Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
CommitLineData
771b4502 1/* SPU target-dependent code for GDB, the GNU debugger.
e2882c85 2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
771b4502
UW
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
771b4502
UW
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
771b4502
UW
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "gdbtypes.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
771b4502
UW
27#include "frame.h"
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
31#include "symtab.h"
32#include "symfile.h"
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
e47ad6c0 36#include "disasm.h"
771b4502
UW
37#include "objfiles.h"
38#include "language.h"
39#include "regcache.h"
40#include "reggroups.h"
3285f3fe 41#include "block.h"
dcf52cd8 42#include "observer.h"
ff1a52c6 43#include "infcall.h"
54fcddd0 44#include "dwarf2.h"
7ce16bd4
UW
45#include "dwarf2-frame.h"
46#include "ax.h"
771b4502 47#include "spu-tdep.h"
f00aae0f 48#include "location.h"
794ac428 49
3285f3fe
UW
50/* The list of available "set spu " and "show spu " commands. */
51static struct cmd_list_element *setspucmdlist = NULL;
52static struct cmd_list_element *showspucmdlist = NULL;
53
54/* Whether to stop for new SPE contexts. */
55static int spu_stop_on_load_p = 0;
ff1a52c6
UW
56/* Whether to automatically flush the SW-managed cache. */
57static int spu_auto_flush_cache_p = 1;
3285f3fe
UW
58
59
794ac428
UW
60/* The tdep structure. */
61struct gdbarch_tdep
62{
85e747d2
UW
63 /* The spufs ID identifying our address space. */
64 int id;
65
794ac428
UW
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68};
69
70
f2d43c2c 71/* SPU-specific vector type. */
794ac428
UW
72static struct type *
73spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74{
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
df4df182 79 const struct builtin_type *bt = builtin_type (gdbarch);
794ac428
UW
80 struct type *t;
81
e9bb382b
UW
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 84 append_composite_type_field (t, "uint128", bt->builtin_int128);
794ac428 85 append_composite_type_field (t, "v2_int64",
df4df182 86 init_vector_type (bt->builtin_int64, 2));
794ac428 87 append_composite_type_field (t, "v4_int32",
df4df182 88 init_vector_type (bt->builtin_int32, 4));
794ac428 89 append_composite_type_field (t, "v8_int16",
df4df182 90 init_vector_type (bt->builtin_int16, 8));
794ac428 91 append_composite_type_field (t, "v16_int8",
df4df182 92 init_vector_type (bt->builtin_int8, 16));
794ac428 93 append_composite_type_field (t, "v2_double",
df4df182 94 init_vector_type (bt->builtin_double, 2));
794ac428 95 append_composite_type_field (t, "v4_float",
df4df182 96 init_vector_type (bt->builtin_float, 4));
794ac428 97
876cecd0 98 TYPE_VECTOR (t) = 1;
794ac428
UW
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105}
106
771b4502 107
23d964e7
UW
108/* The list of available "info spu " commands. */
109static struct cmd_list_element *infospucmdlist = NULL;
110
771b4502
UW
111/* Registers. */
112
113static const char *
d93859e2 114spu_register_name (struct gdbarch *gdbarch, int reg_nr)
771b4502 115{
a121b7c1 116 static const char *register_names[] =
771b4502
UW
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
23d964e7 134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
771b4502
UW
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143}
144
145static struct type *
146spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147{
148 if (reg_nr < SPU_NUM_GPRS)
794ac428 149 return spu_builtin_type_vec128 (gdbarch);
771b4502
UW
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
df4df182 154 return builtin_type (gdbarch)->builtin_uint32;
771b4502
UW
155
156 case SPU_PC_REGNUM:
0dfff4cb 157 return builtin_type (gdbarch)->builtin_func_ptr;
771b4502
UW
158
159 case SPU_SP_REGNUM:
0dfff4cb 160 return builtin_type (gdbarch)->builtin_data_ptr;
771b4502 161
23d964e7 162 case SPU_FPSCR_REGNUM:
df4df182 163 return builtin_type (gdbarch)->builtin_uint128;
23d964e7
UW
164
165 case SPU_SRR0_REGNUM:
df4df182 166 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
167
168 case SPU_LSLR_REGNUM:
df4df182 169 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
170
171 case SPU_DECR_REGNUM:
df4df182 172 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
173
174 case SPU_DECR_STATUS_REGNUM:
df4df182 175 return builtin_type (gdbarch)->builtin_uint32;
23d964e7 176
771b4502 177 default:
a73c6dcd 178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
771b4502
UW
179 }
180}
181
182/* Pseudo registers for preferred slots - stack pointer. */
183
05d1431c 184static enum register_status
23d964e7
UW
185spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187{
ac7936df 188 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
05d1431c 190 enum register_status status;
23d964e7
UW
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
001f13d8 194 ULONGEST ul;
23d964e7 195
03f50fc8 196 status = regcache->raw_read (SPU_ID_REGNUM, &id);
05d1431c
PA
197 if (status != REG_VALID)
198 return status;
23d964e7
UW
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (&current_target, TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
001f13d8
PA
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
05d1431c 206 return REG_VALID;
23d964e7
UW
207}
208
05d1431c 209static enum register_status
771b4502
UW
210spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212{
213 gdb_byte reg[16];
23d964e7
UW
214 char annex[32];
215 ULONGEST id;
05d1431c 216 enum register_status status;
771b4502
UW
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
03f50fc8 221 status = regcache->raw_read (SPU_RAW_SP_REGNUM, reg);
05d1431c
PA
222 if (status != REG_VALID)
223 return status;
771b4502 224 memcpy (buf, reg, 4);
05d1431c 225 return status;
771b4502 226
23d964e7 227 case SPU_FPSCR_REGNUM:
03f50fc8 228 status = regcache->raw_read (SPU_ID_REGNUM, &id);
05d1431c
PA
229 if (status != REG_VALID)
230 return status;
23d964e7
UW
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
05d1431c 233 return status;
23d964e7
UW
234
235 case SPU_SRR0_REGNUM:
05d1431c 236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
23d964e7
UW
237
238 case SPU_LSLR_REGNUM:
05d1431c 239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
23d964e7
UW
240
241 case SPU_DECR_REGNUM:
05d1431c 242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
23d964e7
UW
243
244 case SPU_DECR_STATUS_REGNUM:
05d1431c 245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
23d964e7 246
771b4502
UW
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250}
251
23d964e7
UW
252static void
253spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255{
ac7936df 256 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
001f13d8 258 char reg[32];
23d964e7
UW
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
e17a4113 265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
23d964e7 266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
001f13d8 267 (gdb_byte *) reg, 0, strlen (reg));
23d964e7
UW
268}
269
771b4502
UW
270static void
271spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273{
274 gdb_byte reg[16];
23d964e7
UW
275 char annex[32];
276 ULONGEST id;
771b4502
UW
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
23d964e7
UW
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
771b4502
UW
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311}
312
7ce16bd4
UW
313static int
314spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316{
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333}
334
335static int
336spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338{
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355}
356
357
771b4502
UW
358/* Value conversion -- access scalar values at the preferred slot. */
359
9acbedc0 360static struct value *
2ed3c037
UW
361spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
771b4502 363{
2ed3c037
UW
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
6b850546 366 LONGEST len = TYPE_LENGTH (type);
771b4502 367
bad43aa5 368 if (regnum < SPU_NUM_GPRS && len < 16)
9acbedc0 369 {
bad43aa5 370 int preferred_slot = len < 4 ? 4 - len : 0;
9acbedc0
UW
371 set_value_offset (value, preferred_slot);
372 }
771b4502 373
9acbedc0 374 return value;
771b4502
UW
375}
376
377/* Register groups. */
378
379static int
380spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382{
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397}
398
7ce16bd4
UW
399/* DWARF-2 register numbers. */
400
401static int
402spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403{
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406}
407
ff1a52c6
UW
408
409/* Address handling. */
36acd84e 410
85e747d2
UW
411static int
412spu_gdbarch_id (struct gdbarch *gdbarch)
413{
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
b021a221 418 provide an SPU ID. Retrieve it from the objfile's relocated
85e747d2
UW
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427}
428
ff1a52c6
UW
429static int
430spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431{
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436}
437
438static const char *
439spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440{
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445}
446
447static int
448spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450{
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458}
459
85e747d2
UW
460static void
461spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463{
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467}
468
36acd84e 469static CORE_ADDR
9898f801
UW
470spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
36acd84e 472{
85e747d2 473 int id = spu_gdbarch_id (gdbarch);
e17a4113
UW
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
36acd84e 477
ff1a52c6
UW
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
d2ed6730 482 return addr? SPUADDR (id, addr) : 0;
36acd84e
UW
483}
484
485static CORE_ADDR
486spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488{
85e747d2 489 int id = spu_gdbarch_id (gdbarch);
36acd84e 490 ULONGEST addr = unpack_long (type, buf);
36acd84e 491
d2ed6730 492 return SPUADDR (id, addr);
36acd84e
UW
493}
494
771b4502
UW
495
496/* Decoding SPU instructions. */
497
498enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
a536c6d7 514 op_selb = 0x8,
771b4502
UW
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532static int
533is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534{
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544}
545
546static int
547is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548{
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559}
560
561static int
562is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563{
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573}
574
575static int
576is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577{
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587}
588
589static int
590is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591{
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600}
601
602static int
603is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604{
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613}
614
615static int
616is_branch (unsigned int insn, int *offset, int *reg)
617{
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652}
653
654
655/* Prolog parsing. */
656
657struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670static CORE_ADDR
e17a4113
UW
671spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
771b4502
UW
673 struct spu_prologue_data *data)
674{
e17a4113 675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
ce50d78b 679 int found_bc = 0;
771b4502
UW
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
ce50d78b 708 - The first instruction to save the backchain.
771b4502 709
ce50d78b 710 We return the instruction after the latest of these four,
771b4502
UW
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
e17a4113 737 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502
UW
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
12102450
UW
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
771b4502
UW
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
12102450
UW
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
771b4502
UW
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
ce50d78b
UW
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
771b4502
UW
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852}
853
854/* Return the first instruction after the prologue starting at PC. */
855static CORE_ADDR
6093d2eb 856spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
771b4502
UW
857{
858 struct spu_prologue_data data;
e17a4113 859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
860}
861
862/* Return the frame pointer in use at address PC. */
863static void
a54fba4c
MD
864spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
771b4502
UW
866{
867 struct spu_prologue_data data;
e17a4113 868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
c378eb4e 878 /* ??? We don't really know ... */
771b4502
UW
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882}
883
c9cf6e20 884/* Implement the stack_frame_destroyed_p gdbarch method.
fe5febed
UW
885
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
889 an epilogue, return.
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
892 an epilogue.
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
899
900static int
c9cf6e20 901spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
fe5febed 902{
e17a4113 903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fe5febed
UW
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
905 bfd_byte buf[4];
906 unsigned int insn;
22e048c9 907 int rt, ra, rb, immed;
fe5febed
UW
908
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
911
912 const int spu_max_epilogue_size = 64 * 4;
913
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
915 return 0;
916
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
919 else
920 epilogue_start = pc - spu_max_epilogue_size;
921
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
924 else
925 epilogue_end = pc + spu_max_epilogue_size;
926
927 /* Scan forward until next 'bi $0'. */
928
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
930 {
931 if (target_read_memory (scan_pc, buf, 4))
932 return 0;
e17a4113 933 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
934
935 if (is_branch (insn, &immed, &ra))
936 {
937 if (immed == 0 && ra == SPU_LR_REGNUM)
938 break;
939
940 return 0;
941 }
942
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
946 {
947 if (rt == SPU_RAW_SP_REGNUM)
948 return 0;
949 }
950 }
951
952 if (scan_pc >= epilogue_end)
953 return 0;
954
955 /* Scan backward until adjustment to stack pointer (R1). */
956
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
958 {
959 if (target_read_memory (scan_pc, buf, 4))
960 return 0;
e17a4113 961 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
962
963 if (is_branch (insn, &immed, &ra))
964 return 0;
965
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
969 {
970 if (rt == SPU_RAW_SP_REGNUM)
971 return 1;
972 }
973 }
974
975 return 0;
976}
977
978
771b4502
UW
979/* Normal stack frames. */
980
981struct spu_unwind_cache
982{
983 CORE_ADDR func;
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
986
987 struct trad_frame_saved_reg *saved_regs;
988};
989
990static struct spu_unwind_cache *
8d998b8f 991spu_frame_unwind_cache (struct frame_info *this_frame,
771b4502
UW
992 void **this_prologue_cache)
993{
e17a4113 994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
85e747d2 995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
85e747d2 999 CORE_ADDR id = tdep->id;
dcf52cd8 1000 gdb_byte buf[16];
771b4502
UW
1001
1002 if (*this_prologue_cache)
19ba03f4 1003 return (struct spu_unwind_cache *) *this_prologue_cache;
771b4502
UW
1004
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
8d998b8f 1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
771b4502
UW
1008 info->frame_base = 0;
1009 info->local_base = 0;
1010
1011 /* Find the start of the current function, and analyze its prologue. */
8d998b8f 1012 info->func = get_frame_func (this_frame);
771b4502
UW
1013 if (info->func == 0)
1014 {
1015 /* Fall back to using the current PC as frame ID. */
8d998b8f 1016 info->func = get_frame_pc (this_frame);
771b4502
UW
1017 data.size = -1;
1018 }
1019 else
e17a4113
UW
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1021 &data);
771b4502
UW
1022
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1025 {
1026 CORE_ADDR cfa;
1027 int i;
771b4502
UW
1028
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
8d998b8f 1030 get_frame_register (this_frame, data.cfa_reg, buf);
e17a4113 1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
85e747d2 1032 cfa = SPUADDR (id, cfa);
771b4502
UW
1033
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1040
771b4502
UW
1041 /* Frame bases. */
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1044 }
1045
1046 /* Otherwise, fall back to reading the backchain link. */
1047 else
1048 {
cdc9523a
UW
1049 CORE_ADDR reg;
1050 LONGEST backchain;
13def385 1051 ULONGEST lslr;
cdc9523a 1052 int status;
771b4502 1053
13def385
UW
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1056 if (!lslr)
1057 lslr = (ULONGEST) -1;
1058
771b4502 1059 /* Get the backchain. */
8d998b8f 1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2
UW
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1062 &backchain);
771b4502
UW
1063
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
13def385 1066 if (status && backchain > 0 && backchain <= lslr)
771b4502
UW
1067 {
1068 /* Assume the link register is saved into its slot. */
13def385 1069 if (backchain + 16 <= lslr)
c378eb4e
MS
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1071 backchain + 16);
771b4502 1072
771b4502 1073 /* Frame bases. */
85e747d2
UW
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
771b4502
UW
1076 }
1077 }
dcf52cd8 1078
c4891da7
UW
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1081 return info;
1082
dcf52cd8 1083 /* The previous SP is equal to the CFA. */
85e747d2
UW
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
dcf52cd8 1086
0a44cb36
UW
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
dcf52cd8
UW
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1091 else
8d998b8f 1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
dcf52cd8 1093
0a44cb36
UW
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
e17a4113 1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
dcf52cd8 1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1102 extract_unsigned_integer (buf + 8, 4, byte_order));
dcf52cd8
UW
1103 else
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1105 extract_unsigned_integer (buf, 4, byte_order));
771b4502
UW
1106
1107 return info;
1108}
1109
1110static void
8d998b8f 1111spu_frame_this_id (struct frame_info *this_frame,
771b4502
UW
1112 void **this_prologue_cache, struct frame_id *this_id)
1113{
1114 struct spu_unwind_cache *info =
8d998b8f 1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1116
1117 if (info->frame_base == 0)
1118 return;
1119
1120 *this_id = frame_id_build (info->frame_base, info->func);
1121}
1122
8d998b8f
UW
1123static struct value *
1124spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
771b4502
UW
1126{
1127 struct spu_unwind_cache *info
8d998b8f 1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1129
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1133
8d998b8f 1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
771b4502
UW
1135}
1136
1137static const struct frame_unwind spu_frame_unwind = {
1138 NORMAL_FRAME,
8fbca658 1139 default_frame_unwind_stop_reason,
771b4502 1140 spu_frame_this_id,
8d998b8f
UW
1141 spu_frame_prev_register,
1142 NULL,
1143 default_frame_sniffer
771b4502
UW
1144};
1145
771b4502 1146static CORE_ADDR
8d998b8f 1147spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
771b4502
UW
1148{
1149 struct spu_unwind_cache *info
8d998b8f 1150 = spu_frame_unwind_cache (this_frame, this_cache);
771b4502
UW
1151 return info->local_base;
1152}
1153
1154static const struct frame_base spu_frame_base = {
1155 &spu_frame_unwind,
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1159};
1160
1161static CORE_ADDR
1162spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1163{
85e747d2 1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
118dfbaf
UW
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
85e747d2 1167 return SPUADDR (tdep->id, pc & -4);
771b4502
UW
1168}
1169
1170static CORE_ADDR
1171spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1172{
85e747d2
UW
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
771b4502
UW
1176}
1177
118dfbaf 1178static CORE_ADDR
61a1198a 1179spu_read_pc (struct regcache *regcache)
118dfbaf 1180{
ac7936df 1181 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
61a1198a
UW
1182 ULONGEST pc;
1183 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
118dfbaf 1184 /* Mask off interrupt enable bit. */
85e747d2 1185 return SPUADDR (tdep->id, pc & -4);
118dfbaf
UW
1186}
1187
1188static void
61a1198a 1189spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
118dfbaf
UW
1190{
1191 /* Keep interrupt enabled state unchanged. */
61a1198a 1192 ULONGEST old_pc;
30bcb456 1193
61a1198a
UW
1194 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1195 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
85e747d2 1196 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
118dfbaf
UW
1197}
1198
771b4502 1199
cc5f0d61
UW
1200/* Cell/B.E. cross-architecture unwinder support. */
1201
1202struct spu2ppu_cache
1203{
1204 struct frame_id frame_id;
1205 struct regcache *regcache;
1206};
1207
1208static struct gdbarch *
1209spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1210{
19ba03f4 1211 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
ac7936df 1212 return cache->regcache->arch ();
cc5f0d61
UW
1213}
1214
1215static void
1216spu2ppu_this_id (struct frame_info *this_frame,
1217 void **this_cache, struct frame_id *this_id)
1218{
19ba03f4 1219 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
cc5f0d61
UW
1220 *this_id = cache->frame_id;
1221}
1222
1223static struct value *
1224spu2ppu_prev_register (struct frame_info *this_frame,
1225 void **this_cache, int regnum)
1226{
19ba03f4 1227 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
ac7936df 1228 struct gdbarch *gdbarch = cache->regcache->arch ();
cc5f0d61
UW
1229 gdb_byte *buf;
1230
224c3ddb 1231 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
cc5f0d61
UW
1232 regcache_cooked_read (cache->regcache, regnum, buf);
1233 return frame_unwind_got_bytes (this_frame, regnum, buf);
1234}
1235
1236static int
1237spu2ppu_sniffer (const struct frame_unwind *self,
1238 struct frame_info *this_frame, void **this_prologue_cache)
1239{
1240 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1242 CORE_ADDR base, func, backchain;
1243 gdb_byte buf[4];
1244
f5656ead 1245 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
cc5f0d61
UW
1246 return 0;
1247
1248 base = get_frame_sp (this_frame);
1249 func = get_frame_pc (this_frame);
1250 if (target_read_memory (base, buf, 4))
1251 return 0;
1252 backchain = extract_unsigned_integer (buf, 4, byte_order);
1253
1254 if (!backchain)
1255 {
1256 struct frame_info *fi;
1257
1258 struct spu2ppu_cache *cache
1259 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1260
1261 cache->frame_id = frame_id_build (base + 16, func);
1262
1263 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1264 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1265 break;
1266
1267 if (fi)
1268 {
9ac86b52 1269 cache->regcache = frame_save_as_regcache (fi).release ();
cc5f0d61
UW
1270 *this_prologue_cache = cache;
1271 return 1;
1272 }
1273 else
1274 {
1275 struct regcache *regcache;
f5656ead 1276 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
cc5f0d61
UW
1277 cache->regcache = regcache_dup (regcache);
1278 *this_prologue_cache = cache;
1279 return 1;
1280 }
1281 }
1282
1283 return 0;
1284}
1285
1286static void
1287spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1288{
19ba03f4 1289 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
c0e383c6 1290 delete cache->regcache;
cc5f0d61
UW
1291}
1292
1293static const struct frame_unwind spu2ppu_unwind = {
1294 ARCH_FRAME,
8fbca658 1295 default_frame_unwind_stop_reason,
cc5f0d61
UW
1296 spu2ppu_this_id,
1297 spu2ppu_prev_register,
1298 NULL,
1299 spu2ppu_sniffer,
1300 spu2ppu_dealloc_cache,
1301 spu2ppu_prev_arch,
1302};
1303
1304
771b4502
UW
1305/* Function calling convention. */
1306
7b3dc0b7
UW
1307static CORE_ADDR
1308spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1309{
1310 return sp & ~15;
1311}
1312
87805e63
UW
1313static CORE_ADDR
1314spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1315 struct value **args, int nargs, struct type *value_type,
1316 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1317 struct regcache *regcache)
1318{
1319 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1320 sp = (sp - 4) & ~15;
1321 /* Store the address of that breakpoint */
1322 *bp_addr = sp;
1323 /* The call starts at the callee's entry point. */
1324 *real_pc = funaddr;
1325
1326 return sp;
1327}
1328
771b4502
UW
1329static int
1330spu_scalar_value_p (struct type *type)
1331{
1332 switch (TYPE_CODE (type))
1333 {
1334 case TYPE_CODE_INT:
1335 case TYPE_CODE_ENUM:
1336 case TYPE_CODE_RANGE:
1337 case TYPE_CODE_CHAR:
1338 case TYPE_CODE_BOOL:
1339 case TYPE_CODE_PTR:
1340 case TYPE_CODE_REF:
aa006118 1341 case TYPE_CODE_RVALUE_REF:
771b4502
UW
1342 return TYPE_LENGTH (type) <= 16;
1343
1344 default:
1345 return 0;
1346 }
1347}
1348
1349static void
1350spu_value_to_regcache (struct regcache *regcache, int regnum,
1351 struct type *type, const gdb_byte *in)
1352{
1353 int len = TYPE_LENGTH (type);
1354
1355 if (spu_scalar_value_p (type))
1356 {
1357 int preferred_slot = len < 4 ? 4 - len : 0;
1358 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1359 }
1360 else
1361 {
1362 while (len >= 16)
1363 {
1364 regcache_cooked_write (regcache, regnum++, in);
1365 in += 16;
1366 len -= 16;
1367 }
1368
1369 if (len > 0)
1370 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1371 }
1372}
1373
1374static void
1375spu_regcache_to_value (struct regcache *regcache, int regnum,
1376 struct type *type, gdb_byte *out)
1377{
1378 int len = TYPE_LENGTH (type);
1379
1380 if (spu_scalar_value_p (type))
1381 {
1382 int preferred_slot = len < 4 ? 4 - len : 0;
1383 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1384 }
1385 else
1386 {
1387 while (len >= 16)
1388 {
1389 regcache_cooked_read (regcache, regnum++, out);
1390 out += 16;
1391 len -= 16;
1392 }
1393
1394 if (len > 0)
1395 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1396 }
1397}
1398
1399static CORE_ADDR
1400spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1401 struct regcache *regcache, CORE_ADDR bp_addr,
1402 int nargs, struct value **args, CORE_ADDR sp,
1403 int struct_return, CORE_ADDR struct_addr)
1404{
e17a4113 1405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9ff3afda 1406 CORE_ADDR sp_delta;
771b4502
UW
1407 int i;
1408 int regnum = SPU_ARG1_REGNUM;
1409 int stack_arg = -1;
1410 gdb_byte buf[16];
1411
1412 /* Set the return address. */
1413 memset (buf, 0, sizeof buf);
85e747d2 1414 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
771b4502
UW
1415 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1416
1417 /* If STRUCT_RETURN is true, then the struct return address (in
1418 STRUCT_ADDR) will consume the first argument-passing register.
1419 Both adjust the register count and store that value. */
1420 if (struct_return)
1421 {
1422 memset (buf, 0, sizeof buf);
85e747d2 1423 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
771b4502
UW
1424 regcache_cooked_write (regcache, regnum++, buf);
1425 }
1426
1427 /* Fill in argument registers. */
1428 for (i = 0; i < nargs; i++)
1429 {
1430 struct value *arg = args[i];
1431 struct type *type = check_typedef (value_type (arg));
1432 const gdb_byte *contents = value_contents (arg);
354ecfd5 1433 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
771b4502
UW
1434
1435 /* If the argument doesn't wholly fit into registers, it and
1436 all subsequent arguments go to the stack. */
1437 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1438 {
1439 stack_arg = i;
1440 break;
1441 }
1442
1443 spu_value_to_regcache (regcache, regnum, type, contents);
1444 regnum += n_regs;
1445 }
1446
1447 /* Overflow arguments go to the stack. */
1448 if (stack_arg != -1)
1449 {
1450 CORE_ADDR ap;
1451
1452 /* Allocate all required stack size. */
1453 for (i = stack_arg; i < nargs; i++)
1454 {
1455 struct type *type = check_typedef (value_type (args[i]));
1456 sp -= align_up (TYPE_LENGTH (type), 16);
1457 }
1458
1459 /* Fill in stack arguments. */
1460 ap = sp;
1461 for (i = stack_arg; i < nargs; i++)
1462 {
1463 struct value *arg = args[i];
1464 struct type *type = check_typedef (value_type (arg));
1465 int len = TYPE_LENGTH (type);
1466 int preferred_slot;
1467
1468 if (spu_scalar_value_p (type))
1469 preferred_slot = len < 4 ? 4 - len : 0;
1470 else
1471 preferred_slot = 0;
1472
1473 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1474 ap += align_up (TYPE_LENGTH (type), 16);
1475 }
1476 }
1477
1478 /* Allocate stack frame header. */
1479 sp -= 32;
1480
ee82e879
UW
1481 /* Store stack back chain. */
1482 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1483 target_write_memory (sp, buf, 16);
1484
9ff3afda 1485 /* Finally, update all slots of the SP register. */
e17a4113 1486 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
9ff3afda
UW
1487 for (i = 0; i < 4; i++)
1488 {
e17a4113
UW
1489 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1490 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
9ff3afda
UW
1491 }
1492 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
771b4502
UW
1493
1494 return sp;
1495}
1496
1497static struct frame_id
8d998b8f 1498spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
771b4502 1499{
85e747d2 1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d998b8f
UW
1501 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1502 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2 1503 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
771b4502
UW
1504}
1505
1506/* Function return value access. */
1507
1508static enum return_value_convention
6a3a010b 1509spu_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1510 struct type *type, struct regcache *regcache,
1511 gdb_byte *out, const gdb_byte *in)
771b4502 1512{
6a3a010b 1513 struct type *func_type = function ? value_type (function) : NULL;
771b4502 1514 enum return_value_convention rvc;
54fcddd0
UW
1515 int opencl_vector = 0;
1516
598cfb71
UW
1517 if (func_type)
1518 {
1519 func_type = check_typedef (func_type);
1520
1521 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1522 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1523
1524 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1525 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1526 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1527 && TYPE_VECTOR (type))
1528 opencl_vector = 1;
1529 }
771b4502
UW
1530
1531 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1532 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1533 else
1534 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1535
1536 if (in)
1537 {
1538 switch (rvc)
1539 {
1540 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1541 if (opencl_vector && TYPE_LENGTH (type) == 2)
1542 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1543 else
1544 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
771b4502
UW
1545 break;
1546
1547 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1548 error (_("Cannot set function return value."));
771b4502
UW
1549 break;
1550 }
1551 }
1552 else if (out)
1553 {
1554 switch (rvc)
1555 {
1556 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1557 if (opencl_vector && TYPE_LENGTH (type) == 2)
1558 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1559 else
1560 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
771b4502
UW
1561 break;
1562
1563 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1564 error (_("Function return value unknown."));
771b4502
UW
1565 break;
1566 }
1567 }
1568
1569 return rvc;
1570}
1571
1572
1573/* Breakpoints. */
04180708 1574constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
771b4502 1575
04180708 1576typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
771b4502 1577
d03285ec
UW
1578static int
1579spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1580 struct bp_target_info *bp_tgt)
1581{
1582 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1583 that in a combined application, we have some breakpoints inserted in SPU
1584 code, and now the application forks (on the PPU side). GDB common code
1585 will assume that the fork system call copied all breakpoints into the new
1586 process' address space, and that all those copies now need to be removed
1587 (see breakpoint.c:detach_breakpoints).
1588
1589 While this is certainly true for PPU side breakpoints, it is not true
1590 for SPU side breakpoints. fork will clone the SPU context file
1591 descriptors, so that all the existing SPU contexts are in accessible
1592 in the new process. However, the contents of the SPU contexts themselves
1593 are *not* cloned. Therefore the effect of detach_breakpoints is to
1594 remove SPU breakpoints from the *original* SPU context's local store
1595 -- this is not the correct behaviour.
1596
1597 The workaround is to check whether the PID we are asked to remove this
1598 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1599 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1600 true in the context of detach_breakpoints. If so, we simply do nothing.
1601 [ Note that for the fork child process, it does not matter if breakpoints
1602 remain inserted, because those SPU contexts are not runnable anyway --
1603 the Linux kernel allows only the original process to invoke spu_run. */
1604
1605 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1606 return 0;
1607
1608 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1609}
1610
771b4502
UW
1611
1612/* Software single-stepping support. */
1613
a0ff9e1a 1614static std::vector<CORE_ADDR>
f5ea389a 1615spu_software_single_step (struct regcache *regcache)
771b4502 1616{
ac7936df 1617 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1618 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e0cd558a
UW
1619 CORE_ADDR pc, next_pc;
1620 unsigned int insn;
1621 int offset, reg;
1622 gdb_byte buf[4];
13def385 1623 ULONGEST lslr;
a0ff9e1a 1624 std::vector<CORE_ADDR> next_pcs;
771b4502 1625
b2260160 1626 pc = regcache_read_pc (regcache);
771b4502 1627
e0cd558a 1628 if (target_read_memory (pc, buf, 4))
941319d1
YQ
1629 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1630 paddress (gdbarch, pc));
1631
e17a4113 1632 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502 1633
13def385 1634 /* Get local store limit. */
5ffd2cb7
UW
1635 if ((regcache_cooked_read_unsigned (regcache, SPU_LSLR_REGNUM, &lslr)
1636 != REG_VALID) || !lslr)
13def385
UW
1637 lslr = (ULONGEST) -1;
1638
e0cd558a
UW
1639 /* Next sequential instruction is at PC + 4, except if the current
1640 instruction is a PPE-assisted call, in which case it is at PC + 8.
1641 Wrap around LS limit to be on the safe side. */
1642 if ((insn & 0xffffff00) == 0x00002100)
13def385 1643 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
e0cd558a 1644 else
13def385 1645 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
771b4502 1646
a0ff9e1a 1647 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), next_pc));
771b4502 1648
e0cd558a
UW
1649 if (is_branch (insn, &offset, &reg))
1650 {
1651 CORE_ADDR target = offset;
771b4502 1652
e0cd558a 1653 if (reg == SPU_PC_REGNUM)
85e747d2 1654 target += SPUADDR_ADDR (pc);
e0cd558a 1655 else if (reg != -1)
5ffd2cb7
UW
1656 {
1657 regcache_raw_read_part (regcache, reg, 0, 4, buf);
1658 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1659 }
e0cd558a 1660
13def385 1661 target = target & lslr;
e0cd558a 1662 if (target != next_pc)
a0ff9e1a 1663 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), target));
771b4502 1664 }
e6590a1b 1665
93f9a11f 1666 return next_pcs;
771b4502
UW
1667}
1668
6e3f70d7
UW
1669
1670/* Longjmp support. */
1671
1672static int
1673spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1674{
e17a4113 1675 struct gdbarch *gdbarch = get_frame_arch (frame);
85e747d2 1676 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6e3f70d7
UW
1678 gdb_byte buf[4];
1679 CORE_ADDR jb_addr;
8dccd430 1680 int optim, unavail;
6e3f70d7
UW
1681
1682 /* Jump buffer is pointed to by the argument register $r3. */
8dccd430
PA
1683 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1684 &optim, &unavail))
1685 return 0;
1686
e17a4113 1687 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1688 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
6e3f70d7
UW
1689 return 0;
1690
e17a4113 1691 *pc = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1692 *pc = SPUADDR (tdep->id, *pc);
6e3f70d7
UW
1693 return 1;
1694}
1695
1696
85e747d2
UW
1697/* Disassembler. */
1698
e47ad6c0 1699struct spu_dis_asm_info : disassemble_info
85e747d2 1700{
85e747d2
UW
1701 int id;
1702};
1703
1704static void
1705spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1706{
e47ad6c0
YQ
1707 struct spu_dis_asm_info *data = (struct spu_dis_asm_info *) info;
1708 gdb_disassembler *di
1709 = static_cast<gdb_disassembler *>(info->application_data);
1710
1711 print_address (di->arch (), SPUADDR (data->id, addr),
19ba03f4 1712 (struct ui_file *) info->stream);
85e747d2
UW
1713}
1714
1715static int
1716gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1717{
c378eb4e
MS
1718 /* The opcodes disassembler does 18-bit address arithmetic. Make
1719 sure the SPU ID encoded in the high bits is added back when we
1720 call print_address. */
e47ad6c0 1721 struct spu_dis_asm_info spu_info;
85e747d2 1722
e47ad6c0
YQ
1723 memcpy (&spu_info, info, sizeof (*info));
1724 spu_info.id = SPUADDR_SPU (memaddr);
85e747d2 1725 spu_info.print_address_func = spu_dis_asm_print_address;
6394c606 1726 return default_print_insn (memaddr, &spu_info);
85e747d2
UW
1727}
1728
1729
dcf52cd8
UW
1730/* Target overlays for the SPU overlay manager.
1731
1732 See the documentation of simple_overlay_update for how the
1733 interface is supposed to work.
1734
1735 Data structures used by the overlay manager:
1736
1737 struct ovly_table
1738 {
1739 u32 vma;
1740 u32 size;
1741 u32 pos;
1742 u32 buf;
1743 } _ovly_table[]; -- one entry per overlay section
1744
1745 struct ovly_buf_table
1746 {
1747 u32 mapped;
1748 } _ovly_buf_table[]; -- one entry per overlay buffer
1749
1750 _ovly_table should never change.
1751
c378eb4e
MS
1752 Both tables are aligned to a 16-byte boundary, the symbols
1753 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1754 size set to the size of the respective array. buf in _ovly_table is
1755 an index into _ovly_buf_table.
dcf52cd8 1756
c378eb4e 1757 mapped is an index into _ovly_table. Both the mapped and buf indices start
dcf52cd8
UW
1758 from one to reference the first entry in their respective tables. */
1759
1760/* Using the per-objfile private data mechanism, we store for each
1761 objfile an array of "struct spu_overlay_table" structures, one
1762 for each obj_section of the objfile. This structure holds two
1763 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1764 is *not* an overlay section. If it is non-zero, it represents
1765 a target address. The overlay section is mapped iff the target
1766 integer at this location equals MAPPED_VAL. */
1767
1768static const struct objfile_data *spu_overlay_data;
1769
1770struct spu_overlay_table
1771 {
1772 CORE_ADDR mapped_ptr;
1773 CORE_ADDR mapped_val;
1774 };
1775
1776/* Retrieve the overlay table for OBJFILE. If not already cached, read
1777 the _ovly_table data structure from the target and initialize the
1778 spu_overlay_table data structure from it. */
1779static struct spu_overlay_table *
1780spu_get_overlay_table (struct objfile *objfile)
1781{
e17a4113
UW
1782 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1783 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3b7344d5 1784 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
dcf52cd8
UW
1785 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1786 unsigned ovly_table_size, ovly_buf_table_size;
1787 struct spu_overlay_table *tbl;
1788 struct obj_section *osect;
948f8e3d 1789 gdb_byte *ovly_table;
dcf52cd8
UW
1790 int i;
1791
19ba03f4 1792 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
dcf52cd8
UW
1793 if (tbl)
1794 return tbl;
1795
1796 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
3b7344d5 1797 if (!ovly_table_msym.minsym)
dcf52cd8
UW
1798 return NULL;
1799
c378eb4e
MS
1800 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1801 NULL, objfile);
3b7344d5 1802 if (!ovly_buf_table_msym.minsym)
dcf52cd8
UW
1803 return NULL;
1804
77e371c0 1805 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3b7344d5 1806 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
dcf52cd8 1807
77e371c0 1808 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
3b7344d5 1809 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
dcf52cd8 1810
224c3ddb 1811 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
dcf52cd8
UW
1812 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1813
1814 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1815 objfile->sections_end - objfile->sections,
1816 struct spu_overlay_table);
1817
1818 for (i = 0; i < ovly_table_size / 16; i++)
1819 {
e17a4113
UW
1820 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1821 4, byte_order);
1822 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1823 4, byte_order);
1824 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1825 4, byte_order);
1826 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1827 4, byte_order);
dcf52cd8
UW
1828
1829 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1830 continue;
1831
1832 ALL_OBJFILE_OSECTIONS (objfile, osect)
1833 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1834 && pos == osect->the_bfd_section->filepos)
1835 {
1836 int ndx = osect - objfile->sections;
1837 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1838 tbl[ndx].mapped_val = i + 1;
1839 break;
1840 }
1841 }
1842
1843 xfree (ovly_table);
1844 set_objfile_data (objfile, spu_overlay_data, tbl);
1845 return tbl;
1846}
1847
1848/* Read _ovly_buf_table entry from the target to dermine whether
1849 OSECT is currently mapped, and update the mapped state. */
1850static void
1851spu_overlay_update_osect (struct obj_section *osect)
1852{
e17a4113
UW
1853 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1854 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8 1855 struct spu_overlay_table *ovly_table;
85e747d2 1856 CORE_ADDR id, val;
dcf52cd8
UW
1857
1858 ovly_table = spu_get_overlay_table (osect->objfile);
1859 if (!ovly_table)
1860 return;
1861
1862 ovly_table += osect - osect->objfile->sections;
1863 if (ovly_table->mapped_ptr == 0)
1864 return;
1865
85e747d2
UW
1866 id = SPUADDR_SPU (obj_section_addr (osect));
1867 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1868 4, byte_order);
dcf52cd8
UW
1869 osect->ovly_mapped = (val == ovly_table->mapped_val);
1870}
1871
1872/* If OSECT is NULL, then update all sections' mapped state.
1873 If OSECT is non-NULL, then update only OSECT's mapped state. */
1874static void
1875spu_overlay_update (struct obj_section *osect)
1876{
1877 /* Just one section. */
1878 if (osect)
1879 spu_overlay_update_osect (osect);
1880
1881 /* All sections. */
1882 else
1883 {
1884 struct objfile *objfile;
1885
1886 ALL_OBJSECTIONS (objfile, osect)
714835d5 1887 if (section_is_overlay (osect))
dcf52cd8
UW
1888 spu_overlay_update_osect (osect);
1889 }
1890}
1891
1892/* Whenever a new objfile is loaded, read the target's _ovly_table.
1893 If there is one, go through all sections and make sure for non-
1894 overlay sections LMA equals VMA, while for overlay sections LMA
d2ed6730 1895 is larger than SPU_OVERLAY_LMA. */
dcf52cd8
UW
1896static void
1897spu_overlay_new_objfile (struct objfile *objfile)
1898{
1899 struct spu_overlay_table *ovly_table;
1900 struct obj_section *osect;
1901
1902 /* If we've already touched this file, do nothing. */
1903 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1904 return;
1905
0391f248
UW
1906 /* Consider only SPU objfiles. */
1907 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1908 return;
1909
dcf52cd8
UW
1910 /* Check if this objfile has overlays. */
1911 ovly_table = spu_get_overlay_table (objfile);
1912 if (!ovly_table)
1913 return;
1914
1915 /* Now go and fiddle with all the LMAs. */
1916 ALL_OBJFILE_OSECTIONS (objfile, osect)
1917 {
dcf52cd8
UW
1918 asection *bsect = osect->the_bfd_section;
1919 int ndx = osect - objfile->sections;
1920
1921 if (ovly_table[ndx].mapped_ptr == 0)
1922 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1923 else
d2ed6730 1924 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
dcf52cd8
UW
1925 }
1926}
1927
771b4502 1928
3285f3fe
UW
1929/* Insert temporary breakpoint on "main" function of newly loaded
1930 SPE context OBJFILE. */
1931static void
1932spu_catch_start (struct objfile *objfile)
1933{
3b7344d5 1934 struct bound_minimal_symbol minsym;
43f3e411 1935 struct compunit_symtab *cust;
3285f3fe 1936 CORE_ADDR pc;
3285f3fe
UW
1937
1938 /* Do this only if requested by "set spu stop-on-load on". */
1939 if (!spu_stop_on_load_p)
1940 return;
1941
1942 /* Consider only SPU objfiles. */
1943 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1944 return;
1945
1946 /* The main objfile is handled differently. */
1947 if (objfile == symfile_objfile)
1948 return;
1949
1950 /* There can be multiple symbols named "main". Search for the
1951 "main" in *this* objfile. */
1952 minsym = lookup_minimal_symbol ("main", NULL, objfile);
3b7344d5 1953 if (!minsym.minsym)
3285f3fe
UW
1954 return;
1955
1956 /* If we have debugging information, try to use it -- this
1957 will allow us to properly skip the prologue. */
77e371c0 1958 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
43f3e411
DE
1959 cust
1960 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1961 minsym.minsym));
1962 if (cust != NULL)
3285f3fe 1963 {
43f3e411 1964 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
3285f3fe
UW
1965 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1966 struct symbol *sym;
1967 struct symtab_and_line sal;
1968
a655456c
PA
1969 sym = block_lookup_symbol (block, "main",
1970 symbol_name_match_type::SEARCH_NAME,
1971 VAR_DOMAIN);
3285f3fe
UW
1972 if (sym)
1973 {
1974 fixup_symbol_section (sym, objfile);
1975 sal = find_function_start_sal (sym, 1);
1976 pc = sal.pc;
1977 }
1978 }
1979
1980 /* Use a numerical address for the set_breakpoint command to avoid having
1981 the breakpoint re-set incorrectly. */
ffc2605c
TT
1982 event_location_up location = new_address_location (pc, NULL, 0);
1983 create_breakpoint (get_objfile_arch (objfile), location.get (),
d8c09fb5 1984 NULL /* cond_string */, -1 /* thread */,
6a609e58 1985 NULL /* extra_string */,
d8c09fb5 1986 0 /* parse_condition_and_thread */, 1 /* tempflag */,
bddaafad 1987 bp_breakpoint /* type_wanted */,
d8c09fb5
JK
1988 0 /* ignore_count */,
1989 AUTO_BOOLEAN_FALSE /* pending_break_support */,
931bb47f 1990 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
44f238bb 1991 1 /* enabled */, 0 /* internal */, 0);
3285f3fe
UW
1992}
1993
1994
ff1a52c6
UW
1995/* Look up OBJFILE loaded into FRAME's SPU context. */
1996static struct objfile *
1997spu_objfile_from_frame (struct frame_info *frame)
1998{
1999 struct gdbarch *gdbarch = get_frame_arch (frame);
2000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2001 struct objfile *obj;
2002
2003 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2004 return NULL;
2005
2006 ALL_OBJFILES (obj)
2007 {
2008 if (obj->sections != obj->sections_end
2009 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2010 return obj;
2011 }
2012
2013 return NULL;
2014}
2015
2016/* Flush cache for ea pointer access if available. */
2017static void
2018flush_ea_cache (void)
2019{
3b7344d5 2020 struct bound_minimal_symbol msymbol;
ff1a52c6
UW
2021 struct objfile *obj;
2022
2023 if (!has_stack_frames ())
2024 return;
2025
2026 obj = spu_objfile_from_frame (get_current_frame ());
2027 if (obj == NULL)
2028 return;
2029
2030 /* Lookup inferior function __cache_flush. */
2031 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
3b7344d5 2032 if (msymbol.minsym != NULL)
ff1a52c6
UW
2033 {
2034 struct type *type;
2035 CORE_ADDR addr;
2036
2037 type = objfile_type (obj)->builtin_void;
2038 type = lookup_function_type (type);
2039 type = lookup_pointer_type (type);
77e371c0 2040 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
ff1a52c6 2041
5b9f8a7c 2042 call_function_by_hand (value_from_pointer (type, addr), NULL, 0, NULL);
ff1a52c6
UW
2043 }
2044}
2045
2046/* This handler is called when the inferior has stopped. If it is stopped in
2047 SPU architecture then flush the ea cache if used. */
2048static void
2049spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2050{
2051 if (!spu_auto_flush_cache_p)
2052 return;
2053
2054 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2055 re-entering this function when __cache_flush stops. */
2056 spu_auto_flush_cache_p = 0;
2057 flush_ea_cache ();
2058 spu_auto_flush_cache_p = 1;
2059}
2060
2061
23d964e7
UW
2062/* "info spu" commands. */
2063
2064static void
e6738699 2065info_spu_event_command (const char *args, int from_tty)
23d964e7
UW
2066{
2067 struct frame_info *frame = get_selected_frame (NULL);
2068 ULONGEST event_status = 0;
2069 ULONGEST event_mask = 0;
23d964e7
UW
2070 gdb_byte buf[100];
2071 char annex[32];
2072 LONGEST len;
22e048c9 2073 int id;
23d964e7 2074
0391f248
UW
2075 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2076 error (_("\"info spu\" is only supported on the SPU architecture."));
2077
23d964e7
UW
2078 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2079
2080 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2081 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2082 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2083 if (len <= 0)
2084 error (_("Could not read event_status."));
9971ac47 2085 buf[len] = '\0';
001f13d8 2086 event_status = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2087
2088 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2089 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2090 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2091 if (len <= 0)
2092 error (_("Could not read event_mask."));
9971ac47 2093 buf[len] = '\0';
001f13d8 2094 event_mask = strtoulst ((char *) buf, NULL, 16);
23d964e7 2095
76f9c9cf 2096 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoEvent");
23d964e7 2097
112e8700 2098 if (current_uiout->is_mi_like_p ())
23d964e7 2099 {
112e8700
SM
2100 current_uiout->field_fmt ("event_status",
2101 "0x%s", phex_nz (event_status, 4));
2102 current_uiout->field_fmt ("event_mask",
2103 "0x%s", phex_nz (event_mask, 4));
23d964e7
UW
2104 }
2105 else
2106 {
2107 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2108 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2109 }
23d964e7
UW
2110}
2111
2112static void
e6738699 2113info_spu_signal_command (const char *args, int from_tty)
23d964e7
UW
2114{
2115 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2116 struct gdbarch *gdbarch = get_frame_arch (frame);
2117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2118 ULONGEST signal1 = 0;
2119 ULONGEST signal1_type = 0;
2120 int signal1_pending = 0;
2121 ULONGEST signal2 = 0;
2122 ULONGEST signal2_type = 0;
2123 int signal2_pending = 0;
23d964e7
UW
2124 char annex[32];
2125 gdb_byte buf[100];
2126 LONGEST len;
22e048c9 2127 int id;
23d964e7 2128
e17a4113 2129 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2130 error (_("\"info spu\" is only supported on the SPU architecture."));
2131
23d964e7
UW
2132 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2133
2134 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2135 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2136 if (len < 0)
2137 error (_("Could not read signal1."));
2138 else if (len == 4)
2139 {
e17a4113 2140 signal1 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2141 signal1_pending = 1;
2142 }
2143
2144 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2145 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2146 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2147 if (len <= 0)
2148 error (_("Could not read signal1_type."));
9971ac47 2149 buf[len] = '\0';
001f13d8 2150 signal1_type = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2151
2152 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2153 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2154 if (len < 0)
2155 error (_("Could not read signal2."));
2156 else if (len == 4)
2157 {
e17a4113 2158 signal2 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2159 signal2_pending = 1;
2160 }
2161
2162 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2163 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2164 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2165 if (len <= 0)
2166 error (_("Could not read signal2_type."));
9971ac47 2167 buf[len] = '\0';
001f13d8 2168 signal2_type = strtoulst ((char *) buf, NULL, 16);
23d964e7 2169
76f9c9cf 2170 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoSignal");
23d964e7 2171
112e8700 2172 if (current_uiout->is_mi_like_p ())
23d964e7 2173 {
112e8700
SM
2174 current_uiout->field_int ("signal1_pending", signal1_pending);
2175 current_uiout->field_fmt ("signal1", "0x%s", phex_nz (signal1, 4));
2176 current_uiout->field_int ("signal1_type", signal1_type);
2177 current_uiout->field_int ("signal2_pending", signal2_pending);
2178 current_uiout->field_fmt ("signal2", "0x%s", phex_nz (signal2, 4));
2179 current_uiout->field_int ("signal2_type", signal2_type);
23d964e7
UW
2180 }
2181 else
2182 {
2183 if (signal1_pending)
2184 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2185 else
2186 printf_filtered (_("Signal 1 not pending "));
2187
2188 if (signal1_type)
23d964e7 2189 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2190 else
2191 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2192
2193 if (signal2_pending)
2194 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2195 else
2196 printf_filtered (_("Signal 2 not pending "));
2197
2198 if (signal2_type)
23d964e7 2199 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2200 else
2201 printf_filtered (_("(Type Overwrite)\n"));
23d964e7 2202 }
23d964e7
UW
2203}
2204
2205static void
e17a4113 2206info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
23d964e7
UW
2207 const char *field, const char *msg)
2208{
23d964e7
UW
2209 int i;
2210
2211 if (nr <= 0)
2212 return;
2213
dc9fe180 2214 ui_out_emit_table table_emitter (current_uiout, 1, nr, "mbox");
23d964e7 2215
112e8700
SM
2216 current_uiout->table_header (32, ui_left, field, msg);
2217 current_uiout->table_body ();
23d964e7
UW
2218
2219 for (i = 0; i < nr; i++)
2220 {
dc9fe180
TT
2221 {
2222 ULONGEST val;
2223 ui_out_emit_tuple tuple_emitter (current_uiout, "mbox");
2224 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2225 current_uiout->field_fmt (field, "0x%s", phex (val, 4));
2226 }
23d964e7 2227
112e8700 2228 if (!current_uiout->is_mi_like_p ())
23d964e7
UW
2229 printf_filtered ("\n");
2230 }
23d964e7
UW
2231}
2232
2233static void
e6738699 2234info_spu_mailbox_command (const char *args, int from_tty)
23d964e7
UW
2235{
2236 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2237 struct gdbarch *gdbarch = get_frame_arch (frame);
2238 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2239 char annex[32];
2240 gdb_byte buf[1024];
2241 LONGEST len;
22e048c9 2242 int id;
23d964e7 2243
e17a4113 2244 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2245 error (_("\"info spu\" is only supported on the SPU architecture."));
2246
23d964e7
UW
2247 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2248
76f9c9cf 2249 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoMailbox");
23d964e7
UW
2250
2251 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2252 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2253 buf, 0, sizeof buf);
2254 if (len < 0)
2255 error (_("Could not read mbox_info."));
2256
e17a4113
UW
2257 info_spu_mailbox_list (buf, len / 4, byte_order,
2258 "mbox", "SPU Outbound Mailbox");
23d964e7
UW
2259
2260 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2261 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2262 buf, 0, sizeof buf);
2263 if (len < 0)
2264 error (_("Could not read ibox_info."));
2265
e17a4113
UW
2266 info_spu_mailbox_list (buf, len / 4, byte_order,
2267 "ibox", "SPU Outbound Interrupt Mailbox");
23d964e7
UW
2268
2269 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2270 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2271 buf, 0, sizeof buf);
2272 if (len < 0)
2273 error (_("Could not read wbox_info."));
2274
e17a4113
UW
2275 info_spu_mailbox_list (buf, len / 4, byte_order,
2276 "wbox", "SPU Inbound Mailbox");
23d964e7
UW
2277}
2278
2279static ULONGEST
2280spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2281{
2282 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2283 return (word >> (63 - last)) & mask;
2284}
2285
2286static void
e17a4113 2287info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
23d964e7 2288{
a121b7c1 2289 static const char *spu_mfc_opcode[256] =
23d964e7
UW
2290 {
2291 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2292 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2293 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2294 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2295 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2296 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2297 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2298 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2299 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2300 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2301 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2302 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2303 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2304 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2305 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2306 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2307 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2308 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2309 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2310 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2311 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2312 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2313 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2314 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2315 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2316 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2317 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2318 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2319 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2320 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2321 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2322 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2323 };
2324
8d749320 2325 int *seq = XALLOCAVEC (int, nr);
12ab8a60 2326 int done = 0;
12ab8a60
UW
2327 int i, j;
2328
2329
2330 /* Determine sequence in which to display (valid) entries. */
2331 for (i = 0; i < nr; i++)
2332 {
2333 /* Search for the first valid entry all of whose
2334 dependencies are met. */
2335 for (j = 0; j < nr; j++)
2336 {
2337 ULONGEST mfc_cq_dw3;
2338 ULONGEST dependencies;
2339
2340 if (done & (1 << (nr - 1 - j)))
2341 continue;
2342
e17a4113
UW
2343 mfc_cq_dw3
2344 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
12ab8a60
UW
2345 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2346 continue;
2347
2348 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2349 if ((dependencies & done) != dependencies)
2350 continue;
2351
2352 seq[i] = j;
2353 done |= 1 << (nr - 1 - j);
2354 break;
2355 }
2356
2357 if (j == nr)
2358 break;
2359 }
2360
2361 nr = i;
2362
23d964e7 2363
dc9fe180 2364 ui_out_emit_table table_emitter (current_uiout, 10, nr, "dma_cmd");
23d964e7 2365
112e8700
SM
2366 current_uiout->table_header (7, ui_left, "opcode", "Opcode");
2367 current_uiout->table_header (3, ui_left, "tag", "Tag");
2368 current_uiout->table_header (3, ui_left, "tid", "TId");
2369 current_uiout->table_header (3, ui_left, "rid", "RId");
2370 current_uiout->table_header (18, ui_left, "ea", "EA");
2371 current_uiout->table_header (7, ui_left, "lsa", "LSA");
2372 current_uiout->table_header (7, ui_left, "size", "Size");
2373 current_uiout->table_header (7, ui_left, "lstaddr", "LstAddr");
2374 current_uiout->table_header (7, ui_left, "lstsize", "LstSize");
2375 current_uiout->table_header (1, ui_left, "error_p", "E");
23d964e7 2376
112e8700 2377 current_uiout->table_body ();
23d964e7
UW
2378
2379 for (i = 0; i < nr; i++)
2380 {
23d964e7
UW
2381 ULONGEST mfc_cq_dw0;
2382 ULONGEST mfc_cq_dw1;
2383 ULONGEST mfc_cq_dw2;
23d964e7 2384 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
22e048c9 2385 int list_lsa, list_size, mfc_lsa, mfc_size;
23d964e7 2386 ULONGEST mfc_ea;
870f88f7 2387 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
23d964e7
UW
2388
2389 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2390 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2391
e17a4113
UW
2392 mfc_cq_dw0
2393 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2394 mfc_cq_dw1
2395 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2396 mfc_cq_dw2
2397 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
23d964e7
UW
2398
2399 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2400 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2401 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2402 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2403 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2404 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2405 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2406
2407 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2408 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2409
2410 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2411 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
23d964e7
UW
2412 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2413 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2414 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2415
dc9fe180
TT
2416 {
2417 ui_out_emit_tuple tuple_emitter (current_uiout, "cmd");
23d964e7 2418
dc9fe180
TT
2419 if (spu_mfc_opcode[mfc_cmd_opcode])
2420 current_uiout->field_string ("opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2421 else
2422 current_uiout->field_int ("opcode", mfc_cmd_opcode);
23d964e7 2423
dc9fe180
TT
2424 current_uiout->field_int ("tag", mfc_cmd_tag);
2425 current_uiout->field_int ("tid", tclass_id);
2426 current_uiout->field_int ("rid", rclass_id);
23d964e7 2427
dc9fe180
TT
2428 if (ea_valid_p)
2429 current_uiout->field_fmt ("ea", "0x%s", phex (mfc_ea, 8));
2430 else
2431 current_uiout->field_skip ("ea");
23d964e7 2432
dc9fe180
TT
2433 current_uiout->field_fmt ("lsa", "0x%05x", mfc_lsa << 4);
2434 if (qw_valid_p)
2435 current_uiout->field_fmt ("size", "0x%05x", mfc_size << 4);
2436 else
2437 current_uiout->field_fmt ("size", "0x%05x", mfc_size);
23d964e7 2438
dc9fe180
TT
2439 if (list_valid_p)
2440 {
2441 current_uiout->field_fmt ("lstaddr", "0x%05x", list_lsa << 3);
2442 current_uiout->field_fmt ("lstsize", "0x%05x", list_size << 3);
2443 }
2444 else
2445 {
2446 current_uiout->field_skip ("lstaddr");
2447 current_uiout->field_skip ("lstsize");
2448 }
23d964e7 2449
dc9fe180
TT
2450 if (cmd_error_p)
2451 current_uiout->field_string ("error_p", "*");
2452 else
2453 current_uiout->field_skip ("error_p");
2454 }
23d964e7 2455
112e8700 2456 if (!current_uiout->is_mi_like_p ())
23d964e7
UW
2457 printf_filtered ("\n");
2458 }
23d964e7
UW
2459}
2460
2461static void
e6738699 2462info_spu_dma_command (const char *args, int from_tty)
23d964e7
UW
2463{
2464 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2465 struct gdbarch *gdbarch = get_frame_arch (frame);
2466 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2467 ULONGEST dma_info_type;
2468 ULONGEST dma_info_mask;
2469 ULONGEST dma_info_status;
2470 ULONGEST dma_info_stall_and_notify;
2471 ULONGEST dma_info_atomic_command_status;
23d964e7
UW
2472 char annex[32];
2473 gdb_byte buf[1024];
2474 LONGEST len;
22e048c9 2475 int id;
23d964e7 2476
0391f248
UW
2477 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2478 error (_("\"info spu\" is only supported on the SPU architecture."));
2479
23d964e7
UW
2480 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2481
2482 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2483 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2484 buf, 0, 40 + 16 * 32);
2485 if (len <= 0)
2486 error (_("Could not read dma_info."));
2487
e17a4113
UW
2488 dma_info_type
2489 = extract_unsigned_integer (buf, 8, byte_order);
2490 dma_info_mask
2491 = extract_unsigned_integer (buf + 8, 8, byte_order);
2492 dma_info_status
2493 = extract_unsigned_integer (buf + 16, 8, byte_order);
2494 dma_info_stall_and_notify
2495 = extract_unsigned_integer (buf + 24, 8, byte_order);
2496 dma_info_atomic_command_status
2497 = extract_unsigned_integer (buf + 32, 8, byte_order);
23d964e7 2498
76f9c9cf 2499 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoDMA");
23d964e7 2500
112e8700 2501 if (current_uiout->is_mi_like_p ())
23d964e7 2502 {
112e8700
SM
2503 current_uiout->field_fmt ("dma_info_type", "0x%s",
2504 phex_nz (dma_info_type, 4));
2505 current_uiout->field_fmt ("dma_info_mask", "0x%s",
2506 phex_nz (dma_info_mask, 4));
2507 current_uiout->field_fmt ("dma_info_status", "0x%s",
2508 phex_nz (dma_info_status, 4));
2509 current_uiout->field_fmt ("dma_info_stall_and_notify", "0x%s",
2510 phex_nz (dma_info_stall_and_notify, 4));
2511 current_uiout->field_fmt ("dma_info_atomic_command_status", "0x%s",
2512 phex_nz (dma_info_atomic_command_status, 4));
23d964e7
UW
2513 }
2514 else
2515 {
8fbde58b 2516 const char *query_msg = _("no query pending");
23d964e7 2517
8fbde58b
UW
2518 if (dma_info_type & 4)
2519 switch (dma_info_type & 3)
2520 {
2521 case 1: query_msg = _("'any' query pending"); break;
2522 case 2: query_msg = _("'all' query pending"); break;
2523 default: query_msg = _("undefined query type"); break;
2524 }
23d964e7
UW
2525
2526 printf_filtered (_("Tag-Group Status 0x%s\n"),
2527 phex (dma_info_status, 4));
2528 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2529 phex (dma_info_mask, 4), query_msg);
2530 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2531 phex (dma_info_stall_and_notify, 4));
2532 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2533 phex (dma_info_atomic_command_status, 4));
2534 printf_filtered ("\n");
2535 }
2536
e17a4113 2537 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
23d964e7
UW
2538}
2539
2540static void
e6738699 2541info_spu_proxydma_command (const char *args, int from_tty)
23d964e7
UW
2542{
2543 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2544 struct gdbarch *gdbarch = get_frame_arch (frame);
2545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2546 ULONGEST dma_info_type;
2547 ULONGEST dma_info_mask;
2548 ULONGEST dma_info_status;
23d964e7
UW
2549 char annex[32];
2550 gdb_byte buf[1024];
2551 LONGEST len;
22e048c9 2552 int id;
23d964e7 2553
e17a4113 2554 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2555 error (_("\"info spu\" is only supported on the SPU architecture."));
2556
23d964e7
UW
2557 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2558
2559 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2560 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2561 buf, 0, 24 + 8 * 32);
2562 if (len <= 0)
2563 error (_("Could not read proxydma_info."));
2564
e17a4113
UW
2565 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2566 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2567 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
23d964e7 2568
76f9c9cf 2569 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoProxyDMA");
23d964e7 2570
112e8700 2571 if (current_uiout->is_mi_like_p ())
23d964e7 2572 {
112e8700
SM
2573 current_uiout->field_fmt ("proxydma_info_type", "0x%s",
2574 phex_nz (dma_info_type, 4));
2575 current_uiout->field_fmt ("proxydma_info_mask", "0x%s",
2576 phex_nz (dma_info_mask, 4));
2577 current_uiout->field_fmt ("proxydma_info_status", "0x%s",
2578 phex_nz (dma_info_status, 4));
23d964e7
UW
2579 }
2580 else
2581 {
2582 const char *query_msg;
2583
8fbde58b 2584 switch (dma_info_type & 3)
23d964e7
UW
2585 {
2586 case 0: query_msg = _("no query pending"); break;
2587 case 1: query_msg = _("'any' query pending"); break;
2588 case 2: query_msg = _("'all' query pending"); break;
2589 default: query_msg = _("undefined query type"); break;
2590 }
2591
2592 printf_filtered (_("Tag-Group Status 0x%s\n"),
2593 phex (dma_info_status, 4));
2594 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2595 phex (dma_info_mask, 4), query_msg);
2596 printf_filtered ("\n");
2597 }
2598
e17a4113 2599 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
23d964e7
UW
2600}
2601
2602static void
981a3fb3 2603info_spu_command (const char *args, int from_tty)
23d964e7 2604{
c378eb4e
MS
2605 printf_unfiltered (_("\"info spu\" must be followed by "
2606 "the name of an SPU facility.\n"));
635c7e8a 2607 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
23d964e7
UW
2608}
2609
2610
3285f3fe
UW
2611/* Root of all "set spu "/"show spu " commands. */
2612
2613static void
981a3fb3 2614show_spu_command (const char *args, int from_tty)
3285f3fe
UW
2615{
2616 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2617}
2618
2619static void
981a3fb3 2620set_spu_command (const char *args, int from_tty)
3285f3fe
UW
2621{
2622 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2623}
2624
2625static void
2626show_spu_stop_on_load (struct ui_file *file, int from_tty,
2627 struct cmd_list_element *c, const char *value)
2628{
2629 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2630 value);
2631}
2632
ff1a52c6
UW
2633static void
2634show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2635 struct cmd_list_element *c, const char *value)
2636{
2637 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2638 value);
2639}
2640
3285f3fe 2641
771b4502
UW
2642/* Set up gdbarch struct. */
2643
2644static struct gdbarch *
2645spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2646{
2647 struct gdbarch *gdbarch;
794ac428 2648 struct gdbarch_tdep *tdep;
85e747d2
UW
2649 int id = -1;
2650
2651 /* Which spufs ID was requested as address space? */
0dba2a6c
MR
2652 if (info.id)
2653 id = *info.id;
85e747d2
UW
2654 /* For objfile architectures of SPU solibs, decode the ID from the name.
2655 This assumes the filename convention employed by solib-spu.c. */
2656 else if (info.abfd)
2657 {
53e78085 2658 const char *name = strrchr (info.abfd->filename, '@');
85e747d2
UW
2659 if (name)
2660 sscanf (name, "@0x%*x <%d>", &id);
2661 }
771b4502 2662
85e747d2
UW
2663 /* Find a candidate among extant architectures. */
2664 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2665 arches != NULL;
2666 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2667 {
2668 tdep = gdbarch_tdep (arches->gdbarch);
2669 if (tdep && tdep->id == id)
2670 return arches->gdbarch;
2671 }
771b4502 2672
85e747d2 2673 /* None found, so create a new architecture. */
fc270c35 2674 tdep = XCNEW (struct gdbarch_tdep);
85e747d2 2675 tdep->id = id;
794ac428 2676 gdbarch = gdbarch_alloc (&info, tdep);
771b4502
UW
2677
2678 /* Disassembler. */
85e747d2 2679 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
771b4502
UW
2680
2681 /* Registers. */
2682 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2683 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2684 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2685 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
118dfbaf
UW
2686 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2687 set_gdbarch_write_pc (gdbarch, spu_write_pc);
771b4502
UW
2688 set_gdbarch_register_name (gdbarch, spu_register_name);
2689 set_gdbarch_register_type (gdbarch, spu_register_type);
2690 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2691 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
9acbedc0 2692 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
771b4502 2693 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
7ce16bd4
UW
2694 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2695 set_gdbarch_ax_pseudo_register_collect
2696 (gdbarch, spu_ax_pseudo_register_collect);
2697 set_gdbarch_ax_pseudo_register_push_stack
2698 (gdbarch, spu_ax_pseudo_register_push_stack);
771b4502
UW
2699
2700 /* Data types. */
2701 set_gdbarch_char_signed (gdbarch, 0);
2702 set_gdbarch_ptr_bit (gdbarch, 32);
2703 set_gdbarch_addr_bit (gdbarch, 32);
2704 set_gdbarch_short_bit (gdbarch, 16);
2705 set_gdbarch_int_bit (gdbarch, 32);
2706 set_gdbarch_long_bit (gdbarch, 32);
2707 set_gdbarch_long_long_bit (gdbarch, 64);
2708 set_gdbarch_float_bit (gdbarch, 32);
2709 set_gdbarch_double_bit (gdbarch, 64);
2710 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4
DJ
2711 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2712 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2713 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
771b4502 2714
ff1a52c6 2715 /* Address handling. */
85e747d2 2716 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
36acd84e
UW
2717 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2718 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
ff1a52c6
UW
2719 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2720 set_gdbarch_address_class_type_flags_to_name
2721 (gdbarch, spu_address_class_type_flags_to_name);
2722 set_gdbarch_address_class_name_to_type_flags
2723 (gdbarch, spu_address_class_name_to_type_flags);
2724
396d3980
UW
2725 /* We need to support more than "addr_bit" significant address bits
2726 in order to support SPUADDR_ADDR encoded values. */
2727 set_gdbarch_significant_addr_bit (gdbarch, 64);
36acd84e 2728
771b4502 2729 /* Inferior function calls. */
7b3dc0b7
UW
2730 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2731 set_gdbarch_frame_align (gdbarch, spu_frame_align);
5141027d 2732 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
87805e63 2733 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
771b4502 2734 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
8d998b8f 2735 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
771b4502
UW
2736 set_gdbarch_return_value (gdbarch, spu_return_value);
2737
2738 /* Frame handling. */
2739 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7ce16bd4 2740 dwarf2_append_unwinders (gdbarch);
8d998b8f 2741 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
771b4502
UW
2742 frame_base_set_default (gdbarch, &spu_frame_base);
2743 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2744 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2745 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2746 set_gdbarch_frame_args_skip (gdbarch, 0);
2747 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
c9cf6e20 2748 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
771b4502 2749
cc5f0d61
UW
2750 /* Cell/B.E. cross-architecture unwinder support. */
2751 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2752
771b4502
UW
2753 /* Breakpoints. */
2754 set_gdbarch_decr_pc_after_break (gdbarch, 4);
04180708
YQ
2755 set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
2756 set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
d03285ec 2757 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
771b4502 2758 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
6e3f70d7 2759 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
771b4502 2760
dcf52cd8
UW
2761 /* Overlays. */
2762 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2763
771b4502
UW
2764 return gdbarch;
2765}
2766
2767void
2768_initialize_spu_tdep (void)
2769{
2770 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
f2d43c2c 2771
dcf52cd8
UW
2772 /* Add ourselves to objfile event chain. */
2773 observer_attach_new_objfile (spu_overlay_new_objfile);
2774 spu_overlay_data = register_objfile_data ();
23d964e7 2775
3285f3fe
UW
2776 /* Install spu stop-on-load handler. */
2777 observer_attach_new_objfile (spu_catch_start);
2778
ff1a52c6
UW
2779 /* Add ourselves to normal_stop event chain. */
2780 observer_attach_normal_stop (spu_attach_normal_stop);
2781
3285f3fe
UW
2782 /* Add root prefix command for all "set spu"/"show spu" commands. */
2783 add_prefix_cmd ("spu", no_class, set_spu_command,
2784 _("Various SPU specific commands."),
2785 &setspucmdlist, "set spu ", 0, &setlist);
2786 add_prefix_cmd ("spu", no_class, show_spu_command,
2787 _("Various SPU specific commands."),
2788 &showspucmdlist, "show spu ", 0, &showlist);
2789
2790 /* Toggle whether or not to add a temporary breakpoint at the "main"
2791 function of new SPE contexts. */
2792 add_setshow_boolean_cmd ("stop-on-load", class_support,
2793 &spu_stop_on_load_p, _("\
2794Set whether to stop for new SPE threads."),
2795 _("\
2796Show whether to stop for new SPE threads."),
2797 _("\
2798Use \"on\" to give control to the user when a new SPE thread\n\
2799enters its \"main\" function.\n\
2800Use \"off\" to disable stopping for new SPE threads."),
2801 NULL,
2802 show_spu_stop_on_load,
2803 &setspucmdlist, &showspucmdlist);
2804
ff1a52c6
UW
2805 /* Toggle whether or not to automatically flush the software-managed
2806 cache whenever SPE execution stops. */
2807 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2808 &spu_auto_flush_cache_p, _("\
2809Set whether to automatically flush the software-managed cache."),
2810 _("\
2811Show whether to automatically flush the software-managed cache."),
2812 _("\
2813Use \"on\" to automatically flush the software-managed cache\n\
2814whenever SPE execution stops.\n\
2815Use \"off\" to never automatically flush the software-managed cache."),
2816 NULL,
2817 show_spu_auto_flush_cache,
2818 &setspucmdlist, &showspucmdlist);
2819
23d964e7
UW
2820 /* Add root prefix command for all "info spu" commands. */
2821 add_prefix_cmd ("spu", class_info, info_spu_command,
2822 _("Various SPU specific commands."),
2823 &infospucmdlist, "info spu ", 0, &infolist);
2824
2825 /* Add various "info spu" commands. */
2826 add_cmd ("event", class_info, info_spu_event_command,
2827 _("Display SPU event facility status.\n"),
2828 &infospucmdlist);
2829 add_cmd ("signal", class_info, info_spu_signal_command,
2830 _("Display SPU signal notification facility status.\n"),
2831 &infospucmdlist);
2832 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2833 _("Display SPU mailbox facility status.\n"),
2834 &infospucmdlist);
2835 add_cmd ("dma", class_info, info_spu_dma_command,
2836 _("Display MFC DMA status.\n"),
2837 &infospucmdlist);
2838 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2839 _("Display MFC Proxy-DMA status.\n"),
2840 &infospucmdlist);
771b4502 2841}
This page took 1.394891 seconds and 4 git commands to generate.