Use new %p format suffixes in gdb
[deliverable/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
42a4f53d 3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20/* Support routines for reading and decoding debugging information in
1736a7bd
PA
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
c906108c
SS
26
27#include "defs.h"
c906108c 28#include "bfd.h"
04ea0df1 29#include "gdb_obstack.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "expression.h"
33#include "symfile.h"
34#include "objfiles.h"
3e43a32a 35#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
36#include "libaout.h"
37#include "aout/aout64.h"
38#include "gdb-stabs.h"
0baae8db 39#include "buildsym-legacy.h"
c906108c
SS
40#include "complaints.h"
41#include "demangle.h"
50f182aa 42#include "gdb-demangle.h"
c906108c 43#include "language.h"
f69fdf9b 44#include "target-float.h"
de17c821
DJ
45#include "cp-abi.h"
46#include "cp-support.h"
c906108c
SS
47#include <ctype.h>
48
d65d5705
TT
49#include "stabsread.h"
50
51/* See stabsread.h for these globals. */
52unsigned int symnum;
53const char *(*next_symbol_text_func) (struct objfile *);
54unsigned char processing_gcc_compilation;
55int within_function;
56struct symbol *global_sym_chain[HASHSIZE];
57struct pending_stabs *global_stabs;
58int previous_stab_code;
59int *this_object_header_files;
60int n_this_object_header_files;
61int n_allocated_this_object_header_files;
c906108c 62
52059ffd
TT
63struct nextfield
64{
65 struct nextfield *next;
66
67 /* This is the raw visibility from the stab. It is not checked
68 for being one of the visibilities we recognize, so code which
69 examines this field better be able to deal. */
70 int visibility;
71
72 struct field field;
73};
74
75struct next_fnfieldlist
76{
77 struct next_fnfieldlist *next;
78 struct fn_fieldlist fn_fieldlist;
79};
80
c906108c
SS
81/* The routines that read and process a complete stabs for a C struct or
82 C++ class pass lists of data member fields and lists of member function
83 fields in an instance of a field_info structure, as defined below.
84 This is part of some reorganization of low level C++ support and is
c378eb4e 85 expected to eventually go away... (FIXME) */
c906108c 86
61b30099 87struct stab_field_info
c5aa993b 88 {
61b30099
TT
89 struct nextfield *list = nullptr;
90 struct next_fnfieldlist *fnlist = nullptr;
91
92 auto_obstack obstack;
c5aa993b 93 };
c906108c
SS
94
95static void
61b30099 96read_one_struct_field (struct stab_field_info *, const char **, const char *,
a14ed312 97 struct type *, struct objfile *);
c906108c 98
a14ed312 99static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 100
a121b7c1 101static long read_huge_number (const char **, int, int *, int);
c906108c 102
a121b7c1 103static struct type *error_type (const char **, struct objfile *);
c906108c
SS
104
105static void
a14ed312
KB
106patch_block_stabs (struct pending *, struct pending_stabs *,
107 struct objfile *);
c906108c 108
46cb6474 109static void fix_common_block (struct symbol *, CORE_ADDR);
c906108c 110
a121b7c1 111static int read_type_number (const char **, int *);
c906108c 112
a121b7c1 113static struct type *read_type (const char **, struct objfile *);
a7a48797 114
a121b7c1
PA
115static struct type *read_range_type (const char **, int[2],
116 int, struct objfile *);
c906108c 117
a121b7c1
PA
118static struct type *read_sun_builtin_type (const char **,
119 int[2], struct objfile *);
c906108c 120
a121b7c1 121static struct type *read_sun_floating_type (const char **, int[2],
a14ed312 122 struct objfile *);
c906108c 123
a121b7c1 124static struct type *read_enum_type (const char **, struct type *, struct objfile *);
c906108c 125
46bf5051 126static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
127
128static int
61b30099 129read_member_functions (struct stab_field_info *, const char **, struct type *,
a14ed312 130 struct objfile *);
c906108c
SS
131
132static int
61b30099 133read_struct_fields (struct stab_field_info *, const char **, struct type *,
a14ed312 134 struct objfile *);
c906108c
SS
135
136static int
61b30099 137read_baseclasses (struct stab_field_info *, const char **, struct type *,
a14ed312 138 struct objfile *);
c906108c
SS
139
140static int
61b30099 141read_tilde_fields (struct stab_field_info *, const char **, struct type *,
a14ed312 142 struct objfile *);
c906108c 143
61b30099 144static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
c906108c 145
61b30099 146static int attach_fields_to_type (struct stab_field_info *, struct type *,
570b8f7c 147 struct objfile *);
c906108c 148
a121b7c1 149static struct type *read_struct_type (const char **, struct type *,
2ae1c2d2 150 enum type_code,
a14ed312 151 struct objfile *);
c906108c 152
a121b7c1 153static struct type *read_array_type (const char **, struct type *,
a14ed312 154 struct objfile *);
c906108c 155
a121b7c1
PA
156static struct field *read_args (const char **, int, struct objfile *,
157 int *, int *);
c906108c 158
bf362611 159static void add_undefined_type (struct type *, int[2]);
a7a48797 160
c906108c 161static int
61b30099 162read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
a14ed312 163 struct objfile *);
c906108c 164
a121b7c1 165static const char *find_name_end (const char *name);
7e1d63ec 166
a121b7c1 167static int process_reference (const char **string);
c906108c 168
a14ed312 169void stabsread_clear_cache (void);
7be570e7 170
8343f86c
DJ
171static const char vptr_name[] = "_vptr$";
172static const char vb_name[] = "_vb$";
c906108c 173
23136709
KB
174static void
175invalid_cpp_abbrev_complaint (const char *arg1)
176{
b98664d3 177 complaint (_("invalid C++ abbreviation `%s'"), arg1);
23136709 178}
c906108c 179
23136709 180static void
49b0b195 181reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709 182{
b98664d3 183 complaint (_("bad register number %d (max %d) in symbol %s"),
49b0b195 184 regnum, num_regs - 1, sym);
23136709 185}
c906108c 186
23136709
KB
187static void
188stabs_general_complaint (const char *arg1)
189{
b98664d3 190 complaint ("%s", arg1);
23136709 191}
c906108c 192
c906108c
SS
193/* Make a list of forward references which haven't been defined. */
194
195static struct type **undef_types;
196static int undef_types_allocated;
197static int undef_types_length;
198static struct symbol *current_symbol = NULL;
199
bf362611
JB
200/* Make a list of nameless types that are undefined.
201 This happens when another type is referenced by its number
c378eb4e 202 before this type is actually defined. For instance "t(0,1)=k(0,2)"
bf362611
JB
203 and type (0,2) is defined only later. */
204
205struct nat
206{
207 int typenums[2];
208 struct type *type;
209};
210static struct nat *noname_undefs;
211static int noname_undefs_allocated;
212static int noname_undefs_length;
213
c906108c
SS
214/* Check for and handle cretinous stabs symbol name continuation! */
215#define STABS_CONTINUE(pp,objfile) \
216 do { \
217 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
218 *(pp) = next_symbol_text (objfile); \
219 } while (0)
fc474241
DE
220
221/* Vector of types defined so far, indexed by their type numbers.
222 (In newer sun systems, dbx uses a pair of numbers in parens,
223 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
224 Then these numbers must be translated through the type_translations
225 hash table to get the index into the type vector.) */
226
227static struct type **type_vector;
228
229/* Number of elements allocated for type_vector currently. */
230
231static int type_vector_length;
232
233/* Initial size of type vector. Is realloc'd larger if needed, and
234 realloc'd down to the size actually used, when completed. */
235
236#define INITIAL_TYPE_VECTOR_LENGTH 160
c906108c 237\f
c906108c
SS
238
239/* Look up a dbx type-number pair. Return the address of the slot
240 where the type for that number-pair is stored.
241 The number-pair is in TYPENUMS.
242
243 This can be used for finding the type associated with that pair
244 or for associating a new type with the pair. */
245
a7a48797 246static struct type **
46bf5051 247dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 248{
52f0bd74
AC
249 int filenum = typenums[0];
250 int index = typenums[1];
c906108c 251 unsigned old_len;
52f0bd74
AC
252 int real_filenum;
253 struct header_file *f;
c906108c
SS
254 int f_orig_length;
255
256 if (filenum == -1) /* -1,-1 is for temporary types. */
257 return 0;
258
259 if (filenum < 0 || filenum >= n_this_object_header_files)
260 {
b98664d3 261 complaint (_("Invalid symbol data: type number "
3e43a32a 262 "(%d,%d) out of range at symtab pos %d."),
23136709 263 filenum, index, symnum);
c906108c
SS
264 goto error_return;
265 }
266
267 if (filenum == 0)
268 {
269 if (index < 0)
270 {
271 /* Caller wants address of address of type. We think
272 that negative (rs6k builtin) types will never appear as
273 "lvalues", (nor should they), so we stuff the real type
274 pointer into a temp, and return its address. If referenced,
275 this will do the right thing. */
276 static struct type *temp_type;
277
46bf5051 278 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
279 return &temp_type;
280 }
281
282 /* Type is defined outside of header files.
c5aa993b 283 Find it in this object file's type vector. */
c906108c
SS
284 if (index >= type_vector_length)
285 {
286 old_len = type_vector_length;
287 if (old_len == 0)
288 {
289 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
8d749320 290 type_vector = XNEWVEC (struct type *, type_vector_length);
c906108c
SS
291 }
292 while (index >= type_vector_length)
293 {
294 type_vector_length *= 2;
295 }
296 type_vector = (struct type **)
297 xrealloc ((char *) type_vector,
298 (type_vector_length * sizeof (struct type *)));
299 memset (&type_vector[old_len], 0,
300 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
301 }
302 return (&type_vector[index]);
303 }
304 else
305 {
306 real_filenum = this_object_header_files[filenum];
307
46bf5051 308 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 309 {
46bf5051 310 static struct type *temp_type;
c906108c 311
8a3fe4f8 312 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
313
314 error_return:
46bf5051
UW
315 temp_type = objfile_type (objfile)->builtin_error;
316 return &temp_type;
c906108c
SS
317 }
318
46bf5051 319 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
320
321 f_orig_length = f->length;
322 if (index >= f_orig_length)
323 {
324 while (index >= f->length)
325 {
326 f->length *= 2;
327 }
328 f->vector = (struct type **)
329 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
330 memset (&f->vector[f_orig_length], 0,
331 (f->length - f_orig_length) * sizeof (struct type *));
332 }
333 return (&f->vector[index]);
334 }
335}
336
337/* Make sure there is a type allocated for type numbers TYPENUMS
338 and return the type object.
339 This can create an empty (zeroed) type object.
340 TYPENUMS may be (-1, -1) to return a new type object that is not
c378eb4e 341 put into the type vector, and so may not be referred to by number. */
c906108c
SS
342
343static struct type *
35a2f538 344dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 345{
52f0bd74 346 struct type **type_addr;
c906108c
SS
347
348 if (typenums[0] == -1)
349 {
350 return (alloc_type (objfile));
351 }
352
46bf5051 353 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
354
355 /* If we are referring to a type not known at all yet,
356 allocate an empty type for it.
357 We will fill it in later if we find out how. */
358 if (*type_addr == 0)
359 {
360 *type_addr = alloc_type (objfile);
361 }
362
363 return (*type_addr);
364}
365
9b790ce7
UW
366/* Allocate a floating-point type of size BITS. */
367
368static struct type *
369dbx_init_float_type (struct objfile *objfile, int bits)
370{
371 struct gdbarch *gdbarch = get_objfile_arch (objfile);
372 const struct floatformat **format;
373 struct type *type;
374
375 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
376 if (format)
377 type = init_float_type (objfile, bits, NULL, format);
378 else
77b7c781 379 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
9b790ce7
UW
380
381 return type;
382}
383
c906108c 384/* for all the stabs in a given stab vector, build appropriate types
c378eb4e 385 and fix their symbols in given symbol vector. */
c906108c
SS
386
387static void
fba45db2
KB
388patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
389 struct objfile *objfile)
c906108c
SS
390{
391 int ii;
392 char *name;
a121b7c1 393 const char *pp;
c906108c
SS
394 struct symbol *sym;
395
396 if (stabs)
397 {
c906108c 398 /* for all the stab entries, find their corresponding symbols and
c378eb4e 399 patch their types! */
c5aa993b 400
c906108c
SS
401 for (ii = 0; ii < stabs->count; ++ii)
402 {
403 name = stabs->stab[ii];
c5aa993b 404 pp = (char *) strchr (name, ':');
8fb822e0 405 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
406 while (pp[1] == ':')
407 {
c5aa993b
JM
408 pp += 2;
409 pp = (char *) strchr (pp, ':');
c906108c 410 }
c5aa993b 411 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
412 if (!sym)
413 {
414 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
415 the variable was defined *anywhere*, not just whether
416 it is defined in this compilation unit. But neither
417 xlc or GCC seem to need such a definition, and until
418 we do psymtabs (so that the minimal symbols from all
419 compilation units are available now), I'm not sure
420 how to get the information. */
c906108c
SS
421
422 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
423 ld will remove it from the executable. There is then
424 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
e623cf5d 425 sym = allocate_symbol (objfile);
176620f1 426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 427 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
3567439c 428 SYMBOL_SET_LINKAGE_NAME
0cf9feb9
TT
429 (sym, obstack_strndup (&objfile->objfile_obstack,
430 name, pp - name));
c906108c 431 pp += 2;
c5aa993b 432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
e148f09d 444 add_symbol_to_list (sym, get_global_symbols ());
c906108c
SS
445 }
446 else
447 {
448 pp += 2;
c5aa993b 449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461}
c906108c 462\f
c5aa993b 463
c906108c
SS
464/* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472static int
a121b7c1 473read_type_number (const char **pp, int *typenums)
c906108c
SS
474{
475 int nbits;
433759f7 476
c906108c
SS
477 if (**pp == '(')
478 {
479 (*pp)++;
94e10a22 480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
481 if (nbits != 0)
482 return -1;
94e10a22 483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
484 if (nbits != 0)
485 return -1;
c906108c
SS
486 }
487 else
488 {
489 typenums[0] = 0;
94e10a22 490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
491 if (nbits != 0)
492 return -1;
c906108c
SS
493 }
494 return 0;
495}
c906108c 496\f
c5aa993b 497
c906108c
SS
498#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
502
c906108c 503/* Structure for storing pointers to reference definitions for fast lookup
c378eb4e 504 during "process_later". */
c906108c
SS
505
506struct ref_map
507{
a121b7c1 508 const char *stabs;
c906108c
SS
509 CORE_ADDR value;
510 struct symbol *sym;
511};
512
513#define MAX_CHUNK_REFS 100
514#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516
c5aa993b 517static struct ref_map *ref_map;
c906108c 518
c378eb4e 519/* Ptr to free cell in chunk's linked list. */
c5aa993b 520static int ref_count = 0;
c906108c 521
c378eb4e 522/* Number of chunks malloced. */
c906108c
SS
523static int ref_chunk = 0;
524
7be570e7 525/* This file maintains a cache of stabs aliases found in the symbol
c378eb4e
MS
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
7be570e7 528void
fba45db2 529stabsread_clear_cache (void)
7be570e7
JM
530{
531 ref_count = 0;
532 ref_chunk = 0;
533}
534
c906108c
SS
535/* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
c378eb4e
MS
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
c906108c 539void
a121b7c1 540ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
c906108c
SS
541{
542 if (ref_count == 0)
543 ref_chunk = 0;
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547 {
c5aa993b 548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 550
c906108c
SS
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
555 ref_chunk += new_chunks;
556 }
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
560}
561
562/* Return defined sym for the reference REFNUM. */
563struct symbol *
fba45db2 564ref_search (int refnum)
c906108c
SS
565{
566 if (refnum < 0 || refnum > ref_count)
567 return 0;
568 return ref_map[refnum].sym;
569}
570
c906108c
SS
571/* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
573
c5aa993b 574static int
a121b7c1 575process_reference (const char **string)
c906108c 576{
a121b7c1 577 const char *p;
c906108c
SS
578 int refnum = 0;
579
c5aa993b
JM
580 if (**string != '#')
581 return 0;
582
c906108c
SS
583 /* Advance beyond the initial '#'. */
584 p = *string + 1;
585
c378eb4e 586 /* Read number as reference id. */
c906108c
SS
587 while (*p && isdigit (*p))
588 {
589 refnum = refnum * 10 + *p - '0';
590 p++;
591 }
592 *string = p;
593 return refnum;
594}
595
596/* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
598
599int
a121b7c1 600symbol_reference_defined (const char **string)
c906108c 601{
a121b7c1 602 const char *p = *string;
c906108c
SS
603 int refnum = 0;
604
605 refnum = process_reference (&p);
606
c378eb4e 607 /* Defining symbols end in '='. */
c5aa993b 608 if (*p == '=')
c906108c 609 {
c378eb4e 610 /* Symbol is being defined here. */
c906108c
SS
611 *string = p + 1;
612 return refnum;
613 }
614 else
615 {
c378eb4e 616 /* Must be a reference. Either the symbol has already been defined,
c906108c
SS
617 or this is a forward reference to it. */
618 *string = p;
619 return -1;
620 }
621}
622
768a979c
UW
623static int
624stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625{
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
627
f6efe3f8 628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
768a979c 629 {
f6efe3f8 630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
768a979c
UW
631 SYMBOL_PRINT_NAME (sym));
632
c378eb4e 633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
768a979c
UW
634 }
635
636 return regno;
637}
638
639static const struct symbol_register_ops stab_register_funcs = {
640 stab_reg_to_regnum
641};
642
f1e6e072
TT
643/* The "aclass" indices for computed symbols. */
644
645static int stab_register_index;
646static int stab_regparm_index;
647
c906108c 648struct symbol *
a121b7c1 649define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
fba45db2 650 struct objfile *objfile)
c906108c 651{
5e2b427d 652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 653 struct symbol *sym;
a121b7c1 654 const char *p = find_name_end (string);
c906108c
SS
655 int deftype;
656 int synonym = 0;
52f0bd74 657 int i;
c906108c
SS
658
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
c378eb4e
MS
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
c906108c
SS
663
664 int nameless;
665
666 /* Ignore syms with empty names. */
667 if (string[0] == 0)
668 return 0;
669
c378eb4e 670 /* Ignore old-style symbols from cc -go. */
c906108c
SS
671 if (p == 0)
672 return 0;
673
674 while (p[1] == ':')
675 {
c5aa993b
JM
676 p += 2;
677 p = strchr (p, ':');
681c238c
MS
678 if (p == NULL)
679 {
b98664d3 680 complaint (
681c238c
MS
681 _("Bad stabs string '%s'"), string);
682 return NULL;
683 }
c906108c
SS
684 }
685
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689
e623cf5d 690 current_symbol = sym = allocate_symbol (objfile);
c906108c 691
c906108c
SS
692 if (processing_gcc_compilation)
693 {
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
c906108c
SS
697 }
698 else
699 {
c5aa993b 700 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
701 }
702
3c65e5b3 703 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
025ac414
PM
704 &objfile->objfile_obstack);
705
c906108c
SS
706 if (is_cplus_marker (string[0]))
707 {
708 /* Special GNU C++ names. */
709 switch (string[1])
710 {
c5aa993b 711 case 't':
1c9e8358 712 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 713 break;
c906108c 714
c5aa993b 715 case 'v': /* $vtbl_ptr_type */
c5aa993b 716 goto normal;
c906108c 717
c5aa993b 718 case 'e':
1c9e8358 719 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 720 break;
c906108c 721
c5aa993b
JM
722 case '_':
723 /* This was an anonymous type that was never fixed up. */
724 goto normal;
c906108c 725
c5aa993b
JM
726 case 'X':
727 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 728 if (gdbarch_static_transform_name_p (gdbarch))
149ad273 729 goto normal;
86a73007 730 /* fall through */
c906108c 731
c5aa993b 732 default:
b98664d3 733 complaint (_("Unknown C++ symbol name `%s'"),
23136709 734 string);
c378eb4e 735 goto normal; /* Do *something* with it. */
c906108c
SS
736 }
737 }
c906108c
SS
738 else
739 {
740 normal:
2f408ecb
PA
741 std::string new_name;
742
df8a16a1 743 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea 744 {
224c3ddb 745 char *name = (char *) alloca (p - string + 1);
433759f7 746
71c25dea
TT
747 memcpy (name, string, p - string);
748 name[p - string] = '\0';
749 new_name = cp_canonicalize_string (name);
71c25dea 750 }
2f408ecb 751 if (!new_name.empty ())
71c25dea 752 {
2f408ecb
PA
753 SYMBOL_SET_NAMES (sym,
754 new_name.c_str (), new_name.length (),
755 1, objfile);
71c25dea
TT
756 }
757 else
04a679b8 758 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
45c58896
SW
759
760 if (SYMBOL_LANGUAGE (sym) == language_cplus)
80e649fc
TT
761 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
762 objfile);
45c58896 763
c906108c
SS
764 }
765 p++;
766
767 /* Determine the type of name being defined. */
768#if 0
769 /* Getting GDB to correctly skip the symbol on an undefined symbol
770 descriptor and not ever dump core is a very dodgy proposition if
771 we do things this way. I say the acorn RISC machine can just
772 fix their compiler. */
773 /* The Acorn RISC machine's compiler can put out locals that don't
774 start with "234=" or "(3,4)=", so assume anything other than the
775 deftypes we know how to handle is a local. */
776 if (!strchr ("cfFGpPrStTvVXCR", *p))
777#else
778 if (isdigit (*p) || *p == '(' || *p == '-')
779#endif
780 deftype = 'l';
781 else
782 deftype = *p++;
783
784 switch (deftype)
785 {
786 case 'c':
787 /* c is a special case, not followed by a type-number.
c5aa993b
JM
788 SYMBOL:c=iVALUE for an integer constant symbol.
789 SYMBOL:c=rVALUE for a floating constant symbol.
790 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
791 e.g. "b:c=e6,0" for "const b = blob1"
792 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
793 if (*p != '=')
794 {
f1e6e072 795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 796 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 797 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 798 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
799 return sym;
800 }
801 ++p;
802 switch (*p++)
803 {
804 case 'r':
805 {
4e38b386 806 gdb_byte *dbl_valu;
6ccb9162 807 struct type *dbl_type;
c906108c 808
46bf5051 809 dbl_type = objfile_type (objfile)->builtin_double;
224c3ddb
SM
810 dbl_valu
811 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
812 TYPE_LENGTH (dbl_type));
f69fdf9b
UW
813
814 target_float_from_string (dbl_valu, dbl_type, std::string (p));
6ccb9162
UW
815
816 SYMBOL_TYPE (sym) = dbl_type;
c906108c 817 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
f1e6e072 818 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
c906108c
SS
819 }
820 break;
821 case 'i':
822 {
823 /* Defining integer constants this way is kind of silly,
824 since 'e' constants allows the compiler to give not
825 only the value, but the type as well. C has at least
826 int, long, unsigned int, and long long as constant
827 types; other languages probably should have at least
828 unsigned as well as signed constants. */
829
46bf5051 830 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c 831 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 832 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
833 }
834 break;
ec8a089a
PM
835
836 case 'c':
837 {
838 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
839 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 840 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
841 }
842 break;
843
844 case 's':
845 {
846 struct type *range_type;
847 int ind = 0;
848 char quote = *p++;
ec8a089a
PM
849 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
850 gdb_byte *string_value;
851
852 if (quote != '\'' && quote != '"')
853 {
f1e6e072 854 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
855 SYMBOL_TYPE (sym) = error_type (&p, objfile);
856 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 857 add_symbol_to_list (sym, get_file_symbols ());
ec8a089a
PM
858 return sym;
859 }
860
861 /* Find matching quote, rejecting escaped quotes. */
862 while (*p && *p != quote)
863 {
864 if (*p == '\\' && p[1] == quote)
865 {
866 string_local[ind] = (gdb_byte) quote;
867 ind++;
868 p += 2;
869 }
870 else if (*p)
871 {
872 string_local[ind] = (gdb_byte) (*p);
873 ind++;
874 p++;
875 }
876 }
877 if (*p != quote)
878 {
f1e6e072 879 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
880 SYMBOL_TYPE (sym) = error_type (&p, objfile);
881 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 882 add_symbol_to_list (sym, get_file_symbols ());
ec8a089a
PM
883 return sym;
884 }
885
886 /* NULL terminate the string. */
887 string_local[ind] = 0;
3e43a32a 888 range_type
0c9c3474
SA
889 = create_static_range_type (NULL,
890 objfile_type (objfile)->builtin_int,
891 0, ind);
ec8a089a
PM
892 SYMBOL_TYPE (sym) = create_array_type (NULL,
893 objfile_type (objfile)->builtin_char,
894 range_type);
224c3ddb
SM
895 string_value
896 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
ec8a089a
PM
897 memcpy (string_value, string_local, ind + 1);
898 p++;
899
900 SYMBOL_VALUE_BYTES (sym) = string_value;
f1e6e072 901 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
ec8a089a
PM
902 }
903 break;
904
c906108c
SS
905 case 'e':
906 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
907 can be represented as integral.
908 e.g. "b:c=e6,0" for "const b = blob1"
909 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
910 {
f1e6e072 911 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
912 SYMBOL_TYPE (sym) = read_type (&p, objfile);
913
914 if (*p != ',')
915 {
916 SYMBOL_TYPE (sym) = error_type (&p, objfile);
917 break;
918 }
919 ++p;
920
921 /* If the value is too big to fit in an int (perhaps because
922 it is unsigned), or something like that, we silently get
923 a bogus value. The type and everything else about it is
924 correct. Ideally, we should be using whatever we have
925 available for parsing unsigned and long long values,
926 however. */
927 SYMBOL_VALUE (sym) = atoi (p);
928 }
929 break;
930 default:
931 {
f1e6e072 932 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
933 SYMBOL_TYPE (sym) = error_type (&p, objfile);
934 }
935 }
176620f1 936 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 937 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
938 return sym;
939
940 case 'C':
941 /* The name of a caught exception. */
942 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 943 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
176620f1 944 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 945 SYMBOL_VALUE_ADDRESS (sym) = valu;
e148f09d 946 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
947 break;
948
949 case 'f':
950 /* A static function definition. */
951 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 952 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 953 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 954 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
955 /* fall into process_function_types. */
956
957 process_function_types:
958 /* Function result types are described as the result type in stabs.
c5aa993b
JM
959 We need to convert this to the function-returning-type-X type
960 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
961 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
962 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
963
1e698235
DJ
964 /* All functions in C++ have prototypes. Stabs does not offer an
965 explicit way to identify prototyped or unprototyped functions,
966 but both GCC and Sun CC emit stabs for the "call-as" type rather
967 than the "declared-as" type for unprototyped functions, so
968 we treat all functions as if they were prototyped. This is used
969 primarily for promotion when calling the function from GDB. */
876cecd0 970 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c 971
c378eb4e 972 /* fall into process_prototype_types. */
c906108c
SS
973
974 process_prototype_types:
975 /* Sun acc puts declared types of arguments here. */
976 if (*p == ';')
977 {
978 struct type *ftype = SYMBOL_TYPE (sym);
979 int nsemi = 0;
980 int nparams = 0;
a121b7c1 981 const char *p1 = p;
c906108c
SS
982
983 /* Obtain a worst case guess for the number of arguments
984 by counting the semicolons. */
985 while (*p1)
986 {
987 if (*p1++ == ';')
988 nsemi++;
989 }
990
c378eb4e 991 /* Allocate parameter information fields and fill them in. */
c906108c
SS
992 TYPE_FIELDS (ftype) = (struct field *)
993 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
994 while (*p++ == ';')
995 {
996 struct type *ptype;
997
998 /* A type number of zero indicates the start of varargs.
c5aa993b 999 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
1000 if (p[0] == '0' && p[1] == '\0')
1001 break;
1002 ptype = read_type (&p, objfile);
1003
1004 /* The Sun compilers mark integer arguments, which should
c5aa993b 1005 be promoted to the width of the calling conventions, with
c378eb4e 1006 a type which references itself. This type is turned into
c5aa993b 1007 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
1008 it back into builtin_int here.
1009 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 1010 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 1011 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
1012 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1013 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
1014 }
1015 TYPE_NFIELDS (ftype) = nparams;
876cecd0 1016 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
1017 }
1018 break;
1019
1020 case 'F':
1021 /* A global function definition. */
1022 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1023 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1025 add_symbol_to_list (sym, get_global_symbols ());
c906108c
SS
1026 goto process_function_types;
1027
1028 case 'G':
1029 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
1030 value is not correct. It is necessary to search for the
1031 corresponding linker definition to find the value.
1032 These definitions appear at the end of the namelist. */
c906108c 1033 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1034 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
176620f1 1035 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1036 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1037 Symbol references don't have valid names and wont't match up with
1038 minimal symbols when the global_sym_chain is relocated.
1039 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 1040 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1041 {
3567439c 1042 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1043 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1044 global_sym_chain[i] = sym;
c906108c 1045 }
e148f09d 1046 add_symbol_to_list (sym, get_global_symbols ());
c906108c
SS
1047 break;
1048
1049 /* This case is faked by a conditional above,
c5aa993b
JM
1050 when there is no code letter in the dbx data.
1051 Dbx data never actually contains 'l'. */
c906108c
SS
1052 case 's':
1053 case 'l':
1054 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1055 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1056 SYMBOL_VALUE (sym) = valu;
176620f1 1057 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1058 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1059 break;
1060
1061 case 'p':
1062 if (*p == 'F')
1063 /* pF is a two-letter code that means a function parameter in Fortran.
1064 The type-number specifies the type of the return value.
1065 Translate it into a pointer-to-function type. */
1066 {
1067 p++;
1068 SYMBOL_TYPE (sym)
1069 = lookup_pointer_type
c5aa993b 1070 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1071 }
1072 else
1073 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1074
f1e6e072 1075 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
c906108c 1076 SYMBOL_VALUE (sym) = valu;
176620f1 1077 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1078 SYMBOL_IS_ARGUMENT (sym) = 1;
e148f09d 1079 add_symbol_to_list (sym, get_local_symbols ());
c906108c 1080
5e2b427d 1081 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1082 {
1083 /* On little-endian machines, this crud is never necessary,
1084 and, if the extra bytes contain garbage, is harmful. */
1085 break;
1086 }
1087
1088 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1089 if (processing_gcc_compilation
5e2b427d 1090 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1091 break;
1092
5e2b427d 1093 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1094 {
8ee56bcf
AC
1095 /* If PCC says a parameter is a short or a char, it is
1096 really an int. */
5e2b427d
UW
1097 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1098 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1099 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1100 {
8ee56bcf
AC
1101 SYMBOL_TYPE (sym) =
1102 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1103 ? objfile_type (objfile)->builtin_unsigned_int
1104 : objfile_type (objfile)->builtin_int;
7a292a7a 1105 }
8ee56bcf 1106 break;
7a292a7a 1107 }
0019cd49 1108 /* Fall through. */
c906108c
SS
1109
1110 case 'P':
1111 /* acc seems to use P to declare the prototypes of functions that
1112 are referenced by this file. gdb is not prepared to deal
1113 with this extra information. FIXME, it ought to. */
1114 if (type == N_FUN)
1115 {
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1117 goto process_prototype_types;
1118 }
c5aa993b 1119 /*FALLTHROUGH */
c906108c
SS
1120
1121 case 'R':
1122 /* Parameter which is in a register. */
1123 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1124 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
2a2d4dc3 1125 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1126 SYMBOL_VALUE (sym) = valu;
176620f1 1127 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1128 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1129 break;
1130
1131 case 'r':
1132 /* Register variable (either global or local). */
1133 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1134 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
768a979c 1135 SYMBOL_VALUE (sym) = valu;
176620f1 1136 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1137 if (within_function)
1138 {
192cb3d4
MK
1139 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1140 the same name to represent an argument passed in a
1141 register. GCC uses 'P' for the same case. So if we find
1142 such a symbol pair we combine it into one 'P' symbol.
1143 For Sun cc we need to do this regardless of
1144 stabs_argument_has_addr, because the compiler puts out
1145 the 'p' symbol even if it never saves the argument onto
1146 the stack.
1147
1148 On most machines, we want to preserve both symbols, so
1149 that we can still get information about what is going on
1150 with the stack (VAX for computing args_printed, using
1151 stack slots instead of saved registers in backtraces,
1152 etc.).
c906108c
SS
1153
1154 Note that this code illegally combines
c5aa993b 1155 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1156 but this case is considered pathological and causes a warning
1157 from a decent compiler. */
1158
e148f09d 1159 struct pending *local_symbols = *get_local_symbols ();
c906108c
SS
1160 if (local_symbols
1161 && local_symbols->nsyms > 0
5e2b427d 1162 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1163 {
1164 struct symbol *prev_sym;
433759f7 1165
c906108c
SS
1166 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1167 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1168 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1169 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1170 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1171 {
f1e6e072 1172 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
c906108c
SS
1173 /* Use the type from the LOC_REGISTER; that is the type
1174 that is actually in that register. */
1175 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1176 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1177 sym = prev_sym;
1178 break;
1179 }
1180 }
e148f09d 1181 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1182 }
1183 else
e148f09d 1184 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
1185 break;
1186
1187 case 'S':
c378eb4e 1188 /* Static symbol at top level of file. */
c906108c 1189 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1190 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1191 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1192 if (gdbarch_static_transform_name_p (gdbarch)
1193 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1194 SYMBOL_LINKAGE_NAME (sym))
1195 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1196 {
3b7344d5 1197 struct bound_minimal_symbol msym;
433759f7 1198
3e43a32a
MS
1199 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1200 NULL, objfile);
3b7344d5 1201 if (msym.minsym != NULL)
c5aa993b 1202 {
0d5cff50 1203 const char *new_name = gdbarch_static_transform_name
3567439c 1204 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1205
3567439c 1206 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1207 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1208 }
1209 }
176620f1 1210 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1211 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
1212 break;
1213
1214 case 't':
52eea4ce
JB
1215 /* In Ada, there is no distinction between typedef and non-typedef;
1216 any type declaration implicitly has the equivalent of a typedef,
c378eb4e 1217 and thus 't' is in fact equivalent to 'Tt'.
52eea4ce
JB
1218
1219 Therefore, for Ada units, we check the character immediately
1220 before the 't', and if we do not find a 'T', then make sure to
1221 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1222 will be stored in the VAR_DOMAIN). If the symbol was indeed
1223 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1224 elsewhere, so we don't need to take care of that.
1225
1226 This is important to do, because of forward references:
1227 The cleanup of undefined types stored in undef_types only uses
1228 STRUCT_DOMAIN symbols to perform the replacement. */
1229 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1230
e2cd42dd 1231 /* Typedef */
c906108c
SS
1232 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1233
1234 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1235 did not use `sym'. Return without further processing. */
c5aa993b
JM
1236 if (nameless)
1237 return NULL;
c906108c 1238
f1e6e072 1239 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1240 SYMBOL_VALUE (sym) = valu;
176620f1 1241 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1242 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1243 a base type which did not have its name defined when the
1244 derived class was output. We fill in the derived class's
1245 base part member's name here in that case. */
c906108c
SS
1246 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1247 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1248 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1249 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1250 {
1251 int j;
433759f7 1252
c906108c
SS
1253 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1254 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1255 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
a737d952 1256 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
c906108c
SS
1257 }
1258
1259 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1260 {
1261 /* gcc-2.6 or later (when using -fvtable-thunks)
1262 emits a unique named type for a vtable entry.
c378eb4e 1263 Some gdb code depends on that specific name. */
c906108c
SS
1264 extern const char vtbl_ptr_name[];
1265
1266 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1267 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1268 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1269 {
1270 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1271 foo" or "function returning foo", we better not set
1272 the TYPE_NAME. If the program contains "typedef char
1273 *caddr_t;", we don't want all variables of type char
1274 * to print as caddr_t. This is not just a
1275 consequence of GDB's type management; PCC and GCC (at
1276 least through version 2.4) both output variables of
1277 either type char * or caddr_t with the type number
1278 defined in the 't' symbol for caddr_t. If a future
1279 compiler cleans this up it GDB is not ready for it
1280 yet, but if it becomes ready we somehow need to
1281 disable this check (without breaking the PCC/GCC2.4
1282 case).
1283
1284 Sigh.
1285
1286 Fortunately, this check seems not to be necessary
1287 for anything except pointers or functions. */
c378eb4e
MS
1288 /* ezannoni: 2000-10-26. This seems to apply for
1289 versions of gcc older than 2.8. This was the original
49d97c60 1290 problem: with the following code gdb would tell that
c378eb4e
MS
1291 the type for name1 is caddr_t, and func is char().
1292
49d97c60
EZ
1293 typedef char *caddr_t;
1294 char *name2;
1295 struct x
1296 {
c378eb4e 1297 char *name1;
49d97c60
EZ
1298 } xx;
1299 char *func()
1300 {
1301 }
1302 main () {}
1303 */
1304
c378eb4e 1305 /* Pascal accepts names for pointer types. */
3c65e5b3 1306 if (get_current_subfile ()->language == language_pascal)
49d97c60 1307 {
3567439c 1308 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1309 }
c906108c
SS
1310 }
1311 else
3567439c 1312 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1313 }
1314
e148f09d 1315 add_symbol_to_list (sym, get_file_symbols ());
52eea4ce
JB
1316
1317 if (synonym)
1318 {
1319 /* Create the STRUCT_DOMAIN clone. */
e623cf5d 1320 struct symbol *struct_sym = allocate_symbol (objfile);
52eea4ce
JB
1321
1322 *struct_sym = *sym;
f1e6e072 1323 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
52eea4ce
JB
1324 SYMBOL_VALUE (struct_sym) = valu;
1325 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1326 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1327 TYPE_NAME (SYMBOL_TYPE (sym))
1328 = obconcat (&objfile->objfile_obstack,
1329 SYMBOL_LINKAGE_NAME (sym),
1330 (char *) NULL);
e148f09d 1331 add_symbol_to_list (struct_sym, get_file_symbols ());
52eea4ce
JB
1332 }
1333
c906108c
SS
1334 break;
1335
1336 case 'T':
1337 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1338 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1339 synonym = *p == 't';
1340
1341 if (synonym)
1342 p++;
c906108c
SS
1343
1344 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1345
c906108c 1346 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1347 did not use `sym'. Return without further processing. */
c5aa993b
JM
1348 if (nameless)
1349 return NULL;
c906108c 1350
f1e6e072 1351 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1352 SYMBOL_VALUE (sym) = valu;
176620f1 1353 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
e86ca25f
TT
1354 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1355 TYPE_NAME (SYMBOL_TYPE (sym))
3e43a32a
MS
1356 = obconcat (&objfile->objfile_obstack,
1357 SYMBOL_LINKAGE_NAME (sym),
1358 (char *) NULL);
e148f09d 1359 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
1360
1361 if (synonym)
1362 {
c378eb4e 1363 /* Clone the sym and then modify it. */
e623cf5d 1364 struct symbol *typedef_sym = allocate_symbol (objfile);
433759f7 1365
c906108c 1366 *typedef_sym = *sym;
f1e6e072 1367 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
c906108c 1368 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1369 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1370 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1371 TYPE_NAME (SYMBOL_TYPE (sym))
1372 = obconcat (&objfile->objfile_obstack,
1373 SYMBOL_LINKAGE_NAME (sym),
1374 (char *) NULL);
e148f09d 1375 add_symbol_to_list (typedef_sym, get_file_symbols ());
c906108c
SS
1376 }
1377 break;
1378
1379 case 'V':
c378eb4e 1380 /* Static symbol of local scope. */
c906108c 1381 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1382 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1383 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1384 if (gdbarch_static_transform_name_p (gdbarch)
1385 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1386 SYMBOL_LINKAGE_NAME (sym))
1387 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1388 {
3b7344d5 1389 struct bound_minimal_symbol msym;
433759f7
MS
1390
1391 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1392 NULL, objfile);
3b7344d5 1393 if (msym.minsym != NULL)
c5aa993b 1394 {
0d5cff50 1395 const char *new_name = gdbarch_static_transform_name
3567439c 1396 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1397
3567439c 1398 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1399 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1400 }
1401 }
176620f1 1402 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1403 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1404 break;
1405
1406 case 'v':
1407 /* Reference parameter */
1408 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1409 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
2a2d4dc3 1410 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1411 SYMBOL_VALUE (sym) = valu;
176620f1 1412 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1413 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1414 break;
1415
1416 case 'a':
1417 /* Reference parameter which is in a register. */
1418 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1419 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
2a2d4dc3 1420 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1421 SYMBOL_VALUE (sym) = valu;
176620f1 1422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1423 add_symbol_to_list (sym, get_local_symbols ());
c906108c
SS
1424 break;
1425
1426 case 'X':
1427 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1428 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1429 that Pascal uses it too, but when I tried it Pascal used
1430 "x:3" (local symbol) instead. */
c906108c 1431 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1432 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1433 SYMBOL_VALUE (sym) = valu;
176620f1 1434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1435 add_symbol_to_list (sym, get_local_symbols ());
c906108c 1436 break;
c906108c
SS
1437
1438 default:
1439 SYMBOL_TYPE (sym) = error_type (&p, objfile);
f1e6e072 1440 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 1441 SYMBOL_VALUE (sym) = 0;
176620f1 1442 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e148f09d 1443 add_symbol_to_list (sym, get_file_symbols ());
c906108c
SS
1444 break;
1445 }
1446
192cb3d4
MK
1447 /* Some systems pass variables of certain types by reference instead
1448 of by value, i.e. they will pass the address of a structure (in a
1449 register or on the stack) instead of the structure itself. */
c906108c 1450
5e2b427d 1451 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1452 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1453 {
2a2d4dc3 1454 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1455 variables passed in a register). */
2a2d4dc3 1456 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
f1e6e072 1457 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
192cb3d4
MK
1458 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1459 and subsequent arguments on SPARC, for example). */
1460 else if (SYMBOL_CLASS (sym) == LOC_ARG)
f1e6e072 1461 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
c906108c
SS
1462 }
1463
c906108c
SS
1464 return sym;
1465}
1466
c906108c
SS
1467/* Skip rest of this symbol and return an error type.
1468
1469 General notes on error recovery: error_type always skips to the
1470 end of the symbol (modulo cretinous dbx symbol name continuation).
1471 Thus code like this:
1472
1473 if (*(*pp)++ != ';')
c5aa993b 1474 return error_type (pp, objfile);
c906108c
SS
1475
1476 is wrong because if *pp starts out pointing at '\0' (typically as the
1477 result of an earlier error), it will be incremented to point to the
1478 start of the next symbol, which might produce strange results, at least
1479 if you run off the end of the string table. Instead use
1480
1481 if (**pp != ';')
c5aa993b 1482 return error_type (pp, objfile);
c906108c
SS
1483 ++*pp;
1484
1485 or
1486
1487 if (**pp != ';')
c5aa993b 1488 foo = error_type (pp, objfile);
c906108c 1489 else
c5aa993b 1490 ++*pp;
c906108c
SS
1491
1492 And in case it isn't obvious, the point of all this hair is so the compiler
1493 can define new types and new syntaxes, and old versions of the
1494 debugger will be able to read the new symbol tables. */
1495
1496static struct type *
a121b7c1 1497error_type (const char **pp, struct objfile *objfile)
c906108c 1498{
b98664d3 1499 complaint (_("couldn't parse type; debugger out of date?"));
c906108c
SS
1500 while (1)
1501 {
1502 /* Skip to end of symbol. */
1503 while (**pp != '\0')
1504 {
1505 (*pp)++;
1506 }
1507
1508 /* Check for and handle cretinous dbx symbol name continuation! */
1509 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1510 {
1511 *pp = next_symbol_text (objfile);
1512 }
1513 else
1514 {
1515 break;
1516 }
1517 }
46bf5051 1518 return objfile_type (objfile)->builtin_error;
c906108c 1519}
c906108c 1520\f
c5aa993b 1521
c906108c
SS
1522/* Read type information or a type definition; return the type. Even
1523 though this routine accepts either type information or a type
1524 definition, the distinction is relevant--some parts of stabsread.c
1525 assume that type information starts with a digit, '-', or '(' in
1526 deciding whether to call read_type. */
1527
a7a48797 1528static struct type *
a121b7c1 1529read_type (const char **pp, struct objfile *objfile)
c906108c 1530{
52f0bd74 1531 struct type *type = 0;
c906108c
SS
1532 struct type *type1;
1533 int typenums[2];
1534 char type_descriptor;
1535
1536 /* Size in bits of type if specified by a type attribute, or -1 if
1537 there is no size attribute. */
1538 int type_size = -1;
1539
c378eb4e 1540 /* Used to distinguish string and bitstring from char-array and set. */
c906108c
SS
1541 int is_string = 0;
1542
c378eb4e 1543 /* Used to distinguish vector from array. */
e2cd42dd
MS
1544 int is_vector = 0;
1545
c906108c
SS
1546 /* Read type number if present. The type number may be omitted.
1547 for instance in a two-dimensional array declared with type
1548 "ar1;1;10;ar1;1;10;4". */
1549 if ((**pp >= '0' && **pp <= '9')
1550 || **pp == '('
1551 || **pp == '-')
1552 {
1553 if (read_type_number (pp, typenums) != 0)
1554 return error_type (pp, objfile);
c5aa993b 1555
c906108c 1556 if (**pp != '=')
8cfe231d
JB
1557 {
1558 /* Type is not being defined here. Either it already
1559 exists, or this is a forward reference to it.
1560 dbx_alloc_type handles both cases. */
1561 type = dbx_alloc_type (typenums, objfile);
1562
1563 /* If this is a forward reference, arrange to complain if it
1564 doesn't get patched up by the time we're done
1565 reading. */
1566 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1567 add_undefined_type (type, typenums);
8cfe231d
JB
1568
1569 return type;
1570 }
c906108c
SS
1571
1572 /* Type is being defined here. */
1573 /* Skip the '='.
c5aa993b
JM
1574 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1575 (*pp) += 2;
c906108c
SS
1576 }
1577 else
1578 {
1579 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1580 the definition, but don't put it in the type vector. */
c906108c
SS
1581 typenums[0] = typenums[1] = -1;
1582 (*pp)++;
1583 }
1584
c5aa993b 1585again:
c906108c
SS
1586 type_descriptor = (*pp)[-1];
1587 switch (type_descriptor)
1588 {
1589 case 'x':
1590 {
1591 enum type_code code;
1592
1593 /* Used to index through file_symbols. */
1594 struct pending *ppt;
1595 int i;
c5aa993b 1596
c906108c
SS
1597 /* Name including "struct", etc. */
1598 char *type_name;
c5aa993b 1599
c906108c 1600 {
a121b7c1 1601 const char *from, *p, *q1, *q2;
c5aa993b 1602
c906108c
SS
1603 /* Set the type code according to the following letter. */
1604 switch ((*pp)[0])
1605 {
1606 case 's':
1607 code = TYPE_CODE_STRUCT;
1608 break;
1609 case 'u':
1610 code = TYPE_CODE_UNION;
1611 break;
1612 case 'e':
1613 code = TYPE_CODE_ENUM;
1614 break;
1615 default:
1616 {
1617 /* Complain and keep going, so compilers can invent new
1618 cross-reference types. */
b98664d3 1619 complaint (_("Unrecognized cross-reference type `%c'"),
3e43a32a 1620 (*pp)[0]);
c906108c
SS
1621 code = TYPE_CODE_STRUCT;
1622 break;
1623 }
1624 }
c5aa993b 1625
c906108c
SS
1626 q1 = strchr (*pp, '<');
1627 p = strchr (*pp, ':');
1628 if (p == NULL)
1629 return error_type (pp, objfile);
1630 if (q1 && p > q1 && p[1] == ':')
1631 {
1632 int nesting_level = 0;
433759f7 1633
c906108c
SS
1634 for (q2 = q1; *q2; q2++)
1635 {
1636 if (*q2 == '<')
1637 nesting_level++;
1638 else if (*q2 == '>')
1639 nesting_level--;
1640 else if (*q2 == ':' && nesting_level == 0)
1641 break;
1642 }
1643 p = q2;
1644 if (*p != ':')
1645 return error_type (pp, objfile);
1646 }
71c25dea 1647 type_name = NULL;
3c65e5b3 1648 if (get_current_subfile ()->language == language_cplus)
71c25dea 1649 {
2f408ecb 1650 char *name = (char *) alloca (p - *pp + 1);
433759f7 1651
71c25dea
TT
1652 memcpy (name, *pp, p - *pp);
1653 name[p - *pp] = '\0';
2f408ecb
PA
1654
1655 std::string new_name = cp_canonicalize_string (name);
1656 if (!new_name.empty ())
efba19b0
TT
1657 type_name = obstack_strdup (&objfile->objfile_obstack,
1658 new_name);
71c25dea
TT
1659 }
1660 if (type_name == NULL)
1661 {
a121b7c1 1662 char *to = type_name = (char *)
3e43a32a 1663 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1664
1665 /* Copy the name. */
1666 from = *pp + 1;
1667 while (from < p)
1668 *to++ = *from++;
1669 *to = '\0';
1670 }
c5aa993b 1671
c906108c
SS
1672 /* Set the pointer ahead of the name which we just read, and
1673 the colon. */
71c25dea 1674 *pp = p + 1;
c906108c
SS
1675 }
1676
149d821b
JB
1677 /* If this type has already been declared, then reuse the same
1678 type, rather than allocating a new one. This saves some
1679 memory. */
c906108c 1680
e148f09d 1681 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
c906108c
SS
1682 for (i = 0; i < ppt->nsyms; i++)
1683 {
1684 struct symbol *sym = ppt->symbol[i];
1685
1686 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1687 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1688 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1689 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1690 {
b99607ea 1691 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1692 type = SYMBOL_TYPE (sym);
149d821b 1693 if (typenums[0] != -1)
46bf5051 1694 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1695 return type;
1696 }
1697 }
1698
1699 /* Didn't find the type to which this refers, so we must
1700 be dealing with a forward reference. Allocate a type
1701 structure for it, and keep track of it so we can
1702 fill in the rest of the fields when we get the full
1703 type. */
1704 type = dbx_alloc_type (typenums, objfile);
1705 TYPE_CODE (type) = code;
e86ca25f 1706 TYPE_NAME (type) = type_name;
c5aa993b 1707 INIT_CPLUS_SPECIFIC (type);
876cecd0 1708 TYPE_STUB (type) = 1;
c906108c 1709
bf362611 1710 add_undefined_type (type, typenums);
c906108c
SS
1711 return type;
1712 }
1713
c5aa993b 1714 case '-': /* RS/6000 built-in type */
c906108c
SS
1715 case '0':
1716 case '1':
1717 case '2':
1718 case '3':
1719 case '4':
1720 case '5':
1721 case '6':
1722 case '7':
1723 case '8':
1724 case '9':
1725 case '(':
1726 (*pp)--;
1727
1728 /* We deal with something like t(1,2)=(3,4)=... which
c378eb4e 1729 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1730
1731 /* Allocate and enter the typedef type first.
c378eb4e 1732 This handles recursive types. */
c906108c
SS
1733 type = dbx_alloc_type (typenums, objfile);
1734 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1735 {
1736 struct type *xtype = read_type (pp, objfile);
433759f7 1737
c906108c
SS
1738 if (type == xtype)
1739 {
1740 /* It's being defined as itself. That means it is "void". */
1741 TYPE_CODE (type) = TYPE_CODE_VOID;
1742 TYPE_LENGTH (type) = 1;
1743 }
1744 else if (type_size >= 0 || is_string)
1745 {
dd6bda65
DJ
1746 /* This is the absolute wrong way to construct types. Every
1747 other debug format has found a way around this problem and
1748 the related problems with unnecessarily stubbed types;
1749 someone motivated should attempt to clean up the issue
1750 here as well. Once a type pointed to has been created it
13a393b0
JB
1751 should not be modified.
1752
1753 Well, it's not *absolutely* wrong. Constructing recursive
1754 types (trees, linked lists) necessarily entails modifying
1755 types after creating them. Constructing any loop structure
1756 entails side effects. The Dwarf 2 reader does handle this
1757 more gracefully (it never constructs more than once
1758 instance of a type object, so it doesn't have to copy type
1759 objects wholesale), but it still mutates type objects after
1760 other folks have references to them.
1761
1762 Keep in mind that this circularity/mutation issue shows up
1763 at the source language level, too: C's "incomplete types",
1764 for example. So the proper cleanup, I think, would be to
1765 limit GDB's type smashing to match exactly those required
1766 by the source language. So GDB could have a
1767 "complete_this_type" function, but never create unnecessary
1768 copies of a type otherwise. */
dd6bda65 1769 replace_type (type, xtype);
c906108c 1770 TYPE_NAME (type) = NULL;
c906108c
SS
1771 }
1772 else
1773 {
876cecd0 1774 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1775 TYPE_TARGET_TYPE (type) = xtype;
1776 }
1777 }
1778 break;
1779
c5aa993b
JM
1780 /* In the following types, we must be sure to overwrite any existing
1781 type that the typenums refer to, rather than allocating a new one
1782 and making the typenums point to the new one. This is because there
1783 may already be pointers to the existing type (if it had been
1784 forward-referenced), and we must change it to a pointer, function,
1785 reference, or whatever, *in-place*. */
c906108c 1786
e2cd42dd 1787 case '*': /* Pointer to another type */
c906108c 1788 type1 = read_type (pp, objfile);
46bf5051 1789 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1790 break;
1791
c5aa993b 1792 case '&': /* Reference to another type */
c906108c 1793 type1 = read_type (pp, objfile);
3b224330
AV
1794 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1795 TYPE_CODE_REF);
c906108c
SS
1796 break;
1797
c5aa993b 1798 case 'f': /* Function returning another type */
c906108c 1799 type1 = read_type (pp, objfile);
0c8b41f1 1800 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1801 break;
1802
da966255
JB
1803 case 'g': /* Prototyped function. (Sun) */
1804 {
1805 /* Unresolved questions:
1806
1807 - According to Sun's ``STABS Interface Manual'', for 'f'
1808 and 'F' symbol descriptors, a `0' in the argument type list
1809 indicates a varargs function. But it doesn't say how 'g'
1810 type descriptors represent that info. Someone with access
1811 to Sun's toolchain should try it out.
1812
1813 - According to the comment in define_symbol (search for
1814 `process_prototype_types:'), Sun emits integer arguments as
1815 types which ref themselves --- like `void' types. Do we
1816 have to deal with that here, too? Again, someone with
1817 access to Sun's toolchain should try it out and let us
1818 know. */
1819
1820 const char *type_start = (*pp) - 1;
1821 struct type *return_type = read_type (pp, objfile);
1822 struct type *func_type
46bf5051 1823 = make_function_type (return_type,
0c8b41f1 1824 dbx_lookup_type (typenums, objfile));
da966255
JB
1825 struct type_list {
1826 struct type *type;
1827 struct type_list *next;
1828 } *arg_types = 0;
1829 int num_args = 0;
1830
1831 while (**pp && **pp != '#')
1832 {
1833 struct type *arg_type = read_type (pp, objfile);
8d749320 1834 struct type_list *newobj = XALLOCA (struct type_list);
fe978cb0
PA
1835 newobj->type = arg_type;
1836 newobj->next = arg_types;
1837 arg_types = newobj;
da966255
JB
1838 num_args++;
1839 }
1840 if (**pp == '#')
1841 ++*pp;
1842 else
1843 {
b98664d3 1844 complaint (_("Prototyped function type didn't "
3e43a32a 1845 "end arguments with `#':\n%s"),
23136709 1846 type_start);
da966255
JB
1847 }
1848
1849 /* If there is just one argument whose type is `void', then
1850 that's just an empty argument list. */
1851 if (arg_types
1852 && ! arg_types->next
1853 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1854 num_args = 0;
1855
1856 TYPE_FIELDS (func_type)
1857 = (struct field *) TYPE_ALLOC (func_type,
1858 num_args * sizeof (struct field));
1859 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1860 {
1861 int i;
1862 struct type_list *t;
1863
1864 /* We stuck each argument type onto the front of the list
1865 when we read it, so the list is reversed. Build the
1866 fields array right-to-left. */
1867 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1868 TYPE_FIELD_TYPE (func_type, i) = t->type;
1869 }
1870 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1871 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1872
1873 type = func_type;
1874 break;
1875 }
1876
c5aa993b 1877 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1878 type = read_type (pp, objfile);
d7242108 1879 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1880 dbx_lookup_type (typenums, objfile));
c906108c
SS
1881 break;
1882
c5aa993b 1883 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1884 type = read_type (pp, objfile);
d7242108 1885 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1886 dbx_lookup_type (typenums, objfile));
c906108c
SS
1887 break;
1888
1889 case '@':
c5aa993b
JM
1890 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1891 { /* Member (class & variable) type */
c906108c
SS
1892 /* FIXME -- we should be doing smash_to_XXX types here. */
1893
1894 struct type *domain = read_type (pp, objfile);
1895 struct type *memtype;
1896
1897 if (**pp != ',')
1898 /* Invalid member type data format. */
1899 return error_type (pp, objfile);
1900 ++*pp;
1901
1902 memtype = read_type (pp, objfile);
1903 type = dbx_alloc_type (typenums, objfile);
0d5de010 1904 smash_to_memberptr_type (type, domain, memtype);
c906108c 1905 }
c5aa993b
JM
1906 else
1907 /* type attribute */
c906108c 1908 {
a121b7c1 1909 const char *attr = *pp;
433759f7 1910
c906108c
SS
1911 /* Skip to the semicolon. */
1912 while (**pp != ';' && **pp != '\0')
1913 ++(*pp);
1914 if (**pp == '\0')
1915 return error_type (pp, objfile);
1916 else
c5aa993b 1917 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1918
1919 switch (*attr)
1920 {
e2cd42dd 1921 case 's': /* Size attribute */
c906108c
SS
1922 type_size = atoi (attr + 1);
1923 if (type_size <= 0)
1924 type_size = -1;
1925 break;
1926
e2cd42dd 1927 case 'S': /* String attribute */
c378eb4e 1928 /* FIXME: check to see if following type is array? */
c906108c
SS
1929 is_string = 1;
1930 break;
1931
e2cd42dd 1932 case 'V': /* Vector attribute */
c378eb4e 1933 /* FIXME: check to see if following type is array? */
e2cd42dd
MS
1934 is_vector = 1;
1935 break;
1936
c906108c
SS
1937 default:
1938 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1939 can invent new ones. */
c906108c
SS
1940 break;
1941 }
1942 ++*pp;
1943 goto again;
1944 }
1945 break;
1946
c5aa993b 1947 case '#': /* Method (class & fn) type */
c906108c
SS
1948 if ((*pp)[0] == '#')
1949 {
1950 /* We'll get the parameter types from the name. */
1951 struct type *return_type;
1952
1953 (*pp)++;
1954 return_type = read_type (pp, objfile);
1955 if (*(*pp)++ != ';')
b98664d3 1956 complaint (_("invalid (minimal) member type "
3e43a32a 1957 "data format at symtab pos %d."),
23136709 1958 symnum);
c906108c
SS
1959 type = allocate_stub_method (return_type);
1960 if (typenums[0] != -1)
46bf5051 1961 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1962 }
1963 else
1964 {
1965 struct type *domain = read_type (pp, objfile);
1966 struct type *return_type;
ad2f7632
DJ
1967 struct field *args;
1968 int nargs, varargs;
c906108c
SS
1969
1970 if (**pp != ',')
1971 /* Invalid member type data format. */
1972 return error_type (pp, objfile);
1973 else
1974 ++(*pp);
1975
1976 return_type = read_type (pp, objfile);
ad2f7632 1977 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1978 if (args == NULL)
1979 return error_type (pp, objfile);
c906108c 1980 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1981 smash_to_method_type (type, domain, return_type, args,
1982 nargs, varargs);
c906108c
SS
1983 }
1984 break;
1985
c5aa993b 1986 case 'r': /* Range type */
94e10a22 1987 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1988 if (typenums[0] != -1)
46bf5051 1989 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1990 break;
1991
1992 case 'b':
c906108c
SS
1993 {
1994 /* Sun ACC builtin int type */
1995 type = read_sun_builtin_type (pp, typenums, objfile);
1996 if (typenums[0] != -1)
46bf5051 1997 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1998 }
1999 break;
2000
c5aa993b 2001 case 'R': /* Sun ACC builtin float type */
c906108c
SS
2002 type = read_sun_floating_type (pp, typenums, objfile);
2003 if (typenums[0] != -1)
46bf5051 2004 *dbx_lookup_type (typenums, objfile) = type;
c906108c 2005 break;
c5aa993b
JM
2006
2007 case 'e': /* Enumeration type */
c906108c
SS
2008 type = dbx_alloc_type (typenums, objfile);
2009 type = read_enum_type (pp, type, objfile);
2010 if (typenums[0] != -1)
46bf5051 2011 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2012 break;
2013
c5aa993b
JM
2014 case 's': /* Struct type */
2015 case 'u': /* Union type */
2ae1c2d2
JB
2016 {
2017 enum type_code type_code = TYPE_CODE_UNDEF;
2018 type = dbx_alloc_type (typenums, objfile);
2019 switch (type_descriptor)
2020 {
2021 case 's':
2022 type_code = TYPE_CODE_STRUCT;
2023 break;
2024 case 'u':
2025 type_code = TYPE_CODE_UNION;
2026 break;
2027 }
2028 type = read_struct_type (pp, type, type_code, objfile);
2029 break;
2030 }
c906108c 2031
c5aa993b 2032 case 'a': /* Array type */
c906108c
SS
2033 if (**pp != 'r')
2034 return error_type (pp, objfile);
2035 ++*pp;
c5aa993b 2036
c906108c
SS
2037 type = dbx_alloc_type (typenums, objfile);
2038 type = read_array_type (pp, type, objfile);
2039 if (is_string)
2040 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 2041 if (is_vector)
ea37ba09 2042 make_vector_type (type);
c906108c
SS
2043 break;
2044
6b1755ce 2045 case 'S': /* Set type */
c906108c 2046 type1 = read_type (pp, objfile);
cafb3438 2047 type = create_set_type (NULL, type1);
c906108c 2048 if (typenums[0] != -1)
46bf5051 2049 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2050 break;
2051
2052 default:
c378eb4e
MS
2053 --*pp; /* Go back to the symbol in error. */
2054 /* Particularly important if it was \0! */
c906108c
SS
2055 return error_type (pp, objfile);
2056 }
2057
2058 if (type == 0)
2059 {
8a3fe4f8 2060 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2061 return error_type (pp, objfile);
2062 }
2063
2064 /* Size specified in a type attribute overrides any other size. */
2065 if (type_size != -1)
2066 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2067
2068 return type;
2069}
2070\f
2071/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
c378eb4e 2072 Return the proper type node for a given builtin type number. */
c906108c 2073
d772d2ab
TT
2074static const struct objfile_key<struct type *,
2075 gdb::noop_deleter<struct type *>>
2076 rs6000_builtin_type_data;
46bf5051 2077
c906108c 2078static struct type *
46bf5051 2079rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2080{
d772d2ab 2081 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
46bf5051 2082
c906108c
SS
2083 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2084#define NUMBER_RECOGNIZED 34
c906108c
SS
2085 struct type *rettype = NULL;
2086
2087 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2088 {
b98664d3 2089 complaint (_("Unknown builtin type %d"), typenum);
46bf5051 2090 return objfile_type (objfile)->builtin_error;
c906108c 2091 }
46bf5051
UW
2092
2093 if (!negative_types)
2094 {
2095 /* This includes an empty slot for type number -0. */
2096 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2097 NUMBER_RECOGNIZED + 1, struct type *);
d772d2ab 2098 rs6000_builtin_type_data.set (objfile, negative_types);
46bf5051
UW
2099 }
2100
c906108c
SS
2101 if (negative_types[-typenum] != NULL)
2102 return negative_types[-typenum];
2103
2104#if TARGET_CHAR_BIT != 8
c5aa993b 2105#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2106 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2107 that if that ever becomes not true, the correct fix will be to
2108 make the size in the struct type to be in bits, not in units of
2109 TARGET_CHAR_BIT. */
2110#endif
2111
2112 switch (-typenum)
2113 {
2114 case 1:
2115 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2116 by the debugging format. If there is a type called "int" which
2117 is other than 32 bits, then it should use a new negative type
2118 number (or avoid negative type numbers for that case).
2119 See stabs.texinfo. */
19f392bc 2120 rettype = init_integer_type (objfile, 32, 0, "int");
c906108c
SS
2121 break;
2122 case 2:
19f392bc 2123 rettype = init_integer_type (objfile, 8, 0, "char");
c413c448 2124 TYPE_NOSIGN (rettype) = 1;
c906108c
SS
2125 break;
2126 case 3:
19f392bc 2127 rettype = init_integer_type (objfile, 16, 0, "short");
c906108c
SS
2128 break;
2129 case 4:
19f392bc 2130 rettype = init_integer_type (objfile, 32, 0, "long");
c906108c
SS
2131 break;
2132 case 5:
19f392bc 2133 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
c906108c
SS
2134 break;
2135 case 6:
19f392bc 2136 rettype = init_integer_type (objfile, 8, 0, "signed char");
c906108c
SS
2137 break;
2138 case 7:
19f392bc 2139 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
c906108c
SS
2140 break;
2141 case 8:
19f392bc 2142 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
c906108c
SS
2143 break;
2144 case 9:
19f392bc 2145 rettype = init_integer_type (objfile, 32, 1, "unsigned");
89acf84d 2146 break;
c906108c 2147 case 10:
19f392bc 2148 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
c906108c
SS
2149 break;
2150 case 11:
77b7c781 2151 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
c906108c
SS
2152 break;
2153 case 12:
2154 /* IEEE single precision (32 bit). */
49f190bc
UW
2155 rettype = init_float_type (objfile, 32, "float",
2156 floatformats_ieee_single);
c906108c
SS
2157 break;
2158 case 13:
2159 /* IEEE double precision (64 bit). */
49f190bc
UW
2160 rettype = init_float_type (objfile, 64, "double",
2161 floatformats_ieee_double);
c906108c
SS
2162 break;
2163 case 14:
2164 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2165 different sizes for "long double" should use different negative
2166 type numbers. See stabs.texinfo. */
49f190bc
UW
2167 rettype = init_float_type (objfile, 64, "long double",
2168 floatformats_ieee_double);
c906108c
SS
2169 break;
2170 case 15:
19f392bc 2171 rettype = init_integer_type (objfile, 32, 0, "integer");
c906108c
SS
2172 break;
2173 case 16:
19f392bc 2174 rettype = init_boolean_type (objfile, 32, 1, "boolean");
c906108c
SS
2175 break;
2176 case 17:
49f190bc
UW
2177 rettype = init_float_type (objfile, 32, "short real",
2178 floatformats_ieee_single);
c906108c
SS
2179 break;
2180 case 18:
49f190bc
UW
2181 rettype = init_float_type (objfile, 64, "real",
2182 floatformats_ieee_double);
c906108c
SS
2183 break;
2184 case 19:
19f392bc 2185 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
c906108c
SS
2186 break;
2187 case 20:
19f392bc 2188 rettype = init_character_type (objfile, 8, 1, "character");
c906108c
SS
2189 break;
2190 case 21:
19f392bc 2191 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
c906108c
SS
2192 break;
2193 case 22:
19f392bc 2194 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
c906108c
SS
2195 break;
2196 case 23:
19f392bc 2197 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
c906108c
SS
2198 break;
2199 case 24:
19f392bc 2200 rettype = init_boolean_type (objfile, 32, 1, "logical");
c906108c
SS
2201 break;
2202 case 25:
2203 /* Complex type consisting of two IEEE single precision values. */
19f392bc
UW
2204 rettype = init_complex_type (objfile, "complex",
2205 rs6000_builtin_type (12, objfile));
c906108c
SS
2206 break;
2207 case 26:
2208 /* Complex type consisting of two IEEE double precision values. */
19f392bc
UW
2209 rettype = init_complex_type (objfile, "double complex",
2210 rs6000_builtin_type (13, objfile));
c906108c
SS
2211 break;
2212 case 27:
19f392bc 2213 rettype = init_integer_type (objfile, 8, 0, "integer*1");
c906108c
SS
2214 break;
2215 case 28:
19f392bc 2216 rettype = init_integer_type (objfile, 16, 0, "integer*2");
c906108c
SS
2217 break;
2218 case 29:
19f392bc 2219 rettype = init_integer_type (objfile, 32, 0, "integer*4");
c906108c
SS
2220 break;
2221 case 30:
19f392bc 2222 rettype = init_character_type (objfile, 16, 0, "wchar");
c906108c
SS
2223 break;
2224 case 31:
19f392bc 2225 rettype = init_integer_type (objfile, 64, 0, "long long");
c906108c
SS
2226 break;
2227 case 32:
19f392bc 2228 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
c906108c
SS
2229 break;
2230 case 33:
19f392bc 2231 rettype = init_integer_type (objfile, 64, 1, "logical*8");
c906108c
SS
2232 break;
2233 case 34:
19f392bc 2234 rettype = init_integer_type (objfile, 64, 0, "integer*8");
c906108c
SS
2235 break;
2236 }
2237 negative_types[-typenum] = rettype;
2238 return rettype;
2239}
2240\f
2241/* This page contains subroutines of read_type. */
2242
0d5cff50
DE
2243/* Wrapper around method_name_from_physname to flag a complaint
2244 if there is an error. */
de17c821 2245
0d5cff50
DE
2246static char *
2247stabs_method_name_from_physname (const char *physname)
de17c821
DJ
2248{
2249 char *method_name;
2250
2251 method_name = method_name_from_physname (physname);
2252
2253 if (method_name == NULL)
c263362b 2254 {
b98664d3 2255 complaint (_("Method has bad physname %s\n"), physname);
0d5cff50 2256 return NULL;
c263362b 2257 }
de17c821 2258
0d5cff50 2259 return method_name;
de17c821
DJ
2260}
2261
c906108c
SS
2262/* Read member function stabs info for C++ classes. The form of each member
2263 function data is:
2264
c5aa993b 2265 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2266
2267 An example with two member functions is:
2268
c5aa993b 2269 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2270
2271 For the case of overloaded operators, the format is op$::*.funcs, where
2272 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2273 name (such as `+=') and `.' marks the end of the operator name.
2274
2275 Returns 1 for success, 0 for failure. */
2276
2277static int
61b30099 2278read_member_functions (struct stab_field_info *fip, const char **pp,
a121b7c1 2279 struct type *type, struct objfile *objfile)
c906108c
SS
2280{
2281 int nfn_fields = 0;
2282 int length = 0;
c906108c
SS
2283 int i;
2284 struct next_fnfield
2285 {
2286 struct next_fnfield *next;
2287 struct fn_field fn_field;
c5aa993b
JM
2288 }
2289 *sublist;
c906108c
SS
2290 struct type *look_ahead_type;
2291 struct next_fnfieldlist *new_fnlist;
2292 struct next_fnfield *new_sublist;
2293 char *main_fn_name;
a121b7c1 2294 const char *p;
c5aa993b 2295
c906108c 2296 /* Process each list until we find something that is not a member function
c378eb4e 2297 or find the end of the functions. */
c906108c
SS
2298
2299 while (**pp != ';')
2300 {
2301 /* We should be positioned at the start of the function name.
c5aa993b 2302 Scan forward to find the first ':' and if it is not the
c378eb4e 2303 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2304 p = *pp;
2305 while (*p != ':')
2306 {
2307 p++;
2308 }
2309 if (p[1] != ':')
2310 {
2311 break;
2312 }
2313
2314 sublist = NULL;
2315 look_ahead_type = NULL;
2316 length = 0;
c5aa993b 2317
61b30099 2318 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
c5aa993b 2319
c906108c
SS
2320 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2321 {
2322 /* This is a completely wierd case. In order to stuff in the
2323 names that might contain colons (the usual name delimiter),
2324 Mike Tiemann defined a different name format which is
2325 signalled if the identifier is "op$". In that case, the
2326 format is "op$::XXXX." where XXXX is the name. This is
2327 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2328 /* This lets the user type "break operator+".
2329 We could just put in "+" as the name, but that wouldn't
2330 work for "*". */
8343f86c 2331 static char opname[32] = "op$";
c906108c 2332 char *o = opname + 3;
c5aa993b 2333
c906108c
SS
2334 /* Skip past '::'. */
2335 *pp = p + 2;
2336
2337 STABS_CONTINUE (pp, objfile);
2338 p = *pp;
2339 while (*p != '.')
2340 {
2341 *o++ = *p++;
2342 }
2343 main_fn_name = savestring (opname, o - opname);
2344 /* Skip past '.' */
2345 *pp = p + 1;
2346 }
2347 else
2348 {
2349 main_fn_name = savestring (*pp, p - *pp);
2350 /* Skip past '::'. */
2351 *pp = p + 2;
2352 }
c5aa993b
JM
2353 new_fnlist->fn_fieldlist.name = main_fn_name;
2354
c906108c
SS
2355 do
2356 {
61b30099 2357 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
c5aa993b 2358
c906108c
SS
2359 /* Check for and handle cretinous dbx symbol name continuation! */
2360 if (look_ahead_type == NULL)
2361 {
c378eb4e 2362 /* Normal case. */
c906108c 2363 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2364
2365 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2366 if (**pp != ':')
2367 {
2368 /* Invalid symtab info for member function. */
2369 return 0;
2370 }
2371 }
2372 else
2373 {
2374 /* g++ version 1 kludge */
c5aa993b 2375 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2376 look_ahead_type = NULL;
2377 }
c5aa993b 2378
c906108c
SS
2379 (*pp)++;
2380 p = *pp;
2381 while (*p != ';')
2382 {
2383 p++;
2384 }
c5aa993b 2385
09e2d7c7
DE
2386 /* These are methods, not functions. */
2387 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2388 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2389 else
2390 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2391 == TYPE_CODE_METHOD);
c906108c 2392
09e2d7c7 2393 /* If this is just a stub, then we don't have the real name here. */
74a9bb82 2394 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2395 {
4bfb94b8 2396 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
09e2d7c7 2397 set_type_self_type (new_sublist->fn_field.type, type);
c5aa993b 2398 new_sublist->fn_field.is_stub = 1;
c906108c 2399 }
09e2d7c7 2400
c5aa993b 2401 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2402 *pp = p + 1;
c5aa993b 2403
c906108c
SS
2404 /* Set this member function's visibility fields. */
2405 switch (*(*pp)++)
2406 {
c5aa993b
JM
2407 case VISIBILITY_PRIVATE:
2408 new_sublist->fn_field.is_private = 1;
2409 break;
2410 case VISIBILITY_PROTECTED:
2411 new_sublist->fn_field.is_protected = 1;
2412 break;
c906108c 2413 }
c5aa993b 2414
c906108c
SS
2415 STABS_CONTINUE (pp, objfile);
2416 switch (**pp)
2417 {
c378eb4e 2418 case 'A': /* Normal functions. */
c5aa993b
JM
2419 new_sublist->fn_field.is_const = 0;
2420 new_sublist->fn_field.is_volatile = 0;
2421 (*pp)++;
2422 break;
c378eb4e 2423 case 'B': /* `const' member functions. */
c5aa993b
JM
2424 new_sublist->fn_field.is_const = 1;
2425 new_sublist->fn_field.is_volatile = 0;
2426 (*pp)++;
2427 break;
c378eb4e 2428 case 'C': /* `volatile' member function. */
c5aa993b
JM
2429 new_sublist->fn_field.is_const = 0;
2430 new_sublist->fn_field.is_volatile = 1;
2431 (*pp)++;
2432 break;
c378eb4e 2433 case 'D': /* `const volatile' member function. */
c5aa993b
JM
2434 new_sublist->fn_field.is_const = 1;
2435 new_sublist->fn_field.is_volatile = 1;
2436 (*pp)++;
2437 break;
3e43a32a 2438 case '*': /* File compiled with g++ version 1 --
c378eb4e 2439 no info. */
c5aa993b
JM
2440 case '?':
2441 case '.':
2442 break;
2443 default:
b98664d3 2444 complaint (_("const/volatile indicator missing, got '%c'"),
3e43a32a 2445 **pp);
c5aa993b 2446 break;
c906108c 2447 }
c5aa993b 2448
c906108c
SS
2449 switch (*(*pp)++)
2450 {
c5aa993b 2451 case '*':
c906108c
SS
2452 {
2453 int nbits;
c5aa993b 2454 /* virtual member function, followed by index.
c906108c
SS
2455 The sign bit is set to distinguish pointers-to-methods
2456 from virtual function indicies. Since the array is
2457 in words, the quantity must be shifted left by 1
2458 on 16 bit machine, and by 2 on 32 bit machine, forcing
2459 the sign bit out, and usable as a valid index into
2460 the array. Remove the sign bit here. */
c5aa993b 2461 new_sublist->fn_field.voffset =
94e10a22 2462 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2463 if (nbits != 0)
2464 return 0;
c5aa993b 2465
c906108c
SS
2466 STABS_CONTINUE (pp, objfile);
2467 if (**pp == ';' || **pp == '\0')
2468 {
2469 /* Must be g++ version 1. */
c5aa993b 2470 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2471 }
2472 else
2473 {
2474 /* Figure out from whence this virtual function came.
2475 It may belong to virtual function table of
2476 one of its baseclasses. */
2477 look_ahead_type = read_type (pp, objfile);
2478 if (**pp == ':')
2479 {
c378eb4e 2480 /* g++ version 1 overloaded methods. */
c906108c
SS
2481 }
2482 else
2483 {
c5aa993b 2484 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2485 if (**pp != ';')
2486 {
2487 return 0;
2488 }
2489 else
2490 {
2491 ++*pp;
2492 }
2493 look_ahead_type = NULL;
2494 }
2495 }
2496 break;
2497 }
c5aa993b
JM
2498 case '?':
2499 /* static member function. */
4ea09c10
PS
2500 {
2501 int slen = strlen (main_fn_name);
2502
2503 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2504
2505 /* For static member functions, we can't tell if they
2506 are stubbed, as they are put out as functions, and not as
2507 methods.
2508 GCC v2 emits the fully mangled name if
2509 dbxout.c:flag_minimal_debug is not set, so we have to
2510 detect a fully mangled physname here and set is_stub
2511 accordingly. Fully mangled physnames in v2 start with
2512 the member function name, followed by two underscores.
2513 GCC v3 currently always emits stubbed member functions,
2514 but with fully mangled physnames, which start with _Z. */
2515 if (!(strncmp (new_sublist->fn_field.physname,
2516 main_fn_name, slen) == 0
2517 && new_sublist->fn_field.physname[slen] == '_'
2518 && new_sublist->fn_field.physname[slen + 1] == '_'))
2519 {
2520 new_sublist->fn_field.is_stub = 1;
2521 }
2522 break;
2523 }
c5aa993b
JM
2524
2525 default:
2526 /* error */
b98664d3 2527 complaint (_("member function type missing, got '%c'"),
3e43a32a 2528 (*pp)[-1]);
86a73007
TT
2529 /* Normal member function. */
2530 /* Fall through. */
c5aa993b
JM
2531
2532 case '.':
2533 /* normal member function. */
2534 new_sublist->fn_field.voffset = 0;
2535 new_sublist->fn_field.fcontext = 0;
2536 break;
c906108c 2537 }
c5aa993b
JM
2538
2539 new_sublist->next = sublist;
c906108c
SS
2540 sublist = new_sublist;
2541 length++;
2542 STABS_CONTINUE (pp, objfile);
2543 }
2544 while (**pp != ';' && **pp != '\0');
c5aa993b 2545
c906108c 2546 (*pp)++;
0c867556 2547 STABS_CONTINUE (pp, objfile);
c5aa993b 2548
0c867556
PS
2549 /* Skip GCC 3.X member functions which are duplicates of the callable
2550 constructor/destructor. */
6cbbcdfe
KS
2551 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2552 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2553 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2554 {
0c867556 2555 xfree (main_fn_name);
c906108c 2556 }
0c867556
PS
2557 else
2558 {
de17c821
DJ
2559 int has_destructor = 0, has_other = 0;
2560 int is_v3 = 0;
2561 struct next_fnfield *tmp_sublist;
2562
2563 /* Various versions of GCC emit various mostly-useless
2564 strings in the name field for special member functions.
2565
2566 For stub methods, we need to defer correcting the name
2567 until we are ready to unstub the method, because the current
2568 name string is used by gdb_mangle_name. The only stub methods
2569 of concern here are GNU v2 operators; other methods have their
2570 names correct (see caveat below).
2571
2572 For non-stub methods, in GNU v3, we have a complete physname.
2573 Therefore we can safely correct the name now. This primarily
2574 affects constructors and destructors, whose name will be
2575 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2576 operators will also have incorrect names; for instance,
2577 "operator int" will be named "operator i" (i.e. the type is
2578 mangled).
2579
2580 For non-stub methods in GNU v2, we have no easy way to
2581 know if we have a complete physname or not. For most
2582 methods the result depends on the platform (if CPLUS_MARKER
2583 can be `$' or `.', it will use minimal debug information, or
2584 otherwise the full physname will be included).
2585
2586 Rather than dealing with this, we take a different approach.
2587 For v3 mangled names, we can use the full physname; for v2,
2588 we use cplus_demangle_opname (which is actually v2 specific),
2589 because the only interesting names are all operators - once again
2590 barring the caveat below. Skip this process if any method in the
2591 group is a stub, to prevent our fouling up the workings of
2592 gdb_mangle_name.
2593
2594 The caveat: GCC 2.95.x (and earlier?) put constructors and
2595 destructors in the same method group. We need to split this
2596 into two groups, because they should have different names.
2597 So for each method group we check whether it contains both
2598 routines whose physname appears to be a destructor (the physnames
2599 for and destructors are always provided, due to quirks in v2
2600 mangling) and routines whose physname does not appear to be a
2601 destructor. If so then we break up the list into two halves.
2602 Even if the constructors and destructors aren't in the same group
2603 the destructor will still lack the leading tilde, so that also
2604 needs to be fixed.
2605
2606 So, to summarize what we expect and handle here:
2607
2608 Given Given Real Real Action
2609 method name physname physname method name
2610
2611 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2612 [now or later]
2613 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2614 rename
2615 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2616 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2617 */
2618
2619 tmp_sublist = sublist;
2620 while (tmp_sublist != NULL)
2621 {
de17c821
DJ
2622 if (tmp_sublist->fn_field.physname[0] == '_'
2623 && tmp_sublist->fn_field.physname[1] == 'Z')
2624 is_v3 = 1;
2625
2626 if (is_destructor_name (tmp_sublist->fn_field.physname))
2627 has_destructor++;
2628 else
2629 has_other++;
2630
2631 tmp_sublist = tmp_sublist->next;
2632 }
2633
2634 if (has_destructor && has_other)
2635 {
2636 struct next_fnfieldlist *destr_fnlist;
2637 struct next_fnfield *last_sublist;
2638
2639 /* Create a new fn_fieldlist for the destructors. */
2640
61b30099
TT
2641 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2642 struct next_fnfieldlist);
8d749320 2643
de17c821 2644 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2645 = obconcat (&objfile->objfile_obstack, "~",
2646 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821 2647
8d749320
SM
2648 destr_fnlist->fn_fieldlist.fn_fields =
2649 XOBNEWVEC (&objfile->objfile_obstack,
2650 struct fn_field, has_destructor);
de17c821
DJ
2651 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2652 sizeof (struct fn_field) * has_destructor);
2653 tmp_sublist = sublist;
2654 last_sublist = NULL;
2655 i = 0;
2656 while (tmp_sublist != NULL)
2657 {
2658 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2659 {
2660 tmp_sublist = tmp_sublist->next;
2661 continue;
2662 }
2663
2664 destr_fnlist->fn_fieldlist.fn_fields[i++]
2665 = tmp_sublist->fn_field;
2666 if (last_sublist)
2667 last_sublist->next = tmp_sublist->next;
2668 else
2669 sublist = tmp_sublist->next;
2670 last_sublist = tmp_sublist;
2671 tmp_sublist = tmp_sublist->next;
2672 }
2673
2674 destr_fnlist->fn_fieldlist.length = has_destructor;
2675 destr_fnlist->next = fip->fnlist;
2676 fip->fnlist = destr_fnlist;
2677 nfn_fields++;
de17c821
DJ
2678 length -= has_destructor;
2679 }
2680 else if (is_v3)
2681 {
2682 /* v3 mangling prevents the use of abbreviated physnames,
2683 so we can do this here. There are stubbed methods in v3
2684 only:
2685 - in -gstabs instead of -gstabs+
2686 - or for static methods, which are output as a function type
2687 instead of a method type. */
0d5cff50
DE
2688 char *new_method_name =
2689 stabs_method_name_from_physname (sublist->fn_field.physname);
de17c821 2690
0d5cff50
DE
2691 if (new_method_name != NULL
2692 && strcmp (new_method_name,
2693 new_fnlist->fn_fieldlist.name) != 0)
2694 {
2695 new_fnlist->fn_fieldlist.name = new_method_name;
2696 xfree (main_fn_name);
2697 }
2698 else
2699 xfree (new_method_name);
de17c821
DJ
2700 }
2701 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2702 {
1754f103 2703 new_fnlist->fn_fieldlist.name =
0d5cff50
DE
2704 obconcat (&objfile->objfile_obstack,
2705 "~", main_fn_name, (char *)NULL);
de17c821
DJ
2706 xfree (main_fn_name);
2707 }
de17c821 2708
e39db4db
SM
2709 new_fnlist->fn_fieldlist.fn_fields
2710 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
0c867556
PS
2711 for (i = length; (i--, sublist); sublist = sublist->next)
2712 {
2713 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2714 }
c5aa993b 2715
0c867556
PS
2716 new_fnlist->fn_fieldlist.length = length;
2717 new_fnlist->next = fip->fnlist;
2718 fip->fnlist = new_fnlist;
2719 nfn_fields++;
0c867556 2720 }
c906108c
SS
2721 }
2722
2723 if (nfn_fields)
2724 {
2725 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2726 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2727 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2728 memset (TYPE_FN_FIELDLISTS (type), 0,
2729 sizeof (struct fn_fieldlist) * nfn_fields);
2730 TYPE_NFN_FIELDS (type) = nfn_fields;
c906108c
SS
2731 }
2732
2733 return 1;
2734}
2735
2736/* Special GNU C++ name.
2737
2738 Returns 1 for success, 0 for failure. "failure" means that we can't
2739 keep parsing and it's time for error_type(). */
2740
2741static int
61b30099
TT
2742read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2743 struct type *type, struct objfile *objfile)
c906108c 2744{
a121b7c1 2745 const char *p;
0d5cff50 2746 const char *name;
c906108c
SS
2747 char cpp_abbrev;
2748 struct type *context;
2749
2750 p = *pp;
2751 if (*++p == 'v')
2752 {
2753 name = NULL;
2754 cpp_abbrev = *++p;
2755
2756 *pp = p + 1;
2757
2758 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2759 where the type number before the ':' is the "context" and
2760 everything after is a regular type definition. Lookup the
c378eb4e 2761 type, find it's name, and construct the field name. */
c906108c
SS
2762
2763 context = read_type (pp, objfile);
2764
2765 switch (cpp_abbrev)
2766 {
c5aa993b 2767 case 'f': /* $vf -- a virtual function table pointer */
a737d952 2768 name = TYPE_NAME (context);
c2bd2ed9 2769 if (name == NULL)
433759f7
MS
2770 {
2771 name = "";
2772 }
48cb83fd
JK
2773 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2774 vptr_name, name, (char *) NULL);
c5aa993b 2775 break;
c906108c 2776
c5aa993b 2777 case 'b': /* $vb -- a virtual bsomethingorother */
a737d952 2778 name = TYPE_NAME (context);
c5aa993b
JM
2779 if (name == NULL)
2780 {
b98664d3 2781 complaint (_("C++ abbreviated type name "
3e43a32a 2782 "unknown at symtab pos %d"),
23136709 2783 symnum);
c5aa993b
JM
2784 name = "FOO";
2785 }
48cb83fd
JK
2786 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2787 name, (char *) NULL);
c5aa993b 2788 break;
c906108c 2789
c5aa993b 2790 default:
23136709 2791 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2792 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2793 "INVALID_CPLUSPLUS_ABBREV",
2794 (char *) NULL);
c5aa993b 2795 break;
c906108c
SS
2796 }
2797
2798 /* At this point, *pp points to the ':'. Skip it and read the
c378eb4e 2799 field type. */
c906108c
SS
2800
2801 p = ++(*pp);
2802 if (p[-1] != ':')
2803 {
23136709 2804 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2805 return 0;
2806 }
2807 fip->list->field.type = read_type (pp, objfile);
2808 if (**pp == ',')
c5aa993b 2809 (*pp)++; /* Skip the comma. */
c906108c
SS
2810 else
2811 return 0;
2812
2813 {
2814 int nbits;
433759f7 2815
f41f5e61
PA
2816 SET_FIELD_BITPOS (fip->list->field,
2817 read_huge_number (pp, ';', &nbits, 0));
c906108c
SS
2818 if (nbits != 0)
2819 return 0;
2820 }
2821 /* This field is unpacked. */
2822 FIELD_BITSIZE (fip->list->field) = 0;
2823 fip->list->visibility = VISIBILITY_PRIVATE;
2824 }
2825 else
2826 {
23136709 2827 invalid_cpp_abbrev_complaint (*pp);
c906108c 2828 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2829 better return 0. If we returned 1, we would need to at least advance
2830 *pp to avoid an infinite loop. */
c906108c
SS
2831 return 0;
2832 }
2833 return 1;
2834}
2835
2836static void
61b30099
TT
2837read_one_struct_field (struct stab_field_info *fip, const char **pp,
2838 const char *p, struct type *type,
2839 struct objfile *objfile)
c906108c 2840{
5e2b427d
UW
2841 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2842
224c3ddb 2843 fip->list->field.name
0cf9feb9 2844 = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
c906108c
SS
2845 *pp = p + 1;
2846
c378eb4e 2847 /* This means we have a visibility for a field coming. */
c906108c
SS
2848 if (**pp == '/')
2849 {
2850 (*pp)++;
c5aa993b 2851 fip->list->visibility = *(*pp)++;
c906108c
SS
2852 }
2853 else
2854 {
2855 /* normal dbx-style format, no explicit visibility */
c5aa993b 2856 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2857 }
2858
c5aa993b 2859 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2860 if (**pp == ':')
2861 {
2862 p = ++(*pp);
2863#if 0
c378eb4e 2864 /* Possible future hook for nested types. */
c906108c
SS
2865 if (**pp == '!')
2866 {
c5aa993b 2867 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2868 p = ++(*pp);
2869 }
c5aa993b
JM
2870 else
2871 ...;
c906108c 2872#endif
c5aa993b 2873 while (*p != ';')
c906108c
SS
2874 {
2875 p++;
2876 }
2877 /* Static class member. */
2878 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2879 *pp = p + 1;
2880 return;
2881 }
2882 else if (**pp != ',')
2883 {
2884 /* Bad structure-type format. */
23136709 2885 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2886 return;
2887 }
2888
2889 (*pp)++; /* Skip the comma. */
2890
2891 {
2892 int nbits;
433759f7 2893
f41f5e61
PA
2894 SET_FIELD_BITPOS (fip->list->field,
2895 read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
2896 if (nbits != 0)
2897 {
23136709 2898 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2899 return;
2900 }
94e10a22 2901 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2902 if (nbits != 0)
2903 {
23136709 2904 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2905 return;
2906 }
2907 }
2908
2909 if (FIELD_BITPOS (fip->list->field) == 0
2910 && FIELD_BITSIZE (fip->list->field) == 0)
2911 {
2912 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2913 it is a field which has been optimized out. The correct stab for
2914 this case is to use VISIBILITY_IGNORE, but that is a recent
2915 invention. (2) It is a 0-size array. For example
e2e0b3e5 2916 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2917 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2918 will continue to work, and a 0-size array as a whole doesn't
2919 have any contents to print.
2920
2921 I suspect this probably could also happen with gcc -gstabs (not
2922 -gstabs+) for static fields, and perhaps other C++ extensions.
2923 Hopefully few people use -gstabs with gdb, since it is intended
2924 for dbx compatibility. */
c906108c
SS
2925
2926 /* Ignore this field. */
c5aa993b 2927 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2928 }
2929 else
2930 {
2931 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2932 dbx gives a bit size for all fields.
2933 Note that forward refs cannot be packed,
2934 and treat enums as if they had the width of ints. */
c906108c
SS
2935
2936 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2937
2938 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2939 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2940 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2941 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2942 {
2943 FIELD_BITSIZE (fip->list->field) = 0;
2944 }
c5aa993b 2945 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2946 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2947 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2948 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2949 == gdbarch_int_bit (gdbarch))
c5aa993b 2950 )
c906108c
SS
2951 &&
2952 FIELD_BITPOS (fip->list->field) % 8 == 0)
2953 {
2954 FIELD_BITSIZE (fip->list->field) = 0;
2955 }
2956 }
2957}
2958
2959
2960/* Read struct or class data fields. They have the form:
2961
c5aa993b 2962 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2963
2964 At the end, we see a semicolon instead of a field.
2965
2966 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2967 a static field.
2968
2969 The optional VISIBILITY is one of:
2970
c5aa993b
JM
2971 '/0' (VISIBILITY_PRIVATE)
2972 '/1' (VISIBILITY_PROTECTED)
2973 '/2' (VISIBILITY_PUBLIC)
2974 '/9' (VISIBILITY_IGNORE)
c906108c
SS
2975
2976 or nothing, for C style fields with public visibility.
2977
2978 Returns 1 for success, 0 for failure. */
2979
2980static int
61b30099
TT
2981read_struct_fields (struct stab_field_info *fip, const char **pp,
2982 struct type *type, struct objfile *objfile)
c906108c 2983{
a121b7c1 2984 const char *p;
fe978cb0 2985 struct nextfield *newobj;
c906108c
SS
2986
2987 /* We better set p right now, in case there are no fields at all... */
2988
2989 p = *pp;
2990
2991 /* Read each data member type until we find the terminating ';' at the end of
2992 the data member list, or break for some other reason such as finding the
c378eb4e 2993 start of the member function list. */
fedbd091 2994 /* Stab string for structure/union does not end with two ';' in
c378eb4e 2995 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 2996
fedbd091 2997 while (**pp != ';' && **pp != '\0')
c906108c 2998 {
c906108c
SS
2999 STABS_CONTINUE (pp, objfile);
3000 /* Get space to record the next field's data. */
61b30099 3001 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
8d749320 3002
fe978cb0
PA
3003 newobj->next = fip->list;
3004 fip->list = newobj;
c906108c
SS
3005
3006 /* Get the field name. */
3007 p = *pp;
3008
3009 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
3010 unless the CPLUS_MARKER is followed by an underscore, in
3011 which case it is just the name of an anonymous type, which we
3012 should handle like any other type name. */
c906108c
SS
3013
3014 if (is_cplus_marker (p[0]) && p[1] != '_')
3015 {
3016 if (!read_cpp_abbrev (fip, pp, type, objfile))
3017 return 0;
3018 continue;
3019 }
3020
3021 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3022 values. Data members are delimited by a single ':', while member
3023 functions are delimited by a pair of ':'s. When we hit the member
c378eb4e 3024 functions (if any), terminate scan loop and return. */
c906108c 3025
c5aa993b 3026 while (*p != ':' && *p != '\0')
c906108c
SS
3027 {
3028 p++;
3029 }
3030 if (*p == '\0')
3031 return 0;
3032
3033 /* Check to see if we have hit the member functions yet. */
3034 if (p[1] == ':')
3035 {
3036 break;
3037 }
3038 read_one_struct_field (fip, pp, p, type, objfile);
3039 }
3040 if (p[0] == ':' && p[1] == ':')
3041 {
1b831c93
AC
3042 /* (the deleted) chill the list of fields: the last entry (at
3043 the head) is a partially constructed entry which we now
c378eb4e 3044 scrub. */
c5aa993b 3045 fip->list = fip->list->next;
c906108c
SS
3046 }
3047 return 1;
3048}
9846de1b 3049/* *INDENT-OFF* */
c906108c
SS
3050/* The stabs for C++ derived classes contain baseclass information which
3051 is marked by a '!' character after the total size. This function is
3052 called when we encounter the baseclass marker, and slurps up all the
3053 baseclass information.
3054
3055 Immediately following the '!' marker is the number of base classes that
3056 the class is derived from, followed by information for each base class.
3057 For each base class, there are two visibility specifiers, a bit offset
3058 to the base class information within the derived class, a reference to
3059 the type for the base class, and a terminating semicolon.
3060
3061 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3062 ^^ ^ ^ ^ ^ ^ ^
3063 Baseclass information marker __________________|| | | | | | |
3064 Number of baseclasses __________________________| | | | | | |
3065 Visibility specifiers (2) ________________________| | | | | |
3066 Offset in bits from start of class _________________| | | | |
3067 Type number for base class ___________________________| | | |
3068 Visibility specifiers (2) _______________________________| | |
3069 Offset in bits from start of class ________________________| |
3070 Type number of base class ____________________________________|
3071
3072 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3073/* *INDENT-ON* */
c906108c 3074
c5aa993b
JM
3075
3076
c906108c 3077static int
61b30099
TT
3078read_baseclasses (struct stab_field_info *fip, const char **pp,
3079 struct type *type, struct objfile *objfile)
c906108c
SS
3080{
3081 int i;
fe978cb0 3082 struct nextfield *newobj;
c906108c
SS
3083
3084 if (**pp != '!')
3085 {
3086 return 1;
3087 }
3088 else
3089 {
c378eb4e 3090 /* Skip the '!' baseclass information marker. */
c906108c
SS
3091 (*pp)++;
3092 }
3093
3094 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3095 {
3096 int nbits;
433759f7 3097
94e10a22 3098 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3099 if (nbits != 0)
3100 return 0;
3101 }
3102
3103#if 0
3104 /* Some stupid compilers have trouble with the following, so break
3105 it up into simpler expressions. */
3106 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3107 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3108#else
3109 {
3110 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3111 char *pointer;
3112
3113 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3114 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3115 }
3116#endif /* 0 */
3117
3118 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3119
3120 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3121 {
61b30099 3122 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
8d749320 3123
fe978cb0
PA
3124 newobj->next = fip->list;
3125 fip->list = newobj;
3126 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
c378eb4e 3127 field! */
c906108c
SS
3128
3129 STABS_CONTINUE (pp, objfile);
3130 switch (**pp)
3131 {
c5aa993b 3132 case '0':
c378eb4e 3133 /* Nothing to do. */
c5aa993b
JM
3134 break;
3135 case '1':
3136 SET_TYPE_FIELD_VIRTUAL (type, i);
3137 break;
3138 default:
3139 /* Unknown character. Complain and treat it as non-virtual. */
3140 {
b98664d3 3141 complaint (_("Unknown virtual character `%c' for baseclass"),
3e43a32a 3142 **pp);
c5aa993b 3143 }
c906108c
SS
3144 }
3145 ++(*pp);
3146
fe978cb0
PA
3147 newobj->visibility = *(*pp)++;
3148 switch (newobj->visibility)
c906108c 3149 {
c5aa993b
JM
3150 case VISIBILITY_PRIVATE:
3151 case VISIBILITY_PROTECTED:
3152 case VISIBILITY_PUBLIC:
3153 break;
3154 default:
3155 /* Bad visibility format. Complain and treat it as
3156 public. */
3157 {
b98664d3 3158 complaint (_("Unknown visibility `%c' for baseclass"),
fe978cb0
PA
3159 newobj->visibility);
3160 newobj->visibility = VISIBILITY_PUBLIC;
c5aa993b 3161 }
c906108c
SS
3162 }
3163
3164 {
3165 int nbits;
c5aa993b 3166
c906108c
SS
3167 /* The remaining value is the bit offset of the portion of the object
3168 corresponding to this baseclass. Always zero in the absence of
3169 multiple inheritance. */
3170
fe978cb0 3171 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
3172 if (nbits != 0)
3173 return 0;
3174 }
3175
3176 /* The last piece of baseclass information is the type of the
c5aa993b 3177 base class. Read it, and remember it's type name as this
c378eb4e 3178 field's name. */
c906108c 3179
fe978cb0 3180 newobj->field.type = read_type (pp, objfile);
a737d952 3181 newobj->field.name = TYPE_NAME (newobj->field.type);
c906108c 3182
c378eb4e 3183 /* Skip trailing ';' and bump count of number of fields seen. */
c906108c
SS
3184 if (**pp == ';')
3185 (*pp)++;
3186 else
3187 return 0;
3188 }
3189 return 1;
3190}
3191
3192/* The tail end of stabs for C++ classes that contain a virtual function
3193 pointer contains a tilde, a %, and a type number.
3194 The type number refers to the base class (possibly this class itself) which
3195 contains the vtable pointer for the current class.
3196
3197 This function is called when we have parsed all the method declarations,
3198 so we can look for the vptr base class info. */
3199
3200static int
61b30099
TT
3201read_tilde_fields (struct stab_field_info *fip, const char **pp,
3202 struct type *type, struct objfile *objfile)
c906108c 3203{
a121b7c1 3204 const char *p;
c906108c
SS
3205
3206 STABS_CONTINUE (pp, objfile);
3207
c378eb4e 3208 /* If we are positioned at a ';', then skip it. */
c906108c
SS
3209 if (**pp == ';')
3210 {
3211 (*pp)++;
3212 }
3213
3214 if (**pp == '~')
3215 {
3216 (*pp)++;
3217
3218 if (**pp == '=' || **pp == '+' || **pp == '-')
3219 {
3220 /* Obsolete flags that used to indicate the presence
c378eb4e 3221 of constructors and/or destructors. */
c906108c
SS
3222 (*pp)++;
3223 }
3224
3225 /* Read either a '%' or the final ';'. */
3226 if (*(*pp)++ == '%')
3227 {
3228 /* The next number is the type number of the base class
3229 (possibly our own class) which supplies the vtable for
3230 this class. Parse it out, and search that class to find
3231 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3232 and TYPE_VPTR_FIELDNO. */
3233
3234 struct type *t;
3235 int i;
3236
3237 t = read_type (pp, objfile);
3238 p = (*pp)++;
3239 while (*p != '\0' && *p != ';')
3240 {
3241 p++;
3242 }
3243 if (*p == '\0')
3244 {
3245 /* Premature end of symbol. */
3246 return 0;
3247 }
c5aa993b 3248
ae6ae975 3249 set_type_vptr_basetype (type, t);
c378eb4e 3250 if (type == t) /* Our own class provides vtbl ptr. */
c906108c
SS
3251 {
3252 for (i = TYPE_NFIELDS (t) - 1;
3253 i >= TYPE_N_BASECLASSES (t);
3254 --i)
3255 {
0d5cff50 3256 const char *name = TYPE_FIELD_NAME (t, i);
433759f7 3257
8343f86c 3258 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3259 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c 3260 {
ae6ae975 3261 set_type_vptr_fieldno (type, i);
c906108c
SS
3262 goto gotit;
3263 }
3264 }
3265 /* Virtual function table field not found. */
b98664d3 3266 complaint (_("virtual function table pointer "
3e43a32a 3267 "not found when defining class `%s'"),
23136709 3268 TYPE_NAME (type));
c906108c
SS
3269 return 0;
3270 }
3271 else
3272 {
ae6ae975 3273 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
3274 }
3275
c5aa993b 3276 gotit:
c906108c
SS
3277 *pp = p + 1;
3278 }
3279 }
3280 return 1;
3281}
3282
3283static int
61b30099 3284attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
c906108c 3285{
52f0bd74 3286 int n;
c906108c
SS
3287
3288 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3289 fip->fnlist != NULL;
3290 fip->fnlist = fip->fnlist->next)
c906108c 3291 {
c378eb4e 3292 --n; /* Circumvent Sun3 compiler bug. */
c5aa993b 3293 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3294 }
3295 return 1;
3296}
3297
c906108c
SS
3298/* Create the vector of fields, and record how big it is.
3299 We need this info to record proper virtual function table information
3300 for this class's virtual functions. */
3301
3302static int
61b30099 3303attach_fields_to_type (struct stab_field_info *fip, struct type *type,
fba45db2 3304 struct objfile *objfile)
c906108c 3305{
52f0bd74
AC
3306 int nfields = 0;
3307 int non_public_fields = 0;
3308 struct nextfield *scan;
c906108c
SS
3309
3310 /* Count up the number of fields that we have, as well as taking note of
3311 whether or not there are any non-public fields, which requires us to
3312 allocate and build the private_field_bits and protected_field_bits
c378eb4e 3313 bitfields. */
c906108c 3314
c5aa993b 3315 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3316 {
3317 nfields++;
c5aa993b 3318 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3319 {
3320 non_public_fields++;
3321 }
3322 }
3323
3324 /* Now we know how many fields there are, and whether or not there are any
3325 non-public fields. Record the field count, allocate space for the
c378eb4e 3326 array of fields, and create blank visibility bitfields if necessary. */
c906108c
SS
3327
3328 TYPE_NFIELDS (type) = nfields;
3329 TYPE_FIELDS (type) = (struct field *)
3330 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3331 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3332
3333 if (non_public_fields)
3334 {
3335 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3336
3337 TYPE_FIELD_PRIVATE_BITS (type) =
3338 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3339 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3340
3341 TYPE_FIELD_PROTECTED_BITS (type) =
3342 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3343 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3344
3345 TYPE_FIELD_IGNORE_BITS (type) =
3346 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3347 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3348 }
3349
c378eb4e
MS
3350 /* Copy the saved-up fields into the field vector. Start from the
3351 head of the list, adding to the tail of the field array, so that
3352 they end up in the same order in the array in which they were
3353 added to the list. */
c906108c
SS
3354
3355 while (nfields-- > 0)
3356 {
c5aa993b
JM
3357 TYPE_FIELD (type, nfields) = fip->list->field;
3358 switch (fip->list->visibility)
c906108c 3359 {
c5aa993b
JM
3360 case VISIBILITY_PRIVATE:
3361 SET_TYPE_FIELD_PRIVATE (type, nfields);
3362 break;
c906108c 3363
c5aa993b
JM
3364 case VISIBILITY_PROTECTED:
3365 SET_TYPE_FIELD_PROTECTED (type, nfields);
3366 break;
c906108c 3367
c5aa993b
JM
3368 case VISIBILITY_IGNORE:
3369 SET_TYPE_FIELD_IGNORE (type, nfields);
3370 break;
c906108c 3371
c5aa993b
JM
3372 case VISIBILITY_PUBLIC:
3373 break;
c906108c 3374
c5aa993b
JM
3375 default:
3376 /* Unknown visibility. Complain and treat it as public. */
3377 {
b98664d3 3378 complaint (_("Unknown visibility `%c' for field"),
23136709 3379 fip->list->visibility);
c5aa993b
JM
3380 }
3381 break;
c906108c 3382 }
c5aa993b 3383 fip->list = fip->list->next;
c906108c
SS
3384 }
3385 return 1;
3386}
3387
2ae1c2d2 3388
2ae1c2d2
JB
3389/* Complain that the compiler has emitted more than one definition for the
3390 structure type TYPE. */
3391static void
3392complain_about_struct_wipeout (struct type *type)
3393{
0d5cff50
DE
3394 const char *name = "";
3395 const char *kind = "";
2ae1c2d2 3396
e86ca25f 3397 if (TYPE_NAME (type))
2ae1c2d2 3398 {
e86ca25f 3399 name = TYPE_NAME (type);
2ae1c2d2
JB
3400 switch (TYPE_CODE (type))
3401 {
3402 case TYPE_CODE_STRUCT: kind = "struct "; break;
3403 case TYPE_CODE_UNION: kind = "union "; break;
3404 case TYPE_CODE_ENUM: kind = "enum "; break;
3405 default: kind = "";
3406 }
3407 }
2ae1c2d2
JB
3408 else
3409 {
3410 name = "<unknown>";
3411 kind = "";
3412 }
3413
b98664d3 3414 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3415}
3416
621791b8
PM
3417/* Set the length for all variants of a same main_type, which are
3418 connected in the closed chain.
3419
3420 This is something that needs to be done when a type is defined *after*
3421 some cross references to this type have already been read. Consider
3422 for instance the following scenario where we have the following two
3423 stabs entries:
3424
3425 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3426 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3427
3428 A stubbed version of type dummy is created while processing the first
3429 stabs entry. The length of that type is initially set to zero, since
3430 it is unknown at this point. Also, a "constant" variation of type
3431 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3432 the stabs line).
3433
3434 The second stabs entry allows us to replace the stubbed definition
3435 with the real definition. However, we still need to adjust the length
3436 of the "constant" variation of that type, as its length was left
3437 untouched during the main type replacement... */
3438
3439static void
9e69f3b6 3440set_length_in_type_chain (struct type *type)
621791b8
PM
3441{
3442 struct type *ntype = TYPE_CHAIN (type);
3443
3444 while (ntype != type)
3445 {
3446 if (TYPE_LENGTH(ntype) == 0)
3447 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3448 else
3449 complain_about_struct_wipeout (ntype);
3450 ntype = TYPE_CHAIN (ntype);
3451 }
3452}
2ae1c2d2 3453
c906108c
SS
3454/* Read the description of a structure (or union type) and return an object
3455 describing the type.
3456
3457 PP points to a character pointer that points to the next unconsumed token
b021a221 3458 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
c906108c
SS
3459 *PP will point to "4a:1,0,32;;".
3460
3461 TYPE points to an incomplete type that needs to be filled in.
3462
3463 OBJFILE points to the current objfile from which the stabs information is
3464 being read. (Note that it is redundant in that TYPE also contains a pointer
3465 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3466 */
c906108c
SS
3467
3468static struct type *
a121b7c1 3469read_struct_type (const char **pp, struct type *type, enum type_code type_code,
2ae1c2d2 3470 struct objfile *objfile)
c906108c 3471{
61b30099 3472 struct stab_field_info fi;
c906108c 3473
2ae1c2d2
JB
3474 /* When describing struct/union/class types in stabs, G++ always drops
3475 all qualifications from the name. So if you've got:
3476 struct A { ... struct B { ... }; ... };
3477 then G++ will emit stabs for `struct A::B' that call it simply
3478 `struct B'. Obviously, if you've got a real top-level definition for
3479 `struct B', or other nested definitions, this is going to cause
3480 problems.
3481
3482 Obviously, GDB can't fix this by itself, but it can at least avoid
3483 scribbling on existing structure type objects when new definitions
3484 appear. */
3485 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3486 || TYPE_STUB (type)))
3487 {
3488 complain_about_struct_wipeout (type);
3489
3490 /* It's probably best to return the type unchanged. */
3491 return type;
3492 }
3493
c906108c 3494 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3495 TYPE_CODE (type) = type_code;
876cecd0 3496 TYPE_STUB (type) = 0;
c906108c
SS
3497
3498 /* First comes the total size in bytes. */
3499
3500 {
3501 int nbits;
433759f7 3502
94e10a22 3503 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c 3504 if (nbits != 0)
61b30099 3505 return error_type (pp, objfile);
621791b8 3506 set_length_in_type_chain (type);
c906108c
SS
3507 }
3508
3509 /* Now read the baseclasses, if any, read the regular C struct or C++
3510 class member fields, attach the fields to the type, read the C++
3511 member functions, attach them to the type, and then read any tilde
3e43a32a 3512 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3513
3514 if (!read_baseclasses (&fi, pp, type, objfile)
3515 || !read_struct_fields (&fi, pp, type, objfile)
3516 || !attach_fields_to_type (&fi, type, objfile)
3517 || !read_member_functions (&fi, pp, type, objfile)
3518 || !attach_fn_fields_to_type (&fi, type)
3519 || !read_tilde_fields (&fi, pp, type, objfile))
3520 {
3521 type = error_type (pp, objfile);
3522 }
3523
c906108c
SS
3524 return (type);
3525}
3526
3527/* Read a definition of an array type,
3528 and create and return a suitable type object.
3529 Also creates a range type which represents the bounds of that
3530 array. */
3531
3532static struct type *
a121b7c1 3533read_array_type (const char **pp, struct type *type,
fba45db2 3534 struct objfile *objfile)
c906108c
SS
3535{
3536 struct type *index_type, *element_type, *range_type;
3537 int lower, upper;
3538 int adjustable = 0;
3539 int nbits;
3540
3541 /* Format of an array type:
3542 "ar<index type>;lower;upper;<array_contents_type>".
3543 OS9000: "arlower,upper;<array_contents_type>".
3544
3545 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3546 for these, produce a type like float[][]. */
3547
c906108c
SS
3548 {
3549 index_type = read_type (pp, objfile);
3550 if (**pp != ';')
3551 /* Improper format of array type decl. */
3552 return error_type (pp, objfile);
3553 ++*pp;
3554 }
3555
3556 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3557 {
3558 (*pp)++;
3559 adjustable = 1;
3560 }
94e10a22 3561 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3562
c906108c
SS
3563 if (nbits != 0)
3564 return error_type (pp, objfile);
3565
3566 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3567 {
3568 (*pp)++;
3569 adjustable = 1;
3570 }
94e10a22 3571 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3572 if (nbits != 0)
3573 return error_type (pp, objfile);
c5aa993b 3574
c906108c
SS
3575 element_type = read_type (pp, objfile);
3576
3577 if (adjustable)
3578 {
3579 lower = 0;
3580 upper = -1;
3581 }
3582
3583 range_type =
cafb3438 3584 create_static_range_type (NULL, index_type, lower, upper);
c906108c
SS
3585 type = create_array_type (type, element_type, range_type);
3586
3587 return type;
3588}
3589
3590
3591/* Read a definition of an enumeration type,
3592 and create and return a suitable type object.
3593 Also defines the symbols that represent the values of the type. */
3594
3595static struct type *
a121b7c1 3596read_enum_type (const char **pp, struct type *type,
fba45db2 3597 struct objfile *objfile)
c906108c 3598{
5e2b427d 3599 struct gdbarch *gdbarch = get_objfile_arch (objfile);
a121b7c1 3600 const char *p;
c906108c 3601 char *name;
52f0bd74
AC
3602 long n;
3603 struct symbol *sym;
c906108c
SS
3604 int nsyms = 0;
3605 struct pending **symlist;
3606 struct pending *osyms, *syms;
3607 int o_nsyms;
3608 int nbits;
3609 int unsigned_enum = 1;
3610
3611#if 0
3612 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3613 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3614 to do? For now, force all enum values to file scope. */
3615 if (within_function)
e148f09d 3616 symlist = get_local_symbols ();
c906108c
SS
3617 else
3618#endif
e148f09d 3619 symlist = get_file_symbols ();
c906108c
SS
3620 osyms = *symlist;
3621 o_nsyms = osyms ? osyms->nsyms : 0;
3622
c906108c
SS
3623 /* The aix4 compiler emits an extra field before the enum members;
3624 my guess is it's a type of some sort. Just ignore it. */
3625 if (**pp == '-')
3626 {
3627 /* Skip over the type. */
3628 while (**pp != ':')
c5aa993b 3629 (*pp)++;
c906108c
SS
3630
3631 /* Skip over the colon. */
3632 (*pp)++;
3633 }
3634
3635 /* Read the value-names and their values.
3636 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3637 A semicolon or comma instead of a NAME means the end. */
3638 while (**pp && **pp != ';' && **pp != ',')
3639 {
3640 STABS_CONTINUE (pp, objfile);
3641 p = *pp;
c5aa993b
JM
3642 while (*p != ':')
3643 p++;
0cf9feb9 3644 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
c906108c 3645 *pp = p + 1;
94e10a22 3646 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3647 if (nbits != 0)
3648 return error_type (pp, objfile);
3649
e623cf5d 3650 sym = allocate_symbol (objfile);
3567439c 3651 SYMBOL_SET_LINKAGE_NAME (sym, name);
3c65e5b3 3652 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
f85f34ed 3653 &objfile->objfile_obstack);
f1e6e072 3654 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
176620f1 3655 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3656 SYMBOL_VALUE (sym) = n;
3657 if (n < 0)
3658 unsigned_enum = 0;
3659 add_symbol_to_list (sym, symlist);
3660 nsyms++;
3661 }
3662
3663 if (**pp == ';')
3664 (*pp)++; /* Skip the semicolon. */
3665
3666 /* Now fill in the fields of the type-structure. */
3667
5e2b427d 3668 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3669 set_length_in_type_chain (type);
c906108c 3670 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3671 TYPE_STUB (type) = 0;
c906108c 3672 if (unsigned_enum)
876cecd0 3673 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3674 TYPE_NFIELDS (type) = nsyms;
3675 TYPE_FIELDS (type) = (struct field *)
3676 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3677 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3678
3679 /* Find the symbols for the values and put them into the type.
3680 The symbols can be found in the symlist that we put them on
3681 to cause them to be defined. osyms contains the old value
3682 of that symlist; everything up to there was defined by us. */
3683 /* Note that we preserve the order of the enum constants, so
3684 that in something like "enum {FOO, LAST_THING=FOO}" we print
3685 FOO, not LAST_THING. */
3686
3687 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3688 {
3689 int last = syms == osyms ? o_nsyms : 0;
3690 int j = syms->nsyms;
433759f7 3691
c906108c
SS
3692 for (; --j >= last; --n)
3693 {
3694 struct symbol *xsym = syms->symbol[j];
433759f7 3695
c906108c 3696 SYMBOL_TYPE (xsym) = type;
3567439c 3697 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
14e75d8e 3698 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
c906108c
SS
3699 TYPE_FIELD_BITSIZE (type, n) = 0;
3700 }
3701 if (syms == osyms)
3702 break;
3703 }
3704
3705 return type;
3706}
3707
3708/* Sun's ACC uses a somewhat saner method for specifying the builtin
3709 typedefs in every file (for int, long, etc):
3710
c5aa993b
JM
3711 type = b <signed> <width> <format type>; <offset>; <nbits>
3712 signed = u or s.
3713 optional format type = c or b for char or boolean.
3714 offset = offset from high order bit to start bit of type.
3715 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3716
3717 The width/offset stuff appears to be for small objects stored in
3718 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3719 FIXME. */
3720
3721static struct type *
a121b7c1 3722read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3723{
3724 int type_bits;
3725 int nbits;
19f392bc
UW
3726 int unsigned_type;
3727 int boolean_type = 0;
c906108c
SS
3728
3729 switch (**pp)
3730 {
c5aa993b 3731 case 's':
19f392bc 3732 unsigned_type = 0;
c5aa993b
JM
3733 break;
3734 case 'u':
19f392bc 3735 unsigned_type = 1;
c5aa993b
JM
3736 break;
3737 default:
3738 return error_type (pp, objfile);
c906108c
SS
3739 }
3740 (*pp)++;
3741
3742 /* For some odd reason, all forms of char put a c here. This is strange
3743 because no other type has this honor. We can safely ignore this because
3744 we actually determine 'char'acterness by the number of bits specified in
3745 the descriptor.
3746 Boolean forms, e.g Fortran logical*X, put a b here. */
3747
3748 if (**pp == 'c')
3749 (*pp)++;
3750 else if (**pp == 'b')
3751 {
19f392bc 3752 boolean_type = 1;
c906108c
SS
3753 (*pp)++;
3754 }
3755
3756 /* The first number appears to be the number of bytes occupied
3757 by this type, except that unsigned short is 4 instead of 2.
3758 Since this information is redundant with the third number,
3759 we will ignore it. */
94e10a22 3760 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3761 if (nbits != 0)
3762 return error_type (pp, objfile);
3763
c378eb4e 3764 /* The second number is always 0, so ignore it too. */
94e10a22 3765 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3766 if (nbits != 0)
3767 return error_type (pp, objfile);
3768
c378eb4e 3769 /* The third number is the number of bits for this type. */
94e10a22 3770 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3771 if (nbits != 0)
3772 return error_type (pp, objfile);
3773 /* The type *should* end with a semicolon. If it are embedded
3774 in a larger type the semicolon may be the only way to know where
3775 the type ends. If this type is at the end of the stabstring we
3776 can deal with the omitted semicolon (but we don't have to like
3777 it). Don't bother to complain(), Sun's compiler omits the semicolon
3778 for "void". */
3779 if (**pp == ';')
3780 ++(*pp);
3781
3782 if (type_bits == 0)
19f392bc 3783 {
77b7c781
UW
3784 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3785 TARGET_CHAR_BIT, NULL);
19f392bc
UW
3786 if (unsigned_type)
3787 TYPE_UNSIGNED (type) = 1;
3788 return type;
3789 }
3790
3791 if (boolean_type)
3792 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
c906108c 3793 else
19f392bc 3794 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
c906108c
SS
3795}
3796
3797static struct type *
a121b7c1
PA
3798read_sun_floating_type (const char **pp, int typenums[2],
3799 struct objfile *objfile)
c906108c
SS
3800{
3801 int nbits;
3802 int details;
3803 int nbytes;
f65ca430 3804 struct type *rettype;
c906108c
SS
3805
3806 /* The first number has more details about the type, for example
3807 FN_COMPLEX. */
94e10a22 3808 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3809 if (nbits != 0)
3810 return error_type (pp, objfile);
3811
c378eb4e 3812 /* The second number is the number of bytes occupied by this type. */
94e10a22 3813 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3814 if (nbits != 0)
3815 return error_type (pp, objfile);
3816
19f392bc
UW
3817 nbits = nbytes * TARGET_CHAR_BIT;
3818
c906108c
SS
3819 if (details == NF_COMPLEX || details == NF_COMPLEX16
3820 || details == NF_COMPLEX32)
f65ca430 3821 {
9b790ce7 3822 rettype = dbx_init_float_type (objfile, nbits / 2);
19f392bc 3823 return init_complex_type (objfile, NULL, rettype);
f65ca430 3824 }
c906108c 3825
9b790ce7 3826 return dbx_init_float_type (objfile, nbits);
c906108c
SS
3827}
3828
3829/* Read a number from the string pointed to by *PP.
3830 The value of *PP is advanced over the number.
3831 If END is nonzero, the character that ends the
3832 number must match END, or an error happens;
3833 and that character is skipped if it does match.
3834 If END is zero, *PP is left pointing to that character.
3835
94e10a22
JG
3836 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3837 the number is represented in an octal representation, assume that
3838 it is represented in a 2's complement representation with a size of
3839 TWOS_COMPLEMENT_BITS.
3840
c906108c
SS
3841 If the number fits in a long, set *BITS to 0 and return the value.
3842 If not, set *BITS to be the number of bits in the number and return 0.
3843
3844 If encounter garbage, set *BITS to -1 and return 0. */
3845
c2d11a7d 3846static long
a121b7c1
PA
3847read_huge_number (const char **pp, int end, int *bits,
3848 int twos_complement_bits)
c906108c 3849{
a121b7c1 3850 const char *p = *pp;
c906108c 3851 int sign = 1;
51e9e0d4 3852 int sign_bit = 0;
c2d11a7d 3853 long n = 0;
c906108c
SS
3854 int radix = 10;
3855 char overflow = 0;
3856 int nbits = 0;
3857 int c;
c2d11a7d 3858 long upper_limit;
a2699720 3859 int twos_complement_representation = 0;
c5aa993b 3860
c906108c
SS
3861 if (*p == '-')
3862 {
3863 sign = -1;
3864 p++;
3865 }
3866
3867 /* Leading zero means octal. GCC uses this to output values larger
3868 than an int (because that would be hard in decimal). */
3869 if (*p == '0')
3870 {
3871 radix = 8;
3872 p++;
3873 }
3874
a2699720
PA
3875 /* Skip extra zeros. */
3876 while (*p == '0')
3877 p++;
3878
3879 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3880 {
3881 /* Octal, possibly signed. Check if we have enough chars for a
3882 negative number. */
3883
3884 size_t len;
a121b7c1 3885 const char *p1 = p;
433759f7 3886
a2699720
PA
3887 while ((c = *p1) >= '0' && c < '8')
3888 p1++;
3889
3890 len = p1 - p;
3891 if (len > twos_complement_bits / 3
3e43a32a
MS
3892 || (twos_complement_bits % 3 == 0
3893 && len == twos_complement_bits / 3))
a2699720
PA
3894 {
3895 /* Ok, we have enough characters for a signed value, check
3896 for signness by testing if the sign bit is set. */
3897 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3898 c = *p - '0';
3899 if (c & (1 << sign_bit))
3900 {
3901 /* Definitely signed. */
3902 twos_complement_representation = 1;
3903 sign = -1;
3904 }
3905 }
3906 }
3907
1b831c93 3908 upper_limit = LONG_MAX / radix;
c906108c
SS
3909
3910 while ((c = *p++) >= '0' && c < ('0' + radix))
3911 {
3912 if (n <= upper_limit)
94e10a22
JG
3913 {
3914 if (twos_complement_representation)
3915 {
a2699720
PA
3916 /* Octal, signed, twos complement representation. In
3917 this case, n is the corresponding absolute value. */
3918 if (n == 0)
3919 {
3920 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3921
a2699720
PA
3922 n = -sn;
3923 }
94e10a22
JG
3924 else
3925 {
a2699720
PA
3926 n *= radix;
3927 n -= c - '0';
94e10a22 3928 }
94e10a22
JG
3929 }
3930 else
3931 {
3932 /* unsigned representation */
3933 n *= radix;
c378eb4e 3934 n += c - '0'; /* FIXME this overflows anyway. */
94e10a22
JG
3935 }
3936 }
c906108c 3937 else
94e10a22 3938 overflow = 1;
c5aa993b 3939
c906108c 3940 /* This depends on large values being output in octal, which is
c378eb4e 3941 what GCC does. */
c906108c
SS
3942 if (radix == 8)
3943 {
3944 if (nbits == 0)
3945 {
3946 if (c == '0')
3947 /* Ignore leading zeroes. */
3948 ;
3949 else if (c == '1')
3950 nbits = 1;
3951 else if (c == '2' || c == '3')
3952 nbits = 2;
3953 else
3954 nbits = 3;
3955 }
3956 else
3957 nbits += 3;
3958 }
3959 }
3960 if (end)
3961 {
3962 if (c && c != end)
3963 {
3964 if (bits != NULL)
3965 *bits = -1;
3966 return 0;
3967 }
3968 }
3969 else
3970 --p;
3971
a2699720
PA
3972 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3973 {
3974 /* We were supposed to parse a number with maximum
3975 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3976 if (bits != NULL)
3977 *bits = -1;
3978 return 0;
3979 }
3980
c906108c
SS
3981 *pp = p;
3982 if (overflow)
3983 {
3984 if (nbits == 0)
3985 {
3986 /* Large decimal constants are an error (because it is hard to
3987 count how many bits are in them). */
3988 if (bits != NULL)
3989 *bits = -1;
3990 return 0;
3991 }
c5aa993b 3992
c906108c 3993 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
3994 the number of bits. Two's complement represention octals
3995 can't have a '-' in front. */
3996 if (sign == -1 && !twos_complement_representation)
c906108c
SS
3997 ++nbits;
3998 if (bits)
3999 *bits = nbits;
4000 }
4001 else
4002 {
4003 if (bits)
4004 *bits = 0;
a2699720 4005 return n * sign;
c906108c
SS
4006 }
4007 /* It's *BITS which has the interesting information. */
4008 return 0;
4009}
4010
4011static struct type *
a121b7c1 4012read_range_type (const char **pp, int typenums[2], int type_size,
94e10a22 4013 struct objfile *objfile)
c906108c 4014{
5e2b427d 4015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
a121b7c1 4016 const char *orig_pp = *pp;
c906108c 4017 int rangenums[2];
c2d11a7d 4018 long n2, n3;
c906108c
SS
4019 int n2bits, n3bits;
4020 int self_subrange;
4021 struct type *result_type;
4022 struct type *index_type = NULL;
4023
4024 /* First comes a type we are a subrange of.
4025 In C it is usually 0, 1 or the type being defined. */
4026 if (read_type_number (pp, rangenums) != 0)
4027 return error_type (pp, objfile);
4028 self_subrange = (rangenums[0] == typenums[0] &&
4029 rangenums[1] == typenums[1]);
4030
4031 if (**pp == '=')
4032 {
4033 *pp = orig_pp;
4034 index_type = read_type (pp, objfile);
4035 }
4036
4037 /* A semicolon should now follow; skip it. */
4038 if (**pp == ';')
4039 (*pp)++;
4040
4041 /* The remaining two operands are usually lower and upper bounds
4042 of the range. But in some special cases they mean something else. */
94e10a22
JG
4043 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4044 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4045
4046 if (n2bits == -1 || n3bits == -1)
4047 return error_type (pp, objfile);
4048
4049 if (index_type)
4050 goto handle_true_range;
4051
4052 /* If limits are huge, must be large integral type. */
4053 if (n2bits != 0 || n3bits != 0)
4054 {
4055 char got_signed = 0;
4056 char got_unsigned = 0;
4057 /* Number of bits in the type. */
4058 int nbits = 0;
4059
94e10a22 4060 /* If a type size attribute has been specified, the bounds of
c378eb4e 4061 the range should fit in this size. If the lower bounds needs
94e10a22
JG
4062 more bits than the upper bound, then the type is signed. */
4063 if (n2bits <= type_size && n3bits <= type_size)
4064 {
4065 if (n2bits == type_size && n2bits > n3bits)
4066 got_signed = 1;
4067 else
4068 got_unsigned = 1;
4069 nbits = type_size;
4070 }
c906108c 4071 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4072 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4073 {
4074 got_unsigned = 1;
4075 nbits = n3bits;
4076 }
4077 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4078 integral type. Take care of the case where <large number> doesn't
4079 fit in a long but <large number>-1 does. */
c906108c
SS
4080 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4081 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4082 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4083 && n3 == LONG_MAX))
c906108c
SS
4084 {
4085 got_signed = 1;
4086 nbits = n2bits;
4087 }
4088
4089 if (got_signed || got_unsigned)
19f392bc 4090 return init_integer_type (objfile, nbits, got_unsigned, NULL);
c906108c
SS
4091 else
4092 return error_type (pp, objfile);
4093 }
4094
4095 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4096 if (self_subrange && n2 == 0 && n3 == 0)
77b7c781 4097 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
c906108c
SS
4098
4099 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4100 is the width in bytes.
4101
4102 Fortran programs appear to use this for complex types also. To
4103 distinguish between floats and complex, g77 (and others?) seem
4104 to use self-subranges for the complexes, and subranges of int for
4105 the floats.
4106
4107 Also note that for complexes, g77 sets n2 to the size of one of
4108 the member floats, not the whole complex beast. My guess is that
c378eb4e 4109 this was to work well with pre-COMPLEX versions of gdb. */
c906108c
SS
4110
4111 if (n3 == 0 && n2 > 0)
4112 {
1300f5dd 4113 struct type *float_type
9b790ce7 4114 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
1300f5dd 4115
c906108c 4116 if (self_subrange)
19f392bc 4117 return init_complex_type (objfile, NULL, float_type);
c906108c 4118 else
1300f5dd 4119 return float_type;
c906108c
SS
4120 }
4121
a2699720 4122 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4123
4124 else if (n2 == 0 && n3 == -1)
4125 {
a2699720 4126 int bits = type_size;
433759f7 4127
a2699720
PA
4128 if (bits <= 0)
4129 {
4130 /* We don't know its size. It is unsigned int or unsigned
4131 long. GCC 2.3.3 uses this for long long too, but that is
4132 just a GDB 3.5 compatibility hack. */
5e2b427d 4133 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4134 }
4135
19f392bc 4136 return init_integer_type (objfile, bits, 1, NULL);
c906108c
SS
4137 }
4138
4139 /* Special case: char is defined (Who knows why) as a subrange of
4140 itself with range 0-127. */
4141 else if (self_subrange && n2 == 0 && n3 == 127)
19f392bc 4142 {
77b7c781
UW
4143 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4144 0, NULL);
19f392bc
UW
4145 TYPE_NOSIGN (type) = 1;
4146 return type;
4147 }
c906108c
SS
4148 /* We used to do this only for subrange of self or subrange of int. */
4149 else if (n2 == 0)
4150 {
a0b3c4fd
JM
4151 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4152 "unsigned long", and we already checked for that,
4153 so don't need to test for it here. */
4154
c906108c
SS
4155 if (n3 < 0)
4156 /* n3 actually gives the size. */
19f392bc 4157 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
c906108c 4158
7be570e7 4159 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4160 unsigned n-byte integer. But do require n to be a power of
4161 two; we don't want 3- and 5-byte integers flying around. */
4162 {
4163 int bytes;
4164 unsigned long bits;
4165
4166 bits = n3;
4167 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4168 bits >>= 8;
4169 if (bits == 0
4170 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
19f392bc 4171 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
a0b3c4fd 4172 }
c906108c
SS
4173 }
4174 /* I think this is for Convex "long long". Since I don't know whether
4175 Convex sets self_subrange, I also accept that particular size regardless
4176 of self_subrange. */
4177 else if (n3 == 0 && n2 < 0
4178 && (self_subrange
9a76efb6 4179 || n2 == -gdbarch_long_long_bit
5e2b427d 4180 (gdbarch) / TARGET_CHAR_BIT))
19f392bc 4181 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
c5aa993b 4182 else if (n2 == -n3 - 1)
c906108c
SS
4183 {
4184 if (n3 == 0x7f)
19f392bc 4185 return init_integer_type (objfile, 8, 0, NULL);
c906108c 4186 if (n3 == 0x7fff)
19f392bc 4187 return init_integer_type (objfile, 16, 0, NULL);
c906108c 4188 if (n3 == 0x7fffffff)
19f392bc 4189 return init_integer_type (objfile, 32, 0, NULL);
c906108c
SS
4190 }
4191
4192 /* We have a real range type on our hands. Allocate space and
4193 return a real pointer. */
c5aa993b 4194handle_true_range:
c906108c
SS
4195
4196 if (self_subrange)
46bf5051 4197 index_type = objfile_type (objfile)->builtin_int;
c906108c 4198 else
46bf5051 4199 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4200 if (index_type == NULL)
4201 {
4202 /* Does this actually ever happen? Is that why we are worrying
4203 about dealing with it rather than just calling error_type? */
4204
b98664d3 4205 complaint (_("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4206
46bf5051 4207 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4208 }
4209
0c9c3474 4210 result_type
cafb3438 4211 = create_static_range_type (NULL, index_type, n2, n3);
c906108c
SS
4212 return (result_type);
4213}
4214
4215/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4216 and terminated with END. Return the list of types read in, or NULL
4217 if there is an error. */
c906108c 4218
ad2f7632 4219static struct field *
a121b7c1 4220read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
ad2f7632 4221 int *varargsp)
c906108c
SS
4222{
4223 /* FIXME! Remove this arbitrary limit! */
c378eb4e 4224 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
ad2f7632
DJ
4225 int n = 0, i;
4226 struct field *rval;
c906108c
SS
4227
4228 while (**pp != end)
4229 {
4230 if (**pp != ',')
4231 /* Invalid argument list: no ','. */
0a029df5 4232 return NULL;
c906108c
SS
4233 (*pp)++;
4234 STABS_CONTINUE (pp, objfile);
4235 types[n++] = read_type (pp, objfile);
4236 }
c378eb4e 4237 (*pp)++; /* get past `end' (the ':' character). */
c906108c 4238
d24d8548
JK
4239 if (n == 0)
4240 {
4241 /* We should read at least the THIS parameter here. Some broken stabs
4242 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4243 have been present ";-16,(0,43)" reference instead. This way the
4244 excessive ";" marker prematurely stops the parameters parsing. */
4245
b98664d3 4246 complaint (_("Invalid (empty) method arguments"));
d24d8548
JK
4247 *varargsp = 0;
4248 }
4249 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4250 *varargsp = 1;
c906108c
SS
4251 else
4252 {
ad2f7632
DJ
4253 n--;
4254 *varargsp = 0;
c906108c 4255 }
ad2f7632 4256
8d749320 4257 rval = XCNEWVEC (struct field, n);
ad2f7632
DJ
4258 for (i = 0; i < n; i++)
4259 rval[i].type = types[i];
4260 *nargsp = n;
c906108c
SS
4261 return rval;
4262}
4263\f
4264/* Common block handling. */
4265
4266/* List of symbols declared since the last BCOMM. This list is a tail
4267 of local_symbols. When ECOMM is seen, the symbols on the list
4268 are noted so their proper addresses can be filled in later,
4269 using the common block base address gotten from the assembler
4270 stabs. */
4271
4272static struct pending *common_block;
4273static int common_block_i;
4274
4275/* Name of the current common block. We get it from the BCOMM instead of the
4276 ECOMM to match IBM documentation (even though IBM puts the name both places
4277 like everyone else). */
4278static char *common_block_name;
4279
4280/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4281 to remain after this function returns. */
4282
4283void
a121b7c1 4284common_block_start (const char *name, struct objfile *objfile)
c906108c
SS
4285{
4286 if (common_block_name != NULL)
4287 {
b98664d3 4288 complaint (_("Invalid symbol data: common block within common block"));
c906108c 4289 }
e148f09d
TT
4290 common_block = *get_local_symbols ();
4291 common_block_i = common_block ? common_block->nsyms : 0;
021887d8 4292 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
c906108c
SS
4293}
4294
4295/* Process a N_ECOMM symbol. */
4296
4297void
fba45db2 4298common_block_end (struct objfile *objfile)
c906108c
SS
4299{
4300 /* Symbols declared since the BCOMM are to have the common block
4301 start address added in when we know it. common_block and
4302 common_block_i point to the first symbol after the BCOMM in
4303 the local_symbols list; copy the list and hang it off the
4304 symbol for the common block name for later fixup. */
4305 int i;
4306 struct symbol *sym;
fe978cb0 4307 struct pending *newobj = 0;
c906108c
SS
4308 struct pending *next;
4309 int j;
4310
4311 if (common_block_name == NULL)
4312 {
b98664d3 4313 complaint (_("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4314 return;
4315 }
4316
e623cf5d 4317 sym = allocate_symbol (objfile);
c378eb4e 4318 /* Note: common_block_name already saved on objfile_obstack. */
3567439c 4319 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
f1e6e072 4320 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
c906108c
SS
4321
4322 /* Now we copy all the symbols which have been defined since the BCOMM. */
4323
4324 /* Copy all the struct pendings before common_block. */
e148f09d 4325 for (next = *get_local_symbols ();
c906108c
SS
4326 next != NULL && next != common_block;
4327 next = next->next)
4328 {
4329 for (j = 0; j < next->nsyms; j++)
fe978cb0 4330 add_symbol_to_list (next->symbol[j], &newobj);
c906108c
SS
4331 }
4332
4333 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4334 NULL, it means copy all the local symbols (which we already did
4335 above). */
4336
4337 if (common_block != NULL)
4338 for (j = common_block_i; j < common_block->nsyms; j++)
fe978cb0 4339 add_symbol_to_list (common_block->symbol[j], &newobj);
c906108c 4340
fe978cb0 4341 SYMBOL_TYPE (sym) = (struct type *) newobj;
c906108c
SS
4342
4343 /* Should we be putting local_symbols back to what it was?
4344 Does it matter? */
4345
3567439c 4346 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4347 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4348 global_sym_chain[i] = sym;
4349 common_block_name = NULL;
4350}
4351
4352/* Add a common block's start address to the offset of each symbol
4353 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4354 the common block name). */
4355
4356static void
46cb6474 4357fix_common_block (struct symbol *sym, CORE_ADDR valu)
c906108c
SS
4358{
4359 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4360
c5aa993b 4361 for (; next; next = next->next)
c906108c 4362 {
aa1ee363 4363 int j;
433759f7 4364
c906108c
SS
4365 for (j = next->nsyms - 1; j >= 0; j--)
4366 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4367 }
4368}
c5aa993b 4369\f
c906108c
SS
4370
4371
bf362611
JB
4372/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4373 See add_undefined_type for more details. */
c906108c 4374
a7a48797 4375static void
bf362611
JB
4376add_undefined_type_noname (struct type *type, int typenums[2])
4377{
4378 struct nat nat;
4379
4380 nat.typenums[0] = typenums [0];
4381 nat.typenums[1] = typenums [1];
4382 nat.type = type;
4383
4384 if (noname_undefs_length == noname_undefs_allocated)
4385 {
4386 noname_undefs_allocated *= 2;
4387 noname_undefs = (struct nat *)
4388 xrealloc ((char *) noname_undefs,
4389 noname_undefs_allocated * sizeof (struct nat));
4390 }
4391 noname_undefs[noname_undefs_length++] = nat;
4392}
4393
4394/* Add TYPE to the UNDEF_TYPES vector.
4395 See add_undefined_type for more details. */
4396
4397static void
4398add_undefined_type_1 (struct type *type)
c906108c
SS
4399{
4400 if (undef_types_length == undef_types_allocated)
4401 {
4402 undef_types_allocated *= 2;
4403 undef_types = (struct type **)
4404 xrealloc ((char *) undef_types,
4405 undef_types_allocated * sizeof (struct type *));
4406 }
4407 undef_types[undef_types_length++] = type;
4408}
4409
bf362611
JB
4410/* What about types defined as forward references inside of a small lexical
4411 scope? */
4412/* Add a type to the list of undefined types to be checked through
4413 once this file has been read in.
4414
4415 In practice, we actually maintain two such lists: The first list
4416 (UNDEF_TYPES) is used for types whose name has been provided, and
4417 concerns forward references (eg 'xs' or 'xu' forward references);
4418 the second list (NONAME_UNDEFS) is used for types whose name is
4419 unknown at creation time, because they were referenced through
4420 their type number before the actual type was declared.
4421 This function actually adds the given type to the proper list. */
4422
4423static void
4424add_undefined_type (struct type *type, int typenums[2])
4425{
e86ca25f 4426 if (TYPE_NAME (type) == NULL)
bf362611
JB
4427 add_undefined_type_noname (type, typenums);
4428 else
4429 add_undefined_type_1 (type);
4430}
4431
4432/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4433
2c0b251b 4434static void
46bf5051 4435cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4436{
4437 int i;
4438
4439 for (i = 0; i < noname_undefs_length; i++)
4440 {
4441 struct nat nat = noname_undefs[i];
4442 struct type **type;
4443
46bf5051 4444 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4445 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4446 {
4447 /* The instance flags of the undefined type are still unset,
4448 and needs to be copied over from the reference type.
4449 Since replace_type expects them to be identical, we need
4450 to set these flags manually before hand. */
4451 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4452 replace_type (nat.type, *type);
4453 }
bf362611
JB
4454 }
4455
4456 noname_undefs_length = 0;
4457}
4458
c906108c
SS
4459/* Go through each undefined type, see if it's still undefined, and fix it
4460 up if possible. We have two kinds of undefined types:
4461
4462 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4463 Fix: update array length using the element bounds
4464 and the target type's length.
c906108c 4465 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4466 yet defined at the time a pointer to it was made.
4467 Fix: Do a full lookup on the struct/union tag. */
bf362611 4468
2c0b251b 4469static void
bf362611 4470cleanup_undefined_types_1 (void)
c906108c
SS
4471{
4472 struct type **type;
4473
9e386756
JB
4474 /* Iterate over every undefined type, and look for a symbol whose type
4475 matches our undefined type. The symbol matches if:
4476 1. It is a typedef in the STRUCT domain;
4477 2. It has the same name, and same type code;
4478 3. The instance flags are identical.
4479
4480 It is important to check the instance flags, because we have seen
4481 examples where the debug info contained definitions such as:
4482
4483 "foo_t:t30=B31=xefoo_t:"
4484
4485 In this case, we have created an undefined type named "foo_t" whose
4486 instance flags is null (when processing "xefoo_t"), and then created
4487 another type with the same name, but with different instance flags
4488 ('B' means volatile). I think that the definition above is wrong,
4489 since the same type cannot be volatile and non-volatile at the same
4490 time, but we need to be able to cope with it when it happens. The
4491 approach taken here is to treat these two types as different. */
4492
c906108c
SS
4493 for (type = undef_types; type < undef_types + undef_types_length; type++)
4494 {
4495 switch (TYPE_CODE (*type))
4496 {
4497
c5aa993b
JM
4498 case TYPE_CODE_STRUCT:
4499 case TYPE_CODE_UNION:
4500 case TYPE_CODE_ENUM:
c906108c
SS
4501 {
4502 /* Check if it has been defined since. Need to do this here
4503 as well as in check_typedef to deal with the (legitimate in
4504 C though not C++) case of several types with the same name
4505 in different source files. */
74a9bb82 4506 if (TYPE_STUB (*type))
c906108c
SS
4507 {
4508 struct pending *ppt;
4509 int i;
c378eb4e 4510 /* Name of the type, without "struct" or "union". */
e86ca25f 4511 const char *type_name = TYPE_NAME (*type);
c906108c 4512
fe978cb0 4513 if (type_name == NULL)
c906108c 4514 {
b98664d3 4515 complaint (_("need a type name"));
c906108c
SS
4516 break;
4517 }
e148f09d 4518 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
c906108c
SS
4519 {
4520 for (i = 0; i < ppt->nsyms; i++)
4521 {
4522 struct symbol *sym = ppt->symbol[i];
c5aa993b 4523
c906108c 4524 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4525 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4526 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4527 TYPE_CODE (*type))
9e386756
JB
4528 && (TYPE_INSTANCE_FLAGS (*type) ==
4529 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4530 && strcmp (SYMBOL_LINKAGE_NAME (sym),
fe978cb0 4531 type_name) == 0)
13a393b0 4532 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4533 }
4534 }
4535 }
4536 }
4537 break;
4538
4539 default:
4540 {
b98664d3 4541 complaint (_("forward-referenced types left unresolved, "
e2e0b3e5 4542 "type code %d."),
23136709 4543 TYPE_CODE (*type));
c906108c
SS
4544 }
4545 break;
4546 }
4547 }
4548
4549 undef_types_length = 0;
4550}
4551
bf362611
JB
4552/* Try to fix all the undefined types we ecountered while processing
4553 this unit. */
4554
4555void
0a0edcd5 4556cleanup_undefined_stabs_types (struct objfile *objfile)
bf362611
JB
4557{
4558 cleanup_undefined_types_1 ();
46bf5051 4559 cleanup_undefined_types_noname (objfile);
bf362611
JB
4560}
4561
77d6f1aa 4562/* See stabsread.h. */
c906108c
SS
4563
4564void
fba45db2 4565scan_file_globals (struct objfile *objfile)
c906108c
SS
4566{
4567 int hash;
507836c0 4568 struct symbol *sym, *prev;
c906108c
SS
4569 struct objfile *resolve_objfile;
4570
4571 /* SVR4 based linkers copy referenced global symbols from shared
4572 libraries to the main executable.
4573 If we are scanning the symbols for a shared library, try to resolve
4574 them from the minimal symbols of the main executable first. */
4575
4576 if (symfile_objfile && objfile != symfile_objfile)
4577 resolve_objfile = symfile_objfile;
4578 else
4579 resolve_objfile = objfile;
4580
4581 while (1)
4582 {
4583 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4584 no unresolved symbols. */
c906108c
SS
4585 for (hash = 0; hash < HASHSIZE; hash++)
4586 {
4587 if (global_sym_chain[hash])
4588 break;
4589 }
4590 if (hash >= HASHSIZE)
4591 return;
4592
7932255d 4593 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
c906108c
SS
4594 {
4595 QUIT;
4596
4597 /* Skip static symbols. */
4598 switch (MSYMBOL_TYPE (msymbol))
4599 {
4600 case mst_file_text:
4601 case mst_file_data:
4602 case mst_file_bss:
4603 continue;
4604 default:
4605 break;
4606 }
4607
4608 prev = NULL;
4609
4610 /* Get the hash index and check all the symbols
c378eb4e 4611 under that hash index. */
c906108c 4612
efd66ac6 4613 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4614
4615 for (sym = global_sym_chain[hash]; sym;)
4616 {
efd66ac6 4617 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
3567439c 4618 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4619 {
c906108c 4620 /* Splice this symbol out of the hash chain and
c378eb4e 4621 assign the value we have to it. */
c906108c
SS
4622 if (prev)
4623 {
4624 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4625 }
4626 else
4627 {
4628 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4629 }
c5aa993b 4630
c906108c
SS
4631 /* Check to see whether we need to fix up a common block. */
4632 /* Note: this code might be executed several times for
4633 the same symbol if there are multiple references. */
507836c0 4634 if (sym)
c906108c 4635 {
507836c0 4636 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4637 {
507836c0 4638 fix_common_block (sym,
77e371c0
TT
4639 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4640 msymbol));
c906108c
SS
4641 }
4642 else
4643 {
507836c0 4644 SYMBOL_VALUE_ADDRESS (sym)
77e371c0 4645 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
c906108c 4646 }
efd66ac6 4647 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
c906108c
SS
4648 }
4649
c906108c
SS
4650 if (prev)
4651 {
4652 sym = SYMBOL_VALUE_CHAIN (prev);
4653 }
4654 else
4655 {
4656 sym = global_sym_chain[hash];
4657 }
4658 }
4659 else
4660 {
4661 prev = sym;
4662 sym = SYMBOL_VALUE_CHAIN (sym);
4663 }
4664 }
4665 }
4666 if (resolve_objfile == objfile)
4667 break;
4668 resolve_objfile = objfile;
4669 }
4670
4671 /* Change the storage class of any remaining unresolved globals to
4672 LOC_UNRESOLVED and remove them from the chain. */
4673 for (hash = 0; hash < HASHSIZE; hash++)
4674 {
4675 sym = global_sym_chain[hash];
4676 while (sym)
4677 {
4678 prev = sym;
4679 sym = SYMBOL_VALUE_CHAIN (sym);
4680
4681 /* Change the symbol address from the misleading chain value
4682 to address zero. */
4683 SYMBOL_VALUE_ADDRESS (prev) = 0;
4684
4685 /* Complain about unresolved common block symbols. */
4686 if (SYMBOL_CLASS (prev) == LOC_STATIC)
f1e6e072 4687 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
c906108c 4688 else
b98664d3 4689 complaint (_("%s: common block `%s' from "
3e43a32a 4690 "global_sym_chain unresolved"),
4262abfb 4691 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
c906108c
SS
4692 }
4693 }
4694 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4695}
4696
4697/* Initialize anything that needs initializing when starting to read
4698 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4699 to a psymtab. */
4700
4701void
fba45db2 4702stabsread_init (void)
c906108c
SS
4703{
4704}
4705
4706/* Initialize anything that needs initializing when a completely new
4707 symbol file is specified (not just adding some symbols from another
4708 file, e.g. a shared library). */
4709
4710void
fba45db2 4711stabsread_new_init (void)
c906108c
SS
4712{
4713 /* Empty the hash table of global syms looking for values. */
4714 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4715}
4716
4717/* Initialize anything that needs initializing at the same time as
c378eb4e 4718 start_symtab() is called. */
c906108c 4719
c5aa993b 4720void
fba45db2 4721start_stabs (void)
c906108c
SS
4722{
4723 global_stabs = NULL; /* AIX COFF */
4724 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4725 n_this_object_header_files = 1;
4726 type_vector_length = 0;
4727 type_vector = (struct type **) 0;
5985ac61 4728 within_function = 0;
c906108c
SS
4729
4730 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4731 common_block_name = NULL;
c906108c
SS
4732}
4733
c378eb4e 4734/* Call after end_symtab(). */
c906108c 4735
c5aa993b 4736void
fba45db2 4737end_stabs (void)
c906108c
SS
4738{
4739 if (type_vector)
4740 {
b8c9b27d 4741 xfree (type_vector);
c906108c
SS
4742 }
4743 type_vector = 0;
4744 type_vector_length = 0;
4745 previous_stab_code = 0;
4746}
4747
4748void
fba45db2 4749finish_global_stabs (struct objfile *objfile)
c906108c
SS
4750{
4751 if (global_stabs)
4752 {
e148f09d 4753 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
b8c9b27d 4754 xfree (global_stabs);
c906108c
SS
4755 global_stabs = NULL;
4756 }
4757}
4758
7e1d63ec
AF
4759/* Find the end of the name, delimited by a ':', but don't match
4760 ObjC symbols which look like -[Foo bar::]:bla. */
a121b7c1
PA
4761static const char *
4762find_name_end (const char *name)
7e1d63ec 4763{
a121b7c1 4764 const char *s = name;
433759f7 4765
7e1d63ec
AF
4766 if (s[0] == '-' || *s == '+')
4767 {
4768 /* Must be an ObjC method symbol. */
4769 if (s[1] != '[')
4770 {
8a3fe4f8 4771 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4772 }
4773 s = strchr (s, ']');
4774 if (s == NULL)
4775 {
8a3fe4f8 4776 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4777 }
4778 return strchr (s, ':');
4779 }
4780 else
4781 {
4782 return strchr (s, ':');
4783 }
4784}
4785
2150c3ef
TT
4786/* See stabsread.h. */
4787
4788int
4789hashname (const char *name)
4790{
4791 return hash (name, strlen (name)) % HASHSIZE;
4792}
4793
c378eb4e 4794/* Initializer for this module. */
c906108c
SS
4795
4796void
fba45db2 4797_initialize_stabsread (void)
c906108c
SS
4798{
4799 undef_types_allocated = 20;
4800 undef_types_length = 0;
8d749320 4801 undef_types = XNEWVEC (struct type *, undef_types_allocated);
bf362611
JB
4802
4803 noname_undefs_allocated = 20;
4804 noname_undefs_length = 0;
8d749320 4805 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
f1e6e072
TT
4806
4807 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4808 &stab_register_funcs);
4809 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4810 &stab_register_funcs);
c906108c 4811}
This page took 2.817378 seconds and 4 git commands to generate.