gdbarch-ification of ravenscar-thread support.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
0b302171 3 Copyright (C) 2003-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
5af923b0 21#include "arch-utils.h"
386c036b 22#include "dis-asm.h"
f5a9b87d 23#include "dwarf2-frame.h"
386c036b 24#include "floatformat.h"
c906108c 25#include "frame.h"
386c036b
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
c906108c 30#include "inferior.h"
386c036b
MK
31#include "symtab.h"
32#include "objfiles.h"
33#include "osabi.h"
34#include "regcache.h"
c906108c
SS
35#include "target.h"
36#include "value.h"
c906108c 37
43bd9a9e 38#include "gdb_assert.h"
386c036b 39#include "gdb_string.h"
c906108c 40
386c036b 41#include "sparc-tdep.h"
7e35103a 42#include "ravenscar-sparc-thread.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 66 big-endian IA-64 Quad-Precision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
8d1b3521 89#define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
075ccec8 90#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 91
386c036b
MK
92/* Fetch the instruction at PC. Instructions are always big-endian
93 even if the processor operates in little-endian mode. */
94
95unsigned long
96sparc_fetch_instruction (CORE_ADDR pc)
c906108c 97{
e1613aba 98 gdb_byte buf[4];
386c036b
MK
99 unsigned long insn;
100 int i;
101
690668cc 102 /* If we can't read the instruction at PC, return zero. */
8defab1a 103 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 104 return 0;
c906108c 105
386c036b
MK
106 insn = 0;
107 for (i = 0; i < sizeof (buf); i++)
108 insn = (insn << 8) | buf[i];
109 return insn;
110}
42cdca6c
MK
111\f
112
5465445a
JB
113/* Return non-zero if the instruction corresponding to PC is an "unimp"
114 instruction. */
115
116static int
117sparc_is_unimp_insn (CORE_ADDR pc)
118{
119 const unsigned long insn = sparc_fetch_instruction (pc);
120
121 return ((insn & 0xc1c00000) == 0);
122}
123
42cdca6c
MK
124/* OpenBSD/sparc includes StackGhost, which according to the author's
125 website http://stackghost.cerias.purdue.edu "... transparently and
126 automatically protects applications' stack frames; more
127 specifically, it guards the return pointers. The protection
128 mechanisms require no application source or binary modification and
129 imposes only a negligible performance penalty."
130
131 The same website provides the following description of how
132 StackGhost works:
133
134 "StackGhost interfaces with the kernel trap handler that would
135 normally write out registers to the stack and the handler that
136 would read them back in. By XORing a cookie into the
137 return-address saved in the user stack when it is actually written
138 to the stack, and then XOR it out when the return-address is pulled
139 from the stack, StackGhost can cause attacker corrupted return
140 pointers to behave in a manner the attacker cannot predict.
141 StackGhost can also use several unused bits in the return pointer
142 to detect a smashed return pointer and abort the process."
143
144 For GDB this means that whenever we're reading %i7 from a stack
145 frame's window save area, we'll have to XOR the cookie.
146
147 More information on StackGuard can be found on in:
148
c378eb4e 149 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
150 Stack Protection." 2001. Published in USENIX Security Symposium
151 '01. */
152
153/* Fetch StackGhost Per-Process XOR cookie. */
154
155ULONGEST
e17a4113 156sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 157{
e17a4113 158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 159 struct target_ops *ops = &current_target;
e1613aba 160 gdb_byte buf[8];
baf92889
MK
161 int len;
162
13547ab6 163 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
164 if (len == -1)
165 return 0;
42cdca6c 166
baf92889
MK
167 /* We should have either an 32-bit or an 64-bit cookie. */
168 gdb_assert (len == 4 || len == 8);
169
e17a4113 170 return extract_unsigned_integer (buf, len, byte_order);
baf92889 171}
386c036b 172\f
baf92889 173
386c036b
MK
174/* The functions on this page are intended to be used to classify
175 function arguments. */
c906108c 176
386c036b 177/* Check whether TYPE is "Integral or Pointer". */
c906108c 178
386c036b
MK
179static int
180sparc_integral_or_pointer_p (const struct type *type)
c906108c 181{
80ad1639
MK
182 int len = TYPE_LENGTH (type);
183
386c036b 184 switch (TYPE_CODE (type))
c906108c 185 {
386c036b
MK
186 case TYPE_CODE_INT:
187 case TYPE_CODE_BOOL:
188 case TYPE_CODE_CHAR:
189 case TYPE_CODE_ENUM:
190 case TYPE_CODE_RANGE:
80ad1639
MK
191 /* We have byte, half-word, word and extended-word/doubleword
192 integral types. The doubleword is an extension to the
193 original 32-bit ABI by the SCD 2.4.x. */
194 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
195 case TYPE_CODE_PTR:
196 case TYPE_CODE_REF:
80ad1639
MK
197 /* Allow either 32-bit or 64-bit pointers. */
198 return (len == 4 || len == 8);
386c036b
MK
199 default:
200 break;
201 }
c906108c 202
386c036b
MK
203 return 0;
204}
c906108c 205
386c036b 206/* Check whether TYPE is "Floating". */
c906108c 207
386c036b
MK
208static int
209sparc_floating_p (const struct type *type)
210{
211 switch (TYPE_CODE (type))
c906108c 212 {
386c036b
MK
213 case TYPE_CODE_FLT:
214 {
215 int len = TYPE_LENGTH (type);
216 return (len == 4 || len == 8 || len == 16);
217 }
218 default:
219 break;
220 }
221
222 return 0;
223}
c906108c 224
fe10a582
DM
225/* Check whether TYPE is "Complex Floating". */
226
227static int
228sparc_complex_floating_p (const struct type *type)
229{
230 switch (TYPE_CODE (type))
231 {
232 case TYPE_CODE_COMPLEX:
233 {
234 int len = TYPE_LENGTH (type);
235 return (len == 8 || len == 16 || len == 32);
236 }
237 default:
238 break;
239 }
240
241 return 0;
242}
243
0497f5b0
JB
244/* Check whether TYPE is "Structure or Union".
245
246 In terms of Ada subprogram calls, arrays are treated the same as
247 struct and union types. So this function also returns non-zero
248 for array types. */
c906108c 249
386c036b
MK
250static int
251sparc_structure_or_union_p (const struct type *type)
252{
253 switch (TYPE_CODE (type))
254 {
255 case TYPE_CODE_STRUCT:
256 case TYPE_CODE_UNION:
0497f5b0 257 case TYPE_CODE_ARRAY:
386c036b
MK
258 return 1;
259 default:
260 break;
c906108c 261 }
386c036b
MK
262
263 return 0;
c906108c 264}
386c036b
MK
265
266/* Register information. */
267
268static const char *sparc32_register_names[] =
5af923b0 269{
386c036b
MK
270 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
271 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
272 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
273 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
274
275 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
276 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
277 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
278 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
279
280 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
281};
282
386c036b
MK
283/* Total number of registers. */
284#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 285
386c036b
MK
286/* We provide the aliases %d0..%d30 for the floating registers as
287 "psuedo" registers. */
288
289static const char *sparc32_pseudo_register_names[] =
290{
291 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
292 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
293};
294
295/* Total number of pseudo registers. */
296#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
297
298/* Return the name of register REGNUM. */
299
300static const char *
d93859e2 301sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
302{
303 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
304 return sparc32_register_names[regnum];
305
306 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
307 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
308
309 return NULL;
310}
2d457077 311\f
209bd28e 312/* Construct types for ISA-specific registers. */
2d457077 313
209bd28e
UW
314static struct type *
315sparc_psr_type (struct gdbarch *gdbarch)
316{
317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 318
209bd28e
UW
319 if (!tdep->sparc_psr_type)
320 {
321 struct type *type;
2d457077 322
e9bb382b 323 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
324 append_flags_type_flag (type, 5, "ET");
325 append_flags_type_flag (type, 6, "PS");
326 append_flags_type_flag (type, 7, "S");
327 append_flags_type_flag (type, 12, "EF");
328 append_flags_type_flag (type, 13, "EC");
2d457077 329
209bd28e
UW
330 tdep->sparc_psr_type = type;
331 }
332
333 return tdep->sparc_psr_type;
334}
335
336static struct type *
337sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 338{
209bd28e
UW
339 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
340
341 if (!tdep->sparc_fsr_type)
342 {
343 struct type *type;
344
e9bb382b 345 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
346 append_flags_type_flag (type, 0, "NXA");
347 append_flags_type_flag (type, 1, "DZA");
348 append_flags_type_flag (type, 2, "UFA");
349 append_flags_type_flag (type, 3, "OFA");
350 append_flags_type_flag (type, 4, "NVA");
351 append_flags_type_flag (type, 5, "NXC");
352 append_flags_type_flag (type, 6, "DZC");
353 append_flags_type_flag (type, 7, "UFC");
354 append_flags_type_flag (type, 8, "OFC");
355 append_flags_type_flag (type, 9, "NVC");
356 append_flags_type_flag (type, 22, "NS");
357 append_flags_type_flag (type, 23, "NXM");
358 append_flags_type_flag (type, 24, "DZM");
359 append_flags_type_flag (type, 25, "UFM");
360 append_flags_type_flag (type, 26, "OFM");
361 append_flags_type_flag (type, 27, "NVM");
362
363 tdep->sparc_fsr_type = type;
364 }
365
366 return tdep->sparc_fsr_type;
2d457077 367}
386c036b
MK
368
369/* Return the GDB type object for the "standard" data type of data in
c378eb4e 370 register REGNUM. */
386c036b
MK
371
372static struct type *
373sparc32_register_type (struct gdbarch *gdbarch, int regnum)
374{
375 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 376 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
377
378 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 379 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
380
381 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 382 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
383
384 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 385 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 386
2d457077 387 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 388 return sparc_psr_type (gdbarch);
2d457077
MK
389
390 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 391 return sparc_fsr_type (gdbarch);
2d457077 392
df4df182 393 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
394}
395
05d1431c 396static enum register_status
386c036b
MK
397sparc32_pseudo_register_read (struct gdbarch *gdbarch,
398 struct regcache *regcache,
e1613aba 399 int regnum, gdb_byte *buf)
386c036b 400{
05d1431c
PA
401 enum register_status status;
402
386c036b
MK
403 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
404
405 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
05d1431c
PA
406 status = regcache_raw_read (regcache, regnum, buf);
407 if (status == REG_VALID)
408 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
409 return status;
386c036b
MK
410}
411
412static void
413sparc32_pseudo_register_write (struct gdbarch *gdbarch,
414 struct regcache *regcache,
e1613aba 415 int regnum, const gdb_byte *buf)
386c036b
MK
416{
417 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
418
419 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
420 regcache_raw_write (regcache, regnum, buf);
e1613aba 421 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
422}
423\f
424
49a45ecf
JB
425static CORE_ADDR
426sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
427{
428 /* The ABI requires double-word alignment. */
429 return address & ~0x7;
430}
431
386c036b
MK
432static CORE_ADDR
433sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 434 CORE_ADDR funcaddr,
386c036b
MK
435 struct value **args, int nargs,
436 struct type *value_type,
e4fd649a
UW
437 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
438 struct regcache *regcache)
c906108c 439{
e17a4113
UW
440 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
441
386c036b
MK
442 *bp_addr = sp - 4;
443 *real_pc = funcaddr;
444
d80b854b 445 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 446 {
e1613aba 447 gdb_byte buf[4];
386c036b
MK
448
449 /* This is an UNIMP instruction. */
e17a4113
UW
450 store_unsigned_integer (buf, 4, byte_order,
451 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
452 write_memory (sp - 8, buf, 4);
453 return sp - 8;
c906108c
SS
454 }
455
386c036b
MK
456 return sp - 4;
457}
458
459static CORE_ADDR
460sparc32_store_arguments (struct regcache *regcache, int nargs,
461 struct value **args, CORE_ADDR sp,
462 int struct_return, CORE_ADDR struct_addr)
463{
df4df182 464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
466 /* Number of words in the "parameter array". */
467 int num_elements = 0;
468 int element = 0;
469 int i;
470
471 for (i = 0; i < nargs; i++)
c906108c 472 {
4991999e 473 struct type *type = value_type (args[i]);
386c036b
MK
474 int len = TYPE_LENGTH (type);
475
476 if (sparc_structure_or_union_p (type)
fe10a582
DM
477 || (sparc_floating_p (type) && len == 16)
478 || sparc_complex_floating_p (type))
c906108c 479 {
386c036b
MK
480 /* Structure, Union and Quad-Precision Arguments. */
481 sp -= len;
482
483 /* Use doubleword alignment for these values. That's always
484 correct, and wasting a few bytes shouldn't be a problem. */
485 sp &= ~0x7;
486
0fd88904 487 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
488 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
489 num_elements++;
490 }
491 else if (sparc_floating_p (type))
492 {
493 /* Floating arguments. */
494 gdb_assert (len == 4 || len == 8);
495 num_elements += (len / 4);
c906108c 496 }
c5aa993b
JM
497 else
498 {
386c036b
MK
499 /* Integral and pointer arguments. */
500 gdb_assert (sparc_integral_or_pointer_p (type));
501
502 if (len < 4)
df4df182
UW
503 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
504 args[i]);
386c036b 505 num_elements += ((len + 3) / 4);
c5aa993b 506 }
c906108c 507 }
c906108c 508
386c036b
MK
509 /* Always allocate at least six words. */
510 sp -= max (6, num_elements) * 4;
c906108c 511
386c036b
MK
512 /* The psABI says that "Software convention requires space for the
513 struct/union return value pointer, even if the word is unused." */
514 sp -= 4;
c906108c 515
386c036b
MK
516 /* The psABI says that "Although software convention and the
517 operating system require every stack frame to be doubleword
518 aligned." */
519 sp &= ~0x7;
c906108c 520
386c036b 521 for (i = 0; i < nargs; i++)
c906108c 522 {
0fd88904 523 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 524 struct type *type = value_type (args[i]);
386c036b 525 int len = TYPE_LENGTH (type);
c906108c 526
386c036b 527 gdb_assert (len == 4 || len == 8);
c906108c 528
386c036b
MK
529 if (element < 6)
530 {
531 int regnum = SPARC_O0_REGNUM + element;
c906108c 532
386c036b
MK
533 regcache_cooked_write (regcache, regnum, valbuf);
534 if (len > 4 && element < 5)
535 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
536 }
5af923b0 537
386c036b
MK
538 /* Always store the argument in memory. */
539 write_memory (sp + 4 + element * 4, valbuf, len);
540 element += len / 4;
541 }
c906108c 542
386c036b 543 gdb_assert (element == num_elements);
c906108c 544
386c036b 545 if (struct_return)
c906108c 546 {
e1613aba 547 gdb_byte buf[4];
c906108c 548
e17a4113 549 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
550 write_memory (sp, buf, 4);
551 }
c906108c 552
386c036b 553 return sp;
c906108c
SS
554}
555
386c036b 556static CORE_ADDR
7d9b040b 557sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
558 struct regcache *regcache, CORE_ADDR bp_addr,
559 int nargs, struct value **args, CORE_ADDR sp,
560 int struct_return, CORE_ADDR struct_addr)
c906108c 561{
386c036b
MK
562 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
563
564 /* Set return address. */
565 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
566
567 /* Set up function arguments. */
568 sp = sparc32_store_arguments (regcache, nargs, args, sp,
569 struct_return, struct_addr);
570
571 /* Allocate the 16-word window save area. */
572 sp -= 16 * 4;
c906108c 573
386c036b
MK
574 /* Stack should be doubleword aligned at this point. */
575 gdb_assert (sp % 8 == 0);
c906108c 576
386c036b
MK
577 /* Finally, update the stack pointer. */
578 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
579
580 return sp;
581}
582\f
c906108c 583
386c036b
MK
584/* Use the program counter to determine the contents and size of a
585 breakpoint instruction. Return a pointer to a string of bytes that
586 encode a breakpoint instruction, store the length of the string in
587 *LEN and optionally adjust *PC to point to the correct memory
588 location for inserting the breakpoint. */
589
e1613aba 590static const gdb_byte *
67d57894 591sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 592{
864a1a37 593 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 594
386c036b
MK
595 *len = sizeof (break_insn);
596 return break_insn;
c906108c 597}
386c036b 598\f
c906108c 599
386c036b 600/* Allocate and initialize a frame cache. */
c906108c 601
386c036b
MK
602static struct sparc_frame_cache *
603sparc_alloc_frame_cache (void)
604{
605 struct sparc_frame_cache *cache;
c906108c 606
386c036b 607 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 608
386c036b
MK
609 /* Base address. */
610 cache->base = 0;
611 cache->pc = 0;
c906108c 612
386c036b
MK
613 /* Frameless until proven otherwise. */
614 cache->frameless_p = 1;
369c397b
JB
615 cache->frame_offset = 0;
616 cache->saved_regs_mask = 0;
617 cache->copied_regs_mask = 0;
386c036b
MK
618 cache->struct_return_p = 0;
619
620 return cache;
621}
622
b0b92586
JB
623/* GCC generates several well-known sequences of instructions at the begining
624 of each function prologue when compiling with -fstack-check. If one of
625 such sequences starts at START_PC, then return the address of the
626 instruction immediately past this sequence. Otherwise, return START_PC. */
627
628static CORE_ADDR
629sparc_skip_stack_check (const CORE_ADDR start_pc)
630{
631 CORE_ADDR pc = start_pc;
632 unsigned long insn;
633 int offset_stack_checking_sequence = 0;
2067c8d4 634 int probing_loop = 0;
b0b92586
JB
635
636 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 637 instructions, plus an optional one in the case of a probing loop:
b0b92586 638
2067c8d4
JG
639 sethi <some immediate>, %g1
640 sub %sp, %g1, %g1
641
642 or:
643
644 sethi <some immediate>, %g1
645 sethi <some immediate>, %g4
646 sub %sp, %g1, %g1
647
648 or:
649
650 sethi <some immediate>, %g1
651 sub %sp, %g1, %g1
652 sethi <some immediate>, %g4
653
654 If the optional instruction is found (setting g4), assume that a
655 probing loop will follow. */
656
657 /* sethi <some immediate>, %g1 */
b0b92586
JB
658 insn = sparc_fetch_instruction (pc);
659 pc = pc + 4;
660 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
661 return start_pc;
662
2067c8d4 663 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
664 insn = sparc_fetch_instruction (pc);
665 pc = pc + 4;
2067c8d4
JG
666 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
667 {
668 probing_loop = 1;
669 insn = sparc_fetch_instruction (pc);
670 pc = pc + 4;
671 }
672
673 /* sub %sp, %g1, %g1 */
b0b92586
JB
674 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
675 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
676 return start_pc;
677
678 insn = sparc_fetch_instruction (pc);
679 pc = pc + 4;
680
2067c8d4
JG
681 /* optional: sethi <some immediate>, %g4 */
682 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
683 {
684 probing_loop = 1;
685 insn = sparc_fetch_instruction (pc);
686 pc = pc + 4;
687 }
688
b0b92586
JB
689 /* First possible sequence:
690 [first two instructions above]
691 clr [%g1 - some immediate] */
692
693 /* clr [%g1 - some immediate] */
694 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
695 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
696 {
697 /* Valid stack-check sequence, return the new PC. */
698 return pc;
699 }
700
701 /* Second possible sequence: A small number of probes.
702 [first two instructions above]
703 clr [%g1]
704 add %g1, -<some immediate>, %g1
705 clr [%g1]
706 [repeat the two instructions above any (small) number of times]
707 clr [%g1 - some immediate] */
708
709 /* clr [%g1] */
710 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
711 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
712 {
713 while (1)
714 {
715 /* add %g1, -<some immediate>, %g1 */
716 insn = sparc_fetch_instruction (pc);
717 pc = pc + 4;
718 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
719 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
720 break;
721
722 /* clr [%g1] */
723 insn = sparc_fetch_instruction (pc);
724 pc = pc + 4;
725 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
726 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
727 return start_pc;
728 }
729
730 /* clr [%g1 - some immediate] */
731 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
732 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
733 return start_pc;
734
735 /* We found a valid stack-check sequence, return the new PC. */
736 return pc;
737 }
738
739 /* Third sequence: A probing loop.
2067c8d4 740 [first three instructions above]
b0b92586
JB
741 sub %g1, %g4, %g4
742 cmp %g1, %g4
743 be <disp>
744 add %g1, -<some immediate>, %g1
745 ba <disp>
746 clr [%g1]
2067c8d4
JG
747
748 And an optional last probe for the remainder:
749
b0b92586
JB
750 clr [%g4 - some immediate] */
751
2067c8d4 752 if (probing_loop)
b0b92586
JB
753 {
754 /* sub %g1, %g4, %g4 */
b0b92586
JB
755 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
756 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
757 return start_pc;
758
759 /* cmp %g1, %g4 */
760 insn = sparc_fetch_instruction (pc);
761 pc = pc + 4;
762 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
763 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
764 return start_pc;
765
766 /* be <disp> */
767 insn = sparc_fetch_instruction (pc);
768 pc = pc + 4;
769 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
770 return start_pc;
771
772 /* add %g1, -<some immediate>, %g1 */
773 insn = sparc_fetch_instruction (pc);
774 pc = pc + 4;
775 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
776 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
777 return start_pc;
778
779 /* ba <disp> */
780 insn = sparc_fetch_instruction (pc);
781 pc = pc + 4;
782 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
783 return start_pc;
784
2067c8d4 785 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
786 insn = sparc_fetch_instruction (pc);
787 pc = pc + 4;
2067c8d4
JG
788 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
789 && X_RD (insn) == 0 && X_RS1 (insn) == 1
790 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
b0b92586
JB
791 return start_pc;
792
2067c8d4
JG
793 /* We found a valid stack-check sequence, return the new PC. */
794
795 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
796 insn = sparc_fetch_instruction (pc);
797 pc = pc + 4;
798 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
799 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
2067c8d4
JG
800 return pc - 4;
801 else
802 return pc;
b0b92586
JB
803 }
804
805 /* No stack check code in our prologue, return the start_pc. */
806 return start_pc;
807}
808
369c397b
JB
809/* Record the effect of a SAVE instruction on CACHE. */
810
811void
812sparc_record_save_insn (struct sparc_frame_cache *cache)
813{
814 /* The frame is set up. */
815 cache->frameless_p = 0;
816
817 /* The frame pointer contains the CFA. */
818 cache->frame_offset = 0;
819
820 /* The `local' and `in' registers are all saved. */
821 cache->saved_regs_mask = 0xffff;
822
823 /* The `out' registers are all renamed. */
824 cache->copied_regs_mask = 0xff;
825}
826
827/* Do a full analysis of the prologue at PC and update CACHE accordingly.
828 Bail out early if CURRENT_PC is reached. Return the address where
829 the analysis stopped.
830
831 We handle both the traditional register window model and the single
832 register window (aka flat) model. */
833
386c036b 834CORE_ADDR
be8626e0
MD
835sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
836 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 837{
be8626e0 838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
839 unsigned long insn;
840 int offset = 0;
c906108c 841 int dest = -1;
c906108c 842
b0b92586
JB
843 pc = sparc_skip_stack_check (pc);
844
386c036b
MK
845 if (current_pc <= pc)
846 return current_pc;
847
848 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
849 SPARC the linker usually defines a symbol (typically
850 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
851 This symbol makes us end up here with PC pointing at the start of
852 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
853 would do our normal prologue analysis, we would probably conclude
854 that we've got a frame when in reality we don't, since the
855 dynamic linker patches up the first PLT with some code that
856 starts with a SAVE instruction. Patch up PC such that it points
857 at the start of our PLT entry. */
858 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
859 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 860
386c036b
MK
861 insn = sparc_fetch_instruction (pc);
862
369c397b
JB
863 /* Recognize store insns and record their sources. */
864 while (X_OP (insn) == 3
865 && (X_OP3 (insn) == 0x4 /* stw */
866 || X_OP3 (insn) == 0x7 /* std */
867 || X_OP3 (insn) == 0xe) /* stx */
868 && X_RS1 (insn) == SPARC_SP_REGNUM)
869 {
870 int regnum = X_RD (insn);
871
872 /* Recognize stores into the corresponding stack slots. */
873 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
874 && ((X_I (insn)
875 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
876 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
877 : (regnum - SPARC_L0_REGNUM) * 4))
878 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
879 {
880 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
881 if (X_OP3 (insn) == 0x7)
882 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
883 }
884
885 offset += 4;
886
887 insn = sparc_fetch_instruction (pc + offset);
888 }
889
386c036b
MK
890 /* Recognize a SETHI insn and record its destination. */
891 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
892 {
893 dest = X_RD (insn);
386c036b
MK
894 offset += 4;
895
369c397b 896 insn = sparc_fetch_instruction (pc + offset);
c906108c
SS
897 }
898
386c036b
MK
899 /* Allow for an arithmetic operation on DEST or %g1. */
900 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
901 && (X_RD (insn) == 1 || X_RD (insn) == dest))
902 {
386c036b 903 offset += 4;
c906108c 904
369c397b 905 insn = sparc_fetch_instruction (pc + offset);
c906108c 906 }
c906108c 907
386c036b
MK
908 /* Check for the SAVE instruction that sets up the frame. */
909 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 910 {
369c397b
JB
911 sparc_record_save_insn (cache);
912 offset += 4;
913 return pc + offset;
914 }
915
916 /* Check for an arithmetic operation on %sp. */
917 if (X_OP (insn) == 2
918 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
919 && X_RS1 (insn) == SPARC_SP_REGNUM
920 && X_RD (insn) == SPARC_SP_REGNUM)
921 {
922 if (X_I (insn))
923 {
924 cache->frame_offset = X_SIMM13 (insn);
925 if (X_OP3 (insn) == 0)
926 cache->frame_offset = -cache->frame_offset;
927 }
928 offset += 4;
929
930 insn = sparc_fetch_instruction (pc + offset);
931
932 /* Check for an arithmetic operation that sets up the frame. */
933 if (X_OP (insn) == 2
934 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
935 && X_RS1 (insn) == SPARC_SP_REGNUM
936 && X_RD (insn) == SPARC_FP_REGNUM)
937 {
938 cache->frameless_p = 0;
939 cache->frame_offset = 0;
940 /* We could check that the amount subtracted to %sp above is the
941 same as the one added here, but this seems superfluous. */
942 cache->copied_regs_mask |= 0x40;
943 offset += 4;
944
945 insn = sparc_fetch_instruction (pc + offset);
946 }
947
948 /* Check for a move (or) operation that copies the return register. */
949 if (X_OP (insn) == 2
950 && X_OP3 (insn) == 0x2
951 && !X_I (insn)
952 && X_RS1 (insn) == SPARC_G0_REGNUM
953 && X_RS2 (insn) == SPARC_O7_REGNUM
954 && X_RD (insn) == SPARC_I7_REGNUM)
955 {
956 cache->copied_regs_mask |= 0x80;
957 offset += 4;
958 }
959
960 return pc + offset;
c906108c
SS
961 }
962
963 return pc;
964}
965
386c036b 966static CORE_ADDR
236369e7 967sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
968{
969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 970 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
971}
972
973/* Return PC of first real instruction of the function starting at
974 START_PC. */
f510d44e 975
386c036b 976static CORE_ADDR
6093d2eb 977sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 978{
f510d44e
DM
979 struct symtab_and_line sal;
980 CORE_ADDR func_start, func_end;
386c036b 981 struct sparc_frame_cache cache;
f510d44e
DM
982
983 /* This is the preferred method, find the end of the prologue by
984 using the debugging information. */
985 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
986 {
987 sal = find_pc_line (func_start, 0);
988
989 if (sal.end < func_end
990 && start_pc <= sal.end)
991 return sal.end;
992 }
993
be8626e0 994 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
995
996 /* The psABI says that "Although the first 6 words of arguments
997 reside in registers, the standard stack frame reserves space for
998 them.". It also suggests that a function may use that space to
999 "write incoming arguments 0 to 5" into that space, and that's
1000 indeed what GCC seems to be doing. In that case GCC will
1001 generate debug information that points to the stack slots instead
1002 of the registers, so we should consider the instructions that
369c397b 1003 write out these incoming arguments onto the stack. */
075ccec8 1004
369c397b 1005 while (1)
075ccec8
MK
1006 {
1007 unsigned long insn = sparc_fetch_instruction (start_pc);
1008
369c397b
JB
1009 /* Recognize instructions that store incoming arguments into the
1010 corresponding stack slots. */
1011 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1012 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
075ccec8 1013 {
369c397b
JB
1014 int regnum = X_RD (insn);
1015
1016 /* Case of arguments still in %o[0..5]. */
1017 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1018 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1019 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1020 {
1021 start_pc += 4;
1022 continue;
1023 }
1024
1025 /* Case of arguments copied into %i[0..5]. */
1026 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1027 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1028 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1029 {
1030 start_pc += 4;
1031 continue;
1032 }
075ccec8
MK
1033 }
1034
1035 break;
1036 }
1037
1038 return start_pc;
c906108c
SS
1039}
1040
386c036b 1041/* Normal frames. */
9319a2fe 1042
386c036b 1043struct sparc_frame_cache *
236369e7 1044sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 1045{
386c036b 1046 struct sparc_frame_cache *cache;
9319a2fe 1047
386c036b
MK
1048 if (*this_cache)
1049 return *this_cache;
c906108c 1050
386c036b
MK
1051 cache = sparc_alloc_frame_cache ();
1052 *this_cache = cache;
c906108c 1053
236369e7 1054 cache->pc = get_frame_func (this_frame);
386c036b 1055 if (cache->pc != 0)
236369e7
JB
1056 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1057 get_frame_pc (this_frame), cache);
386c036b
MK
1058
1059 if (cache->frameless_p)
c906108c 1060 {
cbeae229
MK
1061 /* This function is frameless, so %fp (%i6) holds the frame
1062 pointer for our calling frame. Use %sp (%o6) as this frame's
1063 base address. */
1064 cache->base =
236369e7 1065 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
1066 }
1067 else
1068 {
1069 /* For normal frames, %fp (%i6) holds the frame pointer, the
1070 base address for the current stack frame. */
1071 cache->base =
236369e7 1072 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 1073 }
c906108c 1074
369c397b
JB
1075 cache->base += cache->frame_offset;
1076
5b2d44a0
MK
1077 if (cache->base & 1)
1078 cache->base += BIAS;
1079
386c036b 1080 return cache;
c906108c 1081}
c906108c 1082
aff37fc1
DM
1083static int
1084sparc32_struct_return_from_sym (struct symbol *sym)
1085{
1086 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1087 enum type_code code = TYPE_CODE (type);
1088
1089 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1090 {
1091 type = check_typedef (TYPE_TARGET_TYPE (type));
1092 if (sparc_structure_or_union_p (type)
1093 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1094 return 1;
1095 }
1096
1097 return 0;
1098}
1099
386c036b 1100struct sparc_frame_cache *
236369e7 1101sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 1102{
386c036b
MK
1103 struct sparc_frame_cache *cache;
1104 struct symbol *sym;
c906108c 1105
386c036b
MK
1106 if (*this_cache)
1107 return *this_cache;
c906108c 1108
236369e7 1109 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 1110
386c036b
MK
1111 sym = find_pc_function (cache->pc);
1112 if (sym)
c906108c 1113 {
aff37fc1 1114 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 1115 }
5465445a
JB
1116 else
1117 {
1118 /* There is no debugging information for this function to
1119 help us determine whether this function returns a struct
1120 or not. So we rely on another heuristic which is to check
1121 the instruction at the return address and see if this is
1122 an "unimp" instruction. If it is, then it is a struct-return
1123 function. */
1124 CORE_ADDR pc;
369c397b
JB
1125 int regnum =
1126 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
5465445a 1127
236369e7 1128 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
1129 if (sparc_is_unimp_insn (pc))
1130 cache->struct_return_p = 1;
1131 }
c906108c 1132
386c036b
MK
1133 return cache;
1134}
1135
1136static void
236369e7 1137sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
1138 struct frame_id *this_id)
1139{
1140 struct sparc_frame_cache *cache =
236369e7 1141 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1142
1143 /* This marks the outermost frame. */
1144 if (cache->base == 0)
1145 return;
1146
1147 (*this_id) = frame_id_build (cache->base, cache->pc);
1148}
c906108c 1149
236369e7
JB
1150static struct value *
1151sparc32_frame_prev_register (struct frame_info *this_frame,
1152 void **this_cache, int regnum)
386c036b 1153{
e17a4113 1154 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1155 struct sparc_frame_cache *cache =
236369e7 1156 sparc32_frame_cache (this_frame, this_cache);
c906108c 1157
386c036b 1158 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1159 {
236369e7 1160 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1161
236369e7
JB
1162 /* If this functions has a Structure, Union or Quad-Precision
1163 return value, we have to skip the UNIMP instruction that encodes
1164 the size of the structure. */
1165 if (cache->struct_return_p)
1166 pc += 4;
386c036b 1167
369c397b
JB
1168 regnum =
1169 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1170 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1171 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1172 }
1173
42cdca6c
MK
1174 /* Handle StackGhost. */
1175 {
e17a4113 1176 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1177
1178 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1179 {
236369e7
JB
1180 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1181 ULONGEST i7;
1182
1183 /* Read the value in from memory. */
1184 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1185 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1186 }
1187 }
1188
369c397b 1189 /* The previous frame's `local' and `in' registers may have been saved
386c036b 1190 in the register save area. */
369c397b
JB
1191 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1192 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
c906108c 1193 {
236369e7 1194 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1195
236369e7 1196 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1197 }
c906108c 1198
369c397b
JB
1199 /* The previous frame's `out' registers may be accessible as the current
1200 frame's `in' registers. */
1201 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1202 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
386c036b 1203 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1204
236369e7 1205 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1206}
c906108c 1207
386c036b
MK
1208static const struct frame_unwind sparc32_frame_unwind =
1209{
1210 NORMAL_FRAME,
8fbca658 1211 default_frame_unwind_stop_reason,
386c036b 1212 sparc32_frame_this_id,
236369e7
JB
1213 sparc32_frame_prev_register,
1214 NULL,
1215 default_frame_sniffer
386c036b 1216};
386c036b 1217\f
c906108c 1218
386c036b 1219static CORE_ADDR
236369e7 1220sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1221{
1222 struct sparc_frame_cache *cache =
236369e7 1223 sparc32_frame_cache (this_frame, this_cache);
c906108c 1224
386c036b
MK
1225 return cache->base;
1226}
c906108c 1227
386c036b
MK
1228static const struct frame_base sparc32_frame_base =
1229{
1230 &sparc32_frame_unwind,
1231 sparc32_frame_base_address,
1232 sparc32_frame_base_address,
1233 sparc32_frame_base_address
1234};
c906108c 1235
386c036b 1236static struct frame_id
236369e7 1237sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1238{
1239 CORE_ADDR sp;
5af923b0 1240
236369e7 1241 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1242 if (sp & 1)
1243 sp += BIAS;
236369e7 1244 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1245}
1246\f
c906108c 1247
3923a2b2
MK
1248/* Extract a function return value of TYPE from REGCACHE, and copy
1249 that into VALBUF. */
5af923b0 1250
386c036b
MK
1251static void
1252sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1253 gdb_byte *valbuf)
386c036b
MK
1254{
1255 int len = TYPE_LENGTH (type);
fe10a582 1256 gdb_byte buf[32];
c906108c 1257
386c036b
MK
1258 gdb_assert (!sparc_structure_or_union_p (type));
1259 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1260
fe10a582 1261 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
5af923b0 1262 {
386c036b
MK
1263 /* Floating return values. */
1264 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1265 if (len > 4)
1266 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1267 if (len > 8)
1268 {
1269 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1270 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1271 }
1272 if (len > 16)
1273 {
1274 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1275 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1276 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1277 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1278 }
386c036b 1279 memcpy (valbuf, buf, len);
5af923b0
MS
1280 }
1281 else
1282 {
386c036b
MK
1283 /* Integral and pointer return values. */
1284 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1285
386c036b
MK
1286 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1287 if (len > 4)
1288 {
1289 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1290 gdb_assert (len == 8);
1291 memcpy (valbuf, buf, 8);
1292 }
1293 else
1294 {
1295 /* Just stripping off any unused bytes should preserve the
1296 signed-ness just fine. */
1297 memcpy (valbuf, buf + 4 - len, len);
1298 }
1299 }
1300}
c906108c 1301
3923a2b2
MK
1302/* Store the function return value of type TYPE from VALBUF into
1303 REGCACHE. */
c906108c 1304
386c036b
MK
1305static void
1306sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1307 const gdb_byte *valbuf)
386c036b
MK
1308{
1309 int len = TYPE_LENGTH (type);
e1613aba 1310 gdb_byte buf[8];
c906108c 1311
386c036b
MK
1312 gdb_assert (!sparc_structure_or_union_p (type));
1313 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1314 gdb_assert (len <= 8);
c906108c 1315
fe10a582 1316 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
386c036b
MK
1317 {
1318 /* Floating return values. */
1319 memcpy (buf, valbuf, len);
1320 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1321 if (len > 4)
1322 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1323 if (len > 8)
1324 {
1325 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1326 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1327 }
1328 if (len > 16)
1329 {
1330 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1331 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1332 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1333 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1334 }
386c036b
MK
1335 }
1336 else
c906108c 1337 {
386c036b
MK
1338 /* Integral and pointer return values. */
1339 gdb_assert (sparc_integral_or_pointer_p (type));
1340
1341 if (len > 4)
2757dd86 1342 {
386c036b
MK
1343 gdb_assert (len == 8);
1344 memcpy (buf, valbuf, 8);
1345 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1346 }
1347 else
1348 {
386c036b
MK
1349 /* ??? Do we need to do any sign-extension here? */
1350 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1351 }
386c036b 1352 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1353 }
1354}
1355
b9d4c5ed 1356static enum return_value_convention
6a3a010b 1357sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1358 struct type *type, struct regcache *regcache,
1359 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1360{
e17a4113
UW
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1362
0a8f48b9
MK
1363 /* The psABI says that "...every stack frame reserves the word at
1364 %fp+64. If a function returns a structure, union, or
1365 quad-precision value, this word should hold the address of the
1366 object into which the return value should be copied." This
1367 guarantees that we can always find the return value, not just
1368 before the function returns. */
1369
b9d4c5ed
MK
1370 if (sparc_structure_or_union_p (type)
1371 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1372 {
1373 if (readbuf)
1374 {
1375 ULONGEST sp;
1376 CORE_ADDR addr;
1377
1378 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1379 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1380 read_memory (addr, readbuf, TYPE_LENGTH (type));
1381 }
1382
1383 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1384 }
b9d4c5ed
MK
1385
1386 if (readbuf)
1387 sparc32_extract_return_value (type, regcache, readbuf);
1388 if (writebuf)
1389 sparc32_store_return_value (type, regcache, writebuf);
1390
1391 return RETURN_VALUE_REGISTER_CONVENTION;
1392}
1393
386c036b
MK
1394static int
1395sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1396{
386c036b 1397 return (sparc_structure_or_union_p (type)
fe10a582
DM
1398 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1399 || sparc_complex_floating_p (type));
386c036b 1400}
c906108c 1401
aff37fc1 1402static int
4a4e5149 1403sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1404{
236369e7 1405 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1406 struct symbol *sym = find_pc_function (pc);
1407
1408 if (sym)
1409 return sparc32_struct_return_from_sym (sym);
1410 return 0;
1411}
1412
f5a9b87d
DM
1413static void
1414sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1415 struct dwarf2_frame_state_reg *reg,
4a4e5149 1416 struct frame_info *this_frame)
f5a9b87d 1417{
aff37fc1
DM
1418 int off;
1419
f5a9b87d
DM
1420 switch (regnum)
1421 {
1422 case SPARC_G0_REGNUM:
1423 /* Since %g0 is always zero, there is no point in saving it, and
1424 people will be inclined omit it from the CFI. Make sure we
1425 don't warn about that. */
1426 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1427 break;
1428 case SPARC_SP_REGNUM:
1429 reg->how = DWARF2_FRAME_REG_CFA;
1430 break;
1431 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1432 case SPARC32_NPC_REGNUM:
1433 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1434 off = 8;
4a4e5149 1435 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1436 off += 4;
1437 if (regnum == SPARC32_NPC_REGNUM)
1438 off += 4;
1439 reg->loc.offset = off;
f5a9b87d
DM
1440 break;
1441 }
1442}
1443
386c036b
MK
1444\f
1445/* The SPARC Architecture doesn't have hardware single-step support,
1446 and most operating systems don't implement it either, so we provide
1447 software single-step mechanism. */
c906108c 1448
386c036b 1449static CORE_ADDR
0b1b3e42 1450sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1451 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1452{
1453 unsigned long insn = sparc_fetch_instruction (pc);
1454 int conditional_p = X_COND (insn) & 0x7;
8d1b3521 1455 int branch_p = 0, fused_p = 0;
386c036b 1456 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1457
8d1b3521 1458 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
c906108c 1459 {
8d1b3521
DM
1460 if ((insn & 0x10000000) == 0)
1461 {
1462 /* Branch on Integer Register with Prediction (BPr). */
1463 branch_p = 1;
1464 conditional_p = 1;
1465 }
1466 else
1467 {
1468 /* Compare and Branch */
1469 branch_p = 1;
1470 fused_p = 1;
1471 offset = 4 * X_DISP10 (insn);
1472 }
c906108c 1473 }
386c036b 1474 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1475 {
386c036b
MK
1476 /* Branch on Floating-Point Condition Codes (FBfcc). */
1477 branch_p = 1;
1478 offset = 4 * X_DISP22 (insn);
c906108c 1479 }
386c036b
MK
1480 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1481 {
1482 /* Branch on Floating-Point Condition Codes with Prediction
1483 (FBPfcc). */
1484 branch_p = 1;
1485 offset = 4 * X_DISP19 (insn);
1486 }
1487 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1488 {
1489 /* Branch on Integer Condition Codes (Bicc). */
1490 branch_p = 1;
1491 offset = 4 * X_DISP22 (insn);
1492 }
1493 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1494 {
386c036b
MK
1495 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1496 branch_p = 1;
1497 offset = 4 * X_DISP19 (insn);
c906108c 1498 }
c893be75
MK
1499 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1500 {
1501 /* Trap instruction (TRAP). */
0b1b3e42 1502 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1503 }
386c036b
MK
1504
1505 /* FIXME: Handle DONE and RETRY instructions. */
1506
386c036b 1507 if (branch_p)
c906108c 1508 {
8d1b3521
DM
1509 if (fused_p)
1510 {
1511 /* Fused compare-and-branch instructions are non-delayed,
1512 and do not have an annuling capability. So we need to
1513 always set a breakpoint on both the NPC and the branch
1514 target address. */
1515 gdb_assert (offset != 0);
1516 return pc + offset;
1517 }
1518 else if (conditional_p)
c906108c 1519 {
386c036b
MK
1520 /* For conditional branches, return nPC + 4 iff the annul
1521 bit is 1. */
1522 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1523 }
1524 else
1525 {
386c036b
MK
1526 /* For unconditional branches, return the target if its
1527 specified condition is "always" and return nPC + 4 if the
1528 condition is "never". If the annul bit is 1, set *NPC to
1529 zero. */
1530 if (X_COND (insn) == 0x0)
1531 pc = *npc, offset = 4;
1532 if (X_A (insn))
1533 *npc = 0;
1534
1535 gdb_assert (offset != 0);
1536 return pc + offset;
c906108c
SS
1537 }
1538 }
386c036b
MK
1539
1540 return 0;
c906108c
SS
1541}
1542
c893be75 1543static CORE_ADDR
0b1b3e42 1544sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1545{
1546 return 0;
1547}
1548
e6590a1b 1549int
0b1b3e42 1550sparc_software_single_step (struct frame_info *frame)
386c036b 1551{
0b1b3e42 1552 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1553 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1554 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1555 CORE_ADDR npc, nnpc;
c906108c 1556
e0cd558a 1557 CORE_ADDR pc, orig_npc;
c906108c 1558
0b1b3e42
UW
1559 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1560 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1561
e0cd558a 1562 /* Analyze the instruction at PC. */
0b1b3e42 1563 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1564 if (npc != 0)
6c95b8df 1565 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1566
e0cd558a 1567 if (nnpc != 0)
6c95b8df 1568 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1569
e0cd558a
UW
1570 /* Assert that we have set at least one breakpoint, and that
1571 they're not set at the same spot - unless we're going
1572 from here straight to NULL, i.e. a call or jump to 0. */
1573 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1574 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1575
1576 return 1;
386c036b
MK
1577}
1578
1579static void
61a1198a 1580sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1581{
61a1198a 1582 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1583
61a1198a
UW
1584 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1585 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1586}
1587\f
5af923b0 1588
a54124c5
MK
1589/* Return the appropriate register set for the core section identified
1590 by SECT_NAME and SECT_SIZE. */
1591
63807e1d 1592static const struct regset *
a54124c5
MK
1593sparc_regset_from_core_section (struct gdbarch *gdbarch,
1594 const char *sect_name, size_t sect_size)
1595{
1596 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1597
c558d81a 1598 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1599 return tdep->gregset;
1600
c558d81a 1601 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1602 return tdep->fpregset;
1603
1604 return NULL;
1605}
1606\f
1607
386c036b
MK
1608static struct gdbarch *
1609sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1610{
1611 struct gdbarch_tdep *tdep;
1612 struct gdbarch *gdbarch;
c906108c 1613
386c036b
MK
1614 /* If there is already a candidate, use it. */
1615 arches = gdbarch_list_lookup_by_info (arches, &info);
1616 if (arches != NULL)
1617 return arches->gdbarch;
c906108c 1618
386c036b 1619 /* Allocate space for the new architecture. */
1390fcc2 1620 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1621 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1622
386c036b
MK
1623 tdep->pc_regnum = SPARC32_PC_REGNUM;
1624 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1625 tdep->step_trap = sparc_step_trap;
386c036b
MK
1626
1627 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1628 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1629
1630 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1631 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1632 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1633 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1634 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1635 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1636
1637 /* Register numbers of various important registers. */
1638 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1639 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1640 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1641
1642 /* Call dummy code. */
49a45ecf 1643 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1644 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1645 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1646 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1647
b9d4c5ed 1648 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1649 set_gdbarch_stabs_argument_has_addr
1650 (gdbarch, sparc32_stabs_argument_has_addr);
1651
1652 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1653
1654 /* Stack grows downward. */
1655 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1656
386c036b 1657 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1658
386c036b 1659 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1660
386c036b 1661 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1662
386c036b
MK
1663 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1664 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1665
236369e7 1666 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1667
386c036b 1668 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1669
386c036b
MK
1670 frame_base_set_default (gdbarch, &sparc32_frame_base);
1671
f5a9b87d
DM
1672 /* Hook in the DWARF CFI frame unwinder. */
1673 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1674 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1675 StackGhost issues have been resolved. */
1676
b2a0b9b2
DM
1677 /* Hook in ABI-specific overrides, if they have been registered. */
1678 gdbarch_init_osabi (info, gdbarch);
1679
236369e7 1680 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1681
a54124c5 1682 /* If we have register sets, enable the generic core file support. */
4c72d57a 1683 if (tdep->gregset)
a54124c5
MK
1684 set_gdbarch_regset_from_core_section (gdbarch,
1685 sparc_regset_from_core_section);
1686
7e35103a
JB
1687 register_sparc_ravenscar_ops (gdbarch);
1688
386c036b
MK
1689 return gdbarch;
1690}
1691\f
1692/* Helper functions for dealing with register windows. */
1693
1694void
1695sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1696{
e17a4113
UW
1697 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1699 int offset = 0;
e1613aba 1700 gdb_byte buf[8];
386c036b
MK
1701 int i;
1702
1703 if (sp & 1)
1704 {
1705 /* Registers are 64-bit. */
1706 sp += BIAS;
c906108c 1707
386c036b
MK
1708 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1709 {
1710 if (regnum == i || regnum == -1)
1711 {
1712 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1713
1714 /* Handle StackGhost. */
1715 if (i == SPARC_I7_REGNUM)
1716 {
e17a4113
UW
1717 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1718 ULONGEST i7;
f700a364 1719
e17a4113
UW
1720 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1721 store_unsigned_integer (buf + offset, 8, byte_order,
1722 i7 ^ wcookie);
f700a364
MK
1723 }
1724
386c036b
MK
1725 regcache_raw_supply (regcache, i, buf);
1726 }
1727 }
1728 }
1729 else
c906108c 1730 {
386c036b
MK
1731 /* Registers are 32-bit. Toss any sign-extension of the stack
1732 pointer. */
1733 sp &= 0xffffffffUL;
c906108c 1734
386c036b
MK
1735 /* Clear out the top half of the temporary buffer, and put the
1736 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1737 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1738 {
386c036b
MK
1739 memset (buf, 0, 4);
1740 offset = 4;
1741 }
c906108c 1742
386c036b
MK
1743 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1744 {
1745 if (regnum == i || regnum == -1)
1746 {
1747 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1748 buf + offset, 4);
42cdca6c
MK
1749
1750 /* Handle StackGhost. */
1751 if (i == SPARC_I7_REGNUM)
1752 {
e17a4113
UW
1753 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1754 ULONGEST i7;
42cdca6c 1755
e17a4113
UW
1756 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1757 store_unsigned_integer (buf + offset, 4, byte_order,
1758 i7 ^ wcookie);
42cdca6c
MK
1759 }
1760
386c036b
MK
1761 regcache_raw_supply (regcache, i, buf);
1762 }
c906108c
SS
1763 }
1764 }
c906108c 1765}
c906108c
SS
1766
1767void
386c036b
MK
1768sparc_collect_rwindow (const struct regcache *regcache,
1769 CORE_ADDR sp, int regnum)
c906108c 1770{
e17a4113
UW
1771 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1772 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1773 int offset = 0;
e1613aba 1774 gdb_byte buf[8];
386c036b 1775 int i;
5af923b0 1776
386c036b 1777 if (sp & 1)
5af923b0 1778 {
386c036b
MK
1779 /* Registers are 64-bit. */
1780 sp += BIAS;
c906108c 1781
386c036b
MK
1782 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1783 {
1784 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1785 {
1786 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1787
1788 /* Handle StackGhost. */
1789 if (i == SPARC_I7_REGNUM)
1790 {
e17a4113
UW
1791 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1792 ULONGEST i7;
f700a364 1793
e17a4113
UW
1794 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1795 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1796 }
1797
386c036b
MK
1798 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1799 }
1800 }
5af923b0
MS
1801 }
1802 else
1803 {
386c036b
MK
1804 /* Registers are 32-bit. Toss any sign-extension of the stack
1805 pointer. */
1806 sp &= 0xffffffffUL;
1807
1808 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1809 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1810 offset = 4;
1811
1812 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1813 {
1814 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1815 {
1816 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1817
1818 /* Handle StackGhost. */
1819 if (i == SPARC_I7_REGNUM)
1820 {
e17a4113
UW
1821 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1822 ULONGEST i7;
42cdca6c 1823
e17a4113
UW
1824 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1825 store_unsigned_integer (buf + offset, 4, byte_order,
1826 i7 ^ wcookie);
42cdca6c
MK
1827 }
1828
386c036b
MK
1829 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1830 buf + offset, 4);
1831 }
1832 }
5af923b0 1833 }
c906108c
SS
1834}
1835
386c036b
MK
1836/* Helper functions for dealing with register sets. */
1837
c906108c 1838void
386c036b
MK
1839sparc32_supply_gregset (const struct sparc_gregset *gregset,
1840 struct regcache *regcache,
1841 int regnum, const void *gregs)
c906108c 1842{
e1613aba 1843 const gdb_byte *regs = gregs;
22e74ef9 1844 gdb_byte zero[4] = { 0 };
386c036b 1845 int i;
5af923b0 1846
386c036b
MK
1847 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1848 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1849 regs + gregset->r_psr_offset);
c906108c 1850
386c036b
MK
1851 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1852 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1853 regs + gregset->r_pc_offset);
5af923b0 1854
386c036b
MK
1855 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1856 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1857 regs + gregset->r_npc_offset);
5af923b0 1858
386c036b
MK
1859 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1860 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1861 regs + gregset->r_y_offset);
5af923b0 1862
386c036b 1863 if (regnum == SPARC_G0_REGNUM || regnum == -1)
22e74ef9 1864 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
5af923b0 1865
386c036b 1866 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1867 {
386c036b
MK
1868 int offset = gregset->r_g1_offset;
1869
1870 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1871 {
1872 if (regnum == i || regnum == -1)
1873 regcache_raw_supply (regcache, i, regs + offset);
1874 offset += 4;
1875 }
c906108c 1876 }
386c036b
MK
1877
1878 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1879 {
386c036b
MK
1880 /* Not all of the register set variants include Locals and
1881 Inputs. For those that don't, we read them off the stack. */
1882 if (gregset->r_l0_offset == -1)
1883 {
1884 ULONGEST sp;
1885
1886 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1887 sparc_supply_rwindow (regcache, sp, regnum);
1888 }
1889 else
1890 {
1891 int offset = gregset->r_l0_offset;
1892
1893 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1894 {
1895 if (regnum == i || regnum == -1)
1896 regcache_raw_supply (regcache, i, regs + offset);
1897 offset += 4;
1898 }
1899 }
c906108c
SS
1900 }
1901}
1902
c5aa993b 1903void
386c036b
MK
1904sparc32_collect_gregset (const struct sparc_gregset *gregset,
1905 const struct regcache *regcache,
1906 int regnum, void *gregs)
c906108c 1907{
e1613aba 1908 gdb_byte *regs = gregs;
386c036b 1909 int i;
c5aa993b 1910
386c036b
MK
1911 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1912 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1913 regs + gregset->r_psr_offset);
60054393 1914
386c036b
MK
1915 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1916 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1917 regs + gregset->r_pc_offset);
1918
1919 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1920 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1921 regs + gregset->r_npc_offset);
5af923b0 1922
386c036b
MK
1923 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1924 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1925 regs + gregset->r_y_offset);
1926
1927 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1928 {
386c036b
MK
1929 int offset = gregset->r_g1_offset;
1930
1931 /* %g0 is always zero. */
1932 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1933 {
1934 if (regnum == i || regnum == -1)
1935 regcache_raw_collect (regcache, i, regs + offset);
1936 offset += 4;
1937 }
5af923b0 1938 }
386c036b
MK
1939
1940 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1941 {
386c036b
MK
1942 /* Not all of the register set variants include Locals and
1943 Inputs. For those that don't, we read them off the stack. */
1944 if (gregset->r_l0_offset != -1)
1945 {
1946 int offset = gregset->r_l0_offset;
1947
1948 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1949 {
1950 if (regnum == i || regnum == -1)
1951 regcache_raw_collect (regcache, i, regs + offset);
1952 offset += 4;
1953 }
1954 }
5af923b0 1955 }
c906108c
SS
1956}
1957
c906108c 1958void
db75c717
DM
1959sparc32_supply_fpregset (const struct sparc_fpregset *fpregset,
1960 struct regcache *regcache,
386c036b 1961 int regnum, const void *fpregs)
c906108c 1962{
e1613aba 1963 const gdb_byte *regs = fpregs;
386c036b 1964 int i;
60054393 1965
386c036b 1966 for (i = 0; i < 32; i++)
c906108c 1967 {
386c036b 1968 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717
DM
1969 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
1970 regs + fpregset->r_f0_offset + (i * 4));
c906108c 1971 }
5af923b0 1972
386c036b 1973 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717
DM
1974 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
1975 regs + fpregset->r_fsr_offset);
c906108c
SS
1976}
1977
386c036b 1978void
db75c717
DM
1979sparc32_collect_fpregset (const struct sparc_fpregset *fpregset,
1980 const struct regcache *regcache,
386c036b 1981 int regnum, void *fpregs)
c906108c 1982{
e1613aba 1983 gdb_byte *regs = fpregs;
386c036b 1984 int i;
c906108c 1985
386c036b
MK
1986 for (i = 0; i < 32; i++)
1987 {
1988 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717
DM
1989 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
1990 regs + fpregset->r_f0_offset + (i * 4));
386c036b 1991 }
c906108c 1992
386c036b 1993 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717
DM
1994 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
1995 regs + fpregset->r_fsr_offset);
c906108c 1996}
c906108c 1997\f
c906108c 1998
386c036b 1999/* SunOS 4. */
c906108c 2000
386c036b
MK
2001/* From <machine/reg.h>. */
2002const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 2003{
386c036b
MK
2004 0 * 4, /* %psr */
2005 1 * 4, /* %pc */
2006 2 * 4, /* %npc */
2007 3 * 4, /* %y */
2008 -1, /* %wim */
2009 -1, /* %tbr */
2010 4 * 4, /* %g1 */
2011 -1 /* %l0 */
2012};
db75c717
DM
2013
2014const struct sparc_fpregset sparc32_sunos4_fpregset =
2015{
2016 0 * 4, /* %f0 */
2017 33 * 4, /* %fsr */
2018};
2019
2020const struct sparc_fpregset sparc32_bsd_fpregset =
2021{
2022 0 * 4, /* %f0 */
2023 32 * 4, /* %fsr */
2024};
386c036b 2025\f
c906108c 2026
386c036b
MK
2027/* Provide a prototype to silence -Wmissing-prototypes. */
2028void _initialize_sparc_tdep (void);
c906108c
SS
2029
2030void
386c036b 2031_initialize_sparc_tdep (void)
c906108c 2032{
386c036b 2033 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 2034}
This page took 1.383634 seconds and 4 git commands to generate.