbda8 1496 lmo.l_name_offset = 4;
cc10cae3 1497 lmo.l_ld_offset = 8;
e4bbbda8 1498 lmo.l_next_offset = 12;
e4bbbda8 1499 lmo.l_prev_offset = 16;
e4bbbda8
MK
1500 }
1501
1502 return lmp;
1503}
1504
1505/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1506 for an LP64 SVR4 system. */
1507
1508struct link_map_offsets *
1509svr4_lp64_fetch_link_map_offsets (void)
1510{
1511 static struct link_map_offsets lmo;
1512 static struct link_map_offsets *lmp = NULL;
1513
1514 if (lmp == NULL)
1515 {
1516 lmp = &lmo;
1517
e4cd0d6a
MK
1518 lmo.r_version_offset = 0;
1519 lmo.r_version_size = 4;
e4bbbda8 1520 lmo.r_map_offset = 8;
e4cd0d6a 1521 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1522
1523 /* Everything we need is in the first 40 bytes. */
1524 lmo.link_map_size = 40;
1525 lmo.l_addr_offset = 0;
e4bbbda8 1526 lmo.l_name_offset = 8;
cc10cae3 1527 lmo.l_ld_offset = 16;
e4bbbda8 1528 lmo.l_next_offset = 24;
e4bbbda8 1529 lmo.l_prev_offset = 32;
e4bbbda8
MK
1530 }
1531
1532 return lmp;
1533}
1534\f
1535
7d522c90 1536struct target_so_ops svr4_so_ops;
13437d4b 1537
3a40aaa0
UW
1538/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1539 different rule for symbol lookup. The lookup begins here in the DSO, not in
1540 the main executable. */
1541
1542static struct symbol *
1543elf_lookup_lib_symbol (const struct objfile *objfile,
1544 const char *name,
1545 const char *linkage_name,
1546 const domain_enum domain, struct symtab **symtab)
1547{
1548 if (objfile->obfd == NULL
1549 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1550 return NULL;
1551
1552 return lookup_global_symbol_from_objfile
1553 (objfile, name, linkage_name, domain, symtab);
1554}
1555
a78f21af
AC
1556extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1557
13437d4b
KB
1558void
1559_initialize_svr4_solib (void)
1560{
4b188b9f
MK
1561 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1562
749499cb 1563 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1564 svr4_so_ops.free_so = svr4_free_so;
1565 svr4_so_ops.clear_solib = svr4_clear_solib;
1566 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1567 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1568 svr4_so_ops.current_sos = svr4_current_sos;
1569 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1570 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3a40aaa0 1571 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
13437d4b
KB
1572
1573 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1574 current_target_so_ops = &svr4_so_ops;
1575}
This page took 0.696917 seconds and 4 git commands to generate.