gdbarch software_single_step frame_info to regcache: cris
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
618f726f 3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
5af923b0 21#include "arch-utils.h"
386c036b 22#include "dis-asm.h"
f5a9b87d 23#include "dwarf2-frame.h"
386c036b 24#include "floatformat.h"
c906108c 25#include "frame.h"
386c036b
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
c906108c 30#include "inferior.h"
386c036b
MK
31#include "symtab.h"
32#include "objfiles.h"
33#include "osabi.h"
34#include "regcache.h"
c906108c
SS
35#include "target.h"
36#include "value.h"
c906108c 37
386c036b 38#include "sparc-tdep.h"
e6f9c00b 39#include "sparc-ravenscar-thread.h"
325fac50 40#include <algorithm>
c906108c 41
a54124c5
MK
42struct regset;
43
9eb42ed1
MK
44/* This file implements the SPARC 32-bit ABI as defined by the section
45 "Low-Level System Information" of the SPARC Compliance Definition
46 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 47 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 48 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
49
50 Note that if we talk about SunOS, we mean SunOS 4.x, which was
51 BSD-based, which is sometimes (retroactively?) referred to as
52 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
53 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
54 suffering from severe version number inflation). Solaris 2.x is
55 also known as SunOS 5.x, since that's what uname(1) says. Solaris
56 2.x is SVR4-based. */
57
58/* Please use the sparc32_-prefix for 32-bit specific code, the
59 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
60 code that can handle both. The 64-bit specific code lives in
61 sparc64-tdep.c; don't add any here. */
62
63/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 64 big-endian IA-64 Quad-Precision format. */
8da61cc4 65#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
66
67/* The stack pointer is offset from the stack frame by a BIAS of 2047
68 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
69 hosts, so undefine it first. */
70#undef BIAS
71#define BIAS 2047
72
73/* Macros to extract fields from SPARC instructions. */
c906108c
SS
74#define X_OP(i) (((i) >> 30) & 0x3)
75#define X_RD(i) (((i) >> 25) & 0x1f)
76#define X_A(i) (((i) >> 29) & 1)
77#define X_COND(i) (((i) >> 25) & 0xf)
78#define X_OP2(i) (((i) >> 22) & 0x7)
79#define X_IMM22(i) ((i) & 0x3fffff)
80#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 81#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 82#define X_RS2(i) ((i) & 0x1f)
c906108c 83#define X_I(i) (((i) >> 13) & 1)
c906108c 84/* Sign extension macros. */
c906108c 85#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 86#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
8d1b3521 87#define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
075ccec8 88#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
961842b2
JM
89/* Macros to identify some instructions. */
90/* RETURN (RETT in V8) */
91#define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
c906108c 92
386c036b
MK
93/* Fetch the instruction at PC. Instructions are always big-endian
94 even if the processor operates in little-endian mode. */
95
96unsigned long
97sparc_fetch_instruction (CORE_ADDR pc)
c906108c 98{
e1613aba 99 gdb_byte buf[4];
386c036b
MK
100 unsigned long insn;
101 int i;
102
690668cc 103 /* If we can't read the instruction at PC, return zero. */
8defab1a 104 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 105 return 0;
c906108c 106
386c036b
MK
107 insn = 0;
108 for (i = 0; i < sizeof (buf); i++)
109 insn = (insn << 8) | buf[i];
110 return insn;
111}
42cdca6c
MK
112\f
113
5465445a
JB
114/* Return non-zero if the instruction corresponding to PC is an "unimp"
115 instruction. */
116
117static int
118sparc_is_unimp_insn (CORE_ADDR pc)
119{
120 const unsigned long insn = sparc_fetch_instruction (pc);
121
122 return ((insn & 0xc1c00000) == 0);
123}
124
d0b5971a
JM
125/* Return non-zero if the instruction corresponding to PC is an
126 "annulled" branch, i.e. the annul bit is set. */
127
128int
129sparc_is_annulled_branch_insn (CORE_ADDR pc)
130{
131 /* The branch instructions featuring an annul bit can be identified
132 by the following bit patterns:
133
134 OP=0
135 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
136 OP2=2: Branch on Integer Condition Codes (Bcc).
137 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
138 OP2=6: Branch on FP Condition Codes (FBcc).
139 OP2=3 && Bit28=0:
140 Branch on Integer Register with Prediction (BPr).
141
142 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
143 coprocessor branch instructions (Op2=7). */
144
145 const unsigned long insn = sparc_fetch_instruction (pc);
146 const unsigned op2 = X_OP2 (insn);
147
148 if ((X_OP (insn) == 0)
149 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
150 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
151 return X_A (insn);
152 else
153 return 0;
154}
155
42cdca6c
MK
156/* OpenBSD/sparc includes StackGhost, which according to the author's
157 website http://stackghost.cerias.purdue.edu "... transparently and
158 automatically protects applications' stack frames; more
159 specifically, it guards the return pointers. The protection
160 mechanisms require no application source or binary modification and
161 imposes only a negligible performance penalty."
162
163 The same website provides the following description of how
164 StackGhost works:
165
166 "StackGhost interfaces with the kernel trap handler that would
167 normally write out registers to the stack and the handler that
168 would read them back in. By XORing a cookie into the
169 return-address saved in the user stack when it is actually written
170 to the stack, and then XOR it out when the return-address is pulled
171 from the stack, StackGhost can cause attacker corrupted return
172 pointers to behave in a manner the attacker cannot predict.
173 StackGhost can also use several unused bits in the return pointer
174 to detect a smashed return pointer and abort the process."
175
176 For GDB this means that whenever we're reading %i7 from a stack
177 frame's window save area, we'll have to XOR the cookie.
178
179 More information on StackGuard can be found on in:
180
c378eb4e 181 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
182 Stack Protection." 2001. Published in USENIX Security Symposium
183 '01. */
184
185/* Fetch StackGhost Per-Process XOR cookie. */
186
187ULONGEST
e17a4113 188sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 189{
e17a4113 190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 191 struct target_ops *ops = &current_target;
e1613aba 192 gdb_byte buf[8];
baf92889
MK
193 int len;
194
13547ab6 195 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
196 if (len == -1)
197 return 0;
42cdca6c 198
baf92889
MK
199 /* We should have either an 32-bit or an 64-bit cookie. */
200 gdb_assert (len == 4 || len == 8);
201
e17a4113 202 return extract_unsigned_integer (buf, len, byte_order);
baf92889 203}
386c036b 204\f
baf92889 205
386c036b
MK
206/* The functions on this page are intended to be used to classify
207 function arguments. */
c906108c 208
386c036b 209/* Check whether TYPE is "Integral or Pointer". */
c906108c 210
386c036b
MK
211static int
212sparc_integral_or_pointer_p (const struct type *type)
c906108c 213{
80ad1639
MK
214 int len = TYPE_LENGTH (type);
215
386c036b 216 switch (TYPE_CODE (type))
c906108c 217 {
386c036b
MK
218 case TYPE_CODE_INT:
219 case TYPE_CODE_BOOL:
220 case TYPE_CODE_CHAR:
221 case TYPE_CODE_ENUM:
222 case TYPE_CODE_RANGE:
80ad1639
MK
223 /* We have byte, half-word, word and extended-word/doubleword
224 integral types. The doubleword is an extension to the
225 original 32-bit ABI by the SCD 2.4.x. */
226 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
227 case TYPE_CODE_PTR:
228 case TYPE_CODE_REF:
80ad1639
MK
229 /* Allow either 32-bit or 64-bit pointers. */
230 return (len == 4 || len == 8);
386c036b
MK
231 default:
232 break;
233 }
c906108c 234
386c036b
MK
235 return 0;
236}
c906108c 237
386c036b 238/* Check whether TYPE is "Floating". */
c906108c 239
386c036b
MK
240static int
241sparc_floating_p (const struct type *type)
242{
243 switch (TYPE_CODE (type))
c906108c 244 {
386c036b
MK
245 case TYPE_CODE_FLT:
246 {
247 int len = TYPE_LENGTH (type);
248 return (len == 4 || len == 8 || len == 16);
249 }
250 default:
251 break;
252 }
253
254 return 0;
255}
c906108c 256
fe10a582
DM
257/* Check whether TYPE is "Complex Floating". */
258
259static int
260sparc_complex_floating_p (const struct type *type)
261{
262 switch (TYPE_CODE (type))
263 {
264 case TYPE_CODE_COMPLEX:
265 {
266 int len = TYPE_LENGTH (type);
267 return (len == 8 || len == 16 || len == 32);
268 }
269 default:
270 break;
271 }
272
273 return 0;
274}
275
0497f5b0
JB
276/* Check whether TYPE is "Structure or Union".
277
278 In terms of Ada subprogram calls, arrays are treated the same as
279 struct and union types. So this function also returns non-zero
280 for array types. */
c906108c 281
386c036b
MK
282static int
283sparc_structure_or_union_p (const struct type *type)
284{
285 switch (TYPE_CODE (type))
286 {
287 case TYPE_CODE_STRUCT:
288 case TYPE_CODE_UNION:
0497f5b0 289 case TYPE_CODE_ARRAY:
386c036b
MK
290 return 1;
291 default:
292 break;
c906108c 293 }
386c036b
MK
294
295 return 0;
c906108c 296}
386c036b
MK
297
298/* Register information. */
299
300static const char *sparc32_register_names[] =
5af923b0 301{
386c036b
MK
302 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
303 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
304 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
305 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
306
307 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
308 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
309 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
310 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
311
312 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
313};
314
386c036b
MK
315/* Total number of registers. */
316#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 317
386c036b
MK
318/* We provide the aliases %d0..%d30 for the floating registers as
319 "psuedo" registers. */
320
321static const char *sparc32_pseudo_register_names[] =
322{
323 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
324 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
325};
326
327/* Total number of pseudo registers. */
328#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
329
330/* Return the name of register REGNUM. */
331
332static const char *
d93859e2 333sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
334{
335 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
336 return sparc32_register_names[regnum];
337
338 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
339 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
340
341 return NULL;
342}
2d457077 343\f
209bd28e 344/* Construct types for ISA-specific registers. */
2d457077 345
209bd28e
UW
346static struct type *
347sparc_psr_type (struct gdbarch *gdbarch)
348{
349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 350
209bd28e
UW
351 if (!tdep->sparc_psr_type)
352 {
353 struct type *type;
2d457077 354
e9bb382b 355 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
356 append_flags_type_flag (type, 5, "ET");
357 append_flags_type_flag (type, 6, "PS");
358 append_flags_type_flag (type, 7, "S");
359 append_flags_type_flag (type, 12, "EF");
360 append_flags_type_flag (type, 13, "EC");
2d457077 361
209bd28e
UW
362 tdep->sparc_psr_type = type;
363 }
364
365 return tdep->sparc_psr_type;
366}
367
368static struct type *
369sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 370{
209bd28e
UW
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (!tdep->sparc_fsr_type)
374 {
375 struct type *type;
376
e9bb382b 377 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
378 append_flags_type_flag (type, 0, "NXA");
379 append_flags_type_flag (type, 1, "DZA");
380 append_flags_type_flag (type, 2, "UFA");
381 append_flags_type_flag (type, 3, "OFA");
382 append_flags_type_flag (type, 4, "NVA");
383 append_flags_type_flag (type, 5, "NXC");
384 append_flags_type_flag (type, 6, "DZC");
385 append_flags_type_flag (type, 7, "UFC");
386 append_flags_type_flag (type, 8, "OFC");
387 append_flags_type_flag (type, 9, "NVC");
388 append_flags_type_flag (type, 22, "NS");
389 append_flags_type_flag (type, 23, "NXM");
390 append_flags_type_flag (type, 24, "DZM");
391 append_flags_type_flag (type, 25, "UFM");
392 append_flags_type_flag (type, 26, "OFM");
393 append_flags_type_flag (type, 27, "NVM");
394
395 tdep->sparc_fsr_type = type;
396 }
397
398 return tdep->sparc_fsr_type;
2d457077 399}
386c036b
MK
400
401/* Return the GDB type object for the "standard" data type of data in
c378eb4e 402 register REGNUM. */
386c036b
MK
403
404static struct type *
405sparc32_register_type (struct gdbarch *gdbarch, int regnum)
406{
407 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 408 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
409
410 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 411 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
412
413 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 414 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
415
416 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 417 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 418
2d457077 419 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 420 return sparc_psr_type (gdbarch);
2d457077
MK
421
422 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 423 return sparc_fsr_type (gdbarch);
2d457077 424
df4df182 425 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
426}
427
05d1431c 428static enum register_status
386c036b
MK
429sparc32_pseudo_register_read (struct gdbarch *gdbarch,
430 struct regcache *regcache,
e1613aba 431 int regnum, gdb_byte *buf)
386c036b 432{
05d1431c
PA
433 enum register_status status;
434
386c036b
MK
435 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
436
437 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
05d1431c
PA
438 status = regcache_raw_read (regcache, regnum, buf);
439 if (status == REG_VALID)
440 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
441 return status;
386c036b
MK
442}
443
444static void
445sparc32_pseudo_register_write (struct gdbarch *gdbarch,
446 struct regcache *regcache,
e1613aba 447 int regnum, const gdb_byte *buf)
386c036b
MK
448{
449 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
450
451 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
452 regcache_raw_write (regcache, regnum, buf);
e1613aba 453 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
454}
455\f
c9cf6e20 456/* Implement the stack_frame_destroyed_p gdbarch method. */
961842b2
JM
457
458int
c9cf6e20 459sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
961842b2
JM
460{
461 /* This function must return true if we are one instruction after an
462 instruction that destroyed the stack frame of the current
463 function. The SPARC instructions used to restore the callers
464 stack frame are RESTORE and RETURN/RETT.
465
466 Of these RETURN/RETT is a branch instruction and thus we return
467 true if we are in its delay slot.
468
469 RESTORE is almost always found in the delay slot of a branch
470 instruction that transfers control to the caller, such as JMPL.
471 Thus the next instruction is in the caller frame and we don't
472 need to do anything about it. */
473
474 unsigned int insn = sparc_fetch_instruction (pc - 4);
475
476 return X_RETTURN (insn);
477}
478\f
386c036b 479
49a45ecf
JB
480static CORE_ADDR
481sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
482{
483 /* The ABI requires double-word alignment. */
484 return address & ~0x7;
485}
486
386c036b
MK
487static CORE_ADDR
488sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 489 CORE_ADDR funcaddr,
386c036b
MK
490 struct value **args, int nargs,
491 struct type *value_type,
e4fd649a
UW
492 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
493 struct regcache *regcache)
c906108c 494{
e17a4113
UW
495 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
496
386c036b
MK
497 *bp_addr = sp - 4;
498 *real_pc = funcaddr;
499
d80b854b 500 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 501 {
e1613aba 502 gdb_byte buf[4];
386c036b
MK
503
504 /* This is an UNIMP instruction. */
e17a4113
UW
505 store_unsigned_integer (buf, 4, byte_order,
506 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
507 write_memory (sp - 8, buf, 4);
508 return sp - 8;
c906108c
SS
509 }
510
386c036b
MK
511 return sp - 4;
512}
513
514static CORE_ADDR
515sparc32_store_arguments (struct regcache *regcache, int nargs,
516 struct value **args, CORE_ADDR sp,
517 int struct_return, CORE_ADDR struct_addr)
518{
df4df182 519 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
521 /* Number of words in the "parameter array". */
522 int num_elements = 0;
523 int element = 0;
524 int i;
525
526 for (i = 0; i < nargs; i++)
c906108c 527 {
4991999e 528 struct type *type = value_type (args[i]);
386c036b
MK
529 int len = TYPE_LENGTH (type);
530
531 if (sparc_structure_or_union_p (type)
fe10a582
DM
532 || (sparc_floating_p (type) && len == 16)
533 || sparc_complex_floating_p (type))
c906108c 534 {
386c036b
MK
535 /* Structure, Union and Quad-Precision Arguments. */
536 sp -= len;
537
538 /* Use doubleword alignment for these values. That's always
539 correct, and wasting a few bytes shouldn't be a problem. */
540 sp &= ~0x7;
541
0fd88904 542 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
543 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
544 num_elements++;
545 }
546 else if (sparc_floating_p (type))
547 {
548 /* Floating arguments. */
549 gdb_assert (len == 4 || len == 8);
550 num_elements += (len / 4);
c906108c 551 }
c5aa993b
JM
552 else
553 {
386c036b
MK
554 /* Integral and pointer arguments. */
555 gdb_assert (sparc_integral_or_pointer_p (type));
556
557 if (len < 4)
df4df182
UW
558 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
559 args[i]);
386c036b 560 num_elements += ((len + 3) / 4);
c5aa993b 561 }
c906108c 562 }
c906108c 563
386c036b 564 /* Always allocate at least six words. */
325fac50 565 sp -= std::max (6, num_elements) * 4;
c906108c 566
386c036b
MK
567 /* The psABI says that "Software convention requires space for the
568 struct/union return value pointer, even if the word is unused." */
569 sp -= 4;
c906108c 570
386c036b
MK
571 /* The psABI says that "Although software convention and the
572 operating system require every stack frame to be doubleword
573 aligned." */
574 sp &= ~0x7;
c906108c 575
386c036b 576 for (i = 0; i < nargs; i++)
c906108c 577 {
0fd88904 578 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 579 struct type *type = value_type (args[i]);
386c036b 580 int len = TYPE_LENGTH (type);
c906108c 581
386c036b 582 gdb_assert (len == 4 || len == 8);
c906108c 583
386c036b
MK
584 if (element < 6)
585 {
586 int regnum = SPARC_O0_REGNUM + element;
c906108c 587
386c036b
MK
588 regcache_cooked_write (regcache, regnum, valbuf);
589 if (len > 4 && element < 5)
590 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
591 }
5af923b0 592
386c036b
MK
593 /* Always store the argument in memory. */
594 write_memory (sp + 4 + element * 4, valbuf, len);
595 element += len / 4;
596 }
c906108c 597
386c036b 598 gdb_assert (element == num_elements);
c906108c 599
386c036b 600 if (struct_return)
c906108c 601 {
e1613aba 602 gdb_byte buf[4];
c906108c 603
e17a4113 604 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
605 write_memory (sp, buf, 4);
606 }
c906108c 607
386c036b 608 return sp;
c906108c
SS
609}
610
386c036b 611static CORE_ADDR
7d9b040b 612sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
613 struct regcache *regcache, CORE_ADDR bp_addr,
614 int nargs, struct value **args, CORE_ADDR sp,
615 int struct_return, CORE_ADDR struct_addr)
c906108c 616{
386c036b
MK
617 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
618
619 /* Set return address. */
620 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
621
622 /* Set up function arguments. */
623 sp = sparc32_store_arguments (regcache, nargs, args, sp,
624 struct_return, struct_addr);
625
626 /* Allocate the 16-word window save area. */
627 sp -= 16 * 4;
c906108c 628
386c036b
MK
629 /* Stack should be doubleword aligned at this point. */
630 gdb_assert (sp % 8 == 0);
c906108c 631
386c036b
MK
632 /* Finally, update the stack pointer. */
633 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
634
635 return sp;
636}
637\f
c906108c 638
386c036b
MK
639/* Use the program counter to determine the contents and size of a
640 breakpoint instruction. Return a pointer to a string of bytes that
641 encode a breakpoint instruction, store the length of the string in
642 *LEN and optionally adjust *PC to point to the correct memory
643 location for inserting the breakpoint. */
04180708 644constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 645
04180708 646typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
386c036b 647\f
c906108c 648
386c036b 649/* Allocate and initialize a frame cache. */
c906108c 650
386c036b
MK
651static struct sparc_frame_cache *
652sparc_alloc_frame_cache (void)
653{
654 struct sparc_frame_cache *cache;
c906108c 655
386c036b 656 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 657
386c036b
MK
658 /* Base address. */
659 cache->base = 0;
660 cache->pc = 0;
c906108c 661
386c036b
MK
662 /* Frameless until proven otherwise. */
663 cache->frameless_p = 1;
369c397b
JB
664 cache->frame_offset = 0;
665 cache->saved_regs_mask = 0;
666 cache->copied_regs_mask = 0;
386c036b
MK
667 cache->struct_return_p = 0;
668
669 return cache;
670}
671
b0b92586
JB
672/* GCC generates several well-known sequences of instructions at the begining
673 of each function prologue when compiling with -fstack-check. If one of
674 such sequences starts at START_PC, then return the address of the
675 instruction immediately past this sequence. Otherwise, return START_PC. */
676
677static CORE_ADDR
678sparc_skip_stack_check (const CORE_ADDR start_pc)
679{
680 CORE_ADDR pc = start_pc;
681 unsigned long insn;
2067c8d4 682 int probing_loop = 0;
b0b92586
JB
683
684 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 685 instructions, plus an optional one in the case of a probing loop:
b0b92586 686
2067c8d4
JG
687 sethi <some immediate>, %g1
688 sub %sp, %g1, %g1
689
690 or:
691
692 sethi <some immediate>, %g1
693 sethi <some immediate>, %g4
694 sub %sp, %g1, %g1
695
696 or:
697
698 sethi <some immediate>, %g1
699 sub %sp, %g1, %g1
700 sethi <some immediate>, %g4
701
702 If the optional instruction is found (setting g4), assume that a
703 probing loop will follow. */
704
705 /* sethi <some immediate>, %g1 */
b0b92586
JB
706 insn = sparc_fetch_instruction (pc);
707 pc = pc + 4;
708 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
709 return start_pc;
710
2067c8d4 711 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
712 insn = sparc_fetch_instruction (pc);
713 pc = pc + 4;
2067c8d4
JG
714 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
715 {
716 probing_loop = 1;
717 insn = sparc_fetch_instruction (pc);
718 pc = pc + 4;
719 }
720
721 /* sub %sp, %g1, %g1 */
b0b92586
JB
722 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
723 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
724 return start_pc;
725
726 insn = sparc_fetch_instruction (pc);
727 pc = pc + 4;
728
2067c8d4
JG
729 /* optional: sethi <some immediate>, %g4 */
730 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
731 {
732 probing_loop = 1;
733 insn = sparc_fetch_instruction (pc);
734 pc = pc + 4;
735 }
736
b0b92586
JB
737 /* First possible sequence:
738 [first two instructions above]
739 clr [%g1 - some immediate] */
740
741 /* clr [%g1 - some immediate] */
742 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
743 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
744 {
745 /* Valid stack-check sequence, return the new PC. */
746 return pc;
747 }
748
749 /* Second possible sequence: A small number of probes.
750 [first two instructions above]
751 clr [%g1]
752 add %g1, -<some immediate>, %g1
753 clr [%g1]
754 [repeat the two instructions above any (small) number of times]
755 clr [%g1 - some immediate] */
756
757 /* clr [%g1] */
758 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
759 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
760 {
761 while (1)
762 {
763 /* add %g1, -<some immediate>, %g1 */
764 insn = sparc_fetch_instruction (pc);
765 pc = pc + 4;
766 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
767 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
768 break;
769
770 /* clr [%g1] */
771 insn = sparc_fetch_instruction (pc);
772 pc = pc + 4;
773 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
774 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
775 return start_pc;
776 }
777
778 /* clr [%g1 - some immediate] */
779 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
780 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
781 return start_pc;
782
783 /* We found a valid stack-check sequence, return the new PC. */
784 return pc;
785 }
786
787 /* Third sequence: A probing loop.
2067c8d4 788 [first three instructions above]
b0b92586
JB
789 sub %g1, %g4, %g4
790 cmp %g1, %g4
791 be <disp>
792 add %g1, -<some immediate>, %g1
793 ba <disp>
794 clr [%g1]
2067c8d4
JG
795
796 And an optional last probe for the remainder:
797
b0b92586
JB
798 clr [%g4 - some immediate] */
799
2067c8d4 800 if (probing_loop)
b0b92586
JB
801 {
802 /* sub %g1, %g4, %g4 */
b0b92586
JB
803 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
804 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
805 return start_pc;
806
807 /* cmp %g1, %g4 */
808 insn = sparc_fetch_instruction (pc);
809 pc = pc + 4;
810 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
811 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
812 return start_pc;
813
814 /* be <disp> */
815 insn = sparc_fetch_instruction (pc);
816 pc = pc + 4;
817 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
818 return start_pc;
819
820 /* add %g1, -<some immediate>, %g1 */
821 insn = sparc_fetch_instruction (pc);
822 pc = pc + 4;
823 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
824 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
825 return start_pc;
826
827 /* ba <disp> */
828 insn = sparc_fetch_instruction (pc);
829 pc = pc + 4;
830 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
831 return start_pc;
832
2067c8d4 833 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
834 insn = sparc_fetch_instruction (pc);
835 pc = pc + 4;
2067c8d4
JG
836 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
837 && X_RD (insn) == 0 && X_RS1 (insn) == 1
838 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
b0b92586
JB
839 return start_pc;
840
2067c8d4
JG
841 /* We found a valid stack-check sequence, return the new PC. */
842
843 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
844 insn = sparc_fetch_instruction (pc);
845 pc = pc + 4;
846 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
847 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
2067c8d4
JG
848 return pc - 4;
849 else
850 return pc;
b0b92586
JB
851 }
852
853 /* No stack check code in our prologue, return the start_pc. */
854 return start_pc;
855}
856
369c397b
JB
857/* Record the effect of a SAVE instruction on CACHE. */
858
859void
860sparc_record_save_insn (struct sparc_frame_cache *cache)
861{
862 /* The frame is set up. */
863 cache->frameless_p = 0;
864
865 /* The frame pointer contains the CFA. */
866 cache->frame_offset = 0;
867
868 /* The `local' and `in' registers are all saved. */
869 cache->saved_regs_mask = 0xffff;
870
871 /* The `out' registers are all renamed. */
872 cache->copied_regs_mask = 0xff;
873}
874
875/* Do a full analysis of the prologue at PC and update CACHE accordingly.
876 Bail out early if CURRENT_PC is reached. Return the address where
877 the analysis stopped.
878
879 We handle both the traditional register window model and the single
880 register window (aka flat) model. */
881
386c036b 882CORE_ADDR
be8626e0
MD
883sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
884 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 885{
be8626e0 886 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
887 unsigned long insn;
888 int offset = 0;
c906108c 889 int dest = -1;
c906108c 890
b0b92586
JB
891 pc = sparc_skip_stack_check (pc);
892
386c036b
MK
893 if (current_pc <= pc)
894 return current_pc;
895
896 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
897 SPARC the linker usually defines a symbol (typically
898 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
899 This symbol makes us end up here with PC pointing at the start of
900 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
901 would do our normal prologue analysis, we would probably conclude
902 that we've got a frame when in reality we don't, since the
903 dynamic linker patches up the first PLT with some code that
904 starts with a SAVE instruction. Patch up PC such that it points
905 at the start of our PLT entry. */
3e5d3a5a 906 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
386c036b 907 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 908
386c036b
MK
909 insn = sparc_fetch_instruction (pc);
910
369c397b
JB
911 /* Recognize store insns and record their sources. */
912 while (X_OP (insn) == 3
913 && (X_OP3 (insn) == 0x4 /* stw */
914 || X_OP3 (insn) == 0x7 /* std */
915 || X_OP3 (insn) == 0xe) /* stx */
916 && X_RS1 (insn) == SPARC_SP_REGNUM)
917 {
918 int regnum = X_RD (insn);
919
920 /* Recognize stores into the corresponding stack slots. */
921 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
922 && ((X_I (insn)
923 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
924 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
925 : (regnum - SPARC_L0_REGNUM) * 4))
926 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
927 {
928 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
929 if (X_OP3 (insn) == 0x7)
930 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
931 }
932
933 offset += 4;
934
935 insn = sparc_fetch_instruction (pc + offset);
936 }
937
386c036b
MK
938 /* Recognize a SETHI insn and record its destination. */
939 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
940 {
941 dest = X_RD (insn);
386c036b
MK
942 offset += 4;
943
369c397b 944 insn = sparc_fetch_instruction (pc + offset);
c906108c
SS
945 }
946
386c036b
MK
947 /* Allow for an arithmetic operation on DEST or %g1. */
948 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
949 && (X_RD (insn) == 1 || X_RD (insn) == dest))
950 {
386c036b 951 offset += 4;
c906108c 952
369c397b 953 insn = sparc_fetch_instruction (pc + offset);
c906108c 954 }
c906108c 955
386c036b
MK
956 /* Check for the SAVE instruction that sets up the frame. */
957 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 958 {
369c397b
JB
959 sparc_record_save_insn (cache);
960 offset += 4;
961 return pc + offset;
962 }
963
964 /* Check for an arithmetic operation on %sp. */
965 if (X_OP (insn) == 2
966 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
967 && X_RS1 (insn) == SPARC_SP_REGNUM
968 && X_RD (insn) == SPARC_SP_REGNUM)
969 {
970 if (X_I (insn))
971 {
972 cache->frame_offset = X_SIMM13 (insn);
973 if (X_OP3 (insn) == 0)
974 cache->frame_offset = -cache->frame_offset;
975 }
976 offset += 4;
977
978 insn = sparc_fetch_instruction (pc + offset);
979
980 /* Check for an arithmetic operation that sets up the frame. */
981 if (X_OP (insn) == 2
982 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
983 && X_RS1 (insn) == SPARC_SP_REGNUM
984 && X_RD (insn) == SPARC_FP_REGNUM)
985 {
986 cache->frameless_p = 0;
987 cache->frame_offset = 0;
988 /* We could check that the amount subtracted to %sp above is the
989 same as the one added here, but this seems superfluous. */
990 cache->copied_regs_mask |= 0x40;
991 offset += 4;
992
993 insn = sparc_fetch_instruction (pc + offset);
994 }
995
996 /* Check for a move (or) operation that copies the return register. */
997 if (X_OP (insn) == 2
998 && X_OP3 (insn) == 0x2
999 && !X_I (insn)
1000 && X_RS1 (insn) == SPARC_G0_REGNUM
1001 && X_RS2 (insn) == SPARC_O7_REGNUM
1002 && X_RD (insn) == SPARC_I7_REGNUM)
1003 {
1004 cache->copied_regs_mask |= 0x80;
1005 offset += 4;
1006 }
1007
1008 return pc + offset;
c906108c
SS
1009 }
1010
1011 return pc;
1012}
1013
386c036b 1014static CORE_ADDR
236369e7 1015sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1016{
1017 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 1018 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
1019}
1020
1021/* Return PC of first real instruction of the function starting at
1022 START_PC. */
f510d44e 1023
386c036b 1024static CORE_ADDR
6093d2eb 1025sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1026{
f510d44e
DM
1027 struct symtab_and_line sal;
1028 CORE_ADDR func_start, func_end;
386c036b 1029 struct sparc_frame_cache cache;
f510d44e
DM
1030
1031 /* This is the preferred method, find the end of the prologue by
1032 using the debugging information. */
1033 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1034 {
1035 sal = find_pc_line (func_start, 0);
1036
1037 if (sal.end < func_end
1038 && start_pc <= sal.end)
1039 return sal.end;
1040 }
1041
be8626e0 1042 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
1043
1044 /* The psABI says that "Although the first 6 words of arguments
1045 reside in registers, the standard stack frame reserves space for
1046 them.". It also suggests that a function may use that space to
1047 "write incoming arguments 0 to 5" into that space, and that's
1048 indeed what GCC seems to be doing. In that case GCC will
1049 generate debug information that points to the stack slots instead
1050 of the registers, so we should consider the instructions that
369c397b 1051 write out these incoming arguments onto the stack. */
075ccec8 1052
369c397b 1053 while (1)
075ccec8
MK
1054 {
1055 unsigned long insn = sparc_fetch_instruction (start_pc);
1056
369c397b
JB
1057 /* Recognize instructions that store incoming arguments into the
1058 corresponding stack slots. */
1059 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1060 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
075ccec8 1061 {
369c397b
JB
1062 int regnum = X_RD (insn);
1063
1064 /* Case of arguments still in %o[0..5]. */
1065 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1066 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1067 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1068 {
1069 start_pc += 4;
1070 continue;
1071 }
1072
1073 /* Case of arguments copied into %i[0..5]. */
1074 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1075 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1076 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1077 {
1078 start_pc += 4;
1079 continue;
1080 }
075ccec8
MK
1081 }
1082
1083 break;
1084 }
1085
1086 return start_pc;
c906108c
SS
1087}
1088
386c036b 1089/* Normal frames. */
9319a2fe 1090
386c036b 1091struct sparc_frame_cache *
236369e7 1092sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 1093{
386c036b 1094 struct sparc_frame_cache *cache;
9319a2fe 1095
386c036b 1096 if (*this_cache)
19ba03f4 1097 return (struct sparc_frame_cache *) *this_cache;
c906108c 1098
386c036b
MK
1099 cache = sparc_alloc_frame_cache ();
1100 *this_cache = cache;
c906108c 1101
236369e7 1102 cache->pc = get_frame_func (this_frame);
386c036b 1103 if (cache->pc != 0)
236369e7
JB
1104 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1105 get_frame_pc (this_frame), cache);
386c036b
MK
1106
1107 if (cache->frameless_p)
c906108c 1108 {
cbeae229
MK
1109 /* This function is frameless, so %fp (%i6) holds the frame
1110 pointer for our calling frame. Use %sp (%o6) as this frame's
1111 base address. */
1112 cache->base =
236369e7 1113 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
1114 }
1115 else
1116 {
1117 /* For normal frames, %fp (%i6) holds the frame pointer, the
1118 base address for the current stack frame. */
1119 cache->base =
236369e7 1120 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 1121 }
c906108c 1122
369c397b
JB
1123 cache->base += cache->frame_offset;
1124
5b2d44a0
MK
1125 if (cache->base & 1)
1126 cache->base += BIAS;
1127
386c036b 1128 return cache;
c906108c 1129}
c906108c 1130
aff37fc1
DM
1131static int
1132sparc32_struct_return_from_sym (struct symbol *sym)
1133{
1134 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1135 enum type_code code = TYPE_CODE (type);
1136
1137 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1138 {
1139 type = check_typedef (TYPE_TARGET_TYPE (type));
1140 if (sparc_structure_or_union_p (type)
1141 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1142 return 1;
1143 }
1144
1145 return 0;
1146}
1147
386c036b 1148struct sparc_frame_cache *
236369e7 1149sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 1150{
386c036b
MK
1151 struct sparc_frame_cache *cache;
1152 struct symbol *sym;
c906108c 1153
386c036b 1154 if (*this_cache)
19ba03f4 1155 return (struct sparc_frame_cache *) *this_cache;
c906108c 1156
236369e7 1157 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 1158
386c036b
MK
1159 sym = find_pc_function (cache->pc);
1160 if (sym)
c906108c 1161 {
aff37fc1 1162 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 1163 }
5465445a
JB
1164 else
1165 {
1166 /* There is no debugging information for this function to
1167 help us determine whether this function returns a struct
1168 or not. So we rely on another heuristic which is to check
1169 the instruction at the return address and see if this is
1170 an "unimp" instruction. If it is, then it is a struct-return
1171 function. */
1172 CORE_ADDR pc;
369c397b
JB
1173 int regnum =
1174 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
5465445a 1175
236369e7 1176 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
1177 if (sparc_is_unimp_insn (pc))
1178 cache->struct_return_p = 1;
1179 }
c906108c 1180
386c036b
MK
1181 return cache;
1182}
1183
1184static void
236369e7 1185sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
1186 struct frame_id *this_id)
1187{
1188 struct sparc_frame_cache *cache =
236369e7 1189 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1190
1191 /* This marks the outermost frame. */
1192 if (cache->base == 0)
1193 return;
1194
1195 (*this_id) = frame_id_build (cache->base, cache->pc);
1196}
c906108c 1197
236369e7
JB
1198static struct value *
1199sparc32_frame_prev_register (struct frame_info *this_frame,
1200 void **this_cache, int regnum)
386c036b 1201{
e17a4113 1202 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1203 struct sparc_frame_cache *cache =
236369e7 1204 sparc32_frame_cache (this_frame, this_cache);
c906108c 1205
386c036b 1206 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1207 {
236369e7 1208 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1209
236369e7
JB
1210 /* If this functions has a Structure, Union or Quad-Precision
1211 return value, we have to skip the UNIMP instruction that encodes
1212 the size of the structure. */
1213 if (cache->struct_return_p)
1214 pc += 4;
386c036b 1215
369c397b
JB
1216 regnum =
1217 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1218 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1219 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1220 }
1221
42cdca6c
MK
1222 /* Handle StackGhost. */
1223 {
e17a4113 1224 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1225
1226 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1227 {
236369e7
JB
1228 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1229 ULONGEST i7;
1230
1231 /* Read the value in from memory. */
1232 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1233 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1234 }
1235 }
1236
369c397b 1237 /* The previous frame's `local' and `in' registers may have been saved
386c036b 1238 in the register save area. */
369c397b
JB
1239 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1240 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
c906108c 1241 {
236369e7 1242 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1243
236369e7 1244 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1245 }
c906108c 1246
369c397b
JB
1247 /* The previous frame's `out' registers may be accessible as the current
1248 frame's `in' registers. */
1249 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1250 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
386c036b 1251 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1252
236369e7 1253 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1254}
c906108c 1255
386c036b
MK
1256static const struct frame_unwind sparc32_frame_unwind =
1257{
1258 NORMAL_FRAME,
8fbca658 1259 default_frame_unwind_stop_reason,
386c036b 1260 sparc32_frame_this_id,
236369e7
JB
1261 sparc32_frame_prev_register,
1262 NULL,
1263 default_frame_sniffer
386c036b 1264};
386c036b 1265\f
c906108c 1266
386c036b 1267static CORE_ADDR
236369e7 1268sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1269{
1270 struct sparc_frame_cache *cache =
236369e7 1271 sparc32_frame_cache (this_frame, this_cache);
c906108c 1272
386c036b
MK
1273 return cache->base;
1274}
c906108c 1275
386c036b
MK
1276static const struct frame_base sparc32_frame_base =
1277{
1278 &sparc32_frame_unwind,
1279 sparc32_frame_base_address,
1280 sparc32_frame_base_address,
1281 sparc32_frame_base_address
1282};
c906108c 1283
386c036b 1284static struct frame_id
236369e7 1285sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1286{
1287 CORE_ADDR sp;
5af923b0 1288
236369e7 1289 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1290 if (sp & 1)
1291 sp += BIAS;
236369e7 1292 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1293}
1294\f
c906108c 1295
3923a2b2
MK
1296/* Extract a function return value of TYPE from REGCACHE, and copy
1297 that into VALBUF. */
5af923b0 1298
386c036b
MK
1299static void
1300sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1301 gdb_byte *valbuf)
386c036b
MK
1302{
1303 int len = TYPE_LENGTH (type);
fe10a582 1304 gdb_byte buf[32];
c906108c 1305
386c036b
MK
1306 gdb_assert (!sparc_structure_or_union_p (type));
1307 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1308
fe10a582 1309 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
5af923b0 1310 {
386c036b
MK
1311 /* Floating return values. */
1312 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1313 if (len > 4)
1314 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1315 if (len > 8)
1316 {
1317 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1318 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1319 }
1320 if (len > 16)
1321 {
1322 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1323 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1324 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1325 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1326 }
386c036b 1327 memcpy (valbuf, buf, len);
5af923b0
MS
1328 }
1329 else
1330 {
386c036b
MK
1331 /* Integral and pointer return values. */
1332 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1333
386c036b
MK
1334 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1335 if (len > 4)
1336 {
1337 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1338 gdb_assert (len == 8);
1339 memcpy (valbuf, buf, 8);
1340 }
1341 else
1342 {
1343 /* Just stripping off any unused bytes should preserve the
1344 signed-ness just fine. */
1345 memcpy (valbuf, buf + 4 - len, len);
1346 }
1347 }
1348}
c906108c 1349
3923a2b2
MK
1350/* Store the function return value of type TYPE from VALBUF into
1351 REGCACHE. */
c906108c 1352
386c036b
MK
1353static void
1354sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1355 const gdb_byte *valbuf)
386c036b
MK
1356{
1357 int len = TYPE_LENGTH (type);
e1613aba 1358 gdb_byte buf[8];
c906108c 1359
386c036b
MK
1360 gdb_assert (!sparc_structure_or_union_p (type));
1361 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1362 gdb_assert (len <= 8);
c906108c 1363
fe10a582 1364 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
386c036b
MK
1365 {
1366 /* Floating return values. */
1367 memcpy (buf, valbuf, len);
1368 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1369 if (len > 4)
1370 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1371 if (len > 8)
1372 {
1373 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1374 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1375 }
1376 if (len > 16)
1377 {
1378 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1379 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1380 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1381 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1382 }
386c036b
MK
1383 }
1384 else
c906108c 1385 {
386c036b
MK
1386 /* Integral and pointer return values. */
1387 gdb_assert (sparc_integral_or_pointer_p (type));
1388
1389 if (len > 4)
2757dd86 1390 {
386c036b
MK
1391 gdb_assert (len == 8);
1392 memcpy (buf, valbuf, 8);
1393 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1394 }
1395 else
1396 {
386c036b
MK
1397 /* ??? Do we need to do any sign-extension here? */
1398 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1399 }
386c036b 1400 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1401 }
1402}
1403
b9d4c5ed 1404static enum return_value_convention
6a3a010b 1405sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1406 struct type *type, struct regcache *regcache,
1407 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1408{
e17a4113
UW
1409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1410
0a8f48b9
MK
1411 /* The psABI says that "...every stack frame reserves the word at
1412 %fp+64. If a function returns a structure, union, or
1413 quad-precision value, this word should hold the address of the
1414 object into which the return value should be copied." This
1415 guarantees that we can always find the return value, not just
1416 before the function returns. */
1417
b9d4c5ed
MK
1418 if (sparc_structure_or_union_p (type)
1419 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9 1420 {
bbfdfe1c
DM
1421 ULONGEST sp;
1422 CORE_ADDR addr;
1423
0a8f48b9
MK
1424 if (readbuf)
1425 {
0a8f48b9 1426 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1427 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1428 read_memory (addr, readbuf, TYPE_LENGTH (type));
1429 }
bbfdfe1c
DM
1430 if (writebuf)
1431 {
1432 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1433 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1434 write_memory (addr, writebuf, TYPE_LENGTH (type));
1435 }
0a8f48b9
MK
1436
1437 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1438 }
b9d4c5ed
MK
1439
1440 if (readbuf)
1441 sparc32_extract_return_value (type, regcache, readbuf);
1442 if (writebuf)
1443 sparc32_store_return_value (type, regcache, writebuf);
1444
1445 return RETURN_VALUE_REGISTER_CONVENTION;
1446}
1447
386c036b
MK
1448static int
1449sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1450{
386c036b 1451 return (sparc_structure_or_union_p (type)
fe10a582
DM
1452 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1453 || sparc_complex_floating_p (type));
386c036b 1454}
c906108c 1455
aff37fc1 1456static int
4a4e5149 1457sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1458{
236369e7 1459 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1460 struct symbol *sym = find_pc_function (pc);
1461
1462 if (sym)
1463 return sparc32_struct_return_from_sym (sym);
1464 return 0;
1465}
1466
f5a9b87d
DM
1467static void
1468sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1469 struct dwarf2_frame_state_reg *reg,
4a4e5149 1470 struct frame_info *this_frame)
f5a9b87d 1471{
aff37fc1
DM
1472 int off;
1473
f5a9b87d
DM
1474 switch (regnum)
1475 {
1476 case SPARC_G0_REGNUM:
1477 /* Since %g0 is always zero, there is no point in saving it, and
1478 people will be inclined omit it from the CFI. Make sure we
1479 don't warn about that. */
1480 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1481 break;
1482 case SPARC_SP_REGNUM:
1483 reg->how = DWARF2_FRAME_REG_CFA;
1484 break;
1485 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1486 case SPARC32_NPC_REGNUM:
1487 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1488 off = 8;
4a4e5149 1489 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1490 off += 4;
1491 if (regnum == SPARC32_NPC_REGNUM)
1492 off += 4;
1493 reg->loc.offset = off;
f5a9b87d
DM
1494 break;
1495 }
1496}
1497
386c036b
MK
1498\f
1499/* The SPARC Architecture doesn't have hardware single-step support,
1500 and most operating systems don't implement it either, so we provide
1501 software single-step mechanism. */
c906108c 1502
386c036b 1503static CORE_ADDR
0b1b3e42 1504sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1505 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1506{
1507 unsigned long insn = sparc_fetch_instruction (pc);
1508 int conditional_p = X_COND (insn) & 0x7;
8d1b3521 1509 int branch_p = 0, fused_p = 0;
386c036b 1510 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1511
8d1b3521 1512 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
c906108c 1513 {
8d1b3521
DM
1514 if ((insn & 0x10000000) == 0)
1515 {
1516 /* Branch on Integer Register with Prediction (BPr). */
1517 branch_p = 1;
1518 conditional_p = 1;
1519 }
1520 else
1521 {
1522 /* Compare and Branch */
1523 branch_p = 1;
1524 fused_p = 1;
1525 offset = 4 * X_DISP10 (insn);
1526 }
c906108c 1527 }
386c036b 1528 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1529 {
386c036b
MK
1530 /* Branch on Floating-Point Condition Codes (FBfcc). */
1531 branch_p = 1;
1532 offset = 4 * X_DISP22 (insn);
c906108c 1533 }
386c036b
MK
1534 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1535 {
1536 /* Branch on Floating-Point Condition Codes with Prediction
1537 (FBPfcc). */
1538 branch_p = 1;
1539 offset = 4 * X_DISP19 (insn);
1540 }
1541 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1542 {
1543 /* Branch on Integer Condition Codes (Bicc). */
1544 branch_p = 1;
1545 offset = 4 * X_DISP22 (insn);
1546 }
1547 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1548 {
386c036b
MK
1549 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1550 branch_p = 1;
1551 offset = 4 * X_DISP19 (insn);
c906108c 1552 }
c893be75
MK
1553 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1554 {
1555 /* Trap instruction (TRAP). */
0b1b3e42 1556 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1557 }
386c036b
MK
1558
1559 /* FIXME: Handle DONE and RETRY instructions. */
1560
386c036b 1561 if (branch_p)
c906108c 1562 {
8d1b3521
DM
1563 if (fused_p)
1564 {
1565 /* Fused compare-and-branch instructions are non-delayed,
1566 and do not have an annuling capability. So we need to
1567 always set a breakpoint on both the NPC and the branch
1568 target address. */
1569 gdb_assert (offset != 0);
1570 return pc + offset;
1571 }
1572 else if (conditional_p)
c906108c 1573 {
386c036b
MK
1574 /* For conditional branches, return nPC + 4 iff the annul
1575 bit is 1. */
1576 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1577 }
1578 else
1579 {
386c036b
MK
1580 /* For unconditional branches, return the target if its
1581 specified condition is "always" and return nPC + 4 if the
1582 condition is "never". If the annul bit is 1, set *NPC to
1583 zero. */
1584 if (X_COND (insn) == 0x0)
1585 pc = *npc, offset = 4;
1586 if (X_A (insn))
1587 *npc = 0;
1588
386c036b 1589 return pc + offset;
c906108c
SS
1590 }
1591 }
386c036b
MK
1592
1593 return 0;
c906108c
SS
1594}
1595
c893be75 1596static CORE_ADDR
0b1b3e42 1597sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1598{
1599 return 0;
1600}
1601
93f9a11f 1602static VEC (CORE_ADDR) *
0b1b3e42 1603sparc_software_single_step (struct frame_info *frame)
386c036b 1604{
0b1b3e42 1605 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1606 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1607 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1608 CORE_ADDR npc, nnpc;
c906108c 1609
e0cd558a 1610 CORE_ADDR pc, orig_npc;
93f9a11f 1611 VEC (CORE_ADDR) *next_pcs = NULL;
c906108c 1612
0b1b3e42
UW
1613 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1614 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1615
e0cd558a 1616 /* Analyze the instruction at PC. */
0b1b3e42 1617 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1618 if (npc != 0)
93f9a11f 1619 VEC_safe_push (CORE_ADDR, next_pcs, npc);
8181d85f 1620
e0cd558a 1621 if (nnpc != 0)
93f9a11f 1622 VEC_safe_push (CORE_ADDR, next_pcs, nnpc);
c906108c 1623
e0cd558a
UW
1624 /* Assert that we have set at least one breakpoint, and that
1625 they're not set at the same spot - unless we're going
1626 from here straight to NULL, i.e. a call or jump to 0. */
1627 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1628 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b 1629
93f9a11f 1630 return next_pcs;
386c036b
MK
1631}
1632
1633static void
61a1198a 1634sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1635{
61a1198a 1636 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1637
61a1198a
UW
1638 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1639 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1640}
1641\f
5af923b0 1642
e5139de8 1643/* Iterate over core file register note sections. */
a54124c5 1644
e5139de8
AA
1645static void
1646sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1647 iterate_over_regset_sections_cb *cb,
1648 void *cb_data,
1649 const struct regcache *regcache)
a54124c5
MK
1650{
1651 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1652
e5139de8
AA
1653 cb (".reg", tdep->sizeof_gregset, tdep->gregset, NULL, cb_data);
1654 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
a54124c5
MK
1655}
1656\f
1657
386c036b
MK
1658static struct gdbarch *
1659sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1660{
1661 struct gdbarch_tdep *tdep;
1662 struct gdbarch *gdbarch;
c906108c 1663
386c036b
MK
1664 /* If there is already a candidate, use it. */
1665 arches = gdbarch_list_lookup_by_info (arches, &info);
1666 if (arches != NULL)
1667 return arches->gdbarch;
c906108c 1668
386c036b 1669 /* Allocate space for the new architecture. */
41bf6aca 1670 tdep = XCNEW (struct gdbarch_tdep);
386c036b 1671 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1672
386c036b
MK
1673 tdep->pc_regnum = SPARC32_PC_REGNUM;
1674 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1675 tdep->step_trap = sparc_step_trap;
386c036b
MK
1676
1677 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1678 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1679
1680 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1681 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1682 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1683 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1684 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1685 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1686
1687 /* Register numbers of various important registers. */
1688 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1689 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1690 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1691
1692 /* Call dummy code. */
49a45ecf 1693 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1694 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1695 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1696 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1697
b9d4c5ed 1698 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1699 set_gdbarch_stabs_argument_has_addr
1700 (gdbarch, sparc32_stabs_argument_has_addr);
1701
1702 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1703
1704 /* Stack grows downward. */
1705 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1706
04180708
YQ
1707 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1708 sparc_breakpoint::kind_from_pc);
1709 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1710 sparc_breakpoint::bp_from_kind);
c906108c 1711
386c036b 1712 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1713
386c036b 1714 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1715
386c036b
MK
1716 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1717 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1718
236369e7 1719 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1720
386c036b 1721 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1722
386c036b
MK
1723 frame_base_set_default (gdbarch, &sparc32_frame_base);
1724
f5a9b87d
DM
1725 /* Hook in the DWARF CFI frame unwinder. */
1726 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1727 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1728 StackGhost issues have been resolved. */
1729
b2a0b9b2
DM
1730 /* Hook in ABI-specific overrides, if they have been registered. */
1731 gdbarch_init_osabi (info, gdbarch);
1732
236369e7 1733 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1734
a54124c5 1735 /* If we have register sets, enable the generic core file support. */
4c72d57a 1736 if (tdep->gregset)
e5139de8
AA
1737 set_gdbarch_iterate_over_regset_sections
1738 (gdbarch, sparc_iterate_over_regset_sections);
a54124c5 1739
7e35103a
JB
1740 register_sparc_ravenscar_ops (gdbarch);
1741
386c036b
MK
1742 return gdbarch;
1743}
1744\f
1745/* Helper functions for dealing with register windows. */
1746
1747void
1748sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1749{
e17a4113
UW
1750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1751 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1752 int offset = 0;
e1613aba 1753 gdb_byte buf[8];
386c036b
MK
1754 int i;
1755
1756 if (sp & 1)
1757 {
1758 /* Registers are 64-bit. */
1759 sp += BIAS;
c906108c 1760
386c036b
MK
1761 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1762 {
1763 if (regnum == i || regnum == -1)
1764 {
1765 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1766
1767 /* Handle StackGhost. */
1768 if (i == SPARC_I7_REGNUM)
1769 {
e17a4113
UW
1770 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1771 ULONGEST i7;
f700a364 1772
e17a4113
UW
1773 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1774 store_unsigned_integer (buf + offset, 8, byte_order,
1775 i7 ^ wcookie);
f700a364
MK
1776 }
1777
386c036b
MK
1778 regcache_raw_supply (regcache, i, buf);
1779 }
1780 }
1781 }
1782 else
c906108c 1783 {
386c036b
MK
1784 /* Registers are 32-bit. Toss any sign-extension of the stack
1785 pointer. */
1786 sp &= 0xffffffffUL;
c906108c 1787
386c036b
MK
1788 /* Clear out the top half of the temporary buffer, and put the
1789 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1790 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1791 {
386c036b
MK
1792 memset (buf, 0, 4);
1793 offset = 4;
1794 }
c906108c 1795
386c036b
MK
1796 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1797 {
1798 if (regnum == i || regnum == -1)
1799 {
1800 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1801 buf + offset, 4);
42cdca6c
MK
1802
1803 /* Handle StackGhost. */
1804 if (i == SPARC_I7_REGNUM)
1805 {
e17a4113
UW
1806 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1807 ULONGEST i7;
42cdca6c 1808
e17a4113
UW
1809 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1810 store_unsigned_integer (buf + offset, 4, byte_order,
1811 i7 ^ wcookie);
42cdca6c
MK
1812 }
1813
386c036b
MK
1814 regcache_raw_supply (regcache, i, buf);
1815 }
c906108c
SS
1816 }
1817 }
c906108c 1818}
c906108c
SS
1819
1820void
386c036b
MK
1821sparc_collect_rwindow (const struct regcache *regcache,
1822 CORE_ADDR sp, int regnum)
c906108c 1823{
e17a4113
UW
1824 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1825 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1826 int offset = 0;
e1613aba 1827 gdb_byte buf[8];
386c036b 1828 int i;
5af923b0 1829
386c036b 1830 if (sp & 1)
5af923b0 1831 {
386c036b
MK
1832 /* Registers are 64-bit. */
1833 sp += BIAS;
c906108c 1834
386c036b
MK
1835 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1836 {
1837 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1838 {
1839 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1840
1841 /* Handle StackGhost. */
1842 if (i == SPARC_I7_REGNUM)
1843 {
e17a4113
UW
1844 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1845 ULONGEST i7;
f700a364 1846
e17a4113
UW
1847 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1848 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1849 }
1850
386c036b
MK
1851 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1852 }
1853 }
5af923b0
MS
1854 }
1855 else
1856 {
386c036b
MK
1857 /* Registers are 32-bit. Toss any sign-extension of the stack
1858 pointer. */
1859 sp &= 0xffffffffUL;
1860
1861 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1862 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1863 offset = 4;
1864
1865 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1866 {
1867 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1868 {
1869 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1870
1871 /* Handle StackGhost. */
1872 if (i == SPARC_I7_REGNUM)
1873 {
e17a4113
UW
1874 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1875 ULONGEST i7;
42cdca6c 1876
e17a4113
UW
1877 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1878 store_unsigned_integer (buf + offset, 4, byte_order,
1879 i7 ^ wcookie);
42cdca6c
MK
1880 }
1881
386c036b
MK
1882 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1883 buf + offset, 4);
1884 }
1885 }
5af923b0 1886 }
c906108c
SS
1887}
1888
386c036b
MK
1889/* Helper functions for dealing with register sets. */
1890
c906108c 1891void
b4fd25c9 1892sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
1893 struct regcache *regcache,
1894 int regnum, const void *gregs)
c906108c 1895{
19ba03f4 1896 const gdb_byte *regs = (const gdb_byte *) gregs;
22e74ef9 1897 gdb_byte zero[4] = { 0 };
386c036b 1898 int i;
5af923b0 1899
386c036b
MK
1900 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1901 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
b4fd25c9 1902 regs + gregmap->r_psr_offset);
c906108c 1903
386c036b
MK
1904 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1905 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
b4fd25c9 1906 regs + gregmap->r_pc_offset);
5af923b0 1907
386c036b
MK
1908 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1909 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
b4fd25c9 1910 regs + gregmap->r_npc_offset);
5af923b0 1911
386c036b
MK
1912 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1913 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
b4fd25c9 1914 regs + gregmap->r_y_offset);
5af923b0 1915
386c036b 1916 if (regnum == SPARC_G0_REGNUM || regnum == -1)
22e74ef9 1917 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
5af923b0 1918
386c036b 1919 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1920 {
b4fd25c9 1921 int offset = gregmap->r_g1_offset;
386c036b
MK
1922
1923 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1924 {
1925 if (regnum == i || regnum == -1)
1926 regcache_raw_supply (regcache, i, regs + offset);
1927 offset += 4;
1928 }
c906108c 1929 }
386c036b
MK
1930
1931 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1932 {
386c036b
MK
1933 /* Not all of the register set variants include Locals and
1934 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 1935 if (gregmap->r_l0_offset == -1)
386c036b
MK
1936 {
1937 ULONGEST sp;
1938
1939 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1940 sparc_supply_rwindow (regcache, sp, regnum);
1941 }
1942 else
1943 {
b4fd25c9 1944 int offset = gregmap->r_l0_offset;
386c036b
MK
1945
1946 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1947 {
1948 if (regnum == i || regnum == -1)
1949 regcache_raw_supply (regcache, i, regs + offset);
1950 offset += 4;
1951 }
1952 }
c906108c
SS
1953 }
1954}
1955
c5aa993b 1956void
b4fd25c9 1957sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
1958 const struct regcache *regcache,
1959 int regnum, void *gregs)
c906108c 1960{
19ba03f4 1961 gdb_byte *regs = (gdb_byte *) gregs;
386c036b 1962 int i;
c5aa993b 1963
386c036b
MK
1964 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1965 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
b4fd25c9 1966 regs + gregmap->r_psr_offset);
60054393 1967
386c036b
MK
1968 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1969 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
b4fd25c9 1970 regs + gregmap->r_pc_offset);
386c036b
MK
1971
1972 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1973 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
b4fd25c9 1974 regs + gregmap->r_npc_offset);
5af923b0 1975
386c036b
MK
1976 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1977 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
b4fd25c9 1978 regs + gregmap->r_y_offset);
386c036b
MK
1979
1980 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1981 {
b4fd25c9 1982 int offset = gregmap->r_g1_offset;
386c036b
MK
1983
1984 /* %g0 is always zero. */
1985 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1986 {
1987 if (regnum == i || regnum == -1)
1988 regcache_raw_collect (regcache, i, regs + offset);
1989 offset += 4;
1990 }
5af923b0 1991 }
386c036b
MK
1992
1993 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1994 {
386c036b
MK
1995 /* Not all of the register set variants include Locals and
1996 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 1997 if (gregmap->r_l0_offset != -1)
386c036b 1998 {
b4fd25c9 1999 int offset = gregmap->r_l0_offset;
386c036b
MK
2000
2001 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2002 {
2003 if (regnum == i || regnum == -1)
2004 regcache_raw_collect (regcache, i, regs + offset);
2005 offset += 4;
2006 }
2007 }
5af923b0 2008 }
c906108c
SS
2009}
2010
c906108c 2011void
b4fd25c9 2012sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2013 struct regcache *regcache,
386c036b 2014 int regnum, const void *fpregs)
c906108c 2015{
19ba03f4 2016 const gdb_byte *regs = (const gdb_byte *) fpregs;
386c036b 2017 int i;
60054393 2018
386c036b 2019 for (i = 0; i < 32; i++)
c906108c 2020 {
386c036b 2021 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717 2022 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
b4fd25c9 2023 regs + fpregmap->r_f0_offset + (i * 4));
c906108c 2024 }
5af923b0 2025
386c036b 2026 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717 2027 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
b4fd25c9 2028 regs + fpregmap->r_fsr_offset);
c906108c
SS
2029}
2030
386c036b 2031void
b4fd25c9 2032sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2033 const struct regcache *regcache,
386c036b 2034 int regnum, void *fpregs)
c906108c 2035{
19ba03f4 2036 gdb_byte *regs = (gdb_byte *) fpregs;
386c036b 2037 int i;
c906108c 2038
386c036b
MK
2039 for (i = 0; i < 32; i++)
2040 {
2041 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717 2042 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
b4fd25c9 2043 regs + fpregmap->r_f0_offset + (i * 4));
386c036b 2044 }
c906108c 2045
386c036b 2046 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717 2047 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
b4fd25c9 2048 regs + fpregmap->r_fsr_offset);
c906108c 2049}
c906108c 2050\f
c906108c 2051
386c036b 2052/* SunOS 4. */
c906108c 2053
386c036b 2054/* From <machine/reg.h>. */
b4fd25c9 2055const struct sparc_gregmap sparc32_sunos4_gregmap =
c906108c 2056{
386c036b
MK
2057 0 * 4, /* %psr */
2058 1 * 4, /* %pc */
2059 2 * 4, /* %npc */
2060 3 * 4, /* %y */
2061 -1, /* %wim */
2062 -1, /* %tbr */
2063 4 * 4, /* %g1 */
2064 -1 /* %l0 */
2065};
db75c717 2066
b4fd25c9 2067const struct sparc_fpregmap sparc32_sunos4_fpregmap =
db75c717
DM
2068{
2069 0 * 4, /* %f0 */
2070 33 * 4, /* %fsr */
2071};
2072
b4fd25c9 2073const struct sparc_fpregmap sparc32_bsd_fpregmap =
db75c717
DM
2074{
2075 0 * 4, /* %f0 */
2076 32 * 4, /* %fsr */
2077};
386c036b 2078\f
c906108c 2079
386c036b
MK
2080/* Provide a prototype to silence -Wmissing-prototypes. */
2081void _initialize_sparc_tdep (void);
c906108c
SS
2082
2083void
386c036b 2084_initialize_sparc_tdep (void)
c906108c 2085{
386c036b 2086 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 2087}
This page took 1.8991 seconds and 4 git commands to generate.