Regenerate config.in
[deliverable/binutils-gdb.git] / gdb / sparc64-tdep.c
CommitLineData
8b39fe56
MK
1/* Target-dependent code for UltraSPARC.
2
42a4f53d 3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
8b39fe56
MK
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8b39fe56
MK
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b39fe56
MK
19
20#include "defs.h"
21#include "arch-utils.h"
02a71ae8 22#include "dwarf2-frame.h"
8b39fe56
MK
23#include "frame.h"
24#include "frame-base.h"
25#include "frame-unwind.h"
26#include "gdbcore.h"
27#include "gdbtypes.h"
386c036b
MK
28#include "inferior.h"
29#include "symtab.h"
30#include "objfiles.h"
8b39fe56
MK
31#include "osabi.h"
32#include "regcache.h"
3f7b46f2 33#include "target-descriptions.h"
8b39fe56
MK
34#include "target.h"
35#include "value.h"
36
8b39fe56
MK
37#include "sparc64-tdep.h"
38
b021a221 39/* This file implements the SPARC 64-bit ABI as defined by the
8b39fe56
MK
40 section "Low-Level System Information" of the SPARC Compliance
41 Definition (SCD) 2.4.1, which is the 64-bit System V psABI for
42 SPARC. */
43
44/* Please use the sparc32_-prefix for 32-bit specific code, the
45 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
46 code can handle both. */
8b39fe56 47\f
58afddc6
WP
48/* The M7 processor supports an Application Data Integrity (ADI) feature
49 that detects invalid data accesses. When software allocates memory and
50 enables ADI on the allocated memory, it chooses a 4-bit version number,
51 sets the version in the upper 4 bits of the 64-bit pointer to that data,
52 and stores the 4-bit version in every cacheline of the object. Hardware
53 saves the latter in spare bits in the cache and memory hierarchy. On each
54 load and store, the processor compares the upper 4 VA (virtual address) bits
55 to the cacheline's version. If there is a mismatch, the processor generates
56 a version mismatch trap which can be either precise or disrupting.
57 The trap is an error condition which the kernel delivers to the process
58 as a SIGSEGV signal.
59
60 The upper 4 bits of the VA represent a version and are not part of the
61 true address. The processor clears these bits and sign extends bit 59
62 to generate the true address.
63
64 Note that 32-bit applications cannot use ADI. */
65
66
67#include <algorithm>
68#include "cli/cli-utils.h"
69#include "gdbcmd.h"
70#include "auxv.h"
71
72#define MAX_PROC_NAME_SIZE sizeof("/proc/99999/lwp/9999/adi/lstatus")
73
74/* ELF Auxiliary vectors */
75#ifndef AT_ADI_BLKSZ
76#define AT_ADI_BLKSZ 34
77#endif
78#ifndef AT_ADI_NBITS
79#define AT_ADI_NBITS 35
80#endif
81#ifndef AT_ADI_UEONADI
82#define AT_ADI_UEONADI 36
83#endif
84
85/* ADI command list. */
86static struct cmd_list_element *sparc64adilist = NULL;
87
88/* ADI stat settings. */
89typedef struct
90{
91 /* The ADI block size. */
92 unsigned long blksize;
93
94 /* Number of bits used for an ADI version tag which can be
654670a4
WP
95 used together with the shift value for an ADI version tag
96 to encode or extract the ADI version value in a pointer. */
58afddc6
WP
97 unsigned long nbits;
98
99 /* The maximum ADI version tag value supported. */
100 int max_version;
101
102 /* ADI version tag file. */
103 int tag_fd = 0;
104
105 /* ADI availability check has been done. */
106 bool checked_avail = false;
107
108 /* ADI is available. */
109 bool is_avail = false;
110
111} adi_stat_t;
112
113/* Per-process ADI stat info. */
114
115typedef struct sparc64_adi_info
116{
117 sparc64_adi_info (pid_t pid_)
118 : pid (pid_)
119 {}
120
121 /* The process identifier. */
122 pid_t pid;
123
124 /* The ADI stat. */
125 adi_stat_t stat = {};
126
127} sparc64_adi_info;
128
129static std::forward_list<sparc64_adi_info> adi_proc_list;
130
131
132/* Get ADI info for process PID, creating one if it doesn't exist. */
133
134static sparc64_adi_info *
135get_adi_info_proc (pid_t pid)
136{
137 auto found = std::find_if (adi_proc_list.begin (), adi_proc_list.end (),
138 [&pid] (const sparc64_adi_info &info)
139 {
140 return info.pid == pid;
141 });
142
143 if (found == adi_proc_list.end ())
144 {
145 adi_proc_list.emplace_front (pid);
146 return &adi_proc_list.front ();
147 }
148 else
149 {
150 return &(*found);
151 }
152}
153
154static adi_stat_t
155get_adi_info (pid_t pid)
156{
157 sparc64_adi_info *proc;
158
159 proc = get_adi_info_proc (pid);
160 return proc->stat;
161}
162
163/* Is called when GDB is no longer debugging process PID. It
164 deletes data structure that keeps track of the ADI stat. */
165
166void
167sparc64_forget_process (pid_t pid)
168{
169 int target_errno;
170
171 for (auto pit = adi_proc_list.before_begin (),
172 it = std::next (pit);
173 it != adi_proc_list.end ();
174 )
175 {
176 if ((*it).pid == pid)
177 {
178 if ((*it).stat.tag_fd > 0)
179 target_fileio_close ((*it).stat.tag_fd, &target_errno);
180 adi_proc_list.erase_after (pit);
181 break;
182 }
183 else
184 pit = it++;
185 }
186
187}
188
189static void
981a3fb3 190info_adi_command (const char *args, int from_tty)
58afddc6
WP
191{
192 printf_unfiltered ("\"adi\" must be followed by \"examine\" "
193 "or \"assign\".\n");
194 help_list (sparc64adilist, "adi ", all_commands, gdb_stdout);
195}
196
197/* Read attributes of a maps entry in /proc/[pid]/adi/maps. */
198
199static void
200read_maps_entry (const char *line,
201 ULONGEST *addr, ULONGEST *endaddr)
202{
203 const char *p = line;
204
205 *addr = strtoulst (p, &p, 16);
206 if (*p == '-')
207 p++;
208
209 *endaddr = strtoulst (p, &p, 16);
210}
211
212/* Check if ADI is available. */
213
214static bool
215adi_available (void)
216{
e99b03dc 217 pid_t pid = inferior_ptid.pid ();
58afddc6 218 sparc64_adi_info *proc = get_adi_info_proc (pid);
654670a4 219 CORE_ADDR value;
58afddc6
WP
220
221 if (proc->stat.checked_avail)
222 return proc->stat.is_avail;
223
224 proc->stat.checked_avail = true;
8b88a78e 225 if (target_auxv_search (current_top_target (), AT_ADI_BLKSZ, &value) <= 0)
58afddc6 226 return false;
654670a4 227 proc->stat.blksize = value;
8b88a78e 228 target_auxv_search (current_top_target (), AT_ADI_NBITS, &value);
654670a4 229 proc->stat.nbits = value;
58afddc6
WP
230 proc->stat.max_version = (1 << proc->stat.nbits) - 2;
231 proc->stat.is_avail = true;
232
233 return proc->stat.is_avail;
234}
235
236/* Normalize a versioned address - a VA with ADI bits (63-60) set. */
237
238static CORE_ADDR
239adi_normalize_address (CORE_ADDR addr)
240{
e99b03dc 241 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
58afddc6
WP
242
243 if (ast.nbits)
654670a4
WP
244 {
245 /* Clear upper bits. */
246 addr &= ((uint64_t) -1) >> ast.nbits;
247
248 /* Sign extend. */
249 CORE_ADDR signbit = (uint64_t) 1 << (64 - ast.nbits - 1);
250 return (addr ^ signbit) - signbit;
251 }
58afddc6
WP
252 return addr;
253}
254
255/* Align a normalized address - a VA with bit 59 sign extended into
256 ADI bits. */
257
258static CORE_ADDR
259adi_align_address (CORE_ADDR naddr)
260{
e99b03dc 261 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
58afddc6
WP
262
263 return (naddr - (naddr % ast.blksize)) / ast.blksize;
264}
265
266/* Convert a byte count to count at a ratio of 1:adi_blksz. */
267
268static int
269adi_convert_byte_count (CORE_ADDR naddr, int nbytes, CORE_ADDR locl)
270{
e99b03dc 271 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
58afddc6
WP
272
273 return ((naddr + nbytes + ast.blksize - 1) / ast.blksize) - locl;
274}
275
276/* The /proc/[pid]/adi/tags file, which allows gdb to get/set ADI
277 version in a target process, maps linearly to the address space
278 of the target process at a ratio of 1:adi_blksz.
279
280 A read (or write) at offset K in the file returns (or modifies)
281 the ADI version tag stored in the cacheline containing address
282 K * adi_blksz, encoded as 1 version tag per byte. The allowed
283 version tag values are between 0 and adi_stat.max_version. */
284
285static int
286adi_tag_fd (void)
287{
e99b03dc 288 pid_t pid = inferior_ptid.pid ();
58afddc6
WP
289 sparc64_adi_info *proc = get_adi_info_proc (pid);
290
291 if (proc->stat.tag_fd != 0)
292 return proc->stat.tag_fd;
293
294 char cl_name[MAX_PROC_NAME_SIZE];
39b06c20 295 snprintf (cl_name, sizeof(cl_name), "/proc/%ld/adi/tags", (long) pid);
58afddc6
WP
296 int target_errno;
297 proc->stat.tag_fd = target_fileio_open (NULL, cl_name, O_RDWR|O_EXCL,
298 0, &target_errno);
299 return proc->stat.tag_fd;
300}
301
302/* Check if an address set is ADI enabled, using /proc/[pid]/adi/maps
303 which was exported by the kernel and contains the currently ADI
304 mapped memory regions and their access permissions. */
305
306static bool
307adi_is_addr_mapped (CORE_ADDR vaddr, size_t cnt)
308{
309 char filename[MAX_PROC_NAME_SIZE];
310 size_t i = 0;
311
e99b03dc 312 pid_t pid = inferior_ptid.pid ();
39b06c20 313 snprintf (filename, sizeof filename, "/proc/%ld/adi/maps", (long) pid);
87028b87
TT
314 gdb::unique_xmalloc_ptr<char> data
315 = target_fileio_read_stralloc (NULL, filename);
58afddc6
WP
316 if (data)
317 {
58afddc6
WP
318 adi_stat_t adi_stat = get_adi_info (pid);
319 char *line;
87028b87 320 for (line = strtok (data.get (), "\n"); line; line = strtok (NULL, "\n"))
58afddc6
WP
321 {
322 ULONGEST addr, endaddr;
323
324 read_maps_entry (line, &addr, &endaddr);
325
326 while (((vaddr + i) * adi_stat.blksize) >= addr
327 && ((vaddr + i) * adi_stat.blksize) < endaddr)
328 {
329 if (++i == cnt)
87028b87 330 return true;
58afddc6
WP
331 }
332 }
58afddc6
WP
333 }
334 else
335 warning (_("unable to open /proc file '%s'"), filename);
336
337 return false;
338}
339
340/* Read ADI version tag value for memory locations starting at "VADDR"
341 for "SIZE" number of bytes. */
342
343static int
7f6743fd 344adi_read_versions (CORE_ADDR vaddr, size_t size, gdb_byte *tags)
58afddc6
WP
345{
346 int fd = adi_tag_fd ();
347 if (fd == -1)
348 return -1;
349
350 if (!adi_is_addr_mapped (vaddr, size))
351 {
e99b03dc 352 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
654670a4
WP
353 error(_("Address at %s is not in ADI maps"),
354 paddress (target_gdbarch (), vaddr * ast.blksize));
58afddc6
WP
355 }
356
357 int target_errno;
358 return target_fileio_pread (fd, tags, size, vaddr, &target_errno);
359}
360
361/* Write ADI version tag for memory locations starting at "VADDR" for
362 "SIZE" number of bytes to "TAGS". */
363
364static int
365adi_write_versions (CORE_ADDR vaddr, size_t size, unsigned char *tags)
366{
367 int fd = adi_tag_fd ();
368 if (fd == -1)
369 return -1;
370
371 if (!adi_is_addr_mapped (vaddr, size))
372 {
e99b03dc 373 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
654670a4
WP
374 error(_("Address at %s is not in ADI maps"),
375 paddress (target_gdbarch (), vaddr * ast.blksize));
58afddc6
WP
376 }
377
378 int target_errno;
379 return target_fileio_pwrite (fd, tags, size, vaddr, &target_errno);
380}
381
382/* Print ADI version tag value in "TAGS" for memory locations starting
383 at "VADDR" with number of "CNT". */
384
385static void
7f6743fd 386adi_print_versions (CORE_ADDR vaddr, size_t cnt, gdb_byte *tags)
58afddc6
WP
387{
388 int v_idx = 0;
389 const int maxelts = 8; /* # of elements per line */
390
e99b03dc 391 adi_stat_t adi_stat = get_adi_info (inferior_ptid.pid ());
58afddc6
WP
392
393 while (cnt > 0)
394 {
395 QUIT;
654670a4
WP
396 printf_filtered ("%s:\t",
397 paddress (target_gdbarch (), vaddr * adi_stat.blksize));
58afddc6
WP
398 for (int i = maxelts; i > 0 && cnt > 0; i--, cnt--)
399 {
400 if (tags[v_idx] == 0xff) /* no version tag */
401 printf_filtered ("-");
402 else
403 printf_filtered ("%1X", tags[v_idx]);
404 if (cnt > 1)
405 printf_filtered (" ");
406 ++v_idx;
407 }
408 printf_filtered ("\n");
58afddc6
WP
409 vaddr += maxelts;
410 }
411}
412
413static void
414do_examine (CORE_ADDR start, int bcnt)
415{
416 CORE_ADDR vaddr = adi_normalize_address (start);
58afddc6
WP
417
418 CORE_ADDR vstart = adi_align_address (vaddr);
419 int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
7f6743fd
TT
420 gdb::def_vector<gdb_byte> buf (cnt);
421 int read_cnt = adi_read_versions (vstart, cnt, buf.data ());
58afddc6
WP
422 if (read_cnt == -1)
423 error (_("No ADI information"));
424 else if (read_cnt < cnt)
654670a4 425 error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
58afddc6 426
7f6743fd 427 adi_print_versions (vstart, cnt, buf.data ());
58afddc6
WP
428}
429
430static void
431do_assign (CORE_ADDR start, size_t bcnt, int version)
432{
433 CORE_ADDR vaddr = adi_normalize_address (start);
434
435 CORE_ADDR vstart = adi_align_address (vaddr);
436 int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
437 std::vector<unsigned char> buf (cnt, version);
438 int set_cnt = adi_write_versions (vstart, cnt, buf.data ());
439
440 if (set_cnt == -1)
441 error (_("No ADI information"));
442 else if (set_cnt < cnt)
654670a4 443 error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
58afddc6
WP
444
445}
446
447/* ADI examine version tag command.
448
449 Command syntax:
450
65e65158 451 adi (examine|x)[/COUNT] [ADDR] */
58afddc6
WP
452
453static void
5fed81ff 454adi_examine_command (const char *args, int from_tty)
58afddc6
WP
455{
456 /* make sure program is active and adi is available */
457 if (!target_has_execution)
458 error (_("ADI command requires a live process/thread"));
459
460 if (!adi_available ())
461 error (_("No ADI information"));
462
58afddc6 463 int cnt = 1;
5fed81ff 464 const char *p = args;
58afddc6
WP
465 if (p && *p == '/')
466 {
467 p++;
468 cnt = get_number (&p);
469 }
470
471 CORE_ADDR next_address = 0;
472 if (p != 0 && *p != 0)
473 next_address = parse_and_eval_address (p);
474 if (!cnt || !next_address)
65e65158 475 error (_("Usage: adi examine|x[/COUNT] [ADDR]"));
58afddc6
WP
476
477 do_examine (next_address, cnt);
478}
479
480/* ADI assign version tag command.
481
482 Command syntax:
483
65e65158 484 adi (assign|a)[/COUNT] ADDR = VERSION */
58afddc6
WP
485
486static void
5fed81ff 487adi_assign_command (const char *args, int from_tty)
58afddc6 488{
65e65158
TT
489 static const char *adi_usage
490 = N_("Usage: adi assign|a[/COUNT] ADDR = VERSION");
491
58afddc6
WP
492 /* make sure program is active and adi is available */
493 if (!target_has_execution)
494 error (_("ADI command requires a live process/thread"));
495
496 if (!adi_available ())
497 error (_("No ADI information"));
498
5fed81ff 499 const char *exp = args;
58afddc6 500 if (exp == 0)
65e65158 501 error_no_arg (_(adi_usage));
58afddc6
WP
502
503 char *q = (char *) strchr (exp, '=');
504 if (q)
505 *q++ = 0;
506 else
65e65158 507 error ("%s", _(adi_usage));
58afddc6
WP
508
509 size_t cnt = 1;
5fed81ff 510 const char *p = args;
58afddc6
WP
511 if (exp && *exp == '/')
512 {
513 p = exp + 1;
514 cnt = get_number (&p);
515 }
516
517 CORE_ADDR next_address = 0;
518 if (p != 0 && *p != 0)
519 next_address = parse_and_eval_address (p);
520 else
65e65158 521 error ("%s", _(adi_usage));
58afddc6
WP
522
523 int version = 0;
524 if (q != NULL) /* parse version tag */
525 {
e99b03dc 526 adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
58afddc6
WP
527 version = parse_and_eval_long (q);
528 if (version < 0 || version > ast.max_version)
529 error (_("Invalid ADI version tag %d"), version);
530 }
531
532 do_assign (next_address, cnt, version);
533}
534
535void
536_initialize_sparc64_adi_tdep (void)
537{
538
539 add_prefix_cmd ("adi", class_support, info_adi_command,
540 _("ADI version related commands."),
541 &sparc64adilist, "adi ", 0, &cmdlist);
542 add_cmd ("examine", class_support, adi_examine_command,
543 _("Examine ADI versions."), &sparc64adilist);
544 add_alias_cmd ("x", "examine", no_class, 1, &sparc64adilist);
545 add_cmd ("assign", class_support, adi_assign_command,
546 _("Assign ADI versions."), &sparc64adilist);
547
548}
549\f
550
8b39fe56
MK
551/* The functions on this page are intended to be used to classify
552 function arguments. */
553
8b39fe56
MK
554/* Check whether TYPE is "Integral or Pointer". */
555
556static int
557sparc64_integral_or_pointer_p (const struct type *type)
558{
559 switch (TYPE_CODE (type))
560 {
561 case TYPE_CODE_INT:
562 case TYPE_CODE_BOOL:
563 case TYPE_CODE_CHAR:
564 case TYPE_CODE_ENUM:
565 case TYPE_CODE_RANGE:
566 {
567 int len = TYPE_LENGTH (type);
568 gdb_assert (len == 1 || len == 2 || len == 4 || len == 8);
569 }
570 return 1;
571 case TYPE_CODE_PTR:
572 case TYPE_CODE_REF:
aa006118 573 case TYPE_CODE_RVALUE_REF:
8b39fe56
MK
574 {
575 int len = TYPE_LENGTH (type);
576 gdb_assert (len == 8);
577 }
578 return 1;
579 default:
580 break;
581 }
582
583 return 0;
584}
585
586/* Check whether TYPE is "Floating". */
587
588static int
589sparc64_floating_p (const struct type *type)
590{
591 switch (TYPE_CODE (type))
592 {
593 case TYPE_CODE_FLT:
594 {
595 int len = TYPE_LENGTH (type);
596 gdb_assert (len == 4 || len == 8 || len == 16);
597 }
598 return 1;
599 default:
600 break;
601 }
602
603 return 0;
604}
605
fe10a582
DM
606/* Check whether TYPE is "Complex Floating". */
607
608static int
609sparc64_complex_floating_p (const struct type *type)
610{
611 switch (TYPE_CODE (type))
612 {
613 case TYPE_CODE_COMPLEX:
614 {
615 int len = TYPE_LENGTH (type);
616 gdb_assert (len == 8 || len == 16 || len == 32);
617 }
618 return 1;
619 default:
620 break;
621 }
622
623 return 0;
624}
625
0497f5b0
JB
626/* Check whether TYPE is "Structure or Union".
627
628 In terms of Ada subprogram calls, arrays are treated the same as
629 struct and union types. So this function also returns non-zero
630 for array types. */
8b39fe56
MK
631
632static int
633sparc64_structure_or_union_p (const struct type *type)
634{
635 switch (TYPE_CODE (type))
636 {
637 case TYPE_CODE_STRUCT:
638 case TYPE_CODE_UNION:
0497f5b0 639 case TYPE_CODE_ARRAY:
8b39fe56
MK
640 return 1;
641 default:
642 break;
643 }
644
645 return 0;
646}
fd936806
MK
647\f
648
209bd28e 649/* Construct types for ISA-specific registers. */
fd936806 650
209bd28e
UW
651static struct type *
652sparc64_pstate_type (struct gdbarch *gdbarch)
653{
654 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
fd936806 655
209bd28e
UW
656 if (!tdep->sparc64_pstate_type)
657 {
658 struct type *type;
659
77b7c781 660 type = arch_flags_type (gdbarch, "builtin_type_sparc64_pstate", 64);
209bd28e
UW
661 append_flags_type_flag (type, 0, "AG");
662 append_flags_type_flag (type, 1, "IE");
663 append_flags_type_flag (type, 2, "PRIV");
664 append_flags_type_flag (type, 3, "AM");
665 append_flags_type_flag (type, 4, "PEF");
666 append_flags_type_flag (type, 5, "RED");
667 append_flags_type_flag (type, 8, "TLE");
668 append_flags_type_flag (type, 9, "CLE");
669 append_flags_type_flag (type, 10, "PID0");
670 append_flags_type_flag (type, 11, "PID1");
671
672 tdep->sparc64_pstate_type = type;
673 }
fd936806 674
209bd28e
UW
675 return tdep->sparc64_pstate_type;
676}
fd936806 677
5badf10a
IR
678static struct type *
679sparc64_ccr_type (struct gdbarch *gdbarch)
680{
681 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
682
683 if (tdep->sparc64_ccr_type == NULL)
684 {
685 struct type *type;
686
77b7c781 687 type = arch_flags_type (gdbarch, "builtin_type_sparc64_ccr", 64);
5badf10a
IR
688 append_flags_type_flag (type, 0, "icc.c");
689 append_flags_type_flag (type, 1, "icc.v");
690 append_flags_type_flag (type, 2, "icc.z");
691 append_flags_type_flag (type, 3, "icc.n");
692 append_flags_type_flag (type, 4, "xcc.c");
693 append_flags_type_flag (type, 5, "xcc.v");
694 append_flags_type_flag (type, 6, "xcc.z");
695 append_flags_type_flag (type, 7, "xcc.n");
696
697 tdep->sparc64_ccr_type = type;
698 }
699
700 return tdep->sparc64_ccr_type;
701}
702
209bd28e
UW
703static struct type *
704sparc64_fsr_type (struct gdbarch *gdbarch)
705{
706 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
707
708 if (!tdep->sparc64_fsr_type)
709 {
710 struct type *type;
711
77b7c781 712 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fsr", 64);
5badf10a
IR
713 append_flags_type_flag (type, 0, "NXC");
714 append_flags_type_flag (type, 1, "DZC");
715 append_flags_type_flag (type, 2, "UFC");
716 append_flags_type_flag (type, 3, "OFC");
717 append_flags_type_flag (type, 4, "NVC");
718 append_flags_type_flag (type, 5, "NXA");
719 append_flags_type_flag (type, 6, "DZA");
720 append_flags_type_flag (type, 7, "UFA");
721 append_flags_type_flag (type, 8, "OFA");
722 append_flags_type_flag (type, 9, "NVA");
209bd28e
UW
723 append_flags_type_flag (type, 22, "NS");
724 append_flags_type_flag (type, 23, "NXM");
725 append_flags_type_flag (type, 24, "DZM");
726 append_flags_type_flag (type, 25, "UFM");
727 append_flags_type_flag (type, 26, "OFM");
728 append_flags_type_flag (type, 27, "NVM");
729
730 tdep->sparc64_fsr_type = type;
731 }
732
733 return tdep->sparc64_fsr_type;
734}
735
736static struct type *
737sparc64_fprs_type (struct gdbarch *gdbarch)
fd936806 738{
209bd28e
UW
739 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
740
741 if (!tdep->sparc64_fprs_type)
742 {
743 struct type *type;
744
77b7c781 745 type = arch_flags_type (gdbarch, "builtin_type_sparc64_fprs", 64);
209bd28e
UW
746 append_flags_type_flag (type, 0, "DL");
747 append_flags_type_flag (type, 1, "DU");
748 append_flags_type_flag (type, 2, "FEF");
749
750 tdep->sparc64_fprs_type = type;
751 }
752
753 return tdep->sparc64_fprs_type;
fd936806 754}
8b39fe56 755
209bd28e 756
8b39fe56 757/* Register information. */
7a36499a
IR
758#define SPARC64_FPU_REGISTERS \
759 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
760 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
761 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
762 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
763 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", \
764 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62"
765#define SPARC64_CP0_REGISTERS \
766 "pc", "npc", \
767 /* FIXME: Give "state" a name until we start using register groups. */ \
768 "state", \
769 "fsr", \
770 "fprs", \
771 "y"
8b39fe56 772
3f7b46f2
IR
773static const char *sparc64_fpu_register_names[] = { SPARC64_FPU_REGISTERS };
774static const char *sparc64_cp0_register_names[] = { SPARC64_CP0_REGISTERS };
775
6707b003 776static const char *sparc64_register_names[] =
8b39fe56 777{
7a36499a
IR
778 SPARC_CORE_REGISTERS,
779 SPARC64_FPU_REGISTERS,
780 SPARC64_CP0_REGISTERS
8b39fe56
MK
781};
782
783/* Total number of registers. */
6707b003 784#define SPARC64_NUM_REGS ARRAY_SIZE (sparc64_register_names)
8b39fe56
MK
785
786/* We provide the aliases %d0..%d62 and %q0..%q60 for the floating
787 registers as "psuedo" registers. */
788
6707b003 789static const char *sparc64_pseudo_register_names[] =
8b39fe56 790{
6707b003
UW
791 "cwp", "pstate", "asi", "ccr",
792
793 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
794 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30",
795 "d32", "d34", "d36", "d38", "d40", "d42", "d44", "d46",
796 "d48", "d50", "d52", "d54", "d56", "d58", "d60", "d62",
797
798 "q0", "q4", "q8", "q12", "q16", "q20", "q24", "q28",
799 "q32", "q36", "q40", "q44", "q48", "q52", "q56", "q60",
8b39fe56
MK
800};
801
802/* Total number of pseudo registers. */
6707b003 803#define SPARC64_NUM_PSEUDO_REGS ARRAY_SIZE (sparc64_pseudo_register_names)
8b39fe56 804
7a36499a
IR
805/* Return the name of pseudo register REGNUM. */
806
807static const char *
808sparc64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
809{
810 regnum -= gdbarch_num_regs (gdbarch);
811
812 if (regnum < SPARC64_NUM_PSEUDO_REGS)
813 return sparc64_pseudo_register_names[regnum];
814
815 internal_error (__FILE__, __LINE__,
816 _("sparc64_pseudo_register_name: bad register number %d"),
817 regnum);
818}
819
8b39fe56
MK
820/* Return the name of register REGNUM. */
821
822static const char *
d93859e2 823sparc64_register_name (struct gdbarch *gdbarch, int regnum)
8b39fe56 824{
3f7b46f2
IR
825 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
826 return tdesc_register_name (gdbarch, regnum);
827
7a36499a 828 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
6707b003 829 return sparc64_register_names[regnum];
8b39fe56 830
7a36499a
IR
831 return sparc64_pseudo_register_name (gdbarch, regnum);
832}
833
834/* Return the GDB type object for the "standard" data type of data in
835 pseudo register REGNUM. */
836
837static struct type *
838sparc64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
839{
840 regnum -= gdbarch_num_regs (gdbarch);
841
842 if (regnum == SPARC64_CWP_REGNUM)
843 return builtin_type (gdbarch)->builtin_int64;
844 if (regnum == SPARC64_PSTATE_REGNUM)
845 return sparc64_pstate_type (gdbarch);
846 if (regnum == SPARC64_ASI_REGNUM)
847 return builtin_type (gdbarch)->builtin_int64;
848 if (regnum == SPARC64_CCR_REGNUM)
5badf10a 849 return sparc64_ccr_type (gdbarch);
7a36499a
IR
850 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D62_REGNUM)
851 return builtin_type (gdbarch)->builtin_double;
852 if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q60_REGNUM)
853 return builtin_type (gdbarch)->builtin_long_double;
8b39fe56 854
7a36499a
IR
855 internal_error (__FILE__, __LINE__,
856 _("sparc64_pseudo_register_type: bad register number %d"),
857 regnum);
8b39fe56
MK
858}
859
860/* Return the GDB type object for the "standard" data type of data in
c378eb4e 861 register REGNUM. */
8b39fe56
MK
862
863static struct type *
864sparc64_register_type (struct gdbarch *gdbarch, int regnum)
865{
3f7b46f2
IR
866 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
867 return tdesc_register_type (gdbarch, regnum);
868
6707b003 869 /* Raw registers. */
6707b003 870 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 871 return builtin_type (gdbarch)->builtin_data_ptr;
6707b003 872 if (regnum >= SPARC_G0_REGNUM && regnum <= SPARC_I7_REGNUM)
df4df182 873 return builtin_type (gdbarch)->builtin_int64;
6707b003 874 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 875 return builtin_type (gdbarch)->builtin_float;
6707b003 876 if (regnum >= SPARC64_F32_REGNUM && regnum <= SPARC64_F62_REGNUM)
0dfff4cb 877 return builtin_type (gdbarch)->builtin_double;
6707b003 878 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
0dfff4cb 879 return builtin_type (gdbarch)->builtin_func_ptr;
6707b003
UW
880 /* This raw register contains the contents of %cwp, %pstate, %asi
881 and %ccr as laid out in a %tstate register. */
882 if (regnum == SPARC64_STATE_REGNUM)
df4df182 883 return builtin_type (gdbarch)->builtin_int64;
6707b003 884 if (regnum == SPARC64_FSR_REGNUM)
209bd28e 885 return sparc64_fsr_type (gdbarch);
6707b003 886 if (regnum == SPARC64_FPRS_REGNUM)
209bd28e 887 return sparc64_fprs_type (gdbarch);
6707b003
UW
888 /* "Although Y is a 64-bit register, its high-order 32 bits are
889 reserved and always read as 0." */
890 if (regnum == SPARC64_Y_REGNUM)
df4df182 891 return builtin_type (gdbarch)->builtin_int64;
6707b003
UW
892
893 /* Pseudo registers. */
7a36499a
IR
894 if (regnum >= gdbarch_num_regs (gdbarch))
895 return sparc64_pseudo_register_type (gdbarch, regnum);
6707b003
UW
896
897 internal_error (__FILE__, __LINE__, _("invalid regnum"));
8b39fe56
MK
898}
899
05d1431c 900static enum register_status
8b39fe56 901sparc64_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 902 readable_regcache *regcache,
e1613aba 903 int regnum, gdb_byte *buf)
8b39fe56 904{
e17a4113 905 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
05d1431c
PA
906 enum register_status status;
907
7a36499a 908 regnum -= gdbarch_num_regs (gdbarch);
8b39fe56
MK
909
910 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
911 {
912 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
03f50fc8 913 status = regcache->raw_read (regnum, buf);
05d1431c 914 if (status == REG_VALID)
03f50fc8 915 status = regcache->raw_read (regnum + 1, buf + 4);
05d1431c 916 return status;
8b39fe56
MK
917 }
918 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
919 {
920 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
03f50fc8 921 return regcache->raw_read (regnum, buf);
8b39fe56
MK
922 }
923 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
924 {
925 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
05d1431c 926
03f50fc8 927 status = regcache->raw_read (regnum, buf);
05d1431c 928 if (status == REG_VALID)
03f50fc8 929 status = regcache->raw_read (regnum + 1, buf + 4);
05d1431c 930 if (status == REG_VALID)
03f50fc8 931 status = regcache->raw_read (regnum + 2, buf + 8);
05d1431c 932 if (status == REG_VALID)
03f50fc8 933 status = regcache->raw_read (regnum + 3, buf + 12);
05d1431c
PA
934
935 return status;
8b39fe56
MK
936 }
937 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
938 {
939 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
05d1431c 940
03f50fc8 941 status = regcache->raw_read (regnum, buf);
05d1431c 942 if (status == REG_VALID)
03f50fc8 943 status = regcache->raw_read (regnum + 1, buf + 8);
05d1431c
PA
944
945 return status;
8b39fe56
MK
946 }
947 else if (regnum == SPARC64_CWP_REGNUM
948 || regnum == SPARC64_PSTATE_REGNUM
949 || regnum == SPARC64_ASI_REGNUM
950 || regnum == SPARC64_CCR_REGNUM)
951 {
952 ULONGEST state;
953
03f50fc8 954 status = regcache->raw_read (SPARC64_STATE_REGNUM, &state);
05d1431c
PA
955 if (status != REG_VALID)
956 return status;
957
8b39fe56
MK
958 switch (regnum)
959 {
3567a8ea 960 case SPARC64_CWP_REGNUM:
8b39fe56
MK
961 state = (state >> 0) & ((1 << 5) - 1);
962 break;
3567a8ea 963 case SPARC64_PSTATE_REGNUM:
8b39fe56
MK
964 state = (state >> 8) & ((1 << 12) - 1);
965 break;
3567a8ea 966 case SPARC64_ASI_REGNUM:
8b39fe56
MK
967 state = (state >> 24) & ((1 << 8) - 1);
968 break;
3567a8ea 969 case SPARC64_CCR_REGNUM:
8b39fe56
MK
970 state = (state >> 32) & ((1 << 8) - 1);
971 break;
972 }
e17a4113 973 store_unsigned_integer (buf, 8, byte_order, state);
8b39fe56 974 }
05d1431c
PA
975
976 return REG_VALID;
8b39fe56
MK
977}
978
979static void
980sparc64_pseudo_register_write (struct gdbarch *gdbarch,
981 struct regcache *regcache,
e1613aba 982 int regnum, const gdb_byte *buf)
8b39fe56 983{
e17a4113 984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7a36499a
IR
985
986 regnum -= gdbarch_num_regs (gdbarch);
8b39fe56
MK
987
988 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
989 {
990 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
10eaee5f
SM
991 regcache->raw_write (regnum, buf);
992 regcache->raw_write (regnum + 1, buf + 4);
8b39fe56
MK
993 }
994 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
995 {
996 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
10eaee5f 997 regcache->raw_write (regnum, buf);
8b39fe56
MK
998 }
999 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
1000 {
1001 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
10eaee5f
SM
1002 regcache->raw_write (regnum, buf);
1003 regcache->raw_write (regnum + 1, buf + 4);
1004 regcache->raw_write (regnum + 2, buf + 8);
1005 regcache->raw_write (regnum + 3, buf + 12);
8b39fe56
MK
1006 }
1007 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
1008 {
1009 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
10eaee5f
SM
1010 regcache->raw_write (regnum, buf);
1011 regcache->raw_write (regnum + 1, buf + 8);
8b39fe56 1012 }
3567a8ea
MK
1013 else if (regnum == SPARC64_CWP_REGNUM
1014 || regnum == SPARC64_PSTATE_REGNUM
1015 || regnum == SPARC64_ASI_REGNUM
1016 || regnum == SPARC64_CCR_REGNUM)
1017 {
1018 ULONGEST state, bits;
1019
1020 regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
e17a4113 1021 bits = extract_unsigned_integer (buf, 8, byte_order);
3567a8ea
MK
1022 switch (regnum)
1023 {
1024 case SPARC64_CWP_REGNUM:
1025 state |= ((bits & ((1 << 5) - 1)) << 0);
1026 break;
1027 case SPARC64_PSTATE_REGNUM:
1028 state |= ((bits & ((1 << 12) - 1)) << 8);
1029 break;
1030 case SPARC64_ASI_REGNUM:
1031 state |= ((bits & ((1 << 8) - 1)) << 24);
1032 break;
1033 case SPARC64_CCR_REGNUM:
1034 state |= ((bits & ((1 << 8) - 1)) << 32);
1035 break;
1036 }
1037 regcache_raw_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
1038 }
8b39fe56 1039}
8b39fe56
MK
1040\f
1041
8b39fe56
MK
1042/* Return PC of first real instruction of the function starting at
1043 START_PC. */
1044
1045static CORE_ADDR
6093d2eb 1046sparc64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
8b39fe56
MK
1047{
1048 struct symtab_and_line sal;
1049 CORE_ADDR func_start, func_end;
386c036b 1050 struct sparc_frame_cache cache;
8b39fe56
MK
1051
1052 /* This is the preferred method, find the end of the prologue by
1053 using the debugging information. */
1054 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1055 {
1056 sal = find_pc_line (func_start, 0);
1057
1058 if (sal.end < func_end
1059 && start_pc <= sal.end)
1060 return sal.end;
1061 }
1062
be8626e0
MD
1063 return sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffULL,
1064 &cache);
8b39fe56
MK
1065}
1066
1067/* Normal frames. */
1068
386c036b 1069static struct sparc_frame_cache *
236369e7 1070sparc64_frame_cache (struct frame_info *this_frame, void **this_cache)
8b39fe56 1071{
236369e7 1072 return sparc_frame_cache (this_frame, this_cache);
8b39fe56
MK
1073}
1074
1075static void
236369e7 1076sparc64_frame_this_id (struct frame_info *this_frame, void **this_cache,
8b39fe56
MK
1077 struct frame_id *this_id)
1078{
386c036b 1079 struct sparc_frame_cache *cache =
236369e7 1080 sparc64_frame_cache (this_frame, this_cache);
8b39fe56
MK
1081
1082 /* This marks the outermost frame. */
1083 if (cache->base == 0)
1084 return;
1085
1086 (*this_id) = frame_id_build (cache->base, cache->pc);
1087}
1088
236369e7
JB
1089static struct value *
1090sparc64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1091 int regnum)
8b39fe56 1092{
e17a4113 1093 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1094 struct sparc_frame_cache *cache =
236369e7 1095 sparc64_frame_cache (this_frame, this_cache);
8b39fe56
MK
1096
1097 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
1098 {
236369e7 1099 CORE_ADDR pc = (regnum == SPARC64_NPC_REGNUM) ? 4 : 0;
8b39fe56 1100
369c397b
JB
1101 regnum =
1102 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1103 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1104 return frame_unwind_got_constant (this_frame, regnum, pc);
8b39fe56
MK
1105 }
1106
f700a364
MK
1107 /* Handle StackGhost. */
1108 {
e17a4113 1109 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
f700a364
MK
1110
1111 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1112 {
236369e7
JB
1113 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
1114 ULONGEST i7;
1115
1116 /* Read the value in from memory. */
1117 i7 = get_frame_memory_unsigned (this_frame, addr, 8);
1118 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
f700a364
MK
1119 }
1120 }
1121
369c397b 1122 /* The previous frame's `local' and `in' registers may have been saved
8b39fe56 1123 in the register save area. */
369c397b
JB
1124 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1125 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
8b39fe56 1126 {
236369e7 1127 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
8b39fe56 1128
236369e7 1129 return frame_unwind_got_memory (this_frame, regnum, addr);
8b39fe56
MK
1130 }
1131
369c397b
JB
1132 /* The previous frame's `out' registers may be accessible as the current
1133 frame's `in' registers. */
1134 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1135 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
8b39fe56
MK
1136 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1137
236369e7 1138 return frame_unwind_got_register (this_frame, regnum, regnum);
8b39fe56
MK
1139}
1140
1141static const struct frame_unwind sparc64_frame_unwind =
1142{
1143 NORMAL_FRAME,
8fbca658 1144 default_frame_unwind_stop_reason,
8b39fe56 1145 sparc64_frame_this_id,
236369e7
JB
1146 sparc64_frame_prev_register,
1147 NULL,
1148 default_frame_sniffer
8b39fe56 1149};
8b39fe56
MK
1150\f
1151
1152static CORE_ADDR
236369e7 1153sparc64_frame_base_address (struct frame_info *this_frame, void **this_cache)
8b39fe56 1154{
386c036b 1155 struct sparc_frame_cache *cache =
236369e7 1156 sparc64_frame_cache (this_frame, this_cache);
8b39fe56 1157
5b2d44a0 1158 return cache->base;
8b39fe56
MK
1159}
1160
1161static const struct frame_base sparc64_frame_base =
1162{
1163 &sparc64_frame_unwind,
1164 sparc64_frame_base_address,
1165 sparc64_frame_base_address,
1166 sparc64_frame_base_address
1167};
8b39fe56
MK
1168\f
1169/* Check whether TYPE must be 16-byte aligned. */
1170
1171static int
1172sparc64_16_byte_align_p (struct type *type)
1173{
1933fd8e
VM
1174 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1175 {
1176 struct type *t = check_typedef (TYPE_TARGET_TYPE (type));
1177
1178 if (sparc64_floating_p (t))
1179 return 1;
1180 }
8b39fe56
MK
1181 if (sparc64_floating_p (type) && TYPE_LENGTH (type) == 16)
1182 return 1;
1183
1184 if (sparc64_structure_or_union_p (type))
1185 {
1186 int i;
1187
1188 for (i = 0; i < TYPE_NFIELDS (type); i++)
60af1db2
MK
1189 {
1190 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1191
1192 if (sparc64_16_byte_align_p (subtype))
1193 return 1;
1194 }
8b39fe56
MK
1195 }
1196
1197 return 0;
1198}
1199
1200/* Store floating fields of element ELEMENT of an "parameter array"
1201 that has type TYPE and is stored at BITPOS in VALBUF in the
30baf67b 1202 appropriate registers of REGCACHE. This function can be called
8b39fe56
MK
1203 recursively and therefore handles floating types in addition to
1204 structures. */
1205
1206static void
1207sparc64_store_floating_fields (struct regcache *regcache, struct type *type,
e1613aba 1208 const gdb_byte *valbuf, int element, int bitpos)
8b39fe56 1209{
ac7936df 1210 struct gdbarch *gdbarch = regcache->arch ();
fe10a582
DM
1211 int len = TYPE_LENGTH (type);
1212
8b39fe56
MK
1213 gdb_assert (element < 16);
1214
1933fd8e
VM
1215 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1216 {
1217 gdb_byte buf[8];
1218 int regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
1219
1220 valbuf += bitpos / 8;
1221 if (len < 8)
1222 {
1223 memset (buf, 0, 8 - len);
1224 memcpy (buf + 8 - len, valbuf, len);
1225 valbuf = buf;
1226 len = 8;
1227 }
1228 for (int n = 0; n < (len + 3) / 4; n++)
b66f5587 1229 regcache->cooked_write (regnum + n, valbuf + n * 4);
1933fd8e
VM
1230 }
1231 else if (sparc64_floating_p (type)
fe10a582 1232 || (sparc64_complex_floating_p (type) && len <= 16))
8b39fe56 1233 {
8b39fe56
MK
1234 int regnum;
1235
1236 if (len == 16)
1237 {
1238 gdb_assert (bitpos == 0);
1239 gdb_assert ((element % 2) == 0);
1240
7a36499a 1241 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM + element / 2;
b66f5587 1242 regcache->cooked_write (regnum, valbuf);
8b39fe56
MK
1243 }
1244 else if (len == 8)
1245 {
1246 gdb_assert (bitpos == 0 || bitpos == 64);
1247
7a36499a
IR
1248 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1249 + element + bitpos / 64;
b66f5587 1250 regcache->cooked_write (regnum, valbuf + (bitpos / 8));
8b39fe56
MK
1251 }
1252 else
1253 {
1254 gdb_assert (len == 4);
1255 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 128);
1256
1257 regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
b66f5587 1258 regcache->cooked_write (regnum, valbuf + (bitpos / 8));
8b39fe56
MK
1259 }
1260 }
1261 else if (sparc64_structure_or_union_p (type))
1262 {
1263 int i;
1264
1265 for (i = 0; i < TYPE_NFIELDS (type); i++)
60af1db2
MK
1266 {
1267 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1268 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
1269
1270 sparc64_store_floating_fields (regcache, subtype, valbuf,
1271 element, subpos);
1272 }
200cc553
MK
1273
1274 /* GCC has an interesting bug. If TYPE is a structure that has
1275 a single `float' member, GCC doesn't treat it as a structure
1276 at all, but rather as an ordinary `float' argument. This
1277 argument will be stored in %f1, as required by the psABI.
1278 However, as a member of a structure the psABI requires it to
5154b0cd
MK
1279 be stored in %f0. This bug is present in GCC 3.3.2, but
1280 probably in older releases to. To appease GCC, if a
1281 structure has only a single `float' member, we store its
1282 value in %f1 too (we already have stored in %f0). */
200cc553
MK
1283 if (TYPE_NFIELDS (type) == 1)
1284 {
1285 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, 0));
1286
1287 if (sparc64_floating_p (subtype) && TYPE_LENGTH (subtype) == 4)
b66f5587 1288 regcache->cooked_write (SPARC_F1_REGNUM, valbuf);
200cc553 1289 }
8b39fe56
MK
1290 }
1291}
1292
1293/* Fetch floating fields from a variable of type TYPE from the
1294 appropriate registers for BITPOS in REGCACHE and store it at BITPOS
1295 in VALBUF. This function can be called recursively and therefore
1296 handles floating types in addition to structures. */
1297
1298static void
1299sparc64_extract_floating_fields (struct regcache *regcache, struct type *type,
e1613aba 1300 gdb_byte *valbuf, int bitpos)
8b39fe56 1301{
ac7936df 1302 struct gdbarch *gdbarch = regcache->arch ();
7a36499a 1303
1933fd8e
VM
1304 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1305 {
1306 int len = TYPE_LENGTH (type);
1307 int regnum = SPARC_F0_REGNUM + bitpos / 32;
1308
1309 valbuf += bitpos / 8;
1310 if (len < 4)
1311 {
1312 gdb_byte buf[4];
dca08e1f 1313 regcache->cooked_read (regnum, buf);
1933fd8e
VM
1314 memcpy (valbuf, buf + 4 - len, len);
1315 }
1316 else
1317 for (int i = 0; i < (len + 3) / 4; i++)
dca08e1f 1318 regcache->cooked_read (regnum + i, valbuf + i * 4);
1933fd8e
VM
1319 }
1320 else if (sparc64_floating_p (type))
8b39fe56
MK
1321 {
1322 int len = TYPE_LENGTH (type);
1323 int regnum;
1324
1325 if (len == 16)
1326 {
1327 gdb_assert (bitpos == 0 || bitpos == 128);
1328
7a36499a
IR
1329 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
1330 + bitpos / 128;
dca08e1f 1331 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
8b39fe56
MK
1332 }
1333 else if (len == 8)
1334 {
1335 gdb_assert (bitpos % 64 == 0 && bitpos >= 0 && bitpos < 256);
1336
7a36499a 1337 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + bitpos / 64;
dca08e1f 1338 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
8b39fe56
MK
1339 }
1340 else
1341 {
1342 gdb_assert (len == 4);
1343 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 256);
1344
1345 regnum = SPARC_F0_REGNUM + bitpos / 32;
dca08e1f 1346 regcache->cooked_read (regnum, valbuf + (bitpos / 8));
8b39fe56
MK
1347 }
1348 }
1349 else if (sparc64_structure_or_union_p (type))
1350 {
1351 int i;
1352
1353 for (i = 0; i < TYPE_NFIELDS (type); i++)
60af1db2
MK
1354 {
1355 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
1356 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
1357
1358 sparc64_extract_floating_fields (regcache, subtype, valbuf, subpos);
1359 }
8b39fe56
MK
1360 }
1361}
1362
1363/* Store the NARGS arguments ARGS and STRUCT_ADDR (if STRUCT_RETURN is
1364 non-zero) in REGCACHE and on the stack (starting from address SP). */
1365
1366static CORE_ADDR
1367sparc64_store_arguments (struct regcache *regcache, int nargs,
1368 struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1369 function_call_return_method return_method,
1370 CORE_ADDR struct_addr)
8b39fe56 1371{
ac7936df 1372 struct gdbarch *gdbarch = regcache->arch ();
8b39fe56
MK
1373 /* Number of extended words in the "parameter array". */
1374 int num_elements = 0;
1375 int element = 0;
1376 int i;
1377
1378 /* Take BIAS into account. */
1379 sp += BIAS;
1380
1381 /* First we calculate the number of extended words in the "parameter
1382 array". While doing so we also convert some of the arguments. */
1383
cf84fa6b 1384 if (return_method == return_method_struct)
8b39fe56
MK
1385 num_elements++;
1386
1387 for (i = 0; i < nargs; i++)
1388 {
4991999e 1389 struct type *type = value_type (args[i]);
8b39fe56
MK
1390 int len = TYPE_LENGTH (type);
1391
fb57d452
MK
1392 if (sparc64_structure_or_union_p (type)
1393 || (sparc64_complex_floating_p (type) && len == 32))
8b39fe56
MK
1394 {
1395 /* Structure or Union arguments. */
1396 if (len <= 16)
1397 {
1398 if (num_elements % 2 && sparc64_16_byte_align_p (type))
1399 num_elements++;
1400 num_elements += ((len + 7) / 8);
1401 }
1402 else
1403 {
1404 /* The psABI says that "Structures or unions larger than
1405 sixteen bytes are copied by the caller and passed
1406 indirectly; the caller will pass the address of a
1407 correctly aligned structure value. This sixty-four
1408 bit address will occupy one word in the parameter
1409 array, and may be promoted to an %o register like any
1410 other pointer value." Allocate memory for these
1411 values on the stack. */
1412 sp -= len;
1413
1414 /* Use 16-byte alignment for these values. That's
1415 always correct, and wasting a few bytes shouldn't be
1416 a problem. */
1417 sp &= ~0xf;
1418
0fd88904 1419 write_memory (sp, value_contents (args[i]), len);
8b39fe56
MK
1420 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
1421 num_elements++;
1422 }
1423 }
cdc7b32f 1424 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
8b39fe56
MK
1425 {
1426 /* Floating arguments. */
8b39fe56
MK
1427 if (len == 16)
1428 {
1429 /* The psABI says that "Each quad-precision parameter
1430 value will be assigned to two extended words in the
1431 parameter array. */
1432 num_elements += 2;
1433
1434 /* The psABI says that "Long doubles must be
1435 quad-aligned, and thus a hole might be introduced
1436 into the parameter array to force alignment." Skip
1437 an element if necessary. */
49caec94 1438 if ((num_elements % 2) && sparc64_16_byte_align_p (type))
8b39fe56
MK
1439 num_elements++;
1440 }
1441 else
1442 num_elements++;
1443 }
1444 else
1445 {
1446 /* Integral and pointer arguments. */
1447 gdb_assert (sparc64_integral_or_pointer_p (type));
1448
1449 /* The psABI says that "Each argument value of integral type
1450 smaller than an extended word will be widened by the
1451 caller to an extended word according to the signed-ness
1452 of the argument type." */
1453 if (len < 8)
df4df182
UW
1454 args[i] = value_cast (builtin_type (gdbarch)->builtin_int64,
1455 args[i]);
8b39fe56
MK
1456 num_elements++;
1457 }
1458 }
1459
1460 /* Allocate the "parameter array". */
1461 sp -= num_elements * 8;
1462
1463 /* The psABI says that "Every stack frame must be 16-byte aligned." */
1464 sp &= ~0xf;
1465
85102364 1466 /* Now we store the arguments in to the "parameter array". Some
8b39fe56
MK
1467 Integer or Pointer arguments and Structure or Union arguments
1468 will be passed in %o registers. Some Floating arguments and
1469 floating members of structures are passed in floating-point
1470 registers. However, for functions with variable arguments,
1471 floating arguments are stored in an %0 register, and for
1472 functions without a prototype floating arguments are stored in
1473 both a floating-point and an %o registers, or a floating-point
1474 register and memory. To simplify the logic here we always pass
1475 arguments in memory, an %o register, and a floating-point
1476 register if appropriate. This should be no problem since the
1477 contents of any unused memory or registers in the "parameter
1478 array" are undefined. */
1479
cf84fa6b 1480 if (return_method == return_method_struct)
8b39fe56
MK
1481 {
1482 regcache_cooked_write_unsigned (regcache, SPARC_O0_REGNUM, struct_addr);
1483 element++;
1484 }
1485
1486 for (i = 0; i < nargs; i++)
1487 {
e1613aba 1488 const gdb_byte *valbuf = value_contents (args[i]);
4991999e 1489 struct type *type = value_type (args[i]);
8b39fe56
MK
1490 int len = TYPE_LENGTH (type);
1491 int regnum = -1;
e1613aba 1492 gdb_byte buf[16];
8b39fe56 1493
fb57d452
MK
1494 if (sparc64_structure_or_union_p (type)
1495 || (sparc64_complex_floating_p (type) && len == 32))
8b39fe56 1496 {
49caec94 1497 /* Structure, Union or long double Complex arguments. */
8b39fe56
MK
1498 gdb_assert (len <= 16);
1499 memset (buf, 0, sizeof (buf));
cfcb22a5
SM
1500 memcpy (buf, valbuf, len);
1501 valbuf = buf;
8b39fe56
MK
1502
1503 if (element % 2 && sparc64_16_byte_align_p (type))
1504 element++;
1505
1506 if (element < 6)
1507 {
1508 regnum = SPARC_O0_REGNUM + element;
1509 if (len > 8 && element < 5)
b66f5587 1510 regcache->cooked_write (regnum + 1, valbuf + 8);
8b39fe56
MK
1511 }
1512
1513 if (element < 16)
1514 sparc64_store_floating_fields (regcache, type, valbuf, element, 0);
1515 }
49caec94
JM
1516 else if (sparc64_complex_floating_p (type))
1517 {
1518 /* Float Complex or double Complex arguments. */
1519 if (element < 16)
1520 {
7a36499a 1521 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + element;
49caec94
JM
1522
1523 if (len == 16)
1524 {
7a36499a 1525 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D30_REGNUM)
b66f5587 1526 regcache->cooked_write (regnum + 1, valbuf + 8);
7a36499a 1527 if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D10_REGNUM)
b66f5587
SM
1528 regcache->cooked_write (SPARC_O0_REGNUM + element + 1,
1529 valbuf + 8);
49caec94
JM
1530 }
1531 }
1532 }
1533 else if (sparc64_floating_p (type))
8b39fe56
MK
1534 {
1535 /* Floating arguments. */
1536 if (len == 16)
1537 {
1538 if (element % 2)
1539 element++;
1540 if (element < 16)
7a36499a
IR
1541 regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
1542 + element / 2;
8b39fe56
MK
1543 }
1544 else if (len == 8)
1545 {
1546 if (element < 16)
7a36499a
IR
1547 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1548 + element;
8b39fe56 1549 }
fe10a582 1550 else if (len == 4)
8b39fe56
MK
1551 {
1552 /* The psABI says "Each single-precision parameter value
1553 will be assigned to one extended word in the
1554 parameter array, and right-justified within that
cdc7b32f 1555 word; the left half (even float register) is
8b39fe56
MK
1556 undefined." Even though the psABI says that "the
1557 left half is undefined", set it to zero here. */
1558 memset (buf, 0, 4);
8ada74e3
MK
1559 memcpy (buf + 4, valbuf, 4);
1560 valbuf = buf;
8b39fe56
MK
1561 len = 8;
1562 if (element < 16)
7a36499a
IR
1563 regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
1564 + element;
8b39fe56
MK
1565 }
1566 }
1567 else
1568 {
1569 /* Integral and pointer arguments. */
1570 gdb_assert (len == 8);
1571 if (element < 6)
1572 regnum = SPARC_O0_REGNUM + element;
1573 }
1574
1575 if (regnum != -1)
1576 {
b66f5587 1577 regcache->cooked_write (regnum, valbuf);
8b39fe56
MK
1578
1579 /* If we're storing the value in a floating-point register,
1580 also store it in the corresponding %0 register(s). */
7a36499a
IR
1581 if (regnum >= gdbarch_num_regs (gdbarch))
1582 {
1583 regnum -= gdbarch_num_regs (gdbarch);
1584
1585 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D10_REGNUM)
1586 {
1587 gdb_assert (element < 6);
1588 regnum = SPARC_O0_REGNUM + element;
b66f5587 1589 regcache->cooked_write (regnum, valbuf);
7a36499a
IR
1590 }
1591 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q8_REGNUM)
1592 {
1593 gdb_assert (element < 5);
1594 regnum = SPARC_O0_REGNUM + element;
b66f5587
SM
1595 regcache->cooked_write (regnum, valbuf);
1596 regcache->cooked_write (regnum + 1, valbuf + 8);
7a36499a
IR
1597 }
1598 }
8b39fe56
MK
1599 }
1600
c4f2d4d7 1601 /* Always store the argument in memory. */
8b39fe56
MK
1602 write_memory (sp + element * 8, valbuf, len);
1603 element += ((len + 7) / 8);
1604 }
1605
1606 gdb_assert (element == num_elements);
1607
1608 /* Take BIAS into account. */
1609 sp -= BIAS;
1610 return sp;
1611}
1612
49a45ecf
JB
1613static CORE_ADDR
1614sparc64_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1615{
1616 /* The ABI requires 16-byte alignment. */
1617 return address & ~0xf;
1618}
1619
8b39fe56 1620static CORE_ADDR
7d9b040b 1621sparc64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8b39fe56
MK
1622 struct regcache *regcache, CORE_ADDR bp_addr,
1623 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1624 function_call_return_method return_method,
1625 CORE_ADDR struct_addr)
8b39fe56
MK
1626{
1627 /* Set return address. */
1628 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, bp_addr - 8);
1629
1630 /* Set up function arguments. */
cf84fa6b
AH
1631 sp = sparc64_store_arguments (regcache, nargs, args, sp, return_method,
1632 struct_addr);
8b39fe56
MK
1633
1634 /* Allocate the register save area. */
1635 sp -= 16 * 8;
1636
1637 /* Stack should be 16-byte aligned at this point. */
3567a8ea 1638 gdb_assert ((sp + BIAS) % 16 == 0);
8b39fe56
MK
1639
1640 /* Finally, update the stack pointer. */
1641 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
1642
5b2d44a0 1643 return sp + BIAS;
8b39fe56
MK
1644}
1645\f
1646
1647/* Extract from an array REGBUF containing the (raw) register state, a
1648 function return value of TYPE, and copy that into VALBUF. */
1649
1650static void
1651sparc64_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1652 gdb_byte *valbuf)
8b39fe56
MK
1653{
1654 int len = TYPE_LENGTH (type);
e1613aba 1655 gdb_byte buf[32];
8b39fe56
MK
1656 int i;
1657
1658 if (sparc64_structure_or_union_p (type))
1659 {
1660 /* Structure or Union return values. */
1661 gdb_assert (len <= 32);
1662
1663 for (i = 0; i < ((len + 7) / 8); i++)
dca08e1f 1664 regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
8b39fe56
MK
1665 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1666 sparc64_extract_floating_fields (regcache, type, buf, 0);
1667 memcpy (valbuf, buf, len);
1668 }
cdc7b32f 1669 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
8b39fe56
MK
1670 {
1671 /* Floating return values. */
1672 for (i = 0; i < len / 4; i++)
dca08e1f 1673 regcache->cooked_read (SPARC_F0_REGNUM + i, buf + i * 4);
8b39fe56
MK
1674 memcpy (valbuf, buf, len);
1675 }
4bd87714
JB
1676 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1677 {
1678 /* Small arrays are returned the same way as small structures. */
1679 gdb_assert (len <= 32);
1680
1681 for (i = 0; i < ((len + 7) / 8); i++)
dca08e1f 1682 regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
4bd87714
JB
1683 memcpy (valbuf, buf, len);
1684 }
8b39fe56
MK
1685 else
1686 {
1687 /* Integral and pointer return values. */
1688 gdb_assert (sparc64_integral_or_pointer_p (type));
1689
1690 /* Just stripping off any unused bytes should preserve the
1691 signed-ness just fine. */
dca08e1f 1692 regcache->cooked_read (SPARC_O0_REGNUM, buf);
8b39fe56
MK
1693 memcpy (valbuf, buf + 8 - len, len);
1694 }
1695}
1696
1697/* Write into the appropriate registers a function return value stored
1698 in VALBUF of type TYPE. */
1699
1700static void
1701sparc64_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1702 const gdb_byte *valbuf)
8b39fe56
MK
1703{
1704 int len = TYPE_LENGTH (type);
e1613aba 1705 gdb_byte buf[16];
8b39fe56
MK
1706 int i;
1707
1708 if (sparc64_structure_or_union_p (type))
1709 {
1710 /* Structure or Union return values. */
1711 gdb_assert (len <= 32);
1712
1713 /* Simplify matters by storing the complete value (including
1714 floating members) into %o0 and %o1. Floating members are
1715 also store in the appropriate floating-point registers. */
1716 memset (buf, 0, sizeof (buf));
1717 memcpy (buf, valbuf, len);
1718 for (i = 0; i < ((len + 7) / 8); i++)
b66f5587 1719 regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
8b39fe56
MK
1720 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1721 sparc64_store_floating_fields (regcache, type, buf, 0, 0);
1722 }
fe10a582 1723 else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
8b39fe56
MK
1724 {
1725 /* Floating return values. */
1726 memcpy (buf, valbuf, len);
1727 for (i = 0; i < len / 4; i++)
b66f5587 1728 regcache->cooked_write (SPARC_F0_REGNUM + i, buf + i * 4);
8b39fe56 1729 }
4bd87714
JB
1730 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1731 {
1732 /* Small arrays are returned the same way as small structures. */
1733 gdb_assert (len <= 32);
1734
1735 memset (buf, 0, sizeof (buf));
1736 memcpy (buf, valbuf, len);
1737 for (i = 0; i < ((len + 7) / 8); i++)
b66f5587 1738 regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
4bd87714 1739 }
8b39fe56
MK
1740 else
1741 {
1742 /* Integral and pointer return values. */
1743 gdb_assert (sparc64_integral_or_pointer_p (type));
1744
1745 /* ??? Do we need to do any sign-extension here? */
1746 memset (buf, 0, 8);
1747 memcpy (buf + 8 - len, valbuf, len);
b66f5587 1748 regcache->cooked_write (SPARC_O0_REGNUM, buf);
8b39fe56
MK
1749 }
1750}
1751
60af1db2 1752static enum return_value_convention
6a3a010b 1753sparc64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1754 struct type *type, struct regcache *regcache,
1755 gdb_byte *readbuf, const gdb_byte *writebuf)
8b39fe56 1756{
60af1db2
MK
1757 if (TYPE_LENGTH (type) > 32)
1758 return RETURN_VALUE_STRUCT_CONVENTION;
1759
1760 if (readbuf)
1761 sparc64_extract_return_value (type, regcache, readbuf);
1762 if (writebuf)
1763 sparc64_store_return_value (type, regcache, writebuf);
1764
1765 return RETURN_VALUE_REGISTER_CONVENTION;
8b39fe56 1766}
8b39fe56 1767\f
8b39fe56 1768
02a71ae8
MK
1769static void
1770sparc64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1771 struct dwarf2_frame_state_reg *reg,
4a4e5149 1772 struct frame_info *this_frame)
02a71ae8
MK
1773{
1774 switch (regnum)
1775 {
1776 case SPARC_G0_REGNUM:
1777 /* Since %g0 is always zero, there is no point in saving it, and
1778 people will be inclined omit it from the CFI. Make sure we
1779 don't warn about that. */
1780 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1781 break;
1782 case SPARC_SP_REGNUM:
1783 reg->how = DWARF2_FRAME_REG_CFA;
1784 break;
1785 case SPARC64_PC_REGNUM:
1786 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1787 reg->loc.offset = 8;
1788 break;
1789 case SPARC64_NPC_REGNUM:
1790 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1791 reg->loc.offset = 12;
1792 break;
1793 }
1794}
1795
58afddc6
WP
1796/* sparc64_addr_bits_remove - remove useless address bits */
1797
1798static CORE_ADDR
1799sparc64_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1800{
1801 return adi_normalize_address (addr);
1802}
1803
8b39fe56 1804void
386c036b 1805sparc64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
8b39fe56 1806{
386c036b 1807 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8b39fe56 1808
386c036b
MK
1809 tdep->pc_regnum = SPARC64_PC_REGNUM;
1810 tdep->npc_regnum = SPARC64_NPC_REGNUM;
3f7b46f2
IR
1811 tdep->fpu_register_names = sparc64_fpu_register_names;
1812 tdep->fpu_registers_num = ARRAY_SIZE (sparc64_fpu_register_names);
1813 tdep->cp0_register_names = sparc64_cp0_register_names;
1814 tdep->cp0_registers_num = ARRAY_SIZE (sparc64_cp0_register_names);
8b39fe56 1815
386c036b 1816 /* This is what all the fuss is about. */
8b39fe56
MK
1817 set_gdbarch_long_bit (gdbarch, 64);
1818 set_gdbarch_long_long_bit (gdbarch, 64);
1819 set_gdbarch_ptr_bit (gdbarch, 64);
8b39fe56 1820
53375380
PA
1821 set_gdbarch_wchar_bit (gdbarch, 16);
1822 set_gdbarch_wchar_signed (gdbarch, 0);
1823
8b39fe56
MK
1824 set_gdbarch_num_regs (gdbarch, SPARC64_NUM_REGS);
1825 set_gdbarch_register_name (gdbarch, sparc64_register_name);
1826 set_gdbarch_register_type (gdbarch, sparc64_register_type);
1827 set_gdbarch_num_pseudo_regs (gdbarch, SPARC64_NUM_PSEUDO_REGS);
3f7b46f2
IR
1828 set_tdesc_pseudo_register_name (gdbarch, sparc64_pseudo_register_name);
1829 set_tdesc_pseudo_register_type (gdbarch, sparc64_pseudo_register_type);
8b39fe56
MK
1830 set_gdbarch_pseudo_register_read (gdbarch, sparc64_pseudo_register_read);
1831 set_gdbarch_pseudo_register_write (gdbarch, sparc64_pseudo_register_write);
1832
1833 /* Register numbers of various important registers. */
8b39fe56 1834 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); /* %pc */
8b39fe56
MK
1835
1836 /* Call dummy code. */
49a45ecf 1837 set_gdbarch_frame_align (gdbarch, sparc64_frame_align);
386c036b
MK
1838 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1839 set_gdbarch_push_dummy_code (gdbarch, NULL);
8b39fe56
MK
1840 set_gdbarch_push_dummy_call (gdbarch, sparc64_push_dummy_call);
1841
60af1db2 1842 set_gdbarch_return_value (gdbarch, sparc64_return_value);
386c036b
MK
1843 set_gdbarch_stabs_argument_has_addr
1844 (gdbarch, default_stabs_argument_has_addr);
8b39fe56
MK
1845
1846 set_gdbarch_skip_prologue (gdbarch, sparc64_skip_prologue);
c9cf6e20 1847 set_gdbarch_stack_frame_destroyed_p (gdbarch, sparc_stack_frame_destroyed_p);
8b39fe56 1848
02a71ae8
MK
1849 /* Hook in the DWARF CFI frame unwinder. */
1850 dwarf2_frame_set_init_reg (gdbarch, sparc64_dwarf2_frame_init_reg);
1851 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1852 StackGhost issues have been resolved. */
1853
236369e7 1854 frame_unwind_append_unwinder (gdbarch, &sparc64_frame_unwind);
8b39fe56 1855 frame_base_set_default (gdbarch, &sparc64_frame_base);
58afddc6
WP
1856
1857 set_gdbarch_addr_bits_remove (gdbarch, sparc64_addr_bits_remove);
386c036b
MK
1858}
1859\f
8b39fe56 1860
386c036b 1861/* Helper functions for dealing with register sets. */
8b39fe56 1862
386c036b
MK
1863#define TSTATE_CWP 0x000000000000001fULL
1864#define TSTATE_ICC 0x0000000f00000000ULL
1865#define TSTATE_XCC 0x000000f000000000ULL
8b39fe56 1866
386c036b 1867#define PSR_S 0x00000080
39b06c20 1868#ifndef PSR_ICC
386c036b 1869#define PSR_ICC 0x00f00000
39b06c20 1870#endif
386c036b 1871#define PSR_VERS 0x0f000000
39b06c20 1872#ifndef PSR_IMPL
386c036b 1873#define PSR_IMPL 0xf0000000
39b06c20 1874#endif
386c036b
MK
1875#define PSR_V8PLUS 0xff000000
1876#define PSR_XCC 0x000f0000
8b39fe56 1877
3567a8ea 1878void
b4fd25c9 1879sparc64_supply_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
1880 struct regcache *regcache,
1881 int regnum, const void *gregs)
8b39fe56 1882{
ac7936df 1883 struct gdbarch *gdbarch = regcache->arch ();
e17a4113
UW
1884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1885 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
19ba03f4 1886 const gdb_byte *regs = (const gdb_byte *) gregs;
22e74ef9 1887 gdb_byte zero[8] = { 0 };
8b39fe56
MK
1888 int i;
1889
386c036b 1890 if (sparc32)
8b39fe56 1891 {
386c036b
MK
1892 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1893 {
b4fd25c9 1894 int offset = gregmap->r_tstate_offset;
386c036b 1895 ULONGEST tstate, psr;
e1613aba 1896 gdb_byte buf[4];
386c036b 1897
e17a4113 1898 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
386c036b
MK
1899 psr = ((tstate & TSTATE_CWP) | PSR_S | ((tstate & TSTATE_ICC) >> 12)
1900 | ((tstate & TSTATE_XCC) >> 20) | PSR_V8PLUS);
e17a4113 1901 store_unsigned_integer (buf, 4, byte_order, psr);
73e1c03f 1902 regcache->raw_supply (SPARC32_PSR_REGNUM, buf);
386c036b
MK
1903 }
1904
1905 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
73e1c03f
SM
1906 regcache->raw_supply (SPARC32_PC_REGNUM,
1907 regs + gregmap->r_pc_offset + 4);
386c036b
MK
1908
1909 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
73e1c03f
SM
1910 regcache->raw_supply (SPARC32_NPC_REGNUM,
1911 regs + gregmap->r_npc_offset + 4);
8b39fe56 1912
386c036b 1913 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
8b39fe56 1914 {
b4fd25c9 1915 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
73e1c03f 1916 regcache->raw_supply (SPARC32_Y_REGNUM, regs + offset);
8b39fe56
MK
1917 }
1918 }
1919 else
1920 {
386c036b 1921 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
73e1c03f
SM
1922 regcache->raw_supply (SPARC64_STATE_REGNUM,
1923 regs + gregmap->r_tstate_offset);
8b39fe56 1924
386c036b 1925 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
73e1c03f
SM
1926 regcache->raw_supply (SPARC64_PC_REGNUM,
1927 regs + gregmap->r_pc_offset);
386c036b
MK
1928
1929 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
73e1c03f
SM
1930 regcache->raw_supply (SPARC64_NPC_REGNUM,
1931 regs + gregmap->r_npc_offset);
386c036b
MK
1932
1933 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
3567a8ea 1934 {
e1613aba 1935 gdb_byte buf[8];
386c036b
MK
1936
1937 memset (buf, 0, 8);
b4fd25c9
AA
1938 memcpy (buf + 8 - gregmap->r_y_size,
1939 regs + gregmap->r_y_offset, gregmap->r_y_size);
73e1c03f 1940 regcache->raw_supply (SPARC64_Y_REGNUM, buf);
3567a8ea 1941 }
8b39fe56 1942
386c036b 1943 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
b4fd25c9 1944 && gregmap->r_fprs_offset != -1)
73e1c03f
SM
1945 regcache->raw_supply (SPARC64_FPRS_REGNUM,
1946 regs + gregmap->r_fprs_offset);
386c036b
MK
1947 }
1948
1949 if (regnum == SPARC_G0_REGNUM || regnum == -1)
73e1c03f 1950 regcache->raw_supply (SPARC_G0_REGNUM, &zero);
386c036b
MK
1951
1952 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1953 {
b4fd25c9 1954 int offset = gregmap->r_g1_offset;
386c036b
MK
1955
1956 if (sparc32)
1957 offset += 4;
1958
1959 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
8b39fe56 1960 {
3567a8ea 1961 if (regnum == i || regnum == -1)
73e1c03f 1962 regcache->raw_supply (i, regs + offset);
386c036b
MK
1963 offset += 8;
1964 }
1965 }
1966
1967 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1968 {
1969 /* Not all of the register set variants include Locals and
1970 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 1971 if (gregmap->r_l0_offset == -1)
386c036b
MK
1972 {
1973 ULONGEST sp;
1974
1975 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1976 sparc_supply_rwindow (regcache, sp, regnum);
1977 }
1978 else
1979 {
b4fd25c9 1980 int offset = gregmap->r_l0_offset;
386c036b
MK
1981
1982 if (sparc32)
1983 offset += 4;
1984
1985 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
3567a8ea 1986 {
386c036b 1987 if (regnum == i || regnum == -1)
73e1c03f 1988 regcache->raw_supply (i, regs + offset);
386c036b 1989 offset += 8;
3567a8ea 1990 }
8b39fe56
MK
1991 }
1992 }
1993}
1994
1995void
b4fd25c9 1996sparc64_collect_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
1997 const struct regcache *regcache,
1998 int regnum, void *gregs)
8b39fe56 1999{
ac7936df 2000 struct gdbarch *gdbarch = regcache->arch ();
e17a4113
UW
2001 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2002 int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
19ba03f4 2003 gdb_byte *regs = (gdb_byte *) gregs;
3567a8ea
MK
2004 int i;
2005
386c036b 2006 if (sparc32)
8b39fe56 2007 {
386c036b
MK
2008 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
2009 {
b4fd25c9 2010 int offset = gregmap->r_tstate_offset;
386c036b 2011 ULONGEST tstate, psr;
e1613aba 2012 gdb_byte buf[8];
386c036b 2013
e17a4113 2014 tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
34a79281 2015 regcache->raw_collect (SPARC32_PSR_REGNUM, buf);
e17a4113 2016 psr = extract_unsigned_integer (buf, 4, byte_order);
386c036b
MK
2017 tstate |= (psr & PSR_ICC) << 12;
2018 if ((psr & (PSR_VERS | PSR_IMPL)) == PSR_V8PLUS)
2019 tstate |= (psr & PSR_XCC) << 20;
e17a4113 2020 store_unsigned_integer (buf, 8, byte_order, tstate);
386c036b
MK
2021 memcpy (regs + offset, buf, 8);
2022 }
8b39fe56 2023
386c036b 2024 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
34a79281
SM
2025 regcache->raw_collect (SPARC32_PC_REGNUM,
2026 regs + gregmap->r_pc_offset + 4);
386c036b
MK
2027
2028 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
34a79281
SM
2029 regcache->raw_collect (SPARC32_NPC_REGNUM,
2030 regs + gregmap->r_npc_offset + 4);
386c036b
MK
2031
2032 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
8b39fe56 2033 {
b4fd25c9 2034 int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
34a79281 2035 regcache->raw_collect (SPARC32_Y_REGNUM, regs + offset);
8b39fe56
MK
2036 }
2037 }
2038 else
2039 {
386c036b 2040 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
34a79281
SM
2041 regcache->raw_collect (SPARC64_STATE_REGNUM,
2042 regs + gregmap->r_tstate_offset);
386c036b
MK
2043
2044 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
34a79281
SM
2045 regcache->raw_collect (SPARC64_PC_REGNUM,
2046 regs + gregmap->r_pc_offset);
3567a8ea 2047
386c036b 2048 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
34a79281
SM
2049 regcache->raw_collect (SPARC64_NPC_REGNUM,
2050 regs + gregmap->r_npc_offset);
3567a8ea 2051
386c036b 2052 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
3567a8ea 2053 {
e1613aba 2054 gdb_byte buf[8];
386c036b 2055
34a79281 2056 regcache->raw_collect (SPARC64_Y_REGNUM, buf);
b4fd25c9
AA
2057 memcpy (regs + gregmap->r_y_offset,
2058 buf + 8 - gregmap->r_y_size, gregmap->r_y_size);
386c036b
MK
2059 }
2060
2061 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
b4fd25c9 2062 && gregmap->r_fprs_offset != -1)
34a79281
SM
2063 regcache->raw_collect (SPARC64_FPRS_REGNUM,
2064 regs + gregmap->r_fprs_offset);
386c036b
MK
2065
2066 }
2067
2068 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
2069 {
b4fd25c9 2070 int offset = gregmap->r_g1_offset;
386c036b
MK
2071
2072 if (sparc32)
2073 offset += 4;
2074
2075 /* %g0 is always zero. */
2076 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
2077 {
2078 if (regnum == i || regnum == -1)
34a79281 2079 regcache->raw_collect (i, regs + offset);
386c036b
MK
2080 offset += 8;
2081 }
2082 }
2083
2084 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
2085 {
2086 /* Not all of the register set variants include Locals and
2087 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 2088 if (gregmap->r_l0_offset != -1)
386c036b 2089 {
b4fd25c9 2090 int offset = gregmap->r_l0_offset;
386c036b
MK
2091
2092 if (sparc32)
2093 offset += 4;
2094
2095 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
3567a8ea 2096 {
386c036b 2097 if (regnum == i || regnum == -1)
34a79281 2098 regcache->raw_collect (i, regs + offset);
386c036b 2099 offset += 8;
3567a8ea
MK
2100 }
2101 }
8b39fe56
MK
2102 }
2103}
8b39fe56 2104
386c036b 2105void
b4fd25c9 2106sparc64_supply_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2107 struct regcache *regcache,
386c036b
MK
2108 int regnum, const void *fpregs)
2109{
ac7936df 2110 int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
19ba03f4 2111 const gdb_byte *regs = (const gdb_byte *) fpregs;
386c036b
MK
2112 int i;
2113
2114 for (i = 0; i < 32; i++)
2115 {
2116 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
73e1c03f 2117 regcache->raw_supply (SPARC_F0_REGNUM + i,
34a79281 2118 regs + fpregmap->r_f0_offset + (i * 4));
386c036b
MK
2119 }
2120
2121 if (sparc32)
2122 {
2123 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
73e1c03f 2124 regcache->raw_supply (SPARC32_FSR_REGNUM,
b4fd25c9 2125 regs + fpregmap->r_fsr_offset);
386c036b
MK
2126 }
2127 else
2128 {
2129 for (i = 0; i < 16; i++)
2130 {
2131 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
73e1c03f
SM
2132 regcache->raw_supply
2133 (SPARC64_F32_REGNUM + i,
2134 regs + fpregmap->r_f0_offset + (32 * 4) + (i * 8));
386c036b
MK
2135 }
2136
2137 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
73e1c03f
SM
2138 regcache->raw_supply (SPARC64_FSR_REGNUM,
2139 regs + fpregmap->r_fsr_offset);
386c036b
MK
2140 }
2141}
8b39fe56
MK
2142
2143void
b4fd25c9 2144sparc64_collect_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2145 const struct regcache *regcache,
386c036b 2146 int regnum, void *fpregs)
8b39fe56 2147{
ac7936df 2148 int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
19ba03f4 2149 gdb_byte *regs = (gdb_byte *) fpregs;
386c036b
MK
2150 int i;
2151
2152 for (i = 0; i < 32; i++)
2153 {
2154 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
34a79281
SM
2155 regcache->raw_collect (SPARC_F0_REGNUM + i,
2156 regs + fpregmap->r_f0_offset + (i * 4));
386c036b
MK
2157 }
2158
2159 if (sparc32)
2160 {
2161 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
34a79281
SM
2162 regcache->raw_collect (SPARC32_FSR_REGNUM,
2163 regs + fpregmap->r_fsr_offset);
386c036b
MK
2164 }
2165 else
2166 {
2167 for (i = 0; i < 16; i++)
2168 {
2169 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
34a79281
SM
2170 regcache->raw_collect (SPARC64_F32_REGNUM + i,
2171 (regs + fpregmap->r_f0_offset
2172 + (32 * 4) + (i * 8)));
386c036b
MK
2173 }
2174
2175 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
34a79281
SM
2176 regcache->raw_collect (SPARC64_FSR_REGNUM,
2177 regs + fpregmap->r_fsr_offset);
386c036b 2178 }
8b39fe56 2179}
fd936806 2180
b4fd25c9 2181const struct sparc_fpregmap sparc64_bsd_fpregmap =
db75c717
DM
2182{
2183 0 * 8, /* %f0 */
2184 32 * 8, /* %fsr */
2185};
This page took 2.432667 seconds and 4 git commands to generate.