* ld-elf/elf.exp: Exlcude all v850 targets from note-3 test.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
7b6bb8da 3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
9b254dd1 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c 21#include "defs.h"
5af923b0 22#include "arch-utils.h"
386c036b 23#include "dis-asm.h"
f5a9b87d 24#include "dwarf2-frame.h"
386c036b 25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 66 big-endian IA-64 Quad-Precision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
8defab1a 102 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
c378eb4e 148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
e17a4113 155sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 156{
e17a4113 157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 158 struct target_ops *ops = &current_target;
e1613aba 159 gdb_byte buf[8];
baf92889
MK
160 int len;
161
13547ab6 162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
163 if (len == -1)
164 return 0;
42cdca6c 165
baf92889
MK
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
e17a4113 169 return extract_unsigned_integer (buf, len, byte_order);
baf92889 170}
386c036b 171\f
baf92889 172
386c036b
MK
173/* The functions on this page are intended to be used to classify
174 function arguments. */
c906108c 175
386c036b 176/* Check whether TYPE is "Integral or Pointer". */
c906108c 177
386c036b
MK
178static int
179sparc_integral_or_pointer_p (const struct type *type)
c906108c 180{
80ad1639
MK
181 int len = TYPE_LENGTH (type);
182
386c036b 183 switch (TYPE_CODE (type))
c906108c 184 {
386c036b
MK
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
80ad1639
MK
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
80ad1639
MK
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
386c036b
MK
198 default:
199 break;
200 }
c906108c 201
386c036b
MK
202 return 0;
203}
c906108c 204
386c036b 205/* Check whether TYPE is "Floating". */
c906108c 206
386c036b
MK
207static int
208sparc_floating_p (const struct type *type)
209{
210 switch (TYPE_CODE (type))
c906108c 211 {
386c036b
MK
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222}
c906108c 223
0497f5b0
JB
224/* Check whether TYPE is "Structure or Union".
225
226 In terms of Ada subprogram calls, arrays are treated the same as
227 struct and union types. So this function also returns non-zero
228 for array types. */
c906108c 229
386c036b
MK
230static int
231sparc_structure_or_union_p (const struct type *type)
232{
233 switch (TYPE_CODE (type))
234 {
235 case TYPE_CODE_STRUCT:
236 case TYPE_CODE_UNION:
0497f5b0 237 case TYPE_CODE_ARRAY:
386c036b
MK
238 return 1;
239 default:
240 break;
c906108c 241 }
386c036b
MK
242
243 return 0;
c906108c 244}
386c036b
MK
245
246/* Register information. */
247
248static const char *sparc32_register_names[] =
5af923b0 249{
386c036b
MK
250 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
251 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
252 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
253 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
254
255 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
256 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
257 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
258 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
259
260 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
261};
262
386c036b
MK
263/* Total number of registers. */
264#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 265
386c036b
MK
266/* We provide the aliases %d0..%d30 for the floating registers as
267 "psuedo" registers. */
268
269static const char *sparc32_pseudo_register_names[] =
270{
271 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
272 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
273};
274
275/* Total number of pseudo registers. */
276#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
277
278/* Return the name of register REGNUM. */
279
280static const char *
d93859e2 281sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
282{
283 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
284 return sparc32_register_names[regnum];
285
286 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
287 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
288
289 return NULL;
290}
2d457077 291\f
209bd28e 292/* Construct types for ISA-specific registers. */
2d457077 293
209bd28e
UW
294static struct type *
295sparc_psr_type (struct gdbarch *gdbarch)
296{
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 298
209bd28e
UW
299 if (!tdep->sparc_psr_type)
300 {
301 struct type *type;
2d457077 302
e9bb382b 303 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
304 append_flags_type_flag (type, 5, "ET");
305 append_flags_type_flag (type, 6, "PS");
306 append_flags_type_flag (type, 7, "S");
307 append_flags_type_flag (type, 12, "EF");
308 append_flags_type_flag (type, 13, "EC");
2d457077 309
209bd28e
UW
310 tdep->sparc_psr_type = type;
311 }
312
313 return tdep->sparc_psr_type;
314}
315
316static struct type *
317sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 318{
209bd28e
UW
319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
320
321 if (!tdep->sparc_fsr_type)
322 {
323 struct type *type;
324
e9bb382b 325 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
326 append_flags_type_flag (type, 0, "NXA");
327 append_flags_type_flag (type, 1, "DZA");
328 append_flags_type_flag (type, 2, "UFA");
329 append_flags_type_flag (type, 3, "OFA");
330 append_flags_type_flag (type, 4, "NVA");
331 append_flags_type_flag (type, 5, "NXC");
332 append_flags_type_flag (type, 6, "DZC");
333 append_flags_type_flag (type, 7, "UFC");
334 append_flags_type_flag (type, 8, "OFC");
335 append_flags_type_flag (type, 9, "NVC");
336 append_flags_type_flag (type, 22, "NS");
337 append_flags_type_flag (type, 23, "NXM");
338 append_flags_type_flag (type, 24, "DZM");
339 append_flags_type_flag (type, 25, "UFM");
340 append_flags_type_flag (type, 26, "OFM");
341 append_flags_type_flag (type, 27, "NVM");
342
343 tdep->sparc_fsr_type = type;
344 }
345
346 return tdep->sparc_fsr_type;
2d457077 347}
386c036b
MK
348
349/* Return the GDB type object for the "standard" data type of data in
c378eb4e 350 register REGNUM. */
386c036b
MK
351
352static struct type *
353sparc32_register_type (struct gdbarch *gdbarch, int regnum)
354{
355 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 356 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
357
358 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 359 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
360
361 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 362 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
363
364 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 365 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 366
2d457077 367 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 368 return sparc_psr_type (gdbarch);
2d457077
MK
369
370 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 371 return sparc_fsr_type (gdbarch);
2d457077 372
df4df182 373 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
374}
375
05d1431c 376static enum register_status
386c036b
MK
377sparc32_pseudo_register_read (struct gdbarch *gdbarch,
378 struct regcache *regcache,
e1613aba 379 int regnum, gdb_byte *buf)
386c036b 380{
05d1431c
PA
381 enum register_status status;
382
386c036b
MK
383 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
384
385 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
05d1431c
PA
386 status = regcache_raw_read (regcache, regnum, buf);
387 if (status == REG_VALID)
388 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
389 return status;
386c036b
MK
390}
391
392static void
393sparc32_pseudo_register_write (struct gdbarch *gdbarch,
394 struct regcache *regcache,
e1613aba 395 int regnum, const gdb_byte *buf)
386c036b
MK
396{
397 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
398
399 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
400 regcache_raw_write (regcache, regnum, buf);
e1613aba 401 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
402}
403\f
404
49a45ecf
JB
405static CORE_ADDR
406sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
407{
408 /* The ABI requires double-word alignment. */
409 return address & ~0x7;
410}
411
386c036b
MK
412static CORE_ADDR
413sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 414 CORE_ADDR funcaddr,
386c036b
MK
415 struct value **args, int nargs,
416 struct type *value_type,
e4fd649a
UW
417 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
418 struct regcache *regcache)
c906108c 419{
e17a4113
UW
420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
421
386c036b
MK
422 *bp_addr = sp - 4;
423 *real_pc = funcaddr;
424
d80b854b 425 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 426 {
e1613aba 427 gdb_byte buf[4];
386c036b
MK
428
429 /* This is an UNIMP instruction. */
e17a4113
UW
430 store_unsigned_integer (buf, 4, byte_order,
431 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
432 write_memory (sp - 8, buf, 4);
433 return sp - 8;
c906108c
SS
434 }
435
386c036b
MK
436 return sp - 4;
437}
438
439static CORE_ADDR
440sparc32_store_arguments (struct regcache *regcache, int nargs,
441 struct value **args, CORE_ADDR sp,
442 int struct_return, CORE_ADDR struct_addr)
443{
df4df182 444 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 445 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
446 /* Number of words in the "parameter array". */
447 int num_elements = 0;
448 int element = 0;
449 int i;
450
451 for (i = 0; i < nargs; i++)
c906108c 452 {
4991999e 453 struct type *type = value_type (args[i]);
386c036b
MK
454 int len = TYPE_LENGTH (type);
455
456 if (sparc_structure_or_union_p (type)
457 || (sparc_floating_p (type) && len == 16))
c906108c 458 {
386c036b
MK
459 /* Structure, Union and Quad-Precision Arguments. */
460 sp -= len;
461
462 /* Use doubleword alignment for these values. That's always
463 correct, and wasting a few bytes shouldn't be a problem. */
464 sp &= ~0x7;
465
0fd88904 466 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
467 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
468 num_elements++;
469 }
470 else if (sparc_floating_p (type))
471 {
472 /* Floating arguments. */
473 gdb_assert (len == 4 || len == 8);
474 num_elements += (len / 4);
c906108c 475 }
c5aa993b
JM
476 else
477 {
386c036b
MK
478 /* Integral and pointer arguments. */
479 gdb_assert (sparc_integral_or_pointer_p (type));
480
481 if (len < 4)
df4df182
UW
482 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
483 args[i]);
386c036b 484 num_elements += ((len + 3) / 4);
c5aa993b 485 }
c906108c 486 }
c906108c 487
386c036b
MK
488 /* Always allocate at least six words. */
489 sp -= max (6, num_elements) * 4;
c906108c 490
386c036b
MK
491 /* The psABI says that "Software convention requires space for the
492 struct/union return value pointer, even if the word is unused." */
493 sp -= 4;
c906108c 494
386c036b
MK
495 /* The psABI says that "Although software convention and the
496 operating system require every stack frame to be doubleword
497 aligned." */
498 sp &= ~0x7;
c906108c 499
386c036b 500 for (i = 0; i < nargs; i++)
c906108c 501 {
0fd88904 502 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 503 struct type *type = value_type (args[i]);
386c036b 504 int len = TYPE_LENGTH (type);
c906108c 505
386c036b 506 gdb_assert (len == 4 || len == 8);
c906108c 507
386c036b
MK
508 if (element < 6)
509 {
510 int regnum = SPARC_O0_REGNUM + element;
c906108c 511
386c036b
MK
512 regcache_cooked_write (regcache, regnum, valbuf);
513 if (len > 4 && element < 5)
514 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
515 }
5af923b0 516
386c036b
MK
517 /* Always store the argument in memory. */
518 write_memory (sp + 4 + element * 4, valbuf, len);
519 element += len / 4;
520 }
c906108c 521
386c036b 522 gdb_assert (element == num_elements);
c906108c 523
386c036b 524 if (struct_return)
c906108c 525 {
e1613aba 526 gdb_byte buf[4];
c906108c 527
e17a4113 528 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
529 write_memory (sp, buf, 4);
530 }
c906108c 531
386c036b 532 return sp;
c906108c
SS
533}
534
386c036b 535static CORE_ADDR
7d9b040b 536sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
537 struct regcache *regcache, CORE_ADDR bp_addr,
538 int nargs, struct value **args, CORE_ADDR sp,
539 int struct_return, CORE_ADDR struct_addr)
c906108c 540{
386c036b
MK
541 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
542
543 /* Set return address. */
544 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
545
546 /* Set up function arguments. */
547 sp = sparc32_store_arguments (regcache, nargs, args, sp,
548 struct_return, struct_addr);
549
550 /* Allocate the 16-word window save area. */
551 sp -= 16 * 4;
c906108c 552
386c036b
MK
553 /* Stack should be doubleword aligned at this point. */
554 gdb_assert (sp % 8 == 0);
c906108c 555
386c036b
MK
556 /* Finally, update the stack pointer. */
557 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
558
559 return sp;
560}
561\f
c906108c 562
386c036b
MK
563/* Use the program counter to determine the contents and size of a
564 breakpoint instruction. Return a pointer to a string of bytes that
565 encode a breakpoint instruction, store the length of the string in
566 *LEN and optionally adjust *PC to point to the correct memory
567 location for inserting the breakpoint. */
568
e1613aba 569static const gdb_byte *
67d57894 570sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 571{
864a1a37 572 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 573
386c036b
MK
574 *len = sizeof (break_insn);
575 return break_insn;
c906108c 576}
386c036b 577\f
c906108c 578
386c036b 579/* Allocate and initialize a frame cache. */
c906108c 580
386c036b
MK
581static struct sparc_frame_cache *
582sparc_alloc_frame_cache (void)
583{
584 struct sparc_frame_cache *cache;
585 int i;
c906108c 586
386c036b 587 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 588
386c036b
MK
589 /* Base address. */
590 cache->base = 0;
591 cache->pc = 0;
c906108c 592
386c036b
MK
593 /* Frameless until proven otherwise. */
594 cache->frameless_p = 1;
595
596 cache->struct_return_p = 0;
597
598 return cache;
599}
600
b0b92586
JB
601/* GCC generates several well-known sequences of instructions at the begining
602 of each function prologue when compiling with -fstack-check. If one of
603 such sequences starts at START_PC, then return the address of the
604 instruction immediately past this sequence. Otherwise, return START_PC. */
605
606static CORE_ADDR
607sparc_skip_stack_check (const CORE_ADDR start_pc)
608{
609 CORE_ADDR pc = start_pc;
610 unsigned long insn;
611 int offset_stack_checking_sequence = 0;
2067c8d4 612 int probing_loop = 0;
b0b92586
JB
613
614 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 615 instructions, plus an optional one in the case of a probing loop:
b0b92586 616
2067c8d4
JG
617 sethi <some immediate>, %g1
618 sub %sp, %g1, %g1
619
620 or:
621
622 sethi <some immediate>, %g1
623 sethi <some immediate>, %g4
624 sub %sp, %g1, %g1
625
626 or:
627
628 sethi <some immediate>, %g1
629 sub %sp, %g1, %g1
630 sethi <some immediate>, %g4
631
632 If the optional instruction is found (setting g4), assume that a
633 probing loop will follow. */
634
635 /* sethi <some immediate>, %g1 */
b0b92586
JB
636 insn = sparc_fetch_instruction (pc);
637 pc = pc + 4;
638 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
639 return start_pc;
640
2067c8d4 641 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
642 insn = sparc_fetch_instruction (pc);
643 pc = pc + 4;
2067c8d4
JG
644 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
645 {
646 probing_loop = 1;
647 insn = sparc_fetch_instruction (pc);
648 pc = pc + 4;
649 }
650
651 /* sub %sp, %g1, %g1 */
b0b92586
JB
652 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
653 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
654 return start_pc;
655
656 insn = sparc_fetch_instruction (pc);
657 pc = pc + 4;
658
2067c8d4
JG
659 /* optional: sethi <some immediate>, %g4 */
660 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
661 {
662 probing_loop = 1;
663 insn = sparc_fetch_instruction (pc);
664 pc = pc + 4;
665 }
666
b0b92586
JB
667 /* First possible sequence:
668 [first two instructions above]
669 clr [%g1 - some immediate] */
670
671 /* clr [%g1 - some immediate] */
672 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
673 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
674 {
675 /* Valid stack-check sequence, return the new PC. */
676 return pc;
677 }
678
679 /* Second possible sequence: A small number of probes.
680 [first two instructions above]
681 clr [%g1]
682 add %g1, -<some immediate>, %g1
683 clr [%g1]
684 [repeat the two instructions above any (small) number of times]
685 clr [%g1 - some immediate] */
686
687 /* clr [%g1] */
688 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
689 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
690 {
691 while (1)
692 {
693 /* add %g1, -<some immediate>, %g1 */
694 insn = sparc_fetch_instruction (pc);
695 pc = pc + 4;
696 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
697 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
698 break;
699
700 /* clr [%g1] */
701 insn = sparc_fetch_instruction (pc);
702 pc = pc + 4;
703 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
704 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
705 return start_pc;
706 }
707
708 /* clr [%g1 - some immediate] */
709 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
710 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
711 return start_pc;
712
713 /* We found a valid stack-check sequence, return the new PC. */
714 return pc;
715 }
716
717 /* Third sequence: A probing loop.
2067c8d4 718 [first three instructions above]
b0b92586
JB
719 sub %g1, %g4, %g4
720 cmp %g1, %g4
721 be <disp>
722 add %g1, -<some immediate>, %g1
723 ba <disp>
724 clr [%g1]
2067c8d4
JG
725
726 And an optional last probe for the remainder:
727
b0b92586
JB
728 clr [%g4 - some immediate] */
729
2067c8d4 730 if (probing_loop)
b0b92586
JB
731 {
732 /* sub %g1, %g4, %g4 */
b0b92586
JB
733 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
734 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
735 return start_pc;
736
737 /* cmp %g1, %g4 */
738 insn = sparc_fetch_instruction (pc);
739 pc = pc + 4;
740 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
741 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
742 return start_pc;
743
744 /* be <disp> */
745 insn = sparc_fetch_instruction (pc);
746 pc = pc + 4;
747 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
748 return start_pc;
749
750 /* add %g1, -<some immediate>, %g1 */
751 insn = sparc_fetch_instruction (pc);
752 pc = pc + 4;
753 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
754 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
755 return start_pc;
756
757 /* ba <disp> */
758 insn = sparc_fetch_instruction (pc);
759 pc = pc + 4;
760 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
761 return start_pc;
762
2067c8d4 763 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
764 insn = sparc_fetch_instruction (pc);
765 pc = pc + 4;
2067c8d4
JG
766 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
767 && X_RD (insn) == 0 && X_RS1 (insn) == 1
768 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
b0b92586
JB
769 return start_pc;
770
2067c8d4
JG
771 /* We found a valid stack-check sequence, return the new PC. */
772
773 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
774 insn = sparc_fetch_instruction (pc);
775 pc = pc + 4;
776 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
777 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
2067c8d4
JG
778 return pc - 4;
779 else
780 return pc;
b0b92586
JB
781 }
782
783 /* No stack check code in our prologue, return the start_pc. */
784 return start_pc;
785}
786
386c036b 787CORE_ADDR
be8626e0
MD
788sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
789 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 790{
be8626e0 791 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
792 unsigned long insn;
793 int offset = 0;
c906108c 794 int dest = -1;
c906108c 795
b0b92586
JB
796 pc = sparc_skip_stack_check (pc);
797
386c036b
MK
798 if (current_pc <= pc)
799 return current_pc;
800
801 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
802 SPARC the linker usually defines a symbol (typically
803 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
804 This symbol makes us end up here with PC pointing at the start of
805 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
806 would do our normal prologue analysis, we would probably conclude
807 that we've got a frame when in reality we don't, since the
808 dynamic linker patches up the first PLT with some code that
809 starts with a SAVE instruction. Patch up PC such that it points
810 at the start of our PLT entry. */
811 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
812 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 813
386c036b
MK
814 insn = sparc_fetch_instruction (pc);
815
816 /* Recognize a SETHI insn and record its destination. */
817 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
818 {
819 dest = X_RD (insn);
386c036b
MK
820 offset += 4;
821
822 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
823 }
824
386c036b
MK
825 /* Allow for an arithmetic operation on DEST or %g1. */
826 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
827 && (X_RD (insn) == 1 || X_RD (insn) == dest))
828 {
386c036b 829 offset += 4;
c906108c 830
386c036b 831 insn = sparc_fetch_instruction (pc + 8);
c906108c 832 }
c906108c 833
386c036b
MK
834 /* Check for the SAVE instruction that sets up the frame. */
835 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 836 {
386c036b
MK
837 cache->frameless_p = 0;
838 return pc + offset + 4;
c906108c
SS
839 }
840
841 return pc;
842}
843
386c036b 844static CORE_ADDR
236369e7 845sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
846{
847 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 848 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
849}
850
851/* Return PC of first real instruction of the function starting at
852 START_PC. */
f510d44e 853
386c036b 854static CORE_ADDR
6093d2eb 855sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 856{
f510d44e
DM
857 struct symtab_and_line sal;
858 CORE_ADDR func_start, func_end;
386c036b 859 struct sparc_frame_cache cache;
f510d44e
DM
860
861 /* This is the preferred method, find the end of the prologue by
862 using the debugging information. */
863 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
864 {
865 sal = find_pc_line (func_start, 0);
866
867 if (sal.end < func_end
868 && start_pc <= sal.end)
869 return sal.end;
870 }
871
be8626e0 872 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
873
874 /* The psABI says that "Although the first 6 words of arguments
875 reside in registers, the standard stack frame reserves space for
876 them.". It also suggests that a function may use that space to
877 "write incoming arguments 0 to 5" into that space, and that's
878 indeed what GCC seems to be doing. In that case GCC will
879 generate debug information that points to the stack slots instead
880 of the registers, so we should consider the instructions that
881 write out these incoming arguments onto the stack. Of course we
882 only need to do this if we have a stack frame. */
883
884 while (!cache.frameless_p)
885 {
886 unsigned long insn = sparc_fetch_instruction (start_pc);
887
888 /* Recognize instructions that store incoming arguments in
889 %i0...%i5 into the corresponding stack slot. */
890 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
891 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
892 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
893 {
894 start_pc += 4;
895 continue;
896 }
897
898 break;
899 }
900
901 return start_pc;
c906108c
SS
902}
903
386c036b 904/* Normal frames. */
9319a2fe 905
386c036b 906struct sparc_frame_cache *
236369e7 907sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 908{
386c036b 909 struct sparc_frame_cache *cache;
9319a2fe 910
386c036b
MK
911 if (*this_cache)
912 return *this_cache;
c906108c 913
386c036b
MK
914 cache = sparc_alloc_frame_cache ();
915 *this_cache = cache;
c906108c 916
236369e7 917 cache->pc = get_frame_func (this_frame);
386c036b 918 if (cache->pc != 0)
236369e7
JB
919 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
920 get_frame_pc (this_frame), cache);
386c036b
MK
921
922 if (cache->frameless_p)
c906108c 923 {
cbeae229
MK
924 /* This function is frameless, so %fp (%i6) holds the frame
925 pointer for our calling frame. Use %sp (%o6) as this frame's
926 base address. */
927 cache->base =
236369e7 928 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
929 }
930 else
931 {
932 /* For normal frames, %fp (%i6) holds the frame pointer, the
933 base address for the current stack frame. */
934 cache->base =
236369e7 935 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 936 }
c906108c 937
5b2d44a0
MK
938 if (cache->base & 1)
939 cache->base += BIAS;
940
386c036b 941 return cache;
c906108c 942}
c906108c 943
aff37fc1
DM
944static int
945sparc32_struct_return_from_sym (struct symbol *sym)
946{
947 struct type *type = check_typedef (SYMBOL_TYPE (sym));
948 enum type_code code = TYPE_CODE (type);
949
950 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
951 {
952 type = check_typedef (TYPE_TARGET_TYPE (type));
953 if (sparc_structure_or_union_p (type)
954 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
955 return 1;
956 }
957
958 return 0;
959}
960
386c036b 961struct sparc_frame_cache *
236369e7 962sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 963{
386c036b
MK
964 struct sparc_frame_cache *cache;
965 struct symbol *sym;
c906108c 966
386c036b
MK
967 if (*this_cache)
968 return *this_cache;
c906108c 969
236369e7 970 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 971
386c036b
MK
972 sym = find_pc_function (cache->pc);
973 if (sym)
c906108c 974 {
aff37fc1 975 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 976 }
5465445a
JB
977 else
978 {
979 /* There is no debugging information for this function to
980 help us determine whether this function returns a struct
981 or not. So we rely on another heuristic which is to check
982 the instruction at the return address and see if this is
983 an "unimp" instruction. If it is, then it is a struct-return
984 function. */
985 CORE_ADDR pc;
986 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
987
236369e7 988 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
989 if (sparc_is_unimp_insn (pc))
990 cache->struct_return_p = 1;
991 }
c906108c 992
386c036b
MK
993 return cache;
994}
995
996static void
236369e7 997sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
998 struct frame_id *this_id)
999{
1000 struct sparc_frame_cache *cache =
236369e7 1001 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1002
1003 /* This marks the outermost frame. */
1004 if (cache->base == 0)
1005 return;
1006
1007 (*this_id) = frame_id_build (cache->base, cache->pc);
1008}
c906108c 1009
236369e7
JB
1010static struct value *
1011sparc32_frame_prev_register (struct frame_info *this_frame,
1012 void **this_cache, int regnum)
386c036b 1013{
e17a4113 1014 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1015 struct sparc_frame_cache *cache =
236369e7 1016 sparc32_frame_cache (this_frame, this_cache);
c906108c 1017
386c036b 1018 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1019 {
236369e7 1020 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1021
236369e7
JB
1022 /* If this functions has a Structure, Union or Quad-Precision
1023 return value, we have to skip the UNIMP instruction that encodes
1024 the size of the structure. */
1025 if (cache->struct_return_p)
1026 pc += 4;
386c036b 1027
236369e7
JB
1028 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
1029 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1030 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1031 }
1032
42cdca6c
MK
1033 /* Handle StackGhost. */
1034 {
e17a4113 1035 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1036
1037 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1038 {
236369e7
JB
1039 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1040 ULONGEST i7;
1041
1042 /* Read the value in from memory. */
1043 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1044 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1045 }
1046 }
1047
386c036b
MK
1048 /* The previous frame's `local' and `in' registers have been saved
1049 in the register save area. */
1050 if (!cache->frameless_p
1051 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 1052 {
236369e7 1053 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1054
236369e7 1055 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1056 }
c906108c 1057
236369e7 1058 /* The previous frame's `out' registers are accessible as the
386c036b
MK
1059 current frame's `in' registers. */
1060 if (!cache->frameless_p
1061 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1062 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1063
236369e7 1064 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1065}
c906108c 1066
386c036b
MK
1067static const struct frame_unwind sparc32_frame_unwind =
1068{
1069 NORMAL_FRAME,
8fbca658 1070 default_frame_unwind_stop_reason,
386c036b 1071 sparc32_frame_this_id,
236369e7
JB
1072 sparc32_frame_prev_register,
1073 NULL,
1074 default_frame_sniffer
386c036b 1075};
386c036b 1076\f
c906108c 1077
386c036b 1078static CORE_ADDR
236369e7 1079sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1080{
1081 struct sparc_frame_cache *cache =
236369e7 1082 sparc32_frame_cache (this_frame, this_cache);
c906108c 1083
386c036b
MK
1084 return cache->base;
1085}
c906108c 1086
386c036b
MK
1087static const struct frame_base sparc32_frame_base =
1088{
1089 &sparc32_frame_unwind,
1090 sparc32_frame_base_address,
1091 sparc32_frame_base_address,
1092 sparc32_frame_base_address
1093};
c906108c 1094
386c036b 1095static struct frame_id
236369e7 1096sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1097{
1098 CORE_ADDR sp;
5af923b0 1099
236369e7 1100 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1101 if (sp & 1)
1102 sp += BIAS;
236369e7 1103 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1104}
1105\f
c906108c 1106
3923a2b2
MK
1107/* Extract a function return value of TYPE from REGCACHE, and copy
1108 that into VALBUF. */
5af923b0 1109
386c036b
MK
1110static void
1111sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1112 gdb_byte *valbuf)
386c036b
MK
1113{
1114 int len = TYPE_LENGTH (type);
e1613aba 1115 gdb_byte buf[8];
c906108c 1116
386c036b
MK
1117 gdb_assert (!sparc_structure_or_union_p (type));
1118 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1119
386c036b 1120 if (sparc_floating_p (type))
5af923b0 1121 {
386c036b
MK
1122 /* Floating return values. */
1123 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1124 if (len > 4)
1125 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1126 memcpy (valbuf, buf, len);
5af923b0
MS
1127 }
1128 else
1129 {
386c036b
MK
1130 /* Integral and pointer return values. */
1131 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1132
386c036b
MK
1133 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1134 if (len > 4)
1135 {
1136 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1137 gdb_assert (len == 8);
1138 memcpy (valbuf, buf, 8);
1139 }
1140 else
1141 {
1142 /* Just stripping off any unused bytes should preserve the
1143 signed-ness just fine. */
1144 memcpy (valbuf, buf + 4 - len, len);
1145 }
1146 }
1147}
c906108c 1148
3923a2b2
MK
1149/* Store the function return value of type TYPE from VALBUF into
1150 REGCACHE. */
c906108c 1151
386c036b
MK
1152static void
1153sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1154 const gdb_byte *valbuf)
386c036b
MK
1155{
1156 int len = TYPE_LENGTH (type);
e1613aba 1157 gdb_byte buf[8];
c906108c 1158
386c036b
MK
1159 gdb_assert (!sparc_structure_or_union_p (type));
1160 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1161 gdb_assert (len <= 8);
c906108c 1162
386c036b
MK
1163 if (sparc_floating_p (type))
1164 {
1165 /* Floating return values. */
1166 memcpy (buf, valbuf, len);
1167 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1168 if (len > 4)
1169 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1170 }
1171 else
c906108c 1172 {
386c036b
MK
1173 /* Integral and pointer return values. */
1174 gdb_assert (sparc_integral_or_pointer_p (type));
1175
1176 if (len > 4)
2757dd86 1177 {
386c036b
MK
1178 gdb_assert (len == 8);
1179 memcpy (buf, valbuf, 8);
1180 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1181 }
1182 else
1183 {
386c036b
MK
1184 /* ??? Do we need to do any sign-extension here? */
1185 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1186 }
386c036b 1187 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1188 }
1189}
1190
b9d4c5ed 1191static enum return_value_convention
c055b101
CV
1192sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1193 struct type *type, struct regcache *regcache,
1194 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1195{
e17a4113
UW
1196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1197
0a8f48b9
MK
1198 /* The psABI says that "...every stack frame reserves the word at
1199 %fp+64. If a function returns a structure, union, or
1200 quad-precision value, this word should hold the address of the
1201 object into which the return value should be copied." This
1202 guarantees that we can always find the return value, not just
1203 before the function returns. */
1204
b9d4c5ed
MK
1205 if (sparc_structure_or_union_p (type)
1206 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1207 {
1208 if (readbuf)
1209 {
1210 ULONGEST sp;
1211 CORE_ADDR addr;
1212
1213 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1214 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1215 read_memory (addr, readbuf, TYPE_LENGTH (type));
1216 }
1217
1218 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1219 }
b9d4c5ed
MK
1220
1221 if (readbuf)
1222 sparc32_extract_return_value (type, regcache, readbuf);
1223 if (writebuf)
1224 sparc32_store_return_value (type, regcache, writebuf);
1225
1226 return RETURN_VALUE_REGISTER_CONVENTION;
1227}
1228
386c036b
MK
1229static int
1230sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1231{
386c036b
MK
1232 return (sparc_structure_or_union_p (type)
1233 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1234}
c906108c 1235
aff37fc1 1236static int
4a4e5149 1237sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1238{
236369e7 1239 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1240 struct symbol *sym = find_pc_function (pc);
1241
1242 if (sym)
1243 return sparc32_struct_return_from_sym (sym);
1244 return 0;
1245}
1246
f5a9b87d
DM
1247static void
1248sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1249 struct dwarf2_frame_state_reg *reg,
4a4e5149 1250 struct frame_info *this_frame)
f5a9b87d 1251{
aff37fc1
DM
1252 int off;
1253
f5a9b87d
DM
1254 switch (regnum)
1255 {
1256 case SPARC_G0_REGNUM:
1257 /* Since %g0 is always zero, there is no point in saving it, and
1258 people will be inclined omit it from the CFI. Make sure we
1259 don't warn about that. */
1260 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1261 break;
1262 case SPARC_SP_REGNUM:
1263 reg->how = DWARF2_FRAME_REG_CFA;
1264 break;
1265 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1266 case SPARC32_NPC_REGNUM:
1267 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1268 off = 8;
4a4e5149 1269 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1270 off += 4;
1271 if (regnum == SPARC32_NPC_REGNUM)
1272 off += 4;
1273 reg->loc.offset = off;
f5a9b87d
DM
1274 break;
1275 }
1276}
1277
386c036b
MK
1278\f
1279/* The SPARC Architecture doesn't have hardware single-step support,
1280 and most operating systems don't implement it either, so we provide
1281 software single-step mechanism. */
c906108c 1282
386c036b 1283static CORE_ADDR
0b1b3e42 1284sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1285 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1286{
1287 unsigned long insn = sparc_fetch_instruction (pc);
1288 int conditional_p = X_COND (insn) & 0x7;
1289 int branch_p = 0;
1290 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1291
386c036b 1292 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1293 {
386c036b
MK
1294 /* Branch on Integer Register with Prediction (BPr). */
1295 branch_p = 1;
1296 conditional_p = 1;
c906108c 1297 }
386c036b 1298 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1299 {
386c036b
MK
1300 /* Branch on Floating-Point Condition Codes (FBfcc). */
1301 branch_p = 1;
1302 offset = 4 * X_DISP22 (insn);
c906108c 1303 }
386c036b
MK
1304 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1305 {
1306 /* Branch on Floating-Point Condition Codes with Prediction
1307 (FBPfcc). */
1308 branch_p = 1;
1309 offset = 4 * X_DISP19 (insn);
1310 }
1311 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1312 {
1313 /* Branch on Integer Condition Codes (Bicc). */
1314 branch_p = 1;
1315 offset = 4 * X_DISP22 (insn);
1316 }
1317 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1318 {
386c036b
MK
1319 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1320 branch_p = 1;
1321 offset = 4 * X_DISP19 (insn);
c906108c 1322 }
c893be75
MK
1323 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1324 {
1325 /* Trap instruction (TRAP). */
0b1b3e42 1326 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1327 }
386c036b
MK
1328
1329 /* FIXME: Handle DONE and RETRY instructions. */
1330
386c036b 1331 if (branch_p)
c906108c 1332 {
386c036b 1333 if (conditional_p)
c906108c 1334 {
386c036b
MK
1335 /* For conditional branches, return nPC + 4 iff the annul
1336 bit is 1. */
1337 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1338 }
1339 else
1340 {
386c036b
MK
1341 /* For unconditional branches, return the target if its
1342 specified condition is "always" and return nPC + 4 if the
1343 condition is "never". If the annul bit is 1, set *NPC to
1344 zero. */
1345 if (X_COND (insn) == 0x0)
1346 pc = *npc, offset = 4;
1347 if (X_A (insn))
1348 *npc = 0;
1349
1350 gdb_assert (offset != 0);
1351 return pc + offset;
c906108c
SS
1352 }
1353 }
386c036b
MK
1354
1355 return 0;
c906108c
SS
1356}
1357
c893be75 1358static CORE_ADDR
0b1b3e42 1359sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1360{
1361 return 0;
1362}
1363
e6590a1b 1364int
0b1b3e42 1365sparc_software_single_step (struct frame_info *frame)
386c036b 1366{
0b1b3e42 1367 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1368 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1369 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1370 CORE_ADDR npc, nnpc;
c906108c 1371
e0cd558a 1372 CORE_ADDR pc, orig_npc;
c906108c 1373
0b1b3e42
UW
1374 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1375 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1376
e0cd558a 1377 /* Analyze the instruction at PC. */
0b1b3e42 1378 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1379 if (npc != 0)
6c95b8df 1380 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1381
e0cd558a 1382 if (nnpc != 0)
6c95b8df 1383 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1384
e0cd558a
UW
1385 /* Assert that we have set at least one breakpoint, and that
1386 they're not set at the same spot - unless we're going
1387 from here straight to NULL, i.e. a call or jump to 0. */
1388 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1389 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1390
1391 return 1;
386c036b
MK
1392}
1393
1394static void
61a1198a 1395sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1396{
61a1198a 1397 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1398
61a1198a
UW
1399 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1400 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1401}
1402\f
5af923b0 1403
a54124c5
MK
1404/* Return the appropriate register set for the core section identified
1405 by SECT_NAME and SECT_SIZE. */
1406
63807e1d 1407static const struct regset *
a54124c5
MK
1408sparc_regset_from_core_section (struct gdbarch *gdbarch,
1409 const char *sect_name, size_t sect_size)
1410{
1411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1412
c558d81a 1413 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1414 return tdep->gregset;
1415
c558d81a 1416 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1417 return tdep->fpregset;
1418
1419 return NULL;
1420}
1421\f
1422
386c036b
MK
1423static struct gdbarch *
1424sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1425{
1426 struct gdbarch_tdep *tdep;
1427 struct gdbarch *gdbarch;
c906108c 1428
386c036b
MK
1429 /* If there is already a candidate, use it. */
1430 arches = gdbarch_list_lookup_by_info (arches, &info);
1431 if (arches != NULL)
1432 return arches->gdbarch;
c906108c 1433
386c036b 1434 /* Allocate space for the new architecture. */
1390fcc2 1435 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1436 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1437
386c036b
MK
1438 tdep->pc_regnum = SPARC32_PC_REGNUM;
1439 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1440 tdep->step_trap = sparc_step_trap;
386c036b
MK
1441
1442 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1443 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1444
1445 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1446 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1447 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1448 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1449 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1450 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1451
1452 /* Register numbers of various important registers. */
1453 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1454 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1455 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1456
1457 /* Call dummy code. */
49a45ecf 1458 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1459 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1460 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1461 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1462
b9d4c5ed 1463 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1464 set_gdbarch_stabs_argument_has_addr
1465 (gdbarch, sparc32_stabs_argument_has_addr);
1466
1467 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1468
1469 /* Stack grows downward. */
1470 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1471
386c036b 1472 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1473
386c036b 1474 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1475
386c036b 1476 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1477
386c036b
MK
1478 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1479 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1480
236369e7 1481 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1482
386c036b 1483 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1484
386c036b
MK
1485 frame_base_set_default (gdbarch, &sparc32_frame_base);
1486
f5a9b87d
DM
1487 /* Hook in the DWARF CFI frame unwinder. */
1488 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1489 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1490 StackGhost issues have been resolved. */
1491
b2a0b9b2
DM
1492 /* Hook in ABI-specific overrides, if they have been registered. */
1493 gdbarch_init_osabi (info, gdbarch);
1494
236369e7 1495 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1496
a54124c5 1497 /* If we have register sets, enable the generic core file support. */
4c72d57a 1498 if (tdep->gregset)
a54124c5
MK
1499 set_gdbarch_regset_from_core_section (gdbarch,
1500 sparc_regset_from_core_section);
1501
386c036b
MK
1502 return gdbarch;
1503}
1504\f
1505/* Helper functions for dealing with register windows. */
1506
1507void
1508sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1509{
e17a4113
UW
1510 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1511 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1512 int offset = 0;
e1613aba 1513 gdb_byte buf[8];
386c036b
MK
1514 int i;
1515
1516 if (sp & 1)
1517 {
1518 /* Registers are 64-bit. */
1519 sp += BIAS;
c906108c 1520
386c036b
MK
1521 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1522 {
1523 if (regnum == i || regnum == -1)
1524 {
1525 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1526
1527 /* Handle StackGhost. */
1528 if (i == SPARC_I7_REGNUM)
1529 {
e17a4113
UW
1530 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1531 ULONGEST i7;
f700a364 1532
e17a4113
UW
1533 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1534 store_unsigned_integer (buf + offset, 8, byte_order,
1535 i7 ^ wcookie);
f700a364
MK
1536 }
1537
386c036b
MK
1538 regcache_raw_supply (regcache, i, buf);
1539 }
1540 }
1541 }
1542 else
c906108c 1543 {
386c036b
MK
1544 /* Registers are 32-bit. Toss any sign-extension of the stack
1545 pointer. */
1546 sp &= 0xffffffffUL;
c906108c 1547
386c036b
MK
1548 /* Clear out the top half of the temporary buffer, and put the
1549 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1550 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1551 {
386c036b
MK
1552 memset (buf, 0, 4);
1553 offset = 4;
1554 }
c906108c 1555
386c036b
MK
1556 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1557 {
1558 if (regnum == i || regnum == -1)
1559 {
1560 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1561 buf + offset, 4);
42cdca6c
MK
1562
1563 /* Handle StackGhost. */
1564 if (i == SPARC_I7_REGNUM)
1565 {
e17a4113
UW
1566 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1567 ULONGEST i7;
42cdca6c 1568
e17a4113
UW
1569 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1570 store_unsigned_integer (buf + offset, 4, byte_order,
1571 i7 ^ wcookie);
42cdca6c
MK
1572 }
1573
386c036b
MK
1574 regcache_raw_supply (regcache, i, buf);
1575 }
c906108c
SS
1576 }
1577 }
c906108c 1578}
c906108c
SS
1579
1580void
386c036b
MK
1581sparc_collect_rwindow (const struct regcache *regcache,
1582 CORE_ADDR sp, int regnum)
c906108c 1583{
e17a4113
UW
1584 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1586 int offset = 0;
e1613aba 1587 gdb_byte buf[8];
386c036b 1588 int i;
5af923b0 1589
386c036b 1590 if (sp & 1)
5af923b0 1591 {
386c036b
MK
1592 /* Registers are 64-bit. */
1593 sp += BIAS;
c906108c 1594
386c036b
MK
1595 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1596 {
1597 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1598 {
1599 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1600
1601 /* Handle StackGhost. */
1602 if (i == SPARC_I7_REGNUM)
1603 {
e17a4113
UW
1604 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1605 ULONGEST i7;
f700a364 1606
e17a4113
UW
1607 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1608 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1609 }
1610
386c036b
MK
1611 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1612 }
1613 }
5af923b0
MS
1614 }
1615 else
1616 {
386c036b
MK
1617 /* Registers are 32-bit. Toss any sign-extension of the stack
1618 pointer. */
1619 sp &= 0xffffffffUL;
1620
1621 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1622 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1623 offset = 4;
1624
1625 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1626 {
1627 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1628 {
1629 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1630
1631 /* Handle StackGhost. */
1632 if (i == SPARC_I7_REGNUM)
1633 {
e17a4113
UW
1634 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1635 ULONGEST i7;
42cdca6c 1636
e17a4113
UW
1637 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1638 store_unsigned_integer (buf + offset, 4, byte_order,
1639 i7 ^ wcookie);
42cdca6c
MK
1640 }
1641
386c036b
MK
1642 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1643 buf + offset, 4);
1644 }
1645 }
5af923b0 1646 }
c906108c
SS
1647}
1648
386c036b
MK
1649/* Helper functions for dealing with register sets. */
1650
c906108c 1651void
386c036b
MK
1652sparc32_supply_gregset (const struct sparc_gregset *gregset,
1653 struct regcache *regcache,
1654 int regnum, const void *gregs)
c906108c 1655{
e1613aba 1656 const gdb_byte *regs = gregs;
22e74ef9 1657 gdb_byte zero[4] = { 0 };
386c036b 1658 int i;
5af923b0 1659
386c036b
MK
1660 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1661 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1662 regs + gregset->r_psr_offset);
c906108c 1663
386c036b
MK
1664 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1665 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1666 regs + gregset->r_pc_offset);
5af923b0 1667
386c036b
MK
1668 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1669 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1670 regs + gregset->r_npc_offset);
5af923b0 1671
386c036b
MK
1672 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1673 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1674 regs + gregset->r_y_offset);
5af923b0 1675
386c036b 1676 if (regnum == SPARC_G0_REGNUM || regnum == -1)
22e74ef9 1677 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
5af923b0 1678
386c036b 1679 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1680 {
386c036b
MK
1681 int offset = gregset->r_g1_offset;
1682
1683 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1684 {
1685 if (regnum == i || regnum == -1)
1686 regcache_raw_supply (regcache, i, regs + offset);
1687 offset += 4;
1688 }
c906108c 1689 }
386c036b
MK
1690
1691 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1692 {
386c036b
MK
1693 /* Not all of the register set variants include Locals and
1694 Inputs. For those that don't, we read them off the stack. */
1695 if (gregset->r_l0_offset == -1)
1696 {
1697 ULONGEST sp;
1698
1699 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1700 sparc_supply_rwindow (regcache, sp, regnum);
1701 }
1702 else
1703 {
1704 int offset = gregset->r_l0_offset;
1705
1706 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1707 {
1708 if (regnum == i || regnum == -1)
1709 regcache_raw_supply (regcache, i, regs + offset);
1710 offset += 4;
1711 }
1712 }
c906108c
SS
1713 }
1714}
1715
c5aa993b 1716void
386c036b
MK
1717sparc32_collect_gregset (const struct sparc_gregset *gregset,
1718 const struct regcache *regcache,
1719 int regnum, void *gregs)
c906108c 1720{
e1613aba 1721 gdb_byte *regs = gregs;
386c036b 1722 int i;
c5aa993b 1723
386c036b
MK
1724 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1725 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1726 regs + gregset->r_psr_offset);
60054393 1727
386c036b
MK
1728 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1729 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1730 regs + gregset->r_pc_offset);
1731
1732 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1733 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1734 regs + gregset->r_npc_offset);
5af923b0 1735
386c036b
MK
1736 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1737 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1738 regs + gregset->r_y_offset);
1739
1740 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1741 {
386c036b
MK
1742 int offset = gregset->r_g1_offset;
1743
1744 /* %g0 is always zero. */
1745 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1746 {
1747 if (regnum == i || regnum == -1)
1748 regcache_raw_collect (regcache, i, regs + offset);
1749 offset += 4;
1750 }
5af923b0 1751 }
386c036b
MK
1752
1753 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1754 {
386c036b
MK
1755 /* Not all of the register set variants include Locals and
1756 Inputs. For those that don't, we read them off the stack. */
1757 if (gregset->r_l0_offset != -1)
1758 {
1759 int offset = gregset->r_l0_offset;
1760
1761 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1762 {
1763 if (regnum == i || regnum == -1)
1764 regcache_raw_collect (regcache, i, regs + offset);
1765 offset += 4;
1766 }
1767 }
5af923b0 1768 }
c906108c
SS
1769}
1770
c906108c 1771void
386c036b
MK
1772sparc32_supply_fpregset (struct regcache *regcache,
1773 int regnum, const void *fpregs)
c906108c 1774{
e1613aba 1775 const gdb_byte *regs = fpregs;
386c036b 1776 int i;
60054393 1777
386c036b 1778 for (i = 0; i < 32; i++)
c906108c 1779 {
386c036b
MK
1780 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1781 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1782 }
5af923b0 1783
386c036b
MK
1784 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1785 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1786}
1787
386c036b
MK
1788void
1789sparc32_collect_fpregset (const struct regcache *regcache,
1790 int regnum, void *fpregs)
c906108c 1791{
e1613aba 1792 gdb_byte *regs = fpregs;
386c036b 1793 int i;
c906108c 1794
386c036b
MK
1795 for (i = 0; i < 32; i++)
1796 {
1797 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1798 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1799 }
c906108c 1800
386c036b
MK
1801 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1802 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1803}
c906108c 1804\f
c906108c 1805
386c036b 1806/* SunOS 4. */
c906108c 1807
386c036b
MK
1808/* From <machine/reg.h>. */
1809const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1810{
386c036b
MK
1811 0 * 4, /* %psr */
1812 1 * 4, /* %pc */
1813 2 * 4, /* %npc */
1814 3 * 4, /* %y */
1815 -1, /* %wim */
1816 -1, /* %tbr */
1817 4 * 4, /* %g1 */
1818 -1 /* %l0 */
1819};
1820\f
c906108c 1821
386c036b
MK
1822/* Provide a prototype to silence -Wmissing-prototypes. */
1823void _initialize_sparc_tdep (void);
c906108c
SS
1824
1825void
386c036b 1826_initialize_sparc_tdep (void)
c906108c 1827{
386c036b 1828 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 1829}
This page took 1.243742 seconds and 4 git commands to generate.