* gas/dvp/mpg-1.[sd]: New files.
[deliverable/binutils-gdb.git] / gdb / solib.c
CommitLineData
f8b76e70 1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
7d0a3fc8 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998
1a494973 3 Free Software Foundation, Inc.
f8b76e70 4
bd5635a1
RP
5This file is part of GDB.
6
bdbd5f50 7This program is free software; you can redistribute it and/or modify
bd5635a1 8it under the terms of the GNU General Public License as published by
bdbd5f50
JG
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
bd5635a1 11
bdbd5f50 12This program is distributed in the hope that it will be useful,
bd5635a1
RP
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
bdbd5f50 18along with this program; if not, write to the Free Software
2858b1f2 19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
bd5635a1 20
f8b76e70 21
b0246b3b
FF
22#include "defs.h"
23
ace4b8d7
FF
24/* This file is only compilable if link.h is available. */
25
26#ifdef HAVE_LINK_H
27
bd5635a1 28#include <sys/types.h>
f8b76e70 29#include <signal.h>
2b576293 30#include "gdb_string.h"
d0237a54
JK
31#include <sys/param.h>
32#include <fcntl.h>
1a494973 33#include <unistd.h>
be772100
JG
34
35#ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
37#include <a.out.h>
2fe3b329 38#else
1a494973 39#include "elf/external.h"
be772100 40#endif
f8b76e70 41
1a494973
C
42#include <link.h>
43
bd5635a1 44#include "symtab.h"
b0246b3b
FF
45#include "bfd.h"
46#include "symfile.h"
be772100 47#include "objfiles.h"
bd5635a1
RP
48#include "gdbcore.h"
49#include "command.h"
b3fdaf3d 50#include "target.h"
2403f49b 51#include "frame.h"
464c6c5f 52#include "gnu-regex.h"
bdbd5f50 53#include "inferior.h"
6047ab6a 54#include "environ.h"
a71c0593 55#include "language.h"
1a494973 56#include "gdbcmd.h"
bdbd5f50 57
2858b1f2 58#define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
f8b76e70 59
464c6c5f
JL
60/* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68#ifdef SVR4_SHARED_LIBS
69static char *solib_break_names[] = {
70 "r_debug_state",
a404ea25 71 "_r_debug_state",
464c6c5f 72 "_dl_debug_state",
7d0a3fc8 73 "rtld_db_dlactivity",
464c6c5f
JL
74 NULL
75};
76#endif
f8b76e70 77
a608f919
FF
78#define BKPT_AT_SYMBOL 1
79
a71c0593 80#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
a608f919
FF
81static char *bkpt_names[] = {
82#ifdef SOLIB_BKPT_NAME
83 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
84#endif
85 "_start",
86 "main",
87 NULL
88};
a71c0593 89#endif
f8b76e70 90
4ad0021e
JK
91/* Symbols which are used to locate the base of the link map structures. */
92
2fe3b329 93#ifndef SVR4_SHARED_LIBS
4ad0021e 94static char *debug_base_symbols[] = {
2fe3b329 95 "_DYNAMIC",
1a494973 96 "_DYNAMIC__MGC",
4ad0021e
JK
97 NULL
98};
2fe3b329 99#endif
4ad0021e 100
1a494973
C
101static char *main_name_list[] = {
102 "main_$main",
103 NULL
104};
105
f8b76e70
FF
106/* local data declarations */
107
d261ece7 108#ifndef SVR4_SHARED_LIBS
f8b76e70 109
f8b76e70
FF
110#define LM_ADDR(so) ((so) -> lm.lm_addr)
111#define LM_NEXT(so) ((so) -> lm.lm_next)
112#define LM_NAME(so) ((so) -> lm.lm_name)
4ad0021e
JK
113/* Test for first link map entry; first entry is a shared library. */
114#define IGNORE_FIRST_LINK_MAP_ENTRY(x) (0)
f8b76e70
FF
115static struct link_dynamic dynamic_copy;
116static struct link_dynamic_2 ld_2_copy;
117static struct ld_debug debug_copy;
118static CORE_ADDR debug_addr;
119static CORE_ADDR flag_addr;
120
d261ece7 121#else /* SVR4_SHARED_LIBS */
f8b76e70 122
f8b76e70
FF
123#define LM_ADDR(so) ((so) -> lm.l_addr)
124#define LM_NEXT(so) ((so) -> lm.l_next)
125#define LM_NAME(so) ((so) -> lm.l_name)
4ad0021e
JK
126/* Test for first link map entry; first entry is the exec-file. */
127#define IGNORE_FIRST_LINK_MAP_ENTRY(x) ((x).l_prev == NULL)
f8b76e70 128static struct r_debug debug_copy;
f8b76e70 129char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
f8b76e70 130
d261ece7 131#endif /* !SVR4_SHARED_LIBS */
bd5635a1 132
bd5635a1 133struct so_list {
f8b76e70
FF
134 struct so_list *next; /* next structure in linked list */
135 struct link_map lm; /* copy of link map from inferior */
136 struct link_map *lmaddr; /* addr in inferior lm was read from */
137 CORE_ADDR lmend; /* upper addr bound of mapped object */
138 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
139 char symbols_loaded; /* flag: symbols read in yet? */
140 char from_tty; /* flag: print msgs? */
b0246b3b 141 struct objfile *objfile; /* objfile for loaded lib */
f8b76e70
FF
142 struct section_table *sections;
143 struct section_table *sections_end;
51b57ded 144 struct section_table *textsection;
a71c0593 145 bfd *abfd;
bd5635a1
RP
146};
147
f8b76e70
FF
148static struct so_list *so_list_head; /* List of known shared objects */
149static CORE_ADDR debug_base; /* Base of dynamic linker structures */
150static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
151
7d0a3fc8
DT
152static int solib_cleanup_queued = 0; /* make_run_cleanup called */
153
51b57ded
FF
154extern int
155fdmatch PARAMS ((int, int)); /* In libiberty */
156
b0246b3b
FF
157/* Local function prototypes */
158
7d0a3fc8
DT
159static void
160do_clear_solib PARAMS ((PTR));
161
162static int
163match_main PARAMS ((char *));
164
b0246b3b
FF
165static void
166special_symbol_handling PARAMS ((struct so_list *));
167
168static void
169sharedlibrary_command PARAMS ((char *, int));
170
171static int
172enable_break PARAMS ((void));
173
b0246b3b 174static void
51b57ded 175info_sharedlibrary_command PARAMS ((char *, int));
b0246b3b
FF
176
177static int
178symbol_add_stub PARAMS ((char *));
179
180static struct so_list *
181find_solib PARAMS ((struct so_list *));
182
183static struct link_map *
184first_link_map_member PARAMS ((void));
185
186static CORE_ADDR
187locate_base PARAMS ((void));
188
be772100
JG
189static void
190solib_map_sections PARAMS ((struct so_list *));
191
192#ifdef SVR4_SHARED_LIBS
193
b0246b3b 194static CORE_ADDR
2fe3b329 195elf_locate_base PARAMS ((void));
b0246b3b 196
be772100 197#else
b0246b3b 198
ace4b8d7
FF
199static int
200disable_break PARAMS ((void));
201
b0246b3b 202static void
1a494973
C
203allocate_rt_common_objfile PARAMS ((void));
204
205static void
206solib_add_common_symbols PARAMS ((struct rtc_symb *));
b0246b3b
FF
207
208#endif
bd5635a1 209
76420d46
SG
210/* If non-zero, this is a prefix that will be added to the front of the name
211 shared libraries with an absolute filename for loading. */
212static char *solib_absolute_prefix = NULL;
213
214/* If non-empty, this is a search path for loading non-absolute shared library
215 symbol files. This takes precedence over the environment variables PATH
216 and LD_LIBRARY_PATH. */
217static char *solib_search_path = NULL;
218
d0237a54 219/*
f8b76e70
FF
220
221LOCAL FUNCTION
222
223 solib_map_sections -- open bfd and build sections for shared lib
224
225SYNOPSIS
226
227 static void solib_map_sections (struct so_list *so)
228
229DESCRIPTION
230
231 Given a pointer to one of the shared objects in our list
232 of mapped objects, use the recorded name to open a bfd
233 descriptor for the object, build a section table, and then
234 relocate all the section addresses by the base address at
235 which the shared object was mapped.
236
237FIXMES
238
239 In most (all?) cases the shared object file name recorded in the
240 dynamic linkage tables will be a fully qualified pathname. For
241 cases where it isn't, do we really mimic the systems search
242 mechanism correctly in the below code (particularly the tilde
243 expansion stuff?).
244 */
245
d0237a54 246static void
f8b76e70
FF
247solib_map_sections (so)
248 struct so_list *so;
d0237a54
JK
249{
250 char *filename;
251 char *scratch_pathname;
252 int scratch_chan;
253 struct section_table *p;
de9bef49
JG
254 struct cleanup *old_chain;
255 bfd *abfd;
d0237a54 256
f8b76e70 257 filename = tilde_expand (so -> so_name);
d0237a54 258
76420d46
SG
259 if (solib_absolute_prefix && ROOTED_P (filename))
260 /* Prefix shared libraries with absolute filenames with
261 SOLIB_ABSOLUTE_PREFIX. */
262 {
263 char *pfxed_fn;
264 int pfx_len;
265
266 pfx_len = strlen (solib_absolute_prefix);
267
268 /* Remove trailing slashes. */
269 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
270 pfx_len--;
271
272 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
273 strcpy (pfxed_fn, solib_absolute_prefix);
274 strcat (pfxed_fn, filename);
275 free (filename);
276
277 filename = pfxed_fn;
278 }
279
280 old_chain = make_cleanup (free, filename);
281
282 scratch_chan = -1;
283
284 if (solib_search_path)
285 scratch_chan = openp (solib_search_path,
286 1, filename, O_RDONLY, 0, &scratch_pathname);
287 if (scratch_chan < 0)
288 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
289 1, filename, O_RDONLY, 0, &scratch_pathname);
d0237a54 290 if (scratch_chan < 0)
f8b76e70 291 {
6047ab6a
KH
292 scratch_chan = openp (get_in_environ
293 (inferior_environ, "LD_LIBRARY_PATH"),
294 1, filename, O_RDONLY, 0, &scratch_pathname);
f8b76e70 295 }
d0237a54 296 if (scratch_chan < 0)
f8b76e70
FF
297 {
298 perror_with_name (filename);
a608f919 299 }
a71c0593 300 /* Leave scratch_pathname allocated. abfd->name will point to it. */
f8b76e70 301
a71c0593 302 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
de9bef49 303 if (!abfd)
f8b76e70 304 {
de9bef49 305 close (scratch_chan);
f8b76e70 306 error ("Could not open `%s' as an executable file: %s",
4ad0021e 307 scratch_pathname, bfd_errmsg (bfd_get_error ()));
f8b76e70 308 }
a608f919 309 /* Leave bfd open, core_xfer_memory and "info files" need it. */
a71c0593 310 so -> abfd = abfd;
a608f919 311 abfd -> cacheable = true;
de9bef49 312
2858b1f2
KH
313 /* copy full path name into so_name, so that later symbol_file_add can find
314 it */
315 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
316 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
317 strcpy (so->so_name, scratch_pathname);
318
de9bef49 319 if (!bfd_check_format (abfd, bfd_object))
f8b76e70
FF
320 {
321 error ("\"%s\": not in executable format: %s.",
4ad0021e 322 scratch_pathname, bfd_errmsg (bfd_get_error ()));
f8b76e70 323 }
de9bef49 324 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
f8b76e70
FF
325 {
326 error ("Can't find the file sections in `%s': %s",
2fe3b329 327 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
f8b76e70
FF
328 }
329
330 for (p = so -> sections; p < so -> sections_end; p++)
331 {
332 /* Relocate the section binding addresses as recorded in the shared
333 object's file by the base address to which the object was actually
334 mapped. */
335 p -> addr += (CORE_ADDR) LM_ADDR (so);
336 p -> endaddr += (CORE_ADDR) LM_ADDR (so);
337 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
2fe3b329 338 if (STREQ (p -> the_bfd_section -> name, ".text"))
51b57ded
FF
339 {
340 so -> textsection = p;
341 }
f8b76e70 342 }
de9bef49
JG
343
344 /* Free the file names, close the file now. */
345 do_cleanups (old_chain);
f8b76e70
FF
346}
347
7f435241
FF
348#ifndef SVR4_SHARED_LIBS
349
1a494973
C
350/* Allocate the runtime common object file. */
351
352static void
353allocate_rt_common_objfile ()
354{
355 struct objfile *objfile;
356 struct objfile *last_one;
357
358 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
359 memset (objfile, 0, sizeof (struct objfile));
360 objfile -> md = NULL;
464c6c5f
JL
361 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
362 xmalloc, free);
1a494973
C
363 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
364 free);
365 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
366 free);
367 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
368 free);
369 objfile -> name = mstrsave (objfile -> md, "rt_common");
370
371 /* Add this file onto the tail of the linked list of other such files. */
372
373 objfile -> next = NULL;
374 if (object_files == NULL)
375 object_files = objfile;
376 else
377 {
378 for (last_one = object_files;
379 last_one -> next;
380 last_one = last_one -> next);
381 last_one -> next = objfile;
382 }
383
384 rt_common_objfile = objfile;
385}
2a4e8cc3 386
1a494973
C
387/* Read all dynamically loaded common symbol definitions from the inferior
388 and put them into the minimal symbol table for the runtime common
389 objfile. */
2a4e8cc3 390
d261ece7 391static void
1a494973 392solib_add_common_symbols (rtc_symp)
d261ece7
SG
393 struct rtc_symb *rtc_symp;
394{
395 struct rtc_symb inferior_rtc_symb;
396 struct nlist inferior_rtc_nlist;
b0246b3b
FF
397 int len;
398 char *name;
d261ece7 399
1a494973
C
400 /* Remove any runtime common symbols from previous runs. */
401
402 if (rt_common_objfile != NULL && rt_common_objfile -> minimal_symbol_count)
403 {
404 obstack_free (&rt_common_objfile -> symbol_obstack, 0);
405 obstack_specify_allocation (&rt_common_objfile -> symbol_obstack, 0, 0,
406 xmalloc, free);
407 rt_common_objfile -> minimal_symbol_count = 0;
408 rt_common_objfile -> msymbols = NULL;
409 }
410
b0246b3b
FF
411 init_minimal_symbol_collection ();
412 make_cleanup (discard_minimal_symbols, 0);
d261ece7
SG
413
414 while (rtc_symp)
415 {
b0246b3b
FF
416 read_memory ((CORE_ADDR) rtc_symp,
417 (char *) &inferior_rtc_symb,
418 sizeof (inferior_rtc_symb));
419 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
420 (char *) &inferior_rtc_nlist,
421 sizeof(inferior_rtc_nlist));
422 if (inferior_rtc_nlist.n_type == N_COMM)
423 {
424 /* FIXME: The length of the symbol name is not available, but in the
425 current implementation the common symbol is allocated immediately
426 behind the name of the symbol. */
427 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
428
ace4b8d7 429 name = xmalloc (len);
b0246b3b
FF
430 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
431
1a494973
C
432 /* Allocate the runtime common objfile if necessary. */
433 if (rt_common_objfile == NULL)
434 allocate_rt_common_objfile ();
d261ece7 435
1a494973
C
436 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
437 mst_bss, rt_common_objfile);
ace4b8d7 438 free (name);
b0246b3b
FF
439 }
440 rtc_symp = inferior_rtc_symb.rtc_next;
d261ece7
SG
441 }
442
b0246b3b 443 /* Install any minimal symbols that have been collected as the current
1a494973 444 minimal symbols for the runtime common objfile. */
b0246b3b 445
1a494973 446 install_minimal_symbols (rt_common_objfile);
d261ece7
SG
447}
448
7f435241
FF
449#endif /* SVR4_SHARED_LIBS */
450
2fe3b329 451
be772100
JG
452#ifdef SVR4_SHARED_LIBS
453
54d478cd
PS
454static CORE_ADDR
455bfd_lookup_symbol PARAMS ((bfd *, char *));
456
457/*
458
459LOCAL FUNCTION
460
461 bfd_lookup_symbol -- lookup the value for a specific symbol
462
463SYNOPSIS
464
465 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
466
467DESCRIPTION
468
469 An expensive way to lookup the value of a single symbol for
470 bfd's that are only temporary anyway. This is used by the
471 shared library support to find the address of the debugger
472 interface structures in the shared library.
473
474 Note that 0 is specifically allowed as an error return (no
475 such symbol).
476*/
477
478static CORE_ADDR
479bfd_lookup_symbol (abfd, symname)
480 bfd *abfd;
481 char *symname;
482{
483 unsigned int storage_needed;
484 asymbol *sym;
485 asymbol **symbol_table;
486 unsigned int number_of_symbols;
487 unsigned int i;
488 struct cleanup *back_to;
489 CORE_ADDR symaddr = 0;
490
491 storage_needed = bfd_get_symtab_upper_bound (abfd);
492
493 if (storage_needed > 0)
494 {
495 symbol_table = (asymbol **) xmalloc (storage_needed);
496 back_to = make_cleanup (free, (PTR)symbol_table);
497 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
498
499 for (i = 0; i < number_of_symbols; i++)
500 {
501 sym = *symbol_table++;
502 if (STREQ (sym -> name, symname))
503 {
504 /* Bfd symbols are section relative. */
505 symaddr = sym -> value + sym -> section -> vma;
506 break;
507 }
508 }
509 do_cleanups (back_to);
510 }
511 return (symaddr);
512}
513
a404ea25
JL
514#ifdef HANDLE_SVR4_EXEC_EMULATORS
515
516/*
517 Solaris BCP (the part of Solaris which allows it to run SunOS4
518 a.out files) throws in another wrinkle. Solaris does not fill
519 in the usual a.out link map structures when running BCP programs,
520 the only way to get at them is via groping around in the dynamic
521 linker.
522 The dynamic linker and it's structures are located in the shared
523 C library, which gets run as the executable's "interpreter" by
524 the kernel.
525
526 Note that we can assume nothing about the process state at the time
527 we need to find these structures. We may be stopped on the first
528 instruction of the interpreter (C shared library), the first
529 instruction of the executable itself, or somewhere else entirely
530 (if we attached to the process for example).
531*/
532
533static char *debug_base_symbols[] = {
534 "r_debug", /* Solaris 2.3 */
535 "_r_debug", /* Solaris 2.1, 2.2 */
536 NULL
537};
538
539static int
540look_for_base PARAMS ((int, CORE_ADDR));
541
54d478cd
PS
542/*
543
544LOCAL FUNCTION
545
546 look_for_base -- examine file for each mapped address segment
547
548SYNOPSYS
549
550 static int look_for_base (int fd, CORE_ADDR baseaddr)
551
552DESCRIPTION
553
554 This function is passed to proc_iterate_over_mappings, which
555 causes it to get called once for each mapped address space, with
556 an open file descriptor for the file mapped to that space, and the
557 base address of that mapped space.
558
559 Our job is to find the debug base symbol in the file that this
560 fd is open on, if it exists, and if so, initialize the dynamic
561 linker structure base address debug_base.
562
563 Note that this is a computationally expensive proposition, since
564 we basically have to open a bfd on every call, so we specifically
565 avoid opening the exec file.
566 */
567
568static int
569look_for_base (fd, baseaddr)
570 int fd;
571 CORE_ADDR baseaddr;
572{
573 bfd *interp_bfd;
574 CORE_ADDR address = 0;
575 char **symbolp;
576
577 /* If the fd is -1, then there is no file that corresponds to this
578 mapped memory segment, so skip it. Also, if the fd corresponds
579 to the exec file, skip it as well. */
580
581 if (fd == -1
582 || (exec_bfd != NULL
583 && fdmatch (fileno ((GDB_FILE *)(exec_bfd -> iostream)), fd)))
584 {
585 return (0);
586 }
587
588 /* Try to open whatever random file this fd corresponds to. Note that
589 we have no way currently to find the filename. Don't gripe about
590 any problems we might have, just fail. */
591
592 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
593 {
594 return (0);
595 }
596 if (!bfd_check_format (interp_bfd, bfd_object))
597 {
1a494973
C
598 /* FIXME-leak: on failure, might not free all memory associated with
599 interp_bfd. */
54d478cd
PS
600 bfd_close (interp_bfd);
601 return (0);
602 }
603
604 /* Now try to find our debug base symbol in this file, which we at
605 least know to be a valid ELF executable or shared library. */
606
607 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
608 {
609 address = bfd_lookup_symbol (interp_bfd, *symbolp);
610 if (address != 0)
611 {
612 break;
613 }
614 }
615 if (address == 0)
616 {
1a494973
C
617 /* FIXME-leak: on failure, might not free all memory associated with
618 interp_bfd. */
54d478cd
PS
619 bfd_close (interp_bfd);
620 return (0);
621 }
622
623 /* Eureka! We found the symbol. But now we may need to relocate it
624 by the base address. If the symbol's value is less than the base
625 address of the shared library, then it hasn't yet been relocated
626 by the dynamic linker, and we have to do it ourself. FIXME: Note
627 that we make the assumption that the first segment that corresponds
628 to the shared library has the base address to which the library
629 was relocated. */
630
631 if (address < baseaddr)
632 {
633 address += baseaddr;
634 }
635 debug_base = address;
1a494973
C
636 /* FIXME-leak: on failure, might not free all memory associated with
637 interp_bfd. */
54d478cd
PS
638 bfd_close (interp_bfd);
639 return (1);
640}
641#endif /* HANDLE_SVR4_EXEC_EMULATORS */
642
f8b76e70
FF
643/*
644
645LOCAL FUNCTION
646
2fe3b329
PS
647 elf_locate_base -- locate the base address of dynamic linker structs
648 for SVR4 elf targets.
f8b76e70
FF
649
650SYNOPSIS
651
2fe3b329 652 CORE_ADDR elf_locate_base (void)
f8b76e70
FF
653
654DESCRIPTION
655
2fe3b329
PS
656 For SVR4 elf targets the address of the dynamic linker's runtime
657 structure is contained within the dynamic info section in the
658 executable file. The dynamic section is also mapped into the
659 inferior address space. Because the runtime loader fills in the
660 real address before starting the inferior, we have to read in the
661 dynamic info section from the inferior address space.
662 If there are any errors while trying to find the address, we
663 silently return 0, otherwise the found address is returned.
f8b76e70 664
2fe3b329 665 */
f8b76e70
FF
666
667static CORE_ADDR
2fe3b329 668elf_locate_base ()
f8b76e70 669{
1a494973 670 sec_ptr dyninfo_sect;
2fe3b329
PS
671 int dyninfo_sect_size;
672 CORE_ADDR dyninfo_addr;
673 char *buf;
674 char *bufend;
675
676 /* Find the start address of the .dynamic section. */
1a494973 677 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
2fe3b329
PS
678 if (dyninfo_sect == NULL)
679 return 0;
1a494973 680 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
2fe3b329
PS
681
682 /* Read in .dynamic section, silently ignore errors. */
1a494973 683 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
2fe3b329
PS
684 buf = alloca (dyninfo_sect_size);
685 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
686 return 0;
687
688 /* Find the DT_DEBUG entry in the the .dynamic section.
689 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
690 no DT_DEBUG entries. */
691 /* FIXME: In lack of a 64 bit ELF ABI the following code assumes
692 a 32 bit ELF ABI target. */
693 for (bufend = buf + dyninfo_sect_size;
694 buf < bufend;
695 buf += sizeof (Elf32_External_Dyn))
f8b76e70 696 {
2fe3b329
PS
697 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *)buf;
698 long dyn_tag;
699 CORE_ADDR dyn_ptr;
700
701 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
702 if (dyn_tag == DT_NULL)
703 break;
704 else if (dyn_tag == DT_DEBUG)
d0237a54 705 {
2fe3b329
PS
706 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
707 return dyn_ptr;
d0237a54 708 }
1a494973 709#ifdef DT_MIPS_RLD_MAP
2fe3b329 710 else if (dyn_tag == DT_MIPS_RLD_MAP)
4ad0021e 711 {
2fe3b329
PS
712 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
713
714 /* DT_MIPS_RLD_MAP contains a pointer to the address
715 of the dynamic link structure. */
716 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
717 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
718 return 0;
719 return extract_unsigned_integer (pbuf, sizeof (pbuf));
4ad0021e 720 }
1a494973 721#endif
4ad0021e 722 }
d261ece7 723
2fe3b329
PS
724 /* DT_DEBUG entry not found. */
725 return 0;
d261ece7
SG
726}
727
2fe3b329 728#endif /* SVR4_SHARED_LIBS */
be772100 729
d261ece7
SG
730/*
731
f8b76e70
FF
732LOCAL FUNCTION
733
734 locate_base -- locate the base address of dynamic linker structs
735
736SYNOPSIS
737
738 CORE_ADDR locate_base (void)
739
740DESCRIPTION
741
742 For both the SunOS and SVR4 shared library implementations, if the
743 inferior executable has been linked dynamically, there is a single
744 address somewhere in the inferior's data space which is the key to
d261ece7 745 locating all of the dynamic linker's runtime structures. This
4ad0021e
JK
746 address is the value of the debug base symbol. The job of this
747 function is to find and return that address, or to return 0 if there
748 is no such address (the executable is statically linked for example).
f8b76e70
FF
749
750 For SunOS, the job is almost trivial, since the dynamic linker and
751 all of it's structures are statically linked to the executable at
752 link time. Thus the symbol for the address we are looking for has
b0246b3b
FF
753 already been added to the minimal symbol table for the executable's
754 objfile at the time the symbol file's symbols were read, and all we
755 have to do is look it up there. Note that we explicitly do NOT want
756 to find the copies in the shared library.
f8b76e70 757
2fe3b329
PS
758 The SVR4 version is a bit more complicated because the address
759 is contained somewhere in the dynamic info section. We have to go
4ad0021e
JK
760 to a lot more work to discover the address of the debug base symbol.
761 Because of this complexity, we cache the value we find and return that
762 value on subsequent invocations. Note there is no copy in the
763 executable symbol tables.
f8b76e70 764
f8b76e70
FF
765 */
766
767static CORE_ADDR
768locate_base ()
769{
f8b76e70 770
d261ece7 771#ifndef SVR4_SHARED_LIBS
f8b76e70 772
b0246b3b 773 struct minimal_symbol *msymbol;
d261ece7 774 CORE_ADDR address = 0;
4ad0021e 775 char **symbolp;
f8b76e70 776
4ad0021e
JK
777 /* For SunOS, we want to limit the search for the debug base symbol to the
778 executable being debugged, since there is a duplicate named symbol in the
779 shared library. We don't want the shared library versions. */
b0246b3b 780
4ad0021e 781 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
f8b76e70 782 {
1a494973 783 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
4ad0021e
JK
784 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
785 {
786 address = SYMBOL_VALUE_ADDRESS (msymbol);
787 return (address);
788 }
f8b76e70 789 }
4ad0021e 790 return (0);
f8b76e70 791
d261ece7 792#else /* SVR4_SHARED_LIBS */
f8b76e70 793
d261ece7
SG
794 /* Check to see if we have a currently valid address, and if so, avoid
795 doing all this work again and just return the cached address. If
2fe3b329 796 we have no cached address, try to locate it in the dynamic info
54d478cd 797 section for ELF executables. */
f8b76e70 798
d261ece7 799 if (debug_base == 0)
f8b76e70 800 {
54d478cd
PS
801 if (exec_bfd != NULL
802 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
803 debug_base = elf_locate_base ();
804#ifdef HANDLE_SVR4_EXEC_EMULATORS
805 /* Try it the hard way for emulated executables. */
ace4b8d7 806 else if (inferior_pid != 0 && target_has_execution)
54d478cd
PS
807 proc_iterate_over_mappings (look_for_base);
808#endif
f8b76e70 809 }
d261ece7 810 return (debug_base);
f8b76e70 811
d261ece7 812#endif /* !SVR4_SHARED_LIBS */
f8b76e70
FF
813
814}
bd5635a1 815
a608f919
FF
816/*
817
818LOCAL FUNCTION
819
820 first_link_map_member -- locate first member in dynamic linker's map
821
822SYNOPSIS
823
824 static struct link_map *first_link_map_member (void)
825
826DESCRIPTION
827
828 Read in a copy of the first member in the inferior's dynamic
829 link map from the inferior's dynamic linker structures, and return
830 a pointer to the copy in our address space.
831*/
832
f8b76e70
FF
833static struct link_map *
834first_link_map_member ()
bd5635a1 835{
f8b76e70
FF
836 struct link_map *lm = NULL;
837
d261ece7 838#ifndef SVR4_SHARED_LIBS
f8b76e70 839
b0246b3b 840 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
f8b76e70
FF
841 if (dynamic_copy.ld_version >= 2)
842 {
843 /* It is a version that we can deal with, so read in the secondary
844 structure and find the address of the link map list from it. */
b0246b3b 845 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
f8b76e70
FF
846 sizeof (struct link_dynamic_2));
847 lm = ld_2_copy.ld_loaded;
848 }
849
d261ece7 850#else /* SVR4_SHARED_LIBS */
f8b76e70 851
b0246b3b 852 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
a608f919
FF
853 /* FIXME: Perhaps we should validate the info somehow, perhaps by
854 checking r_version for a known version number, or r_state for
855 RT_CONSISTENT. */
f8b76e70
FF
856 lm = debug_copy.r_map;
857
d261ece7 858#endif /* !SVR4_SHARED_LIBS */
d0237a54 859
f8b76e70
FF
860 return (lm);
861}
862
863/*
864
b0246b3b 865LOCAL FUNCTION
f8b76e70
FF
866
867 find_solib -- step through list of shared objects
868
869SYNOPSIS
870
871 struct so_list *find_solib (struct so_list *so_list_ptr)
872
873DESCRIPTION
874
875 This module contains the routine which finds the names of any
876 loaded "images" in the current process. The argument in must be
877 NULL on the first call, and then the returned value must be passed
878 in on subsequent calls. This provides the capability to "step" down
879 the list of loaded objects. On the last object, a NULL value is
880 returned.
d0237a54 881
f8b76e70
FF
882 The arg and return value are "struct link_map" pointers, as defined
883 in <link.h>.
884 */
d0237a54 885
b0246b3b 886static struct so_list *
f8b76e70
FF
887find_solib (so_list_ptr)
888 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
889{
890 struct so_list *so_list_next = NULL;
891 struct link_map *lm = NULL;
892 struct so_list *new;
893
894 if (so_list_ptr == NULL)
895 {
896 /* We are setting up for a new scan through the loaded images. */
897 if ((so_list_next = so_list_head) == NULL)
898 {
899 /* We have not already read in the dynamic linking structures
900 from the inferior, lookup the address of the base structure. */
901 debug_base = locate_base ();
a608f919 902 if (debug_base != 0)
f8b76e70
FF
903 {
904 /* Read the base structure in and find the address of the first
905 link map list member. */
906 lm = first_link_map_member ();
907 }
908 }
909 }
910 else
911 {
912 /* We have been called before, and are in the process of walking
913 the shared library list. Advance to the next shared object. */
914 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
915 {
916 /* We have hit the end of the list, so check to see if any were
917 added, but be quiet if we can't read from the target any more. */
918 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lmaddr,
919 (char *) &(so_list_ptr -> lm),
920 sizeof (struct link_map));
921 if (status == 0)
922 {
923 lm = LM_NEXT (so_list_ptr);
924 }
925 else
926 {
927 lm = NULL;
928 }
929 }
930 so_list_next = so_list_ptr -> next;
931 }
932 if ((so_list_next == NULL) && (lm != NULL))
933 {
934 /* Get next link map structure from inferior image and build a local
935 abbreviated load_map structure */
936 new = (struct so_list *) xmalloc (sizeof (struct so_list));
de9bef49 937 memset ((char *) new, 0, sizeof (struct so_list));
f8b76e70
FF
938 new -> lmaddr = lm;
939 /* Add the new node as the next node in the list, or as the root
940 node if this is the first one. */
941 if (so_list_ptr != NULL)
942 {
943 so_list_ptr -> next = new;
944 }
945 else
946 {
947 so_list_head = new;
7d0a3fc8
DT
948
949 if (! solib_cleanup_queued)
950 {
951 make_run_cleanup (do_clear_solib);
952 solib_cleanup_queued = 1;
953 }
954
f8b76e70
FF
955 }
956 so_list_next = new;
b0246b3b
FF
957 read_memory ((CORE_ADDR) lm, (char *) &(new -> lm),
958 sizeof (struct link_map));
4ad0021e
JK
959 /* For SVR4 versions, the first entry in the link map is for the
960 inferior executable, so we must ignore it. For some versions of
961 SVR4, it has no name. For others (Solaris 2.3 for example), it
962 does have a name, so we can no longer use a missing name to
963 decide when to ignore it. */
964 if (!IGNORE_FIRST_LINK_MAP_ENTRY (new -> lm))
f8b76e70 965 {
4ad0021e
JK
966 int errcode;
967 char *buffer;
968 target_read_string ((CORE_ADDR) LM_NAME (new), &buffer,
969 MAX_PATH_SIZE - 1, &errcode);
970 if (errcode != 0)
971 error ("find_solib: Can't read pathname for load map: %s\n",
972 safe_strerror (errcode));
973 strncpy (new -> so_name, buffer, MAX_PATH_SIZE - 1);
974 new -> so_name[MAX_PATH_SIZE - 1] = '\0';
975 free (buffer);
f8b76e70
FF
976 solib_map_sections (new);
977 }
978 }
979 return (so_list_next);
bd5635a1 980}
d0237a54 981
bdbd5f50
JG
982/* A small stub to get us past the arg-passing pinhole of catch_errors. */
983
984static int
985symbol_add_stub (arg)
986 char *arg;
d0237a54 987{
f8b76e70 988 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
7d0a3fc8
DT
989 CORE_ADDR text_addr = 0;
990
991 if (so -> textsection)
992 text_addr = so -> textsection -> addr;
993 else
994 {
995 asection *lowest_sect;
996
997 /* If we didn't find a mapped non zero sized .text section, set up
998 text_addr so that the relocation in symbol_file_add does no harm. */
999
1000 lowest_sect = bfd_get_section_by_name (so -> abfd, ".text");
1001 if (lowest_sect == NULL)
1002 bfd_map_over_sections (so -> abfd, find_lowest_section,
1003 (PTR) &lowest_sect);
1004 if (lowest_sect)
1005 text_addr = bfd_section_vma (so -> abfd, lowest_sect)
1006 + (CORE_ADDR) LM_ADDR (so);
1007 }
f8b76e70 1008
7d0a3fc8
DT
1009 ALL_OBJFILES (so -> objfile)
1010 {
1011 if (strcmp (so -> objfile -> name, so -> so_name) == 0)
1012 return 1;
1013 }
54d478cd
PS
1014 so -> objfile =
1015 symbol_file_add (so -> so_name, so -> from_tty,
7d0a3fc8 1016 text_addr,
54d478cd 1017 0, 0, 0);
f8b76e70 1018 return (1);
d0237a54 1019}
bd5635a1 1020
1a494973
C
1021/* This function will check the so name to see if matches the main list.
1022 In some system the main object is in the list, which we want to exclude */
1023
1024static int match_main (soname)
1025 char *soname;
1026{
2858b1f2 1027 char **mainp;
1a494973 1028
2858b1f2
KH
1029 for (mainp = main_name_list; *mainp != NULL; mainp++)
1030 {
1031 if (strcmp (soname, *mainp) == 0)
1a494973 1032 return (1);
2858b1f2 1033 }
1a494973 1034
2858b1f2 1035 return (0);
1a494973
C
1036}
1037
f8b76e70
FF
1038/*
1039
1040GLOBAL FUNCTION
1041
1042 solib_add -- add a shared library file to the symtab and section list
1043
1044SYNOPSIS
1045
1046 void solib_add (char *arg_string, int from_tty,
1047 struct target_ops *target)
1048
1049DESCRIPTION
1050
1051*/
bdbd5f50
JG
1052
1053void
1054solib_add (arg_string, from_tty, target)
1055 char *arg_string;
1056 int from_tty;
1057 struct target_ops *target;
bd5635a1 1058{
f8b76e70 1059 register struct so_list *so = NULL; /* link map state variable */
a71c0593
FF
1060
1061 /* Last shared library that we read. */
1062 struct so_list *so_last = NULL;
1063
f8b76e70
FF
1064 char *re_err;
1065 int count;
1066 int old;
1067
1068 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
1069 {
1070 error ("Invalid regexp: %s", re_err);
1071 }
1072
2fe3b329 1073 /* Add the shared library sections to the section table of the
54d478cd 1074 specified target, if any. */
f8b76e70
FF
1075 if (target)
1076 {
1077 /* Count how many new section_table entries there are. */
1078 so = NULL;
1079 count = 0;
1080 while ((so = find_solib (so)) != NULL)
1081 {
1a494973 1082 if (so -> so_name[0] && !match_main (so -> so_name))
f8b76e70
FF
1083 {
1084 count += so -> sections_end - so -> sections;
1085 }
1086 }
1087
1088 if (count)
1089 {
464c6c5f
JL
1090 int update_coreops;
1091
1092 /* We must update the to_sections field in the core_ops structure
1093 here, otherwise we dereference a potential dangling pointer
1094 for each call to target_read/write_memory within this routine. */
1095 update_coreops = core_ops.to_sections == target->to_sections;
1096
f8b76e70 1097 /* Reallocate the target's section table including the new size. */
ee0613d1 1098 if (target -> to_sections)
f8b76e70 1099 {
ee0613d1
JG
1100 old = target -> to_sections_end - target -> to_sections;
1101 target -> to_sections = (struct section_table *)
a71c0593 1102 xrealloc ((char *)target -> to_sections,
f8b76e70
FF
1103 (sizeof (struct section_table)) * (count + old));
1104 }
1105 else
1106 {
1107 old = 0;
ee0613d1 1108 target -> to_sections = (struct section_table *)
a71c0593 1109 xmalloc ((sizeof (struct section_table)) * count);
f8b76e70 1110 }
ee0613d1 1111 target -> to_sections_end = target -> to_sections + (count + old);
f8b76e70 1112
464c6c5f
JL
1113 /* Update the to_sections field in the core_ops structure
1114 if needed. */
1115 if (update_coreops)
1116 {
1117 core_ops.to_sections = target->to_sections;
1118 core_ops.to_sections_end = target->to_sections_end;
1119 }
1120
f8b76e70
FF
1121 /* Add these section table entries to the target's table. */
1122 while ((so = find_solib (so)) != NULL)
1123 {
1124 if (so -> so_name[0])
1125 {
1126 count = so -> sections_end - so -> sections;
de9bef49
JG
1127 memcpy ((char *) (target -> to_sections + old),
1128 so -> sections,
1129 (sizeof (struct section_table)) * count);
f8b76e70
FF
1130 old += count;
1131 }
1132 }
1133 }
1134 }
2fe3b329
PS
1135
1136 /* Now add the symbol files. */
1137 while ((so = find_solib (so)) != NULL)
1138 {
1a494973
C
1139 if (so -> so_name[0] && re_exec (so -> so_name) &&
1140 !match_main (so -> so_name))
2fe3b329
PS
1141 {
1142 so -> from_tty = from_tty;
1143 if (so -> symbols_loaded)
1144 {
1145 if (from_tty)
1146 {
1147 printf_unfiltered ("Symbols already loaded for %s\n", so -> so_name);
1148 }
1149 }
1150 else if (catch_errors
1151 (symbol_add_stub, (char *) so,
1152 "Error while reading shared library symbols:\n",
1153 RETURN_MASK_ALL))
1154 {
1155 so_last = so;
1156 so -> symbols_loaded = 1;
1157 }
1158 }
1159 }
a71c0593 1160
54d478cd
PS
1161 /* Getting new symbols may change our opinion about what is
1162 frameless. */
1163 if (so_last)
1164 reinit_frame_cache ();
1165
a71c0593
FF
1166 if (so_last)
1167 special_symbol_handling (so_last);
bd5635a1 1168}
bdbd5f50 1169
f8b76e70 1170/*
bd5635a1 1171
f8b76e70
FF
1172LOCAL FUNCTION
1173
1174 info_sharedlibrary_command -- code for "info sharedlibrary"
1175
1176SYNOPSIS
1177
1178 static void info_sharedlibrary_command ()
1179
1180DESCRIPTION
bd5635a1 1181
f8b76e70
FF
1182 Walk through the shared library list and print information
1183 about each attached library.
1184*/
1185
1186static void
51b57ded
FF
1187info_sharedlibrary_command (ignore, from_tty)
1188 char *ignore;
1189 int from_tty;
f8b76e70
FF
1190{
1191 register struct so_list *so = NULL; /* link map state variable */
1192 int header_done = 0;
1193
1194 if (exec_bfd == NULL)
1195 {
8d60affd 1196 printf_unfiltered ("No exec file.\n");
f8b76e70
FF
1197 return;
1198 }
1199 while ((so = find_solib (so)) != NULL)
1200 {
1201 if (so -> so_name[0])
1202 {
1203 if (!header_done)
1204 {
8d60affd 1205 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
f8b76e70
FF
1206 "Shared Object Library");
1207 header_done++;
1208 }
4ad0021e
JK
1209 /* FIXME-32x64: need print_address_numeric with field width or
1210 some such. */
8d60affd 1211 printf_unfiltered ("%-12s",
a71c0593
FF
1212 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1213 "08l"));
8d60affd 1214 printf_unfiltered ("%-12s",
a71c0593
FF
1215 local_hex_string_custom ((unsigned long) so -> lmend,
1216 "08l"));
8d60affd
JK
1217 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
1218 printf_unfiltered ("%s\n", so -> so_name);
bd5635a1 1219 }
bd5635a1 1220 }
f8b76e70
FF
1221 if (so_list_head == NULL)
1222 {
8d60affd 1223 printf_unfiltered ("No shared libraries loaded at this time.\n");
bd5635a1
RP
1224 }
1225}
1226
1227/*
f8b76e70
FF
1228
1229GLOBAL FUNCTION
1230
1231 solib_address -- check to see if an address is in a shared lib
1232
1233SYNOPSIS
1234
464c6c5f 1235 char * solib_address (CORE_ADDR address)
f8b76e70
FF
1236
1237DESCRIPTION
1238
1239 Provides a hook for other gdb routines to discover whether or
1240 not a particular address is within the mapped address space of
1241 a shared library. Any address between the base mapping address
1242 and the first address beyond the end of the last mapping, is
1243 considered to be within the shared library address space, for
1244 our purposes.
1245
1246 For example, this routine is called at one point to disable
1247 breakpoints which are in shared libraries that are not currently
1248 mapped in.
1249 */
1250
464c6c5f 1251char *
f8b76e70 1252solib_address (address)
bd5635a1
RP
1253 CORE_ADDR address;
1254{
f8b76e70
FF
1255 register struct so_list *so = 0; /* link map state variable */
1256
1257 while ((so = find_solib (so)) != NULL)
1258 {
1259 if (so -> so_name[0])
1260 {
1261 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
1262 (address < (CORE_ADDR) so -> lmend))
464c6c5f 1263 return (so->so_name);
f8b76e70
FF
1264 }
1265 }
1266 return (0);
1267}
1268
1269/* Called by free_all_symtabs */
bd5635a1 1270
f8b76e70
FF
1271void
1272clear_solib()
1273{
1274 struct so_list *next;
a608f919 1275 char *bfd_filename;
f8b76e70
FF
1276
1277 while (so_list_head)
1278 {
1279 if (so_list_head -> sections)
1280 {
be772100 1281 free ((PTR)so_list_head -> sections);
f8b76e70 1282 }
a71c0593 1283 if (so_list_head -> abfd)
a608f919 1284 {
a71c0593 1285 bfd_filename = bfd_get_filename (so_list_head -> abfd);
1a494973
C
1286 if (!bfd_close (so_list_head -> abfd))
1287 warning ("cannot close \"%s\": %s",
1288 bfd_filename, bfd_errmsg (bfd_get_error ()));
a608f919
FF
1289 }
1290 else
1291 /* This happens for the executable on SVR4. */
1292 bfd_filename = NULL;
1293
f8b76e70 1294 next = so_list_head -> next;
a608f919
FF
1295 if (bfd_filename)
1296 free ((PTR)bfd_filename);
1297 free ((PTR)so_list_head);
f8b76e70 1298 so_list_head = next;
bd5635a1 1299 }
f8b76e70 1300 debug_base = 0;
bd5635a1
RP
1301}
1302
7d0a3fc8
DT
1303static void
1304do_clear_solib (dummy)
1305 PTR dummy;
1306{
1307 solib_cleanup_queued = 0;
1308 clear_solib ();
1309}
1310
1311#ifdef SVR4_SHARED_LIBS
1312
1313/* Return 1 if PC lies in the dynamic symbol resolution code of the
1314 SVR4 run time loader. */
1315
1316static CORE_ADDR interp_text_sect_low;
1317static CORE_ADDR interp_text_sect_high;
1318static CORE_ADDR interp_plt_sect_low;
1319static CORE_ADDR interp_plt_sect_high;
1320
1321int
1322in_svr4_dynsym_resolve_code (pc)
1323 CORE_ADDR pc;
1324{
1325 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1326 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1327 || in_plt_section (pc, NULL));
1328}
1329#endif
1330
bd5635a1 1331/*
f8b76e70
FF
1332
1333LOCAL FUNCTION
1334
1335 disable_break -- remove the "mapping changed" breakpoint
1336
1337SYNOPSIS
1338
1339 static int disable_break ()
1340
1341DESCRIPTION
1342
1343 Removes the breakpoint that gets hit when the dynamic linker
1344 completes a mapping change.
1345
bd5635a1 1346*/
f8b76e70 1347
ace4b8d7
FF
1348#ifndef SVR4_SHARED_LIBS
1349
f8b76e70
FF
1350static int
1351disable_break ()
bd5635a1 1352{
f8b76e70
FF
1353 int status = 1;
1354
d261ece7 1355#ifndef SVR4_SHARED_LIBS
f8b76e70
FF
1356
1357 int in_debugger = 0;
1358
f8b76e70
FF
1359 /* Read the debugger structure from the inferior to retrieve the
1360 address of the breakpoint and the original contents of the
1361 breakpoint address. Remove the breakpoint by writing the original
1362 contents back. */
1363
b0246b3b 1364 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
d261ece7
SG
1365
1366 /* Set `in_debugger' to zero now. */
1367
b0246b3b 1368 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
d261ece7 1369
f8b76e70 1370 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
b0246b3b 1371 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
f8b76e70
FF
1372 sizeof (debug_copy.ldd_bp_inst));
1373
d261ece7 1374#else /* SVR4_SHARED_LIBS */
f8b76e70
FF
1375
1376 /* Note that breakpoint address and original contents are in our address
1377 space, so we just need to write the original contents back. */
1378
1379 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1380 {
1381 status = 0;
1382 }
1383
d261ece7 1384#endif /* !SVR4_SHARED_LIBS */
f8b76e70
FF
1385
1386 /* For the SVR4 version, we always know the breakpoint address. For the
1387 SunOS version we don't know it until the above code is executed.
1388 Grumble if we are stopped anywhere besides the breakpoint address. */
1389
1390 if (stop_pc != breakpoint_addr)
1391 {
1392 warning ("stopped at unknown breakpoint while handling shared libraries");
1393 }
1394
1395 return (status);
bdbd5f50
JG
1396}
1397
ace4b8d7
FF
1398#endif /* #ifdef SVR4_SHARED_LIBS */
1399
f8b76e70 1400/*
bdbd5f50 1401
f8b76e70
FF
1402LOCAL FUNCTION
1403
1404 enable_break -- arrange for dynamic linker to hit breakpoint
1405
1406SYNOPSIS
1407
1408 int enable_break (void)
1409
1410DESCRIPTION
1411
1412 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1413 debugger interface, support for arranging for the inferior to hit
1414 a breakpoint after mapping in the shared libraries. This function
1415 enables that breakpoint.
1416
1417 For SunOS, there is a special flag location (in_debugger) which we
1418 set to 1. When the dynamic linker sees this flag set, it will set
1419 a breakpoint at a location known only to itself, after saving the
1420 original contents of that place and the breakpoint address itself,
1421 in it's own internal structures. When we resume the inferior, it
1422 will eventually take a SIGTRAP when it runs into the breakpoint.
1423 We handle this (in a different place) by restoring the contents of
1424 the breakpointed location (which is only known after it stops),
1425 chasing around to locate the shared libraries that have been
1426 loaded, then resuming.
1427
1428 For SVR4, the debugger interface structure contains a member (r_brk)
1429 which is statically initialized at the time the shared library is
1430 built, to the offset of a function (_r_debug_state) which is guaran-
1431 teed to be called once before mapping in a library, and again when
1432 the mapping is complete. At the time we are examining this member,
1433 it contains only the unrelocated offset of the function, so we have
1434 to do our own relocation. Later, when the dynamic linker actually
1435 runs, it relocates r_brk to be the actual address of _r_debug_state().
1436
1437 The debugger interface structure also contains an enumeration which
1438 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1439 depending upon whether or not the library is being mapped or unmapped,
1440 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1441*/
1442
1443static int
1444enable_break ()
bdbd5f50 1445{
a608f919 1446 int success = 0;
bdbd5f50 1447
d261ece7 1448#ifndef SVR4_SHARED_LIBS
bdbd5f50 1449
51b57ded 1450 int j;
f8b76e70 1451 int in_debugger;
51b57ded 1452
bdbd5f50 1453 /* Get link_dynamic structure */
f8b76e70
FF
1454
1455 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1456 sizeof (dynamic_copy));
1457 if (j)
1458 {
1459 /* unreadable */
1460 return (0);
1461 }
06b6c733 1462
bdbd5f50 1463 /* Calc address of debugger interface structure */
f8b76e70
FF
1464
1465 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1466
bdbd5f50 1467 /* Calc address of `in_debugger' member of debugger interface structure */
f8b76e70
FF
1468
1469 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1470 (char *) &debug_copy);
1471
bdbd5f50 1472 /* Write a value of 1 to this member. */
f8b76e70 1473
bdbd5f50 1474 in_debugger = 1;
b0246b3b 1475 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
a608f919 1476 success = 1;
f8b76e70 1477
d261ece7 1478#else /* SVR4_SHARED_LIBS */
f8b76e70 1479
a608f919 1480#ifdef BKPT_AT_SYMBOL
f8b76e70 1481
b0246b3b 1482 struct minimal_symbol *msymbol;
a608f919 1483 char **bkpt_namep;
464c6c5f
JL
1484 asection *interp_sect;
1485
1486 /* First, remove all the solib event breakpoints. Their addresses
1487 may have changed since the last time we ran the program. */
1488 remove_solib_event_breakpoints ();
1489
1490#ifdef SVR4_SHARED_LIBS
7d0a3fc8
DT
1491 interp_text_sect_low = interp_text_sect_high = 0;
1492 interp_plt_sect_low = interp_plt_sect_high = 0;
1493
464c6c5f
JL
1494 /* Find the .interp section; if not found, warn the user and drop
1495 into the old breakpoint at symbol code. */
1496 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1497 if (interp_sect)
1498 {
1499 unsigned int interp_sect_size;
1500 char *buf;
1501 CORE_ADDR load_addr;
1502 bfd *tmp_bfd;
11be829f 1503 CORE_ADDR sym_addr = 0;
464c6c5f
JL
1504
1505 /* Read the contents of the .interp section into a local buffer;
1506 the contents specify the dynamic linker this program uses. */
1507 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1508 buf = alloca (interp_sect_size);
1509 bfd_get_section_contents (exec_bfd, interp_sect,
1510 buf, 0, interp_sect_size);
1511
1512 /* Now we need to figure out where the dynamic linker was
1513 loaded so that we can load its symbols and place a breakpoint
1514 in the dynamic linker itself.
1515
1516 This address is stored on the stack. However, I've been unable
1517 to find any magic formula to find it for Solaris (appears to
1518 be trivial on Linux). Therefore, we have to try an alternate
1519 mechanism to find the dynamic linker's base address. */
1520 tmp_bfd = bfd_openr (buf, gnutarget);
1521 if (tmp_bfd == NULL)
1522 goto bkpt_at_symbol;
1523
1524 /* Make sure the dynamic linker's really a useful object. */
1525 if (!bfd_check_format (tmp_bfd, bfd_object))
1526 {
1527 warning ("Unable to grok dynamic linker %s as an object file", buf);
1528 bfd_close (tmp_bfd);
1529 goto bkpt_at_symbol;
1530 }
1531
1532 /* We find the dynamic linker's base address by examining the
1533 current pc (which point at the entry point for the dynamic
1534 linker) and subtracting the offset of the entry point. */
1535 load_addr = read_pc () - tmp_bfd->start_address;
1536
7d0a3fc8
DT
1537 /* Record the relocated start and end address of the dynamic linker
1538 text and plt section for in_svr4_dynsym_resolve_code. */
1539 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1540 if (interp_sect)
1541 {
1542 interp_text_sect_low =
1543 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1544 interp_text_sect_high =
1545 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1546 }
1547 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1548 if (interp_sect)
1549 {
1550 interp_plt_sect_low =
1551 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1552 interp_plt_sect_high =
1553 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1554 }
1555
11be829f
JL
1556 /* Now try to set a breakpoint in the dynamic linker. */
1557 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
464c6c5f 1558 {
11be829f
JL
1559 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1560 if (sym_addr != 0)
1561 break;
464c6c5f
JL
1562 }
1563
464c6c5f
JL
1564 /* We're done with the temporary bfd. */
1565 bfd_close (tmp_bfd);
1566
11be829f 1567 if (sym_addr != 0)
464c6c5f 1568 {
11be829f
JL
1569 create_solib_event_breakpoint (load_addr + sym_addr);
1570 return 1;
464c6c5f
JL
1571 }
1572
1573 /* For whatever reason we couldn't set a breakpoint in the dynamic
1574 linker. Warn and drop into the old code. */
1575bkpt_at_symbol:
1576 warning ("Unable to find dynamic linker breakpoint function.");
1577 warning ("GDB will be unable to debug shared library initializers");
1578 warning ("and track explicitly loaded dynamic code.");
1579 }
1580#endif
f8b76e70 1581
a608f919
FF
1582 /* Scan through the list of symbols, trying to look up the symbol and
1583 set a breakpoint there. Terminate loop when we/if we succeed. */
f8b76e70 1584
a608f919
FF
1585 breakpoint_addr = 0;
1586 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
f8b76e70 1587 {
1a494973 1588 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
a608f919
FF
1589 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1590 {
464c6c5f
JL
1591 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1592 return 1;
a608f919 1593 }
f8b76e70
FF
1594 }
1595
464c6c5f 1596 /* Nothing good happened. */
7d0a3fc8 1597 success = 0;
f8b76e70 1598
a608f919 1599#endif /* BKPT_AT_SYMBOL */
f8b76e70 1600
d261ece7 1601#endif /* !SVR4_SHARED_LIBS */
f8b76e70 1602
a608f919 1603 return (success);
f8b76e70
FF
1604}
1605
1606/*
1607
1608GLOBAL FUNCTION
1609
1610 solib_create_inferior_hook -- shared library startup support
1611
1612SYNOPSIS
1613
1614 void solib_create_inferior_hook()
1615
1616DESCRIPTION
1617
1618 When gdb starts up the inferior, it nurses it along (through the
1619 shell) until it is ready to execute it's first instruction. At this
1620 point, this function gets called via expansion of the macro
1621 SOLIB_CREATE_INFERIOR_HOOK.
1622
a608f919
FF
1623 For SunOS executables, this first instruction is typically the
1624 one at "_start", or a similar text label, regardless of whether
1625 the executable is statically or dynamically linked. The runtime
1626 startup code takes care of dynamically linking in any shared
1627 libraries, once gdb allows the inferior to continue.
1628
1629 For SVR4 executables, this first instruction is either the first
1630 instruction in the dynamic linker (for dynamically linked
1631 executables) or the instruction at "start" for statically linked
1632 executables. For dynamically linked executables, the system
1633 first exec's /lib/libc.so.N, which contains the dynamic linker,
1634 and starts it running. The dynamic linker maps in any needed
1635 shared libraries, maps in the actual user executable, and then
1636 jumps to "start" in the user executable.
1637
f8b76e70
FF
1638 For both SunOS shared libraries, and SVR4 shared libraries, we
1639 can arrange to cooperate with the dynamic linker to discover the
1640 names of shared libraries that are dynamically linked, and the
1641 base addresses to which they are linked.
1642
1643 This function is responsible for discovering those names and
1644 addresses, and saving sufficient information about them to allow
1645 their symbols to be read at a later time.
1646
1647FIXME
1648
1649 Between enable_break() and disable_break(), this code does not
1650 properly handle hitting breakpoints which the user might have
1651 set in the startup code or in the dynamic linker itself. Proper
1652 handling will probably have to wait until the implementation is
1653 changed to use the "breakpoint handler function" method.
1654
1655 Also, what if child has exit()ed? Must exit loop somehow.
1656 */
1657
1658void
1659solib_create_inferior_hook()
1660{
ff56144e
JK
1661 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1662 yet. In fact, in the case of a SunOS4 executable being run on
1663 Solaris, we can't get it yet. find_solib will get it when it needs
1664 it. */
1665#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
f8b76e70
FF
1666 if ((debug_base = locate_base ()) == 0)
1667 {
1668 /* Can't find the symbol or the executable is statically linked. */
1669 return;
1670 }
ff56144e 1671#endif
f8b76e70
FF
1672
1673 if (!enable_break ())
1674 {
1675 warning ("shared library handler failed to enable breakpoint");
1676 return;
1677 }
1678
13f6c7ea 1679#ifndef SVR4_SHARED_LIBS
464c6c5f
JL
1680 /* Only SunOS needs the loop below, other systems should be using the
1681 special shared library breakpoints and the shared library breakpoint
1682 service routine.
1683
1684 Now run the target. It will eventually hit the breakpoint, at
f8b76e70
FF
1685 which point all of the libraries will have been mapped in and we
1686 can go groveling around in the dynamic linker structures to find
1687 out what we need to know about them. */
bdbd5f50
JG
1688
1689 clear_proceed_status ();
1690 stop_soon_quietly = 1;
4ad0021e 1691 stop_signal = TARGET_SIGNAL_0;
f8b76e70 1692 do
bdbd5f50 1693 {
8d60affd 1694 target_resume (-1, 0, stop_signal);
bdbd5f50
JG
1695 wait_for_inferior ();
1696 }
4ad0021e 1697 while (stop_signal != TARGET_SIGNAL_TRAP);
bdbd5f50 1698 stop_soon_quietly = 0;
f8b76e70
FF
1699
1700 /* We are now either at the "mapping complete" breakpoint (or somewhere
1701 else, a condition we aren't prepared to deal with anyway), so adjust
1702 the PC as necessary after a breakpoint, disable the breakpoint, and
1703 add any shared libraries that were mapped in. */
bdbd5f50 1704
f8b76e70
FF
1705 if (DECR_PC_AFTER_BREAK)
1706 {
1707 stop_pc -= DECR_PC_AFTER_BREAK;
1708 write_register (PC_REGNUM, stop_pc);
1709 }
1710
1711 if (!disable_break ())
1712 {
1713 warning ("shared library handler failed to disable breakpoint");
1714 }
1715
464c6c5f 1716 if (auto_solib_add)
1a494973 1717 solib_add ((char *) 0, 0, (struct target_ops *) 0);
464c6c5f 1718#endif
bdbd5f50
JG
1719}
1720
f8b76e70
FF
1721/*
1722
b0246b3b
FF
1723LOCAL FUNCTION
1724
1725 special_symbol_handling -- additional shared library symbol handling
1726
1727SYNOPSIS
1728
1729 void special_symbol_handling (struct so_list *so)
1730
1731DESCRIPTION
1732
1733 Once the symbols from a shared object have been loaded in the usual
1734 way, we are called to do any system specific symbol handling that
1735 is needed.
1736
1a494973
C
1737 For SunOS4, this consists of grunging around in the dynamic
1738 linkers structures to find symbol definitions for "common" symbols
1739 and adding them to the minimal symbol table for the runtime common
b0246b3b
FF
1740 objfile.
1741
1742*/
1743
1744static void
1745special_symbol_handling (so)
1746struct so_list *so;
1747{
1748#ifndef SVR4_SHARED_LIBS
51b57ded
FF
1749 int j;
1750
1751 if (debug_addr == 0)
1752 {
1753 /* Get link_dynamic structure */
1754
1755 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1756 sizeof (dynamic_copy));
1757 if (j)
1758 {
1759 /* unreadable */
1760 return;
1761 }
1762
1763 /* Calc address of debugger interface structure */
1764 /* FIXME, this needs work for cross-debugging of core files
1765 (byteorder, size, alignment, etc). */
1766
1767 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1768 }
b0246b3b
FF
1769
1770 /* Read the debugger structure from the inferior, just to make sure
1771 we have a current copy. */
1772
51b57ded
FF
1773 j = target_read_memory (debug_addr, (char *) &debug_copy,
1774 sizeof (debug_copy));
1775 if (j)
1776 return; /* unreadable */
b0246b3b
FF
1777
1778 /* Get common symbol definitions for the loaded object. */
1779
1780 if (debug_copy.ldd_cp)
1781 {
1a494973 1782 solib_add_common_symbols (debug_copy.ldd_cp);
b0246b3b
FF
1783 }
1784
1785#endif /* !SVR4_SHARED_LIBS */
1786}
1787
1788
1789/*
1790
1791LOCAL FUNCTION
f8b76e70
FF
1792
1793 sharedlibrary_command -- handle command to explicitly add library
1794
1795SYNOPSIS
1796
b0246b3b 1797 static void sharedlibrary_command (char *args, int from_tty)
f8b76e70
FF
1798
1799DESCRIPTION
1800
1801*/
1802
b0246b3b 1803static void
bdbd5f50 1804sharedlibrary_command (args, from_tty)
f8b76e70
FF
1805char *args;
1806int from_tty;
bdbd5f50 1807{
f8b76e70
FF
1808 dont_repeat ();
1809 solib_add (args, from_tty, (struct target_ops *) 0);
bd5635a1
RP
1810}
1811
ace4b8d7
FF
1812#endif /* HAVE_LINK_H */
1813
bd5635a1
RP
1814void
1815_initialize_solib()
1816{
ace4b8d7
FF
1817#ifdef HAVE_LINK_H
1818
f8b76e70 1819 add_com ("sharedlibrary", class_files, sharedlibrary_command,
bd5635a1 1820 "Load shared object library symbols for files matching REGEXP.");
f8b76e70
FF
1821 add_info ("sharedlibrary", info_sharedlibrary_command,
1822 "Status of loaded shared object libraries.");
1a494973
C
1823
1824 add_show_from_set
1825 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
464c6c5f
JL
1826 (char *) &auto_solib_add,
1827 "Set autoloading of shared library symbols.\n\
1a494973 1828If nonzero, symbols from all shared object libraries will be loaded\n\
464c6c5f
JL
1829automatically when the inferior begins execution or when the dynamic linker\n\
1830informs gdb that a new library has been loaded. Otherwise, symbols\n\
1a494973
C
1831must be loaded manually, using `sharedlibrary'.",
1832 &setlist),
1833 &showlist);
ace4b8d7 1834
76420d46
SG
1835 add_show_from_set
1836 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
1837 (char *) &solib_absolute_prefix,
7d0a3fc8 1838 "Set prefix for loading absolute shared library symbol files.\n\
76420d46
SG
1839For other (relative) files, you can add values using `set solib-search-path'.",
1840 &setlist),
1841 &showlist);
1842 add_show_from_set
1843 (add_set_cmd ("solib-search-path", class_support, var_string,
1844 (char *) &solib_search_path,
7d0a3fc8 1845 "Set the search path for loading non-absolute shared library symbol files.\n\
76420d46
SG
1846This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
1847 &setlist),
1848 &showlist);
1849
ace4b8d7 1850#endif /* HAVE_LINK_H */
bd5635a1 1851}
This page took 0.421492 seconds and 4 git commands to generate.