Use gdb_bfd_sections in dwarf2/read.c
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
b811d2c2 3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
5af923b0 21#include "arch-utils.h"
386c036b 22#include "dis-asm.h"
b41c5a85 23#include "dwarf2.h"
82ca8957 24#include "dwarf2/frame.h"
c906108c 25#include "frame.h"
386c036b
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
c906108c 30#include "inferior.h"
386c036b
MK
31#include "symtab.h"
32#include "objfiles.h"
33#include "osabi.h"
34#include "regcache.h"
c906108c 35#include "target.h"
3f7b46f2 36#include "target-descriptions.h"
c906108c 37#include "value.h"
c906108c 38
386c036b 39#include "sparc-tdep.h"
e6f9c00b 40#include "sparc-ravenscar-thread.h"
325fac50 41#include <algorithm>
c906108c 42
a54124c5
MK
43struct regset;
44
9eb42ed1
MK
45/* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 48 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 49 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59/* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 65 big-endian IA-64 Quad-Precision format. */
8da61cc4 66#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
67
68/* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71#undef BIAS
72#define BIAS 2047
73
74/* Macros to extract fields from SPARC instructions. */
c906108c
SS
75#define X_OP(i) (((i) >> 30) & 0x3)
76#define X_RD(i) (((i) >> 25) & 0x1f)
77#define X_A(i) (((i) >> 29) & 1)
78#define X_COND(i) (((i) >> 25) & 0xf)
79#define X_OP2(i) (((i) >> 22) & 0x7)
80#define X_IMM22(i) ((i) & 0x3fffff)
81#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 82#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 83#define X_RS2(i) ((i) & 0x1f)
c906108c 84#define X_I(i) (((i) >> 13) & 1)
c906108c 85/* Sign extension macros. */
c906108c 86#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 87#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
8d1b3521 88#define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
961842b2
JM
90/* Macros to identify some instructions. */
91/* RETURN (RETT in V8) */
92#define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
c906108c 93
386c036b
MK
94/* Fetch the instruction at PC. Instructions are always big-endian
95 even if the processor operates in little-endian mode. */
96
97unsigned long
98sparc_fetch_instruction (CORE_ADDR pc)
c906108c 99{
e1613aba 100 gdb_byte buf[4];
386c036b
MK
101 unsigned long insn;
102 int i;
103
690668cc 104 /* If we can't read the instruction at PC, return zero. */
8defab1a 105 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 106 return 0;
c906108c 107
386c036b
MK
108 insn = 0;
109 for (i = 0; i < sizeof (buf); i++)
110 insn = (insn << 8) | buf[i];
111 return insn;
112}
42cdca6c
MK
113\f
114
5465445a
JB
115/* Return non-zero if the instruction corresponding to PC is an "unimp"
116 instruction. */
117
118static int
119sparc_is_unimp_insn (CORE_ADDR pc)
120{
121 const unsigned long insn = sparc_fetch_instruction (pc);
122
123 return ((insn & 0xc1c00000) == 0);
124}
125
d0b5971a
JM
126/* Return non-zero if the instruction corresponding to PC is an
127 "annulled" branch, i.e. the annul bit is set. */
128
129int
130sparc_is_annulled_branch_insn (CORE_ADDR pc)
131{
132 /* The branch instructions featuring an annul bit can be identified
133 by the following bit patterns:
134
135 OP=0
136 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
137 OP2=2: Branch on Integer Condition Codes (Bcc).
138 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
139 OP2=6: Branch on FP Condition Codes (FBcc).
140 OP2=3 && Bit28=0:
141 Branch on Integer Register with Prediction (BPr).
142
143 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
144 coprocessor branch instructions (Op2=7). */
145
146 const unsigned long insn = sparc_fetch_instruction (pc);
147 const unsigned op2 = X_OP2 (insn);
148
149 if ((X_OP (insn) == 0)
150 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
151 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
152 return X_A (insn);
153 else
154 return 0;
155}
156
42cdca6c
MK
157/* OpenBSD/sparc includes StackGhost, which according to the author's
158 website http://stackghost.cerias.purdue.edu "... transparently and
159 automatically protects applications' stack frames; more
160 specifically, it guards the return pointers. The protection
161 mechanisms require no application source or binary modification and
162 imposes only a negligible performance penalty."
163
164 The same website provides the following description of how
165 StackGhost works:
166
167 "StackGhost interfaces with the kernel trap handler that would
168 normally write out registers to the stack and the handler that
169 would read them back in. By XORing a cookie into the
170 return-address saved in the user stack when it is actually written
171 to the stack, and then XOR it out when the return-address is pulled
172 from the stack, StackGhost can cause attacker corrupted return
173 pointers to behave in a manner the attacker cannot predict.
174 StackGhost can also use several unused bits in the return pointer
175 to detect a smashed return pointer and abort the process."
176
177 For GDB this means that whenever we're reading %i7 from a stack
178 frame's window save area, we'll have to XOR the cookie.
179
180 More information on StackGuard can be found on in:
181
c378eb4e 182 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
183 Stack Protection." 2001. Published in USENIX Security Symposium
184 '01. */
185
186/* Fetch StackGhost Per-Process XOR cookie. */
187
188ULONGEST
e17a4113 189sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 190{
e17a4113 191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8b88a78e 192 struct target_ops *ops = current_top_target ();
e1613aba 193 gdb_byte buf[8];
baf92889
MK
194 int len;
195
13547ab6 196 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
197 if (len == -1)
198 return 0;
42cdca6c 199
baf92889
MK
200 /* We should have either an 32-bit or an 64-bit cookie. */
201 gdb_assert (len == 4 || len == 8);
202
e17a4113 203 return extract_unsigned_integer (buf, len, byte_order);
baf92889 204}
386c036b 205\f
baf92889 206
386c036b
MK
207/* The functions on this page are intended to be used to classify
208 function arguments. */
c906108c 209
386c036b 210/* Check whether TYPE is "Integral or Pointer". */
c906108c 211
386c036b
MK
212static int
213sparc_integral_or_pointer_p (const struct type *type)
c906108c 214{
80ad1639
MK
215 int len = TYPE_LENGTH (type);
216
78134374 217 switch (type->code ())
c906108c 218 {
386c036b
MK
219 case TYPE_CODE_INT:
220 case TYPE_CODE_BOOL:
221 case TYPE_CODE_CHAR:
222 case TYPE_CODE_ENUM:
223 case TYPE_CODE_RANGE:
80ad1639
MK
224 /* We have byte, half-word, word and extended-word/doubleword
225 integral types. The doubleword is an extension to the
226 original 32-bit ABI by the SCD 2.4.x. */
227 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
228 case TYPE_CODE_PTR:
229 case TYPE_CODE_REF:
aa006118 230 case TYPE_CODE_RVALUE_REF:
80ad1639
MK
231 /* Allow either 32-bit or 64-bit pointers. */
232 return (len == 4 || len == 8);
386c036b
MK
233 default:
234 break;
235 }
c906108c 236
386c036b
MK
237 return 0;
238}
c906108c 239
386c036b 240/* Check whether TYPE is "Floating". */
c906108c 241
386c036b
MK
242static int
243sparc_floating_p (const struct type *type)
244{
78134374 245 switch (type->code ())
c906108c 246 {
386c036b
MK
247 case TYPE_CODE_FLT:
248 {
249 int len = TYPE_LENGTH (type);
250 return (len == 4 || len == 8 || len == 16);
251 }
252 default:
253 break;
254 }
255
256 return 0;
257}
c906108c 258
fe10a582
DM
259/* Check whether TYPE is "Complex Floating". */
260
261static int
262sparc_complex_floating_p (const struct type *type)
263{
78134374 264 switch (type->code ())
fe10a582
DM
265 {
266 case TYPE_CODE_COMPLEX:
267 {
268 int len = TYPE_LENGTH (type);
269 return (len == 8 || len == 16 || len == 32);
270 }
271 default:
272 break;
273 }
274
275 return 0;
276}
277
0497f5b0
JB
278/* Check whether TYPE is "Structure or Union".
279
280 In terms of Ada subprogram calls, arrays are treated the same as
281 struct and union types. So this function also returns non-zero
282 for array types. */
c906108c 283
386c036b
MK
284static int
285sparc_structure_or_union_p (const struct type *type)
286{
78134374 287 switch (type->code ())
386c036b
MK
288 {
289 case TYPE_CODE_STRUCT:
290 case TYPE_CODE_UNION:
0497f5b0 291 case TYPE_CODE_ARRAY:
386c036b
MK
292 return 1;
293 default:
294 break;
c906108c 295 }
386c036b
MK
296
297 return 0;
c906108c 298}
386c036b 299
05bc7456
JB
300/* Return true if TYPE is returned by memory, false if returned by
301 register. */
1933fd8e
VM
302
303static bool
304sparc_structure_return_p (const struct type *type)
305{
bd63c870 306 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1933fd8e 307 {
05bc7456
JB
308 /* Float vectors are always returned by memory. */
309 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
310 return true;
311 /* Integer vectors are returned by memory if the vector size
312 is greater than 8 bytes long. */
313 return (TYPE_LENGTH (type) > 8);
314 }
1933fd8e 315
05bc7456
JB
316 if (sparc_floating_p (type))
317 {
318 /* Floating point types are passed by register for size 4 and
319 8 bytes, and by memory for size 16 bytes. */
320 return (TYPE_LENGTH (type) == 16);
1933fd8e 321 }
05bc7456
JB
322
323 /* Other than that, only aggregates of all sizes get returned by
324 memory. */
1933fd8e
VM
325 return sparc_structure_or_union_p (type);
326}
327
05bc7456
JB
328/* Return true if arguments of the given TYPE are passed by
329 memory; false if returned by register. */
1933fd8e
VM
330
331static bool
05bc7456 332sparc_arg_by_memory_p (const struct type *type)
1933fd8e 333{
bd63c870 334 if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1933fd8e 335 {
05bc7456
JB
336 /* Float vectors are always passed by memory. */
337 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
338 return true;
339 /* Integer vectors are passed by memory if the vector size
340 is greater than 8 bytes long. */
341 return (TYPE_LENGTH (type) > 8);
1933fd8e 342 }
05bc7456
JB
343
344 /* Floats are passed by register for size 4 and 8 bytes, and by memory
345 for size 16 bytes. */
346 if (sparc_floating_p (type))
347 return (TYPE_LENGTH (type) == 16);
348
349 /* Complex floats and aggregates of all sizes are passed by memory. */
350 if (sparc_complex_floating_p (type) || sparc_structure_or_union_p (type))
351 return true;
352
353 /* Everything else gets passed by register. */
354 return false;
1933fd8e
VM
355}
356
386c036b 357/* Register information. */
7a36499a
IR
358#define SPARC32_FPU_REGISTERS \
359 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
360 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
361 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
362 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
363#define SPARC32_CP0_REGISTERS \
364 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
386c036b 365
27087b7f
TT
366static const char * const sparc_core_register_names[] = {
367 SPARC_CORE_REGISTERS
368};
369static const char * const sparc32_fpu_register_names[] = {
370 SPARC32_FPU_REGISTERS
371};
372static const char * const sparc32_cp0_register_names[] = {
373 SPARC32_CP0_REGISTERS
374};
3f7b46f2 375
27087b7f 376static const char * const sparc32_register_names[] =
5af923b0 377{
7a36499a
IR
378 SPARC_CORE_REGISTERS,
379 SPARC32_FPU_REGISTERS,
380 SPARC32_CP0_REGISTERS
5af923b0
MS
381};
382
386c036b
MK
383/* Total number of registers. */
384#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 385
386c036b
MK
386/* We provide the aliases %d0..%d30 for the floating registers as
387 "psuedo" registers. */
388
27087b7f 389static const char * const sparc32_pseudo_register_names[] =
386c036b
MK
390{
391 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
392 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
393};
394
395/* Total number of pseudo registers. */
396#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
397
7a36499a
IR
398/* Return the name of pseudo register REGNUM. */
399
400static const char *
401sparc32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
402{
403 regnum -= gdbarch_num_regs (gdbarch);
404
405 if (regnum < SPARC32_NUM_PSEUDO_REGS)
406 return sparc32_pseudo_register_names[regnum];
407
408 internal_error (__FILE__, __LINE__,
409 _("sparc32_pseudo_register_name: bad register number %d"),
410 regnum);
411}
412
386c036b
MK
413/* Return the name of register REGNUM. */
414
415static const char *
d93859e2 416sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b 417{
3f7b46f2
IR
418 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
419 return tdesc_register_name (gdbarch, regnum);
420
7a36499a 421 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
386c036b
MK
422 return sparc32_register_names[regnum];
423
7a36499a 424 return sparc32_pseudo_register_name (gdbarch, regnum);
386c036b 425}
2d457077 426\f
209bd28e 427/* Construct types for ISA-specific registers. */
2d457077 428
209bd28e
UW
429static struct type *
430sparc_psr_type (struct gdbarch *gdbarch)
431{
432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 433
209bd28e
UW
434 if (!tdep->sparc_psr_type)
435 {
436 struct type *type;
2d457077 437
77b7c781 438 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 32);
209bd28e
UW
439 append_flags_type_flag (type, 5, "ET");
440 append_flags_type_flag (type, 6, "PS");
441 append_flags_type_flag (type, 7, "S");
442 append_flags_type_flag (type, 12, "EF");
443 append_flags_type_flag (type, 13, "EC");
2d457077 444
209bd28e
UW
445 tdep->sparc_psr_type = type;
446 }
447
448 return tdep->sparc_psr_type;
449}
450
451static struct type *
452sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 453{
209bd28e
UW
454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
455
456 if (!tdep->sparc_fsr_type)
457 {
458 struct type *type;
459
77b7c781 460 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 32);
209bd28e
UW
461 append_flags_type_flag (type, 0, "NXA");
462 append_flags_type_flag (type, 1, "DZA");
463 append_flags_type_flag (type, 2, "UFA");
464 append_flags_type_flag (type, 3, "OFA");
465 append_flags_type_flag (type, 4, "NVA");
466 append_flags_type_flag (type, 5, "NXC");
467 append_flags_type_flag (type, 6, "DZC");
468 append_flags_type_flag (type, 7, "UFC");
469 append_flags_type_flag (type, 8, "OFC");
470 append_flags_type_flag (type, 9, "NVC");
471 append_flags_type_flag (type, 22, "NS");
472 append_flags_type_flag (type, 23, "NXM");
473 append_flags_type_flag (type, 24, "DZM");
474 append_flags_type_flag (type, 25, "UFM");
475 append_flags_type_flag (type, 26, "OFM");
476 append_flags_type_flag (type, 27, "NVM");
477
478 tdep->sparc_fsr_type = type;
479 }
480
481 return tdep->sparc_fsr_type;
2d457077 482}
386c036b 483
7a36499a
IR
484/* Return the GDB type object for the "standard" data type of data in
485 pseudo register REGNUM. */
486
487static struct type *
488sparc32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
489{
490 regnum -= gdbarch_num_regs (gdbarch);
491
492 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
493 return builtin_type (gdbarch)->builtin_double;
494
495 internal_error (__FILE__, __LINE__,
496 _("sparc32_pseudo_register_type: bad register number %d"),
497 regnum);
498}
499
386c036b 500/* Return the GDB type object for the "standard" data type of data in
c378eb4e 501 register REGNUM. */
386c036b
MK
502
503static struct type *
504sparc32_register_type (struct gdbarch *gdbarch, int regnum)
505{
3f7b46f2
IR
506 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
507 return tdesc_register_type (gdbarch, regnum);
508
386c036b 509 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 510 return builtin_type (gdbarch)->builtin_float;
386c036b 511
386c036b 512 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 513 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
514
515 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 516 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 517
2d457077 518 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 519 return sparc_psr_type (gdbarch);
2d457077
MK
520
521 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 522 return sparc_fsr_type (gdbarch);
2d457077 523
7a36499a
IR
524 if (regnum >= gdbarch_num_regs (gdbarch))
525 return sparc32_pseudo_register_type (gdbarch, regnum);
526
df4df182 527 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
528}
529
05d1431c 530static enum register_status
386c036b 531sparc32_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 532 readable_regcache *regcache,
e1613aba 533 int regnum, gdb_byte *buf)
386c036b 534{
05d1431c
PA
535 enum register_status status;
536
7a36499a 537 regnum -= gdbarch_num_regs (gdbarch);
386c036b
MK
538 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
539
540 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
03f50fc8 541 status = regcache->raw_read (regnum, buf);
05d1431c 542 if (status == REG_VALID)
03f50fc8 543 status = regcache->raw_read (regnum + 1, buf + 4);
05d1431c 544 return status;
386c036b
MK
545}
546
547static void
548sparc32_pseudo_register_write (struct gdbarch *gdbarch,
549 struct regcache *regcache,
e1613aba 550 int regnum, const gdb_byte *buf)
386c036b 551{
7a36499a 552 regnum -= gdbarch_num_regs (gdbarch);
386c036b
MK
553 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
554
555 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
10eaee5f
SM
556 regcache->raw_write (regnum, buf);
557 regcache->raw_write (regnum + 1, buf + 4);
386c036b
MK
558}
559\f
c9cf6e20 560/* Implement the stack_frame_destroyed_p gdbarch method. */
961842b2
JM
561
562int
c9cf6e20 563sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
961842b2
JM
564{
565 /* This function must return true if we are one instruction after an
566 instruction that destroyed the stack frame of the current
567 function. The SPARC instructions used to restore the callers
568 stack frame are RESTORE and RETURN/RETT.
569
570 Of these RETURN/RETT is a branch instruction and thus we return
571 true if we are in its delay slot.
572
573 RESTORE is almost always found in the delay slot of a branch
574 instruction that transfers control to the caller, such as JMPL.
575 Thus the next instruction is in the caller frame and we don't
576 need to do anything about it. */
577
578 unsigned int insn = sparc_fetch_instruction (pc - 4);
579
580 return X_RETTURN (insn);
581}
582\f
386c036b 583
49a45ecf
JB
584static CORE_ADDR
585sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
586{
587 /* The ABI requires double-word alignment. */
588 return address & ~0x7;
589}
590
386c036b
MK
591static CORE_ADDR
592sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 593 CORE_ADDR funcaddr,
386c036b
MK
594 struct value **args, int nargs,
595 struct type *value_type,
e4fd649a
UW
596 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
597 struct regcache *regcache)
c906108c 598{
e17a4113
UW
599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
600
386c036b
MK
601 *bp_addr = sp - 4;
602 *real_pc = funcaddr;
603
d80b854b 604 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 605 {
e1613aba 606 gdb_byte buf[4];
386c036b
MK
607
608 /* This is an UNIMP instruction. */
e17a4113
UW
609 store_unsigned_integer (buf, 4, byte_order,
610 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
611 write_memory (sp - 8, buf, 4);
612 return sp - 8;
c906108c
SS
613 }
614
386c036b
MK
615 return sp - 4;
616}
617
618static CORE_ADDR
619sparc32_store_arguments (struct regcache *regcache, int nargs,
620 struct value **args, CORE_ADDR sp,
cf84fa6b
AH
621 function_call_return_method return_method,
622 CORE_ADDR struct_addr)
386c036b 623{
ac7936df 624 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 625 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
626 /* Number of words in the "parameter array". */
627 int num_elements = 0;
628 int element = 0;
629 int i;
630
631 for (i = 0; i < nargs; i++)
c906108c 632 {
4991999e 633 struct type *type = value_type (args[i]);
386c036b
MK
634 int len = TYPE_LENGTH (type);
635
05bc7456 636 if (sparc_arg_by_memory_p (type))
c906108c 637 {
386c036b
MK
638 /* Structure, Union and Quad-Precision Arguments. */
639 sp -= len;
640
641 /* Use doubleword alignment for these values. That's always
642 correct, and wasting a few bytes shouldn't be a problem. */
643 sp &= ~0x7;
644
0fd88904 645 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
646 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
647 num_elements++;
648 }
649 else if (sparc_floating_p (type))
650 {
651 /* Floating arguments. */
652 gdb_assert (len == 4 || len == 8);
653 num_elements += (len / 4);
c906108c 654 }
c5aa993b
JM
655 else
656 {
05bc7456 657 /* Arguments passed via the General Purpose Registers. */
386c036b 658 num_elements += ((len + 3) / 4);
c5aa993b 659 }
c906108c 660 }
c906108c 661
386c036b 662 /* Always allocate at least six words. */
325fac50 663 sp -= std::max (6, num_elements) * 4;
c906108c 664
386c036b
MK
665 /* The psABI says that "Software convention requires space for the
666 struct/union return value pointer, even if the word is unused." */
667 sp -= 4;
c906108c 668
386c036b
MK
669 /* The psABI says that "Although software convention and the
670 operating system require every stack frame to be doubleword
671 aligned." */
672 sp &= ~0x7;
c906108c 673
386c036b 674 for (i = 0; i < nargs; i++)
c906108c 675 {
0fd88904 676 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 677 struct type *type = value_type (args[i]);
386c036b 678 int len = TYPE_LENGTH (type);
1933fd8e
VM
679 gdb_byte buf[4];
680
681 if (len < 4)
682 {
683 memset (buf, 0, 4 - len);
684 memcpy (buf + 4 - len, valbuf, len);
685 valbuf = buf;
686 len = 4;
687 }
c906108c 688
386c036b 689 gdb_assert (len == 4 || len == 8);
c906108c 690
386c036b
MK
691 if (element < 6)
692 {
693 int regnum = SPARC_O0_REGNUM + element;
c906108c 694
b66f5587 695 regcache->cooked_write (regnum, valbuf);
386c036b 696 if (len > 4 && element < 5)
b66f5587 697 regcache->cooked_write (regnum + 1, valbuf + 4);
386c036b 698 }
5af923b0 699
386c036b
MK
700 /* Always store the argument in memory. */
701 write_memory (sp + 4 + element * 4, valbuf, len);
702 element += len / 4;
703 }
c906108c 704
386c036b 705 gdb_assert (element == num_elements);
c906108c 706
cf84fa6b 707 if (return_method == return_method_struct)
c906108c 708 {
e1613aba 709 gdb_byte buf[4];
c906108c 710
e17a4113 711 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
712 write_memory (sp, buf, 4);
713 }
c906108c 714
386c036b 715 return sp;
c906108c
SS
716}
717
386c036b 718static CORE_ADDR
7d9b040b 719sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
720 struct regcache *regcache, CORE_ADDR bp_addr,
721 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
722 function_call_return_method return_method,
723 CORE_ADDR struct_addr)
c906108c 724{
cf84fa6b
AH
725 CORE_ADDR call_pc = (return_method == return_method_struct
726 ? (bp_addr - 12) : (bp_addr - 8));
386c036b
MK
727
728 /* Set return address. */
729 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
730
731 /* Set up function arguments. */
cf84fa6b
AH
732 sp = sparc32_store_arguments (regcache, nargs, args, sp, return_method,
733 struct_addr);
386c036b
MK
734
735 /* Allocate the 16-word window save area. */
736 sp -= 16 * 4;
c906108c 737
386c036b
MK
738 /* Stack should be doubleword aligned at this point. */
739 gdb_assert (sp % 8 == 0);
c906108c 740
386c036b
MK
741 /* Finally, update the stack pointer. */
742 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
743
744 return sp;
745}
746\f
c906108c 747
386c036b
MK
748/* Use the program counter to determine the contents and size of a
749 breakpoint instruction. Return a pointer to a string of bytes that
750 encode a breakpoint instruction, store the length of the string in
751 *LEN and optionally adjust *PC to point to the correct memory
752 location for inserting the breakpoint. */
04180708 753constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 754
04180708 755typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
386c036b 756\f
c906108c 757
386c036b 758/* Allocate and initialize a frame cache. */
c906108c 759
386c036b
MK
760static struct sparc_frame_cache *
761sparc_alloc_frame_cache (void)
762{
763 struct sparc_frame_cache *cache;
c906108c 764
386c036b 765 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 766
386c036b
MK
767 /* Base address. */
768 cache->base = 0;
769 cache->pc = 0;
c906108c 770
386c036b
MK
771 /* Frameless until proven otherwise. */
772 cache->frameless_p = 1;
369c397b
JB
773 cache->frame_offset = 0;
774 cache->saved_regs_mask = 0;
775 cache->copied_regs_mask = 0;
386c036b
MK
776 cache->struct_return_p = 0;
777
778 return cache;
779}
780
b0b92586
JB
781/* GCC generates several well-known sequences of instructions at the begining
782 of each function prologue when compiling with -fstack-check. If one of
783 such sequences starts at START_PC, then return the address of the
784 instruction immediately past this sequence. Otherwise, return START_PC. */
785
786static CORE_ADDR
787sparc_skip_stack_check (const CORE_ADDR start_pc)
788{
789 CORE_ADDR pc = start_pc;
790 unsigned long insn;
2067c8d4 791 int probing_loop = 0;
b0b92586
JB
792
793 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 794 instructions, plus an optional one in the case of a probing loop:
b0b92586 795
2067c8d4
JG
796 sethi <some immediate>, %g1
797 sub %sp, %g1, %g1
798
799 or:
800
801 sethi <some immediate>, %g1
802 sethi <some immediate>, %g4
803 sub %sp, %g1, %g1
804
805 or:
806
807 sethi <some immediate>, %g1
808 sub %sp, %g1, %g1
809 sethi <some immediate>, %g4
810
811 If the optional instruction is found (setting g4), assume that a
812 probing loop will follow. */
813
814 /* sethi <some immediate>, %g1 */
b0b92586
JB
815 insn = sparc_fetch_instruction (pc);
816 pc = pc + 4;
817 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
818 return start_pc;
819
2067c8d4 820 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
821 insn = sparc_fetch_instruction (pc);
822 pc = pc + 4;
2067c8d4
JG
823 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
824 {
825 probing_loop = 1;
826 insn = sparc_fetch_instruction (pc);
827 pc = pc + 4;
828 }
829
830 /* sub %sp, %g1, %g1 */
b0b92586
JB
831 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
832 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
833 return start_pc;
834
835 insn = sparc_fetch_instruction (pc);
836 pc = pc + 4;
837
2067c8d4
JG
838 /* optional: sethi <some immediate>, %g4 */
839 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
840 {
841 probing_loop = 1;
842 insn = sparc_fetch_instruction (pc);
843 pc = pc + 4;
844 }
845
b0b92586
JB
846 /* First possible sequence:
847 [first two instructions above]
848 clr [%g1 - some immediate] */
849
850 /* clr [%g1 - some immediate] */
851 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
852 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
853 {
854 /* Valid stack-check sequence, return the new PC. */
855 return pc;
856 }
857
858 /* Second possible sequence: A small number of probes.
859 [first two instructions above]
860 clr [%g1]
861 add %g1, -<some immediate>, %g1
862 clr [%g1]
863 [repeat the two instructions above any (small) number of times]
864 clr [%g1 - some immediate] */
865
866 /* clr [%g1] */
867 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
868 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
869 {
870 while (1)
871 {
872 /* add %g1, -<some immediate>, %g1 */
873 insn = sparc_fetch_instruction (pc);
874 pc = pc + 4;
875 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
876 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
877 break;
878
879 /* clr [%g1] */
880 insn = sparc_fetch_instruction (pc);
881 pc = pc + 4;
882 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
883 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
884 return start_pc;
885 }
886
887 /* clr [%g1 - some immediate] */
888 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
889 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
890 return start_pc;
891
892 /* We found a valid stack-check sequence, return the new PC. */
893 return pc;
894 }
895
896 /* Third sequence: A probing loop.
2067c8d4 897 [first three instructions above]
b0b92586
JB
898 sub %g1, %g4, %g4
899 cmp %g1, %g4
900 be <disp>
901 add %g1, -<some immediate>, %g1
902 ba <disp>
903 clr [%g1]
2067c8d4
JG
904
905 And an optional last probe for the remainder:
906
b0b92586
JB
907 clr [%g4 - some immediate] */
908
2067c8d4 909 if (probing_loop)
b0b92586
JB
910 {
911 /* sub %g1, %g4, %g4 */
b0b92586
JB
912 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
913 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
914 return start_pc;
915
916 /* cmp %g1, %g4 */
917 insn = sparc_fetch_instruction (pc);
918 pc = pc + 4;
919 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
920 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
921 return start_pc;
922
923 /* be <disp> */
924 insn = sparc_fetch_instruction (pc);
925 pc = pc + 4;
926 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
927 return start_pc;
928
929 /* add %g1, -<some immediate>, %g1 */
930 insn = sparc_fetch_instruction (pc);
931 pc = pc + 4;
932 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
933 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
934 return start_pc;
935
936 /* ba <disp> */
937 insn = sparc_fetch_instruction (pc);
938 pc = pc + 4;
939 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
940 return start_pc;
941
2067c8d4 942 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
943 insn = sparc_fetch_instruction (pc);
944 pc = pc + 4;
2067c8d4
JG
945 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
946 && X_RD (insn) == 0 && X_RS1 (insn) == 1
947 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
b0b92586
JB
948 return start_pc;
949
2067c8d4
JG
950 /* We found a valid stack-check sequence, return the new PC. */
951
952 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
953 insn = sparc_fetch_instruction (pc);
954 pc = pc + 4;
955 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
956 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
2067c8d4
JG
957 return pc - 4;
958 else
959 return pc;
b0b92586
JB
960 }
961
962 /* No stack check code in our prologue, return the start_pc. */
963 return start_pc;
964}
965
369c397b
JB
966/* Record the effect of a SAVE instruction on CACHE. */
967
968void
969sparc_record_save_insn (struct sparc_frame_cache *cache)
970{
971 /* The frame is set up. */
972 cache->frameless_p = 0;
973
974 /* The frame pointer contains the CFA. */
975 cache->frame_offset = 0;
976
977 /* The `local' and `in' registers are all saved. */
978 cache->saved_regs_mask = 0xffff;
979
980 /* The `out' registers are all renamed. */
981 cache->copied_regs_mask = 0xff;
982}
983
984/* Do a full analysis of the prologue at PC and update CACHE accordingly.
985 Bail out early if CURRENT_PC is reached. Return the address where
986 the analysis stopped.
987
988 We handle both the traditional register window model and the single
989 register window (aka flat) model. */
990
386c036b 991CORE_ADDR
be8626e0
MD
992sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
993 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 994{
be8626e0 995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
996 unsigned long insn;
997 int offset = 0;
c906108c 998 int dest = -1;
c906108c 999
b0b92586
JB
1000 pc = sparc_skip_stack_check (pc);
1001
386c036b
MK
1002 if (current_pc <= pc)
1003 return current_pc;
1004
1005 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
1006 SPARC the linker usually defines a symbol (typically
1007 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
1008 This symbol makes us end up here with PC pointing at the start of
1009 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
1010 would do our normal prologue analysis, we would probably conclude
1011 that we've got a frame when in reality we don't, since the
1012 dynamic linker patches up the first PLT with some code that
1013 starts with a SAVE instruction. Patch up PC such that it points
1014 at the start of our PLT entry. */
3e5d3a5a 1015 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
386c036b 1016 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 1017
386c036b
MK
1018 insn = sparc_fetch_instruction (pc);
1019
369c397b
JB
1020 /* Recognize store insns and record their sources. */
1021 while (X_OP (insn) == 3
1022 && (X_OP3 (insn) == 0x4 /* stw */
1023 || X_OP3 (insn) == 0x7 /* std */
1024 || X_OP3 (insn) == 0xe) /* stx */
1025 && X_RS1 (insn) == SPARC_SP_REGNUM)
1026 {
1027 int regnum = X_RD (insn);
1028
1029 /* Recognize stores into the corresponding stack slots. */
1030 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1031 && ((X_I (insn)
1032 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
1033 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
1034 : (regnum - SPARC_L0_REGNUM) * 4))
1035 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
1036 {
1037 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
1038 if (X_OP3 (insn) == 0x7)
1039 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
1040 }
1041
1042 offset += 4;
1043
1044 insn = sparc_fetch_instruction (pc + offset);
1045 }
1046
386c036b
MK
1047 /* Recognize a SETHI insn and record its destination. */
1048 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
1049 {
1050 dest = X_RD (insn);
386c036b
MK
1051 offset += 4;
1052
369c397b 1053 insn = sparc_fetch_instruction (pc + offset);
c906108c
SS
1054 }
1055
386c036b
MK
1056 /* Allow for an arithmetic operation on DEST or %g1. */
1057 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
1058 && (X_RD (insn) == 1 || X_RD (insn) == dest))
1059 {
386c036b 1060 offset += 4;
c906108c 1061
369c397b 1062 insn = sparc_fetch_instruction (pc + offset);
c906108c 1063 }
c906108c 1064
386c036b
MK
1065 /* Check for the SAVE instruction that sets up the frame. */
1066 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 1067 {
369c397b
JB
1068 sparc_record_save_insn (cache);
1069 offset += 4;
1070 return pc + offset;
1071 }
1072
1073 /* Check for an arithmetic operation on %sp. */
1074 if (X_OP (insn) == 2
1075 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1076 && X_RS1 (insn) == SPARC_SP_REGNUM
1077 && X_RD (insn) == SPARC_SP_REGNUM)
1078 {
1079 if (X_I (insn))
1080 {
1081 cache->frame_offset = X_SIMM13 (insn);
1082 if (X_OP3 (insn) == 0)
1083 cache->frame_offset = -cache->frame_offset;
1084 }
1085 offset += 4;
1086
1087 insn = sparc_fetch_instruction (pc + offset);
1088
1089 /* Check for an arithmetic operation that sets up the frame. */
1090 if (X_OP (insn) == 2
1091 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
1092 && X_RS1 (insn) == SPARC_SP_REGNUM
1093 && X_RD (insn) == SPARC_FP_REGNUM)
1094 {
1095 cache->frameless_p = 0;
1096 cache->frame_offset = 0;
1097 /* We could check that the amount subtracted to %sp above is the
1098 same as the one added here, but this seems superfluous. */
1099 cache->copied_regs_mask |= 0x40;
1100 offset += 4;
1101
1102 insn = sparc_fetch_instruction (pc + offset);
1103 }
1104
1105 /* Check for a move (or) operation that copies the return register. */
1106 if (X_OP (insn) == 2
1107 && X_OP3 (insn) == 0x2
1108 && !X_I (insn)
1109 && X_RS1 (insn) == SPARC_G0_REGNUM
1110 && X_RS2 (insn) == SPARC_O7_REGNUM
1111 && X_RD (insn) == SPARC_I7_REGNUM)
1112 {
1113 cache->copied_regs_mask |= 0x80;
1114 offset += 4;
1115 }
1116
1117 return pc + offset;
c906108c
SS
1118 }
1119
1120 return pc;
1121}
1122
386c036b
MK
1123/* Return PC of first real instruction of the function starting at
1124 START_PC. */
f510d44e 1125
386c036b 1126static CORE_ADDR
6093d2eb 1127sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1128{
f510d44e
DM
1129 struct symtab_and_line sal;
1130 CORE_ADDR func_start, func_end;
386c036b 1131 struct sparc_frame_cache cache;
f510d44e
DM
1132
1133 /* This is the preferred method, find the end of the prologue by
1134 using the debugging information. */
1135 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1136 {
1137 sal = find_pc_line (func_start, 0);
1138
1139 if (sal.end < func_end
1140 && start_pc <= sal.end)
1141 return sal.end;
1142 }
1143
be8626e0 1144 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
1145
1146 /* The psABI says that "Although the first 6 words of arguments
1147 reside in registers, the standard stack frame reserves space for
1148 them.". It also suggests that a function may use that space to
1149 "write incoming arguments 0 to 5" into that space, and that's
1150 indeed what GCC seems to be doing. In that case GCC will
1151 generate debug information that points to the stack slots instead
1152 of the registers, so we should consider the instructions that
369c397b 1153 write out these incoming arguments onto the stack. */
075ccec8 1154
369c397b 1155 while (1)
075ccec8
MK
1156 {
1157 unsigned long insn = sparc_fetch_instruction (start_pc);
1158
369c397b
JB
1159 /* Recognize instructions that store incoming arguments into the
1160 corresponding stack slots. */
1161 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1162 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
075ccec8 1163 {
369c397b
JB
1164 int regnum = X_RD (insn);
1165
1166 /* Case of arguments still in %o[0..5]. */
1167 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1168 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1169 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1170 {
1171 start_pc += 4;
1172 continue;
1173 }
1174
1175 /* Case of arguments copied into %i[0..5]. */
1176 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1177 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1178 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1179 {
1180 start_pc += 4;
1181 continue;
1182 }
075ccec8
MK
1183 }
1184
1185 break;
1186 }
1187
1188 return start_pc;
c906108c
SS
1189}
1190
386c036b 1191/* Normal frames. */
9319a2fe 1192
386c036b 1193struct sparc_frame_cache *
236369e7 1194sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 1195{
386c036b 1196 struct sparc_frame_cache *cache;
9319a2fe 1197
386c036b 1198 if (*this_cache)
19ba03f4 1199 return (struct sparc_frame_cache *) *this_cache;
c906108c 1200
386c036b
MK
1201 cache = sparc_alloc_frame_cache ();
1202 *this_cache = cache;
c906108c 1203
236369e7 1204 cache->pc = get_frame_func (this_frame);
386c036b 1205 if (cache->pc != 0)
236369e7
JB
1206 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1207 get_frame_pc (this_frame), cache);
386c036b
MK
1208
1209 if (cache->frameless_p)
c906108c 1210 {
cbeae229
MK
1211 /* This function is frameless, so %fp (%i6) holds the frame
1212 pointer for our calling frame. Use %sp (%o6) as this frame's
1213 base address. */
1214 cache->base =
236369e7 1215 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
1216 }
1217 else
1218 {
1219 /* For normal frames, %fp (%i6) holds the frame pointer, the
1220 base address for the current stack frame. */
1221 cache->base =
236369e7 1222 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 1223 }
c906108c 1224
369c397b
JB
1225 cache->base += cache->frame_offset;
1226
5b2d44a0
MK
1227 if (cache->base & 1)
1228 cache->base += BIAS;
1229
386c036b 1230 return cache;
c906108c 1231}
c906108c 1232
aff37fc1
DM
1233static int
1234sparc32_struct_return_from_sym (struct symbol *sym)
1235{
1236 struct type *type = check_typedef (SYMBOL_TYPE (sym));
78134374 1237 enum type_code code = type->code ();
aff37fc1
DM
1238
1239 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1240 {
1241 type = check_typedef (TYPE_TARGET_TYPE (type));
1242 if (sparc_structure_or_union_p (type)
1243 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1244 return 1;
1245 }
1246
1247 return 0;
1248}
1249
386c036b 1250struct sparc_frame_cache *
236369e7 1251sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 1252{
386c036b
MK
1253 struct sparc_frame_cache *cache;
1254 struct symbol *sym;
c906108c 1255
386c036b 1256 if (*this_cache)
19ba03f4 1257 return (struct sparc_frame_cache *) *this_cache;
c906108c 1258
236369e7 1259 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 1260
386c036b
MK
1261 sym = find_pc_function (cache->pc);
1262 if (sym)
c906108c 1263 {
aff37fc1 1264 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 1265 }
5465445a
JB
1266 else
1267 {
1268 /* There is no debugging information for this function to
1269 help us determine whether this function returns a struct
1270 or not. So we rely on another heuristic which is to check
1271 the instruction at the return address and see if this is
1272 an "unimp" instruction. If it is, then it is a struct-return
1273 function. */
1274 CORE_ADDR pc;
369c397b
JB
1275 int regnum =
1276 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
5465445a 1277
236369e7 1278 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
1279 if (sparc_is_unimp_insn (pc))
1280 cache->struct_return_p = 1;
1281 }
c906108c 1282
386c036b
MK
1283 return cache;
1284}
1285
1286static void
236369e7 1287sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
1288 struct frame_id *this_id)
1289{
1290 struct sparc_frame_cache *cache =
236369e7 1291 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1292
1293 /* This marks the outermost frame. */
1294 if (cache->base == 0)
1295 return;
1296
1297 (*this_id) = frame_id_build (cache->base, cache->pc);
1298}
c906108c 1299
236369e7
JB
1300static struct value *
1301sparc32_frame_prev_register (struct frame_info *this_frame,
1302 void **this_cache, int regnum)
386c036b 1303{
e17a4113 1304 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1305 struct sparc_frame_cache *cache =
236369e7 1306 sparc32_frame_cache (this_frame, this_cache);
c906108c 1307
386c036b 1308 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1309 {
236369e7 1310 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1311
236369e7
JB
1312 /* If this functions has a Structure, Union or Quad-Precision
1313 return value, we have to skip the UNIMP instruction that encodes
1314 the size of the structure. */
1315 if (cache->struct_return_p)
1316 pc += 4;
386c036b 1317
369c397b
JB
1318 regnum =
1319 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1320 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1321 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1322 }
1323
42cdca6c
MK
1324 /* Handle StackGhost. */
1325 {
e17a4113 1326 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1327
1328 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1329 {
236369e7
JB
1330 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1331 ULONGEST i7;
1332
1333 /* Read the value in from memory. */
1334 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1335 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1336 }
1337 }
1338
369c397b 1339 /* The previous frame's `local' and `in' registers may have been saved
386c036b 1340 in the register save area. */
369c397b
JB
1341 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1342 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
c906108c 1343 {
236369e7 1344 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1345
236369e7 1346 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1347 }
c906108c 1348
369c397b
JB
1349 /* The previous frame's `out' registers may be accessible as the current
1350 frame's `in' registers. */
1351 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1352 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
386c036b 1353 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1354
236369e7 1355 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1356}
c906108c 1357
386c036b
MK
1358static const struct frame_unwind sparc32_frame_unwind =
1359{
1360 NORMAL_FRAME,
8fbca658 1361 default_frame_unwind_stop_reason,
386c036b 1362 sparc32_frame_this_id,
236369e7
JB
1363 sparc32_frame_prev_register,
1364 NULL,
1365 default_frame_sniffer
386c036b 1366};
386c036b 1367\f
c906108c 1368
386c036b 1369static CORE_ADDR
236369e7 1370sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1371{
1372 struct sparc_frame_cache *cache =
236369e7 1373 sparc32_frame_cache (this_frame, this_cache);
c906108c 1374
386c036b
MK
1375 return cache->base;
1376}
c906108c 1377
386c036b
MK
1378static const struct frame_base sparc32_frame_base =
1379{
1380 &sparc32_frame_unwind,
1381 sparc32_frame_base_address,
1382 sparc32_frame_base_address,
1383 sparc32_frame_base_address
1384};
c906108c 1385
386c036b 1386static struct frame_id
236369e7 1387sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1388{
1389 CORE_ADDR sp;
5af923b0 1390
236369e7 1391 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1392 if (sp & 1)
1393 sp += BIAS;
236369e7 1394 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1395}
1396\f
c906108c 1397
3923a2b2
MK
1398/* Extract a function return value of TYPE from REGCACHE, and copy
1399 that into VALBUF. */
5af923b0 1400
386c036b
MK
1401static void
1402sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1403 gdb_byte *valbuf)
386c036b
MK
1404{
1405 int len = TYPE_LENGTH (type);
fe10a582 1406 gdb_byte buf[32];
c906108c 1407
1933fd8e 1408 gdb_assert (!sparc_structure_return_p (type));
c906108c 1409
1933fd8e 1410 if (sparc_floating_p (type) || sparc_complex_floating_p (type)
78134374 1411 || type->code () == TYPE_CODE_ARRAY)
5af923b0 1412 {
386c036b 1413 /* Floating return values. */
dca08e1f 1414 regcache->cooked_read (SPARC_F0_REGNUM, buf);
386c036b 1415 if (len > 4)
dca08e1f 1416 regcache->cooked_read (SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1417 if (len > 8)
1418 {
dca08e1f
SM
1419 regcache->cooked_read (SPARC_F2_REGNUM, buf + 8);
1420 regcache->cooked_read (SPARC_F3_REGNUM, buf + 12);
fe10a582
DM
1421 }
1422 if (len > 16)
1423 {
dca08e1f
SM
1424 regcache->cooked_read (SPARC_F4_REGNUM, buf + 16);
1425 regcache->cooked_read (SPARC_F5_REGNUM, buf + 20);
1426 regcache->cooked_read (SPARC_F6_REGNUM, buf + 24);
1427 regcache->cooked_read (SPARC_F7_REGNUM, buf + 28);
fe10a582 1428 }
386c036b 1429 memcpy (valbuf, buf, len);
5af923b0
MS
1430 }
1431 else
1432 {
386c036b
MK
1433 /* Integral and pointer return values. */
1434 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1435
dca08e1f 1436 regcache->cooked_read (SPARC_O0_REGNUM, buf);
386c036b
MK
1437 if (len > 4)
1438 {
dca08e1f 1439 regcache->cooked_read (SPARC_O1_REGNUM, buf + 4);
386c036b
MK
1440 gdb_assert (len == 8);
1441 memcpy (valbuf, buf, 8);
1442 }
1443 else
1444 {
1445 /* Just stripping off any unused bytes should preserve the
1446 signed-ness just fine. */
1447 memcpy (valbuf, buf + 4 - len, len);
1448 }
1449 }
1450}
c906108c 1451
3923a2b2
MK
1452/* Store the function return value of type TYPE from VALBUF into
1453 REGCACHE. */
c906108c 1454
386c036b
MK
1455static void
1456sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1457 const gdb_byte *valbuf)
386c036b
MK
1458{
1459 int len = TYPE_LENGTH (type);
1933fd8e 1460 gdb_byte buf[32];
c906108c 1461
1933fd8e 1462 gdb_assert (!sparc_structure_return_p (type));
c906108c 1463
fe10a582 1464 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
386c036b
MK
1465 {
1466 /* Floating return values. */
1467 memcpy (buf, valbuf, len);
b66f5587 1468 regcache->cooked_write (SPARC_F0_REGNUM, buf);
386c036b 1469 if (len > 4)
b66f5587 1470 regcache->cooked_write (SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1471 if (len > 8)
1472 {
b66f5587
SM
1473 regcache->cooked_write (SPARC_F2_REGNUM, buf + 8);
1474 regcache->cooked_write (SPARC_F3_REGNUM, buf + 12);
fe10a582
DM
1475 }
1476 if (len > 16)
1477 {
b66f5587
SM
1478 regcache->cooked_write (SPARC_F4_REGNUM, buf + 16);
1479 regcache->cooked_write (SPARC_F5_REGNUM, buf + 20);
1480 regcache->cooked_write (SPARC_F6_REGNUM, buf + 24);
1481 regcache->cooked_write (SPARC_F7_REGNUM, buf + 28);
fe10a582 1482 }
386c036b
MK
1483 }
1484 else
c906108c 1485 {
386c036b
MK
1486 /* Integral and pointer return values. */
1487 gdb_assert (sparc_integral_or_pointer_p (type));
1488
1489 if (len > 4)
2757dd86 1490 {
386c036b
MK
1491 gdb_assert (len == 8);
1492 memcpy (buf, valbuf, 8);
b66f5587 1493 regcache->cooked_write (SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1494 }
1495 else
1496 {
386c036b
MK
1497 /* ??? Do we need to do any sign-extension here? */
1498 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1499 }
b66f5587 1500 regcache->cooked_write (SPARC_O0_REGNUM, buf);
c906108c
SS
1501 }
1502}
1503
b9d4c5ed 1504static enum return_value_convention
6a3a010b 1505sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1506 struct type *type, struct regcache *regcache,
1507 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1508{
e17a4113
UW
1509 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1510
0a8f48b9
MK
1511 /* The psABI says that "...every stack frame reserves the word at
1512 %fp+64. If a function returns a structure, union, or
1513 quad-precision value, this word should hold the address of the
1514 object into which the return value should be copied." This
1515 guarantees that we can always find the return value, not just
1516 before the function returns. */
1517
1933fd8e 1518 if (sparc_structure_return_p (type))
0a8f48b9 1519 {
bbfdfe1c
DM
1520 ULONGEST sp;
1521 CORE_ADDR addr;
1522
0a8f48b9
MK
1523 if (readbuf)
1524 {
0a8f48b9 1525 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1526 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1527 read_memory (addr, readbuf, TYPE_LENGTH (type));
1528 }
bbfdfe1c
DM
1529 if (writebuf)
1530 {
1531 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1532 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1533 write_memory (addr, writebuf, TYPE_LENGTH (type));
1534 }
0a8f48b9
MK
1535
1536 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1537 }
b9d4c5ed
MK
1538
1539 if (readbuf)
1540 sparc32_extract_return_value (type, regcache, readbuf);
1541 if (writebuf)
1542 sparc32_store_return_value (type, regcache, writebuf);
1543
1544 return RETURN_VALUE_REGISTER_CONVENTION;
1545}
1546
386c036b
MK
1547static int
1548sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1549{
386c036b 1550 return (sparc_structure_or_union_p (type)
fe10a582
DM
1551 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1552 || sparc_complex_floating_p (type));
386c036b 1553}
c906108c 1554
aff37fc1 1555static int
4a4e5149 1556sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1557{
236369e7 1558 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1559 struct symbol *sym = find_pc_function (pc);
1560
1561 if (sym)
1562 return sparc32_struct_return_from_sym (sym);
1563 return 0;
1564}
1565
f5a9b87d
DM
1566static void
1567sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1568 struct dwarf2_frame_state_reg *reg,
4a4e5149 1569 struct frame_info *this_frame)
f5a9b87d 1570{
aff37fc1
DM
1571 int off;
1572
f5a9b87d
DM
1573 switch (regnum)
1574 {
1575 case SPARC_G0_REGNUM:
1576 /* Since %g0 is always zero, there is no point in saving it, and
1577 people will be inclined omit it from the CFI. Make sure we
1578 don't warn about that. */
1579 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1580 break;
1581 case SPARC_SP_REGNUM:
1582 reg->how = DWARF2_FRAME_REG_CFA;
1583 break;
1584 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1585 case SPARC32_NPC_REGNUM:
1586 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1587 off = 8;
4a4e5149 1588 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1589 off += 4;
1590 if (regnum == SPARC32_NPC_REGNUM)
1591 off += 4;
1592 reg->loc.offset = off;
f5a9b87d
DM
1593 break;
1594 }
1595}
1596
b41c5a85
JW
1597/* Implement the execute_dwarf_cfa_vendor_op method. */
1598
1599static bool
1600sparc_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1601 struct dwarf2_frame_state *fs)
1602{
1603 /* Only DW_CFA_GNU_window_save is expected on SPARC. */
1604 if (op != DW_CFA_GNU_window_save)
1605 return false;
1606
1607 uint64_t reg;
1608 int size = register_size (gdbarch, 0);
1609
1c90d9f0 1610 fs->regs.alloc_regs (32);
b41c5a85
JW
1611 for (reg = 8; reg < 16; reg++)
1612 {
1613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
1614 fs->regs.reg[reg].loc.reg = reg + 16;
1615 }
1616 for (reg = 16; reg < 32; reg++)
1617 {
1618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
1619 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
1620 }
1621
1622 return true;
1623}
1624
386c036b
MK
1625\f
1626/* The SPARC Architecture doesn't have hardware single-step support,
1627 and most operating systems don't implement it either, so we provide
1628 software single-step mechanism. */
c906108c 1629
386c036b 1630static CORE_ADDR
cd76b525 1631sparc_analyze_control_transfer (struct regcache *regcache,
c893be75 1632 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1633{
1634 unsigned long insn = sparc_fetch_instruction (pc);
1635 int conditional_p = X_COND (insn) & 0x7;
8d1b3521 1636 int branch_p = 0, fused_p = 0;
386c036b 1637 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1638
8d1b3521 1639 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
c906108c 1640 {
8d1b3521
DM
1641 if ((insn & 0x10000000) == 0)
1642 {
1643 /* Branch on Integer Register with Prediction (BPr). */
1644 branch_p = 1;
1645 conditional_p = 1;
1646 }
1647 else
1648 {
1649 /* Compare and Branch */
1650 branch_p = 1;
1651 fused_p = 1;
1652 offset = 4 * X_DISP10 (insn);
1653 }
c906108c 1654 }
386c036b 1655 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1656 {
386c036b
MK
1657 /* Branch on Floating-Point Condition Codes (FBfcc). */
1658 branch_p = 1;
1659 offset = 4 * X_DISP22 (insn);
c906108c 1660 }
386c036b
MK
1661 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1662 {
1663 /* Branch on Floating-Point Condition Codes with Prediction
1664 (FBPfcc). */
1665 branch_p = 1;
1666 offset = 4 * X_DISP19 (insn);
1667 }
1668 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1669 {
1670 /* Branch on Integer Condition Codes (Bicc). */
1671 branch_p = 1;
1672 offset = 4 * X_DISP22 (insn);
1673 }
1674 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1675 {
386c036b
MK
1676 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1677 branch_p = 1;
1678 offset = 4 * X_DISP19 (insn);
c906108c 1679 }
c893be75
MK
1680 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1681 {
cd76b525
YQ
1682 struct frame_info *frame = get_current_frame ();
1683
c893be75 1684 /* Trap instruction (TRAP). */
ac7936df 1685 return gdbarch_tdep (regcache->arch ())->step_trap (frame,
cd76b525 1686 insn);
c893be75 1687 }
386c036b
MK
1688
1689 /* FIXME: Handle DONE and RETRY instructions. */
1690
386c036b 1691 if (branch_p)
c906108c 1692 {
8d1b3521
DM
1693 if (fused_p)
1694 {
1695 /* Fused compare-and-branch instructions are non-delayed,
85102364 1696 and do not have an annulling capability. So we need to
8d1b3521
DM
1697 always set a breakpoint on both the NPC and the branch
1698 target address. */
1699 gdb_assert (offset != 0);
1700 return pc + offset;
1701 }
1702 else if (conditional_p)
c906108c 1703 {
386c036b
MK
1704 /* For conditional branches, return nPC + 4 iff the annul
1705 bit is 1. */
1706 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1707 }
1708 else
1709 {
386c036b
MK
1710 /* For unconditional branches, return the target if its
1711 specified condition is "always" and return nPC + 4 if the
1712 condition is "never". If the annul bit is 1, set *NPC to
1713 zero. */
1714 if (X_COND (insn) == 0x0)
1715 pc = *npc, offset = 4;
1716 if (X_A (insn))
1717 *npc = 0;
1718
386c036b 1719 return pc + offset;
c906108c
SS
1720 }
1721 }
386c036b
MK
1722
1723 return 0;
c906108c
SS
1724}
1725
c893be75 1726static CORE_ADDR
0b1b3e42 1727sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1728{
1729 return 0;
1730}
1731
a0ff9e1a 1732static std::vector<CORE_ADDR>
f5ea389a 1733sparc_software_single_step (struct regcache *regcache)
386c036b 1734{
ac7936df 1735 struct gdbarch *arch = regcache->arch ();
c893be75 1736 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
8181d85f 1737 CORE_ADDR npc, nnpc;
c906108c 1738
e0cd558a 1739 CORE_ADDR pc, orig_npc;
a0ff9e1a 1740 std::vector<CORE_ADDR> next_pcs;
c906108c 1741
cd76b525
YQ
1742 pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
1743 orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);
c906108c 1744
e0cd558a 1745 /* Analyze the instruction at PC. */
cd76b525 1746 nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
e0cd558a 1747 if (npc != 0)
a0ff9e1a 1748 next_pcs.push_back (npc);
8181d85f 1749
e0cd558a 1750 if (nnpc != 0)
a0ff9e1a 1751 next_pcs.push_back (nnpc);
c906108c 1752
e0cd558a
UW
1753 /* Assert that we have set at least one breakpoint, and that
1754 they're not set at the same spot - unless we're going
1755 from here straight to NULL, i.e. a call or jump to 0. */
1756 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1757 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b 1758
93f9a11f 1759 return next_pcs;
386c036b
MK
1760}
1761
1762static void
61a1198a 1763sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1764{
ac7936df 1765 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
386c036b 1766
61a1198a
UW
1767 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1768 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1769}
1770\f
5af923b0 1771
e5139de8 1772/* Iterate over core file register note sections. */
a54124c5 1773
e5139de8
AA
1774static void
1775sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1776 iterate_over_regset_sections_cb *cb,
1777 void *cb_data,
1778 const struct regcache *regcache)
a54124c5
MK
1779{
1780 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1781
a616bb94
AH
1782 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, tdep->gregset, NULL,
1783 cb_data);
1784 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
1785 NULL, cb_data);
a54124c5
MK
1786}
1787\f
1788
3f7b46f2
IR
1789static int
1790validate_tdesc_registers (const struct target_desc *tdesc,
1791 struct tdesc_arch_data *tdesc_data,
1792 const char *feature_name,
27087b7f 1793 const char * const register_names[],
3f7b46f2
IR
1794 unsigned int registers_num,
1795 unsigned int reg_start)
1796{
1797 int valid_p = 1;
1798 const struct tdesc_feature *feature;
1799
1800 feature = tdesc_find_feature (tdesc, feature_name);
1801 if (feature == NULL)
1802 return 0;
1803
1804 for (unsigned int i = 0; i < registers_num; i++)
1805 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1806 reg_start + i,
1807 register_names[i]);
1808
1809 return valid_p;
1810}
1811
386c036b
MK
1812static struct gdbarch *
1813sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1814{
1815 struct gdbarch_tdep *tdep;
3f7b46f2 1816 const struct target_desc *tdesc = info.target_desc;
386c036b 1817 struct gdbarch *gdbarch;
3f7b46f2 1818 int valid_p = 1;
c906108c 1819
386c036b
MK
1820 /* If there is already a candidate, use it. */
1821 arches = gdbarch_list_lookup_by_info (arches, &info);
1822 if (arches != NULL)
1823 return arches->gdbarch;
c906108c 1824
386c036b 1825 /* Allocate space for the new architecture. */
41bf6aca 1826 tdep = XCNEW (struct gdbarch_tdep);
386c036b 1827 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1828
386c036b
MK
1829 tdep->pc_regnum = SPARC32_PC_REGNUM;
1830 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1831 tdep->step_trap = sparc_step_trap;
3f7b46f2
IR
1832 tdep->fpu_register_names = sparc32_fpu_register_names;
1833 tdep->fpu_registers_num = ARRAY_SIZE (sparc32_fpu_register_names);
1834 tdep->cp0_register_names = sparc32_cp0_register_names;
1835 tdep->cp0_registers_num = ARRAY_SIZE (sparc32_cp0_register_names);
386c036b
MK
1836
1837 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1838 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b 1839
53375380
PA
1840 set_gdbarch_wchar_bit (gdbarch, 16);
1841 set_gdbarch_wchar_signed (gdbarch, 1);
1842
386c036b
MK
1843 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1844 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1845 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1846 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
3f7b46f2
IR
1847 set_tdesc_pseudo_register_name (gdbarch, sparc32_pseudo_register_name);
1848 set_tdesc_pseudo_register_type (gdbarch, sparc32_pseudo_register_type);
386c036b
MK
1849 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1850 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1851
1852 /* Register numbers of various important registers. */
1853 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1854 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1855 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1856
1857 /* Call dummy code. */
49a45ecf 1858 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1859 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1860 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1861 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1862
b9d4c5ed 1863 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1864 set_gdbarch_stabs_argument_has_addr
1865 (gdbarch, sparc32_stabs_argument_has_addr);
1866
1867 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1868
1869 /* Stack grows downward. */
1870 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1871
04180708
YQ
1872 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1873 sparc_breakpoint::kind_from_pc);
1874 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1875 sparc_breakpoint::bp_from_kind);
c906108c 1876
386c036b 1877 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1878
386c036b
MK
1879 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1880 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1881
236369e7 1882 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1883
386c036b
MK
1884 frame_base_set_default (gdbarch, &sparc32_frame_base);
1885
f5a9b87d
DM
1886 /* Hook in the DWARF CFI frame unwinder. */
1887 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
b41c5a85
JW
1888 /* Register DWARF vendor CFI handler. */
1889 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
1890 sparc_execute_dwarf_cfa_vendor_op);
f5a9b87d
DM
1891 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1892 StackGhost issues have been resolved. */
1893
b2a0b9b2
DM
1894 /* Hook in ABI-specific overrides, if they have been registered. */
1895 gdbarch_init_osabi (info, gdbarch);
1896
236369e7 1897 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1898
3f7b46f2
IR
1899 if (tdesc_has_registers (tdesc))
1900 {
c1e1314d 1901 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
3f7b46f2
IR
1902
1903 /* Validate that the descriptor provides the mandatory registers
1904 and allocate their numbers. */
c1e1314d 1905 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
3f7b46f2
IR
1906 "org.gnu.gdb.sparc.cpu",
1907 sparc_core_register_names,
1908 ARRAY_SIZE (sparc_core_register_names),
1909 SPARC_G0_REGNUM);
c1e1314d 1910 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
3f7b46f2
IR
1911 "org.gnu.gdb.sparc.fpu",
1912 tdep->fpu_register_names,
1913 tdep->fpu_registers_num,
1914 SPARC_F0_REGNUM);
c1e1314d 1915 valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
3f7b46f2
IR
1916 "org.gnu.gdb.sparc.cp0",
1917 tdep->cp0_register_names,
1918 tdep->cp0_registers_num,
1291063d
JM
1919 SPARC_F0_REGNUM
1920 + tdep->fpu_registers_num);
3f7b46f2 1921 if (!valid_p)
c1e1314d 1922 return NULL;
3f7b46f2
IR
1923
1924 /* Target description may have changed. */
c1e1314d
TT
1925 info.tdesc_data = tdesc_data.get ();
1926 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
3f7b46f2
IR
1927 }
1928
a54124c5 1929 /* If we have register sets, enable the generic core file support. */
4c72d57a 1930 if (tdep->gregset)
e5139de8
AA
1931 set_gdbarch_iterate_over_regset_sections
1932 (gdbarch, sparc_iterate_over_regset_sections);
a54124c5 1933
7e35103a
JB
1934 register_sparc_ravenscar_ops (gdbarch);
1935
386c036b
MK
1936 return gdbarch;
1937}
1938\f
1939/* Helper functions for dealing with register windows. */
1940
1941void
1942sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1943{
ac7936df 1944 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1945 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1946 int offset = 0;
e1613aba 1947 gdb_byte buf[8];
386c036b
MK
1948 int i;
1949
1950 if (sp & 1)
1951 {
1952 /* Registers are 64-bit. */
1953 sp += BIAS;
c906108c 1954
386c036b
MK
1955 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1956 {
1957 if (regnum == i || regnum == -1)
1958 {
1959 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1960
1961 /* Handle StackGhost. */
1962 if (i == SPARC_I7_REGNUM)
1963 {
e17a4113
UW
1964 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1965 ULONGEST i7;
f700a364 1966
e17a4113
UW
1967 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1968 store_unsigned_integer (buf + offset, 8, byte_order,
1969 i7 ^ wcookie);
f700a364
MK
1970 }
1971
73e1c03f 1972 regcache->raw_supply (i, buf);
386c036b
MK
1973 }
1974 }
1975 }
1976 else
c906108c 1977 {
386c036b
MK
1978 /* Registers are 32-bit. Toss any sign-extension of the stack
1979 pointer. */
1980 sp &= 0xffffffffUL;
c906108c 1981
386c036b
MK
1982 /* Clear out the top half of the temporary buffer, and put the
1983 register value in the bottom half if we're in 64-bit mode. */
ac7936df 1984 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
c906108c 1985 {
386c036b
MK
1986 memset (buf, 0, 4);
1987 offset = 4;
1988 }
c906108c 1989
386c036b
MK
1990 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1991 {
1992 if (regnum == i || regnum == -1)
1993 {
1994 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1995 buf + offset, 4);
42cdca6c
MK
1996
1997 /* Handle StackGhost. */
1998 if (i == SPARC_I7_REGNUM)
1999 {
e17a4113
UW
2000 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2001 ULONGEST i7;
42cdca6c 2002
e17a4113
UW
2003 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2004 store_unsigned_integer (buf + offset, 4, byte_order,
2005 i7 ^ wcookie);
42cdca6c
MK
2006 }
2007
73e1c03f 2008 regcache->raw_supply (i, buf);
386c036b 2009 }
c906108c
SS
2010 }
2011 }
c906108c 2012}
c906108c
SS
2013
2014void
386c036b
MK
2015sparc_collect_rwindow (const struct regcache *regcache,
2016 CORE_ADDR sp, int regnum)
c906108c 2017{
ac7936df 2018 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 2019 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 2020 int offset = 0;
e1613aba 2021 gdb_byte buf[8];
386c036b 2022 int i;
5af923b0 2023
386c036b 2024 if (sp & 1)
5af923b0 2025 {
386c036b
MK
2026 /* Registers are 64-bit. */
2027 sp += BIAS;
c906108c 2028
386c036b
MK
2029 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2030 {
2031 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2032 {
34a79281 2033 regcache->raw_collect (i, buf);
f700a364
MK
2034
2035 /* Handle StackGhost. */
2036 if (i == SPARC_I7_REGNUM)
2037 {
e17a4113
UW
2038 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2039 ULONGEST i7;
f700a364 2040
e17a4113
UW
2041 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
2042 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
2043 }
2044
386c036b
MK
2045 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
2046 }
2047 }
5af923b0
MS
2048 }
2049 else
2050 {
386c036b
MK
2051 /* Registers are 32-bit. Toss any sign-extension of the stack
2052 pointer. */
2053 sp &= 0xffffffffUL;
2054
2055 /* Only use the bottom half if we're in 64-bit mode. */
ac7936df 2056 if (gdbarch_ptr_bit (regcache->arch ()) == 64)
386c036b
MK
2057 offset = 4;
2058
2059 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2060 {
2061 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
2062 {
34a79281 2063 regcache->raw_collect (i, buf);
42cdca6c
MK
2064
2065 /* Handle StackGhost. */
2066 if (i == SPARC_I7_REGNUM)
2067 {
e17a4113
UW
2068 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
2069 ULONGEST i7;
42cdca6c 2070
e17a4113
UW
2071 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
2072 store_unsigned_integer (buf + offset, 4, byte_order,
2073 i7 ^ wcookie);
42cdca6c
MK
2074 }
2075
386c036b
MK
2076 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
2077 buf + offset, 4);
2078 }
2079 }
5af923b0 2080 }
c906108c
SS
2081}
2082
386c036b
MK
2083/* Helper functions for dealing with register sets. */
2084
c906108c 2085void
b4fd25c9 2086sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
2087 struct regcache *regcache,
2088 int regnum, const void *gregs)
c906108c 2089{
19ba03f4 2090 const gdb_byte *regs = (const gdb_byte *) gregs;
22e74ef9 2091 gdb_byte zero[4] = { 0 };
386c036b 2092 int i;
5af923b0 2093
386c036b 2094 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
73e1c03f 2095 regcache->raw_supply (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
c906108c 2096
386c036b 2097 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
73e1c03f 2098 regcache->raw_supply (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
5af923b0 2099
386c036b 2100 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
73e1c03f 2101 regcache->raw_supply (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
5af923b0 2102
386c036b 2103 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
73e1c03f 2104 regcache->raw_supply (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
5af923b0 2105
386c036b 2106 if (regnum == SPARC_G0_REGNUM || regnum == -1)
73e1c03f 2107 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
5af923b0 2108
386c036b 2109 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 2110 {
b4fd25c9 2111 int offset = gregmap->r_g1_offset;
386c036b
MK
2112
2113 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2114 {
2115 if (regnum == i || regnum == -1)
73e1c03f 2116 regcache->raw_supply (i, regs + offset);
386c036b
MK
2117 offset += 4;
2118 }
c906108c 2119 }
386c036b
MK
2120
2121 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 2122 {
386c036b
MK
2123 /* Not all of the register set variants include Locals and
2124 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 2125 if (gregmap->r_l0_offset == -1)
386c036b
MK
2126 {
2127 ULONGEST sp;
2128
2129 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
2130 sparc_supply_rwindow (regcache, sp, regnum);
2131 }
2132 else
2133 {
b4fd25c9 2134 int offset = gregmap->r_l0_offset;
386c036b
MK
2135
2136 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2137 {
2138 if (regnum == i || regnum == -1)
73e1c03f 2139 regcache->raw_supply (i, regs + offset);
386c036b
MK
2140 offset += 4;
2141 }
2142 }
c906108c
SS
2143 }
2144}
2145
c5aa993b 2146void
b4fd25c9 2147sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
2148 const struct regcache *regcache,
2149 int regnum, void *gregs)
c906108c 2150{
19ba03f4 2151 gdb_byte *regs = (gdb_byte *) gregs;
386c036b 2152 int i;
c5aa993b 2153
386c036b 2154 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
34a79281 2155 regcache->raw_collect (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);
60054393 2156
386c036b 2157 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
34a79281 2158 regcache->raw_collect (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);
386c036b
MK
2159
2160 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
34a79281 2161 regcache->raw_collect (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);
5af923b0 2162
386c036b 2163 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
34a79281 2164 regcache->raw_collect (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);
386c036b
MK
2165
2166 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 2167 {
b4fd25c9 2168 int offset = gregmap->r_g1_offset;
386c036b
MK
2169
2170 /* %g0 is always zero. */
2171 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2172 {
2173 if (regnum == i || regnum == -1)
34a79281 2174 regcache->raw_collect (i, regs + offset);
386c036b
MK
2175 offset += 4;
2176 }
5af923b0 2177 }
386c036b
MK
2178
2179 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 2180 {
386c036b
MK
2181 /* Not all of the register set variants include Locals and
2182 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 2183 if (gregmap->r_l0_offset != -1)
386c036b 2184 {
b4fd25c9 2185 int offset = gregmap->r_l0_offset;
386c036b
MK
2186
2187 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2188 {
2189 if (regnum == i || regnum == -1)
34a79281 2190 regcache->raw_collect (i, regs + offset);
386c036b
MK
2191 offset += 4;
2192 }
2193 }
5af923b0 2194 }
c906108c
SS
2195}
2196
c906108c 2197void
b4fd25c9 2198sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2199 struct regcache *regcache,
386c036b 2200 int regnum, const void *fpregs)
c906108c 2201{
19ba03f4 2202 const gdb_byte *regs = (const gdb_byte *) fpregs;
386c036b 2203 int i;
60054393 2204
386c036b 2205 for (i = 0; i < 32; i++)
c906108c 2206 {
386c036b 2207 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
73e1c03f
SM
2208 regcache->raw_supply (SPARC_F0_REGNUM + i,
2209 regs + fpregmap->r_f0_offset + (i * 4));
c906108c 2210 }
5af923b0 2211
386c036b 2212 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
73e1c03f 2213 regcache->raw_supply (SPARC32_FSR_REGNUM, regs + fpregmap->r_fsr_offset);
c906108c
SS
2214}
2215
386c036b 2216void
b4fd25c9 2217sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2218 const struct regcache *regcache,
386c036b 2219 int regnum, void *fpregs)
c906108c 2220{
19ba03f4 2221 gdb_byte *regs = (gdb_byte *) fpregs;
386c036b 2222 int i;
c906108c 2223
386c036b
MK
2224 for (i = 0; i < 32; i++)
2225 {
2226 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
34a79281
SM
2227 regcache->raw_collect (SPARC_F0_REGNUM + i,
2228 regs + fpregmap->r_f0_offset + (i * 4));
386c036b 2229 }
c906108c 2230
386c036b 2231 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
34a79281
SM
2232 regcache->raw_collect (SPARC32_FSR_REGNUM,
2233 regs + fpregmap->r_fsr_offset);
c906108c 2234}
c906108c 2235\f
c906108c 2236
386c036b 2237/* SunOS 4. */
c906108c 2238
386c036b 2239/* From <machine/reg.h>. */
b4fd25c9 2240const struct sparc_gregmap sparc32_sunos4_gregmap =
c906108c 2241{
386c036b
MK
2242 0 * 4, /* %psr */
2243 1 * 4, /* %pc */
2244 2 * 4, /* %npc */
2245 3 * 4, /* %y */
2246 -1, /* %wim */
2247 -1, /* %tbr */
2248 4 * 4, /* %g1 */
2249 -1 /* %l0 */
2250};
db75c717 2251
b4fd25c9 2252const struct sparc_fpregmap sparc32_sunos4_fpregmap =
db75c717
DM
2253{
2254 0 * 4, /* %f0 */
2255 33 * 4, /* %fsr */
2256};
2257
b4fd25c9 2258const struct sparc_fpregmap sparc32_bsd_fpregmap =
db75c717
DM
2259{
2260 0 * 4, /* %f0 */
2261 32 * 4, /* %fsr */
2262};
c906108c 2263
6c265988 2264void _initialize_sparc_tdep ();
c906108c 2265void
6c265988 2266_initialize_sparc_tdep ()
c906108c 2267{
386c036b 2268 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 2269}
This page took 2.342734 seconds and 4 git commands to generate.