*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
197e01b6 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
2b71414d 4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
8926118c 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
197e01b6
EZ
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
c906108c
SS
24
25#include "defs.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
c5aa993b 41#include "inferior.h" /* for write_pc */
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
2de7ced7 47#include "hashtab.h"
dbda9972 48#include "readline/readline.h"
7e8580c1 49#include "gdb_assert.h"
fe898f56 50#include "block.h"
ea53e89f 51#include "observer.h"
c1bd25fd 52#include "exec.h"
c906108c 53
c906108c
SS
54#include <sys/types.h>
55#include <fcntl.h>
56#include "gdb_string.h"
57#include "gdb_stat.h"
58#include <ctype.h>
59#include <time.h>
2b71414d 60#include <sys/time.h>
c906108c
SS
61
62#ifndef O_BINARY
63#define O_BINARY 0
64#endif
65
9a4105ab
AC
66int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
c2d11a7d 71 unsigned long total_size);
769d7dc4
AC
72void (*deprecated_pre_add_symbol_hook) (const char *);
73void (*deprecated_post_add_symbol_hook) (void);
9a4105ab 74void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c 75
74b7792f
AC
76static void clear_symtab_users_cleanup (void *ignore);
77
c906108c 78/* Global variables owned by this file */
c5aa993b 79int readnow_symbol_files; /* Read full symbols immediately */
c906108c 80
c906108c
SS
81/* External variables and functions referenced. */
82
a14ed312 83extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
84
85/* Functions this file defines */
86
87#if 0
a14ed312
KB
88static int simple_read_overlay_region_table (void);
89static void simple_free_overlay_region_table (void);
c906108c
SS
90#endif
91
a14ed312 92static void set_initial_language (void);
c906108c 93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
a14ed312 100static void add_shared_symbol_files_command (char *, int);
c906108c 101
5b5d99cf
JB
102static void reread_separate_symbols (struct objfile *objfile);
103
a14ed312 104static void cashier_psymtab (struct partial_symtab *);
c906108c 105
a14ed312 106bfd *symfile_bfd_open (char *);
c906108c 107
0e931cf0
JB
108int get_section_index (struct objfile *, char *);
109
a14ed312 110static void find_sym_fns (struct objfile *);
c906108c 111
a14ed312 112static void decrement_reading_symtab (void *);
c906108c 113
a14ed312 114static void overlay_invalidate_all (void);
c906108c 115
a14ed312 116static int overlay_is_mapped (struct obj_section *);
c906108c 117
a14ed312 118void list_overlays_command (char *, int);
c906108c 119
a14ed312 120void map_overlay_command (char *, int);
c906108c 121
a14ed312 122void unmap_overlay_command (char *, int);
c906108c 123
a14ed312 124static void overlay_auto_command (char *, int);
c906108c 125
a14ed312 126static void overlay_manual_command (char *, int);
c906108c 127
a14ed312 128static void overlay_off_command (char *, int);
c906108c 129
a14ed312 130static void overlay_load_command (char *, int);
c906108c 131
a14ed312 132static void overlay_command (char *, int);
c906108c 133
a14ed312 134static void simple_free_overlay_table (void);
c906108c 135
a14ed312 136static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 137
a14ed312 138static int simple_read_overlay_table (void);
c906108c 139
a14ed312 140static int simple_overlay_update_1 (struct obj_section *);
c906108c 141
a14ed312 142static void add_filename_language (char *ext, enum language lang);
392a587b 143
a14ed312 144static void info_ext_lang_command (char *args, int from_tty);
392a587b 145
5b5d99cf
JB
146static char *find_separate_debug_file (struct objfile *objfile);
147
a14ed312 148static void init_filename_language_table (void);
392a587b 149
a14ed312 150void _initialize_symfile (void);
c906108c
SS
151
152/* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
154 prepared to read. */
155
156static struct sym_fns *symtab_fns = NULL;
157
158/* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
160
161#ifdef SYMBOL_RELOADING_DEFAULT
162int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163#else
164int symbol_reloading = 0;
165#endif
920d2a44
AC
166static void
167show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169{
170 fprintf_filtered (file, _("\
171Dynamic symbol table reloading multiple times in one run is %s.\n"),
172 value);
173}
174
c906108c 175
b7209cb4
FF
176/* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
c906108c 183 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 184 report all the functions that are actually present. */
c906108c
SS
185
186int auto_solib_add = 1;
b7209cb4
FF
187
188/* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196int auto_solib_limit;
c906108c 197\f
c5aa993b 198
0fe19209
DC
199/* This compares two partial symbols by names, using strcmp_iw_ordered
200 for the comparison. */
c906108c
SS
201
202static int
0cd64fe2 203compare_psymbols (const void *s1p, const void *s2p)
c906108c 204{
0fe19209
DC
205 struct partial_symbol *const *s1 = s1p;
206 struct partial_symbol *const *s2 = s2p;
207
4725b721
PH
208 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
210}
211
212void
fba45db2 213sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
214{
215 /* Sort the global list; don't sort the static list */
216
c5aa993b
JM
217 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
219 compare_psymbols);
220}
221
c906108c
SS
222/* Make a null terminated copy of the string at PTR with SIZE characters in
223 the obstack pointed to by OBSTACKP . Returns the address of the copy.
224 Note that the string at PTR does not have to be null terminated, I.E. it
225 may be part of a larger string and we are only saving a substring. */
226
227char *
63ca651f 228obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 229{
52f0bd74 230 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
231 /* Open-coded memcpy--saves function call time. These strings are usually
232 short. FIXME: Is this really still true with a compiler that can
233 inline memcpy? */
234 {
aa1ee363
AC
235 const char *p1 = ptr;
236 char *p2 = p;
63ca651f 237 const char *end = ptr + size;
c906108c
SS
238 while (p1 != end)
239 *p2++ = *p1++;
240 }
241 p[size] = 0;
242 return p;
243}
244
245/* Concatenate strings S1, S2 and S3; return the new string. Space is found
246 in the obstack pointed to by OBSTACKP. */
247
248char *
fba45db2
KB
249obconcat (struct obstack *obstackp, const char *s1, const char *s2,
250 const char *s3)
c906108c 251{
52f0bd74
AC
252 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
254 strcpy (val, s1);
255 strcat (val, s2);
256 strcat (val, s3);
257 return val;
258}
259
260/* True if we are nested inside psymtab_to_symtab. */
261
262int currently_reading_symtab = 0;
263
264static void
fba45db2 265decrement_reading_symtab (void *dummy)
c906108c
SS
266{
267 currently_reading_symtab--;
268}
269
270/* Get the symbol table that corresponds to a partial_symtab.
271 This is fast after the first time you do it. In fact, there
272 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
273 case inline. */
274
275struct symtab *
aa1ee363 276psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
277{
278 /* If it's been looked up before, return it. */
279 if (pst->symtab)
280 return pst->symtab;
281
282 /* If it has not yet been read in, read it. */
283 if (!pst->readin)
c5aa993b 284 {
c906108c
SS
285 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286 currently_reading_symtab++;
287 (*pst->read_symtab) (pst);
288 do_cleanups (back_to);
289 }
290
291 return pst->symtab;
292}
293
5417f6dc
RM
294/* Remember the lowest-addressed loadable section we've seen.
295 This function is called via bfd_map_over_sections.
c906108c
SS
296
297 In case of equal vmas, the section with the largest size becomes the
298 lowest-addressed loadable section.
299
300 If the vmas and sizes are equal, the last section is considered the
301 lowest-addressed loadable section. */
302
303void
4efb68b1 304find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 305{
c5aa993b 306 asection **lowest = (asection **) obj;
c906108c
SS
307
308 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
309 return;
310 if (!*lowest)
311 *lowest = sect; /* First loadable section */
312 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313 *lowest = sect; /* A lower loadable section */
314 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315 && (bfd_section_size (abfd, (*lowest))
316 <= bfd_section_size (abfd, sect)))
317 *lowest = sect;
318}
319
a39a16c4
MM
320/* Create a new section_addr_info, with room for NUM_SECTIONS. */
321
322struct section_addr_info *
323alloc_section_addr_info (size_t num_sections)
324{
325 struct section_addr_info *sap;
326 size_t size;
327
328 size = (sizeof (struct section_addr_info)
329 + sizeof (struct other_sections) * (num_sections - 1));
330 sap = (struct section_addr_info *) xmalloc (size);
331 memset (sap, 0, size);
332 sap->num_sections = num_sections;
333
334 return sap;
335}
62557bbc 336
7b90c3f9
JB
337
338/* Return a freshly allocated copy of ADDRS. The section names, if
339 any, are also freshly allocated copies of those in ADDRS. */
340struct section_addr_info *
341copy_section_addr_info (struct section_addr_info *addrs)
342{
343 struct section_addr_info *copy
344 = alloc_section_addr_info (addrs->num_sections);
345 int i;
346
347 copy->num_sections = addrs->num_sections;
348 for (i = 0; i < addrs->num_sections; i++)
349 {
350 copy->other[i].addr = addrs->other[i].addr;
351 if (addrs->other[i].name)
352 copy->other[i].name = xstrdup (addrs->other[i].name);
353 else
354 copy->other[i].name = NULL;
355 copy->other[i].sectindex = addrs->other[i].sectindex;
356 }
357
358 return copy;
359}
360
361
362
62557bbc
KB
363/* Build (allocate and populate) a section_addr_info struct from
364 an existing section table. */
365
366extern struct section_addr_info *
367build_section_addr_info_from_section_table (const struct section_table *start,
368 const struct section_table *end)
369{
370 struct section_addr_info *sap;
371 const struct section_table *stp;
372 int oidx;
373
a39a16c4 374 sap = alloc_section_addr_info (end - start);
62557bbc
KB
375
376 for (stp = start, oidx = 0; stp != end; stp++)
377 {
5417f6dc 378 if (bfd_get_section_flags (stp->bfd,
fbd35540 379 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 380 && oidx < end - start)
62557bbc
KB
381 {
382 sap->other[oidx].addr = stp->addr;
5417f6dc 383 sap->other[oidx].name
fbd35540 384 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
385 sap->other[oidx].sectindex = stp->the_bfd_section->index;
386 oidx++;
387 }
388 }
389
390 return sap;
391}
392
393
394/* Free all memory allocated by build_section_addr_info_from_section_table. */
395
396extern void
397free_section_addr_info (struct section_addr_info *sap)
398{
399 int idx;
400
a39a16c4 401 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 402 if (sap->other[idx].name)
b8c9b27d
KB
403 xfree (sap->other[idx].name);
404 xfree (sap);
62557bbc
KB
405}
406
407
e8289572
JB
408/* Initialize OBJFILE's sect_index_* members. */
409static void
410init_objfile_sect_indices (struct objfile *objfile)
c906108c 411{
e8289572 412 asection *sect;
c906108c 413 int i;
5417f6dc 414
b8fbeb18 415 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 416 if (sect)
b8fbeb18
EZ
417 objfile->sect_index_text = sect->index;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 420 if (sect)
b8fbeb18
EZ
421 objfile->sect_index_data = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 424 if (sect)
b8fbeb18
EZ
425 objfile->sect_index_bss = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 428 if (sect)
b8fbeb18
EZ
429 objfile->sect_index_rodata = sect->index;
430
bbcd32ad
FF
431 /* This is where things get really weird... We MUST have valid
432 indices for the various sect_index_* members or gdb will abort.
433 So if for example, there is no ".text" section, we have to
434 accomodate that. Except when explicitly adding symbol files at
435 some address, section_offsets contains nothing but zeros, so it
436 doesn't matter which slot in section_offsets the individual
437 sect_index_* members index into. So if they are all zero, it is
438 safe to just point all the currently uninitialized indices to the
439 first slot. */
440
441 for (i = 0; i < objfile->num_sections; i++)
442 {
443 if (ANOFFSET (objfile->section_offsets, i) != 0)
444 {
445 break;
446 }
447 }
448 if (i == objfile->num_sections)
449 {
450 if (objfile->sect_index_text == -1)
451 objfile->sect_index_text = 0;
452 if (objfile->sect_index_data == -1)
453 objfile->sect_index_data = 0;
454 if (objfile->sect_index_bss == -1)
455 objfile->sect_index_bss = 0;
456 if (objfile->sect_index_rodata == -1)
457 objfile->sect_index_rodata = 0;
458 }
b8fbeb18 459}
c906108c 460
c1bd25fd
DJ
461/* The arguments to place_section. */
462
463struct place_section_arg
464{
465 struct section_offsets *offsets;
466 CORE_ADDR lowest;
467};
468
469/* Find a unique offset to use for loadable section SECT if
470 the user did not provide an offset. */
471
472void
473place_section (bfd *abfd, asection *sect, void *obj)
474{
475 struct place_section_arg *arg = obj;
476 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
477 int done;
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
488 do {
489 asection *cur_sec;
490 ULONGEST align = 1 << bfd_get_section_alignment (abfd, sect);
491
492 start_addr = (arg->lowest + align - 1) & -align;
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
526 continue;
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538}
e8289572
JB
539
540/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 541 of how to represent it for fast symbol reading. This is the default
e8289572
JB
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546void
547default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549{
550 int i;
551
a39a16c4 552 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 553 objfile->section_offsets = (struct section_offsets *)
5417f6dc 554 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 556 memset (objfile->section_offsets, 0,
a39a16c4 557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
a39a16c4 561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
c1bd25fd
DJ
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
e8289572
JB
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591}
592
593
c906108c
SS
594/* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
96baa820
JM
597 OBJFILE is where the symbols are to be read from.
598
7e8580c1
JB
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
625
626void
7e8580c1
JB
627syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
c906108c 633{
a39a16c4 634 struct section_addr_info *local_addr = NULL;
c906108c 635 struct cleanup *old_chain;
2acceee2 636
7e8580c1 637 gdb_assert (! (addrs && offsets));
2acceee2 638
c906108c
SS
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
75245b24
MS
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
c906108c
SS
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
74b7792f 647 old_chain = make_cleanup_free_objfile (objfile);
c906108c 648
a39a16c4
MM
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
5417f6dc 654 local_addr
a39a16c4
MM
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
c5aa993b 662 if (mainline)
c906108c
SS
663 {
664 /* We will modify the main symbol table, make sure that all its users
c5aa993b 665 will be cleaned up if an error occurs during symbol reading. */
74b7792f 666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
c906108c 680
c5aa993b 681 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
53a5351d 686 and assume that <addr> is where that got loaded.
c906108c 687
53a5351d
JM
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
1549f619 690 if (!mainline && addrs && addrs->other[0].name)
c906108c 691 {
1549f619
EZ
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
5417f6dc 697 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
c906108c 702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 703 &lower_sect);
2acceee2 704 if (lower_sect == NULL)
8a3fe4f8 705 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 706 objfile->name);
5417f6dc 707 else
b8fbeb18 708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 709 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
5417f6dc 717
13de58df 718 /* Calculate offsets for the loadable sections.
2acceee2
JM
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
5417f6dc 721
13de58df
JB
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
2acceee2
JM
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
1549f619 728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
8a3fe4f8 744 warning (_("section %s not found in %s"),
5417f6dc 745 addrs->other[i].name,
7e8580c1
JB
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
c906108c
SS
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
c5aa993b 759 (*objfile->sf->sym_init) (objfile);
b9caf505 760 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 761
7e8580c1
JB
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
8b92e4d5 772 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
c906108c 777
52d16ba8 778#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
96baa820 792 has a different algorithm for finding section offsets.
c906108c
SS
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
2acceee2 797 if (addrs)
c906108c
SS
798 {
799 struct obj_section *s;
800
5417f6dc
RM
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
2acceee2
JM
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
5417f6dc 805
96baa820 806 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 807 {
2acceee2
JM
808 CORE_ADDR s_addr = 0;
809 int i;
810
5417f6dc 811 for (i = 0;
a39a16c4 812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 813 i++)
5417f6dc
RM
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
fbd35540 816 addrs->other[i].name) == 0)
2acceee2 817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 818
c906108c 819 s->addr -= s->offset;
2acceee2 820 s->addr += s_addr;
c906108c 821 s->endaddr -= s->offset;
2acceee2
JM
822 s->endaddr += s_addr;
823 s->offset += s_addr;
c906108c
SS
824 }
825 }
52d16ba8 826#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 827
96baa820 828 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 829
c906108c
SS
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
c5aa993b 841 objfile->flags |= OBJF_SYMS;
c906108c
SS
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
c906108c
SS
846}
847
848/* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
c5aa993b 851
c906108c 852void
fba45db2 853new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
854{
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
b9caf505 872 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
873}
874
875/* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
5417f6dc
RM
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
c906108c 889
c906108c
SS
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
7904e09f 892static struct objfile *
5417f6dc 893symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
c906108c
SS
898{
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
5b5d99cf 901 char *debugfile;
7b90c3f9 902 struct section_addr_info *orig_addrs = NULL;
a39a16c4 903 struct cleanup *my_cleanups;
5417f6dc 904 const char *name = bfd_get_filename (abfd);
c906108c 905
5417f6dc 906 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 907
5417f6dc
RM
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
c906108c
SS
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 915 error (_("Not confirmed."));
c906108c 916
2df3850c 917 objfile = allocate_objfile (abfd, flags);
5417f6dc 918 discard_cleanups (my_cleanups);
c906108c 919
a39a16c4 920 if (addrs)
63cd24fe 921 {
7b90c3f9
JB
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 924 }
a39a16c4 925
78a4a9b9
AC
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
c906108c 930 {
769d7dc4
AC
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
78a4a9b9 933 else
c906108c 934 {
a3f17187 935 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
c906108c 939 }
78a4a9b9
AC
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
c906108c
SS
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
2acceee2 948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
949 {
950 if (from_tty || info_verbose)
951 {
a3f17187 952 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
c5aa993b 957 for (psymtab = objfile->psymtabs;
c906108c 958 psymtab != NULL;
c5aa993b 959 psymtab = psymtab->next)
c906108c
SS
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
5b5d99cf
JB
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
5b5d99cf
JB
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
a39a16c4 971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
5417f6dc 980
5b5d99cf
JB
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 984
5b5d99cf
JB
985 xfree (debugfile);
986 }
5417f6dc 987
cb3c37b2
JB
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
a3f17187 991 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
cb3c37b2
JB
996 wrap_here ("");
997 }
998
c906108c
SS
999 if (from_tty || info_verbose)
1000 {
769d7dc4
AC
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
c906108c 1003 else
c5aa993b 1004 {
a3f17187 1005 printf_unfiltered (_("done.\n"));
c5aa993b 1006 }
c906108c
SS
1007 }
1008
481d0f41
JB
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
a39a16c4
MM
1014 do_cleanups (my_cleanups);
1015
109f874e
MS
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
c906108c
SS
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
9a4105ab
AC
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
c906108c 1023
ce7d4522 1024 bfd_cache_close_all ();
c906108c
SS
1025 return (objfile);
1026}
1027
7904e09f 1028
eb4556d7
JB
1029/* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034struct objfile *
1035symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038{
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042}
1043
1044
7904e09f
JB
1045/* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048struct objfile *
1049symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051{
eb4556d7
JB
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
7904e09f
JB
1054}
1055
1056
d7db6da9
FN
1057/* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
5417f6dc 1064
1adeb98a
FN
1065void
1066symbol_file_add_main (char *args, int from_tty)
1067{
d7db6da9
FN
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069}
1070
1071static void
1072symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073{
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
d7db6da9
FN
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1adeb98a
FN
1081}
1082
1083void
1084symbol_file_clear (int from_tty)
1085{
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
0430b0d6
AS
1088 && (symfile_objfile
1089 ? !query (_("Discard symbol table from `%s'? "),
1090 symfile_objfile->name)
1091 : !query (_("Discard symbol table? "))))
8a3fe4f8 1092 error (_("Not confirmed."));
1adeb98a
FN
1093 free_all_objfiles ();
1094
1095 /* solib descriptors may have handles to objfiles. Since their
1096 storage has just been released, we'd better wipe the solib
1097 descriptors as well.
1098 */
1099#if defined(SOLIB_RESTART)
1100 SOLIB_RESTART ();
1101#endif
1102
1103 symfile_objfile = NULL;
1104 if (from_tty)
a3f17187 1105 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1106}
1107
5b5d99cf
JB
1108static char *
1109get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1110{
1111 asection *sect;
1112 bfd_size_type debuglink_size;
1113 unsigned long crc32;
1114 char *contents;
1115 int crc_offset;
1116 unsigned char *p;
5417f6dc 1117
5b5d99cf
JB
1118 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1119
1120 if (sect == NULL)
1121 return NULL;
1122
1123 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1124
5b5d99cf
JB
1125 contents = xmalloc (debuglink_size);
1126 bfd_get_section_contents (objfile->obfd, sect, contents,
1127 (file_ptr)0, (bfd_size_type)debuglink_size);
1128
1129 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1130 crc_offset = strlen (contents) + 1;
1131 crc_offset = (crc_offset + 3) & ~3;
1132
1133 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1134
5b5d99cf
JB
1135 *crc32_out = crc32;
1136 return contents;
1137}
1138
1139static int
1140separate_debug_file_exists (const char *name, unsigned long crc)
1141{
1142 unsigned long file_crc = 0;
1143 int fd;
1144 char buffer[8*1024];
1145 int count;
1146
1147 fd = open (name, O_RDONLY | O_BINARY);
1148 if (fd < 0)
1149 return 0;
1150
1151 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1152 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1153
1154 close (fd);
1155
1156 return crc == file_crc;
1157}
1158
1159static char *debug_file_directory = NULL;
920d2a44
AC
1160static void
1161show_debug_file_directory (struct ui_file *file, int from_tty,
1162 struct cmd_list_element *c, const char *value)
1163{
1164 fprintf_filtered (file, _("\
1165The directory where separate debug symbols are searched for is \"%s\".\n"),
1166 value);
1167}
5b5d99cf
JB
1168
1169#if ! defined (DEBUG_SUBDIRECTORY)
1170#define DEBUG_SUBDIRECTORY ".debug"
1171#endif
1172
1173static char *
1174find_separate_debug_file (struct objfile *objfile)
1175{
1176 asection *sect;
1177 char *basename;
1178 char *dir;
1179 char *debugfile;
1180 char *name_copy;
1181 bfd_size_type debuglink_size;
1182 unsigned long crc32;
1183 int i;
1184
1185 basename = get_debug_link_info (objfile, &crc32);
1186
1187 if (basename == NULL)
1188 return NULL;
5417f6dc 1189
5b5d99cf
JB
1190 dir = xstrdup (objfile->name);
1191
fe36c4f4
JB
1192 /* Strip off the final filename part, leaving the directory name,
1193 followed by a slash. Objfile names should always be absolute and
1194 tilde-expanded, so there should always be a slash in there
1195 somewhere. */
5b5d99cf
JB
1196 for (i = strlen(dir) - 1; i >= 0; i--)
1197 {
1198 if (IS_DIR_SEPARATOR (dir[i]))
1199 break;
1200 }
fe36c4f4 1201 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1202 dir[i+1] = '\0';
5417f6dc 1203
5b5d99cf
JB
1204 debugfile = alloca (strlen (debug_file_directory) + 1
1205 + strlen (dir)
1206 + strlen (DEBUG_SUBDIRECTORY)
1207 + strlen ("/")
5417f6dc 1208 + strlen (basename)
5b5d99cf
JB
1209 + 1);
1210
1211 /* First try in the same directory as the original file. */
1212 strcpy (debugfile, dir);
1213 strcat (debugfile, basename);
1214
1215 if (separate_debug_file_exists (debugfile, crc32))
1216 {
1217 xfree (basename);
1218 xfree (dir);
1219 return xstrdup (debugfile);
1220 }
5417f6dc 1221
5b5d99cf
JB
1222 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1223 strcpy (debugfile, dir);
1224 strcat (debugfile, DEBUG_SUBDIRECTORY);
1225 strcat (debugfile, "/");
1226 strcat (debugfile, basename);
1227
1228 if (separate_debug_file_exists (debugfile, crc32))
1229 {
1230 xfree (basename);
1231 xfree (dir);
1232 return xstrdup (debugfile);
1233 }
5417f6dc 1234
5b5d99cf
JB
1235 /* Then try in the global debugfile directory. */
1236 strcpy (debugfile, debug_file_directory);
1237 strcat (debugfile, "/");
1238 strcat (debugfile, dir);
5b5d99cf
JB
1239 strcat (debugfile, basename);
1240
1241 if (separate_debug_file_exists (debugfile, crc32))
1242 {
1243 xfree (basename);
1244 xfree (dir);
1245 return xstrdup (debugfile);
1246 }
5417f6dc 1247
5b5d99cf
JB
1248 xfree (basename);
1249 xfree (dir);
1250 return NULL;
1251}
1252
1253
c906108c
SS
1254/* This is the symbol-file command. Read the file, analyze its
1255 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1256 the command is rather bizarre:
1257
1258 1. The function buildargv implements various quoting conventions
1259 which are undocumented and have little or nothing in common with
1260 the way things are quoted (or not quoted) elsewhere in GDB.
1261
1262 2. Options are used, which are not generally used in GDB (perhaps
1263 "set mapped on", "set readnow on" would be better)
1264
1265 3. The order of options matters, which is contrary to GNU
c906108c
SS
1266 conventions (because it is confusing and inconvenient). */
1267
1268void
fba45db2 1269symbol_file_command (char *args, int from_tty)
c906108c 1270{
c906108c
SS
1271 dont_repeat ();
1272
1273 if (args == NULL)
1274 {
1adeb98a 1275 symbol_file_clear (from_tty);
c906108c
SS
1276 }
1277 else
1278 {
cb2f3a29
MK
1279 char **argv = buildargv (args);
1280 int flags = OBJF_USERLOADED;
1281 struct cleanup *cleanups;
1282 char *name = NULL;
1283
1284 if (argv == NULL)
1285 nomem (0);
1286
7a292a7a 1287 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1288 while (*argv != NULL)
1289 {
78a4a9b9
AC
1290 if (strcmp (*argv, "-readnow") == 0)
1291 flags |= OBJF_READNOW;
1292 else if (**argv == '-')
8a3fe4f8 1293 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1294 else
1295 {
cb2f3a29 1296 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1297 name = *argv;
78a4a9b9 1298 }
cb2f3a29 1299
c906108c
SS
1300 argv++;
1301 }
1302
1303 if (name == NULL)
cb2f3a29
MK
1304 error (_("no symbol file name was specified"));
1305
c906108c
SS
1306 do_cleanups (cleanups);
1307 }
1308}
1309
1310/* Set the initial language.
1311
cb2f3a29
MK
1312 FIXME: A better solution would be to record the language in the
1313 psymtab when reading partial symbols, and then use it (if known) to
1314 set the language. This would be a win for formats that encode the
1315 language in an easily discoverable place, such as DWARF. For
1316 stabs, we can jump through hoops looking for specially named
1317 symbols or try to intuit the language from the specific type of
1318 stabs we find, but we can't do that until later when we read in
1319 full symbols. */
c906108c
SS
1320
1321static void
fba45db2 1322set_initial_language (void)
c906108c
SS
1323{
1324 struct partial_symtab *pst;
c5aa993b 1325 enum language lang = language_unknown;
c906108c
SS
1326
1327 pst = find_main_psymtab ();
1328 if (pst != NULL)
1329 {
c5aa993b 1330 if (pst->filename != NULL)
cb2f3a29
MK
1331 lang = deduce_language_from_filename (pst->filename);
1332
c906108c
SS
1333 if (lang == language_unknown)
1334 {
c5aa993b
JM
1335 /* Make C the default language */
1336 lang = language_c;
c906108c 1337 }
cb2f3a29 1338
c906108c 1339 set_language (lang);
cb2f3a29 1340 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1341 }
1342}
1343
cb2f3a29
MK
1344/* Open the file specified by NAME and hand it off to BFD for
1345 preliminary analysis. Return a newly initialized bfd *, which
1346 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1347 absolute). In case of trouble, error() is called. */
c906108c
SS
1348
1349bfd *
fba45db2 1350symfile_bfd_open (char *name)
c906108c
SS
1351{
1352 bfd *sym_bfd;
1353 int desc;
1354 char *absolute_name;
1355
cb2f3a29 1356 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1357
1358 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1359 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1360 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1361#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1362 if (desc < 0)
1363 {
1364 char *exename = alloca (strlen (name) + 5);
1365 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1366 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1367 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1368 }
1369#endif
1370 if (desc < 0)
1371 {
b8c9b27d 1372 make_cleanup (xfree, name);
c906108c
SS
1373 perror_with_name (name);
1374 }
cb2f3a29
MK
1375
1376 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1377 bfd. It'll be freed in free_objfile(). */
1378 xfree (name);
1379 name = absolute_name;
c906108c 1380
9f76c2cd 1381 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1382 if (!sym_bfd)
1383 {
1384 close (desc);
b8c9b27d 1385 make_cleanup (xfree, name);
8a3fe4f8 1386 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1387 bfd_errmsg (bfd_get_error ()));
1388 }
549c1eea 1389 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1390
1391 if (!bfd_check_format (sym_bfd, bfd_object))
1392 {
cb2f3a29
MK
1393 /* FIXME: should be checking for errors from bfd_close (for one
1394 thing, on error it does not free all the storage associated
1395 with the bfd). */
1396 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1397 make_cleanup (xfree, name);
8a3fe4f8 1398 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1399 bfd_errmsg (bfd_get_error ()));
1400 }
cb2f3a29
MK
1401
1402 return sym_bfd;
c906108c
SS
1403}
1404
cb2f3a29
MK
1405/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1406 the section was not found. */
1407
0e931cf0
JB
1408int
1409get_section_index (struct objfile *objfile, char *section_name)
1410{
1411 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1412
0e931cf0
JB
1413 if (sect)
1414 return sect->index;
1415 else
1416 return -1;
1417}
1418
cb2f3a29
MK
1419/* Link SF into the global symtab_fns list. Called on startup by the
1420 _initialize routine in each object file format reader, to register
1421 information about each format the the reader is prepared to
1422 handle. */
c906108c
SS
1423
1424void
fba45db2 1425add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1426{
1427 sf->next = symtab_fns;
1428 symtab_fns = sf;
1429}
1430
cb2f3a29
MK
1431/* Initialize OBJFILE to read symbols from its associated BFD. It
1432 either returns or calls error(). The result is an initialized
1433 struct sym_fns in the objfile structure, that contains cached
1434 information about the symbol file. */
c906108c
SS
1435
1436static void
fba45db2 1437find_sym_fns (struct objfile *objfile)
c906108c
SS
1438{
1439 struct sym_fns *sf;
c5aa993b
JM
1440 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1441 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1442
75245b24
MS
1443 if (our_flavour == bfd_target_srec_flavour
1444 || our_flavour == bfd_target_ihex_flavour
1445 || our_flavour == bfd_target_tekhex_flavour)
cb2f3a29 1446 return; /* No symbols. */
75245b24 1447
c5aa993b 1448 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1449 {
c5aa993b 1450 if (our_flavour == sf->sym_flavour)
c906108c 1451 {
c5aa993b 1452 objfile->sf = sf;
c906108c
SS
1453 return;
1454 }
1455 }
cb2f3a29 1456
8a3fe4f8 1457 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
c5aa993b 1458 bfd_get_target (objfile->obfd));
c906108c
SS
1459}
1460\f
cb2f3a29 1461
c906108c
SS
1462/* This function runs the load command of our current target. */
1463
1464static void
fba45db2 1465load_command (char *arg, int from_tty)
c906108c
SS
1466{
1467 if (arg == NULL)
1468 arg = get_exec_file (1);
1469 target_load (arg, from_tty);
2889e661
JB
1470
1471 /* After re-loading the executable, we don't really know which
1472 overlays are mapped any more. */
1473 overlay_cache_invalid = 1;
c906108c
SS
1474}
1475
1476/* This version of "load" should be usable for any target. Currently
1477 it is just used for remote targets, not inftarg.c or core files,
1478 on the theory that only in that case is it useful.
1479
1480 Avoiding xmodem and the like seems like a win (a) because we don't have
1481 to worry about finding it, and (b) On VMS, fork() is very slow and so
1482 we don't want to run a subprocess. On the other hand, I'm not sure how
1483 performance compares. */
917317f4
JM
1484
1485static int download_write_size = 512;
920d2a44
AC
1486static void
1487show_download_write_size (struct ui_file *file, int from_tty,
1488 struct cmd_list_element *c, const char *value)
1489{
1490 fprintf_filtered (file, _("\
1491The write size used when downloading a program is %s.\n"),
1492 value);
1493}
917317f4
JM
1494static int validate_download = 0;
1495
e4f9b4d5
MS
1496/* Callback service function for generic_load (bfd_map_over_sections). */
1497
1498static void
1499add_section_size_callback (bfd *abfd, asection *asec, void *data)
1500{
1501 bfd_size_type *sum = data;
1502
2c500098 1503 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1504}
1505
1506/* Opaque data for load_section_callback. */
1507struct load_section_data {
1508 unsigned long load_offset;
1509 unsigned long write_count;
1510 unsigned long data_count;
1511 bfd_size_type total_size;
1512};
1513
1514/* Callback service function for generic_load (bfd_map_over_sections). */
1515
1516static void
1517load_section_callback (bfd *abfd, asection *asec, void *data)
1518{
1519 struct load_section_data *args = data;
1520
1521 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1522 {
2c500098 1523 bfd_size_type size = bfd_get_section_size (asec);
e4f9b4d5
MS
1524 if (size > 0)
1525 {
1526 char *buffer;
1527 struct cleanup *old_chain;
1528 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1529 bfd_size_type block_size;
1530 int err;
1531 const char *sect_name = bfd_get_section_name (abfd, asec);
1532 bfd_size_type sent;
1533
1534 if (download_write_size > 0 && size > download_write_size)
1535 block_size = download_write_size;
1536 else
1537 block_size = size;
1538
1539 buffer = xmalloc (size);
1540 old_chain = make_cleanup (xfree, buffer);
1541
1542 /* Is this really necessary? I guess it gives the user something
1543 to look at during a long download. */
e4f9b4d5
MS
1544 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1545 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1546
1547 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1548
1549 sent = 0;
1550 do
1551 {
1552 int len;
1553 bfd_size_type this_transfer = size - sent;
1554
1555 if (this_transfer >= block_size)
1556 this_transfer = block_size;
1557 len = target_write_memory_partial (lma, buffer,
1558 this_transfer, &err);
1559 if (err)
1560 break;
1561 if (validate_download)
1562 {
1563 /* Broken memories and broken monitors manifest
1564 themselves here when bring new computers to
1565 life. This doubles already slow downloads. */
1566 /* NOTE: cagney/1999-10-18: A more efficient
1567 implementation might add a verify_memory()
1568 method to the target vector and then use
1569 that. remote.c could implement that method
1570 using the ``qCRC'' packet. */
1571 char *check = xmalloc (len);
5417f6dc 1572 struct cleanup *verify_cleanups =
e4f9b4d5
MS
1573 make_cleanup (xfree, check);
1574
1575 if (target_read_memory (lma, check, len) != 0)
8a3fe4f8 1576 error (_("Download verify read failed at 0x%s"),
e4f9b4d5
MS
1577 paddr (lma));
1578 if (memcmp (buffer, check, len) != 0)
8a3fe4f8 1579 error (_("Download verify compare failed at 0x%s"),
e4f9b4d5
MS
1580 paddr (lma));
1581 do_cleanups (verify_cleanups);
1582 }
1583 args->data_count += len;
1584 lma += len;
1585 buffer += len;
1586 args->write_count += 1;
1587 sent += len;
1588 if (quit_flag
9a4105ab
AC
1589 || (deprecated_ui_load_progress_hook != NULL
1590 && deprecated_ui_load_progress_hook (sect_name, sent)))
8a3fe4f8 1591 error (_("Canceled the download"));
e4f9b4d5 1592
9a4105ab
AC
1593 if (deprecated_show_load_progress != NULL)
1594 deprecated_show_load_progress (sect_name, sent, size,
1595 args->data_count,
1596 args->total_size);
e4f9b4d5
MS
1597 }
1598 while (sent < size);
1599
1600 if (err != 0)
8a3fe4f8 1601 error (_("Memory access error while loading section %s."), sect_name);
e4f9b4d5
MS
1602
1603 do_cleanups (old_chain);
1604 }
1605 }
1606}
1607
c906108c 1608void
917317f4 1609generic_load (char *args, int from_tty)
c906108c 1610{
c906108c
SS
1611 asection *s;
1612 bfd *loadfile_bfd;
2b71414d 1613 struct timeval start_time, end_time;
917317f4
JM
1614 char *filename;
1615 struct cleanup *old_cleanups;
1616 char *offptr;
e4f9b4d5
MS
1617 struct load_section_data cbdata;
1618 CORE_ADDR entry;
1619
1620 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1621 cbdata.write_count = 0; /* Number of writes needed. */
1622 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1623 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1624
1625 /* Parse the input argument - the user can specify a load offset as
1626 a second argument. */
1627 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1628 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1629 strcpy (filename, args);
1630 offptr = strchr (filename, ' ');
1631 if (offptr != NULL)
1632 {
1633 char *endptr;
ba5f2f8a 1634
e4f9b4d5 1635 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4 1636 if (offptr == endptr)
8a3fe4f8 1637 error (_("Invalid download offset:%s."), offptr);
917317f4
JM
1638 *offptr = '\0';
1639 }
c906108c 1640 else
e4f9b4d5 1641 cbdata.load_offset = 0;
c906108c 1642
917317f4 1643 /* Open the file for loading. */
c906108c
SS
1644 loadfile_bfd = bfd_openr (filename, gnutarget);
1645 if (loadfile_bfd == NULL)
1646 {
1647 perror_with_name (filename);
1648 return;
1649 }
917317f4 1650
c906108c
SS
1651 /* FIXME: should be checking for errors from bfd_close (for one thing,
1652 on error it does not free all the storage associated with the
1653 bfd). */
5c65bbb6 1654 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1655
c5aa993b 1656 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1657 {
8a3fe4f8 1658 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1659 bfd_errmsg (bfd_get_error ()));
1660 }
c5aa993b 1661
5417f6dc 1662 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
e4f9b4d5 1663 (void *) &cbdata.total_size);
c2d11a7d 1664
2b71414d 1665 gettimeofday (&start_time, NULL);
c906108c 1666
e4f9b4d5 1667 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c 1668
2b71414d 1669 gettimeofday (&end_time, NULL);
ba5f2f8a 1670
e4f9b4d5 1671 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1672 ui_out_text (uiout, "Start address ");
1673 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1674 ui_out_text (uiout, ", load size ");
1675 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1676 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1677 /* We were doing this in remote-mips.c, I suspect it is right
1678 for other targets too. */
1679 write_pc (entry);
c906108c 1680
7ca9f392
AC
1681 /* FIXME: are we supposed to call symbol_file_add or not? According
1682 to a comment from remote-mips.c (where a call to symbol_file_add
1683 was commented out), making the call confuses GDB if more than one
1684 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1685 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1686
5417f6dc 1687 print_transfer_performance (gdb_stdout, cbdata.data_count,
2b71414d 1688 cbdata.write_count, &start_time, &end_time);
c906108c
SS
1689
1690 do_cleanups (old_cleanups);
1691}
1692
1693/* Report how fast the transfer went. */
1694
917317f4
JM
1695/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1696 replaced by print_transfer_performance (with a very different
1697 function signature). */
1698
c906108c 1699void
fba45db2
KB
1700report_transfer_performance (unsigned long data_count, time_t start_time,
1701 time_t end_time)
c906108c 1702{
2b71414d
DJ
1703 struct timeval start, end;
1704
1705 start.tv_sec = start_time;
1706 start.tv_usec = 0;
1707 end.tv_sec = end_time;
1708 end.tv_usec = 0;
1709
1710 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1711}
1712
1713void
d9fcf2fb 1714print_transfer_performance (struct ui_file *stream,
917317f4
JM
1715 unsigned long data_count,
1716 unsigned long write_count,
2b71414d
DJ
1717 const struct timeval *start_time,
1718 const struct timeval *end_time)
917317f4 1719{
2b71414d
DJ
1720 unsigned long time_count;
1721
1722 /* Compute the elapsed time in milliseconds, as a tradeoff between
1723 accuracy and overflow. */
1724 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1725 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1726
8b93c638
JM
1727 ui_out_text (uiout, "Transfer rate: ");
1728 if (time_count > 0)
1729 {
5417f6dc 1730 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
2b71414d 1731 1000 * (data_count * 8) / time_count);
8b93c638
JM
1732 ui_out_text (uiout, " bits/sec");
1733 }
1734 else
1735 {
ba5f2f8a 1736 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1737 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1738 }
1739 if (write_count > 0)
1740 {
1741 ui_out_text (uiout, ", ");
ba5f2f8a 1742 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1743 ui_out_text (uiout, " bytes/write");
1744 }
1745 ui_out_text (uiout, ".\n");
c906108c
SS
1746}
1747
1748/* This function allows the addition of incrementally linked object files.
1749 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1750/* Note: ezannoni 2000-04-13 This function/command used to have a
1751 special case syntax for the rombug target (Rombug is the boot
1752 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1753 rombug case, the user doesn't need to supply a text address,
1754 instead a call to target_link() (in target.c) would supply the
1755 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1756
c906108c 1757static void
fba45db2 1758add_symbol_file_command (char *args, int from_tty)
c906108c 1759{
db162d44 1760 char *filename = NULL;
2df3850c 1761 int flags = OBJF_USERLOADED;
c906108c 1762 char *arg;
2acceee2 1763 int expecting_option = 0;
db162d44 1764 int section_index = 0;
2acceee2
JM
1765 int argcnt = 0;
1766 int sec_num = 0;
1767 int i;
db162d44
EZ
1768 int expecting_sec_name = 0;
1769 int expecting_sec_addr = 0;
1770
a39a16c4 1771 struct sect_opt
2acceee2 1772 {
2acceee2
JM
1773 char *name;
1774 char *value;
a39a16c4 1775 };
db162d44 1776
a39a16c4
MM
1777 struct section_addr_info *section_addrs;
1778 struct sect_opt *sect_opts = NULL;
1779 size_t num_sect_opts = 0;
3017564a 1780 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1781
a39a16c4 1782 num_sect_opts = 16;
5417f6dc 1783 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1784 * sizeof (struct sect_opt));
1785
c906108c
SS
1786 dont_repeat ();
1787
1788 if (args == NULL)
8a3fe4f8 1789 error (_("add-symbol-file takes a file name and an address"));
c906108c
SS
1790
1791 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1792 args = xstrdup (args);
c906108c 1793
2acceee2 1794 while (*args != '\000')
c906108c 1795 {
db162d44 1796 /* Any leading spaces? */
c5aa993b 1797 while (isspace (*args))
db162d44
EZ
1798 args++;
1799
1800 /* Point arg to the beginning of the argument. */
c906108c 1801 arg = args;
db162d44
EZ
1802
1803 /* Move args pointer over the argument. */
c5aa993b 1804 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1805 args++;
1806
1807 /* If there are more arguments, terminate arg and
1808 proceed past it. */
c906108c 1809 if (*args != '\000')
db162d44
EZ
1810 *args++ = '\000';
1811
1812 /* Now process the argument. */
1813 if (argcnt == 0)
c906108c 1814 {
db162d44
EZ
1815 /* The first argument is the file name. */
1816 filename = tilde_expand (arg);
3017564a 1817 make_cleanup (xfree, filename);
c906108c 1818 }
db162d44 1819 else
7a78ae4e
ND
1820 if (argcnt == 1)
1821 {
1822 /* The second argument is always the text address at which
1823 to load the program. */
1824 sect_opts[section_index].name = ".text";
1825 sect_opts[section_index].value = arg;
5417f6dc 1826 if (++section_index > num_sect_opts)
a39a16c4
MM
1827 {
1828 num_sect_opts *= 2;
5417f6dc 1829 sect_opts = ((struct sect_opt *)
a39a16c4 1830 xrealloc (sect_opts,
5417f6dc 1831 num_sect_opts
a39a16c4
MM
1832 * sizeof (struct sect_opt)));
1833 }
7a78ae4e
ND
1834 }
1835 else
1836 {
1837 /* It's an option (starting with '-') or it's an argument
1838 to an option */
1839
1840 if (*arg == '-')
1841 {
78a4a9b9
AC
1842 if (strcmp (arg, "-readnow") == 0)
1843 flags |= OBJF_READNOW;
1844 else if (strcmp (arg, "-s") == 0)
1845 {
1846 expecting_sec_name = 1;
1847 expecting_sec_addr = 1;
1848 }
7a78ae4e
ND
1849 }
1850 else
1851 {
1852 if (expecting_sec_name)
db162d44 1853 {
7a78ae4e
ND
1854 sect_opts[section_index].name = arg;
1855 expecting_sec_name = 0;
db162d44
EZ
1856 }
1857 else
7a78ae4e
ND
1858 if (expecting_sec_addr)
1859 {
1860 sect_opts[section_index].value = arg;
1861 expecting_sec_addr = 0;
5417f6dc 1862 if (++section_index > num_sect_opts)
a39a16c4
MM
1863 {
1864 num_sect_opts *= 2;
5417f6dc 1865 sect_opts = ((struct sect_opt *)
a39a16c4 1866 xrealloc (sect_opts,
5417f6dc 1867 num_sect_opts
a39a16c4
MM
1868 * sizeof (struct sect_opt)));
1869 }
7a78ae4e
ND
1870 }
1871 else
8a3fe4f8 1872 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
1873 }
1874 }
db162d44 1875 argcnt++;
c906108c 1876 }
c906108c 1877
db162d44
EZ
1878 /* Print the prompt for the query below. And save the arguments into
1879 a sect_addr_info structure to be passed around to other
1880 functions. We have to split this up into separate print
bb599908 1881 statements because hex_string returns a local static
db162d44 1882 string. */
5417f6dc 1883
a3f17187 1884 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
1885 section_addrs = alloc_section_addr_info (section_index);
1886 make_cleanup (xfree, section_addrs);
db162d44 1887 for (i = 0; i < section_index; i++)
c906108c 1888 {
db162d44
EZ
1889 CORE_ADDR addr;
1890 char *val = sect_opts[i].value;
1891 char *sec = sect_opts[i].name;
5417f6dc 1892
ae822768 1893 addr = parse_and_eval_address (val);
db162d44 1894
db162d44
EZ
1895 /* Here we store the section offsets in the order they were
1896 entered on the command line. */
a39a16c4
MM
1897 section_addrs->other[sec_num].name = sec;
1898 section_addrs->other[sec_num].addr = addr;
46f45a4a 1899 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 1900 sec, hex_string ((unsigned long)addr));
db162d44
EZ
1901 sec_num++;
1902
5417f6dc 1903 /* The object's sections are initialized when a
db162d44 1904 call is made to build_objfile_section_table (objfile).
5417f6dc 1905 This happens in reread_symbols.
db162d44
EZ
1906 At this point, we don't know what file type this is,
1907 so we can't determine what section names are valid. */
2acceee2 1908 }
db162d44 1909
2acceee2 1910 if (from_tty && (!query ("%s", "")))
8a3fe4f8 1911 error (_("Not confirmed."));
c906108c 1912
a39a16c4 1913 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1914
1915 /* Getting new symbols may change our opinion about what is
1916 frameless. */
1917 reinit_frame_cache ();
db162d44 1918 do_cleanups (my_cleanups);
c906108c
SS
1919}
1920\f
1921static void
fba45db2 1922add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1923{
1924#ifdef ADD_SHARED_SYMBOL_FILES
1925 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1926#else
8a3fe4f8 1927 error (_("This command is not available in this configuration of GDB."));
c5aa993b 1928#endif
c906108c
SS
1929}
1930\f
1931/* Re-read symbols if a symbol-file has changed. */
1932void
fba45db2 1933reread_symbols (void)
c906108c
SS
1934{
1935 struct objfile *objfile;
1936 long new_modtime;
1937 int reread_one = 0;
1938 struct stat new_statbuf;
1939 int res;
1940
1941 /* With the addition of shared libraries, this should be modified,
1942 the load time should be saved in the partial symbol tables, since
1943 different tables may come from different source files. FIXME.
1944 This routine should then walk down each partial symbol table
1945 and see if the symbol table that it originates from has been changed */
1946
c5aa993b
JM
1947 for (objfile = object_files; objfile; objfile = objfile->next)
1948 {
1949 if (objfile->obfd)
1950 {
52d16ba8 1951#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
1952 /* If this object is from a shared library, then you should
1953 stat on the library name, not member name. */
c906108c 1954
c5aa993b
JM
1955 if (objfile->obfd->my_archive)
1956 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1957 else
c906108c 1958#endif
c5aa993b
JM
1959 res = stat (objfile->name, &new_statbuf);
1960 if (res != 0)
c906108c 1961 {
c5aa993b 1962 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 1963 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
1964 objfile->name);
1965 continue;
c906108c 1966 }
c5aa993b
JM
1967 new_modtime = new_statbuf.st_mtime;
1968 if (new_modtime != objfile->mtime)
c906108c 1969 {
c5aa993b
JM
1970 struct cleanup *old_cleanups;
1971 struct section_offsets *offsets;
1972 int num_offsets;
c5aa993b
JM
1973 char *obfd_filename;
1974
a3f17187 1975 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
1976 objfile->name);
1977
1978 /* There are various functions like symbol_file_add,
1979 symfile_bfd_open, syms_from_objfile, etc., which might
1980 appear to do what we want. But they have various other
1981 effects which we *don't* want. So we just do stuff
1982 ourselves. We don't worry about mapped files (for one thing,
1983 any mapped file will be out of date). */
1984
1985 /* If we get an error, blow away this objfile (not sure if
1986 that is the correct response for things like shared
1987 libraries). */
74b7792f 1988 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1989 /* We need to do this whenever any symbols go away. */
74b7792f 1990 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1991
1992 /* Clean up any state BFD has sitting around. We don't need
1993 to close the descriptor but BFD lacks a way of closing the
1994 BFD without closing the descriptor. */
1995 obfd_filename = bfd_get_filename (objfile->obfd);
1996 if (!bfd_close (objfile->obfd))
8a3fe4f8 1997 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
1998 bfd_errmsg (bfd_get_error ()));
1999 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2000 if (objfile->obfd == NULL)
8a3fe4f8 2001 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2002 /* bfd_openr sets cacheable to true, which is what we want. */
2003 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2004 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2005 bfd_errmsg (bfd_get_error ()));
2006
2007 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2008 objfile_obstack. */
c5aa993b 2009 num_offsets = objfile->num_sections;
5417f6dc 2010 offsets = ((struct section_offsets *)
a39a16c4 2011 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2012 memcpy (offsets, objfile->section_offsets,
a39a16c4 2013 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2014
2015 /* Nuke all the state that we will re-read. Much of the following
2016 code which sets things to NULL really is necessary to tell
2017 other parts of GDB that there is nothing currently there. */
2018
2019 /* FIXME: Do we have to free a whole linked list, or is this
2020 enough? */
2021 if (objfile->global_psymbols.list)
2dc74dc1 2022 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2023 memset (&objfile->global_psymbols, 0,
2024 sizeof (objfile->global_psymbols));
2025 if (objfile->static_psymbols.list)
2dc74dc1 2026 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2027 memset (&objfile->static_psymbols, 0,
2028 sizeof (objfile->static_psymbols));
2029
2030 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2031 bcache_xfree (objfile->psymbol_cache);
2032 objfile->psymbol_cache = bcache_xmalloc ();
2033 bcache_xfree (objfile->macro_cache);
2034 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2035 if (objfile->demangled_names_hash != NULL)
2036 {
2037 htab_delete (objfile->demangled_names_hash);
2038 objfile->demangled_names_hash = NULL;
2039 }
b99607ea 2040 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2041 objfile->sections = NULL;
2042 objfile->symtabs = NULL;
2043 objfile->psymtabs = NULL;
2044 objfile->free_psymtabs = NULL;
a1b8c067 2045 objfile->cp_namespace_symtab = NULL;
c5aa993b 2046 objfile->msymbols = NULL;
0a6ddd08 2047 objfile->deprecated_sym_private = NULL;
c5aa993b 2048 objfile->minimal_symbol_count = 0;
0a83117a
MS
2049 memset (&objfile->msymbol_hash, 0,
2050 sizeof (objfile->msymbol_hash));
2051 memset (&objfile->msymbol_demangled_hash, 0,
2052 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2053 objfile->fundamental_types = NULL;
7b097ae3 2054 clear_objfile_data (objfile);
c5aa993b
JM
2055 if (objfile->sf != NULL)
2056 {
2057 (*objfile->sf->sym_finish) (objfile);
2058 }
2059
2060 /* We never make this a mapped file. */
2061 objfile->md = NULL;
af5f3db6
AC
2062 objfile->psymbol_cache = bcache_xmalloc ();
2063 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2064 /* obstack_init also initializes the obstack so it is
2065 empty. We could use obstack_specify_allocation but
2066 gdb_obstack.h specifies the alloc/dealloc
2067 functions. */
2068 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2069 if (build_objfile_section_table (objfile))
2070 {
8a3fe4f8 2071 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2072 objfile->name, bfd_errmsg (bfd_get_error ()));
2073 }
15831452 2074 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2075
2076 /* We use the same section offsets as from last time. I'm not
2077 sure whether that is always correct for shared libraries. */
2078 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2079 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2080 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2081 memcpy (objfile->section_offsets, offsets,
a39a16c4 2082 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2083 objfile->num_sections = num_offsets;
2084
2085 /* What the hell is sym_new_init for, anyway? The concept of
2086 distinguishing between the main file and additional files
2087 in this way seems rather dubious. */
2088 if (objfile == symfile_objfile)
2089 {
2090 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2091 }
2092
2093 (*objfile->sf->sym_init) (objfile);
b9caf505 2094 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2095 /* The "mainline" parameter is a hideous hack; I think leaving it
2096 zero is OK since dbxread.c also does what it needs to do if
2097 objfile->global_psymbols.size is 0. */
96baa820 2098 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2099 if (!have_partial_symbols () && !have_full_symbols ())
2100 {
2101 wrap_here ("");
a3f17187 2102 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2103 wrap_here ("");
2104 }
2105 objfile->flags |= OBJF_SYMS;
2106
2107 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2108 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2109
c5aa993b
JM
2110 /* Getting new symbols may change our opinion about what is
2111 frameless. */
c906108c 2112
c5aa993b 2113 reinit_frame_cache ();
c906108c 2114
c5aa993b
JM
2115 /* Discard cleanups as symbol reading was successful. */
2116 discard_cleanups (old_cleanups);
c906108c 2117
c5aa993b
JM
2118 /* If the mtime has changed between the time we set new_modtime
2119 and now, we *want* this to be out of date, so don't call stat
2120 again now. */
2121 objfile->mtime = new_modtime;
2122 reread_one = 1;
5b5d99cf 2123 reread_separate_symbols (objfile);
c5aa993b 2124 }
c906108c
SS
2125 }
2126 }
c906108c
SS
2127
2128 if (reread_one)
ea53e89f
JB
2129 {
2130 clear_symtab_users ();
2131 /* At least one objfile has changed, so we can consider that
2132 the executable we're debugging has changed too. */
2133 observer_notify_executable_changed (NULL);
2134 }
2135
c906108c 2136}
5b5d99cf
JB
2137
2138
2139/* Handle separate debug info for OBJFILE, which has just been
2140 re-read:
2141 - If we had separate debug info before, but now we don't, get rid
2142 of the separated objfile.
2143 - If we didn't have separated debug info before, but now we do,
2144 read in the new separated debug info file.
2145 - If the debug link points to a different file, toss the old one
2146 and read the new one.
2147 This function does *not* handle the case where objfile is still
2148 using the same separate debug info file, but that file's timestamp
2149 has changed. That case should be handled by the loop in
2150 reread_symbols already. */
2151static void
2152reread_separate_symbols (struct objfile *objfile)
2153{
2154 char *debug_file;
2155 unsigned long crc32;
2156
2157 /* Does the updated objfile's debug info live in a
2158 separate file? */
2159 debug_file = find_separate_debug_file (objfile);
2160
2161 if (objfile->separate_debug_objfile)
2162 {
2163 /* There are two cases where we need to get rid of
2164 the old separated debug info objfile:
2165 - if the new primary objfile doesn't have
2166 separated debug info, or
2167 - if the new primary objfile has separate debug
2168 info, but it's under a different filename.
5417f6dc 2169
5b5d99cf
JB
2170 If the old and new objfiles both have separate
2171 debug info, under the same filename, then we're
2172 okay --- if the separated file's contents have
2173 changed, we will have caught that when we
2174 visited it in this function's outermost
2175 loop. */
2176 if (! debug_file
2177 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2178 free_objfile (objfile->separate_debug_objfile);
2179 }
2180
2181 /* If the new objfile has separate debug info, and we
2182 haven't loaded it already, do so now. */
2183 if (debug_file
2184 && ! objfile->separate_debug_objfile)
2185 {
2186 /* Use the same section offset table as objfile itself.
2187 Preserve the flags from objfile that make sense. */
2188 objfile->separate_debug_objfile
2189 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2190 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2191 info_verbose, /* from_tty: Don't override the default. */
2192 0, /* No addr table. */
2193 objfile->section_offsets, objfile->num_sections,
2194 0, /* Not mainline. See comments about this above. */
78a4a9b9 2195 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2196 | OBJF_USERLOADED)));
2197 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2198 = objfile;
2199 }
2200}
2201
2202
c906108c
SS
2203\f
2204
c5aa993b
JM
2205
2206typedef struct
2207{
2208 char *ext;
c906108c 2209 enum language lang;
c5aa993b
JM
2210}
2211filename_language;
c906108c 2212
c5aa993b 2213static filename_language *filename_language_table;
c906108c
SS
2214static int fl_table_size, fl_table_next;
2215
2216static void
fba45db2 2217add_filename_language (char *ext, enum language lang)
c906108c
SS
2218{
2219 if (fl_table_next >= fl_table_size)
2220 {
2221 fl_table_size += 10;
5417f6dc 2222 filename_language_table =
25bf3106
PM
2223 xrealloc (filename_language_table,
2224 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2225 }
2226
4fcf66da 2227 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2228 filename_language_table[fl_table_next].lang = lang;
2229 fl_table_next++;
2230}
2231
2232static char *ext_args;
920d2a44
AC
2233static void
2234show_ext_args (struct ui_file *file, int from_tty,
2235 struct cmd_list_element *c, const char *value)
2236{
2237 fprintf_filtered (file, _("\
2238Mapping between filename extension and source language is \"%s\".\n"),
2239 value);
2240}
c906108c
SS
2241
2242static void
26c41df3 2243set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2244{
2245 int i;
2246 char *cp = ext_args;
2247 enum language lang;
2248
2249 /* First arg is filename extension, starting with '.' */
2250 if (*cp != '.')
8a3fe4f8 2251 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2252
2253 /* Find end of first arg. */
c5aa993b 2254 while (*cp && !isspace (*cp))
c906108c
SS
2255 cp++;
2256
2257 if (*cp == '\0')
8a3fe4f8 2258 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2259 ext_args);
2260
2261 /* Null-terminate first arg */
c5aa993b 2262 *cp++ = '\0';
c906108c
SS
2263
2264 /* Find beginning of second arg, which should be a source language. */
2265 while (*cp && isspace (*cp))
2266 cp++;
2267
2268 if (*cp == '\0')
8a3fe4f8 2269 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2270 ext_args);
2271
2272 /* Lookup the language from among those we know. */
2273 lang = language_enum (cp);
2274
2275 /* Now lookup the filename extension: do we already know it? */
2276 for (i = 0; i < fl_table_next; i++)
2277 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2278 break;
2279
2280 if (i >= fl_table_next)
2281 {
2282 /* new file extension */
2283 add_filename_language (ext_args, lang);
2284 }
2285 else
2286 {
2287 /* redefining a previously known filename extension */
2288
2289 /* if (from_tty) */
2290 /* query ("Really make files of type %s '%s'?", */
2291 /* ext_args, language_str (lang)); */
2292
b8c9b27d 2293 xfree (filename_language_table[i].ext);
4fcf66da 2294 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2295 filename_language_table[i].lang = lang;
2296 }
2297}
2298
2299static void
fba45db2 2300info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2301{
2302 int i;
2303
a3f17187 2304 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2305 printf_filtered ("\n\n");
2306 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2307 printf_filtered ("\t%s\t- %s\n",
2308 filename_language_table[i].ext,
c906108c
SS
2309 language_str (filename_language_table[i].lang));
2310}
2311
2312static void
fba45db2 2313init_filename_language_table (void)
c906108c
SS
2314{
2315 if (fl_table_size == 0) /* protect against repetition */
2316 {
2317 fl_table_size = 20;
2318 fl_table_next = 0;
c5aa993b 2319 filename_language_table =
c906108c 2320 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2321 add_filename_language (".c", language_c);
2322 add_filename_language (".C", language_cplus);
2323 add_filename_language (".cc", language_cplus);
2324 add_filename_language (".cp", language_cplus);
2325 add_filename_language (".cpp", language_cplus);
2326 add_filename_language (".cxx", language_cplus);
2327 add_filename_language (".c++", language_cplus);
2328 add_filename_language (".java", language_java);
c906108c 2329 add_filename_language (".class", language_java);
da2cf7e0 2330 add_filename_language (".m", language_objc);
c5aa993b
JM
2331 add_filename_language (".f", language_fortran);
2332 add_filename_language (".F", language_fortran);
2333 add_filename_language (".s", language_asm);
2334 add_filename_language (".S", language_asm);
c6fd39cd
PM
2335 add_filename_language (".pas", language_pascal);
2336 add_filename_language (".p", language_pascal);
2337 add_filename_language (".pp", language_pascal);
963a6417
PH
2338 add_filename_language (".adb", language_ada);
2339 add_filename_language (".ads", language_ada);
2340 add_filename_language (".a", language_ada);
2341 add_filename_language (".ada", language_ada);
c906108c
SS
2342 }
2343}
2344
2345enum language
fba45db2 2346deduce_language_from_filename (char *filename)
c906108c
SS
2347{
2348 int i;
2349 char *cp;
2350
2351 if (filename != NULL)
2352 if ((cp = strrchr (filename, '.')) != NULL)
2353 for (i = 0; i < fl_table_next; i++)
2354 if (strcmp (cp, filename_language_table[i].ext) == 0)
2355 return filename_language_table[i].lang;
2356
2357 return language_unknown;
2358}
2359\f
2360/* allocate_symtab:
2361
2362 Allocate and partly initialize a new symbol table. Return a pointer
2363 to it. error() if no space.
2364
2365 Caller must set these fields:
c5aa993b
JM
2366 LINETABLE(symtab)
2367 symtab->blockvector
2368 symtab->dirname
2369 symtab->free_code
2370 symtab->free_ptr
2371 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2372 */
2373
2374struct symtab *
fba45db2 2375allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2376{
52f0bd74 2377 struct symtab *symtab;
c906108c
SS
2378
2379 symtab = (struct symtab *)
4a146b47 2380 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2381 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2382 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2383 &objfile->objfile_obstack);
c5aa993b
JM
2384 symtab->fullname = NULL;
2385 symtab->language = deduce_language_from_filename (filename);
2386 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2387 &objfile->objfile_obstack);
c906108c
SS
2388
2389 /* Hook it to the objfile it comes from */
2390
c5aa993b
JM
2391 symtab->objfile = objfile;
2392 symtab->next = objfile->symtabs;
2393 objfile->symtabs = symtab;
c906108c
SS
2394
2395 /* FIXME: This should go away. It is only defined for the Z8000,
2396 and the Z8000 definition of this macro doesn't have anything to
2397 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2398 here for convenience. */
2399#ifdef INIT_EXTRA_SYMTAB_INFO
2400 INIT_EXTRA_SYMTAB_INFO (symtab);
2401#endif
2402
2403 return (symtab);
2404}
2405
2406struct partial_symtab *
fba45db2 2407allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2408{
2409 struct partial_symtab *psymtab;
2410
c5aa993b 2411 if (objfile->free_psymtabs)
c906108c 2412 {
c5aa993b
JM
2413 psymtab = objfile->free_psymtabs;
2414 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2415 }
2416 else
2417 psymtab = (struct partial_symtab *)
8b92e4d5 2418 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2419 sizeof (struct partial_symtab));
2420
2421 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2422 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2423 &objfile->objfile_obstack);
c5aa993b 2424 psymtab->symtab = NULL;
c906108c
SS
2425
2426 /* Prepend it to the psymtab list for the objfile it belongs to.
2427 Psymtabs are searched in most recent inserted -> least recent
2428 inserted order. */
2429
c5aa993b
JM
2430 psymtab->objfile = objfile;
2431 psymtab->next = objfile->psymtabs;
2432 objfile->psymtabs = psymtab;
c906108c
SS
2433#if 0
2434 {
2435 struct partial_symtab **prev_pst;
c5aa993b
JM
2436 psymtab->objfile = objfile;
2437 psymtab->next = NULL;
2438 prev_pst = &(objfile->psymtabs);
c906108c 2439 while ((*prev_pst) != NULL)
c5aa993b 2440 prev_pst = &((*prev_pst)->next);
c906108c 2441 (*prev_pst) = psymtab;
c5aa993b 2442 }
c906108c 2443#endif
c5aa993b 2444
c906108c
SS
2445 return (psymtab);
2446}
2447
2448void
fba45db2 2449discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2450{
2451 struct partial_symtab **prev_pst;
2452
2453 /* From dbxread.c:
2454 Empty psymtabs happen as a result of header files which don't
2455 have any symbols in them. There can be a lot of them. But this
2456 check is wrong, in that a psymtab with N_SLINE entries but
2457 nothing else is not empty, but we don't realize that. Fixing
2458 that without slowing things down might be tricky. */
2459
2460 /* First, snip it out of the psymtab chain */
2461
2462 prev_pst = &(pst->objfile->psymtabs);
2463 while ((*prev_pst) != pst)
2464 prev_pst = &((*prev_pst)->next);
2465 (*prev_pst) = pst->next;
2466
2467 /* Next, put it on a free list for recycling */
2468
2469 pst->next = pst->objfile->free_psymtabs;
2470 pst->objfile->free_psymtabs = pst;
2471}
c906108c 2472\f
c5aa993b 2473
c906108c
SS
2474/* Reset all data structures in gdb which may contain references to symbol
2475 table data. */
2476
2477void
fba45db2 2478clear_symtab_users (void)
c906108c
SS
2479{
2480 /* Someday, we should do better than this, by only blowing away
2481 the things that really need to be blown. */
c0501be5
DJ
2482
2483 /* Clear the "current" symtab first, because it is no longer valid.
2484 breakpoint_re_set may try to access the current symtab. */
2485 clear_current_source_symtab_and_line ();
2486
c906108c
SS
2487 clear_value_history ();
2488 clear_displays ();
2489 clear_internalvars ();
2490 breakpoint_re_set ();
2491 set_default_breakpoint (0, 0, 0, 0);
c906108c 2492 clear_pc_function_cache ();
9a4105ab
AC
2493 if (deprecated_target_new_objfile_hook)
2494 deprecated_target_new_objfile_hook (NULL);
c906108c
SS
2495}
2496
74b7792f
AC
2497static void
2498clear_symtab_users_cleanup (void *ignore)
2499{
2500 clear_symtab_users ();
2501}
2502
c906108c
SS
2503/* clear_symtab_users_once:
2504
2505 This function is run after symbol reading, or from a cleanup.
2506 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2507 has been blown away, but the other GDB data structures that may
c906108c
SS
2508 reference it have not yet been cleared or re-directed. (The old
2509 symtab was zapped, and the cleanup queued, in free_named_symtab()
2510 below.)
2511
2512 This function can be queued N times as a cleanup, or called
2513 directly; it will do all the work the first time, and then will be a
2514 no-op until the next time it is queued. This works by bumping a
2515 counter at queueing time. Much later when the cleanup is run, or at
2516 the end of symbol processing (in case the cleanup is discarded), if
2517 the queued count is greater than the "done-count", we do the work
2518 and set the done-count to the queued count. If the queued count is
2519 less than or equal to the done-count, we just ignore the call. This
2520 is needed because reading a single .o file will often replace many
2521 symtabs (one per .h file, for example), and we don't want to reset
2522 the breakpoints N times in the user's face.
2523
2524 The reason we both queue a cleanup, and call it directly after symbol
2525 reading, is because the cleanup protects us in case of errors, but is
2526 discarded if symbol reading is successful. */
2527
2528#if 0
2529/* FIXME: As free_named_symtabs is currently a big noop this function
2530 is no longer needed. */
a14ed312 2531static void clear_symtab_users_once (void);
c906108c
SS
2532
2533static int clear_symtab_users_queued;
2534static int clear_symtab_users_done;
2535
2536static void
fba45db2 2537clear_symtab_users_once (void)
c906108c
SS
2538{
2539 /* Enforce once-per-`do_cleanups'-semantics */
2540 if (clear_symtab_users_queued <= clear_symtab_users_done)
2541 return;
2542 clear_symtab_users_done = clear_symtab_users_queued;
2543
2544 clear_symtab_users ();
2545}
2546#endif
2547
2548/* Delete the specified psymtab, and any others that reference it. */
2549
2550static void
fba45db2 2551cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2552{
2553 struct partial_symtab *ps, *pprev = NULL;
2554 int i;
2555
2556 /* Find its previous psymtab in the chain */
c5aa993b
JM
2557 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2558 {
2559 if (ps == pst)
2560 break;
2561 pprev = ps;
2562 }
c906108c 2563
c5aa993b
JM
2564 if (ps)
2565 {
2566 /* Unhook it from the chain. */
2567 if (ps == pst->objfile->psymtabs)
2568 pst->objfile->psymtabs = ps->next;
2569 else
2570 pprev->next = ps->next;
2571
2572 /* FIXME, we can't conveniently deallocate the entries in the
2573 partial_symbol lists (global_psymbols/static_psymbols) that
2574 this psymtab points to. These just take up space until all
2575 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2576 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2577
2578 /* We need to cashier any psymtab that has this one as a dependency... */
2579 again:
2580 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2581 {
2582 for (i = 0; i < ps->number_of_dependencies; i++)
2583 {
2584 if (ps->dependencies[i] == pst)
2585 {
2586 cashier_psymtab (ps);
2587 goto again; /* Must restart, chain has been munged. */
2588 }
2589 }
c906108c 2590 }
c906108c 2591 }
c906108c
SS
2592}
2593
2594/* If a symtab or psymtab for filename NAME is found, free it along
2595 with any dependent breakpoints, displays, etc.
2596 Used when loading new versions of object modules with the "add-file"
2597 command. This is only called on the top-level symtab or psymtab's name;
2598 it is not called for subsidiary files such as .h files.
2599
2600 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2601 FIXME. The return value appears to never be used.
c906108c
SS
2602
2603 FIXME. I think this is not the best way to do this. We should
2604 work on being gentler to the environment while still cleaning up
2605 all stray pointers into the freed symtab. */
2606
2607int
fba45db2 2608free_named_symtabs (char *name)
c906108c
SS
2609{
2610#if 0
2611 /* FIXME: With the new method of each objfile having it's own
2612 psymtab list, this function needs serious rethinking. In particular,
2613 why was it ever necessary to toss psymtabs with specific compilation
2614 unit filenames, as opposed to all psymtabs from a particular symbol
2615 file? -- fnf
2616 Well, the answer is that some systems permit reloading of particular
2617 compilation units. We want to blow away any old info about these
2618 compilation units, regardless of which objfiles they arrived in. --gnu. */
2619
52f0bd74
AC
2620 struct symtab *s;
2621 struct symtab *prev;
2622 struct partial_symtab *ps;
c906108c
SS
2623 struct blockvector *bv;
2624 int blewit = 0;
2625
2626 /* We only wack things if the symbol-reload switch is set. */
2627 if (!symbol_reloading)
2628 return 0;
2629
2630 /* Some symbol formats have trouble providing file names... */
2631 if (name == 0 || *name == '\0')
2632 return 0;
2633
2634 /* Look for a psymtab with the specified name. */
2635
2636again2:
c5aa993b
JM
2637 for (ps = partial_symtab_list; ps; ps = ps->next)
2638 {
6314a349 2639 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2640 {
2641 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2642 goto again2; /* Must restart, chain has been munged */
2643 }
c906108c 2644 }
c906108c
SS
2645
2646 /* Look for a symtab with the specified name. */
2647
2648 for (s = symtab_list; s; s = s->next)
2649 {
6314a349 2650 if (strcmp (name, s->filename) == 0)
c906108c
SS
2651 break;
2652 prev = s;
2653 }
2654
2655 if (s)
2656 {
2657 if (s == symtab_list)
2658 symtab_list = s->next;
2659 else
2660 prev->next = s->next;
2661
2662 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2663 or not they depend on the symtab being freed. This should be
2664 changed so that only those data structures affected are deleted. */
c906108c
SS
2665
2666 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2667 This test is necessary due to a bug in "dbxread.c" that
2668 causes empty symtabs to be created for N_SO symbols that
2669 contain the pathname of the object file. (This problem
2670 has been fixed in GDB 3.9x). */
c906108c
SS
2671
2672 bv = BLOCKVECTOR (s);
2673 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2674 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2675 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2676 {
e2e0b3e5 2677 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2678 name);
c906108c
SS
2679 clear_symtab_users_queued++;
2680 make_cleanup (clear_symtab_users_once, 0);
2681 blewit = 1;
c5aa993b
JM
2682 }
2683 else
e2e0b3e5
AC
2684 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2685 name);
c906108c
SS
2686
2687 free_symtab (s);
2688 }
2689 else
2690 {
2691 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2692 even though no symtab was found, since the file might have
2693 been compiled without debugging, and hence not be associated
2694 with a symtab. In order to handle this correctly, we would need
2695 to keep a list of text address ranges for undebuggable files.
2696 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2697 ;
2698 }
2699
2700 /* FIXME, what about the minimal symbol table? */
2701 return blewit;
2702#else
2703 return (0);
2704#endif
2705}
2706\f
2707/* Allocate and partially fill a partial symtab. It will be
2708 completely filled at the end of the symbol list.
2709
d4f3574e 2710 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2711
2712struct partial_symtab *
fba45db2
KB
2713start_psymtab_common (struct objfile *objfile,
2714 struct section_offsets *section_offsets, char *filename,
2715 CORE_ADDR textlow, struct partial_symbol **global_syms,
2716 struct partial_symbol **static_syms)
c906108c
SS
2717{
2718 struct partial_symtab *psymtab;
2719
2720 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2721 psymtab->section_offsets = section_offsets;
2722 psymtab->textlow = textlow;
2723 psymtab->texthigh = psymtab->textlow; /* default */
2724 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2725 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2726 return (psymtab);
2727}
2728\f
2729/* Add a symbol with a long value to a psymtab.
5417f6dc 2730 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2731 Return the partial symbol that has been added. */
2732
2733/* NOTE: carlton/2003-09-11: The reason why we return the partial
2734 symbol is so that callers can get access to the symbol's demangled
2735 name, which they don't have any cheap way to determine otherwise.
2736 (Currenly, dwarf2read.c is the only file who uses that information,
2737 though it's possible that other readers might in the future.)
2738 Elena wasn't thrilled about that, and I don't blame her, but we
2739 couldn't come up with a better way to get that information. If
2740 it's needed in other situations, we could consider breaking up
2741 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2742 cache. */
2743
2744const struct partial_symbol *
176620f1 2745add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2746 enum address_class class,
2747 struct psymbol_allocation_list *list, long val, /* Value as a long */
2748 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2749 enum language language, struct objfile *objfile)
c906108c 2750{
52f0bd74 2751 struct partial_symbol *psym;
c906108c
SS
2752 char *buf = alloca (namelength + 1);
2753 /* psymbol is static so that there will be no uninitialized gaps in the
2754 structure which might contain random data, causing cache misses in
2755 bcache. */
2756 static struct partial_symbol psymbol;
2757
2758 /* Create local copy of the partial symbol */
2759 memcpy (buf, name, namelength);
2760 buf[namelength] = '\0';
c906108c
SS
2761 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2762 if (val != 0)
2763 {
2764 SYMBOL_VALUE (&psymbol) = val;
2765 }
2766 else
2767 {
2768 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2769 }
2770 SYMBOL_SECTION (&psymbol) = 0;
2771 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2772 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2773 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2774
2775 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2776
2777 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2778 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2779 objfile->psymbol_cache);
c906108c
SS
2780
2781 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2782 if (list->next >= list->list + list->size)
2783 {
2784 extend_psymbol_list (list, objfile);
2785 }
2786 *list->next++ = psym;
2787 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2788
2789 return psym;
c906108c
SS
2790}
2791
2792/* Add a symbol with a long value to a psymtab. This differs from
2793 * add_psymbol_to_list above in taking both a mangled and a demangled
2794 * name. */
2795
2796void
fba45db2 2797add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2798 int dem_namelength, domain_enum domain,
fba45db2
KB
2799 enum address_class class,
2800 struct psymbol_allocation_list *list, long val, /* Value as a long */
2801 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2802 enum language language,
2803 struct objfile *objfile)
c906108c 2804{
52f0bd74 2805 struct partial_symbol *psym;
c906108c
SS
2806 char *buf = alloca (namelength + 1);
2807 /* psymbol is static so that there will be no uninitialized gaps in the
2808 structure which might contain random data, causing cache misses in
2809 bcache. */
2810 static struct partial_symbol psymbol;
2811
2812 /* Create local copy of the partial symbol */
2813
2814 memcpy (buf, name, namelength);
2815 buf[namelength] = '\0';
3a16a68c
AC
2816 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2817 objfile->psymbol_cache);
c906108c
SS
2818
2819 buf = alloca (dem_namelength + 1);
2820 memcpy (buf, dem_name, dem_namelength);
2821 buf[dem_namelength] = '\0';
c5aa993b 2822
c906108c
SS
2823 switch (language)
2824 {
c5aa993b
JM
2825 case language_c:
2826 case language_cplus:
2827 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2828 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2829 break;
c906108c
SS
2830 /* FIXME What should be done for the default case? Ignoring for now. */
2831 }
2832
2833 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2834 if (val != 0)
2835 {
2836 SYMBOL_VALUE (&psymbol) = val;
2837 }
2838 else
2839 {
2840 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2841 }
2842 SYMBOL_SECTION (&psymbol) = 0;
2843 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2844 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2845 PSYMBOL_CLASS (&psymbol) = class;
2846 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2847
2848 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2849 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2850 objfile->psymbol_cache);
c906108c
SS
2851
2852 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2853 if (list->next >= list->list + list->size)
2854 {
2855 extend_psymbol_list (list, objfile);
2856 }
2857 *list->next++ = psym;
2858 OBJSTAT (objfile, n_psyms++);
2859}
2860
2861/* Initialize storage for partial symbols. */
2862
2863void
fba45db2 2864init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2865{
2866 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2867
2868 if (objfile->global_psymbols.list)
c906108c 2869 {
2dc74dc1 2870 xfree (objfile->global_psymbols.list);
c906108c 2871 }
c5aa993b 2872 if (objfile->static_psymbols.list)
c906108c 2873 {
2dc74dc1 2874 xfree (objfile->static_psymbols.list);
c906108c 2875 }
c5aa993b 2876
c906108c
SS
2877 /* Current best guess is that approximately a twentieth
2878 of the total symbols (in a debugging file) are global or static
2879 oriented symbols */
c906108c 2880
c5aa993b
JM
2881 objfile->global_psymbols.size = total_symbols / 10;
2882 objfile->static_psymbols.size = total_symbols / 10;
2883
2884 if (objfile->global_psymbols.size > 0)
c906108c 2885 {
c5aa993b
JM
2886 objfile->global_psymbols.next =
2887 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
2888 xmalloc ((objfile->global_psymbols.size
2889 * sizeof (struct partial_symbol *)));
c906108c 2890 }
c5aa993b 2891 if (objfile->static_psymbols.size > 0)
c906108c 2892 {
c5aa993b
JM
2893 objfile->static_psymbols.next =
2894 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
2895 xmalloc ((objfile->static_psymbols.size
2896 * sizeof (struct partial_symbol *)));
c906108c
SS
2897 }
2898}
2899
2900/* OVERLAYS:
2901 The following code implements an abstraction for debugging overlay sections.
2902
2903 The target model is as follows:
2904 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2905 same VMA, each with its own unique LMA (or load address).
c906108c 2906 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2907 sections, one by one, from the load address into the VMA address.
5417f6dc 2908 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2909 sections should be considered to be mapped from the VMA to the LMA.
2910 This information is used for symbol lookup, and memory read/write.
5417f6dc 2911 For instance, if a section has been mapped then its contents
c5aa993b 2912 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2913
2914 Two levels of debugger support for overlays are available. One is
2915 "manual", in which the debugger relies on the user to tell it which
2916 overlays are currently mapped. This level of support is
2917 implemented entirely in the core debugger, and the information about
2918 whether a section is mapped is kept in the objfile->obj_section table.
2919
2920 The second level of support is "automatic", and is only available if
2921 the target-specific code provides functionality to read the target's
2922 overlay mapping table, and translate its contents for the debugger
2923 (by updating the mapped state information in the obj_section tables).
2924
2925 The interface is as follows:
c5aa993b
JM
2926 User commands:
2927 overlay map <name> -- tell gdb to consider this section mapped
2928 overlay unmap <name> -- tell gdb to consider this section unmapped
2929 overlay list -- list the sections that GDB thinks are mapped
2930 overlay read-target -- get the target's state of what's mapped
2931 overlay off/manual/auto -- set overlay debugging state
2932 Functional interface:
2933 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2934 section, return that section.
5417f6dc 2935 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
2936 the pc, either in its VMA or its LMA
2937 overlay_is_mapped(sect): true if overlay is marked as mapped
2938 section_is_overlay(sect): true if section's VMA != LMA
2939 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2940 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2941 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2942 overlay_mapped_address(...): map an address from section's LMA to VMA
2943 overlay_unmapped_address(...): map an address from section's VMA to LMA
2944 symbol_overlayed_address(...): Return a "current" address for symbol:
2945 either in VMA or LMA depending on whether
2946 the symbol's section is currently mapped
c906108c
SS
2947 */
2948
2949/* Overlay debugging state: */
2950
d874f1e2 2951enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2952int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2953
2954/* Target vector for refreshing overlay mapped state */
a14ed312 2955static void simple_overlay_update (struct obj_section *);
507f3c78 2956void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2957
2958/* Function: section_is_overlay (SECTION)
5417f6dc 2959 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2960 SECTION is loaded at an address different from where it will "run". */
2961
2962int
fba45db2 2963section_is_overlay (asection *section)
c906108c 2964{
fbd35540
MS
2965 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2966
c906108c
SS
2967 if (overlay_debugging)
2968 if (section && section->lma != 0 &&
2969 section->vma != section->lma)
2970 return 1;
2971
2972 return 0;
2973}
2974
2975/* Function: overlay_invalidate_all (void)
2976 Invalidate the mapped state of all overlay sections (mark it as stale). */
2977
2978static void
fba45db2 2979overlay_invalidate_all (void)
c906108c 2980{
c5aa993b 2981 struct objfile *objfile;
c906108c
SS
2982 struct obj_section *sect;
2983
2984 ALL_OBJSECTIONS (objfile, sect)
2985 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2986 sect->ovly_mapped = -1;
c906108c
SS
2987}
2988
2989/* Function: overlay_is_mapped (SECTION)
5417f6dc 2990 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2991 Private: public access is thru function section_is_mapped.
2992
2993 Access to the ovly_mapped flag is restricted to this function, so
2994 that we can do automatic update. If the global flag
2995 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2996 overlay_invalidate_all. If the mapped state of the particular
2997 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2998
c5aa993b 2999static int
fba45db2 3000overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3001{
3002 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3003 return 0;
3004
c5aa993b 3005 switch (overlay_debugging)
c906108c
SS
3006 {
3007 default:
d874f1e2 3008 case ovly_off:
c5aa993b 3009 return 0; /* overlay debugging off */
d874f1e2 3010 case ovly_auto: /* overlay debugging automatic */
5417f6dc 3011 /* Unles there is a target_overlay_update function,
c5aa993b 3012 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
3013 if (target_overlay_update)
3014 {
3015 if (overlay_cache_invalid)
3016 {
3017 overlay_invalidate_all ();
3018 overlay_cache_invalid = 0;
3019 }
3020 if (osect->ovly_mapped == -1)
3021 (*target_overlay_update) (osect);
3022 }
3023 /* fall thru to manual case */
d874f1e2 3024 case ovly_on: /* overlay debugging manual */
c906108c
SS
3025 return osect->ovly_mapped == 1;
3026 }
3027}
3028
3029/* Function: section_is_mapped
3030 Returns true if section is an overlay, and is currently mapped. */
3031
3032int
fba45db2 3033section_is_mapped (asection *section)
c906108c 3034{
c5aa993b 3035 struct objfile *objfile;
c906108c
SS
3036 struct obj_section *osect;
3037
3038 if (overlay_debugging)
3039 if (section && section_is_overlay (section))
3040 ALL_OBJSECTIONS (objfile, osect)
3041 if (osect->the_bfd_section == section)
c5aa993b 3042 return overlay_is_mapped (osect);
c906108c
SS
3043
3044 return 0;
3045}
3046
3047/* Function: pc_in_unmapped_range
3048 If PC falls into the lma range of SECTION, return true, else false. */
3049
3050CORE_ADDR
fba45db2 3051pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3052{
fbd35540
MS
3053 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3054
c906108c
SS
3055 int size;
3056
3057 if (overlay_debugging)
3058 if (section && section_is_overlay (section))
3059 {
2c500098 3060 size = bfd_get_section_size (section);
c906108c
SS
3061 if (section->lma <= pc && pc < section->lma + size)
3062 return 1;
3063 }
3064 return 0;
3065}
3066
3067/* Function: pc_in_mapped_range
3068 If PC falls into the vma range of SECTION, return true, else false. */
3069
3070CORE_ADDR
fba45db2 3071pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3072{
fbd35540
MS
3073 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3074
c906108c
SS
3075 int size;
3076
3077 if (overlay_debugging)
3078 if (section && section_is_overlay (section))
3079 {
2c500098 3080 size = bfd_get_section_size (section);
c906108c
SS
3081 if (section->vma <= pc && pc < section->vma + size)
3082 return 1;
3083 }
3084 return 0;
3085}
3086
9ec8e6a0
JB
3087
3088/* Return true if the mapped ranges of sections A and B overlap, false
3089 otherwise. */
b9362cc7 3090static int
9ec8e6a0
JB
3091sections_overlap (asection *a, asection *b)
3092{
fbd35540
MS
3093 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3094
9ec8e6a0 3095 CORE_ADDR a_start = a->vma;
2c500098 3096 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3097 CORE_ADDR b_start = b->vma;
2c500098 3098 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3099
3100 return (a_start < b_end && b_start < a_end);
3101}
3102
c906108c
SS
3103/* Function: overlay_unmapped_address (PC, SECTION)
3104 Returns the address corresponding to PC in the unmapped (load) range.
3105 May be the same as PC. */
3106
3107CORE_ADDR
fba45db2 3108overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3109{
fbd35540
MS
3110 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3111
c906108c
SS
3112 if (overlay_debugging)
3113 if (section && section_is_overlay (section) &&
3114 pc_in_mapped_range (pc, section))
3115 return pc + section->lma - section->vma;
3116
3117 return pc;
3118}
3119
3120/* Function: overlay_mapped_address (PC, SECTION)
3121 Returns the address corresponding to PC in the mapped (runtime) range.
3122 May be the same as PC. */
3123
3124CORE_ADDR
fba45db2 3125overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3126{
fbd35540
MS
3127 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3128
c906108c
SS
3129 if (overlay_debugging)
3130 if (section && section_is_overlay (section) &&
3131 pc_in_unmapped_range (pc, section))
3132 return pc + section->vma - section->lma;
3133
3134 return pc;
3135}
3136
3137
5417f6dc 3138/* Function: symbol_overlayed_address
c906108c
SS
3139 Return one of two addresses (relative to the VMA or to the LMA),
3140 depending on whether the section is mapped or not. */
3141
c5aa993b 3142CORE_ADDR
fba45db2 3143symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3144{
3145 if (overlay_debugging)
3146 {
3147 /* If the symbol has no section, just return its regular address. */
3148 if (section == 0)
3149 return address;
3150 /* If the symbol's section is not an overlay, just return its address */
3151 if (!section_is_overlay (section))
3152 return address;
3153 /* If the symbol's section is mapped, just return its address */
3154 if (section_is_mapped (section))
3155 return address;
3156 /*
3157 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3158 * then return its LOADED address rather than its vma address!!
3159 */
3160 return overlay_unmapped_address (address, section);
3161 }
3162 return address;
3163}
3164
5417f6dc 3165/* Function: find_pc_overlay (PC)
c906108c
SS
3166 Return the best-match overlay section for PC:
3167 If PC matches a mapped overlay section's VMA, return that section.
3168 Else if PC matches an unmapped section's VMA, return that section.
3169 Else if PC matches an unmapped section's LMA, return that section. */
3170
3171asection *
fba45db2 3172find_pc_overlay (CORE_ADDR pc)
c906108c 3173{
c5aa993b 3174 struct objfile *objfile;
c906108c
SS
3175 struct obj_section *osect, *best_match = NULL;
3176
3177 if (overlay_debugging)
3178 ALL_OBJSECTIONS (objfile, osect)
3179 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3180 {
3181 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3182 {
3183 if (overlay_is_mapped (osect))
3184 return osect->the_bfd_section;
3185 else
3186 best_match = osect;
3187 }
3188 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3189 best_match = osect;
3190 }
c906108c
SS
3191 return best_match ? best_match->the_bfd_section : NULL;
3192}
3193
3194/* Function: find_pc_mapped_section (PC)
5417f6dc 3195 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3196 currently marked as MAPPED, return that section. Else return NULL. */
3197
3198asection *
fba45db2 3199find_pc_mapped_section (CORE_ADDR pc)
c906108c 3200{
c5aa993b 3201 struct objfile *objfile;
c906108c
SS
3202 struct obj_section *osect;
3203
3204 if (overlay_debugging)
3205 ALL_OBJSECTIONS (objfile, osect)
3206 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3207 overlay_is_mapped (osect))
c5aa993b 3208 return osect->the_bfd_section;
c906108c
SS
3209
3210 return NULL;
3211}
3212
3213/* Function: list_overlays_command
3214 Print a list of mapped sections and their PC ranges */
3215
3216void
fba45db2 3217list_overlays_command (char *args, int from_tty)
c906108c 3218{
c5aa993b
JM
3219 int nmapped = 0;
3220 struct objfile *objfile;
c906108c
SS
3221 struct obj_section *osect;
3222
3223 if (overlay_debugging)
3224 ALL_OBJSECTIONS (objfile, osect)
3225 if (overlay_is_mapped (osect))
c5aa993b
JM
3226 {
3227 const char *name;
3228 bfd_vma lma, vma;
3229 int size;
3230
3231 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3232 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3233 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3234 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3235
3236 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3237 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3238 puts_filtered (" - ");
66bf4b3a 3239 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3240 printf_filtered (", mapped at ");
66bf4b3a 3241 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3242 puts_filtered (" - ");
66bf4b3a 3243 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3244 puts_filtered ("\n");
3245
3246 nmapped++;
3247 }
c906108c 3248 if (nmapped == 0)
a3f17187 3249 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3250}
3251
3252/* Function: map_overlay_command
3253 Mark the named section as mapped (ie. residing at its VMA address). */
3254
3255void
fba45db2 3256map_overlay_command (char *args, int from_tty)
c906108c 3257{
c5aa993b
JM
3258 struct objfile *objfile, *objfile2;
3259 struct obj_section *sec, *sec2;
3260 asection *bfdsec;
c906108c
SS
3261
3262 if (!overlay_debugging)
8a3fe4f8 3263 error (_("\
515ad16c 3264Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3265the 'overlay manual' command."));
c906108c
SS
3266
3267 if (args == 0 || *args == 0)
8a3fe4f8 3268 error (_("Argument required: name of an overlay section"));
c906108c
SS
3269
3270 /* First, find a section matching the user supplied argument */
3271 ALL_OBJSECTIONS (objfile, sec)
3272 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3273 {
3274 /* Now, check to see if the section is an overlay. */
3275 bfdsec = sec->the_bfd_section;
3276 if (!section_is_overlay (bfdsec))
3277 continue; /* not an overlay section */
3278
3279 /* Mark the overlay as "mapped" */
3280 sec->ovly_mapped = 1;
3281
3282 /* Next, make a pass and unmap any sections that are
3283 overlapped by this new section: */
3284 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3285 if (sec2->ovly_mapped
3286 && sec != sec2
3287 && sec->the_bfd_section != sec2->the_bfd_section
3288 && sections_overlap (sec->the_bfd_section,
3289 sec2->the_bfd_section))
c5aa993b
JM
3290 {
3291 if (info_verbose)
a3f17187 3292 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3293 bfd_section_name (objfile->obfd,
3294 sec2->the_bfd_section));
3295 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3296 }
3297 return;
3298 }
8a3fe4f8 3299 error (_("No overlay section called %s"), args);
c906108c
SS
3300}
3301
3302/* Function: unmap_overlay_command
5417f6dc 3303 Mark the overlay section as unmapped
c906108c
SS
3304 (ie. resident in its LMA address range, rather than the VMA range). */
3305
3306void
fba45db2 3307unmap_overlay_command (char *args, int from_tty)
c906108c 3308{
c5aa993b 3309 struct objfile *objfile;
c906108c
SS
3310 struct obj_section *sec;
3311
3312 if (!overlay_debugging)
8a3fe4f8 3313 error (_("\
515ad16c 3314Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3315the 'overlay manual' command."));
c906108c
SS
3316
3317 if (args == 0 || *args == 0)
8a3fe4f8 3318 error (_("Argument required: name of an overlay section"));
c906108c
SS
3319
3320 /* First, find a section matching the user supplied argument */
3321 ALL_OBJSECTIONS (objfile, sec)
3322 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3323 {
3324 if (!sec->ovly_mapped)
8a3fe4f8 3325 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3326 sec->ovly_mapped = 0;
3327 return;
3328 }
8a3fe4f8 3329 error (_("No overlay section called %s"), args);
c906108c
SS
3330}
3331
3332/* Function: overlay_auto_command
3333 A utility command to turn on overlay debugging.
3334 Possibly this should be done via a set/show command. */
3335
3336static void
fba45db2 3337overlay_auto_command (char *args, int from_tty)
c906108c 3338{
d874f1e2 3339 overlay_debugging = ovly_auto;
1900040c 3340 enable_overlay_breakpoints ();
c906108c 3341 if (info_verbose)
a3f17187 3342 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3343}
3344
3345/* Function: overlay_manual_command
3346 A utility command to turn on overlay debugging.
3347 Possibly this should be done via a set/show command. */
3348
3349static void
fba45db2 3350overlay_manual_command (char *args, int from_tty)
c906108c 3351{
d874f1e2 3352 overlay_debugging = ovly_on;
1900040c 3353 disable_overlay_breakpoints ();
c906108c 3354 if (info_verbose)
a3f17187 3355 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3356}
3357
3358/* Function: overlay_off_command
3359 A utility command to turn on overlay debugging.
3360 Possibly this should be done via a set/show command. */
3361
3362static void
fba45db2 3363overlay_off_command (char *args, int from_tty)
c906108c 3364{
d874f1e2 3365 overlay_debugging = ovly_off;
1900040c 3366 disable_overlay_breakpoints ();
c906108c 3367 if (info_verbose)
a3f17187 3368 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3369}
3370
3371static void
fba45db2 3372overlay_load_command (char *args, int from_tty)
c906108c
SS
3373{
3374 if (target_overlay_update)
3375 (*target_overlay_update) (NULL);
3376 else
8a3fe4f8 3377 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3378}
3379
3380/* Function: overlay_command
3381 A place-holder for a mis-typed command */
3382
3383/* Command list chain containing all defined "overlay" subcommands. */
3384struct cmd_list_element *overlaylist;
3385
3386static void
fba45db2 3387overlay_command (char *args, int from_tty)
c906108c 3388{
c5aa993b 3389 printf_unfiltered
c906108c
SS
3390 ("\"overlay\" must be followed by the name of an overlay command.\n");
3391 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3392}
3393
3394
3395/* Target Overlays for the "Simplest" overlay manager:
3396
5417f6dc
RM
3397 This is GDB's default target overlay layer. It works with the
3398 minimal overlay manager supplied as an example by Cygnus. The
3399 entry point is via a function pointer "target_overlay_update",
3400 so targets that use a different runtime overlay manager can
c906108c
SS
3401 substitute their own overlay_update function and take over the
3402 function pointer.
3403
3404 The overlay_update function pokes around in the target's data structures
3405 to see what overlays are mapped, and updates GDB's overlay mapping with
3406 this information.
3407
3408 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3409 unsigned _novlys; /# number of overlay sections #/
3410 unsigned _ovly_table[_novlys][4] = {
3411 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3412 {..., ..., ..., ...},
3413 }
3414 unsigned _novly_regions; /# number of overlay regions #/
3415 unsigned _ovly_region_table[_novly_regions][3] = {
3416 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3417 {..., ..., ...},
3418 }
c906108c
SS
3419 These functions will attempt to update GDB's mappedness state in the
3420 symbol section table, based on the target's mappedness state.
3421
3422 To do this, we keep a cached copy of the target's _ovly_table, and
3423 attempt to detect when the cached copy is invalidated. The main
3424 entry point is "simple_overlay_update(SECT), which looks up SECT in
3425 the cached table and re-reads only the entry for that section from
3426 the target (whenever possible).
3427 */
3428
3429/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3430static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3431#if 0
c5aa993b 3432static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3433#endif
c5aa993b 3434static unsigned cache_novlys = 0;
c906108c 3435#if 0
c5aa993b 3436static unsigned cache_novly_regions = 0;
c906108c
SS
3437#endif
3438static CORE_ADDR cache_ovly_table_base = 0;
3439#if 0
3440static CORE_ADDR cache_ovly_region_table_base = 0;
3441#endif
c5aa993b
JM
3442enum ovly_index
3443 {
3444 VMA, SIZE, LMA, MAPPED
3445 };
c906108c
SS
3446#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3447
3448/* Throw away the cached copy of _ovly_table */
3449static void
fba45db2 3450simple_free_overlay_table (void)
c906108c
SS
3451{
3452 if (cache_ovly_table)
b8c9b27d 3453 xfree (cache_ovly_table);
c5aa993b 3454 cache_novlys = 0;
c906108c
SS
3455 cache_ovly_table = NULL;
3456 cache_ovly_table_base = 0;
3457}
3458
3459#if 0
3460/* Throw away the cached copy of _ovly_region_table */
3461static void
fba45db2 3462simple_free_overlay_region_table (void)
c906108c
SS
3463{
3464 if (cache_ovly_region_table)
b8c9b27d 3465 xfree (cache_ovly_region_table);
c5aa993b 3466 cache_novly_regions = 0;
c906108c
SS
3467 cache_ovly_region_table = NULL;
3468 cache_ovly_region_table_base = 0;
3469}
3470#endif
3471
3472/* Read an array of ints from the target into a local buffer.
3473 Convert to host order. int LEN is number of ints */
3474static void
fba45db2 3475read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3476{
34c0bd93 3477 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3478 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3479 int i;
c906108c
SS
3480
3481 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3482 for (i = 0; i < len; i++)
c5aa993b 3483 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3484 TARGET_LONG_BYTES);
3485}
3486
3487/* Find and grab a copy of the target _ovly_table
3488 (and _novlys, which is needed for the table's size) */
c5aa993b 3489static int
fba45db2 3490simple_read_overlay_table (void)
c906108c 3491{
0d43edd1 3492 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3493
3494 simple_free_overlay_table ();
9b27852e 3495 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3496 if (! novlys_msym)
c906108c 3497 {
8a3fe4f8 3498 error (_("Error reading inferior's overlay table: "
0d43edd1 3499 "couldn't find `_novlys' variable\n"
8a3fe4f8 3500 "in inferior. Use `overlay manual' mode."));
0d43edd1 3501 return 0;
c906108c 3502 }
0d43edd1 3503
9b27852e 3504 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3505 if (! ovly_table_msym)
3506 {
8a3fe4f8 3507 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3508 "`_ovly_table' array\n"
8a3fe4f8 3509 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3510 return 0;
3511 }
3512
3513 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3514 cache_ovly_table
3515 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3516 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3517 read_target_long_array (cache_ovly_table_base,
3518 (int *) cache_ovly_table,
3519 cache_novlys * 4);
3520
c5aa993b 3521 return 1; /* SUCCESS */
c906108c
SS
3522}
3523
3524#if 0
3525/* Find and grab a copy of the target _ovly_region_table
3526 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3527static int
fba45db2 3528simple_read_overlay_region_table (void)
c906108c
SS
3529{
3530 struct minimal_symbol *msym;
3531
3532 simple_free_overlay_region_table ();
9b27852e 3533 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3534 if (msym != NULL)
3535 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3536 else
3537 return 0; /* failure */
c906108c
SS
3538 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3539 if (cache_ovly_region_table != NULL)
3540 {
9b27852e 3541 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3542 if (msym != NULL)
3543 {
3544 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3545 read_target_long_array (cache_ovly_region_table_base,
3546 (int *) cache_ovly_region_table,
c906108c
SS
3547 cache_novly_regions * 3);
3548 }
c5aa993b
JM
3549 else
3550 return 0; /* failure */
c906108c 3551 }
c5aa993b
JM
3552 else
3553 return 0; /* failure */
3554 return 1; /* SUCCESS */
c906108c
SS
3555}
3556#endif
3557
5417f6dc 3558/* Function: simple_overlay_update_1
c906108c
SS
3559 A helper function for simple_overlay_update. Assuming a cached copy
3560 of _ovly_table exists, look through it to find an entry whose vma,
3561 lma and size match those of OSECT. Re-read the entry and make sure
3562 it still matches OSECT (else the table may no longer be valid).
3563 Set OSECT's mapped state to match the entry. Return: 1 for
3564 success, 0 for failure. */
3565
3566static int
fba45db2 3567simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3568{
3569 int i, size;
fbd35540
MS
3570 bfd *obfd = osect->objfile->obfd;
3571 asection *bsect = osect->the_bfd_section;
c906108c 3572
2c500098 3573 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3574 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3575 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3576 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3577 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3578 {
3579 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3580 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3581 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3582 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3583 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3584 {
3585 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3586 return 1;
3587 }
fbd35540 3588 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3589 return 0;
3590 }
3591 return 0;
3592}
3593
3594/* Function: simple_overlay_update
5417f6dc
RM
3595 If OSECT is NULL, then update all sections' mapped state
3596 (after re-reading the entire target _ovly_table).
3597 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3598 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3599 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3600 re-read the entire cache, and go ahead and update all sections. */
3601
3602static void
fba45db2 3603simple_overlay_update (struct obj_section *osect)
c906108c 3604{
c5aa993b 3605 struct objfile *objfile;
c906108c
SS
3606
3607 /* Were we given an osect to look up? NULL means do all of them. */
3608 if (osect)
3609 /* Have we got a cached copy of the target's overlay table? */
3610 if (cache_ovly_table != NULL)
3611 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3612 if (cache_ovly_table_base ==
9b27852e 3613 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3614 /* Then go ahead and try to look up this single section in the cache */
3615 if (simple_overlay_update_1 (osect))
3616 /* Found it! We're done. */
3617 return;
3618
3619 /* Cached table no good: need to read the entire table anew.
3620 Or else we want all the sections, in which case it's actually
3621 more efficient to read the whole table in one block anyway. */
3622
0d43edd1
JB
3623 if (! simple_read_overlay_table ())
3624 return;
3625
c906108c
SS
3626 /* Now may as well update all sections, even if only one was requested. */
3627 ALL_OBJSECTIONS (objfile, osect)
3628 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3629 {
3630 int i, size;
fbd35540
MS
3631 bfd *obfd = osect->objfile->obfd;
3632 asection *bsect = osect->the_bfd_section;
c5aa993b 3633
2c500098 3634 size = bfd_get_section_size (bsect);
c5aa993b 3635 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3636 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3637 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3638 /* && cache_ovly_table[i][SIZE] == size */ )
3639 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3640 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3641 break; /* finished with inner for loop: break out */
3642 }
3643 }
c906108c
SS
3644}
3645
086df311
DJ
3646/* Set the output sections and output offsets for section SECTP in
3647 ABFD. The relocation code in BFD will read these offsets, so we
3648 need to be sure they're initialized. We map each section to itself,
3649 with no offset; this means that SECTP->vma will be honored. */
3650
3651static void
3652symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3653{
3654 sectp->output_section = sectp;
3655 sectp->output_offset = 0;
3656}
3657
3658/* Relocate the contents of a debug section SECTP in ABFD. The
3659 contents are stored in BUF if it is non-NULL, or returned in a
3660 malloc'd buffer otherwise.
3661
3662 For some platforms and debug info formats, shared libraries contain
3663 relocations against the debug sections (particularly for DWARF-2;
3664 one affected platform is PowerPC GNU/Linux, although it depends on
3665 the version of the linker in use). Also, ELF object files naturally
3666 have unresolved relocations for their debug sections. We need to apply
3667 the relocations in order to get the locations of symbols correct. */
3668
3669bfd_byte *
3670symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3671{
3672 /* We're only interested in debugging sections with relocation
3673 information. */
3674 if ((sectp->flags & SEC_RELOC) == 0)
3675 return NULL;
3676 if ((sectp->flags & SEC_DEBUGGING) == 0)
3677 return NULL;
3678
3679 /* We will handle section offsets properly elsewhere, so relocate as if
3680 all sections begin at 0. */
3681 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3682
97606a13 3683 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3684}
c906108c
SS
3685
3686void
fba45db2 3687_initialize_symfile (void)
c906108c
SS
3688{
3689 struct cmd_list_element *c;
c5aa993b 3690
1a966eab
AC
3691 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3692Load symbol table from executable file FILE.\n\
c906108c 3693The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3694to execute."), &cmdlist);
5ba2abeb 3695 set_cmd_completer (c, filename_completer);
c906108c 3696
1a966eab
AC
3697 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3698Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3699Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3700ADDR is the starting address of the file's text.\n\
db162d44
EZ
3701The optional arguments are section-name section-address pairs and\n\
3702should be specified if the data and bss segments are not contiguous\n\
1a966eab 3703with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3704 &cmdlist);
5ba2abeb 3705 set_cmd_completer (c, filename_completer);
c906108c
SS
3706
3707 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3708 add_shared_symbol_files_command, _("\
3709Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3710 &cmdlist);
c906108c
SS
3711 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3712 &cmdlist);
3713
1a966eab
AC
3714 c = add_cmd ("load", class_files, load_command, _("\
3715Dynamically load FILE into the running program, and record its symbols\n\
3716for access from GDB."), &cmdlist);
5ba2abeb 3717 set_cmd_completer (c, filename_completer);
c906108c 3718
5bf193a2
AC
3719 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3720 &symbol_reloading, _("\
3721Set dynamic symbol table reloading multiple times in one run."), _("\
3722Show dynamic symbol table reloading multiple times in one run."), NULL,
3723 NULL,
920d2a44 3724 show_symbol_reloading,
5bf193a2 3725 &setlist, &showlist);
c906108c 3726
c5aa993b 3727 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3728 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3729 "overlay ", 0, &cmdlist);
3730
3731 add_com_alias ("ovly", "overlay", class_alias, 1);
3732 add_com_alias ("ov", "overlay", class_alias, 1);
3733
c5aa993b 3734 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3735 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3736
c5aa993b 3737 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3738 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3739
c5aa993b 3740 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3741 _("List mappings of overlay sections."), &overlaylist);
c906108c 3742
c5aa993b 3743 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3744 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3745 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3746 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3747 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3748 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3749 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3750 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3751
3752 /* Filename extension to source language lookup table: */
3753 init_filename_language_table ();
26c41df3
AC
3754 add_setshow_string_noescape_cmd ("extension-language", class_files,
3755 &ext_args, _("\
3756Set mapping between filename extension and source language."), _("\
3757Show mapping between filename extension and source language."), _("\
3758Usage: set extension-language .foo bar"),
3759 set_ext_lang_command,
920d2a44 3760 show_ext_args,
26c41df3 3761 &setlist, &showlist);
c906108c 3762
c5aa993b 3763 add_info ("extensions", info_ext_lang_command,
1bedd215 3764 _("All filename extensions associated with a source language."));
917317f4 3765
4d28ad1e
AC
3766 add_setshow_integer_cmd ("download-write-size", class_obscure,
3767 &download_write_size, _("\
3768Set the write size used when downloading a program."), _("\
3769Show the write size used when downloading a program."), _("\
3770Only used when downloading a program onto a remote\n\
3771target. Specify zero, or a negative value, to disable\n\
3772blocked writes. The actual size of each transfer is also\n\
3773limited by the size of the target packet and the memory\n\
3774cache."),
3775 NULL,
920d2a44 3776 show_download_write_size,
4d28ad1e 3777 &setlist, &showlist);
5b5d99cf
JB
3778
3779 debug_file_directory = xstrdup (DEBUGDIR);
525226b5
AC
3780 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3781 &debug_file_directory, _("\
3782Set the directory where separate debug symbols are searched for."), _("\
3783Show the directory where separate debug symbols are searched for."), _("\
3784Separate debug symbols are first searched for in the same\n\
3785directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3786and lastly at the path of the directory of the binary with\n\
3787the global debug-file directory prepended."),
3788 NULL,
920d2a44 3789 show_debug_file_directory,
525226b5 3790 &setlist, &showlist);
c906108c 3791}
This page took 0.799887 seconds and 4 git commands to generate.