* server.c (handle_general_set): Make static.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
4c38e0a4 3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
9b254dd1 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c 21#include "defs.h"
5af923b0 22#include "arch-utils.h"
386c036b 23#include "dis-asm.h"
f5a9b87d 24#include "dwarf2-frame.h"
386c036b 25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
8defab1a 102 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
e17a4113 155sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 156{
e17a4113 157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 158 struct target_ops *ops = &current_target;
e1613aba 159 gdb_byte buf[8];
baf92889
MK
160 int len;
161
13547ab6 162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
163 if (len == -1)
164 return 0;
42cdca6c 165
baf92889
MK
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
e17a4113 169 return extract_unsigned_integer (buf, len, byte_order);
baf92889 170}
386c036b 171\f
baf92889 172
386c036b
MK
173/* The functions on this page are intended to be used to classify
174 function arguments. */
c906108c 175
386c036b 176/* Check whether TYPE is "Integral or Pointer". */
c906108c 177
386c036b
MK
178static int
179sparc_integral_or_pointer_p (const struct type *type)
c906108c 180{
80ad1639
MK
181 int len = TYPE_LENGTH (type);
182
386c036b 183 switch (TYPE_CODE (type))
c906108c 184 {
386c036b
MK
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
80ad1639
MK
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
80ad1639
MK
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
386c036b
MK
198 default:
199 break;
200 }
c906108c 201
386c036b
MK
202 return 0;
203}
c906108c 204
386c036b 205/* Check whether TYPE is "Floating". */
c906108c 206
386c036b
MK
207static int
208sparc_floating_p (const struct type *type)
209{
210 switch (TYPE_CODE (type))
c906108c 211 {
386c036b
MK
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222}
c906108c 223
386c036b 224/* Check whether TYPE is "Structure or Union". */
c906108c 225
386c036b
MK
226static int
227sparc_structure_or_union_p (const struct type *type)
228{
229 switch (TYPE_CODE (type))
230 {
231 case TYPE_CODE_STRUCT:
232 case TYPE_CODE_UNION:
233 return 1;
234 default:
235 break;
c906108c 236 }
386c036b
MK
237
238 return 0;
c906108c 239}
386c036b
MK
240
241/* Register information. */
242
243static const char *sparc32_register_names[] =
5af923b0 244{
386c036b
MK
245 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
246 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
247 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
248 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
249
250 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
251 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
252 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
253 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
254
255 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
256};
257
386c036b
MK
258/* Total number of registers. */
259#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 260
386c036b
MK
261/* We provide the aliases %d0..%d30 for the floating registers as
262 "psuedo" registers. */
263
264static const char *sparc32_pseudo_register_names[] =
265{
266 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
267 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
268};
269
270/* Total number of pseudo registers. */
271#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
272
273/* Return the name of register REGNUM. */
274
275static const char *
d93859e2 276sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
277{
278 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
279 return sparc32_register_names[regnum];
280
281 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
282 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
283
284 return NULL;
285}
2d457077 286\f
209bd28e 287/* Construct types for ISA-specific registers. */
2d457077 288
209bd28e
UW
289static struct type *
290sparc_psr_type (struct gdbarch *gdbarch)
291{
292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 293
209bd28e
UW
294 if (!tdep->sparc_psr_type)
295 {
296 struct type *type;
2d457077 297
e9bb382b 298 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
299 append_flags_type_flag (type, 5, "ET");
300 append_flags_type_flag (type, 6, "PS");
301 append_flags_type_flag (type, 7, "S");
302 append_flags_type_flag (type, 12, "EF");
303 append_flags_type_flag (type, 13, "EC");
2d457077 304
209bd28e
UW
305 tdep->sparc_psr_type = type;
306 }
307
308 return tdep->sparc_psr_type;
309}
310
311static struct type *
312sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 313{
209bd28e
UW
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
315
316 if (!tdep->sparc_fsr_type)
317 {
318 struct type *type;
319
e9bb382b 320 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
321 append_flags_type_flag (type, 0, "NXA");
322 append_flags_type_flag (type, 1, "DZA");
323 append_flags_type_flag (type, 2, "UFA");
324 append_flags_type_flag (type, 3, "OFA");
325 append_flags_type_flag (type, 4, "NVA");
326 append_flags_type_flag (type, 5, "NXC");
327 append_flags_type_flag (type, 6, "DZC");
328 append_flags_type_flag (type, 7, "UFC");
329 append_flags_type_flag (type, 8, "OFC");
330 append_flags_type_flag (type, 9, "NVC");
331 append_flags_type_flag (type, 22, "NS");
332 append_flags_type_flag (type, 23, "NXM");
333 append_flags_type_flag (type, 24, "DZM");
334 append_flags_type_flag (type, 25, "UFM");
335 append_flags_type_flag (type, 26, "OFM");
336 append_flags_type_flag (type, 27, "NVM");
337
338 tdep->sparc_fsr_type = type;
339 }
340
341 return tdep->sparc_fsr_type;
2d457077 342}
386c036b
MK
343
344/* Return the GDB type object for the "standard" data type of data in
345 register REGNUM. */
346
347static struct type *
348sparc32_register_type (struct gdbarch *gdbarch, int regnum)
349{
350 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 351 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
352
353 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 354 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
355
356 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 357 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
358
359 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 360 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 361
2d457077 362 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 363 return sparc_psr_type (gdbarch);
2d457077
MK
364
365 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 366 return sparc_fsr_type (gdbarch);
2d457077 367
df4df182 368 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
369}
370
371static void
372sparc32_pseudo_register_read (struct gdbarch *gdbarch,
373 struct regcache *regcache,
e1613aba 374 int regnum, gdb_byte *buf)
386c036b
MK
375{
376 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
377
378 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
379 regcache_raw_read (regcache, regnum, buf);
e1613aba 380 regcache_raw_read (regcache, regnum + 1, buf + 4);
386c036b
MK
381}
382
383static void
384sparc32_pseudo_register_write (struct gdbarch *gdbarch,
385 struct regcache *regcache,
e1613aba 386 int regnum, const gdb_byte *buf)
386c036b
MK
387{
388 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
389
390 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
391 regcache_raw_write (regcache, regnum, buf);
e1613aba 392 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
393}
394\f
395
396static CORE_ADDR
397sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 398 CORE_ADDR funcaddr,
386c036b
MK
399 struct value **args, int nargs,
400 struct type *value_type,
e4fd649a
UW
401 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
402 struct regcache *regcache)
c906108c 403{
e17a4113
UW
404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
405
386c036b
MK
406 *bp_addr = sp - 4;
407 *real_pc = funcaddr;
408
d80b854b 409 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 410 {
e1613aba 411 gdb_byte buf[4];
386c036b
MK
412
413 /* This is an UNIMP instruction. */
e17a4113
UW
414 store_unsigned_integer (buf, 4, byte_order,
415 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
416 write_memory (sp - 8, buf, 4);
417 return sp - 8;
c906108c
SS
418 }
419
386c036b
MK
420 return sp - 4;
421}
422
423static CORE_ADDR
424sparc32_store_arguments (struct regcache *regcache, int nargs,
425 struct value **args, CORE_ADDR sp,
426 int struct_return, CORE_ADDR struct_addr)
427{
df4df182 428 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
430 /* Number of words in the "parameter array". */
431 int num_elements = 0;
432 int element = 0;
433 int i;
434
435 for (i = 0; i < nargs; i++)
c906108c 436 {
4991999e 437 struct type *type = value_type (args[i]);
386c036b
MK
438 int len = TYPE_LENGTH (type);
439
440 if (sparc_structure_or_union_p (type)
441 || (sparc_floating_p (type) && len == 16))
c906108c 442 {
386c036b
MK
443 /* Structure, Union and Quad-Precision Arguments. */
444 sp -= len;
445
446 /* Use doubleword alignment for these values. That's always
447 correct, and wasting a few bytes shouldn't be a problem. */
448 sp &= ~0x7;
449
0fd88904 450 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
451 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
452 num_elements++;
453 }
454 else if (sparc_floating_p (type))
455 {
456 /* Floating arguments. */
457 gdb_assert (len == 4 || len == 8);
458 num_elements += (len / 4);
c906108c 459 }
c5aa993b
JM
460 else
461 {
386c036b
MK
462 /* Integral and pointer arguments. */
463 gdb_assert (sparc_integral_or_pointer_p (type));
464
465 if (len < 4)
df4df182
UW
466 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
467 args[i]);
386c036b 468 num_elements += ((len + 3) / 4);
c5aa993b 469 }
c906108c 470 }
c906108c 471
386c036b
MK
472 /* Always allocate at least six words. */
473 sp -= max (6, num_elements) * 4;
c906108c 474
386c036b
MK
475 /* The psABI says that "Software convention requires space for the
476 struct/union return value pointer, even if the word is unused." */
477 sp -= 4;
c906108c 478
386c036b
MK
479 /* The psABI says that "Although software convention and the
480 operating system require every stack frame to be doubleword
481 aligned." */
482 sp &= ~0x7;
c906108c 483
386c036b 484 for (i = 0; i < nargs; i++)
c906108c 485 {
0fd88904 486 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 487 struct type *type = value_type (args[i]);
386c036b 488 int len = TYPE_LENGTH (type);
c906108c 489
386c036b 490 gdb_assert (len == 4 || len == 8);
c906108c 491
386c036b
MK
492 if (element < 6)
493 {
494 int regnum = SPARC_O0_REGNUM + element;
c906108c 495
386c036b
MK
496 regcache_cooked_write (regcache, regnum, valbuf);
497 if (len > 4 && element < 5)
498 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
499 }
5af923b0 500
386c036b
MK
501 /* Always store the argument in memory. */
502 write_memory (sp + 4 + element * 4, valbuf, len);
503 element += len / 4;
504 }
c906108c 505
386c036b 506 gdb_assert (element == num_elements);
c906108c 507
386c036b 508 if (struct_return)
c906108c 509 {
e1613aba 510 gdb_byte buf[4];
c906108c 511
e17a4113 512 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
513 write_memory (sp, buf, 4);
514 }
c906108c 515
386c036b 516 return sp;
c906108c
SS
517}
518
386c036b 519static CORE_ADDR
7d9b040b 520sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
521 struct regcache *regcache, CORE_ADDR bp_addr,
522 int nargs, struct value **args, CORE_ADDR sp,
523 int struct_return, CORE_ADDR struct_addr)
c906108c 524{
386c036b
MK
525 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
526
527 /* Set return address. */
528 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
529
530 /* Set up function arguments. */
531 sp = sparc32_store_arguments (regcache, nargs, args, sp,
532 struct_return, struct_addr);
533
534 /* Allocate the 16-word window save area. */
535 sp -= 16 * 4;
c906108c 536
386c036b
MK
537 /* Stack should be doubleword aligned at this point. */
538 gdb_assert (sp % 8 == 0);
c906108c 539
386c036b
MK
540 /* Finally, update the stack pointer. */
541 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
542
543 return sp;
544}
545\f
c906108c 546
386c036b
MK
547/* Use the program counter to determine the contents and size of a
548 breakpoint instruction. Return a pointer to a string of bytes that
549 encode a breakpoint instruction, store the length of the string in
550 *LEN and optionally adjust *PC to point to the correct memory
551 location for inserting the breakpoint. */
552
e1613aba 553static const gdb_byte *
67d57894 554sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 555{
864a1a37 556 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 557
386c036b
MK
558 *len = sizeof (break_insn);
559 return break_insn;
c906108c 560}
386c036b 561\f
c906108c 562
386c036b 563/* Allocate and initialize a frame cache. */
c906108c 564
386c036b
MK
565static struct sparc_frame_cache *
566sparc_alloc_frame_cache (void)
567{
568 struct sparc_frame_cache *cache;
569 int i;
c906108c 570
386c036b 571 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 572
386c036b
MK
573 /* Base address. */
574 cache->base = 0;
575 cache->pc = 0;
c906108c 576
386c036b
MK
577 /* Frameless until proven otherwise. */
578 cache->frameless_p = 1;
579
580 cache->struct_return_p = 0;
581
582 return cache;
583}
584
b0b92586
JB
585/* GCC generates several well-known sequences of instructions at the begining
586 of each function prologue when compiling with -fstack-check. If one of
587 such sequences starts at START_PC, then return the address of the
588 instruction immediately past this sequence. Otherwise, return START_PC. */
589
590static CORE_ADDR
591sparc_skip_stack_check (const CORE_ADDR start_pc)
592{
593 CORE_ADDR pc = start_pc;
594 unsigned long insn;
595 int offset_stack_checking_sequence = 0;
596
597 /* With GCC, all stack checking sequences begin with the same two
598 instructions. */
599
600 /* sethi <some immediate>,%g1 */
601 insn = sparc_fetch_instruction (pc);
602 pc = pc + 4;
603 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
604 return start_pc;
605
606 /* sub %sp, %g1, %g1 */
607 insn = sparc_fetch_instruction (pc);
608 pc = pc + 4;
609 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
610 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
611 return start_pc;
612
613 insn = sparc_fetch_instruction (pc);
614 pc = pc + 4;
615
616 /* First possible sequence:
617 [first two instructions above]
618 clr [%g1 - some immediate] */
619
620 /* clr [%g1 - some immediate] */
621 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
622 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
623 {
624 /* Valid stack-check sequence, return the new PC. */
625 return pc;
626 }
627
628 /* Second possible sequence: A small number of probes.
629 [first two instructions above]
630 clr [%g1]
631 add %g1, -<some immediate>, %g1
632 clr [%g1]
633 [repeat the two instructions above any (small) number of times]
634 clr [%g1 - some immediate] */
635
636 /* clr [%g1] */
637 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
638 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
639 {
640 while (1)
641 {
642 /* add %g1, -<some immediate>, %g1 */
643 insn = sparc_fetch_instruction (pc);
644 pc = pc + 4;
645 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
646 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
647 break;
648
649 /* clr [%g1] */
650 insn = sparc_fetch_instruction (pc);
651 pc = pc + 4;
652 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
653 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
654 return start_pc;
655 }
656
657 /* clr [%g1 - some immediate] */
658 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
659 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
660 return start_pc;
661
662 /* We found a valid stack-check sequence, return the new PC. */
663 return pc;
664 }
665
666 /* Third sequence: A probing loop.
667 [first two instructions above]
668 sethi <some immediate>, %g4
669 sub %g1, %g4, %g4
670 cmp %g1, %g4
671 be <disp>
672 add %g1, -<some immediate>, %g1
673 ba <disp>
674 clr [%g1]
675 clr [%g4 - some immediate] */
676
677 /* sethi <some immediate>, %g4 */
678 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
679 {
680 /* sub %g1, %g4, %g4 */
681 insn = sparc_fetch_instruction (pc);
682 pc = pc + 4;
683 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
684 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
685 return start_pc;
686
687 /* cmp %g1, %g4 */
688 insn = sparc_fetch_instruction (pc);
689 pc = pc + 4;
690 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
691 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
692 return start_pc;
693
694 /* be <disp> */
695 insn = sparc_fetch_instruction (pc);
696 pc = pc + 4;
697 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
698 return start_pc;
699
700 /* add %g1, -<some immediate>, %g1 */
701 insn = sparc_fetch_instruction (pc);
702 pc = pc + 4;
703 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
704 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
705 return start_pc;
706
707 /* ba <disp> */
708 insn = sparc_fetch_instruction (pc);
709 pc = pc + 4;
710 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
711 return start_pc;
712
713 /* clr [%g1] */
714 insn = sparc_fetch_instruction (pc);
715 pc = pc + 4;
716 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
717 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
718 return start_pc;
719
720 /* clr [%g4 - some immediate] */
721 insn = sparc_fetch_instruction (pc);
722 pc = pc + 4;
723 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
724 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
725 return start_pc;
726
727 /* We found a valid stack-check sequence, return the new PC. */
728 return pc;
729 }
730
731 /* No stack check code in our prologue, return the start_pc. */
732 return start_pc;
733}
734
386c036b 735CORE_ADDR
be8626e0
MD
736sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
737 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 738{
be8626e0 739 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
740 unsigned long insn;
741 int offset = 0;
c906108c 742 int dest = -1;
c906108c 743
b0b92586
JB
744 pc = sparc_skip_stack_check (pc);
745
386c036b
MK
746 if (current_pc <= pc)
747 return current_pc;
748
749 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
750 SPARC the linker usually defines a symbol (typically
751 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
752 This symbol makes us end up here with PC pointing at the start of
753 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
754 would do our normal prologue analysis, we would probably conclude
755 that we've got a frame when in reality we don't, since the
756 dynamic linker patches up the first PLT with some code that
757 starts with a SAVE instruction. Patch up PC such that it points
758 at the start of our PLT entry. */
759 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
760 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 761
386c036b
MK
762 insn = sparc_fetch_instruction (pc);
763
764 /* Recognize a SETHI insn and record its destination. */
765 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
766 {
767 dest = X_RD (insn);
386c036b
MK
768 offset += 4;
769
770 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
771 }
772
386c036b
MK
773 /* Allow for an arithmetic operation on DEST or %g1. */
774 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
775 && (X_RD (insn) == 1 || X_RD (insn) == dest))
776 {
386c036b 777 offset += 4;
c906108c 778
386c036b 779 insn = sparc_fetch_instruction (pc + 8);
c906108c 780 }
c906108c 781
386c036b
MK
782 /* Check for the SAVE instruction that sets up the frame. */
783 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 784 {
386c036b
MK
785 cache->frameless_p = 0;
786 return pc + offset + 4;
c906108c
SS
787 }
788
789 return pc;
790}
791
386c036b 792static CORE_ADDR
236369e7 793sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
794{
795 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 796 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
797}
798
799/* Return PC of first real instruction of the function starting at
800 START_PC. */
f510d44e 801
386c036b 802static CORE_ADDR
6093d2eb 803sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 804{
f510d44e
DM
805 struct symtab_and_line sal;
806 CORE_ADDR func_start, func_end;
386c036b 807 struct sparc_frame_cache cache;
f510d44e
DM
808
809 /* This is the preferred method, find the end of the prologue by
810 using the debugging information. */
811 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
812 {
813 sal = find_pc_line (func_start, 0);
814
815 if (sal.end < func_end
816 && start_pc <= sal.end)
817 return sal.end;
818 }
819
be8626e0 820 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
821
822 /* The psABI says that "Although the first 6 words of arguments
823 reside in registers, the standard stack frame reserves space for
824 them.". It also suggests that a function may use that space to
825 "write incoming arguments 0 to 5" into that space, and that's
826 indeed what GCC seems to be doing. In that case GCC will
827 generate debug information that points to the stack slots instead
828 of the registers, so we should consider the instructions that
829 write out these incoming arguments onto the stack. Of course we
830 only need to do this if we have a stack frame. */
831
832 while (!cache.frameless_p)
833 {
834 unsigned long insn = sparc_fetch_instruction (start_pc);
835
836 /* Recognize instructions that store incoming arguments in
837 %i0...%i5 into the corresponding stack slot. */
838 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
839 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
840 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
841 {
842 start_pc += 4;
843 continue;
844 }
845
846 break;
847 }
848
849 return start_pc;
c906108c
SS
850}
851
386c036b 852/* Normal frames. */
9319a2fe 853
386c036b 854struct sparc_frame_cache *
236369e7 855sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 856{
386c036b 857 struct sparc_frame_cache *cache;
9319a2fe 858
386c036b
MK
859 if (*this_cache)
860 return *this_cache;
c906108c 861
386c036b
MK
862 cache = sparc_alloc_frame_cache ();
863 *this_cache = cache;
c906108c 864
236369e7 865 cache->pc = get_frame_func (this_frame);
386c036b 866 if (cache->pc != 0)
236369e7
JB
867 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
868 get_frame_pc (this_frame), cache);
386c036b
MK
869
870 if (cache->frameless_p)
c906108c 871 {
cbeae229
MK
872 /* This function is frameless, so %fp (%i6) holds the frame
873 pointer for our calling frame. Use %sp (%o6) as this frame's
874 base address. */
875 cache->base =
236369e7 876 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
877 }
878 else
879 {
880 /* For normal frames, %fp (%i6) holds the frame pointer, the
881 base address for the current stack frame. */
882 cache->base =
236369e7 883 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 884 }
c906108c 885
5b2d44a0
MK
886 if (cache->base & 1)
887 cache->base += BIAS;
888
386c036b 889 return cache;
c906108c 890}
c906108c 891
aff37fc1
DM
892static int
893sparc32_struct_return_from_sym (struct symbol *sym)
894{
895 struct type *type = check_typedef (SYMBOL_TYPE (sym));
896 enum type_code code = TYPE_CODE (type);
897
898 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
899 {
900 type = check_typedef (TYPE_TARGET_TYPE (type));
901 if (sparc_structure_or_union_p (type)
902 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
903 return 1;
904 }
905
906 return 0;
907}
908
386c036b 909struct sparc_frame_cache *
236369e7 910sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 911{
386c036b
MK
912 struct sparc_frame_cache *cache;
913 struct symbol *sym;
c906108c 914
386c036b
MK
915 if (*this_cache)
916 return *this_cache;
c906108c 917
236369e7 918 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 919
386c036b
MK
920 sym = find_pc_function (cache->pc);
921 if (sym)
c906108c 922 {
aff37fc1 923 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 924 }
5465445a
JB
925 else
926 {
927 /* There is no debugging information for this function to
928 help us determine whether this function returns a struct
929 or not. So we rely on another heuristic which is to check
930 the instruction at the return address and see if this is
931 an "unimp" instruction. If it is, then it is a struct-return
932 function. */
933 CORE_ADDR pc;
934 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
935
236369e7 936 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
937 if (sparc_is_unimp_insn (pc))
938 cache->struct_return_p = 1;
939 }
c906108c 940
386c036b
MK
941 return cache;
942}
943
944static void
236369e7 945sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
946 struct frame_id *this_id)
947{
948 struct sparc_frame_cache *cache =
236369e7 949 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
950
951 /* This marks the outermost frame. */
952 if (cache->base == 0)
953 return;
954
955 (*this_id) = frame_id_build (cache->base, cache->pc);
956}
c906108c 957
236369e7
JB
958static struct value *
959sparc32_frame_prev_register (struct frame_info *this_frame,
960 void **this_cache, int regnum)
386c036b 961{
e17a4113 962 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 963 struct sparc_frame_cache *cache =
236369e7 964 sparc32_frame_cache (this_frame, this_cache);
c906108c 965
386c036b 966 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 967 {
236369e7 968 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 969
236369e7
JB
970 /* If this functions has a Structure, Union or Quad-Precision
971 return value, we have to skip the UNIMP instruction that encodes
972 the size of the structure. */
973 if (cache->struct_return_p)
974 pc += 4;
386c036b 975
236369e7
JB
976 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
977 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
978 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
979 }
980
42cdca6c
MK
981 /* Handle StackGhost. */
982 {
e17a4113 983 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
984
985 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
986 {
236369e7
JB
987 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
988 ULONGEST i7;
989
990 /* Read the value in from memory. */
991 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
992 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
993 }
994 }
995
386c036b
MK
996 /* The previous frame's `local' and `in' registers have been saved
997 in the register save area. */
998 if (!cache->frameless_p
999 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 1000 {
236369e7 1001 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1002
236369e7 1003 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1004 }
c906108c 1005
236369e7 1006 /* The previous frame's `out' registers are accessible as the
386c036b
MK
1007 current frame's `in' registers. */
1008 if (!cache->frameless_p
1009 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1010 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1011
236369e7 1012 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1013}
c906108c 1014
386c036b
MK
1015static const struct frame_unwind sparc32_frame_unwind =
1016{
1017 NORMAL_FRAME,
1018 sparc32_frame_this_id,
236369e7
JB
1019 sparc32_frame_prev_register,
1020 NULL,
1021 default_frame_sniffer
386c036b 1022};
386c036b 1023\f
c906108c 1024
386c036b 1025static CORE_ADDR
236369e7 1026sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1027{
1028 struct sparc_frame_cache *cache =
236369e7 1029 sparc32_frame_cache (this_frame, this_cache);
c906108c 1030
386c036b
MK
1031 return cache->base;
1032}
c906108c 1033
386c036b
MK
1034static const struct frame_base sparc32_frame_base =
1035{
1036 &sparc32_frame_unwind,
1037 sparc32_frame_base_address,
1038 sparc32_frame_base_address,
1039 sparc32_frame_base_address
1040};
c906108c 1041
386c036b 1042static struct frame_id
236369e7 1043sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1044{
1045 CORE_ADDR sp;
5af923b0 1046
236369e7 1047 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1048 if (sp & 1)
1049 sp += BIAS;
236369e7 1050 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1051}
1052\f
c906108c 1053
3923a2b2
MK
1054/* Extract a function return value of TYPE from REGCACHE, and copy
1055 that into VALBUF. */
5af923b0 1056
386c036b
MK
1057static void
1058sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1059 gdb_byte *valbuf)
386c036b
MK
1060{
1061 int len = TYPE_LENGTH (type);
e1613aba 1062 gdb_byte buf[8];
c906108c 1063
386c036b
MK
1064 gdb_assert (!sparc_structure_or_union_p (type));
1065 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1066
386c036b 1067 if (sparc_floating_p (type))
5af923b0 1068 {
386c036b
MK
1069 /* Floating return values. */
1070 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1071 if (len > 4)
1072 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1073 memcpy (valbuf, buf, len);
5af923b0
MS
1074 }
1075 else
1076 {
386c036b
MK
1077 /* Integral and pointer return values. */
1078 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1079
386c036b
MK
1080 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1081 if (len > 4)
1082 {
1083 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1084 gdb_assert (len == 8);
1085 memcpy (valbuf, buf, 8);
1086 }
1087 else
1088 {
1089 /* Just stripping off any unused bytes should preserve the
1090 signed-ness just fine. */
1091 memcpy (valbuf, buf + 4 - len, len);
1092 }
1093 }
1094}
c906108c 1095
3923a2b2
MK
1096/* Store the function return value of type TYPE from VALBUF into
1097 REGCACHE. */
c906108c 1098
386c036b
MK
1099static void
1100sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1101 const gdb_byte *valbuf)
386c036b
MK
1102{
1103 int len = TYPE_LENGTH (type);
e1613aba 1104 gdb_byte buf[8];
c906108c 1105
386c036b
MK
1106 gdb_assert (!sparc_structure_or_union_p (type));
1107 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1108 gdb_assert (len <= 8);
c906108c 1109
386c036b
MK
1110 if (sparc_floating_p (type))
1111 {
1112 /* Floating return values. */
1113 memcpy (buf, valbuf, len);
1114 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1115 if (len > 4)
1116 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1117 }
1118 else
c906108c 1119 {
386c036b
MK
1120 /* Integral and pointer return values. */
1121 gdb_assert (sparc_integral_or_pointer_p (type));
1122
1123 if (len > 4)
2757dd86 1124 {
386c036b
MK
1125 gdb_assert (len == 8);
1126 memcpy (buf, valbuf, 8);
1127 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1128 }
1129 else
1130 {
386c036b
MK
1131 /* ??? Do we need to do any sign-extension here? */
1132 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1133 }
386c036b 1134 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1135 }
1136}
1137
b9d4c5ed 1138static enum return_value_convention
c055b101
CV
1139sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1140 struct type *type, struct regcache *regcache,
1141 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1142{
e17a4113
UW
1143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1144
0a8f48b9
MK
1145 /* The psABI says that "...every stack frame reserves the word at
1146 %fp+64. If a function returns a structure, union, or
1147 quad-precision value, this word should hold the address of the
1148 object into which the return value should be copied." This
1149 guarantees that we can always find the return value, not just
1150 before the function returns. */
1151
b9d4c5ed
MK
1152 if (sparc_structure_or_union_p (type)
1153 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1154 {
1155 if (readbuf)
1156 {
1157 ULONGEST sp;
1158 CORE_ADDR addr;
1159
1160 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1161 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1162 read_memory (addr, readbuf, TYPE_LENGTH (type));
1163 }
1164
1165 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1166 }
b9d4c5ed
MK
1167
1168 if (readbuf)
1169 sparc32_extract_return_value (type, regcache, readbuf);
1170 if (writebuf)
1171 sparc32_store_return_value (type, regcache, writebuf);
1172
1173 return RETURN_VALUE_REGISTER_CONVENTION;
1174}
1175
386c036b
MK
1176static int
1177sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1178{
386c036b
MK
1179 return (sparc_structure_or_union_p (type)
1180 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1181}
c906108c 1182
aff37fc1 1183static int
4a4e5149 1184sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1185{
236369e7 1186 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1187 struct symbol *sym = find_pc_function (pc);
1188
1189 if (sym)
1190 return sparc32_struct_return_from_sym (sym);
1191 return 0;
1192}
1193
f5a9b87d
DM
1194static void
1195sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1196 struct dwarf2_frame_state_reg *reg,
4a4e5149 1197 struct frame_info *this_frame)
f5a9b87d 1198{
aff37fc1
DM
1199 int off;
1200
f5a9b87d
DM
1201 switch (regnum)
1202 {
1203 case SPARC_G0_REGNUM:
1204 /* Since %g0 is always zero, there is no point in saving it, and
1205 people will be inclined omit it from the CFI. Make sure we
1206 don't warn about that. */
1207 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1208 break;
1209 case SPARC_SP_REGNUM:
1210 reg->how = DWARF2_FRAME_REG_CFA;
1211 break;
1212 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1213 case SPARC32_NPC_REGNUM:
1214 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1215 off = 8;
4a4e5149 1216 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1217 off += 4;
1218 if (regnum == SPARC32_NPC_REGNUM)
1219 off += 4;
1220 reg->loc.offset = off;
f5a9b87d
DM
1221 break;
1222 }
1223}
1224
386c036b
MK
1225\f
1226/* The SPARC Architecture doesn't have hardware single-step support,
1227 and most operating systems don't implement it either, so we provide
1228 software single-step mechanism. */
c906108c 1229
386c036b 1230static CORE_ADDR
0b1b3e42 1231sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1232 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1233{
1234 unsigned long insn = sparc_fetch_instruction (pc);
1235 int conditional_p = X_COND (insn) & 0x7;
1236 int branch_p = 0;
1237 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1238
386c036b 1239 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1240 {
386c036b
MK
1241 /* Branch on Integer Register with Prediction (BPr). */
1242 branch_p = 1;
1243 conditional_p = 1;
c906108c 1244 }
386c036b 1245 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1246 {
386c036b
MK
1247 /* Branch on Floating-Point Condition Codes (FBfcc). */
1248 branch_p = 1;
1249 offset = 4 * X_DISP22 (insn);
c906108c 1250 }
386c036b
MK
1251 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1252 {
1253 /* Branch on Floating-Point Condition Codes with Prediction
1254 (FBPfcc). */
1255 branch_p = 1;
1256 offset = 4 * X_DISP19 (insn);
1257 }
1258 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1259 {
1260 /* Branch on Integer Condition Codes (Bicc). */
1261 branch_p = 1;
1262 offset = 4 * X_DISP22 (insn);
1263 }
1264 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1265 {
386c036b
MK
1266 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1267 branch_p = 1;
1268 offset = 4 * X_DISP19 (insn);
c906108c 1269 }
c893be75
MK
1270 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1271 {
1272 /* Trap instruction (TRAP). */
0b1b3e42 1273 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1274 }
386c036b
MK
1275
1276 /* FIXME: Handle DONE and RETRY instructions. */
1277
386c036b 1278 if (branch_p)
c906108c 1279 {
386c036b 1280 if (conditional_p)
c906108c 1281 {
386c036b
MK
1282 /* For conditional branches, return nPC + 4 iff the annul
1283 bit is 1. */
1284 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1285 }
1286 else
1287 {
386c036b
MK
1288 /* For unconditional branches, return the target if its
1289 specified condition is "always" and return nPC + 4 if the
1290 condition is "never". If the annul bit is 1, set *NPC to
1291 zero. */
1292 if (X_COND (insn) == 0x0)
1293 pc = *npc, offset = 4;
1294 if (X_A (insn))
1295 *npc = 0;
1296
1297 gdb_assert (offset != 0);
1298 return pc + offset;
c906108c
SS
1299 }
1300 }
386c036b
MK
1301
1302 return 0;
c906108c
SS
1303}
1304
c893be75 1305static CORE_ADDR
0b1b3e42 1306sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1307{
1308 return 0;
1309}
1310
e6590a1b 1311int
0b1b3e42 1312sparc_software_single_step (struct frame_info *frame)
386c036b 1313{
0b1b3e42 1314 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1315 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1316 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1317 CORE_ADDR npc, nnpc;
c906108c 1318
e0cd558a 1319 CORE_ADDR pc, orig_npc;
c906108c 1320
0b1b3e42
UW
1321 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1322 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1323
e0cd558a 1324 /* Analyze the instruction at PC. */
0b1b3e42 1325 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1326 if (npc != 0)
6c95b8df 1327 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1328
e0cd558a 1329 if (nnpc != 0)
6c95b8df 1330 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1331
e0cd558a
UW
1332 /* Assert that we have set at least one breakpoint, and that
1333 they're not set at the same spot - unless we're going
1334 from here straight to NULL, i.e. a call or jump to 0. */
1335 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1336 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1337
1338 return 1;
386c036b
MK
1339}
1340
1341static void
61a1198a 1342sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1343{
61a1198a 1344 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1345
61a1198a
UW
1346 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1347 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1348}
1349\f
5af923b0 1350
a54124c5
MK
1351/* Return the appropriate register set for the core section identified
1352 by SECT_NAME and SECT_SIZE. */
1353
63807e1d 1354static const struct regset *
a54124c5
MK
1355sparc_regset_from_core_section (struct gdbarch *gdbarch,
1356 const char *sect_name, size_t sect_size)
1357{
1358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1359
c558d81a 1360 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1361 return tdep->gregset;
1362
c558d81a 1363 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1364 return tdep->fpregset;
1365
1366 return NULL;
1367}
1368\f
1369
386c036b
MK
1370static struct gdbarch *
1371sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1372{
1373 struct gdbarch_tdep *tdep;
1374 struct gdbarch *gdbarch;
c906108c 1375
386c036b
MK
1376 /* If there is already a candidate, use it. */
1377 arches = gdbarch_list_lookup_by_info (arches, &info);
1378 if (arches != NULL)
1379 return arches->gdbarch;
c906108c 1380
386c036b 1381 /* Allocate space for the new architecture. */
1390fcc2 1382 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1383 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1384
386c036b
MK
1385 tdep->pc_regnum = SPARC32_PC_REGNUM;
1386 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1387 tdep->step_trap = sparc_step_trap;
386c036b
MK
1388
1389 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1390 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1391
1392 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1393 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1394 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1395 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1396 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1397 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1398
1399 /* Register numbers of various important registers. */
1400 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1401 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1402 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1403
1404 /* Call dummy code. */
1405 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1406 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1407 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1408
b9d4c5ed 1409 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1410 set_gdbarch_stabs_argument_has_addr
1411 (gdbarch, sparc32_stabs_argument_has_addr);
1412
1413 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1414
1415 /* Stack grows downward. */
1416 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1417
386c036b 1418 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1419
386c036b 1420 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1421
386c036b 1422 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1423
386c036b
MK
1424 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1425 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1426
236369e7 1427 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1428
386c036b 1429 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1430
386c036b
MK
1431 frame_base_set_default (gdbarch, &sparc32_frame_base);
1432
f5a9b87d
DM
1433 /* Hook in the DWARF CFI frame unwinder. */
1434 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1435 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1436 StackGhost issues have been resolved. */
1437
b2a0b9b2
DM
1438 /* Hook in ABI-specific overrides, if they have been registered. */
1439 gdbarch_init_osabi (info, gdbarch);
1440
236369e7 1441 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1442
a54124c5 1443 /* If we have register sets, enable the generic core file support. */
4c72d57a 1444 if (tdep->gregset)
a54124c5
MK
1445 set_gdbarch_regset_from_core_section (gdbarch,
1446 sparc_regset_from_core_section);
1447
386c036b
MK
1448 return gdbarch;
1449}
1450\f
1451/* Helper functions for dealing with register windows. */
1452
1453void
1454sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1455{
e17a4113
UW
1456 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1457 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1458 int offset = 0;
e1613aba 1459 gdb_byte buf[8];
386c036b
MK
1460 int i;
1461
1462 if (sp & 1)
1463 {
1464 /* Registers are 64-bit. */
1465 sp += BIAS;
c906108c 1466
386c036b
MK
1467 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1468 {
1469 if (regnum == i || regnum == -1)
1470 {
1471 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1472
1473 /* Handle StackGhost. */
1474 if (i == SPARC_I7_REGNUM)
1475 {
e17a4113
UW
1476 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1477 ULONGEST i7;
f700a364 1478
e17a4113
UW
1479 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1480 store_unsigned_integer (buf + offset, 8, byte_order,
1481 i7 ^ wcookie);
f700a364
MK
1482 }
1483
386c036b
MK
1484 regcache_raw_supply (regcache, i, buf);
1485 }
1486 }
1487 }
1488 else
c906108c 1489 {
386c036b
MK
1490 /* Registers are 32-bit. Toss any sign-extension of the stack
1491 pointer. */
1492 sp &= 0xffffffffUL;
c906108c 1493
386c036b
MK
1494 /* Clear out the top half of the temporary buffer, and put the
1495 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1496 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1497 {
386c036b
MK
1498 memset (buf, 0, 4);
1499 offset = 4;
1500 }
c906108c 1501
386c036b
MK
1502 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1503 {
1504 if (regnum == i || regnum == -1)
1505 {
1506 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1507 buf + offset, 4);
42cdca6c
MK
1508
1509 /* Handle StackGhost. */
1510 if (i == SPARC_I7_REGNUM)
1511 {
e17a4113
UW
1512 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1513 ULONGEST i7;
42cdca6c 1514
e17a4113
UW
1515 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1516 store_unsigned_integer (buf + offset, 4, byte_order,
1517 i7 ^ wcookie);
42cdca6c
MK
1518 }
1519
386c036b
MK
1520 regcache_raw_supply (regcache, i, buf);
1521 }
c906108c
SS
1522 }
1523 }
c906108c 1524}
c906108c
SS
1525
1526void
386c036b
MK
1527sparc_collect_rwindow (const struct regcache *regcache,
1528 CORE_ADDR sp, int regnum)
c906108c 1529{
e17a4113
UW
1530 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1532 int offset = 0;
e1613aba 1533 gdb_byte buf[8];
386c036b 1534 int i;
5af923b0 1535
386c036b 1536 if (sp & 1)
5af923b0 1537 {
386c036b
MK
1538 /* Registers are 64-bit. */
1539 sp += BIAS;
c906108c 1540
386c036b
MK
1541 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1542 {
1543 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1544 {
1545 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1546
1547 /* Handle StackGhost. */
1548 if (i == SPARC_I7_REGNUM)
1549 {
e17a4113
UW
1550 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1551 ULONGEST i7;
f700a364 1552
e17a4113
UW
1553 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1554 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1555 }
1556
386c036b
MK
1557 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1558 }
1559 }
5af923b0
MS
1560 }
1561 else
1562 {
386c036b
MK
1563 /* Registers are 32-bit. Toss any sign-extension of the stack
1564 pointer. */
1565 sp &= 0xffffffffUL;
1566
1567 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1568 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1569 offset = 4;
1570
1571 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1572 {
1573 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1574 {
1575 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1576
1577 /* Handle StackGhost. */
1578 if (i == SPARC_I7_REGNUM)
1579 {
e17a4113
UW
1580 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1581 ULONGEST i7;
42cdca6c 1582
e17a4113
UW
1583 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1584 store_unsigned_integer (buf + offset, 4, byte_order,
1585 i7 ^ wcookie);
42cdca6c
MK
1586 }
1587
386c036b
MK
1588 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1589 buf + offset, 4);
1590 }
1591 }
5af923b0 1592 }
c906108c
SS
1593}
1594
386c036b
MK
1595/* Helper functions for dealing with register sets. */
1596
c906108c 1597void
386c036b
MK
1598sparc32_supply_gregset (const struct sparc_gregset *gregset,
1599 struct regcache *regcache,
1600 int regnum, const void *gregs)
c906108c 1601{
e1613aba 1602 const gdb_byte *regs = gregs;
386c036b 1603 int i;
5af923b0 1604
386c036b
MK
1605 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1606 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1607 regs + gregset->r_psr_offset);
c906108c 1608
386c036b
MK
1609 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1610 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1611 regs + gregset->r_pc_offset);
5af923b0 1612
386c036b
MK
1613 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1614 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1615 regs + gregset->r_npc_offset);
5af923b0 1616
386c036b
MK
1617 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1618 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1619 regs + gregset->r_y_offset);
5af923b0 1620
386c036b
MK
1621 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1622 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1623
386c036b 1624 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1625 {
386c036b
MK
1626 int offset = gregset->r_g1_offset;
1627
1628 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1629 {
1630 if (regnum == i || regnum == -1)
1631 regcache_raw_supply (regcache, i, regs + offset);
1632 offset += 4;
1633 }
c906108c 1634 }
386c036b
MK
1635
1636 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1637 {
386c036b
MK
1638 /* Not all of the register set variants include Locals and
1639 Inputs. For those that don't, we read them off the stack. */
1640 if (gregset->r_l0_offset == -1)
1641 {
1642 ULONGEST sp;
1643
1644 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1645 sparc_supply_rwindow (regcache, sp, regnum);
1646 }
1647 else
1648 {
1649 int offset = gregset->r_l0_offset;
1650
1651 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1652 {
1653 if (regnum == i || regnum == -1)
1654 regcache_raw_supply (regcache, i, regs + offset);
1655 offset += 4;
1656 }
1657 }
c906108c
SS
1658 }
1659}
1660
c5aa993b 1661void
386c036b
MK
1662sparc32_collect_gregset (const struct sparc_gregset *gregset,
1663 const struct regcache *regcache,
1664 int regnum, void *gregs)
c906108c 1665{
e1613aba 1666 gdb_byte *regs = gregs;
386c036b 1667 int i;
c5aa993b 1668
386c036b
MK
1669 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1670 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1671 regs + gregset->r_psr_offset);
60054393 1672
386c036b
MK
1673 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1674 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1675 regs + gregset->r_pc_offset);
1676
1677 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1678 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1679 regs + gregset->r_npc_offset);
5af923b0 1680
386c036b
MK
1681 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1682 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1683 regs + gregset->r_y_offset);
1684
1685 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1686 {
386c036b
MK
1687 int offset = gregset->r_g1_offset;
1688
1689 /* %g0 is always zero. */
1690 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1691 {
1692 if (regnum == i || regnum == -1)
1693 regcache_raw_collect (regcache, i, regs + offset);
1694 offset += 4;
1695 }
5af923b0 1696 }
386c036b
MK
1697
1698 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1699 {
386c036b
MK
1700 /* Not all of the register set variants include Locals and
1701 Inputs. For those that don't, we read them off the stack. */
1702 if (gregset->r_l0_offset != -1)
1703 {
1704 int offset = gregset->r_l0_offset;
1705
1706 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1707 {
1708 if (regnum == i || regnum == -1)
1709 regcache_raw_collect (regcache, i, regs + offset);
1710 offset += 4;
1711 }
1712 }
5af923b0 1713 }
c906108c
SS
1714}
1715
c906108c 1716void
386c036b
MK
1717sparc32_supply_fpregset (struct regcache *regcache,
1718 int regnum, const void *fpregs)
c906108c 1719{
e1613aba 1720 const gdb_byte *regs = fpregs;
386c036b 1721 int i;
60054393 1722
386c036b 1723 for (i = 0; i < 32; i++)
c906108c 1724 {
386c036b
MK
1725 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1726 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1727 }
5af923b0 1728
386c036b
MK
1729 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1730 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1731}
1732
386c036b
MK
1733void
1734sparc32_collect_fpregset (const struct regcache *regcache,
1735 int regnum, void *fpregs)
c906108c 1736{
e1613aba 1737 gdb_byte *regs = fpregs;
386c036b 1738 int i;
c906108c 1739
386c036b
MK
1740 for (i = 0; i < 32; i++)
1741 {
1742 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1743 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1744 }
c906108c 1745
386c036b
MK
1746 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1747 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1748}
c906108c 1749\f
c906108c 1750
386c036b 1751/* SunOS 4. */
c906108c 1752
386c036b
MK
1753/* From <machine/reg.h>. */
1754const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1755{
386c036b
MK
1756 0 * 4, /* %psr */
1757 1 * 4, /* %pc */
1758 2 * 4, /* %npc */
1759 3 * 4, /* %y */
1760 -1, /* %wim */
1761 -1, /* %tbr */
1762 4 * 4, /* %g1 */
1763 -1 /* %l0 */
1764};
1765\f
c906108c 1766
386c036b
MK
1767/* Provide a prototype to silence -Wmissing-prototypes. */
1768void _initialize_sparc_tdep (void);
c906108c
SS
1769
1770void
386c036b 1771_initialize_sparc_tdep (void)
c906108c 1772{
386c036b 1773 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 1774}
This page took 1.118411 seconds and 4 git commands to generate.