gdb/
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4c38e0a4 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
1c4dcb57 53
13437d4b
KB
54/* Link map info to include in an allocated so_list entry */
55
56struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
4066fc10 61 gdb_byte *lm;
cc10cae3
AO
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
93a57060
DJ
69
70 /* The target location of lm. */
71 CORE_ADDR lm_addr;
13437d4b
KB
72 };
73
74/* On SVR4 systems, a list of symbols in the dynamic linker where
75 GDB can try to place a breakpoint to monitor shared library
76 events.
77
78 If none of these symbols are found, or other errors occur, then
79 SVR4 systems will fall back to using a symbol as the "startup
80 mapping complete" breakpoint address. */
81
13437d4b
KB
82static char *solib_break_names[] =
83{
84 "r_debug_state",
85 "_r_debug_state",
86 "_dl_debug_state",
87 "rtld_db_dlactivity",
1f72e589 88 "_rtld_debug_state",
4c0122c8 89
13437d4b
KB
90 NULL
91};
13437d4b 92
13437d4b
KB
93static char *bkpt_names[] =
94{
13437d4b 95 "_start",
ad3dcc5c 96 "__start",
13437d4b
KB
97 "main",
98 NULL
99};
13437d4b 100
13437d4b
KB
101static char *main_name_list[] =
102{
103 "main_$main",
104 NULL
105};
106
4d7b2d5b
JB
107/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
108 the same shared library. */
109
110static int
111svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
112{
113 if (strcmp (gdb_so_name, inferior_so_name) == 0)
114 return 1;
115
116 /* On Solaris, when starting inferior we think that dynamic linker is
117 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
118 contains /lib/ld.so.1. Sometimes one file is a link to another, but
119 sometimes they have identical content, but are not linked to each
120 other. We don't restrict this check for Solaris, but the chances
121 of running into this situation elsewhere are very low. */
122 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
123 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
124 return 1;
125
126 /* Similarly, we observed the same issue with sparc64, but with
127 different locations. */
128 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
129 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
130 return 1;
131
132 return 0;
133}
134
135static int
136svr4_same (struct so_list *gdb, struct so_list *inferior)
137{
138 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
139}
140
13437d4b
KB
141/* link map access functions */
142
143static CORE_ADDR
cc10cae3 144LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 145{
4b188b9f 146 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 147 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 148
cfaefc65 149 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 150 ptr_type);
13437d4b
KB
151}
152
cc10cae3 153static int
2c0b251b 154HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
cc10cae3
AO
155{
156 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
157
cfaefc65 158 return lmo->l_ld_offset >= 0;
cc10cae3
AO
159}
160
161static CORE_ADDR
162LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
163{
164 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 165 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 166
cfaefc65 167 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 168 ptr_type);
cc10cae3
AO
169}
170
171static CORE_ADDR
172LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
173{
174 if (so->lm_info->l_addr == (CORE_ADDR)-1)
175 {
176 struct bfd_section *dyninfo_sect;
177 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
178
179 l_addr = LM_ADDR_FROM_LINK_MAP (so);
180
181 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
182 goto set_addr;
183
184 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
185
186 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
187 if (dyninfo_sect == NULL)
188 goto set_addr;
189
190 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
191
192 if (dynaddr + l_addr != l_dynaddr)
193 {
cc10cae3
AO
194 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
195 {
196 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
197 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
198 int i;
199
200 align = 1;
201
202 for (i = 0; i < ehdr->e_phnum; i++)
203 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
204 align = phdr[i].p_align;
205 }
206
207 /* Turn it into a mask. */
208 align--;
209
210 /* If the changes match the alignment requirements, we
211 assume we're using a core file that was generated by the
212 same binary, just prelinked with a different base offset.
213 If it doesn't match, we may have a different binary, the
214 same binary with the dynamic table loaded at an unrelated
215 location, or anything, really. To avoid regressions,
216 don't adjust the base offset in the latter case, although
217 odds are that, if things really changed, debugging won't
218 quite work. */
f1e55806 219 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
220 {
221 l_addr = l_dynaddr - dynaddr;
79d4c408
DJ
222
223 warning (_(".dynamic section for \"%s\" "
224 "is not at the expected address"), so->so_name);
cc10cae3
AO
225 warning (_("difference appears to be caused by prelink, "
226 "adjusting expectations"));
227 }
79d4c408
DJ
228 else
229 warning (_(".dynamic section for \"%s\" "
230 "is not at the expected address "
231 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
232 }
233
234 set_addr:
235 so->lm_info->l_addr = l_addr;
236 }
237
238 return so->lm_info->l_addr;
239}
240
13437d4b
KB
241static CORE_ADDR
242LM_NEXT (struct so_list *so)
243{
4b188b9f 244 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 245 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 246
cfaefc65 247 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 248 ptr_type);
13437d4b
KB
249}
250
251static CORE_ADDR
252LM_NAME (struct so_list *so)
253{
4b188b9f 254 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 255 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 256
cfaefc65 257 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 258 ptr_type);
13437d4b
KB
259}
260
13437d4b
KB
261static int
262IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
263{
4b188b9f 264 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 265 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 266
e499d0f1
DJ
267 /* Assume that everything is a library if the dynamic loader was loaded
268 late by a static executable. */
0763ab81 269 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
270 return 0;
271
cfaefc65 272 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
b6da22b0 273 ptr_type) == 0;
13437d4b
KB
274}
275
6c95b8df 276/* Per pspace SVR4 specific data. */
13437d4b 277
1a816a87
PA
278struct svr4_info
279{
1a816a87
PA
280 CORE_ADDR debug_base; /* Base of dynamic linker structures */
281
282 /* Validity flag for debug_loader_offset. */
283 int debug_loader_offset_p;
284
285 /* Load address for the dynamic linker, inferred. */
286 CORE_ADDR debug_loader_offset;
287
288 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
289 char *debug_loader_name;
290
291 /* Load map address for the main executable. */
292 CORE_ADDR main_lm_addr;
1a816a87 293
6c95b8df
PA
294 CORE_ADDR interp_text_sect_low;
295 CORE_ADDR interp_text_sect_high;
296 CORE_ADDR interp_plt_sect_low;
297 CORE_ADDR interp_plt_sect_high;
298};
1a816a87 299
6c95b8df
PA
300/* Per-program-space data key. */
301static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 302
6c95b8df
PA
303static void
304svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 305{
6c95b8df 306 struct svr4_info *info;
1a816a87 307
6c95b8df
PA
308 info = program_space_data (pspace, solib_svr4_pspace_data);
309 xfree (info);
1a816a87
PA
310}
311
6c95b8df
PA
312/* Get the current svr4 data. If none is found yet, add it now. This
313 function always returns a valid object. */
34439770 314
6c95b8df
PA
315static struct svr4_info *
316get_svr4_info (void)
1a816a87 317{
6c95b8df 318 struct svr4_info *info;
1a816a87 319
6c95b8df
PA
320 info = program_space_data (current_program_space, solib_svr4_pspace_data);
321 if (info != NULL)
322 return info;
34439770 323
6c95b8df
PA
324 info = XZALLOC (struct svr4_info);
325 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
326 return info;
1a816a87 327}
93a57060 328
13437d4b
KB
329/* Local function prototypes */
330
331static int match_main (char *);
332
2bbe3cc1 333static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
13437d4b
KB
334
335/*
336
337 LOCAL FUNCTION
338
339 bfd_lookup_symbol -- lookup the value for a specific symbol
340
341 SYNOPSIS
342
2bbe3cc1 343 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
344
345 DESCRIPTION
346
347 An expensive way to lookup the value of a single symbol for
348 bfd's that are only temporary anyway. This is used by the
349 shared library support to find the address of the debugger
2bbe3cc1 350 notification routine in the shared library.
13437d4b 351
2bbe3cc1
DJ
352 The returned symbol may be in a code or data section; functions
353 will normally be in a code section, but may be in a data section
354 if this architecture uses function descriptors.
87f84c9d 355
13437d4b
KB
356 Note that 0 is specifically allowed as an error return (no
357 such symbol).
358 */
359
360static CORE_ADDR
2bbe3cc1 361bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b 362{
435b259c 363 long storage_needed;
13437d4b
KB
364 asymbol *sym;
365 asymbol **symbol_table;
366 unsigned int number_of_symbols;
367 unsigned int i;
368 struct cleanup *back_to;
369 CORE_ADDR symaddr = 0;
370
371 storage_needed = bfd_get_symtab_upper_bound (abfd);
372
373 if (storage_needed > 0)
374 {
375 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 376 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
377 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
378
379 for (i = 0; i < number_of_symbols; i++)
380 {
381 sym = *symbol_table++;
6314a349 382 if (strcmp (sym->name, symname) == 0
2bbe3cc1 383 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 384 {
2bbe3cc1 385 /* BFD symbols are section relative. */
13437d4b
KB
386 symaddr = sym->value + sym->section->vma;
387 break;
388 }
389 }
390 do_cleanups (back_to);
391 }
392
393 if (symaddr)
394 return symaddr;
395
396 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
397 have to check the dynamic string table too. */
398
399 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
400
401 if (storage_needed > 0)
402 {
403 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 404 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
405 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
406
407 for (i = 0; i < number_of_symbols; i++)
408 {
409 sym = *symbol_table++;
87f84c9d 410
6314a349 411 if (strcmp (sym->name, symname) == 0
2bbe3cc1 412 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 413 {
2bbe3cc1 414 /* BFD symbols are section relative. */
13437d4b
KB
415 symaddr = sym->value + sym->section->vma;
416 break;
417 }
418 }
419 do_cleanups (back_to);
420 }
421
422 return symaddr;
423}
424
97ec2c2f
UW
425
426/* Read program header TYPE from inferior memory. The header is found
427 by scanning the OS auxillary vector.
428
429 Return a pointer to allocated memory holding the program header contents,
430 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
431 size of those contents is returned to P_SECT_SIZE. Likewise, the target
432 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
433
434static gdb_byte *
435read_program_header (int type, int *p_sect_size, int *p_arch_size)
436{
e17a4113 437 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
438 CORE_ADDR at_phdr, at_phent, at_phnum;
439 int arch_size, sect_size;
440 CORE_ADDR sect_addr;
441 gdb_byte *buf;
442
443 /* Get required auxv elements from target. */
444 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
445 return 0;
446 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
447 return 0;
448 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
449 return 0;
450 if (!at_phdr || !at_phnum)
451 return 0;
452
453 /* Determine ELF architecture type. */
454 if (at_phent == sizeof (Elf32_External_Phdr))
455 arch_size = 32;
456 else if (at_phent == sizeof (Elf64_External_Phdr))
457 arch_size = 64;
458 else
459 return 0;
460
461 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
462 if (arch_size == 32)
463 {
464 Elf32_External_Phdr phdr;
465 int i;
466
467 /* Search for requested PHDR. */
468 for (i = 0; i < at_phnum; i++)
469 {
470 if (target_read_memory (at_phdr + i * sizeof (phdr),
471 (gdb_byte *)&phdr, sizeof (phdr)))
472 return 0;
473
e17a4113
UW
474 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
475 4, byte_order) == type)
97ec2c2f
UW
476 break;
477 }
478
479 if (i == at_phnum)
480 return 0;
481
482 /* Retrieve address and size. */
e17a4113
UW
483 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
484 4, byte_order);
485 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
486 4, byte_order);
97ec2c2f
UW
487 }
488 else
489 {
490 Elf64_External_Phdr phdr;
491 int i;
492
493 /* Search for requested PHDR. */
494 for (i = 0; i < at_phnum; i++)
495 {
496 if (target_read_memory (at_phdr + i * sizeof (phdr),
497 (gdb_byte *)&phdr, sizeof (phdr)))
498 return 0;
499
e17a4113
UW
500 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
501 4, byte_order) == type)
97ec2c2f
UW
502 break;
503 }
504
505 if (i == at_phnum)
506 return 0;
507
508 /* Retrieve address and size. */
e17a4113
UW
509 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
510 8, byte_order);
511 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
512 8, byte_order);
97ec2c2f
UW
513 }
514
515 /* Read in requested program header. */
516 buf = xmalloc (sect_size);
517 if (target_read_memory (sect_addr, buf, sect_size))
518 {
519 xfree (buf);
520 return NULL;
521 }
522
523 if (p_arch_size)
524 *p_arch_size = arch_size;
525 if (p_sect_size)
526 *p_sect_size = sect_size;
527
528 return buf;
529}
530
531
532/* Return program interpreter string. */
533static gdb_byte *
534find_program_interpreter (void)
535{
536 gdb_byte *buf = NULL;
537
538 /* If we have an exec_bfd, use its section table. */
539 if (exec_bfd
540 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
541 {
542 struct bfd_section *interp_sect;
543
544 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
545 if (interp_sect != NULL)
546 {
547 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
548 int sect_size = bfd_section_size (exec_bfd, interp_sect);
549
550 buf = xmalloc (sect_size);
551 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
552 }
553 }
554
555 /* If we didn't find it, use the target auxillary vector. */
556 if (!buf)
557 buf = read_program_header (PT_INTERP, NULL, NULL);
558
559 return buf;
560}
561
562
3a40aaa0
UW
563/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
564 returned and the corresponding PTR is set. */
565
566static int
567scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
568{
569 int arch_size, step, sect_size;
570 long dyn_tag;
61f0d762 571 CORE_ADDR dyn_ptr;
65728c26 572 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
573 Elf32_External_Dyn *x_dynp_32;
574 Elf64_External_Dyn *x_dynp_64;
575 struct bfd_section *sect;
61f0d762 576 struct target_section *target_section;
3a40aaa0
UW
577
578 if (abfd == NULL)
579 return 0;
0763ab81
PA
580
581 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
582 return 0;
583
3a40aaa0
UW
584 arch_size = bfd_get_arch_size (abfd);
585 if (arch_size == -1)
0763ab81 586 return 0;
3a40aaa0
UW
587
588 /* Find the start address of the .dynamic section. */
589 sect = bfd_get_section_by_name (abfd, ".dynamic");
590 if (sect == NULL)
591 return 0;
61f0d762
JK
592
593 for (target_section = current_target_sections->sections;
594 target_section < current_target_sections->sections_end;
595 target_section++)
596 if (sect == target_section->the_bfd_section)
597 break;
598 gdb_assert (target_section < current_target_sections->sections_end);
3a40aaa0 599
65728c26
DJ
600 /* Read in .dynamic from the BFD. We will get the actual value
601 from memory later. */
3a40aaa0 602 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
603 buf = bufstart = alloca (sect_size);
604 if (!bfd_get_section_contents (abfd, sect,
605 buf, 0, sect_size))
606 return 0;
3a40aaa0
UW
607
608 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
609 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
610 : sizeof (Elf64_External_Dyn);
611 for (bufend = buf + sect_size;
612 buf < bufend;
613 buf += step)
614 {
615 if (arch_size == 32)
616 {
617 x_dynp_32 = (Elf32_External_Dyn *) buf;
618 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
619 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
620 }
65728c26 621 else
3a40aaa0
UW
622 {
623 x_dynp_64 = (Elf64_External_Dyn *) buf;
624 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
625 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
626 }
627 if (dyn_tag == DT_NULL)
628 return 0;
629 if (dyn_tag == dyntag)
630 {
65728c26
DJ
631 /* If requested, try to read the runtime value of this .dynamic
632 entry. */
3a40aaa0 633 if (ptr)
65728c26 634 {
b6da22b0 635 struct type *ptr_type;
65728c26
DJ
636 gdb_byte ptr_buf[8];
637 CORE_ADDR ptr_addr;
638
b6da22b0 639 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
61f0d762 640 ptr_addr = target_section->addr + (buf - bufstart) + arch_size / 8;
65728c26 641 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 642 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
643 *ptr = dyn_ptr;
644 }
645 return 1;
3a40aaa0
UW
646 }
647 }
648
649 return 0;
650}
651
97ec2c2f
UW
652/* Scan for DYNTAG in .dynamic section of the target's main executable,
653 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
654 returned and the corresponding PTR is set. */
655
656static int
657scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
658{
e17a4113 659 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
660 int sect_size, arch_size, step;
661 long dyn_tag;
662 CORE_ADDR dyn_ptr;
663 gdb_byte *bufend, *bufstart, *buf;
664
665 /* Read in .dynamic section. */
666 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
667 if (!buf)
668 return 0;
669
670 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
671 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
672 : sizeof (Elf64_External_Dyn);
673 for (bufend = buf + sect_size;
674 buf < bufend;
675 buf += step)
676 {
677 if (arch_size == 32)
678 {
679 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
e17a4113
UW
680 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
681 4, byte_order);
682 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
683 4, byte_order);
97ec2c2f
UW
684 }
685 else
686 {
687 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
e17a4113
UW
688 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
689 8, byte_order);
690 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
691 8, byte_order);
97ec2c2f
UW
692 }
693 if (dyn_tag == DT_NULL)
694 break;
695
696 if (dyn_tag == dyntag)
697 {
698 if (ptr)
699 *ptr = dyn_ptr;
700
701 xfree (bufstart);
702 return 1;
703 }
704 }
705
706 xfree (bufstart);
707 return 0;
708}
709
3a40aaa0 710
13437d4b
KB
711/*
712
713 LOCAL FUNCTION
714
715 elf_locate_base -- locate the base address of dynamic linker structs
716 for SVR4 elf targets.
717
718 SYNOPSIS
719
720 CORE_ADDR elf_locate_base (void)
721
722 DESCRIPTION
723
724 For SVR4 elf targets the address of the dynamic linker's runtime
725 structure is contained within the dynamic info section in the
726 executable file. The dynamic section is also mapped into the
727 inferior address space. Because the runtime loader fills in the
728 real address before starting the inferior, we have to read in the
729 dynamic info section from the inferior address space.
730 If there are any errors while trying to find the address, we
731 silently return 0, otherwise the found address is returned.
732
733 */
734
735static CORE_ADDR
736elf_locate_base (void)
737{
3a40aaa0
UW
738 struct minimal_symbol *msymbol;
739 CORE_ADDR dyn_ptr;
13437d4b 740
65728c26
DJ
741 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
742 instead of DT_DEBUG, although they sometimes contain an unused
743 DT_DEBUG. */
97ec2c2f
UW
744 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
745 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 746 {
b6da22b0 747 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 748 gdb_byte *pbuf;
b6da22b0 749 int pbuf_size = TYPE_LENGTH (ptr_type);
3a40aaa0
UW
750 pbuf = alloca (pbuf_size);
751 /* DT_MIPS_RLD_MAP contains a pointer to the address
752 of the dynamic link structure. */
753 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 754 return 0;
b6da22b0 755 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
756 }
757
65728c26 758 /* Find DT_DEBUG. */
97ec2c2f
UW
759 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
760 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
761 return dyn_ptr;
762
3a40aaa0
UW
763 /* This may be a static executable. Look for the symbol
764 conventionally named _r_debug, as a last resort. */
765 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
766 if (msymbol != NULL)
767 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
768
769 /* DT_DEBUG entry not found. */
770 return 0;
771}
772
13437d4b
KB
773/*
774
775 LOCAL FUNCTION
776
777 locate_base -- locate the base address of dynamic linker structs
778
779 SYNOPSIS
780
1a816a87 781 CORE_ADDR locate_base (struct svr4_info *)
13437d4b
KB
782
783 DESCRIPTION
784
785 For both the SunOS and SVR4 shared library implementations, if the
786 inferior executable has been linked dynamically, there is a single
787 address somewhere in the inferior's data space which is the key to
788 locating all of the dynamic linker's runtime structures. This
789 address is the value of the debug base symbol. The job of this
790 function is to find and return that address, or to return 0 if there
791 is no such address (the executable is statically linked for example).
792
793 For SunOS, the job is almost trivial, since the dynamic linker and
794 all of it's structures are statically linked to the executable at
795 link time. Thus the symbol for the address we are looking for has
796 already been added to the minimal symbol table for the executable's
797 objfile at the time the symbol file's symbols were read, and all we
798 have to do is look it up there. Note that we explicitly do NOT want
799 to find the copies in the shared library.
800
801 The SVR4 version is a bit more complicated because the address
802 is contained somewhere in the dynamic info section. We have to go
803 to a lot more work to discover the address of the debug base symbol.
804 Because of this complexity, we cache the value we find and return that
805 value on subsequent invocations. Note there is no copy in the
806 executable symbol tables.
807
808 */
809
810static CORE_ADDR
1a816a87 811locate_base (struct svr4_info *info)
13437d4b 812{
13437d4b
KB
813 /* Check to see if we have a currently valid address, and if so, avoid
814 doing all this work again and just return the cached address. If
815 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
816 section for ELF executables. There's no point in doing any of this
817 though if we don't have some link map offsets to work with. */
13437d4b 818
1a816a87 819 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 820 info->debug_base = elf_locate_base ();
1a816a87 821 return info->debug_base;
13437d4b
KB
822}
823
e4cd0d6a
MK
824/* Find the first element in the inferior's dynamic link map, and
825 return its address in the inferior.
13437d4b 826
e4cd0d6a
MK
827 FIXME: Perhaps we should validate the info somehow, perhaps by
828 checking r_version for a known version number, or r_state for
829 RT_CONSISTENT. */
13437d4b
KB
830
831static CORE_ADDR
1a816a87 832solib_svr4_r_map (struct svr4_info *info)
13437d4b 833{
4b188b9f 834 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 835 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 836
1a816a87
PA
837 return read_memory_typed_address (info->debug_base + lmo->r_map_offset,
838 ptr_type);
e4cd0d6a 839}
13437d4b 840
7cd25cfc
DJ
841/* Find r_brk from the inferior's debug base. */
842
843static CORE_ADDR
1a816a87 844solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
845{
846 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 847 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 848
1a816a87
PA
849 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
850 ptr_type);
7cd25cfc
DJ
851}
852
e4cd0d6a
MK
853/* Find the link map for the dynamic linker (if it is not in the
854 normal list of loaded shared objects). */
13437d4b 855
e4cd0d6a 856static CORE_ADDR
1a816a87 857solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
858{
859 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 860 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 861 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 862 ULONGEST version;
13437d4b 863
e4cd0d6a
MK
864 /* Check version, and return zero if `struct r_debug' doesn't have
865 the r_ldsomap member. */
1a816a87
PA
866 version
867 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 868 lmo->r_version_size, byte_order);
e4cd0d6a
MK
869 if (version < 2 || lmo->r_ldsomap_offset == -1)
870 return 0;
13437d4b 871
1a816a87 872 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 873 ptr_type);
13437d4b
KB
874}
875
de18c1d8
JM
876/* On Solaris systems with some versions of the dynamic linker,
877 ld.so's l_name pointer points to the SONAME in the string table
878 rather than into writable memory. So that GDB can find shared
879 libraries when loading a core file generated by gcore, ensure that
880 memory areas containing the l_name string are saved in the core
881 file. */
882
883static int
884svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
885{
886 struct svr4_info *info;
887 CORE_ADDR ldsomap;
888 struct so_list *new;
889 struct cleanup *old_chain;
890 struct link_map_offsets *lmo;
891 CORE_ADDR lm_name;
892
893 info = get_svr4_info ();
894
895 info->debug_base = 0;
896 locate_base (info);
897 if (!info->debug_base)
898 return 0;
899
900 ldsomap = solib_svr4_r_ldsomap (info);
901 if (!ldsomap)
902 return 0;
903
904 lmo = svr4_fetch_link_map_offsets ();
905 new = XZALLOC (struct so_list);
906 old_chain = make_cleanup (xfree, new);
907 new->lm_info = xmalloc (sizeof (struct lm_info));
908 make_cleanup (xfree, new->lm_info);
909 new->lm_info->l_addr = (CORE_ADDR)-1;
910 new->lm_info->lm_addr = ldsomap;
911 new->lm_info->lm = xzalloc (lmo->link_map_size);
912 make_cleanup (xfree, new->lm_info->lm);
913 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
914 lm_name = LM_NAME (new);
915 do_cleanups (old_chain);
916
917 return (lm_name >= vaddr && lm_name < vaddr + size);
918}
919
13437d4b
KB
920/*
921
922 LOCAL FUNCTION
923
924 open_symbol_file_object
925
926 SYNOPSIS
927
928 void open_symbol_file_object (void *from_tty)
929
930 DESCRIPTION
931
932 If no open symbol file, attempt to locate and open the main symbol
933 file. On SVR4 systems, this is the first link map entry. If its
934 name is here, we can open it. Useful when attaching to a process
935 without first loading its symbol file.
936
937 If FROM_TTYP dereferences to a non-zero integer, allow messages to
938 be printed. This parameter is a pointer rather than an int because
939 open_symbol_file_object() is called via catch_errors() and
940 catch_errors() requires a pointer argument. */
941
942static int
943open_symbol_file_object (void *from_ttyp)
944{
945 CORE_ADDR lm, l_name;
946 char *filename;
947 int errcode;
948 int from_tty = *(int *)from_ttyp;
4b188b9f 949 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
950 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
951 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 952 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 953 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 954 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
955
956 if (symfile_objfile)
9e2f0ad4 957 if (!query (_("Attempt to reload symbols from process? ")))
13437d4b
KB
958 return 0;
959
7cd25cfc 960 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
961 info->debug_base = 0;
962 if (locate_base (info) == 0)
13437d4b
KB
963 return 0; /* failed somehow... */
964
965 /* First link map member should be the executable. */
1a816a87 966 lm = solib_svr4_r_map (info);
e4cd0d6a 967 if (lm == 0)
13437d4b
KB
968 return 0; /* failed somehow... */
969
970 /* Read address of name from target memory to GDB. */
cfaefc65 971 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 972
cfaefc65 973 /* Convert the address to host format. */
b6da22b0 974 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b
KB
975
976 /* Free l_name_buf. */
977 do_cleanups (cleanups);
978
979 if (l_name == 0)
980 return 0; /* No filename. */
981
982 /* Now fetch the filename from target memory. */
983 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 984 make_cleanup (xfree, filename);
13437d4b
KB
985
986 if (errcode)
987 {
8a3fe4f8 988 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
989 safe_strerror (errcode));
990 return 0;
991 }
992
13437d4b 993 /* Have a pathname: read the symbol file. */
1adeb98a 994 symbol_file_add_main (filename, from_tty);
13437d4b
KB
995
996 return 1;
997}
13437d4b 998
34439770
DJ
999/* If no shared library information is available from the dynamic
1000 linker, build a fallback list from other sources. */
1001
1002static struct so_list *
1003svr4_default_sos (void)
1004{
6c95b8df 1005 struct svr4_info *info = get_svr4_info ();
1a816a87 1006
34439770
DJ
1007 struct so_list *head = NULL;
1008 struct so_list **link_ptr = &head;
1009
1a816a87 1010 if (info->debug_loader_offset_p)
34439770
DJ
1011 {
1012 struct so_list *new = XZALLOC (struct so_list);
1013
1014 new->lm_info = xmalloc (sizeof (struct lm_info));
1015
1016 /* Nothing will ever check the cached copy of the link
1017 map if we set l_addr. */
1a816a87 1018 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 1019 new->lm_info->lm_addr = 0;
34439770
DJ
1020 new->lm_info->lm = NULL;
1021
1a816a87
PA
1022 strncpy (new->so_name, info->debug_loader_name,
1023 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
1024 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1025 strcpy (new->so_original_name, new->so_name);
1026
1027 *link_ptr = new;
1028 link_ptr = &new->next;
1029 }
1030
1031 return head;
1032}
1033
13437d4b
KB
1034/* LOCAL FUNCTION
1035
1036 current_sos -- build a list of currently loaded shared objects
1037
1038 SYNOPSIS
1039
1040 struct so_list *current_sos ()
1041
1042 DESCRIPTION
1043
1044 Build a list of `struct so_list' objects describing the shared
1045 objects currently loaded in the inferior. This list does not
1046 include an entry for the main executable file.
1047
1048 Note that we only gather information directly available from the
1049 inferior --- we don't examine any of the shared library files
1050 themselves. The declaration of `struct so_list' says which fields
1051 we provide values for. */
1052
1053static struct so_list *
1054svr4_current_sos (void)
1055{
1056 CORE_ADDR lm;
1057 struct so_list *head = 0;
1058 struct so_list **link_ptr = &head;
e4cd0d6a 1059 CORE_ADDR ldsomap = 0;
1a816a87
PA
1060 struct svr4_info *info;
1061
6c95b8df 1062 info = get_svr4_info ();
13437d4b 1063
7cd25cfc 1064 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1065 info->debug_base = 0;
1066 locate_base (info);
13437d4b 1067
7cd25cfc
DJ
1068 /* If we can't find the dynamic linker's base structure, this
1069 must not be a dynamically linked executable. Hmm. */
1a816a87 1070 if (! info->debug_base)
7cd25cfc 1071 return svr4_default_sos ();
13437d4b
KB
1072
1073 /* Walk the inferior's link map list, and build our list of
1074 `struct so_list' nodes. */
1a816a87 1075 lm = solib_svr4_r_map (info);
34439770 1076
13437d4b
KB
1077 while (lm)
1078 {
4b188b9f 1079 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1080 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1081 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 1082
13437d4b 1083 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1084 make_cleanup (xfree, new->lm_info);
13437d4b 1085
831004b7 1086 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1087 new->lm_info->lm_addr = lm;
f4456994 1088 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1089 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1090
1091 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1092
1093 lm = LM_NEXT (new);
1094
1095 /* For SVR4 versions, the first entry in the link map is for the
1096 inferior executable, so we must ignore it. For some versions of
1097 SVR4, it has no name. For others (Solaris 2.3 for example), it
1098 does have a name, so we can no longer use a missing name to
1099 decide when to ignore it. */
e4cd0d6a 1100 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
93a57060 1101 {
1a816a87 1102 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1103 free_so (new);
1104 }
13437d4b
KB
1105 else
1106 {
1107 int errcode;
1108 char *buffer;
1109
1110 /* Extract this shared object's name. */
1111 target_read_string (LM_NAME (new), &buffer,
1112 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1113 if (errcode != 0)
8a3fe4f8
AC
1114 warning (_("Can't read pathname for load map: %s."),
1115 safe_strerror (errcode));
13437d4b
KB
1116 else
1117 {
1118 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1119 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1120 strcpy (new->so_original_name, new->so_name);
1121 }
ea5bf0a1 1122 xfree (buffer);
13437d4b
KB
1123
1124 /* If this entry has no name, or its name matches the name
1125 for the main executable, don't include it in the list. */
1126 if (! new->so_name[0]
1127 || match_main (new->so_name))
1128 free_so (new);
1129 else
1130 {
1131 new->next = 0;
1132 *link_ptr = new;
1133 link_ptr = &new->next;
1134 }
1135 }
1136
e4cd0d6a
MK
1137 /* On Solaris, the dynamic linker is not in the normal list of
1138 shared objects, so make sure we pick it up too. Having
1139 symbol information for the dynamic linker is quite crucial
1140 for skipping dynamic linker resolver code. */
1141 if (lm == 0 && ldsomap == 0)
1a816a87 1142 lm = ldsomap = solib_svr4_r_ldsomap (info);
e4cd0d6a 1143
13437d4b
KB
1144 discard_cleanups (old_chain);
1145 }
1146
34439770
DJ
1147 if (head == NULL)
1148 return svr4_default_sos ();
1149
13437d4b
KB
1150 return head;
1151}
1152
93a57060 1153/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1154
1155CORE_ADDR
1156svr4_fetch_objfile_link_map (struct objfile *objfile)
1157{
93a57060 1158 struct so_list *so;
6c95b8df 1159 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1160
93a57060 1161 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1162 if (info->main_lm_addr == 0)
93a57060 1163 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1164
93a57060
DJ
1165 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1166 if (objfile == symfile_objfile)
1a816a87 1167 return info->main_lm_addr;
93a57060
DJ
1168
1169 /* The other link map addresses may be found by examining the list
1170 of shared libraries. */
1171 for (so = master_so_list (); so; so = so->next)
1172 if (so->objfile == objfile)
1173 return so->lm_info->lm_addr;
1174
1175 /* Not found! */
bc4a16ae
EZ
1176 return 0;
1177}
13437d4b
KB
1178
1179/* On some systems, the only way to recognize the link map entry for
1180 the main executable file is by looking at its name. Return
1181 non-zero iff SONAME matches one of the known main executable names. */
1182
1183static int
1184match_main (char *soname)
1185{
1186 char **mainp;
1187
1188 for (mainp = main_name_list; *mainp != NULL; mainp++)
1189 {
1190 if (strcmp (soname, *mainp) == 0)
1191 return (1);
1192 }
1193
1194 return (0);
1195}
1196
13437d4b
KB
1197/* Return 1 if PC lies in the dynamic symbol resolution code of the
1198 SVR4 run time loader. */
13437d4b 1199
7d522c90 1200int
d7fa2ae2 1201svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1202{
6c95b8df
PA
1203 struct svr4_info *info = get_svr4_info ();
1204
1205 return ((pc >= info->interp_text_sect_low
1206 && pc < info->interp_text_sect_high)
1207 || (pc >= info->interp_plt_sect_low
1208 && pc < info->interp_plt_sect_high)
13437d4b
KB
1209 || in_plt_section (pc, NULL));
1210}
13437d4b 1211
2f4950cd
AC
1212/* Given an executable's ABFD and target, compute the entry-point
1213 address. */
1214
1215static CORE_ADDR
1216exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1217{
1218 /* KevinB wrote ... for most targets, the address returned by
1219 bfd_get_start_address() is the entry point for the start
1220 function. But, for some targets, bfd_get_start_address() returns
1221 the address of a function descriptor from which the entry point
1222 address may be extracted. This address is extracted by
1223 gdbarch_convert_from_func_ptr_addr(). The method
1224 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1225 function for targets which don't use function descriptors. */
1cf3db46 1226 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1227 bfd_get_start_address (abfd),
1228 targ);
1229}
13437d4b
KB
1230
1231/*
1232
1233 LOCAL FUNCTION
1234
1235 enable_break -- arrange for dynamic linker to hit breakpoint
1236
1237 SYNOPSIS
1238
1239 int enable_break (void)
1240
1241 DESCRIPTION
1242
1243 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1244 debugger interface, support for arranging for the inferior to hit
1245 a breakpoint after mapping in the shared libraries. This function
1246 enables that breakpoint.
1247
1248 For SunOS, there is a special flag location (in_debugger) which we
1249 set to 1. When the dynamic linker sees this flag set, it will set
1250 a breakpoint at a location known only to itself, after saving the
1251 original contents of that place and the breakpoint address itself,
1252 in it's own internal structures. When we resume the inferior, it
1253 will eventually take a SIGTRAP when it runs into the breakpoint.
1254 We handle this (in a different place) by restoring the contents of
1255 the breakpointed location (which is only known after it stops),
1256 chasing around to locate the shared libraries that have been
1257 loaded, then resuming.
1258
1259 For SVR4, the debugger interface structure contains a member (r_brk)
1260 which is statically initialized at the time the shared library is
1261 built, to the offset of a function (_r_debug_state) which is guaran-
1262 teed to be called once before mapping in a library, and again when
1263 the mapping is complete. At the time we are examining this member,
1264 it contains only the unrelocated offset of the function, so we have
1265 to do our own relocation. Later, when the dynamic linker actually
1266 runs, it relocates r_brk to be the actual address of _r_debug_state().
1267
1268 The debugger interface structure also contains an enumeration which
1269 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1270 depending upon whether or not the library is being mapped or unmapped,
1271 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1272 */
1273
1274static int
268a4a75 1275enable_break (struct svr4_info *info, int from_tty)
13437d4b 1276{
13437d4b
KB
1277 struct minimal_symbol *msymbol;
1278 char **bkpt_namep;
1279 asection *interp_sect;
97ec2c2f 1280 gdb_byte *interp_name;
7cd25cfc 1281 CORE_ADDR sym_addr;
13437d4b
KB
1282
1283 /* First, remove all the solib event breakpoints. Their addresses
1284 may have changed since the last time we ran the program. */
1285 remove_solib_event_breakpoints ();
1286
6c95b8df
PA
1287 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1288 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1289
7cd25cfc
DJ
1290 /* If we already have a shared library list in the target, and
1291 r_debug contains r_brk, set the breakpoint there - this should
1292 mean r_brk has already been relocated. Assume the dynamic linker
1293 is the object containing r_brk. */
1294
268a4a75 1295 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1296 sym_addr = 0;
1a816a87
PA
1297 if (info->debug_base && solib_svr4_r_map (info) != 0)
1298 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1299
1300 if (sym_addr != 0)
1301 {
1302 struct obj_section *os;
1303
b36ec657 1304 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1305 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
b36ec657
DJ
1306 sym_addr,
1307 &current_target));
1308
7cd25cfc
DJ
1309 os = find_pc_section (sym_addr);
1310 if (os != NULL)
1311 {
1312 /* Record the relocated start and end address of the dynamic linker
1313 text and plt section for svr4_in_dynsym_resolve_code. */
1314 bfd *tmp_bfd;
1315 CORE_ADDR load_addr;
1316
1317 tmp_bfd = os->objfile->obfd;
1318 load_addr = ANOFFSET (os->objfile->section_offsets,
1319 os->objfile->sect_index_text);
1320
1321 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1322 if (interp_sect)
1323 {
6c95b8df 1324 info->interp_text_sect_low =
7cd25cfc 1325 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1326 info->interp_text_sect_high =
1327 info->interp_text_sect_low
1328 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1329 }
1330 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1331 if (interp_sect)
1332 {
6c95b8df 1333 info->interp_plt_sect_low =
7cd25cfc 1334 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1335 info->interp_plt_sect_high =
1336 info->interp_plt_sect_low
1337 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1338 }
1339
a6d9a66e 1340 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1341 return 1;
1342 }
1343 }
1344
97ec2c2f 1345 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1346 into the old breakpoint at symbol code. */
97ec2c2f
UW
1347 interp_name = find_program_interpreter ();
1348 if (interp_name)
13437d4b 1349 {
8ad2fcde
KB
1350 CORE_ADDR load_addr = 0;
1351 int load_addr_found = 0;
2ec9a4f8 1352 int loader_found_in_list = 0;
f8766ec1 1353 struct so_list *so;
e4f7b8c8 1354 bfd *tmp_bfd = NULL;
2f4950cd 1355 struct target_ops *tmp_bfd_target;
f1838a98 1356 volatile struct gdb_exception ex;
13437d4b 1357
7cd25cfc 1358 sym_addr = 0;
13437d4b
KB
1359
1360 /* Now we need to figure out where the dynamic linker was
1361 loaded so that we can load its symbols and place a breakpoint
1362 in the dynamic linker itself.
1363
1364 This address is stored on the stack. However, I've been unable
1365 to find any magic formula to find it for Solaris (appears to
1366 be trivial on GNU/Linux). Therefore, we have to try an alternate
1367 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1368
f1838a98
UW
1369 TRY_CATCH (ex, RETURN_MASK_ALL)
1370 {
97ec2c2f 1371 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1372 }
13437d4b
KB
1373 if (tmp_bfd == NULL)
1374 goto bkpt_at_symbol;
1375
2f4950cd
AC
1376 /* Now convert the TMP_BFD into a target. That way target, as
1377 well as BFD operations can be used. Note that closing the
1378 target will also close the underlying bfd. */
1379 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1380
f8766ec1
KB
1381 /* On a running target, we can get the dynamic linker's base
1382 address from the shared library table. */
f8766ec1
KB
1383 so = master_so_list ();
1384 while (so)
8ad2fcde 1385 {
97ec2c2f 1386 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1387 {
1388 load_addr_found = 1;
2ec9a4f8 1389 loader_found_in_list = 1;
cc10cae3 1390 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1391 break;
1392 }
f8766ec1 1393 so = so->next;
8ad2fcde
KB
1394 }
1395
8d4e36ba
JB
1396 /* If we were not able to find the base address of the loader
1397 from our so_list, then try using the AT_BASE auxilliary entry. */
1398 if (!load_addr_found)
1399 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1400 load_addr_found = 1;
1401
8ad2fcde
KB
1402 /* Otherwise we find the dynamic linker's base address by examining
1403 the current pc (which should point at the entry point for the
8d4e36ba
JB
1404 dynamic linker) and subtracting the offset of the entry point.
1405
1406 This is more fragile than the previous approaches, but is a good
1407 fallback method because it has actually been working well in
1408 most cases. */
8ad2fcde 1409 if (!load_addr_found)
fb14de7b 1410 {
c2250ad1
UW
1411 struct regcache *regcache
1412 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b
UW
1413 load_addr = (regcache_read_pc (regcache)
1414 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1415 }
2ec9a4f8
DJ
1416
1417 if (!loader_found_in_list)
34439770 1418 {
1a816a87
PA
1419 info->debug_loader_name = xstrdup (interp_name);
1420 info->debug_loader_offset_p = 1;
1421 info->debug_loader_offset = load_addr;
268a4a75 1422 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1423 }
13437d4b
KB
1424
1425 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1426 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1427 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1428 if (interp_sect)
1429 {
6c95b8df 1430 info->interp_text_sect_low =
13437d4b 1431 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1432 info->interp_text_sect_high =
1433 info->interp_text_sect_low
1434 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1435 }
1436 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1437 if (interp_sect)
1438 {
6c95b8df 1439 info->interp_plt_sect_low =
13437d4b 1440 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1441 info->interp_plt_sect_high =
1442 info->interp_plt_sect_low
1443 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1444 }
1445
1446 /* Now try to set a breakpoint in the dynamic linker. */
1447 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1448 {
2bbe3cc1 1449 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1450 if (sym_addr != 0)
1451 break;
1452 }
1453
2bbe3cc1
DJ
1454 if (sym_addr != 0)
1455 /* Convert 'sym_addr' from a function pointer to an address.
1456 Because we pass tmp_bfd_target instead of the current
1457 target, this will always produce an unrelocated value. */
1cf3db46 1458 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1459 sym_addr,
1460 tmp_bfd_target);
1461
2f4950cd
AC
1462 /* We're done with both the temporary bfd and target. Remember,
1463 closing the target closes the underlying bfd. */
1464 target_close (tmp_bfd_target, 0);
13437d4b
KB
1465
1466 if (sym_addr != 0)
1467 {
a6d9a66e 1468 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1469 xfree (interp_name);
13437d4b
KB
1470 return 1;
1471 }
1472
1473 /* For whatever reason we couldn't set a breakpoint in the dynamic
1474 linker. Warn and drop into the old code. */
1475 bkpt_at_symbol:
97ec2c2f 1476 xfree (interp_name);
82d03102
PG
1477 warning (_("Unable to find dynamic linker breakpoint function.\n"
1478 "GDB will be unable to debug shared library initializers\n"
1479 "and track explicitly loaded dynamic code."));
13437d4b 1480 }
13437d4b 1481
e499d0f1
DJ
1482 /* Scan through the lists of symbols, trying to look up the symbol and
1483 set a breakpoint there. Terminate loop when we/if we succeed. */
1484
1485 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1486 {
1487 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1488 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1489 {
de64a9ac
JM
1490 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1491 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1492 sym_addr,
1493 &current_target);
1494 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1495 return 1;
1496 }
1497 }
13437d4b 1498
13437d4b
KB
1499 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1500 {
1501 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1502 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1503 {
de64a9ac
JM
1504 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1505 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1506 sym_addr,
1507 &current_target);
1508 create_solib_event_breakpoint (target_gdbarch, sym_addr);
13437d4b
KB
1509 return 1;
1510 }
1511 }
542c95c2 1512 return 0;
13437d4b
KB
1513}
1514
1515/*
1516
1517 LOCAL FUNCTION
1518
1519 special_symbol_handling -- additional shared library symbol handling
1520
1521 SYNOPSIS
1522
1523 void special_symbol_handling ()
1524
1525 DESCRIPTION
1526
1527 Once the symbols from a shared object have been loaded in the usual
1528 way, we are called to do any system specific symbol handling that
1529 is needed.
1530
ab31aa69 1531 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1532 linkers structures to find symbol definitions for "common" symbols
1533 and adding them to the minimal symbol table for the runtime common
1534 objfile.
1535
ab31aa69
KB
1536 However, for SVR4, there's nothing to do.
1537
13437d4b
KB
1538 */
1539
1540static void
1541svr4_special_symbol_handling (void)
1542{
13437d4b
KB
1543}
1544
b8040f19
JK
1545/* Decide if the objfile needs to be relocated. As indicated above,
1546 we will only be here when execution is stopped at the beginning
1547 of the program. Relocation is necessary if the address at which
1548 we are presently stopped differs from the start address stored in
1549 the executable AND there's no interpreter section. The condition
1550 regarding the interpreter section is very important because if
1551 there *is* an interpreter section, execution will begin there
1552 instead. When there is an interpreter section, the start address
1553 is (presumably) used by the interpreter at some point to start
1554 execution of the program.
1555
1556 If there is an interpreter, it is normal for it to be set to an
1557 arbitrary address at the outset. The job of finding it is
1558 handled in enable_break().
1559
1560 So, to summarize, relocations are necessary when there is no
1561 interpreter section and the start address obtained from the
1562 executable is different from the address at which GDB is
1563 currently stopped.
e2a44558 1564
b8040f19
JK
1565 [ The astute reader will note that we also test to make sure that
1566 the executable in question has the DYNAMIC flag set. It is my
1567 opinion that this test is unnecessary (undesirable even). It
1568 was added to avoid inadvertent relocation of an executable
1569 whose e_type member in the ELF header is not ET_DYN. There may
1570 be a time in the future when it is desirable to do relocations
1571 on other types of files as well in which case this condition
1572 should either be removed or modified to accomodate the new file
1573 type. (E.g, an ET_EXEC executable which has been built to be
1574 position-independent could safely be relocated by the OS if
1575 desired. It is true that this violates the ABI, but the ABI
1576 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1577 */
e2a44558 1578
b8040f19
JK
1579static CORE_ADDR
1580svr4_static_exec_displacement (void)
e2a44558
KB
1581{
1582 asection *interp_sect;
c2250ad1
UW
1583 struct regcache *regcache
1584 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b 1585 CORE_ADDR pc = regcache_read_pc (regcache);
e2a44558 1586
e2a44558
KB
1587 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1588 if (interp_sect == NULL
1589 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1590 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
b8040f19
JK
1591 return pc - exec_entry_point (exec_bfd, &exec_ops);
1592
1593 return 0;
1594}
1595
1596/* We relocate all of the sections by the same amount. This
1597 behavior is mandated by recent editions of the System V ABI.
1598 According to the System V Application Binary Interface,
1599 Edition 4.1, page 5-5:
1600
1601 ... Though the system chooses virtual addresses for
1602 individual processes, it maintains the segments' relative
1603 positions. Because position-independent code uses relative
1604 addressesing between segments, the difference between
1605 virtual addresses in memory must match the difference
1606 between virtual addresses in the file. The difference
1607 between the virtual address of any segment in memory and
1608 the corresponding virtual address in the file is thus a
1609 single constant value for any one executable or shared
1610 object in a given process. This difference is the base
1611 address. One use of the base address is to relocate the
1612 memory image of the program during dynamic linking.
1613
1614 The same language also appears in Edition 4.0 of the System V
1615 ABI and is left unspecified in some of the earlier editions. */
1616
1617static CORE_ADDR
1618svr4_exec_displacement (void)
1619{
1620 int found;
1621 CORE_ADDR entry_point;
1622
1623 if (exec_bfd == NULL)
1624 return 0;
1625
1626 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) == 1)
1627 return entry_point - exec_entry_point (exec_bfd, &current_target);
1628
1629 return svr4_static_exec_displacement ();
1630}
1631
1632/* Relocate the main executable. This function should be called upon
1633 stopping the inferior process at the entry point to the program.
1634 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1635 different, the main executable is relocated by the proper amount. */
1636
1637static void
1638svr4_relocate_main_executable (void)
1639{
1640 CORE_ADDR displacement = svr4_exec_displacement ();
1641
1642 /* Even if DISPLACEMENT is 0 still try to relocate it as this is a new
1643 difference of in-memory vs. in-file addresses and we could already
1644 relocate the executable at this function to improper address before. */
1645
1646 if (symfile_objfile)
e2a44558 1647 {
e2a44558 1648 struct section_offsets *new_offsets;
b8040f19 1649 int i;
e2a44558 1650
b8040f19
JK
1651 new_offsets = alloca (symfile_objfile->num_sections
1652 * sizeof (*new_offsets));
e2a44558 1653
b8040f19
JK
1654 for (i = 0; i < symfile_objfile->num_sections; i++)
1655 new_offsets->offsets[i] = displacement;
e2a44558 1656
b8040f19 1657 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 1658 }
51bee8e9
JK
1659 else if (exec_bfd)
1660 {
1661 asection *asect;
1662
1663 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1664 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1665 (bfd_section_vma (exec_bfd, asect)
1666 + displacement));
1667 }
e2a44558
KB
1668}
1669
13437d4b
KB
1670/*
1671
1672 GLOBAL FUNCTION
1673
1674 svr4_solib_create_inferior_hook -- shared library startup support
1675
1676 SYNOPSIS
1677
268a4a75 1678 void svr4_solib_create_inferior_hook (int from_tty)
13437d4b
KB
1679
1680 DESCRIPTION
1681
1682 When gdb starts up the inferior, it nurses it along (through the
1683 shell) until it is ready to execute it's first instruction. At this
1684 point, this function gets called via expansion of the macro
1685 SOLIB_CREATE_INFERIOR_HOOK.
1686
1687 For SunOS executables, this first instruction is typically the
1688 one at "_start", or a similar text label, regardless of whether
1689 the executable is statically or dynamically linked. The runtime
1690 startup code takes care of dynamically linking in any shared
1691 libraries, once gdb allows the inferior to continue.
1692
1693 For SVR4 executables, this first instruction is either the first
1694 instruction in the dynamic linker (for dynamically linked
1695 executables) or the instruction at "start" for statically linked
1696 executables. For dynamically linked executables, the system
1697 first exec's /lib/libc.so.N, which contains the dynamic linker,
1698 and starts it running. The dynamic linker maps in any needed
1699 shared libraries, maps in the actual user executable, and then
1700 jumps to "start" in the user executable.
1701
1702 For both SunOS shared libraries, and SVR4 shared libraries, we
1703 can arrange to cooperate with the dynamic linker to discover the
1704 names of shared libraries that are dynamically linked, and the
1705 base addresses to which they are linked.
1706
1707 This function is responsible for discovering those names and
1708 addresses, and saving sufficient information about them to allow
1709 their symbols to be read at a later time.
1710
1711 FIXME
1712
1713 Between enable_break() and disable_break(), this code does not
1714 properly handle hitting breakpoints which the user might have
1715 set in the startup code or in the dynamic linker itself. Proper
1716 handling will probably have to wait until the implementation is
1717 changed to use the "breakpoint handler function" method.
1718
1719 Also, what if child has exit()ed? Must exit loop somehow.
1720 */
1721
e2a44558 1722static void
268a4a75 1723svr4_solib_create_inferior_hook (int from_tty)
13437d4b 1724{
d6b48e9c 1725 struct inferior *inf;
2020b7ab 1726 struct thread_info *tp;
1a816a87
PA
1727 struct svr4_info *info;
1728
6c95b8df 1729 info = get_svr4_info ();
2020b7ab 1730
e2a44558
KB
1731 /* Relocate the main executable if necessary. */
1732 svr4_relocate_main_executable ();
1733
d5a921c9 1734 if (!svr4_have_link_map_offsets ())
513f5903 1735 return;
d5a921c9 1736
268a4a75 1737 if (!enable_break (info, from_tty))
542c95c2 1738 return;
13437d4b 1739
ab31aa69
KB
1740#if defined(_SCO_DS)
1741 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1742 special shared library breakpoints and the shared library breakpoint
1743 service routine.
1744
1745 Now run the target. It will eventually hit the breakpoint, at
1746 which point all of the libraries will have been mapped in and we
1747 can go groveling around in the dynamic linker structures to find
1748 out what we need to know about them. */
1749
d6b48e9c 1750 inf = current_inferior ();
2020b7ab
PA
1751 tp = inferior_thread ();
1752
13437d4b 1753 clear_proceed_status ();
d6b48e9c 1754 inf->stop_soon = STOP_QUIETLY;
2020b7ab 1755 tp->stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
1756 do
1757 {
2020b7ab 1758 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
ae123ec6 1759 wait_for_inferior (0);
13437d4b 1760 }
2020b7ab 1761 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
d6b48e9c 1762 inf->stop_soon = NO_STOP_QUIETLY;
ab31aa69 1763#endif /* defined(_SCO_DS) */
13437d4b
KB
1764}
1765
1766static void
1767svr4_clear_solib (void)
1768{
6c95b8df
PA
1769 struct svr4_info *info;
1770
1771 info = get_svr4_info ();
1772 info->debug_base = 0;
1773 info->debug_loader_offset_p = 0;
1774 info->debug_loader_offset = 0;
1775 xfree (info->debug_loader_name);
1776 info->debug_loader_name = NULL;
13437d4b
KB
1777}
1778
1779static void
1780svr4_free_so (struct so_list *so)
1781{
b8c9b27d
KB
1782 xfree (so->lm_info->lm);
1783 xfree (so->lm_info);
13437d4b
KB
1784}
1785
6bb7be43
JB
1786
1787/* Clear any bits of ADDR that wouldn't fit in a target-format
1788 data pointer. "Data pointer" here refers to whatever sort of
1789 address the dynamic linker uses to manage its sections. At the
1790 moment, we don't support shared libraries on any processors where
1791 code and data pointers are different sizes.
1792
1793 This isn't really the right solution. What we really need here is
1794 a way to do arithmetic on CORE_ADDR values that respects the
1795 natural pointer/address correspondence. (For example, on the MIPS,
1796 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1797 sign-extend the value. There, simply truncating the bits above
819844ad 1798 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
1799 be a new gdbarch method or something. */
1800static CORE_ADDR
1801svr4_truncate_ptr (CORE_ADDR addr)
1802{
1cf3db46 1803 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
1804 /* We don't need to truncate anything, and the bit twiddling below
1805 will fail due to overflow problems. */
1806 return addr;
1807 else
1cf3db46 1808 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
1809}
1810
1811
749499cb
KB
1812static void
1813svr4_relocate_section_addresses (struct so_list *so,
0542c86d 1814 struct target_section *sec)
749499cb 1815{
cc10cae3
AO
1816 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1817 sec->bfd));
1818 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1819 sec->bfd));
749499cb 1820}
4b188b9f 1821\f
749499cb 1822
4b188b9f 1823/* Architecture-specific operations. */
6bb7be43 1824
4b188b9f
MK
1825/* Per-architecture data key. */
1826static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1827
4b188b9f 1828struct solib_svr4_ops
e5e2b9ff 1829{
4b188b9f
MK
1830 /* Return a description of the layout of `struct link_map'. */
1831 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1832};
e5e2b9ff 1833
4b188b9f 1834/* Return a default for the architecture-specific operations. */
e5e2b9ff 1835
4b188b9f
MK
1836static void *
1837solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1838{
4b188b9f 1839 struct solib_svr4_ops *ops;
e5e2b9ff 1840
4b188b9f 1841 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 1842 ops->fetch_link_map_offsets = NULL;
4b188b9f 1843 return ops;
e5e2b9ff
KB
1844}
1845
4b188b9f 1846/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 1847 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 1848
21479ded 1849void
e5e2b9ff
KB
1850set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1851 struct link_map_offsets *(*flmo) (void))
21479ded 1852{
4b188b9f
MK
1853 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1854
1855 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
1856
1857 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
1858}
1859
4b188b9f
MK
1860/* Fetch a link_map_offsets structure using the architecture-specific
1861 `struct link_map_offsets' fetcher. */
1c4dcb57 1862
4b188b9f
MK
1863static struct link_map_offsets *
1864svr4_fetch_link_map_offsets (void)
21479ded 1865{
1cf3db46 1866 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1867
1868 gdb_assert (ops->fetch_link_map_offsets);
1869 return ops->fetch_link_map_offsets ();
21479ded
KB
1870}
1871
4b188b9f
MK
1872/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1873
1874static int
1875svr4_have_link_map_offsets (void)
1876{
1cf3db46 1877 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1878 return (ops->fetch_link_map_offsets != NULL);
1879}
1880\f
1881
e4bbbda8
MK
1882/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1883 `struct r_debug' and a `struct link_map' that are binary compatible
1884 with the origional SVR4 implementation. */
1885
1886/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1887 for an ILP32 SVR4 system. */
1888
1889struct link_map_offsets *
1890svr4_ilp32_fetch_link_map_offsets (void)
1891{
1892 static struct link_map_offsets lmo;
1893 static struct link_map_offsets *lmp = NULL;
1894
1895 if (lmp == NULL)
1896 {
1897 lmp = &lmo;
1898
e4cd0d6a
MK
1899 lmo.r_version_offset = 0;
1900 lmo.r_version_size = 4;
e4bbbda8 1901 lmo.r_map_offset = 4;
7cd25cfc 1902 lmo.r_brk_offset = 8;
e4cd0d6a 1903 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1904
1905 /* Everything we need is in the first 20 bytes. */
1906 lmo.link_map_size = 20;
1907 lmo.l_addr_offset = 0;
e4bbbda8 1908 lmo.l_name_offset = 4;
cc10cae3 1909 lmo.l_ld_offset = 8;
e4bbbda8 1910 lmo.l_next_offset = 12;
e4bbbda8 1911 lmo.l_prev_offset = 16;
e4bbbda8
MK
1912 }
1913
1914 return lmp;
1915}
1916
1917/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1918 for an LP64 SVR4 system. */
1919
1920struct link_map_offsets *
1921svr4_lp64_fetch_link_map_offsets (void)
1922{
1923 static struct link_map_offsets lmo;
1924 static struct link_map_offsets *lmp = NULL;
1925
1926 if (lmp == NULL)
1927 {
1928 lmp = &lmo;
1929
e4cd0d6a
MK
1930 lmo.r_version_offset = 0;
1931 lmo.r_version_size = 4;
e4bbbda8 1932 lmo.r_map_offset = 8;
7cd25cfc 1933 lmo.r_brk_offset = 16;
e4cd0d6a 1934 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1935
1936 /* Everything we need is in the first 40 bytes. */
1937 lmo.link_map_size = 40;
1938 lmo.l_addr_offset = 0;
e4bbbda8 1939 lmo.l_name_offset = 8;
cc10cae3 1940 lmo.l_ld_offset = 16;
e4bbbda8 1941 lmo.l_next_offset = 24;
e4bbbda8 1942 lmo.l_prev_offset = 32;
e4bbbda8
MK
1943 }
1944
1945 return lmp;
1946}
1947\f
1948
7d522c90 1949struct target_so_ops svr4_so_ops;
13437d4b 1950
3a40aaa0
UW
1951/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1952 different rule for symbol lookup. The lookup begins here in the DSO, not in
1953 the main executable. */
1954
1955static struct symbol *
1956elf_lookup_lib_symbol (const struct objfile *objfile,
1957 const char *name,
1958 const char *linkage_name,
21b556f4 1959 const domain_enum domain)
3a40aaa0 1960{
61f0d762
JK
1961 bfd *abfd;
1962
1963 if (objfile == symfile_objfile)
1964 abfd = exec_bfd;
1965 else
1966 {
1967 /* OBJFILE should have been passed as the non-debug one. */
1968 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1969
1970 abfd = objfile->obfd;
1971 }
1972
1973 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
1974 return NULL;
1975
65728c26 1976 return lookup_global_symbol_from_objfile
21b556f4 1977 (objfile, name, linkage_name, domain);
3a40aaa0
UW
1978}
1979
a78f21af
AC
1980extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1981
13437d4b
KB
1982void
1983_initialize_svr4_solib (void)
1984{
4b188b9f 1985 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
1986 solib_svr4_pspace_data
1987 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 1988
749499cb 1989 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1990 svr4_so_ops.free_so = svr4_free_so;
1991 svr4_so_ops.clear_solib = svr4_clear_solib;
1992 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1993 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1994 svr4_so_ops.current_sos = svr4_current_sos;
1995 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1996 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 1997 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 1998 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 1999 svr4_so_ops.same = svr4_same;
de18c1d8 2000 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2001}
This page took 0.982081 seconds and 4 git commands to generate.