* defs.h (extract_signed_integer, extract_unsigned_integer,
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
0fb0cc75
JB
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
1c4dcb57 53
13437d4b
KB
54/* Link map info to include in an allocated so_list entry */
55
56struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
4066fc10 61 gdb_byte *lm;
cc10cae3
AO
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
93a57060
DJ
69
70 /* The target location of lm. */
71 CORE_ADDR lm_addr;
13437d4b
KB
72 };
73
74/* On SVR4 systems, a list of symbols in the dynamic linker where
75 GDB can try to place a breakpoint to monitor shared library
76 events.
77
78 If none of these symbols are found, or other errors occur, then
79 SVR4 systems will fall back to using a symbol as the "startup
80 mapping complete" breakpoint address. */
81
13437d4b
KB
82static char *solib_break_names[] =
83{
84 "r_debug_state",
85 "_r_debug_state",
86 "_dl_debug_state",
87 "rtld_db_dlactivity",
1f72e589 88 "_rtld_debug_state",
4c0122c8 89
13437d4b
KB
90 NULL
91};
13437d4b 92
13437d4b
KB
93static char *bkpt_names[] =
94{
13437d4b 95 "_start",
ad3dcc5c 96 "__start",
13437d4b
KB
97 "main",
98 NULL
99};
13437d4b 100
13437d4b
KB
101static char *main_name_list[] =
102{
103 "main_$main",
104 NULL
105};
106
4d7b2d5b
JB
107/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
108 the same shared library. */
109
110static int
111svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
112{
113 if (strcmp (gdb_so_name, inferior_so_name) == 0)
114 return 1;
115
116 /* On Solaris, when starting inferior we think that dynamic linker is
117 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
118 contains /lib/ld.so.1. Sometimes one file is a link to another, but
119 sometimes they have identical content, but are not linked to each
120 other. We don't restrict this check for Solaris, but the chances
121 of running into this situation elsewhere are very low. */
122 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
123 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
124 return 1;
125
126 /* Similarly, we observed the same issue with sparc64, but with
127 different locations. */
128 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
129 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
130 return 1;
131
132 return 0;
133}
134
135static int
136svr4_same (struct so_list *gdb, struct so_list *inferior)
137{
138 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
139}
140
13437d4b
KB
141/* link map access functions */
142
143static CORE_ADDR
cc10cae3 144LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 145{
4b188b9f 146 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 147 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 148
cfaefc65 149 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 150 ptr_type);
13437d4b
KB
151}
152
cc10cae3 153static int
2c0b251b 154HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
cc10cae3
AO
155{
156 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
157
cfaefc65 158 return lmo->l_ld_offset >= 0;
cc10cae3
AO
159}
160
161static CORE_ADDR
162LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
163{
164 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 165 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 166
cfaefc65 167 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 168 ptr_type);
cc10cae3
AO
169}
170
171static CORE_ADDR
172LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
173{
174 if (so->lm_info->l_addr == (CORE_ADDR)-1)
175 {
176 struct bfd_section *dyninfo_sect;
177 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
178
179 l_addr = LM_ADDR_FROM_LINK_MAP (so);
180
181 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
182 goto set_addr;
183
184 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
185
186 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
187 if (dyninfo_sect == NULL)
188 goto set_addr;
189
190 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
191
192 if (dynaddr + l_addr != l_dynaddr)
193 {
cc10cae3
AO
194 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
195 {
196 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
197 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
198 int i;
199
200 align = 1;
201
202 for (i = 0; i < ehdr->e_phnum; i++)
203 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
204 align = phdr[i].p_align;
205 }
206
207 /* Turn it into a mask. */
208 align--;
209
210 /* If the changes match the alignment requirements, we
211 assume we're using a core file that was generated by the
212 same binary, just prelinked with a different base offset.
213 If it doesn't match, we may have a different binary, the
214 same binary with the dynamic table loaded at an unrelated
215 location, or anything, really. To avoid regressions,
216 don't adjust the base offset in the latter case, although
217 odds are that, if things really changed, debugging won't
218 quite work. */
f1e55806 219 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
220 {
221 l_addr = l_dynaddr - dynaddr;
79d4c408
DJ
222
223 warning (_(".dynamic section for \"%s\" "
224 "is not at the expected address"), so->so_name);
cc10cae3
AO
225 warning (_("difference appears to be caused by prelink, "
226 "adjusting expectations"));
227 }
79d4c408
DJ
228 else
229 warning (_(".dynamic section for \"%s\" "
230 "is not at the expected address "
231 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
232 }
233
234 set_addr:
235 so->lm_info->l_addr = l_addr;
236 }
237
238 return so->lm_info->l_addr;
239}
240
13437d4b
KB
241static CORE_ADDR
242LM_NEXT (struct so_list *so)
243{
4b188b9f 244 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 245 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 246
cfaefc65 247 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 248 ptr_type);
13437d4b
KB
249}
250
251static CORE_ADDR
252LM_NAME (struct so_list *so)
253{
4b188b9f 254 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 255 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 256
cfaefc65 257 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 258 ptr_type);
13437d4b
KB
259}
260
13437d4b
KB
261static int
262IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
263{
4b188b9f 264 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 265 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 266
e499d0f1
DJ
267 /* Assume that everything is a library if the dynamic loader was loaded
268 late by a static executable. */
0763ab81 269 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
270 return 0;
271
cfaefc65 272 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
b6da22b0 273 ptr_type) == 0;
13437d4b
KB
274}
275
1a816a87 276/* Per-inferior SVR4 specific data. */
13437d4b 277
1a816a87
PA
278struct svr4_info
279{
280 int pid;
281
282 CORE_ADDR debug_base; /* Base of dynamic linker structures */
283
284 /* Validity flag for debug_loader_offset. */
285 int debug_loader_offset_p;
286
287 /* Load address for the dynamic linker, inferred. */
288 CORE_ADDR debug_loader_offset;
289
290 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
291 char *debug_loader_name;
292
293 /* Load map address for the main executable. */
294 CORE_ADDR main_lm_addr;
295};
296
297/* List of known processes using solib-svr4 shared libraries, storing
298 the required bookkeeping for each. */
299
300typedef struct svr4_info *svr4_info_p;
301DEF_VEC_P(svr4_info_p);
302VEC(svr4_info_p) *svr4_info = NULL;
303
304/* Get svr4 data for inferior PID (target id). If none is found yet,
305 add it now. This function always returns a valid object. */
306
307struct svr4_info *
308get_svr4_info (int pid)
309{
310 int ix;
311 struct svr4_info *it;
312
313 gdb_assert (pid != 0);
314
315 for (ix = 0; VEC_iterate (svr4_info_p, svr4_info, ix, it); ++ix)
316 {
317 if (it->pid == pid)
318 return it;
319 }
320
321 it = XZALLOC (struct svr4_info);
322 it->pid = pid;
323
324 VEC_safe_push (svr4_info_p, svr4_info, it);
325
326 return it;
327}
328
329/* Get rid of any svr4 related bookkeeping for inferior PID (target
330 id). */
34439770 331
1a816a87
PA
332static void
333remove_svr4_info (int pid)
334{
335 int ix;
336 struct svr4_info *it;
34439770 337
1a816a87
PA
338 for (ix = 0; VEC_iterate (svr4_info_p, svr4_info, ix, it); ++ix)
339 {
340 if (it->pid == pid)
341 {
342 VEC_unordered_remove (svr4_info_p, svr4_info, ix);
343 return;
344 }
345 }
346}
347
348/* This is an "inferior_exit" observer. Inferior PID (target id) is
349 being removed from the inferior list, because it exited, was
350 killed, detached, or we just dropped the connection to the debug
351 interface --- discard any solib-svr4 related bookkeeping for this
352 inferior. */
34439770 353
1a816a87
PA
354static void
355solib_svr4_inferior_exit (int pid)
356{
357 remove_svr4_info (pid);
358}
93a57060 359
13437d4b
KB
360/* Local function prototypes */
361
362static int match_main (char *);
363
2bbe3cc1 364static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
13437d4b
KB
365
366/*
367
368 LOCAL FUNCTION
369
370 bfd_lookup_symbol -- lookup the value for a specific symbol
371
372 SYNOPSIS
373
2bbe3cc1 374 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
375
376 DESCRIPTION
377
378 An expensive way to lookup the value of a single symbol for
379 bfd's that are only temporary anyway. This is used by the
380 shared library support to find the address of the debugger
2bbe3cc1 381 notification routine in the shared library.
13437d4b 382
2bbe3cc1
DJ
383 The returned symbol may be in a code or data section; functions
384 will normally be in a code section, but may be in a data section
385 if this architecture uses function descriptors.
87f84c9d 386
13437d4b
KB
387 Note that 0 is specifically allowed as an error return (no
388 such symbol).
389 */
390
391static CORE_ADDR
2bbe3cc1 392bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b 393{
435b259c 394 long storage_needed;
13437d4b
KB
395 asymbol *sym;
396 asymbol **symbol_table;
397 unsigned int number_of_symbols;
398 unsigned int i;
399 struct cleanup *back_to;
400 CORE_ADDR symaddr = 0;
401
402 storage_needed = bfd_get_symtab_upper_bound (abfd);
403
404 if (storage_needed > 0)
405 {
406 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 407 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
408 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
409
410 for (i = 0; i < number_of_symbols; i++)
411 {
412 sym = *symbol_table++;
6314a349 413 if (strcmp (sym->name, symname) == 0
2bbe3cc1 414 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 415 {
2bbe3cc1 416 /* BFD symbols are section relative. */
13437d4b
KB
417 symaddr = sym->value + sym->section->vma;
418 break;
419 }
420 }
421 do_cleanups (back_to);
422 }
423
424 if (symaddr)
425 return symaddr;
426
427 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
428 have to check the dynamic string table too. */
429
430 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
431
432 if (storage_needed > 0)
433 {
434 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 435 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
436 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
437
438 for (i = 0; i < number_of_symbols; i++)
439 {
440 sym = *symbol_table++;
87f84c9d 441
6314a349 442 if (strcmp (sym->name, symname) == 0
2bbe3cc1 443 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 444 {
2bbe3cc1 445 /* BFD symbols are section relative. */
13437d4b
KB
446 symaddr = sym->value + sym->section->vma;
447 break;
448 }
449 }
450 do_cleanups (back_to);
451 }
452
453 return symaddr;
454}
455
97ec2c2f
UW
456
457/* Read program header TYPE from inferior memory. The header is found
458 by scanning the OS auxillary vector.
459
460 Return a pointer to allocated memory holding the program header contents,
461 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
462 size of those contents is returned to P_SECT_SIZE. Likewise, the target
463 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
464
465static gdb_byte *
466read_program_header (int type, int *p_sect_size, int *p_arch_size)
467{
e17a4113 468 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
469 CORE_ADDR at_phdr, at_phent, at_phnum;
470 int arch_size, sect_size;
471 CORE_ADDR sect_addr;
472 gdb_byte *buf;
473
474 /* Get required auxv elements from target. */
475 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
476 return 0;
477 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
478 return 0;
479 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
480 return 0;
481 if (!at_phdr || !at_phnum)
482 return 0;
483
484 /* Determine ELF architecture type. */
485 if (at_phent == sizeof (Elf32_External_Phdr))
486 arch_size = 32;
487 else if (at_phent == sizeof (Elf64_External_Phdr))
488 arch_size = 64;
489 else
490 return 0;
491
492 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
493 if (arch_size == 32)
494 {
495 Elf32_External_Phdr phdr;
496 int i;
497
498 /* Search for requested PHDR. */
499 for (i = 0; i < at_phnum; i++)
500 {
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
503 return 0;
504
e17a4113
UW
505 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
506 4, byte_order) == type)
97ec2c2f
UW
507 break;
508 }
509
510 if (i == at_phnum)
511 return 0;
512
513 /* Retrieve address and size. */
e17a4113
UW
514 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
515 4, byte_order);
516 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
517 4, byte_order);
97ec2c2f
UW
518 }
519 else
520 {
521 Elf64_External_Phdr phdr;
522 int i;
523
524 /* Search for requested PHDR. */
525 for (i = 0; i < at_phnum; i++)
526 {
527 if (target_read_memory (at_phdr + i * sizeof (phdr),
528 (gdb_byte *)&phdr, sizeof (phdr)))
529 return 0;
530
e17a4113
UW
531 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
532 4, byte_order) == type)
97ec2c2f
UW
533 break;
534 }
535
536 if (i == at_phnum)
537 return 0;
538
539 /* Retrieve address and size. */
e17a4113
UW
540 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
541 8, byte_order);
542 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
543 8, byte_order);
97ec2c2f
UW
544 }
545
546 /* Read in requested program header. */
547 buf = xmalloc (sect_size);
548 if (target_read_memory (sect_addr, buf, sect_size))
549 {
550 xfree (buf);
551 return NULL;
552 }
553
554 if (p_arch_size)
555 *p_arch_size = arch_size;
556 if (p_sect_size)
557 *p_sect_size = sect_size;
558
559 return buf;
560}
561
562
563/* Return program interpreter string. */
564static gdb_byte *
565find_program_interpreter (void)
566{
567 gdb_byte *buf = NULL;
568
569 /* If we have an exec_bfd, use its section table. */
570 if (exec_bfd
571 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
572 {
573 struct bfd_section *interp_sect;
574
575 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
576 if (interp_sect != NULL)
577 {
578 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
579 int sect_size = bfd_section_size (exec_bfd, interp_sect);
580
581 buf = xmalloc (sect_size);
582 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
583 }
584 }
585
586 /* If we didn't find it, use the target auxillary vector. */
587 if (!buf)
588 buf = read_program_header (PT_INTERP, NULL, NULL);
589
590 return buf;
591}
592
593
3a40aaa0
UW
594/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
595 returned and the corresponding PTR is set. */
596
597static int
598scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
599{
600 int arch_size, step, sect_size;
601 long dyn_tag;
602 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 603 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
604 Elf32_External_Dyn *x_dynp_32;
605 Elf64_External_Dyn *x_dynp_64;
606 struct bfd_section *sect;
607
608 if (abfd == NULL)
609 return 0;
0763ab81
PA
610
611 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
612 return 0;
613
3a40aaa0
UW
614 arch_size = bfd_get_arch_size (abfd);
615 if (arch_size == -1)
0763ab81 616 return 0;
3a40aaa0
UW
617
618 /* Find the start address of the .dynamic section. */
619 sect = bfd_get_section_by_name (abfd, ".dynamic");
620 if (sect == NULL)
621 return 0;
622 dyn_addr = bfd_section_vma (abfd, sect);
623
65728c26
DJ
624 /* Read in .dynamic from the BFD. We will get the actual value
625 from memory later. */
3a40aaa0 626 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
627 buf = bufstart = alloca (sect_size);
628 if (!bfd_get_section_contents (abfd, sect,
629 buf, 0, sect_size))
630 return 0;
3a40aaa0
UW
631
632 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
633 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
634 : sizeof (Elf64_External_Dyn);
635 for (bufend = buf + sect_size;
636 buf < bufend;
637 buf += step)
638 {
639 if (arch_size == 32)
640 {
641 x_dynp_32 = (Elf32_External_Dyn *) buf;
642 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
643 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
644 }
65728c26 645 else
3a40aaa0
UW
646 {
647 x_dynp_64 = (Elf64_External_Dyn *) buf;
648 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
649 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
650 }
651 if (dyn_tag == DT_NULL)
652 return 0;
653 if (dyn_tag == dyntag)
654 {
65728c26
DJ
655 /* If requested, try to read the runtime value of this .dynamic
656 entry. */
3a40aaa0 657 if (ptr)
65728c26 658 {
b6da22b0 659 struct type *ptr_type;
65728c26
DJ
660 gdb_byte ptr_buf[8];
661 CORE_ADDR ptr_addr;
662
b6da22b0 663 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
65728c26
DJ
664 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
665 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 666 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
667 *ptr = dyn_ptr;
668 }
669 return 1;
3a40aaa0
UW
670 }
671 }
672
673 return 0;
674}
675
97ec2c2f
UW
676/* Scan for DYNTAG in .dynamic section of the target's main executable,
677 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
678 returned and the corresponding PTR is set. */
679
680static int
681scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
682{
e17a4113 683 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
684 int sect_size, arch_size, step;
685 long dyn_tag;
686 CORE_ADDR dyn_ptr;
687 gdb_byte *bufend, *bufstart, *buf;
688
689 /* Read in .dynamic section. */
690 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
691 if (!buf)
692 return 0;
693
694 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
695 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
696 : sizeof (Elf64_External_Dyn);
697 for (bufend = buf + sect_size;
698 buf < bufend;
699 buf += step)
700 {
701 if (arch_size == 32)
702 {
703 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
e17a4113
UW
704 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
705 4, byte_order);
706 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
707 4, byte_order);
97ec2c2f
UW
708 }
709 else
710 {
711 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
e17a4113
UW
712 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
713 8, byte_order);
714 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
715 8, byte_order);
97ec2c2f
UW
716 }
717 if (dyn_tag == DT_NULL)
718 break;
719
720 if (dyn_tag == dyntag)
721 {
722 if (ptr)
723 *ptr = dyn_ptr;
724
725 xfree (bufstart);
726 return 1;
727 }
728 }
729
730 xfree (bufstart);
731 return 0;
732}
733
3a40aaa0 734
13437d4b
KB
735/*
736
737 LOCAL FUNCTION
738
739 elf_locate_base -- locate the base address of dynamic linker structs
740 for SVR4 elf targets.
741
742 SYNOPSIS
743
744 CORE_ADDR elf_locate_base (void)
745
746 DESCRIPTION
747
748 For SVR4 elf targets the address of the dynamic linker's runtime
749 structure is contained within the dynamic info section in the
750 executable file. The dynamic section is also mapped into the
751 inferior address space. Because the runtime loader fills in the
752 real address before starting the inferior, we have to read in the
753 dynamic info section from the inferior address space.
754 If there are any errors while trying to find the address, we
755 silently return 0, otherwise the found address is returned.
756
757 */
758
759static CORE_ADDR
760elf_locate_base (void)
761{
3a40aaa0
UW
762 struct minimal_symbol *msymbol;
763 CORE_ADDR dyn_ptr;
13437d4b 764
65728c26
DJ
765 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
766 instead of DT_DEBUG, although they sometimes contain an unused
767 DT_DEBUG. */
97ec2c2f
UW
768 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
769 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 770 {
b6da22b0 771 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 772 gdb_byte *pbuf;
b6da22b0 773 int pbuf_size = TYPE_LENGTH (ptr_type);
3a40aaa0
UW
774 pbuf = alloca (pbuf_size);
775 /* DT_MIPS_RLD_MAP contains a pointer to the address
776 of the dynamic link structure. */
777 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 778 return 0;
b6da22b0 779 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
780 }
781
65728c26 782 /* Find DT_DEBUG. */
97ec2c2f
UW
783 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
784 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
785 return dyn_ptr;
786
3a40aaa0
UW
787 /* This may be a static executable. Look for the symbol
788 conventionally named _r_debug, as a last resort. */
789 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
790 if (msymbol != NULL)
791 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
792
793 /* DT_DEBUG entry not found. */
794 return 0;
795}
796
13437d4b
KB
797/*
798
799 LOCAL FUNCTION
800
801 locate_base -- locate the base address of dynamic linker structs
802
803 SYNOPSIS
804
1a816a87 805 CORE_ADDR locate_base (struct svr4_info *)
13437d4b
KB
806
807 DESCRIPTION
808
809 For both the SunOS and SVR4 shared library implementations, if the
810 inferior executable has been linked dynamically, there is a single
811 address somewhere in the inferior's data space which is the key to
812 locating all of the dynamic linker's runtime structures. This
813 address is the value of the debug base symbol. The job of this
814 function is to find and return that address, or to return 0 if there
815 is no such address (the executable is statically linked for example).
816
817 For SunOS, the job is almost trivial, since the dynamic linker and
818 all of it's structures are statically linked to the executable at
819 link time. Thus the symbol for the address we are looking for has
820 already been added to the minimal symbol table for the executable's
821 objfile at the time the symbol file's symbols were read, and all we
822 have to do is look it up there. Note that we explicitly do NOT want
823 to find the copies in the shared library.
824
825 The SVR4 version is a bit more complicated because the address
826 is contained somewhere in the dynamic info section. We have to go
827 to a lot more work to discover the address of the debug base symbol.
828 Because of this complexity, we cache the value we find and return that
829 value on subsequent invocations. Note there is no copy in the
830 executable symbol tables.
831
832 */
833
834static CORE_ADDR
1a816a87 835locate_base (struct svr4_info *info)
13437d4b 836{
13437d4b
KB
837 /* Check to see if we have a currently valid address, and if so, avoid
838 doing all this work again and just return the cached address. If
839 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
840 section for ELF executables. There's no point in doing any of this
841 though if we don't have some link map offsets to work with. */
13437d4b 842
1a816a87 843 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 844 info->debug_base = elf_locate_base ();
1a816a87 845 return info->debug_base;
13437d4b
KB
846}
847
e4cd0d6a
MK
848/* Find the first element in the inferior's dynamic link map, and
849 return its address in the inferior.
13437d4b 850
e4cd0d6a
MK
851 FIXME: Perhaps we should validate the info somehow, perhaps by
852 checking r_version for a known version number, or r_state for
853 RT_CONSISTENT. */
13437d4b
KB
854
855static CORE_ADDR
1a816a87 856solib_svr4_r_map (struct svr4_info *info)
13437d4b 857{
4b188b9f 858 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 859 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 860
1a816a87
PA
861 return read_memory_typed_address (info->debug_base + lmo->r_map_offset,
862 ptr_type);
e4cd0d6a 863}
13437d4b 864
7cd25cfc
DJ
865/* Find r_brk from the inferior's debug base. */
866
867static CORE_ADDR
1a816a87 868solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
869{
870 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 871 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 872
1a816a87
PA
873 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
874 ptr_type);
7cd25cfc
DJ
875}
876
e4cd0d6a
MK
877/* Find the link map for the dynamic linker (if it is not in the
878 normal list of loaded shared objects). */
13437d4b 879
e4cd0d6a 880static CORE_ADDR
1a816a87 881solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
882{
883 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 884 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 885 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 886 ULONGEST version;
13437d4b 887
e4cd0d6a
MK
888 /* Check version, and return zero if `struct r_debug' doesn't have
889 the r_ldsomap member. */
1a816a87
PA
890 version
891 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 892 lmo->r_version_size, byte_order);
e4cd0d6a
MK
893 if (version < 2 || lmo->r_ldsomap_offset == -1)
894 return 0;
13437d4b 895
1a816a87 896 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 897 ptr_type);
13437d4b
KB
898}
899
13437d4b
KB
900/*
901
902 LOCAL FUNCTION
903
904 open_symbol_file_object
905
906 SYNOPSIS
907
908 void open_symbol_file_object (void *from_tty)
909
910 DESCRIPTION
911
912 If no open symbol file, attempt to locate and open the main symbol
913 file. On SVR4 systems, this is the first link map entry. If its
914 name is here, we can open it. Useful when attaching to a process
915 without first loading its symbol file.
916
917 If FROM_TTYP dereferences to a non-zero integer, allow messages to
918 be printed. This parameter is a pointer rather than an int because
919 open_symbol_file_object() is called via catch_errors() and
920 catch_errors() requires a pointer argument. */
921
922static int
923open_symbol_file_object (void *from_ttyp)
924{
925 CORE_ADDR lm, l_name;
926 char *filename;
927 int errcode;
928 int from_tty = *(int *)from_ttyp;
4b188b9f 929 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
930 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
931 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 932 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 933 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1a816a87 934 struct svr4_info *info = get_svr4_info (PIDGET (inferior_ptid));
13437d4b
KB
935
936 if (symfile_objfile)
9e2f0ad4 937 if (!query (_("Attempt to reload symbols from process? ")))
13437d4b
KB
938 return 0;
939
7cd25cfc 940 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
941 info->debug_base = 0;
942 if (locate_base (info) == 0)
13437d4b
KB
943 return 0; /* failed somehow... */
944
945 /* First link map member should be the executable. */
1a816a87 946 lm = solib_svr4_r_map (info);
e4cd0d6a 947 if (lm == 0)
13437d4b
KB
948 return 0; /* failed somehow... */
949
950 /* Read address of name from target memory to GDB. */
cfaefc65 951 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 952
cfaefc65 953 /* Convert the address to host format. */
b6da22b0 954 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b
KB
955
956 /* Free l_name_buf. */
957 do_cleanups (cleanups);
958
959 if (l_name == 0)
960 return 0; /* No filename. */
961
962 /* Now fetch the filename from target memory. */
963 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 964 make_cleanup (xfree, filename);
13437d4b
KB
965
966 if (errcode)
967 {
8a3fe4f8 968 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
969 safe_strerror (errcode));
970 return 0;
971 }
972
13437d4b 973 /* Have a pathname: read the symbol file. */
1adeb98a 974 symbol_file_add_main (filename, from_tty);
13437d4b
KB
975
976 return 1;
977}
13437d4b 978
34439770
DJ
979/* If no shared library information is available from the dynamic
980 linker, build a fallback list from other sources. */
981
982static struct so_list *
983svr4_default_sos (void)
984{
1a816a87
PA
985 struct inferior *inf = current_inferior ();
986 struct svr4_info *info = get_svr4_info (inf->pid);
987
34439770
DJ
988 struct so_list *head = NULL;
989 struct so_list **link_ptr = &head;
990
1a816a87 991 if (info->debug_loader_offset_p)
34439770
DJ
992 {
993 struct so_list *new = XZALLOC (struct so_list);
994
995 new->lm_info = xmalloc (sizeof (struct lm_info));
996
997 /* Nothing will ever check the cached copy of the link
998 map if we set l_addr. */
1a816a87 999 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 1000 new->lm_info->lm_addr = 0;
34439770
DJ
1001 new->lm_info->lm = NULL;
1002
1a816a87
PA
1003 strncpy (new->so_name, info->debug_loader_name,
1004 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
1005 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1006 strcpy (new->so_original_name, new->so_name);
1007
1008 *link_ptr = new;
1009 link_ptr = &new->next;
1010 }
1011
1012 return head;
1013}
1014
13437d4b
KB
1015/* LOCAL FUNCTION
1016
1017 current_sos -- build a list of currently loaded shared objects
1018
1019 SYNOPSIS
1020
1021 struct so_list *current_sos ()
1022
1023 DESCRIPTION
1024
1025 Build a list of `struct so_list' objects describing the shared
1026 objects currently loaded in the inferior. This list does not
1027 include an entry for the main executable file.
1028
1029 Note that we only gather information directly available from the
1030 inferior --- we don't examine any of the shared library files
1031 themselves. The declaration of `struct so_list' says which fields
1032 we provide values for. */
1033
1034static struct so_list *
1035svr4_current_sos (void)
1036{
1037 CORE_ADDR lm;
1038 struct so_list *head = 0;
1039 struct so_list **link_ptr = &head;
e4cd0d6a 1040 CORE_ADDR ldsomap = 0;
1a816a87
PA
1041 struct inferior *inf;
1042 struct svr4_info *info;
1043
1044 if (ptid_equal (inferior_ptid, null_ptid))
1045 return NULL;
1046
1047 inf = current_inferior ();
1048 info = get_svr4_info (inf->pid);
13437d4b 1049
7cd25cfc 1050 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1051 info->debug_base = 0;
1052 locate_base (info);
13437d4b 1053
7cd25cfc
DJ
1054 /* If we can't find the dynamic linker's base structure, this
1055 must not be a dynamically linked executable. Hmm. */
1a816a87 1056 if (! info->debug_base)
7cd25cfc 1057 return svr4_default_sos ();
13437d4b
KB
1058
1059 /* Walk the inferior's link map list, and build our list of
1060 `struct so_list' nodes. */
1a816a87 1061 lm = solib_svr4_r_map (info);
34439770 1062
13437d4b
KB
1063 while (lm)
1064 {
4b188b9f 1065 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1066 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1067 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 1068
13437d4b 1069 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1070 make_cleanup (xfree, new->lm_info);
13437d4b 1071
831004b7 1072 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1073 new->lm_info->lm_addr = lm;
f4456994 1074 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1075 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1076
1077 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1078
1079 lm = LM_NEXT (new);
1080
1081 /* For SVR4 versions, the first entry in the link map is for the
1082 inferior executable, so we must ignore it. For some versions of
1083 SVR4, it has no name. For others (Solaris 2.3 for example), it
1084 does have a name, so we can no longer use a missing name to
1085 decide when to ignore it. */
e4cd0d6a 1086 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
93a57060 1087 {
1a816a87 1088 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1089 free_so (new);
1090 }
13437d4b
KB
1091 else
1092 {
1093 int errcode;
1094 char *buffer;
1095
1096 /* Extract this shared object's name. */
1097 target_read_string (LM_NAME (new), &buffer,
1098 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1099 if (errcode != 0)
8a3fe4f8
AC
1100 warning (_("Can't read pathname for load map: %s."),
1101 safe_strerror (errcode));
13437d4b
KB
1102 else
1103 {
1104 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1105 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1106 strcpy (new->so_original_name, new->so_name);
1107 }
ea5bf0a1 1108 xfree (buffer);
13437d4b
KB
1109
1110 /* If this entry has no name, or its name matches the name
1111 for the main executable, don't include it in the list. */
1112 if (! new->so_name[0]
1113 || match_main (new->so_name))
1114 free_so (new);
1115 else
1116 {
1117 new->next = 0;
1118 *link_ptr = new;
1119 link_ptr = &new->next;
1120 }
1121 }
1122
e4cd0d6a
MK
1123 /* On Solaris, the dynamic linker is not in the normal list of
1124 shared objects, so make sure we pick it up too. Having
1125 symbol information for the dynamic linker is quite crucial
1126 for skipping dynamic linker resolver code. */
1127 if (lm == 0 && ldsomap == 0)
1a816a87 1128 lm = ldsomap = solib_svr4_r_ldsomap (info);
e4cd0d6a 1129
13437d4b
KB
1130 discard_cleanups (old_chain);
1131 }
1132
34439770
DJ
1133 if (head == NULL)
1134 return svr4_default_sos ();
1135
13437d4b
KB
1136 return head;
1137}
1138
93a57060 1139/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1140
1141CORE_ADDR
1142svr4_fetch_objfile_link_map (struct objfile *objfile)
1143{
93a57060 1144 struct so_list *so;
1a816a87 1145 struct svr4_info *info = get_svr4_info (PIDGET (inferior_ptid));
bc4a16ae 1146
93a57060 1147 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1148 if (info->main_lm_addr == 0)
93a57060 1149 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1150
93a57060
DJ
1151 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1152 if (objfile == symfile_objfile)
1a816a87 1153 return info->main_lm_addr;
93a57060
DJ
1154
1155 /* The other link map addresses may be found by examining the list
1156 of shared libraries. */
1157 for (so = master_so_list (); so; so = so->next)
1158 if (so->objfile == objfile)
1159 return so->lm_info->lm_addr;
1160
1161 /* Not found! */
bc4a16ae
EZ
1162 return 0;
1163}
13437d4b
KB
1164
1165/* On some systems, the only way to recognize the link map entry for
1166 the main executable file is by looking at its name. Return
1167 non-zero iff SONAME matches one of the known main executable names. */
1168
1169static int
1170match_main (char *soname)
1171{
1172 char **mainp;
1173
1174 for (mainp = main_name_list; *mainp != NULL; mainp++)
1175 {
1176 if (strcmp (soname, *mainp) == 0)
1177 return (1);
1178 }
1179
1180 return (0);
1181}
1182
13437d4b
KB
1183/* Return 1 if PC lies in the dynamic symbol resolution code of the
1184 SVR4 run time loader. */
13437d4b
KB
1185static CORE_ADDR interp_text_sect_low;
1186static CORE_ADDR interp_text_sect_high;
1187static CORE_ADDR interp_plt_sect_low;
1188static CORE_ADDR interp_plt_sect_high;
1189
7d522c90 1190int
d7fa2ae2 1191svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
1192{
1193 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1194 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1195 || in_plt_section (pc, NULL));
1196}
13437d4b 1197
2f4950cd
AC
1198/* Given an executable's ABFD and target, compute the entry-point
1199 address. */
1200
1201static CORE_ADDR
1202exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1203{
1204 /* KevinB wrote ... for most targets, the address returned by
1205 bfd_get_start_address() is the entry point for the start
1206 function. But, for some targets, bfd_get_start_address() returns
1207 the address of a function descriptor from which the entry point
1208 address may be extracted. This address is extracted by
1209 gdbarch_convert_from_func_ptr_addr(). The method
1210 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1211 function for targets which don't use function descriptors. */
1cf3db46 1212 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1213 bfd_get_start_address (abfd),
1214 targ);
1215}
13437d4b
KB
1216
1217/*
1218
1219 LOCAL FUNCTION
1220
1221 enable_break -- arrange for dynamic linker to hit breakpoint
1222
1223 SYNOPSIS
1224
1225 int enable_break (void)
1226
1227 DESCRIPTION
1228
1229 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1230 debugger interface, support for arranging for the inferior to hit
1231 a breakpoint after mapping in the shared libraries. This function
1232 enables that breakpoint.
1233
1234 For SunOS, there is a special flag location (in_debugger) which we
1235 set to 1. When the dynamic linker sees this flag set, it will set
1236 a breakpoint at a location known only to itself, after saving the
1237 original contents of that place and the breakpoint address itself,
1238 in it's own internal structures. When we resume the inferior, it
1239 will eventually take a SIGTRAP when it runs into the breakpoint.
1240 We handle this (in a different place) by restoring the contents of
1241 the breakpointed location (which is only known after it stops),
1242 chasing around to locate the shared libraries that have been
1243 loaded, then resuming.
1244
1245 For SVR4, the debugger interface structure contains a member (r_brk)
1246 which is statically initialized at the time the shared library is
1247 built, to the offset of a function (_r_debug_state) which is guaran-
1248 teed to be called once before mapping in a library, and again when
1249 the mapping is complete. At the time we are examining this member,
1250 it contains only the unrelocated offset of the function, so we have
1251 to do our own relocation. Later, when the dynamic linker actually
1252 runs, it relocates r_brk to be the actual address of _r_debug_state().
1253
1254 The debugger interface structure also contains an enumeration which
1255 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1256 depending upon whether or not the library is being mapped or unmapped,
1257 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1258 */
1259
1260static int
1a816a87 1261enable_break (struct svr4_info *info)
13437d4b 1262{
13437d4b
KB
1263 struct minimal_symbol *msymbol;
1264 char **bkpt_namep;
1265 asection *interp_sect;
97ec2c2f 1266 gdb_byte *interp_name;
7cd25cfc 1267 CORE_ADDR sym_addr;
1a816a87 1268 struct inferior *inf = current_inferior ();
13437d4b
KB
1269
1270 /* First, remove all the solib event breakpoints. Their addresses
1271 may have changed since the last time we ran the program. */
1272 remove_solib_event_breakpoints ();
1273
13437d4b
KB
1274 interp_text_sect_low = interp_text_sect_high = 0;
1275 interp_plt_sect_low = interp_plt_sect_high = 0;
1276
7cd25cfc
DJ
1277 /* If we already have a shared library list in the target, and
1278 r_debug contains r_brk, set the breakpoint there - this should
1279 mean r_brk has already been relocated. Assume the dynamic linker
1280 is the object containing r_brk. */
1281
1282 solib_add (NULL, 0, &current_target, auto_solib_add);
1283 sym_addr = 0;
1a816a87
PA
1284 if (info->debug_base && solib_svr4_r_map (info) != 0)
1285 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1286
1287 if (sym_addr != 0)
1288 {
1289 struct obj_section *os;
1290
b36ec657 1291 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1292 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
b36ec657
DJ
1293 sym_addr,
1294 &current_target));
1295
7cd25cfc
DJ
1296 os = find_pc_section (sym_addr);
1297 if (os != NULL)
1298 {
1299 /* Record the relocated start and end address of the dynamic linker
1300 text and plt section for svr4_in_dynsym_resolve_code. */
1301 bfd *tmp_bfd;
1302 CORE_ADDR load_addr;
1303
1304 tmp_bfd = os->objfile->obfd;
1305 load_addr = ANOFFSET (os->objfile->section_offsets,
1306 os->objfile->sect_index_text);
1307
1308 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1309 if (interp_sect)
1310 {
1311 interp_text_sect_low =
1312 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1313 interp_text_sect_high =
1314 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1315 }
1316 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1317 if (interp_sect)
1318 {
1319 interp_plt_sect_low =
1320 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1321 interp_plt_sect_high =
1322 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1323 }
1324
a6d9a66e 1325 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1326 return 1;
1327 }
1328 }
1329
97ec2c2f 1330 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1331 into the old breakpoint at symbol code. */
97ec2c2f
UW
1332 interp_name = find_program_interpreter ();
1333 if (interp_name)
13437d4b 1334 {
8ad2fcde
KB
1335 CORE_ADDR load_addr = 0;
1336 int load_addr_found = 0;
2ec9a4f8 1337 int loader_found_in_list = 0;
f8766ec1 1338 struct so_list *so;
e4f7b8c8 1339 bfd *tmp_bfd = NULL;
2f4950cd 1340 struct target_ops *tmp_bfd_target;
f1838a98 1341 volatile struct gdb_exception ex;
13437d4b 1342
7cd25cfc 1343 sym_addr = 0;
13437d4b
KB
1344
1345 /* Now we need to figure out where the dynamic linker was
1346 loaded so that we can load its symbols and place a breakpoint
1347 in the dynamic linker itself.
1348
1349 This address is stored on the stack. However, I've been unable
1350 to find any magic formula to find it for Solaris (appears to
1351 be trivial on GNU/Linux). Therefore, we have to try an alternate
1352 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1353
f1838a98
UW
1354 TRY_CATCH (ex, RETURN_MASK_ALL)
1355 {
97ec2c2f 1356 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1357 }
13437d4b
KB
1358 if (tmp_bfd == NULL)
1359 goto bkpt_at_symbol;
1360
2f4950cd
AC
1361 /* Now convert the TMP_BFD into a target. That way target, as
1362 well as BFD operations can be used. Note that closing the
1363 target will also close the underlying bfd. */
1364 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1365
f8766ec1
KB
1366 /* On a running target, we can get the dynamic linker's base
1367 address from the shared library table. */
f8766ec1
KB
1368 so = master_so_list ();
1369 while (so)
8ad2fcde 1370 {
97ec2c2f 1371 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1372 {
1373 load_addr_found = 1;
2ec9a4f8 1374 loader_found_in_list = 1;
cc10cae3 1375 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1376 break;
1377 }
f8766ec1 1378 so = so->next;
8ad2fcde
KB
1379 }
1380
8d4e36ba
JB
1381 /* If we were not able to find the base address of the loader
1382 from our so_list, then try using the AT_BASE auxilliary entry. */
1383 if (!load_addr_found)
1384 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1385 load_addr_found = 1;
1386
8ad2fcde
KB
1387 /* Otherwise we find the dynamic linker's base address by examining
1388 the current pc (which should point at the entry point for the
8d4e36ba
JB
1389 dynamic linker) and subtracting the offset of the entry point.
1390
1391 This is more fragile than the previous approaches, but is a good
1392 fallback method because it has actually been working well in
1393 most cases. */
8ad2fcde 1394 if (!load_addr_found)
fb14de7b 1395 {
c2250ad1
UW
1396 struct regcache *regcache
1397 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b
UW
1398 load_addr = (regcache_read_pc (regcache)
1399 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1400 }
2ec9a4f8
DJ
1401
1402 if (!loader_found_in_list)
34439770 1403 {
1a816a87
PA
1404 info->debug_loader_name = xstrdup (interp_name);
1405 info->debug_loader_offset_p = 1;
1406 info->debug_loader_offset = load_addr;
2bbe3cc1 1407 solib_add (NULL, 0, &current_target, auto_solib_add);
34439770 1408 }
13437d4b
KB
1409
1410 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1411 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1412 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1413 if (interp_sect)
1414 {
1415 interp_text_sect_low =
1416 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1417 interp_text_sect_high =
1418 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1419 }
1420 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1421 if (interp_sect)
1422 {
1423 interp_plt_sect_low =
1424 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1425 interp_plt_sect_high =
1426 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1427 }
1428
1429 /* Now try to set a breakpoint in the dynamic linker. */
1430 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1431 {
2bbe3cc1 1432 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1433 if (sym_addr != 0)
1434 break;
1435 }
1436
2bbe3cc1
DJ
1437 if (sym_addr != 0)
1438 /* Convert 'sym_addr' from a function pointer to an address.
1439 Because we pass tmp_bfd_target instead of the current
1440 target, this will always produce an unrelocated value. */
1cf3db46 1441 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1442 sym_addr,
1443 tmp_bfd_target);
1444
2f4950cd
AC
1445 /* We're done with both the temporary bfd and target. Remember,
1446 closing the target closes the underlying bfd. */
1447 target_close (tmp_bfd_target, 0);
13437d4b
KB
1448
1449 if (sym_addr != 0)
1450 {
a6d9a66e 1451 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1452 xfree (interp_name);
13437d4b
KB
1453 return 1;
1454 }
1455
1456 /* For whatever reason we couldn't set a breakpoint in the dynamic
1457 linker. Warn and drop into the old code. */
1458 bkpt_at_symbol:
97ec2c2f 1459 xfree (interp_name);
82d03102
PG
1460 warning (_("Unable to find dynamic linker breakpoint function.\n"
1461 "GDB will be unable to debug shared library initializers\n"
1462 "and track explicitly loaded dynamic code."));
13437d4b 1463 }
13437d4b 1464
e499d0f1
DJ
1465 /* Scan through the lists of symbols, trying to look up the symbol and
1466 set a breakpoint there. Terminate loop when we/if we succeed. */
1467
1468 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1469 {
1470 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1471 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1472 {
a6d9a66e
UW
1473 create_solib_event_breakpoint (target_gdbarch,
1474 SYMBOL_VALUE_ADDRESS (msymbol));
e499d0f1
DJ
1475 return 1;
1476 }
1477 }
13437d4b 1478
13437d4b
KB
1479 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1480 {
1481 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1482 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1483 {
a6d9a66e
UW
1484 create_solib_event_breakpoint (target_gdbarch,
1485 SYMBOL_VALUE_ADDRESS (msymbol));
13437d4b
KB
1486 return 1;
1487 }
1488 }
542c95c2 1489 return 0;
13437d4b
KB
1490}
1491
1492/*
1493
1494 LOCAL FUNCTION
1495
1496 special_symbol_handling -- additional shared library symbol handling
1497
1498 SYNOPSIS
1499
1500 void special_symbol_handling ()
1501
1502 DESCRIPTION
1503
1504 Once the symbols from a shared object have been loaded in the usual
1505 way, we are called to do any system specific symbol handling that
1506 is needed.
1507
ab31aa69 1508 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1509 linkers structures to find symbol definitions for "common" symbols
1510 and adding them to the minimal symbol table for the runtime common
1511 objfile.
1512
ab31aa69
KB
1513 However, for SVR4, there's nothing to do.
1514
13437d4b
KB
1515 */
1516
1517static void
1518svr4_special_symbol_handling (void)
1519{
13437d4b
KB
1520}
1521
e2a44558
KB
1522/* Relocate the main executable. This function should be called upon
1523 stopping the inferior process at the entry point to the program.
1524 The entry point from BFD is compared to the PC and if they are
1525 different, the main executable is relocated by the proper amount.
1526
1527 As written it will only attempt to relocate executables which
1528 lack interpreter sections. It seems likely that only dynamic
1529 linker executables will get relocated, though it should work
1530 properly for a position-independent static executable as well. */
1531
1532static void
1533svr4_relocate_main_executable (void)
1534{
1535 asection *interp_sect;
c2250ad1
UW
1536 struct regcache *regcache
1537 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b 1538 CORE_ADDR pc = regcache_read_pc (regcache);
e2a44558
KB
1539
1540 /* Decide if the objfile needs to be relocated. As indicated above,
1541 we will only be here when execution is stopped at the beginning
1542 of the program. Relocation is necessary if the address at which
1543 we are presently stopped differs from the start address stored in
1544 the executable AND there's no interpreter section. The condition
1545 regarding the interpreter section is very important because if
1546 there *is* an interpreter section, execution will begin there
1547 instead. When there is an interpreter section, the start address
1548 is (presumably) used by the interpreter at some point to start
1549 execution of the program.
1550
1551 If there is an interpreter, it is normal for it to be set to an
1552 arbitrary address at the outset. The job of finding it is
1553 handled in enable_break().
1554
1555 So, to summarize, relocations are necessary when there is no
1556 interpreter section and the start address obtained from the
1557 executable is different from the address at which GDB is
1558 currently stopped.
1559
1560 [ The astute reader will note that we also test to make sure that
1561 the executable in question has the DYNAMIC flag set. It is my
1562 opinion that this test is unnecessary (undesirable even). It
1563 was added to avoid inadvertent relocation of an executable
1564 whose e_type member in the ELF header is not ET_DYN. There may
1565 be a time in the future when it is desirable to do relocations
1566 on other types of files as well in which case this condition
1567 should either be removed or modified to accomodate the new file
1568 type. (E.g, an ET_EXEC executable which has been built to be
1569 position-independent could safely be relocated by the OS if
1570 desired. It is true that this violates the ABI, but the ABI
1571 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1572 */
1573
1574 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1575 if (interp_sect == NULL
1576 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1577 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1578 {
1579 struct cleanup *old_chain;
1580 struct section_offsets *new_offsets;
1581 int i, changed;
1582 CORE_ADDR displacement;
1583
1584 /* It is necessary to relocate the objfile. The amount to
1585 relocate by is simply the address at which we are stopped
1586 minus the starting address from the executable.
1587
1588 We relocate all of the sections by the same amount. This
1589 behavior is mandated by recent editions of the System V ABI.
1590 According to the System V Application Binary Interface,
1591 Edition 4.1, page 5-5:
1592
1593 ... Though the system chooses virtual addresses for
1594 individual processes, it maintains the segments' relative
1595 positions. Because position-independent code uses relative
1596 addressesing between segments, the difference between
1597 virtual addresses in memory must match the difference
1598 between virtual addresses in the file. The difference
1599 between the virtual address of any segment in memory and
1600 the corresponding virtual address in the file is thus a
1601 single constant value for any one executable or shared
1602 object in a given process. This difference is the base
1603 address. One use of the base address is to relocate the
1604 memory image of the program during dynamic linking.
1605
1606 The same language also appears in Edition 4.0 of the System V
1607 ABI and is left unspecified in some of the earlier editions. */
1608
2f4950cd 1609 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1610 changed = 0;
1611
13fc0c2f
KB
1612 new_offsets = xcalloc (symfile_objfile->num_sections,
1613 sizeof (struct section_offsets));
b8c9b27d 1614 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1615
1616 for (i = 0; i < symfile_objfile->num_sections; i++)
1617 {
1618 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1619 changed = 1;
1620 new_offsets->offsets[i] = displacement;
1621 }
1622
1623 if (changed)
1624 objfile_relocate (symfile_objfile, new_offsets);
1625
1626 do_cleanups (old_chain);
1627 }
1628}
1629
13437d4b
KB
1630/*
1631
1632 GLOBAL FUNCTION
1633
1634 svr4_solib_create_inferior_hook -- shared library startup support
1635
1636 SYNOPSIS
1637
7095b863 1638 void svr4_solib_create_inferior_hook ()
13437d4b
KB
1639
1640 DESCRIPTION
1641
1642 When gdb starts up the inferior, it nurses it along (through the
1643 shell) until it is ready to execute it's first instruction. At this
1644 point, this function gets called via expansion of the macro
1645 SOLIB_CREATE_INFERIOR_HOOK.
1646
1647 For SunOS executables, this first instruction is typically the
1648 one at "_start", or a similar text label, regardless of whether
1649 the executable is statically or dynamically linked. The runtime
1650 startup code takes care of dynamically linking in any shared
1651 libraries, once gdb allows the inferior to continue.
1652
1653 For SVR4 executables, this first instruction is either the first
1654 instruction in the dynamic linker (for dynamically linked
1655 executables) or the instruction at "start" for statically linked
1656 executables. For dynamically linked executables, the system
1657 first exec's /lib/libc.so.N, which contains the dynamic linker,
1658 and starts it running. The dynamic linker maps in any needed
1659 shared libraries, maps in the actual user executable, and then
1660 jumps to "start" in the user executable.
1661
1662 For both SunOS shared libraries, and SVR4 shared libraries, we
1663 can arrange to cooperate with the dynamic linker to discover the
1664 names of shared libraries that are dynamically linked, and the
1665 base addresses to which they are linked.
1666
1667 This function is responsible for discovering those names and
1668 addresses, and saving sufficient information about them to allow
1669 their symbols to be read at a later time.
1670
1671 FIXME
1672
1673 Between enable_break() and disable_break(), this code does not
1674 properly handle hitting breakpoints which the user might have
1675 set in the startup code or in the dynamic linker itself. Proper
1676 handling will probably have to wait until the implementation is
1677 changed to use the "breakpoint handler function" method.
1678
1679 Also, what if child has exit()ed? Must exit loop somehow.
1680 */
1681
e2a44558 1682static void
13437d4b
KB
1683svr4_solib_create_inferior_hook (void)
1684{
d6b48e9c 1685 struct inferior *inf;
2020b7ab 1686 struct thread_info *tp;
1a816a87
PA
1687 struct svr4_info *info;
1688
1689 info = get_svr4_info (PIDGET (inferior_ptid));
2020b7ab 1690
e2a44558
KB
1691 /* Relocate the main executable if necessary. */
1692 svr4_relocate_main_executable ();
1693
d5a921c9 1694 if (!svr4_have_link_map_offsets ())
513f5903 1695 return;
d5a921c9 1696
1a816a87 1697 if (!enable_break (info))
542c95c2 1698 return;
13437d4b 1699
ab31aa69
KB
1700#if defined(_SCO_DS)
1701 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1702 special shared library breakpoints and the shared library breakpoint
1703 service routine.
1704
1705 Now run the target. It will eventually hit the breakpoint, at
1706 which point all of the libraries will have been mapped in and we
1707 can go groveling around in the dynamic linker structures to find
1708 out what we need to know about them. */
1709
d6b48e9c 1710 inf = current_inferior ();
2020b7ab
PA
1711 tp = inferior_thread ();
1712
13437d4b 1713 clear_proceed_status ();
d6b48e9c 1714 inf->stop_soon = STOP_QUIETLY;
2020b7ab 1715 tp->stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
1716 do
1717 {
2020b7ab 1718 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
ae123ec6 1719 wait_for_inferior (0);
13437d4b 1720 }
2020b7ab 1721 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
d6b48e9c 1722 inf->stop_soon = NO_STOP_QUIETLY;
ab31aa69 1723#endif /* defined(_SCO_DS) */
13437d4b
KB
1724}
1725
1726static void
1727svr4_clear_solib (void)
1728{
1a816a87 1729 remove_svr4_info (PIDGET (inferior_ptid));
13437d4b
KB
1730}
1731
1732static void
1733svr4_free_so (struct so_list *so)
1734{
b8c9b27d
KB
1735 xfree (so->lm_info->lm);
1736 xfree (so->lm_info);
13437d4b
KB
1737}
1738
6bb7be43
JB
1739
1740/* Clear any bits of ADDR that wouldn't fit in a target-format
1741 data pointer. "Data pointer" here refers to whatever sort of
1742 address the dynamic linker uses to manage its sections. At the
1743 moment, we don't support shared libraries on any processors where
1744 code and data pointers are different sizes.
1745
1746 This isn't really the right solution. What we really need here is
1747 a way to do arithmetic on CORE_ADDR values that respects the
1748 natural pointer/address correspondence. (For example, on the MIPS,
1749 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1750 sign-extend the value. There, simply truncating the bits above
819844ad 1751 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
1752 be a new gdbarch method or something. */
1753static CORE_ADDR
1754svr4_truncate_ptr (CORE_ADDR addr)
1755{
1cf3db46 1756 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
1757 /* We don't need to truncate anything, and the bit twiddling below
1758 will fail due to overflow problems. */
1759 return addr;
1760 else
1cf3db46 1761 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
1762}
1763
1764
749499cb
KB
1765static void
1766svr4_relocate_section_addresses (struct so_list *so,
0542c86d 1767 struct target_section *sec)
749499cb 1768{
cc10cae3
AO
1769 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1770 sec->bfd));
1771 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1772 sec->bfd));
749499cb 1773}
4b188b9f 1774\f
749499cb 1775
4b188b9f 1776/* Architecture-specific operations. */
6bb7be43 1777
4b188b9f
MK
1778/* Per-architecture data key. */
1779static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1780
4b188b9f 1781struct solib_svr4_ops
e5e2b9ff 1782{
4b188b9f
MK
1783 /* Return a description of the layout of `struct link_map'. */
1784 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1785};
e5e2b9ff 1786
4b188b9f 1787/* Return a default for the architecture-specific operations. */
e5e2b9ff 1788
4b188b9f
MK
1789static void *
1790solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1791{
4b188b9f 1792 struct solib_svr4_ops *ops;
e5e2b9ff 1793
4b188b9f 1794 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 1795 ops->fetch_link_map_offsets = NULL;
4b188b9f 1796 return ops;
e5e2b9ff
KB
1797}
1798
4b188b9f 1799/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 1800 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 1801
21479ded 1802void
e5e2b9ff
KB
1803set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1804 struct link_map_offsets *(*flmo) (void))
21479ded 1805{
4b188b9f
MK
1806 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1807
1808 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
1809
1810 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
1811}
1812
4b188b9f
MK
1813/* Fetch a link_map_offsets structure using the architecture-specific
1814 `struct link_map_offsets' fetcher. */
1c4dcb57 1815
4b188b9f
MK
1816static struct link_map_offsets *
1817svr4_fetch_link_map_offsets (void)
21479ded 1818{
1cf3db46 1819 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1820
1821 gdb_assert (ops->fetch_link_map_offsets);
1822 return ops->fetch_link_map_offsets ();
21479ded
KB
1823}
1824
4b188b9f
MK
1825/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1826
1827static int
1828svr4_have_link_map_offsets (void)
1829{
1cf3db46 1830 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1831 return (ops->fetch_link_map_offsets != NULL);
1832}
1833\f
1834
e4bbbda8
MK
1835/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1836 `struct r_debug' and a `struct link_map' that are binary compatible
1837 with the origional SVR4 implementation. */
1838
1839/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1840 for an ILP32 SVR4 system. */
1841
1842struct link_map_offsets *
1843svr4_ilp32_fetch_link_map_offsets (void)
1844{
1845 static struct link_map_offsets lmo;
1846 static struct link_map_offsets *lmp = NULL;
1847
1848 if (lmp == NULL)
1849 {
1850 lmp = &lmo;
1851
e4cd0d6a
MK
1852 lmo.r_version_offset = 0;
1853 lmo.r_version_size = 4;
e4bbbda8 1854 lmo.r_map_offset = 4;
7cd25cfc 1855 lmo.r_brk_offset = 8;
e4cd0d6a 1856 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1857
1858 /* Everything we need is in the first 20 bytes. */
1859 lmo.link_map_size = 20;
1860 lmo.l_addr_offset = 0;
e4bbbda8 1861 lmo.l_name_offset = 4;
cc10cae3 1862 lmo.l_ld_offset = 8;
e4bbbda8 1863 lmo.l_next_offset = 12;
e4bbbda8 1864 lmo.l_prev_offset = 16;
e4bbbda8
MK
1865 }
1866
1867 return lmp;
1868}
1869
1870/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1871 for an LP64 SVR4 system. */
1872
1873struct link_map_offsets *
1874svr4_lp64_fetch_link_map_offsets (void)
1875{
1876 static struct link_map_offsets lmo;
1877 static struct link_map_offsets *lmp = NULL;
1878
1879 if (lmp == NULL)
1880 {
1881 lmp = &lmo;
1882
e4cd0d6a
MK
1883 lmo.r_version_offset = 0;
1884 lmo.r_version_size = 4;
e4bbbda8 1885 lmo.r_map_offset = 8;
7cd25cfc 1886 lmo.r_brk_offset = 16;
e4cd0d6a 1887 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1888
1889 /* Everything we need is in the first 40 bytes. */
1890 lmo.link_map_size = 40;
1891 lmo.l_addr_offset = 0;
e4bbbda8 1892 lmo.l_name_offset = 8;
cc10cae3 1893 lmo.l_ld_offset = 16;
e4bbbda8 1894 lmo.l_next_offset = 24;
e4bbbda8 1895 lmo.l_prev_offset = 32;
e4bbbda8
MK
1896 }
1897
1898 return lmp;
1899}
1900\f
1901
7d522c90 1902struct target_so_ops svr4_so_ops;
13437d4b 1903
3a40aaa0
UW
1904/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1905 different rule for symbol lookup. The lookup begins here in the DSO, not in
1906 the main executable. */
1907
1908static struct symbol *
1909elf_lookup_lib_symbol (const struct objfile *objfile,
1910 const char *name,
1911 const char *linkage_name,
21b556f4 1912 const domain_enum domain)
3a40aaa0
UW
1913{
1914 if (objfile->obfd == NULL
1915 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1916 return NULL;
1917
65728c26 1918 return lookup_global_symbol_from_objfile
21b556f4 1919 (objfile, name, linkage_name, domain);
3a40aaa0
UW
1920}
1921
a78f21af
AC
1922extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1923
13437d4b
KB
1924void
1925_initialize_svr4_solib (void)
1926{
4b188b9f
MK
1927 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1928
749499cb 1929 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1930 svr4_so_ops.free_so = svr4_free_so;
1931 svr4_so_ops.clear_solib = svr4_clear_solib;
1932 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1933 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1934 svr4_so_ops.current_sos = svr4_current_sos;
1935 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1936 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3a40aaa0 1937 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 1938 svr4_so_ops.same = svr4_same;
1a816a87
PA
1939
1940 observer_attach_inferior_exit (solib_svr4_inferior_exit);
13437d4b 1941}
This page took 0.993114 seconds and 4 git commands to generate.