2009-06-27 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
086df311 25#include "bfdlink.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
0378c332 34#include "source.h"
c906108c
SS
35#include "gdbcmd.h"
36#include "breakpoint.h"
37#include "language.h"
38#include "complaints.h"
39#include "demangle.h"
fb14de7b
UW
40#include "inferior.h"
41#include "regcache.h"
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
2de7ced7 47#include "hashtab.h"
dbda9972 48#include "readline/readline.h"
7e8580c1 49#include "gdb_assert.h"
fe898f56 50#include "block.h"
ea53e89f 51#include "observer.h"
c1bd25fd 52#include "exec.h"
9bdcbae7 53#include "parser-defs.h"
8756216b 54#include "varobj.h"
77069918 55#include "elf-bfd.h"
e85a822c 56#include "solib.h"
f1838a98 57#include "remote.h"
c906108c 58
c906108c
SS
59#include <sys/types.h>
60#include <fcntl.h>
61#include "gdb_string.h"
62#include "gdb_stat.h"
63#include <ctype.h>
64#include <time.h>
2b71414d 65#include <sys/time.h>
c906108c 66
c906108c 67
9a4105ab
AC
68int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
69void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
c2d11a7d 73 unsigned long total_size);
769d7dc4
AC
74void (*deprecated_pre_add_symbol_hook) (const char *);
75void (*deprecated_post_add_symbol_hook) (void);
c906108c 76
74b7792f
AC
77static void clear_symtab_users_cleanup (void *ignore);
78
c906108c 79/* Global variables owned by this file */
c5aa993b 80int readnow_symbol_files; /* Read full symbols immediately */
c906108c 81
c906108c
SS
82/* External variables and functions referenced. */
83
a14ed312 84extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
85
86/* Functions this file defines */
87
88#if 0
a14ed312
KB
89static int simple_read_overlay_region_table (void);
90static void simple_free_overlay_region_table (void);
c906108c
SS
91#endif
92
a14ed312 93static void load_command (char *, int);
c906108c 94
d7db6da9
FN
95static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
a14ed312 97static void add_symbol_file_command (char *, int);
c906108c 98
5b5d99cf
JB
99static void reread_separate_symbols (struct objfile *objfile);
100
a14ed312 101static void cashier_psymtab (struct partial_symtab *);
c906108c 102
a14ed312 103bfd *symfile_bfd_open (char *);
c906108c 104
0e931cf0
JB
105int get_section_index (struct objfile *, char *);
106
31d99776 107static struct sym_fns *find_sym_fns (bfd *);
c906108c 108
a14ed312 109static void decrement_reading_symtab (void *);
c906108c 110
a14ed312 111static void overlay_invalidate_all (void);
c906108c 112
a14ed312 113void list_overlays_command (char *, int);
c906108c 114
a14ed312 115void map_overlay_command (char *, int);
c906108c 116
a14ed312 117void unmap_overlay_command (char *, int);
c906108c 118
a14ed312 119static void overlay_auto_command (char *, int);
c906108c 120
a14ed312 121static void overlay_manual_command (char *, int);
c906108c 122
a14ed312 123static void overlay_off_command (char *, int);
c906108c 124
a14ed312 125static void overlay_load_command (char *, int);
c906108c 126
a14ed312 127static void overlay_command (char *, int);
c906108c 128
a14ed312 129static void simple_free_overlay_table (void);
c906108c 130
9216df95 131static void read_target_long_array (CORE_ADDR, unsigned int *, int, int);
c906108c 132
a14ed312 133static int simple_read_overlay_table (void);
c906108c 134
a14ed312 135static int simple_overlay_update_1 (struct obj_section *);
c906108c 136
a14ed312 137static void add_filename_language (char *ext, enum language lang);
392a587b 138
a14ed312 139static void info_ext_lang_command (char *args, int from_tty);
392a587b 140
5b5d99cf
JB
141static char *find_separate_debug_file (struct objfile *objfile);
142
a14ed312 143static void init_filename_language_table (void);
392a587b 144
31d99776
DJ
145static void symfile_find_segment_sections (struct objfile *objfile);
146
a14ed312 147void _initialize_symfile (void);
c906108c
SS
148
149/* List of all available sym_fns. On gdb startup, each object file reader
150 calls add_symtab_fns() to register information on each format it is
151 prepared to read. */
152
153static struct sym_fns *symtab_fns = NULL;
154
155/* Flag for whether user will be reloading symbols multiple times.
156 Defaults to ON for VxWorks, otherwise OFF. */
157
158#ifdef SYMBOL_RELOADING_DEFAULT
159int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
160#else
161int symbol_reloading = 0;
162#endif
920d2a44
AC
163static void
164show_symbol_reloading (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("\
168Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 value);
170}
171
bf250677
DE
172/* If non-zero, gdb will notify the user when it is loading symbols
173 from a file. This is almost always what users will want to have happen;
174 but for programs with lots of dynamically linked libraries, the output
175 can be more noise than signal. */
176
177int print_symbol_loading = 1;
c906108c 178
b7209cb4
FF
179/* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
c906108c 186 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 187 report all the functions that are actually present. */
c906108c
SS
188
189int auto_solib_add = 1;
b7209cb4
FF
190
191/* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199int auto_solib_limit;
c906108c 200\f
c5aa993b 201
0fe19209
DC
202/* This compares two partial symbols by names, using strcmp_iw_ordered
203 for the comparison. */
c906108c
SS
204
205static int
0cd64fe2 206compare_psymbols (const void *s1p, const void *s2p)
c906108c 207{
0fe19209
DC
208 struct partial_symbol *const *s1 = s1p;
209 struct partial_symbol *const *s2 = s2p;
210
4725b721
PH
211 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
212 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
213}
214
215void
fba45db2 216sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
217{
218 /* Sort the global list; don't sort the static list */
219
c5aa993b
JM
220 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
221 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
222 compare_psymbols);
223}
224
c906108c
SS
225/* Make a null terminated copy of the string at PTR with SIZE characters in
226 the obstack pointed to by OBSTACKP . Returns the address of the copy.
227 Note that the string at PTR does not have to be null terminated, I.E. it
228 may be part of a larger string and we are only saving a substring. */
229
230char *
63ca651f 231obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 232{
52f0bd74 233 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
234 /* Open-coded memcpy--saves function call time. These strings are usually
235 short. FIXME: Is this really still true with a compiler that can
236 inline memcpy? */
237 {
aa1ee363
AC
238 const char *p1 = ptr;
239 char *p2 = p;
63ca651f 240 const char *end = ptr + size;
c906108c
SS
241 while (p1 != end)
242 *p2++ = *p1++;
243 }
244 p[size] = 0;
245 return p;
246}
247
248/* Concatenate strings S1, S2 and S3; return the new string. Space is found
249 in the obstack pointed to by OBSTACKP. */
250
251char *
fba45db2
KB
252obconcat (struct obstack *obstackp, const char *s1, const char *s2,
253 const char *s3)
c906108c 254{
52f0bd74
AC
255 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
256 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
257 strcpy (val, s1);
258 strcat (val, s2);
259 strcat (val, s3);
260 return val;
261}
262
263/* True if we are nested inside psymtab_to_symtab. */
264
265int currently_reading_symtab = 0;
266
267static void
fba45db2 268decrement_reading_symtab (void *dummy)
c906108c
SS
269{
270 currently_reading_symtab--;
271}
272
273/* Get the symbol table that corresponds to a partial_symtab.
274 This is fast after the first time you do it. In fact, there
275 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
276 case inline. */
277
278struct symtab *
aa1ee363 279psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
280{
281 /* If it's been looked up before, return it. */
282 if (pst->symtab)
283 return pst->symtab;
284
285 /* If it has not yet been read in, read it. */
286 if (!pst->readin)
c5aa993b 287 {
c906108c
SS
288 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
289 currently_reading_symtab++;
290 (*pst->read_symtab) (pst);
291 do_cleanups (back_to);
292 }
293
294 return pst->symtab;
295}
296
5417f6dc
RM
297/* Remember the lowest-addressed loadable section we've seen.
298 This function is called via bfd_map_over_sections.
c906108c
SS
299
300 In case of equal vmas, the section with the largest size becomes the
301 lowest-addressed loadable section.
302
303 If the vmas and sizes are equal, the last section is considered the
304 lowest-addressed loadable section. */
305
306void
4efb68b1 307find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 308{
c5aa993b 309 asection **lowest = (asection **) obj;
c906108c
SS
310
311 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
312 return;
313 if (!*lowest)
314 *lowest = sect; /* First loadable section */
315 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
316 *lowest = sect; /* A lower loadable section */
317 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
318 && (bfd_section_size (abfd, (*lowest))
319 <= bfd_section_size (abfd, sect)))
320 *lowest = sect;
321}
322
a39a16c4
MM
323/* Create a new section_addr_info, with room for NUM_SECTIONS. */
324
325struct section_addr_info *
326alloc_section_addr_info (size_t num_sections)
327{
328 struct section_addr_info *sap;
329 size_t size;
330
331 size = (sizeof (struct section_addr_info)
332 + sizeof (struct other_sections) * (num_sections - 1));
333 sap = (struct section_addr_info *) xmalloc (size);
334 memset (sap, 0, size);
335 sap->num_sections = num_sections;
336
337 return sap;
338}
62557bbc 339
7b90c3f9
JB
340
341/* Return a freshly allocated copy of ADDRS. The section names, if
342 any, are also freshly allocated copies of those in ADDRS. */
343struct section_addr_info *
344copy_section_addr_info (struct section_addr_info *addrs)
345{
346 struct section_addr_info *copy
347 = alloc_section_addr_info (addrs->num_sections);
348 int i;
349
350 copy->num_sections = addrs->num_sections;
351 for (i = 0; i < addrs->num_sections; i++)
352 {
353 copy->other[i].addr = addrs->other[i].addr;
354 if (addrs->other[i].name)
355 copy->other[i].name = xstrdup (addrs->other[i].name);
356 else
357 copy->other[i].name = NULL;
358 copy->other[i].sectindex = addrs->other[i].sectindex;
359 }
360
361 return copy;
362}
363
364
365
62557bbc
KB
366/* Build (allocate and populate) a section_addr_info struct from
367 an existing section table. */
368
369extern struct section_addr_info *
0542c86d
PA
370build_section_addr_info_from_section_table (const struct target_section *start,
371 const struct target_section *end)
62557bbc
KB
372{
373 struct section_addr_info *sap;
0542c86d 374 const struct target_section *stp;
62557bbc
KB
375 int oidx;
376
a39a16c4 377 sap = alloc_section_addr_info (end - start);
62557bbc
KB
378
379 for (stp = start, oidx = 0; stp != end; stp++)
380 {
5417f6dc 381 if (bfd_get_section_flags (stp->bfd,
fbd35540 382 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 383 && oidx < end - start)
62557bbc
KB
384 {
385 sap->other[oidx].addr = stp->addr;
5417f6dc 386 sap->other[oidx].name
fbd35540 387 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
388 sap->other[oidx].sectindex = stp->the_bfd_section->index;
389 oidx++;
390 }
391 }
392
393 return sap;
394}
395
396
397/* Free all memory allocated by build_section_addr_info_from_section_table. */
398
399extern void
400free_section_addr_info (struct section_addr_info *sap)
401{
402 int idx;
403
a39a16c4 404 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 405 if (sap->other[idx].name)
b8c9b27d
KB
406 xfree (sap->other[idx].name);
407 xfree (sap);
62557bbc
KB
408}
409
410
e8289572
JB
411/* Initialize OBJFILE's sect_index_* members. */
412static void
413init_objfile_sect_indices (struct objfile *objfile)
c906108c 414{
e8289572 415 asection *sect;
c906108c 416 int i;
5417f6dc 417
b8fbeb18 418 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 419 if (sect)
b8fbeb18
EZ
420 objfile->sect_index_text = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 423 if (sect)
b8fbeb18
EZ
424 objfile->sect_index_data = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 427 if (sect)
b8fbeb18
EZ
428 objfile->sect_index_bss = sect->index;
429
430 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 431 if (sect)
b8fbeb18
EZ
432 objfile->sect_index_rodata = sect->index;
433
bbcd32ad
FF
434 /* This is where things get really weird... We MUST have valid
435 indices for the various sect_index_* members or gdb will abort.
436 So if for example, there is no ".text" section, we have to
31d99776
DJ
437 accomodate that. First, check for a file with the standard
438 one or two segments. */
439
440 symfile_find_segment_sections (objfile);
441
442 /* Except when explicitly adding symbol files at some address,
443 section_offsets contains nothing but zeros, so it doesn't matter
444 which slot in section_offsets the individual sect_index_* members
445 index into. So if they are all zero, it is safe to just point
446 all the currently uninitialized indices to the first slot. But
447 beware: if this is the main executable, it may be relocated
448 later, e.g. by the remote qOffsets packet, and then this will
449 be wrong! That's why we try segments first. */
bbcd32ad
FF
450
451 for (i = 0; i < objfile->num_sections; i++)
452 {
453 if (ANOFFSET (objfile->section_offsets, i) != 0)
454 {
455 break;
456 }
457 }
458 if (i == objfile->num_sections)
459 {
460 if (objfile->sect_index_text == -1)
461 objfile->sect_index_text = 0;
462 if (objfile->sect_index_data == -1)
463 objfile->sect_index_data = 0;
464 if (objfile->sect_index_bss == -1)
465 objfile->sect_index_bss = 0;
466 if (objfile->sect_index_rodata == -1)
467 objfile->sect_index_rodata = 0;
468 }
b8fbeb18 469}
c906108c 470
c1bd25fd
DJ
471/* The arguments to place_section. */
472
473struct place_section_arg
474{
475 struct section_offsets *offsets;
476 CORE_ADDR lowest;
477};
478
479/* Find a unique offset to use for loadable section SECT if
480 the user did not provide an offset. */
481
2c0b251b 482static void
c1bd25fd
DJ
483place_section (bfd *abfd, asection *sect, void *obj)
484{
485 struct place_section_arg *arg = obj;
486 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
487 int done;
3bd72c6f 488 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 489
2711e456
DJ
490 /* We are only interested in allocated sections. */
491 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
492 return;
493
494 /* If the user specified an offset, honor it. */
495 if (offsets[sect->index] != 0)
496 return;
497
498 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
499 start_addr = (arg->lowest + align - 1) & -align;
500
c1bd25fd
DJ
501 do {
502 asection *cur_sec;
c1bd25fd 503
c1bd25fd
DJ
504 done = 1;
505
506 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
507 {
508 int indx = cur_sec->index;
509 CORE_ADDR cur_offset;
510
511 /* We don't need to compare against ourself. */
512 if (cur_sec == sect)
513 continue;
514
2711e456
DJ
515 /* We can only conflict with allocated sections. */
516 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
517 continue;
518
519 /* If the section offset is 0, either the section has not been placed
520 yet, or it was the lowest section placed (in which case LOWEST
521 will be past its end). */
522 if (offsets[indx] == 0)
523 continue;
524
525 /* If this section would overlap us, then we must move up. */
526 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
527 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
528 {
529 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
530 start_addr = (start_addr + align - 1) & -align;
531 done = 0;
3bd72c6f 532 break;
c1bd25fd
DJ
533 }
534
535 /* Otherwise, we appear to be OK. So far. */
536 }
537 }
538 while (!done);
539
540 offsets[sect->index] = start_addr;
541 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 542}
e8289572
JB
543
544/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 545 of how to represent it for fast symbol reading. This is the default
e8289572
JB
546 version of the sym_fns.sym_offsets function for symbol readers that
547 don't need to do anything special. It allocates a section_offsets table
548 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
549
550void
551default_symfile_offsets (struct objfile *objfile,
552 struct section_addr_info *addrs)
553{
554 int i;
555
a39a16c4 556 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 557 objfile->section_offsets = (struct section_offsets *)
5417f6dc 558 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 560 memset (objfile->section_offsets, 0,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
562
563 /* Now calculate offsets for section that were specified by the
564 caller. */
a39a16c4 565 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
566 {
567 struct other_sections *osp ;
568
569 osp = &addrs->other[i] ;
570 if (osp->addr == 0)
571 continue;
572
573 /* Record all sections in offsets */
574 /* The section_offsets in the objfile are here filled in using
575 the BFD index. */
576 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
577 }
578
c1bd25fd
DJ
579 /* For relocatable files, all loadable sections will start at zero.
580 The zero is meaningless, so try to pick arbitrary addresses such
581 that no loadable sections overlap. This algorithm is quadratic,
582 but the number of sections in a single object file is generally
583 small. */
584 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
585 {
586 struct place_section_arg arg;
2711e456
DJ
587 bfd *abfd = objfile->obfd;
588 asection *cur_sec;
589 CORE_ADDR lowest = 0;
590
591 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
592 /* We do not expect this to happen; just skip this step if the
593 relocatable file has a section with an assigned VMA. */
594 if (bfd_section_vma (abfd, cur_sec) != 0)
595 break;
596
597 if (cur_sec == NULL)
598 {
599 CORE_ADDR *offsets = objfile->section_offsets->offsets;
600
601 /* Pick non-overlapping offsets for sections the user did not
602 place explicitly. */
603 arg.offsets = objfile->section_offsets;
604 arg.lowest = 0;
605 bfd_map_over_sections (objfile->obfd, place_section, &arg);
606
607 /* Correctly filling in the section offsets is not quite
608 enough. Relocatable files have two properties that
609 (most) shared objects do not:
610
611 - Their debug information will contain relocations. Some
612 shared libraries do also, but many do not, so this can not
613 be assumed.
614
615 - If there are multiple code sections they will be loaded
616 at different relative addresses in memory than they are
617 in the objfile, since all sections in the file will start
618 at address zero.
619
620 Because GDB has very limited ability to map from an
621 address in debug info to the correct code section,
622 it relies on adding SECT_OFF_TEXT to things which might be
623 code. If we clear all the section offsets, and set the
624 section VMAs instead, then symfile_relocate_debug_section
625 will return meaningful debug information pointing at the
626 correct sections.
627
628 GDB has too many different data structures for section
629 addresses - a bfd, objfile, and so_list all have section
630 tables, as does exec_ops. Some of these could probably
631 be eliminated. */
632
633 for (cur_sec = abfd->sections; cur_sec != NULL;
634 cur_sec = cur_sec->next)
635 {
636 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
637 continue;
638
639 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
640 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
641 offsets[cur_sec->index]);
2711e456
DJ
642 offsets[cur_sec->index] = 0;
643 }
644 }
c1bd25fd
DJ
645 }
646
e8289572
JB
647 /* Remember the bfd indexes for the .text, .data, .bss and
648 .rodata sections. */
649 init_objfile_sect_indices (objfile);
650}
651
652
31d99776
DJ
653/* Divide the file into segments, which are individual relocatable units.
654 This is the default version of the sym_fns.sym_segments function for
655 symbol readers that do not have an explicit representation of segments.
656 It assumes that object files do not have segments, and fully linked
657 files have a single segment. */
658
659struct symfile_segment_data *
660default_symfile_segments (bfd *abfd)
661{
662 int num_sections, i;
663 asection *sect;
664 struct symfile_segment_data *data;
665 CORE_ADDR low, high;
666
667 /* Relocatable files contain enough information to position each
668 loadable section independently; they should not be relocated
669 in segments. */
670 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
671 return NULL;
672
673 /* Make sure there is at least one loadable section in the file. */
674 for (sect = abfd->sections; sect != NULL; sect = sect->next)
675 {
676 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
677 continue;
678
679 break;
680 }
681 if (sect == NULL)
682 return NULL;
683
684 low = bfd_get_section_vma (abfd, sect);
685 high = low + bfd_get_section_size (sect);
686
687 data = XZALLOC (struct symfile_segment_data);
688 data->num_segments = 1;
689 data->segment_bases = XCALLOC (1, CORE_ADDR);
690 data->segment_sizes = XCALLOC (1, CORE_ADDR);
691
692 num_sections = bfd_count_sections (abfd);
693 data->segment_info = XCALLOC (num_sections, int);
694
695 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
696 {
697 CORE_ADDR vma;
698
699 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
700 continue;
701
702 vma = bfd_get_section_vma (abfd, sect);
703 if (vma < low)
704 low = vma;
705 if (vma + bfd_get_section_size (sect) > high)
706 high = vma + bfd_get_section_size (sect);
707
708 data->segment_info[i] = 1;
709 }
710
711 data->segment_bases[0] = low;
712 data->segment_sizes[0] = high - low;
713
714 return data;
715}
716
c906108c
SS
717/* Process a symbol file, as either the main file or as a dynamically
718 loaded file.
719
96baa820
JM
720 OBJFILE is where the symbols are to be read from.
721
7e8580c1
JB
722 ADDRS is the list of section load addresses. If the user has given
723 an 'add-symbol-file' command, then this is the list of offsets and
724 addresses he or she provided as arguments to the command; or, if
725 we're handling a shared library, these are the actual addresses the
726 sections are loaded at, according to the inferior's dynamic linker
727 (as gleaned by GDB's shared library code). We convert each address
728 into an offset from the section VMA's as it appears in the object
729 file, and then call the file's sym_offsets function to convert this
730 into a format-specific offset table --- a `struct section_offsets'.
731 If ADDRS is non-zero, OFFSETS must be zero.
732
733 OFFSETS is a table of section offsets already in the right
734 format-specific representation. NUM_OFFSETS is the number of
735 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
736 assume this is the proper table the call to sym_offsets described
737 above would produce. Instead of calling sym_offsets, we just dump
738 it right into objfile->section_offsets. (When we're re-reading
739 symbols from an objfile, we don't have the original load address
740 list any more; all we have is the section offset table.) If
741 OFFSETS is non-zero, ADDRS must be zero.
96baa820 742
7eedccfa
PP
743 ADD_FLAGS encodes verbosity level, whether this is main symbol or
744 an extra symbol file such as dynamically loaded code, and wether
745 breakpoint reset should be deferred. */
c906108c
SS
746
747void
7e8580c1
JB
748syms_from_objfile (struct objfile *objfile,
749 struct section_addr_info *addrs,
750 struct section_offsets *offsets,
751 int num_offsets,
7eedccfa 752 int add_flags)
c906108c 753{
a39a16c4 754 struct section_addr_info *local_addr = NULL;
c906108c 755 struct cleanup *old_chain;
7eedccfa 756 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 757
7e8580c1 758 gdb_assert (! (addrs && offsets));
2acceee2 759
c906108c 760 init_entry_point_info (objfile);
31d99776 761 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 762
75245b24
MS
763 if (objfile->sf == NULL)
764 return; /* No symbols. */
765
c906108c
SS
766 /* Make sure that partially constructed symbol tables will be cleaned up
767 if an error occurs during symbol reading. */
74b7792f 768 old_chain = make_cleanup_free_objfile (objfile);
c906108c 769
a39a16c4
MM
770 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
771 list. We now establish the convention that an addr of zero means
772 no load address was specified. */
773 if (! addrs && ! offsets)
774 {
5417f6dc 775 local_addr
a39a16c4
MM
776 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
777 make_cleanup (xfree, local_addr);
778 addrs = local_addr;
779 }
780
781 /* Now either addrs or offsets is non-zero. */
782
c5aa993b 783 if (mainline)
c906108c
SS
784 {
785 /* We will modify the main symbol table, make sure that all its users
c5aa993b 786 will be cleaned up if an error occurs during symbol reading. */
74b7792f 787 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
788
789 /* Since no error yet, throw away the old symbol table. */
790
791 if (symfile_objfile != NULL)
792 {
793 free_objfile (symfile_objfile);
794 symfile_objfile = NULL;
795 }
796
797 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
798 If the user wants to get rid of them, they should do "symbol-file"
799 without arguments first. Not sure this is the best behavior
800 (PR 2207). */
c906108c 801
c5aa993b 802 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
803 }
804
805 /* Convert addr into an offset rather than an absolute address.
806 We find the lowest address of a loaded segment in the objfile,
53a5351d 807 and assume that <addr> is where that got loaded.
c906108c 808
53a5351d
JM
809 We no longer warn if the lowest section is not a text segment (as
810 happens for the PA64 port. */
1549f619 811 if (!mainline && addrs && addrs->other[0].name)
c906108c 812 {
1549f619
EZ
813 asection *lower_sect;
814 asection *sect;
815 CORE_ADDR lower_offset;
816 int i;
817
5417f6dc 818 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
819 continguous sections. FIXME!! won't work without call to find
820 .text first, but this assumes text is lowest section. */
821 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
822 if (lower_sect == NULL)
c906108c 823 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 824 &lower_sect);
2acceee2 825 if (lower_sect == NULL)
ff8e85c3
PA
826 {
827 warning (_("no loadable sections found in added symbol-file %s"),
828 objfile->name);
829 lower_offset = 0;
830 }
2acceee2 831 else
ff8e85c3 832 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 833
13de58df 834 /* Calculate offsets for the loadable sections.
2acceee2
JM
835 FIXME! Sections must be in order of increasing loadable section
836 so that contiguous sections can use the lower-offset!!!
5417f6dc 837
13de58df
JB
838 Adjust offsets if the segments are not contiguous.
839 If the section is contiguous, its offset should be set to
2acceee2
JM
840 the offset of the highest loadable section lower than it
841 (the loadable section directly below it in memory).
842 this_offset = lower_offset = lower_addr - lower_orig_addr */
843
1549f619 844 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
845 {
846 if (addrs->other[i].addr != 0)
847 {
848 sect = bfd_get_section_by_name (objfile->obfd,
849 addrs->other[i].name);
850 if (sect)
851 {
852 addrs->other[i].addr
853 -= bfd_section_vma (objfile->obfd, sect);
854 lower_offset = addrs->other[i].addr;
855 /* This is the index used by BFD. */
856 addrs->other[i].sectindex = sect->index ;
857 }
858 else
859 {
8a3fe4f8 860 warning (_("section %s not found in %s"),
5417f6dc 861 addrs->other[i].name,
7e8580c1
JB
862 objfile->name);
863 addrs->other[i].addr = 0;
864 }
865 }
866 else
867 addrs->other[i].addr = lower_offset;
868 }
c906108c
SS
869 }
870
871 /* Initialize symbol reading routines for this objfile, allow complaints to
872 appear for this new file, and record how verbose to be, then do the
873 initial symbol reading for this file. */
874
c5aa993b 875 (*objfile->sf->sym_init) (objfile);
7eedccfa 876 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 877
7e8580c1
JB
878 if (addrs)
879 (*objfile->sf->sym_offsets) (objfile, addrs);
880 else
881 {
882 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
883
884 /* Just copy in the offset table directly as given to us. */
885 objfile->num_sections = num_offsets;
886 objfile->section_offsets
887 = ((struct section_offsets *)
8b92e4d5 888 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
889 memcpy (objfile->section_offsets, offsets, size);
890
891 init_objfile_sect_indices (objfile);
892 }
c906108c 893
96baa820 894 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 895
c906108c
SS
896 /* Discard cleanups as symbol reading was successful. */
897
898 discard_cleanups (old_chain);
f7545552 899 xfree (local_addr);
c906108c
SS
900}
901
902/* Perform required actions after either reading in the initial
903 symbols for a new objfile, or mapping in the symbols from a reusable
904 objfile. */
c5aa993b 905
c906108c 906void
7eedccfa 907new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
908{
909
910 /* If this is the main symbol file we have to clean up all users of the
911 old main symbol file. Otherwise it is sufficient to fixup all the
912 breakpoints that may have been redefined by this symbol file. */
7eedccfa 913 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
914 {
915 /* OK, make it the "real" symbol file. */
916 symfile_objfile = objfile;
917
918 clear_symtab_users ();
919 }
7eedccfa 920 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 921 {
69de3c6a 922 breakpoint_re_set ();
c906108c
SS
923 }
924
925 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 926 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
927}
928
929/* Process a symbol file, as either the main file or as a dynamically
930 loaded file.
931
5417f6dc
RM
932 ABFD is a BFD already open on the file, as from symfile_bfd_open.
933 This BFD will be closed on error, and is always consumed by this function.
7904e09f 934
7eedccfa
PP
935 ADD_FLAGS encodes verbosity, whether this is main symbol file or
936 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
937
938 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
939 syms_from_objfile, above.
940 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 941
c906108c
SS
942 Upon success, returns a pointer to the objfile that was added.
943 Upon failure, jumps back to command level (never returns). */
7eedccfa 944
7904e09f 945static struct objfile *
7eedccfa
PP
946symbol_file_add_with_addrs_or_offsets (bfd *abfd,
947 int add_flags,
7904e09f
JB
948 struct section_addr_info *addrs,
949 struct section_offsets *offsets,
950 int num_offsets,
7eedccfa 951 int flags)
c906108c
SS
952{
953 struct objfile *objfile;
954 struct partial_symtab *psymtab;
77069918 955 char *debugfile = NULL;
7b90c3f9 956 struct section_addr_info *orig_addrs = NULL;
a39a16c4 957 struct cleanup *my_cleanups;
5417f6dc 958 const char *name = bfd_get_filename (abfd);
7eedccfa 959 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 960
5417f6dc 961 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 962
5417f6dc
RM
963 /* Give user a chance to burp if we'd be
964 interactively wiping out any existing symbols. */
c906108c
SS
965
966 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 967 && (add_flags & SYMFILE_MAINLINE)
c906108c 968 && from_tty
9e2f0ad4 969 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 970 error (_("Not confirmed."));
c906108c 971
2df3850c 972 objfile = allocate_objfile (abfd, flags);
5417f6dc 973 discard_cleanups (my_cleanups);
c906108c 974
a39a16c4 975 if (addrs)
63cd24fe 976 {
7b90c3f9
JB
977 orig_addrs = copy_section_addr_info (addrs);
978 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 979 }
a39a16c4 980
78a4a9b9
AC
981 /* We either created a new mapped symbol table, mapped an existing
982 symbol table file which has not had initial symbol reading
983 performed, or need to read an unmapped symbol table. */
984 if (from_tty || info_verbose)
c906108c 985 {
769d7dc4
AC
986 if (deprecated_pre_add_symbol_hook)
987 deprecated_pre_add_symbol_hook (name);
78a4a9b9 988 else
c906108c 989 {
bf250677
DE
990 if (print_symbol_loading)
991 {
992 printf_unfiltered (_("Reading symbols from %s..."), name);
993 wrap_here ("");
994 gdb_flush (gdb_stdout);
995 }
c906108c 996 }
c906108c 997 }
78a4a9b9 998 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 999 add_flags);
c906108c
SS
1000
1001 /* We now have at least a partial symbol table. Check to see if the
1002 user requested that all symbols be read on initial access via either
1003 the gdb startup command line or on a per symbol file basis. Expand
1004 all partial symbol tables for this objfile if so. */
1005
2acceee2 1006 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1007 {
bf250677 1008 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1009 {
a3f17187 1010 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1011 wrap_here ("");
1012 gdb_flush (gdb_stdout);
1013 }
1014
c5aa993b 1015 for (psymtab = objfile->psymtabs;
c906108c 1016 psymtab != NULL;
c5aa993b 1017 psymtab = psymtab->next)
c906108c
SS
1018 {
1019 psymtab_to_symtab (psymtab);
1020 }
1021 }
1022
77069918
JK
1023 /* If the file has its own symbol tables it has no separate debug info.
1024 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1025 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1026 if (objfile->psymtabs == NULL)
1027 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1028 if (debugfile)
1029 {
5b5d99cf
JB
1030 if (addrs != NULL)
1031 {
1032 objfile->separate_debug_objfile
7eedccfa 1033 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1034 }
1035 else
1036 {
1037 objfile->separate_debug_objfile
7eedccfa 1038 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1039 }
1040 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1041 = objfile;
5417f6dc 1042
5b5d99cf
JB
1043 /* Put the separate debug object before the normal one, this is so that
1044 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1045 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1046
5b5d99cf
JB
1047 xfree (debugfile);
1048 }
5417f6dc 1049
bf250677
DE
1050 if (!have_partial_symbols () && !have_full_symbols ()
1051 && print_symbol_loading)
cb3c37b2
JB
1052 {
1053 wrap_here ("");
d4c0a7a0 1054 printf_unfiltered (_("(no debugging symbols found)"));
8f5ba92b 1055 if (from_tty || info_verbose)
d4c0a7a0 1056 printf_unfiltered ("...");
8f5ba92b 1057 else
d4c0a7a0 1058 printf_unfiltered ("\n");
cb3c37b2
JB
1059 wrap_here ("");
1060 }
1061
c906108c
SS
1062 if (from_tty || info_verbose)
1063 {
769d7dc4
AC
1064 if (deprecated_post_add_symbol_hook)
1065 deprecated_post_add_symbol_hook ();
c906108c 1066 else
c5aa993b 1067 {
bf250677
DE
1068 if (print_symbol_loading)
1069 printf_unfiltered (_("done.\n"));
c5aa993b 1070 }
c906108c
SS
1071 }
1072
481d0f41
JB
1073 /* We print some messages regardless of whether 'from_tty ||
1074 info_verbose' is true, so make sure they go out at the right
1075 time. */
1076 gdb_flush (gdb_stdout);
1077
a39a16c4
MM
1078 do_cleanups (my_cleanups);
1079
109f874e
MS
1080 if (objfile->sf == NULL)
1081 return objfile; /* No symbols. */
1082
7eedccfa 1083 new_symfile_objfile (objfile, add_flags);
c906108c 1084
06d3b283 1085 observer_notify_new_objfile (objfile);
c906108c 1086
ce7d4522 1087 bfd_cache_close_all ();
c906108c
SS
1088 return (objfile);
1089}
1090
7904e09f 1091
eb4556d7
JB
1092/* Process the symbol file ABFD, as either the main file or as a
1093 dynamically loaded file.
1094
1095 See symbol_file_add_with_addrs_or_offsets's comments for
1096 details. */
1097struct objfile *
7eedccfa 1098symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1099 struct section_addr_info *addrs,
7eedccfa 1100 int flags)
eb4556d7 1101{
7eedccfa
PP
1102 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1103 flags);
eb4556d7
JB
1104}
1105
1106
7904e09f
JB
1107/* Process a symbol file, as either the main file or as a dynamically
1108 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1109 for details. */
1110struct objfile *
7eedccfa
PP
1111symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1112 int flags)
7904e09f 1113{
7eedccfa
PP
1114 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1115 flags);
7904e09f
JB
1116}
1117
1118
d7db6da9
FN
1119/* Call symbol_file_add() with default values and update whatever is
1120 affected by the loading of a new main().
1121 Used when the file is supplied in the gdb command line
1122 and by some targets with special loading requirements.
1123 The auxiliary function, symbol_file_add_main_1(), has the flags
1124 argument for the switches that can only be specified in the symbol_file
1125 command itself. */
5417f6dc 1126
1adeb98a
FN
1127void
1128symbol_file_add_main (char *args, int from_tty)
1129{
d7db6da9
FN
1130 symbol_file_add_main_1 (args, from_tty, 0);
1131}
1132
1133static void
1134symbol_file_add_main_1 (char *args, int from_tty, int flags)
1135{
7eedccfa
PP
1136 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1137 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1138
d7db6da9
FN
1139 /* Getting new symbols may change our opinion about
1140 what is frameless. */
1141 reinit_frame_cache ();
1142
1143 set_initial_language ();
1adeb98a
FN
1144}
1145
1146void
1147symbol_file_clear (int from_tty)
1148{
1149 if ((have_full_symbols () || have_partial_symbols ())
1150 && from_tty
0430b0d6
AS
1151 && (symfile_objfile
1152 ? !query (_("Discard symbol table from `%s'? "),
1153 symfile_objfile->name)
1154 : !query (_("Discard symbol table? "))))
8a3fe4f8 1155 error (_("Not confirmed."));
1adeb98a 1156
d10c338d 1157 free_all_objfiles ();
1adeb98a 1158
d10c338d
DE
1159 /* solib descriptors may have handles to objfiles. Since their
1160 storage has just been released, we'd better wipe the solib
1161 descriptors as well. */
1162 no_shared_libraries (NULL, from_tty);
1163
1164 symfile_objfile = NULL;
1165 if (from_tty)
1166 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1167}
1168
77069918
JK
1169struct build_id
1170 {
1171 size_t size;
1172 gdb_byte data[1];
1173 };
1174
1175/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1176
1177static struct build_id *
1178build_id_bfd_get (bfd *abfd)
1179{
1180 struct build_id *retval;
1181
1182 if (!bfd_check_format (abfd, bfd_object)
1183 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1184 || elf_tdata (abfd)->build_id == NULL)
1185 return NULL;
1186
1187 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1188 retval->size = elf_tdata (abfd)->build_id_size;
1189 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1190
1191 return retval;
1192}
1193
1194/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1195
1196static int
1197build_id_verify (const char *filename, struct build_id *check)
1198{
1199 bfd *abfd;
1200 struct build_id *found = NULL;
1201 int retval = 0;
1202
1203 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1204 if (remote_filename_p (filename))
1205 abfd = remote_bfd_open (filename, gnutarget);
1206 else
1207 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1208 if (abfd == NULL)
1209 return 0;
1210
1211 found = build_id_bfd_get (abfd);
1212
1213 if (found == NULL)
1214 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1215 else if (found->size != check->size
1216 || memcmp (found->data, check->data, found->size) != 0)
1217 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1218 else
1219 retval = 1;
1220
1221 if (!bfd_close (abfd))
1222 warning (_("cannot close \"%s\": %s"), filename,
1223 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1224
1225 xfree (found);
1226
77069918
JK
1227 return retval;
1228}
1229
1230static char *
1231build_id_to_debug_filename (struct build_id *build_id)
1232{
1233 char *link, *s, *retval = NULL;
1234 gdb_byte *data = build_id->data;
1235 size_t size = build_id->size;
1236
1237 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1238 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1239 + 2 * size + (sizeof ".debug" - 1) + 1);
1240 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1241 if (size > 0)
1242 {
1243 size--;
1244 s += sprintf (s, "%02x", (unsigned) *data++);
1245 }
1246 if (size > 0)
1247 *s++ = '/';
1248 while (size-- > 0)
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 strcpy (s, ".debug");
1251
1252 /* lrealpath() is expensive even for the usually non-existent files. */
1253 if (access (link, F_OK) == 0)
1254 retval = lrealpath (link);
1255 xfree (link);
1256
1257 if (retval != NULL && !build_id_verify (retval, build_id))
1258 {
1259 xfree (retval);
1260 retval = NULL;
1261 }
1262
1263 return retval;
1264}
1265
5b5d99cf
JB
1266static char *
1267get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1268{
1269 asection *sect;
1270 bfd_size_type debuglink_size;
1271 unsigned long crc32;
1272 char *contents;
1273 int crc_offset;
1274 unsigned char *p;
5417f6dc 1275
5b5d99cf
JB
1276 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1277
1278 if (sect == NULL)
1279 return NULL;
1280
1281 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1282
5b5d99cf
JB
1283 contents = xmalloc (debuglink_size);
1284 bfd_get_section_contents (objfile->obfd, sect, contents,
1285 (file_ptr)0, (bfd_size_type)debuglink_size);
1286
1287 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1288 crc_offset = strlen (contents) + 1;
1289 crc_offset = (crc_offset + 3) & ~3;
1290
1291 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1292
5b5d99cf
JB
1293 *crc32_out = crc32;
1294 return contents;
1295}
1296
1297static int
1298separate_debug_file_exists (const char *name, unsigned long crc)
1299{
1300 unsigned long file_crc = 0;
f1838a98 1301 bfd *abfd;
777ea8f1 1302 gdb_byte buffer[8*1024];
5b5d99cf
JB
1303 int count;
1304
f1838a98
UW
1305 if (remote_filename_p (name))
1306 abfd = remote_bfd_open (name, gnutarget);
1307 else
1308 abfd = bfd_openr (name, gnutarget);
1309
1310 if (!abfd)
5b5d99cf
JB
1311 return 0;
1312
f1838a98 1313 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1314 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1315
f1838a98 1316 bfd_close (abfd);
5b5d99cf
JB
1317
1318 return crc == file_crc;
1319}
1320
aa28a74e 1321char *debug_file_directory = NULL;
920d2a44
AC
1322static void
1323show_debug_file_directory (struct ui_file *file, int from_tty,
1324 struct cmd_list_element *c, const char *value)
1325{
1326 fprintf_filtered (file, _("\
1327The directory where separate debug symbols are searched for is \"%s\".\n"),
1328 value);
1329}
5b5d99cf
JB
1330
1331#if ! defined (DEBUG_SUBDIRECTORY)
1332#define DEBUG_SUBDIRECTORY ".debug"
1333#endif
1334
1335static char *
1336find_separate_debug_file (struct objfile *objfile)
1337{
1338 asection *sect;
1339 char *basename;
1340 char *dir;
1341 char *debugfile;
1342 char *name_copy;
aa28a74e 1343 char *canon_name;
5b5d99cf
JB
1344 bfd_size_type debuglink_size;
1345 unsigned long crc32;
1346 int i;
77069918
JK
1347 struct build_id *build_id;
1348
1349 build_id = build_id_bfd_get (objfile->obfd);
1350 if (build_id != NULL)
1351 {
1352 char *build_id_name;
1353
1354 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1355 xfree (build_id);
77069918
JK
1356 /* Prevent looping on a stripped .debug file. */
1357 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1358 {
1359 warning (_("\"%s\": separate debug info file has no debug info"),
1360 build_id_name);
1361 xfree (build_id_name);
1362 }
1363 else if (build_id_name != NULL)
1364 return build_id_name;
1365 }
5b5d99cf
JB
1366
1367 basename = get_debug_link_info (objfile, &crc32);
1368
1369 if (basename == NULL)
1370 return NULL;
5417f6dc 1371
5b5d99cf
JB
1372 dir = xstrdup (objfile->name);
1373
fe36c4f4
JB
1374 /* Strip off the final filename part, leaving the directory name,
1375 followed by a slash. Objfile names should always be absolute and
1376 tilde-expanded, so there should always be a slash in there
1377 somewhere. */
5b5d99cf
JB
1378 for (i = strlen(dir) - 1; i >= 0; i--)
1379 {
1380 if (IS_DIR_SEPARATOR (dir[i]))
1381 break;
1382 }
fe36c4f4 1383 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1384 dir[i+1] = '\0';
5417f6dc 1385
5b5d99cf
JB
1386 debugfile = alloca (strlen (debug_file_directory) + 1
1387 + strlen (dir)
1388 + strlen (DEBUG_SUBDIRECTORY)
1389 + strlen ("/")
5417f6dc 1390 + strlen (basename)
5b5d99cf
JB
1391 + 1);
1392
1393 /* First try in the same directory as the original file. */
1394 strcpy (debugfile, dir);
1395 strcat (debugfile, basename);
1396
1397 if (separate_debug_file_exists (debugfile, crc32))
1398 {
1399 xfree (basename);
1400 xfree (dir);
1401 return xstrdup (debugfile);
1402 }
5417f6dc 1403
5b5d99cf
JB
1404 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, DEBUG_SUBDIRECTORY);
1407 strcat (debugfile, "/");
1408 strcat (debugfile, basename);
1409
1410 if (separate_debug_file_exists (debugfile, crc32))
1411 {
1412 xfree (basename);
1413 xfree (dir);
1414 return xstrdup (debugfile);
1415 }
5417f6dc 1416
5b5d99cf
JB
1417 /* Then try in the global debugfile directory. */
1418 strcpy (debugfile, debug_file_directory);
1419 strcat (debugfile, "/");
1420 strcat (debugfile, dir);
5b5d99cf
JB
1421 strcat (debugfile, basename);
1422
1423 if (separate_debug_file_exists (debugfile, crc32))
1424 {
1425 xfree (basename);
1426 xfree (dir);
1427 return xstrdup (debugfile);
1428 }
5417f6dc 1429
aa28a74e
DJ
1430 /* If the file is in the sysroot, try using its base path in the
1431 global debugfile directory. */
1432 canon_name = lrealpath (dir);
1433 if (canon_name
1434 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1435 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1436 {
1437 strcpy (debugfile, debug_file_directory);
1438 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1439 strcat (debugfile, "/");
1440 strcat (debugfile, basename);
1441
1442 if (separate_debug_file_exists (debugfile, crc32))
1443 {
1444 xfree (canon_name);
1445 xfree (basename);
1446 xfree (dir);
1447 return xstrdup (debugfile);
1448 }
1449 }
1450
1451 if (canon_name)
1452 xfree (canon_name);
1453
5b5d99cf
JB
1454 xfree (basename);
1455 xfree (dir);
1456 return NULL;
1457}
1458
1459
c906108c
SS
1460/* This is the symbol-file command. Read the file, analyze its
1461 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1462 the command is rather bizarre:
1463
1464 1. The function buildargv implements various quoting conventions
1465 which are undocumented and have little or nothing in common with
1466 the way things are quoted (or not quoted) elsewhere in GDB.
1467
1468 2. Options are used, which are not generally used in GDB (perhaps
1469 "set mapped on", "set readnow on" would be better)
1470
1471 3. The order of options matters, which is contrary to GNU
c906108c
SS
1472 conventions (because it is confusing and inconvenient). */
1473
1474void
fba45db2 1475symbol_file_command (char *args, int from_tty)
c906108c 1476{
c906108c
SS
1477 dont_repeat ();
1478
1479 if (args == NULL)
1480 {
1adeb98a 1481 symbol_file_clear (from_tty);
c906108c
SS
1482 }
1483 else
1484 {
d1a41061 1485 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1486 int flags = OBJF_USERLOADED;
1487 struct cleanup *cleanups;
1488 char *name = NULL;
1489
7a292a7a 1490 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1491 while (*argv != NULL)
1492 {
78a4a9b9
AC
1493 if (strcmp (*argv, "-readnow") == 0)
1494 flags |= OBJF_READNOW;
1495 else if (**argv == '-')
8a3fe4f8 1496 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1497 else
1498 {
cb2f3a29 1499 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1500 name = *argv;
78a4a9b9 1501 }
cb2f3a29 1502
c906108c
SS
1503 argv++;
1504 }
1505
1506 if (name == NULL)
cb2f3a29
MK
1507 error (_("no symbol file name was specified"));
1508
c906108c
SS
1509 do_cleanups (cleanups);
1510 }
1511}
1512
1513/* Set the initial language.
1514
cb2f3a29
MK
1515 FIXME: A better solution would be to record the language in the
1516 psymtab when reading partial symbols, and then use it (if known) to
1517 set the language. This would be a win for formats that encode the
1518 language in an easily discoverable place, such as DWARF. For
1519 stabs, we can jump through hoops looking for specially named
1520 symbols or try to intuit the language from the specific type of
1521 stabs we find, but we can't do that until later when we read in
1522 full symbols. */
c906108c 1523
8b60591b 1524void
fba45db2 1525set_initial_language (void)
c906108c
SS
1526{
1527 struct partial_symtab *pst;
c5aa993b 1528 enum language lang = language_unknown;
c906108c
SS
1529
1530 pst = find_main_psymtab ();
1531 if (pst != NULL)
1532 {
c5aa993b 1533 if (pst->filename != NULL)
cb2f3a29
MK
1534 lang = deduce_language_from_filename (pst->filename);
1535
c906108c
SS
1536 if (lang == language_unknown)
1537 {
c5aa993b
JM
1538 /* Make C the default language */
1539 lang = language_c;
c906108c 1540 }
cb2f3a29 1541
c906108c 1542 set_language (lang);
cb2f3a29 1543 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1544 }
1545}
1546
cb2f3a29
MK
1547/* Open the file specified by NAME and hand it off to BFD for
1548 preliminary analysis. Return a newly initialized bfd *, which
1549 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1550 absolute). In case of trouble, error() is called. */
c906108c
SS
1551
1552bfd *
fba45db2 1553symfile_bfd_open (char *name)
c906108c
SS
1554{
1555 bfd *sym_bfd;
1556 int desc;
1557 char *absolute_name;
1558
f1838a98
UW
1559 if (remote_filename_p (name))
1560 {
1561 name = xstrdup (name);
1562 sym_bfd = remote_bfd_open (name, gnutarget);
1563 if (!sym_bfd)
1564 {
1565 make_cleanup (xfree, name);
1566 error (_("`%s': can't open to read symbols: %s."), name,
1567 bfd_errmsg (bfd_get_error ()));
1568 }
1569
1570 if (!bfd_check_format (sym_bfd, bfd_object))
1571 {
1572 bfd_close (sym_bfd);
1573 make_cleanup (xfree, name);
1574 error (_("`%s': can't read symbols: %s."), name,
1575 bfd_errmsg (bfd_get_error ()));
1576 }
1577
1578 return sym_bfd;
1579 }
1580
cb2f3a29 1581 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1582
1583 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1584 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1585 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1586#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1587 if (desc < 0)
1588 {
1589 char *exename = alloca (strlen (name) + 5);
1590 strcat (strcpy (exename, name), ".exe");
014d698b 1591 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1592 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1593 }
1594#endif
1595 if (desc < 0)
1596 {
b8c9b27d 1597 make_cleanup (xfree, name);
c906108c
SS
1598 perror_with_name (name);
1599 }
cb2f3a29
MK
1600
1601 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1602 bfd. It'll be freed in free_objfile(). */
1603 xfree (name);
1604 name = absolute_name;
c906108c 1605
9f76c2cd 1606 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1607 if (!sym_bfd)
1608 {
1609 close (desc);
b8c9b27d 1610 make_cleanup (xfree, name);
f1838a98 1611 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1612 bfd_errmsg (bfd_get_error ()));
1613 }
549c1eea 1614 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1615
1616 if (!bfd_check_format (sym_bfd, bfd_object))
1617 {
cb2f3a29
MK
1618 /* FIXME: should be checking for errors from bfd_close (for one
1619 thing, on error it does not free all the storage associated
1620 with the bfd). */
1621 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1622 make_cleanup (xfree, name);
f1838a98 1623 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1624 bfd_errmsg (bfd_get_error ()));
1625 }
cb2f3a29
MK
1626
1627 return sym_bfd;
c906108c
SS
1628}
1629
cb2f3a29
MK
1630/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1631 the section was not found. */
1632
0e931cf0
JB
1633int
1634get_section_index (struct objfile *objfile, char *section_name)
1635{
1636 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1637
0e931cf0
JB
1638 if (sect)
1639 return sect->index;
1640 else
1641 return -1;
1642}
1643
cb2f3a29
MK
1644/* Link SF into the global symtab_fns list. Called on startup by the
1645 _initialize routine in each object file format reader, to register
1646 information about each format the the reader is prepared to
1647 handle. */
c906108c
SS
1648
1649void
fba45db2 1650add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1651{
1652 sf->next = symtab_fns;
1653 symtab_fns = sf;
1654}
1655
cb2f3a29
MK
1656/* Initialize OBJFILE to read symbols from its associated BFD. It
1657 either returns or calls error(). The result is an initialized
1658 struct sym_fns in the objfile structure, that contains cached
1659 information about the symbol file. */
c906108c 1660
31d99776
DJ
1661static struct sym_fns *
1662find_sym_fns (bfd *abfd)
c906108c
SS
1663{
1664 struct sym_fns *sf;
31d99776 1665 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1666
75245b24
MS
1667 if (our_flavour == bfd_target_srec_flavour
1668 || our_flavour == bfd_target_ihex_flavour
1669 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1670 return NULL; /* No symbols. */
75245b24 1671
c5aa993b 1672 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1673 if (our_flavour == sf->sym_flavour)
1674 return sf;
cb2f3a29 1675
8a3fe4f8 1676 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1677 bfd_get_target (abfd));
c906108c
SS
1678}
1679\f
cb2f3a29 1680
c906108c
SS
1681/* This function runs the load command of our current target. */
1682
1683static void
fba45db2 1684load_command (char *arg, int from_tty)
c906108c 1685{
4487aabf
PA
1686 /* The user might be reloading because the binary has changed. Take
1687 this opportunity to check. */
1688 reopen_exec_file ();
1689 reread_symbols ();
1690
c906108c 1691 if (arg == NULL)
1986bccd
AS
1692 {
1693 char *parg;
1694 int count = 0;
1695
1696 parg = arg = get_exec_file (1);
1697
1698 /* Count how many \ " ' tab space there are in the name. */
1699 while ((parg = strpbrk (parg, "\\\"'\t ")))
1700 {
1701 parg++;
1702 count++;
1703 }
1704
1705 if (count)
1706 {
1707 /* We need to quote this string so buildargv can pull it apart. */
1708 char *temp = xmalloc (strlen (arg) + count + 1 );
1709 char *ptemp = temp;
1710 char *prev;
1711
1712 make_cleanup (xfree, temp);
1713
1714 prev = parg = arg;
1715 while ((parg = strpbrk (parg, "\\\"'\t ")))
1716 {
1717 strncpy (ptemp, prev, parg - prev);
1718 ptemp += parg - prev;
1719 prev = parg++;
1720 *ptemp++ = '\\';
1721 }
1722 strcpy (ptemp, prev);
1723
1724 arg = temp;
1725 }
1726 }
1727
c906108c 1728 target_load (arg, from_tty);
2889e661
JB
1729
1730 /* After re-loading the executable, we don't really know which
1731 overlays are mapped any more. */
1732 overlay_cache_invalid = 1;
c906108c
SS
1733}
1734
1735/* This version of "load" should be usable for any target. Currently
1736 it is just used for remote targets, not inftarg.c or core files,
1737 on the theory that only in that case is it useful.
1738
1739 Avoiding xmodem and the like seems like a win (a) because we don't have
1740 to worry about finding it, and (b) On VMS, fork() is very slow and so
1741 we don't want to run a subprocess. On the other hand, I'm not sure how
1742 performance compares. */
917317f4 1743
917317f4
JM
1744static int validate_download = 0;
1745
e4f9b4d5
MS
1746/* Callback service function for generic_load (bfd_map_over_sections). */
1747
1748static void
1749add_section_size_callback (bfd *abfd, asection *asec, void *data)
1750{
1751 bfd_size_type *sum = data;
1752
2c500098 1753 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1754}
1755
1756/* Opaque data for load_section_callback. */
1757struct load_section_data {
1758 unsigned long load_offset;
a76d924d
DJ
1759 struct load_progress_data *progress_data;
1760 VEC(memory_write_request_s) *requests;
1761};
1762
1763/* Opaque data for load_progress. */
1764struct load_progress_data {
1765 /* Cumulative data. */
e4f9b4d5
MS
1766 unsigned long write_count;
1767 unsigned long data_count;
1768 bfd_size_type total_size;
a76d924d
DJ
1769};
1770
1771/* Opaque data for load_progress for a single section. */
1772struct load_progress_section_data {
1773 struct load_progress_data *cumulative;
cf7a04e8 1774
a76d924d 1775 /* Per-section data. */
cf7a04e8
DJ
1776 const char *section_name;
1777 ULONGEST section_sent;
1778 ULONGEST section_size;
1779 CORE_ADDR lma;
1780 gdb_byte *buffer;
e4f9b4d5
MS
1781};
1782
a76d924d 1783/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1784
1785static void
1786load_progress (ULONGEST bytes, void *untyped_arg)
1787{
a76d924d
DJ
1788 struct load_progress_section_data *args = untyped_arg;
1789 struct load_progress_data *totals;
1790
1791 if (args == NULL)
1792 /* Writing padding data. No easy way to get at the cumulative
1793 stats, so just ignore this. */
1794 return;
1795
1796 totals = args->cumulative;
1797
1798 if (bytes == 0 && args->section_sent == 0)
1799 {
1800 /* The write is just starting. Let the user know we've started
1801 this section. */
1802 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1803 args->section_name, paddr_nz (args->section_size),
1804 paddr_nz (args->lma));
1805 return;
1806 }
cf7a04e8
DJ
1807
1808 if (validate_download)
1809 {
1810 /* Broken memories and broken monitors manifest themselves here
1811 when bring new computers to life. This doubles already slow
1812 downloads. */
1813 /* NOTE: cagney/1999-10-18: A more efficient implementation
1814 might add a verify_memory() method to the target vector and
1815 then use that. remote.c could implement that method using
1816 the ``qCRC'' packet. */
1817 gdb_byte *check = xmalloc (bytes);
1818 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1819
1820 if (target_read_memory (args->lma, check, bytes) != 0)
1821 error (_("Download verify read failed at 0x%s"),
1822 paddr (args->lma));
1823 if (memcmp (args->buffer, check, bytes) != 0)
1824 error (_("Download verify compare failed at 0x%s"),
1825 paddr (args->lma));
1826 do_cleanups (verify_cleanups);
1827 }
a76d924d 1828 totals->data_count += bytes;
cf7a04e8
DJ
1829 args->lma += bytes;
1830 args->buffer += bytes;
a76d924d 1831 totals->write_count += 1;
cf7a04e8
DJ
1832 args->section_sent += bytes;
1833 if (quit_flag
1834 || (deprecated_ui_load_progress_hook != NULL
1835 && deprecated_ui_load_progress_hook (args->section_name,
1836 args->section_sent)))
1837 error (_("Canceled the download"));
1838
1839 if (deprecated_show_load_progress != NULL)
1840 deprecated_show_load_progress (args->section_name,
1841 args->section_sent,
1842 args->section_size,
a76d924d
DJ
1843 totals->data_count,
1844 totals->total_size);
cf7a04e8
DJ
1845}
1846
e4f9b4d5
MS
1847/* Callback service function for generic_load (bfd_map_over_sections). */
1848
1849static void
1850load_section_callback (bfd *abfd, asection *asec, void *data)
1851{
a76d924d 1852 struct memory_write_request *new_request;
e4f9b4d5 1853 struct load_section_data *args = data;
a76d924d 1854 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1855 bfd_size_type size = bfd_get_section_size (asec);
1856 gdb_byte *buffer;
cf7a04e8 1857 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1858
cf7a04e8
DJ
1859 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1860 return;
e4f9b4d5 1861
cf7a04e8
DJ
1862 if (size == 0)
1863 return;
e4f9b4d5 1864
a76d924d
DJ
1865 new_request = VEC_safe_push (memory_write_request_s,
1866 args->requests, NULL);
1867 memset (new_request, 0, sizeof (struct memory_write_request));
1868 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1869 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1870 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1871 new_request->data = xmalloc (size);
1872 new_request->baton = section_data;
cf7a04e8 1873
a76d924d 1874 buffer = new_request->data;
cf7a04e8 1875
a76d924d
DJ
1876 section_data->cumulative = args->progress_data;
1877 section_data->section_name = sect_name;
1878 section_data->section_size = size;
1879 section_data->lma = new_request->begin;
1880 section_data->buffer = buffer;
cf7a04e8
DJ
1881
1882 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1883}
1884
1885/* Clean up an entire memory request vector, including load
1886 data and progress records. */
cf7a04e8 1887
a76d924d
DJ
1888static void
1889clear_memory_write_data (void *arg)
1890{
1891 VEC(memory_write_request_s) **vec_p = arg;
1892 VEC(memory_write_request_s) *vec = *vec_p;
1893 int i;
1894 struct memory_write_request *mr;
cf7a04e8 1895
a76d924d
DJ
1896 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1897 {
1898 xfree (mr->data);
1899 xfree (mr->baton);
1900 }
1901 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1902}
1903
c906108c 1904void
917317f4 1905generic_load (char *args, int from_tty)
c906108c 1906{
c906108c 1907 bfd *loadfile_bfd;
2b71414d 1908 struct timeval start_time, end_time;
917317f4 1909 char *filename;
1986bccd 1910 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1911 struct load_section_data cbdata;
a76d924d
DJ
1912 struct load_progress_data total_progress;
1913
e4f9b4d5 1914 CORE_ADDR entry;
1986bccd 1915 char **argv;
e4f9b4d5 1916
a76d924d
DJ
1917 memset (&cbdata, 0, sizeof (cbdata));
1918 memset (&total_progress, 0, sizeof (total_progress));
1919 cbdata.progress_data = &total_progress;
1920
1921 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1922
d1a41061
PP
1923 if (args == NULL)
1924 error_no_arg (_("file to load"));
1986bccd 1925
d1a41061 1926 argv = gdb_buildargv (args);
1986bccd
AS
1927 make_cleanup_freeargv (argv);
1928
1929 filename = tilde_expand (argv[0]);
1930 make_cleanup (xfree, filename);
1931
1932 if (argv[1] != NULL)
917317f4
JM
1933 {
1934 char *endptr;
ba5f2f8a 1935
1986bccd
AS
1936 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1937
1938 /* If the last word was not a valid number then
1939 treat it as a file name with spaces in. */
1940 if (argv[1] == endptr)
1941 error (_("Invalid download offset:%s."), argv[1]);
1942
1943 if (argv[2] != NULL)
1944 error (_("Too many parameters."));
917317f4 1945 }
c906108c 1946
917317f4 1947 /* Open the file for loading. */
c906108c
SS
1948 loadfile_bfd = bfd_openr (filename, gnutarget);
1949 if (loadfile_bfd == NULL)
1950 {
1951 perror_with_name (filename);
1952 return;
1953 }
917317f4 1954
c906108c
SS
1955 /* FIXME: should be checking for errors from bfd_close (for one thing,
1956 on error it does not free all the storage associated with the
1957 bfd). */
5c65bbb6 1958 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1959
c5aa993b 1960 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1961 {
8a3fe4f8 1962 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1963 bfd_errmsg (bfd_get_error ()));
1964 }
c5aa993b 1965
5417f6dc 1966 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1967 (void *) &total_progress.total_size);
1968
1969 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1970
2b71414d 1971 gettimeofday (&start_time, NULL);
c906108c 1972
a76d924d
DJ
1973 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1974 load_progress) != 0)
1975 error (_("Load failed"));
c906108c 1976
2b71414d 1977 gettimeofday (&end_time, NULL);
ba5f2f8a 1978
e4f9b4d5 1979 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1980 ui_out_text (uiout, "Start address ");
1981 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1982 ui_out_text (uiout, ", load size ");
a76d924d 1983 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1984 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1985 /* We were doing this in remote-mips.c, I suspect it is right
1986 for other targets too. */
fb14de7b 1987 regcache_write_pc (get_current_regcache (), entry);
c906108c 1988
7ca9f392
AC
1989 /* FIXME: are we supposed to call symbol_file_add or not? According
1990 to a comment from remote-mips.c (where a call to symbol_file_add
1991 was commented out), making the call confuses GDB if more than one
1992 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1993 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1994
a76d924d
DJ
1995 print_transfer_performance (gdb_stdout, total_progress.data_count,
1996 total_progress.write_count,
1997 &start_time, &end_time);
c906108c
SS
1998
1999 do_cleanups (old_cleanups);
2000}
2001
2002/* Report how fast the transfer went. */
2003
917317f4
JM
2004/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2005 replaced by print_transfer_performance (with a very different
2006 function signature). */
2007
c906108c 2008void
fba45db2
KB
2009report_transfer_performance (unsigned long data_count, time_t start_time,
2010 time_t end_time)
c906108c 2011{
2b71414d
DJ
2012 struct timeval start, end;
2013
2014 start.tv_sec = start_time;
2015 start.tv_usec = 0;
2016 end.tv_sec = end_time;
2017 end.tv_usec = 0;
2018
2019 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2020}
2021
2022void
d9fcf2fb 2023print_transfer_performance (struct ui_file *stream,
917317f4
JM
2024 unsigned long data_count,
2025 unsigned long write_count,
2b71414d
DJ
2026 const struct timeval *start_time,
2027 const struct timeval *end_time)
917317f4 2028{
9f43d28c 2029 ULONGEST time_count;
2b71414d
DJ
2030
2031 /* Compute the elapsed time in milliseconds, as a tradeoff between
2032 accuracy and overflow. */
2033 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2034 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2035
8b93c638
JM
2036 ui_out_text (uiout, "Transfer rate: ");
2037 if (time_count > 0)
2038 {
9f43d28c
DJ
2039 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2040
2041 if (ui_out_is_mi_like_p (uiout))
2042 {
2043 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2044 ui_out_text (uiout, " bits/sec");
2045 }
2046 else if (rate < 1024)
2047 {
2048 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2049 ui_out_text (uiout, " bytes/sec");
2050 }
2051 else
2052 {
2053 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2054 ui_out_text (uiout, " KB/sec");
2055 }
8b93c638
JM
2056 }
2057 else
2058 {
ba5f2f8a 2059 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2060 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2061 }
2062 if (write_count > 0)
2063 {
2064 ui_out_text (uiout, ", ");
ba5f2f8a 2065 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2066 ui_out_text (uiout, " bytes/write");
2067 }
2068 ui_out_text (uiout, ".\n");
c906108c
SS
2069}
2070
2071/* This function allows the addition of incrementally linked object files.
2072 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2073/* Note: ezannoni 2000-04-13 This function/command used to have a
2074 special case syntax for the rombug target (Rombug is the boot
2075 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2076 rombug case, the user doesn't need to supply a text address,
2077 instead a call to target_link() (in target.c) would supply the
2078 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2079
c906108c 2080static void
fba45db2 2081add_symbol_file_command (char *args, int from_tty)
c906108c 2082{
db162d44 2083 char *filename = NULL;
2df3850c 2084 int flags = OBJF_USERLOADED;
c906108c 2085 char *arg;
2acceee2 2086 int expecting_option = 0;
db162d44 2087 int section_index = 0;
2acceee2
JM
2088 int argcnt = 0;
2089 int sec_num = 0;
2090 int i;
db162d44
EZ
2091 int expecting_sec_name = 0;
2092 int expecting_sec_addr = 0;
5b96932b 2093 char **argv;
db162d44 2094
a39a16c4 2095 struct sect_opt
2acceee2 2096 {
2acceee2
JM
2097 char *name;
2098 char *value;
a39a16c4 2099 };
db162d44 2100
a39a16c4
MM
2101 struct section_addr_info *section_addrs;
2102 struct sect_opt *sect_opts = NULL;
2103 size_t num_sect_opts = 0;
3017564a 2104 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2105
a39a16c4 2106 num_sect_opts = 16;
5417f6dc 2107 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2108 * sizeof (struct sect_opt));
2109
c906108c
SS
2110 dont_repeat ();
2111
2112 if (args == NULL)
8a3fe4f8 2113 error (_("add-symbol-file takes a file name and an address"));
c906108c 2114
d1a41061 2115 argv = gdb_buildargv (args);
5b96932b 2116 make_cleanup_freeargv (argv);
db162d44 2117
5b96932b
AS
2118 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2119 {
2120 /* Process the argument. */
db162d44 2121 if (argcnt == 0)
c906108c 2122 {
db162d44
EZ
2123 /* The first argument is the file name. */
2124 filename = tilde_expand (arg);
3017564a 2125 make_cleanup (xfree, filename);
c906108c 2126 }
db162d44 2127 else
7a78ae4e
ND
2128 if (argcnt == 1)
2129 {
2130 /* The second argument is always the text address at which
2131 to load the program. */
2132 sect_opts[section_index].name = ".text";
2133 sect_opts[section_index].value = arg;
f414f22f 2134 if (++section_index >= num_sect_opts)
a39a16c4
MM
2135 {
2136 num_sect_opts *= 2;
5417f6dc 2137 sect_opts = ((struct sect_opt *)
a39a16c4 2138 xrealloc (sect_opts,
5417f6dc 2139 num_sect_opts
a39a16c4
MM
2140 * sizeof (struct sect_opt)));
2141 }
7a78ae4e
ND
2142 }
2143 else
2144 {
2145 /* It's an option (starting with '-') or it's an argument
2146 to an option */
2147
2148 if (*arg == '-')
2149 {
78a4a9b9
AC
2150 if (strcmp (arg, "-readnow") == 0)
2151 flags |= OBJF_READNOW;
2152 else if (strcmp (arg, "-s") == 0)
2153 {
2154 expecting_sec_name = 1;
2155 expecting_sec_addr = 1;
2156 }
7a78ae4e
ND
2157 }
2158 else
2159 {
2160 if (expecting_sec_name)
db162d44 2161 {
7a78ae4e
ND
2162 sect_opts[section_index].name = arg;
2163 expecting_sec_name = 0;
db162d44
EZ
2164 }
2165 else
7a78ae4e
ND
2166 if (expecting_sec_addr)
2167 {
2168 sect_opts[section_index].value = arg;
2169 expecting_sec_addr = 0;
f414f22f 2170 if (++section_index >= num_sect_opts)
a39a16c4
MM
2171 {
2172 num_sect_opts *= 2;
5417f6dc 2173 sect_opts = ((struct sect_opt *)
a39a16c4 2174 xrealloc (sect_opts,
5417f6dc 2175 num_sect_opts
a39a16c4
MM
2176 * sizeof (struct sect_opt)));
2177 }
7a78ae4e
ND
2178 }
2179 else
8a3fe4f8 2180 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2181 }
2182 }
c906108c 2183 }
c906108c 2184
927890d0
JB
2185 /* This command takes at least two arguments. The first one is a
2186 filename, and the second is the address where this file has been
2187 loaded. Abort now if this address hasn't been provided by the
2188 user. */
2189 if (section_index < 1)
2190 error (_("The address where %s has been loaded is missing"), filename);
2191
db162d44
EZ
2192 /* Print the prompt for the query below. And save the arguments into
2193 a sect_addr_info structure to be passed around to other
2194 functions. We have to split this up into separate print
bb599908 2195 statements because hex_string returns a local static
db162d44 2196 string. */
5417f6dc 2197
a3f17187 2198 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2199 section_addrs = alloc_section_addr_info (section_index);
2200 make_cleanup (xfree, section_addrs);
db162d44 2201 for (i = 0; i < section_index; i++)
c906108c 2202 {
db162d44
EZ
2203 CORE_ADDR addr;
2204 char *val = sect_opts[i].value;
2205 char *sec = sect_opts[i].name;
5417f6dc 2206
ae822768 2207 addr = parse_and_eval_address (val);
db162d44 2208
db162d44
EZ
2209 /* Here we store the section offsets in the order they were
2210 entered on the command line. */
a39a16c4
MM
2211 section_addrs->other[sec_num].name = sec;
2212 section_addrs->other[sec_num].addr = addr;
35076fa0 2213 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
db162d44
EZ
2214 sec_num++;
2215
5417f6dc 2216 /* The object's sections are initialized when a
db162d44 2217 call is made to build_objfile_section_table (objfile).
5417f6dc 2218 This happens in reread_symbols.
db162d44
EZ
2219 At this point, we don't know what file type this is,
2220 so we can't determine what section names are valid. */
2acceee2 2221 }
db162d44 2222
2acceee2 2223 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2224 error (_("Not confirmed."));
c906108c 2225
7eedccfa
PP
2226 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2227 section_addrs, flags);
c906108c
SS
2228
2229 /* Getting new symbols may change our opinion about what is
2230 frameless. */
2231 reinit_frame_cache ();
db162d44 2232 do_cleanups (my_cleanups);
c906108c
SS
2233}
2234\f
70992597 2235
c906108c
SS
2236/* Re-read symbols if a symbol-file has changed. */
2237void
fba45db2 2238reread_symbols (void)
c906108c
SS
2239{
2240 struct objfile *objfile;
2241 long new_modtime;
2242 int reread_one = 0;
2243 struct stat new_statbuf;
2244 int res;
2245
2246 /* With the addition of shared libraries, this should be modified,
2247 the load time should be saved in the partial symbol tables, since
2248 different tables may come from different source files. FIXME.
2249 This routine should then walk down each partial symbol table
2250 and see if the symbol table that it originates from has been changed */
2251
c5aa993b
JM
2252 for (objfile = object_files; objfile; objfile = objfile->next)
2253 {
2254 if (objfile->obfd)
2255 {
52d16ba8 2256#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2257 /* If this object is from a shared library, then you should
2258 stat on the library name, not member name. */
c906108c 2259
c5aa993b
JM
2260 if (objfile->obfd->my_archive)
2261 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2262 else
c906108c 2263#endif
c5aa993b
JM
2264 res = stat (objfile->name, &new_statbuf);
2265 if (res != 0)
c906108c 2266 {
c5aa993b 2267 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2268 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2269 objfile->name);
2270 continue;
c906108c 2271 }
c5aa993b
JM
2272 new_modtime = new_statbuf.st_mtime;
2273 if (new_modtime != objfile->mtime)
c906108c 2274 {
c5aa993b
JM
2275 struct cleanup *old_cleanups;
2276 struct section_offsets *offsets;
2277 int num_offsets;
c5aa993b
JM
2278 char *obfd_filename;
2279
a3f17187 2280 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2281 objfile->name);
2282
2283 /* There are various functions like symbol_file_add,
2284 symfile_bfd_open, syms_from_objfile, etc., which might
2285 appear to do what we want. But they have various other
2286 effects which we *don't* want. So we just do stuff
2287 ourselves. We don't worry about mapped files (for one thing,
2288 any mapped file will be out of date). */
2289
2290 /* If we get an error, blow away this objfile (not sure if
2291 that is the correct response for things like shared
2292 libraries). */
74b7792f 2293 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2294 /* We need to do this whenever any symbols go away. */
74b7792f 2295 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2296
b2de52bb
JK
2297 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2298 bfd_get_filename (exec_bfd)) == 0)
2299 {
2300 /* Reload EXEC_BFD without asking anything. */
2301
2302 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2303 }
2304
c5aa993b
JM
2305 /* Clean up any state BFD has sitting around. We don't need
2306 to close the descriptor but BFD lacks a way of closing the
2307 BFD without closing the descriptor. */
2308 obfd_filename = bfd_get_filename (objfile->obfd);
2309 if (!bfd_close (objfile->obfd))
8a3fe4f8 2310 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2311 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2312 if (remote_filename_p (obfd_filename))
2313 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2314 else
2315 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2316 if (objfile->obfd == NULL)
8a3fe4f8 2317 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2318 /* bfd_openr sets cacheable to true, which is what we want. */
2319 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2320 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2321 bfd_errmsg (bfd_get_error ()));
2322
2323 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2324 objfile_obstack. */
c5aa993b 2325 num_offsets = objfile->num_sections;
5417f6dc 2326 offsets = ((struct section_offsets *)
a39a16c4 2327 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2328 memcpy (offsets, objfile->section_offsets,
a39a16c4 2329 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2330
ae5a43e0
DJ
2331 /* Remove any references to this objfile in the global
2332 value lists. */
2333 preserve_values (objfile);
2334
c5aa993b
JM
2335 /* Nuke all the state that we will re-read. Much of the following
2336 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2337 other parts of GDB that there is nothing currently there.
2338
2339 Try to keep the freeing order compatible with free_objfile. */
2340
2341 if (objfile->sf != NULL)
2342 {
2343 (*objfile->sf->sym_finish) (objfile);
2344 }
2345
2346 clear_objfile_data (objfile);
c5aa993b
JM
2347
2348 /* FIXME: Do we have to free a whole linked list, or is this
2349 enough? */
2350 if (objfile->global_psymbols.list)
2dc74dc1 2351 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2352 memset (&objfile->global_psymbols, 0,
2353 sizeof (objfile->global_psymbols));
2354 if (objfile->static_psymbols.list)
2dc74dc1 2355 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2356 memset (&objfile->static_psymbols, 0,
2357 sizeof (objfile->static_psymbols));
2358
2359 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2360 bcache_xfree (objfile->psymbol_cache);
2361 objfile->psymbol_cache = bcache_xmalloc ();
2362 bcache_xfree (objfile->macro_cache);
2363 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2364 if (objfile->demangled_names_hash != NULL)
2365 {
2366 htab_delete (objfile->demangled_names_hash);
2367 objfile->demangled_names_hash = NULL;
2368 }
b99607ea 2369 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2370 objfile->sections = NULL;
2371 objfile->symtabs = NULL;
2372 objfile->psymtabs = NULL;
930123b7 2373 objfile->psymtabs_addrmap = NULL;
c5aa993b 2374 objfile->free_psymtabs = NULL;
a1b8c067 2375 objfile->cp_namespace_symtab = NULL;
c5aa993b 2376 objfile->msymbols = NULL;
0a6ddd08 2377 objfile->deprecated_sym_private = NULL;
c5aa993b 2378 objfile->minimal_symbol_count = 0;
0a83117a
MS
2379 memset (&objfile->msymbol_hash, 0,
2380 sizeof (objfile->msymbol_hash));
2381 memset (&objfile->msymbol_demangled_hash, 0,
2382 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2383
af5f3db6
AC
2384 objfile->psymbol_cache = bcache_xmalloc ();
2385 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2386 /* obstack_init also initializes the obstack so it is
2387 empty. We could use obstack_specify_allocation but
2388 gdb_obstack.h specifies the alloc/dealloc
2389 functions. */
2390 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2391 if (build_objfile_section_table (objfile))
2392 {
8a3fe4f8 2393 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2394 objfile->name, bfd_errmsg (bfd_get_error ()));
2395 }
15831452 2396 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2397
2398 /* We use the same section offsets as from last time. I'm not
2399 sure whether that is always correct for shared libraries. */
2400 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2401 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2402 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2403 memcpy (objfile->section_offsets, offsets,
a39a16c4 2404 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2405 objfile->num_sections = num_offsets;
2406
2407 /* What the hell is sym_new_init for, anyway? The concept of
2408 distinguishing between the main file and additional files
2409 in this way seems rather dubious. */
2410 if (objfile == symfile_objfile)
2411 {
2412 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2413 }
2414
2415 (*objfile->sf->sym_init) (objfile);
b9caf505 2416 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2417 /* The "mainline" parameter is a hideous hack; I think leaving it
2418 zero is OK since dbxread.c also does what it needs to do if
2419 objfile->global_psymbols.size is 0. */
96baa820 2420 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2421 if (!have_partial_symbols () && !have_full_symbols ())
2422 {
2423 wrap_here ("");
a3f17187 2424 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2425 wrap_here ("");
2426 }
c5aa993b
JM
2427
2428 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2429 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2430
c5aa993b
JM
2431 /* Getting new symbols may change our opinion about what is
2432 frameless. */
c906108c 2433
c5aa993b 2434 reinit_frame_cache ();
c906108c 2435
c5aa993b
JM
2436 /* Discard cleanups as symbol reading was successful. */
2437 discard_cleanups (old_cleanups);
c906108c 2438
c5aa993b
JM
2439 /* If the mtime has changed between the time we set new_modtime
2440 and now, we *want* this to be out of date, so don't call stat
2441 again now. */
2442 objfile->mtime = new_modtime;
2443 reread_one = 1;
5b5d99cf 2444 reread_separate_symbols (objfile);
6528a9ea 2445 init_entry_point_info (objfile);
c5aa993b 2446 }
c906108c
SS
2447 }
2448 }
c906108c
SS
2449
2450 if (reread_one)
ea53e89f
JB
2451 {
2452 clear_symtab_users ();
2453 /* At least one objfile has changed, so we can consider that
2454 the executable we're debugging has changed too. */
781b42b0 2455 observer_notify_executable_changed ();
ea53e89f
JB
2456 }
2457
c906108c 2458}
5b5d99cf
JB
2459
2460
2461/* Handle separate debug info for OBJFILE, which has just been
2462 re-read:
2463 - If we had separate debug info before, but now we don't, get rid
2464 of the separated objfile.
2465 - If we didn't have separated debug info before, but now we do,
2466 read in the new separated debug info file.
2467 - If the debug link points to a different file, toss the old one
2468 and read the new one.
2469 This function does *not* handle the case where objfile is still
2470 using the same separate debug info file, but that file's timestamp
2471 has changed. That case should be handled by the loop in
2472 reread_symbols already. */
2473static void
2474reread_separate_symbols (struct objfile *objfile)
2475{
2476 char *debug_file;
2477 unsigned long crc32;
2478
2479 /* Does the updated objfile's debug info live in a
2480 separate file? */
2481 debug_file = find_separate_debug_file (objfile);
2482
2483 if (objfile->separate_debug_objfile)
2484 {
2485 /* There are two cases where we need to get rid of
2486 the old separated debug info objfile:
2487 - if the new primary objfile doesn't have
2488 separated debug info, or
2489 - if the new primary objfile has separate debug
2490 info, but it's under a different filename.
5417f6dc 2491
5b5d99cf
JB
2492 If the old and new objfiles both have separate
2493 debug info, under the same filename, then we're
2494 okay --- if the separated file's contents have
2495 changed, we will have caught that when we
2496 visited it in this function's outermost
2497 loop. */
2498 if (! debug_file
2499 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2500 free_objfile (objfile->separate_debug_objfile);
2501 }
2502
2503 /* If the new objfile has separate debug info, and we
2504 haven't loaded it already, do so now. */
2505 if (debug_file
2506 && ! objfile->separate_debug_objfile)
2507 {
2508 /* Use the same section offset table as objfile itself.
2509 Preserve the flags from objfile that make sense. */
2510 objfile->separate_debug_objfile
2511 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2512 (symfile_bfd_open (debug_file),
7eedccfa 2513 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2514 0, /* No addr table. */
2515 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2516 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2517 | OBJF_USERLOADED)));
2518 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2519 = objfile;
2520 }
73780b3c
MS
2521 if (debug_file)
2522 xfree (debug_file);
5b5d99cf
JB
2523}
2524
2525
c906108c
SS
2526\f
2527
c5aa993b
JM
2528
2529typedef struct
2530{
2531 char *ext;
c906108c 2532 enum language lang;
c5aa993b
JM
2533}
2534filename_language;
c906108c 2535
c5aa993b 2536static filename_language *filename_language_table;
c906108c
SS
2537static int fl_table_size, fl_table_next;
2538
2539static void
fba45db2 2540add_filename_language (char *ext, enum language lang)
c906108c
SS
2541{
2542 if (fl_table_next >= fl_table_size)
2543 {
2544 fl_table_size += 10;
5417f6dc 2545 filename_language_table =
25bf3106
PM
2546 xrealloc (filename_language_table,
2547 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2548 }
2549
4fcf66da 2550 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2551 filename_language_table[fl_table_next].lang = lang;
2552 fl_table_next++;
2553}
2554
2555static char *ext_args;
920d2a44
AC
2556static void
2557show_ext_args (struct ui_file *file, int from_tty,
2558 struct cmd_list_element *c, const char *value)
2559{
2560 fprintf_filtered (file, _("\
2561Mapping between filename extension and source language is \"%s\".\n"),
2562 value);
2563}
c906108c
SS
2564
2565static void
26c41df3 2566set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2567{
2568 int i;
2569 char *cp = ext_args;
2570 enum language lang;
2571
2572 /* First arg is filename extension, starting with '.' */
2573 if (*cp != '.')
8a3fe4f8 2574 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2575
2576 /* Find end of first arg. */
c5aa993b 2577 while (*cp && !isspace (*cp))
c906108c
SS
2578 cp++;
2579
2580 if (*cp == '\0')
8a3fe4f8 2581 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2582 ext_args);
2583
2584 /* Null-terminate first arg */
c5aa993b 2585 *cp++ = '\0';
c906108c
SS
2586
2587 /* Find beginning of second arg, which should be a source language. */
2588 while (*cp && isspace (*cp))
2589 cp++;
2590
2591 if (*cp == '\0')
8a3fe4f8 2592 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2593 ext_args);
2594
2595 /* Lookup the language from among those we know. */
2596 lang = language_enum (cp);
2597
2598 /* Now lookup the filename extension: do we already know it? */
2599 for (i = 0; i < fl_table_next; i++)
2600 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2601 break;
2602
2603 if (i >= fl_table_next)
2604 {
2605 /* new file extension */
2606 add_filename_language (ext_args, lang);
2607 }
2608 else
2609 {
2610 /* redefining a previously known filename extension */
2611
2612 /* if (from_tty) */
2613 /* query ("Really make files of type %s '%s'?", */
2614 /* ext_args, language_str (lang)); */
2615
b8c9b27d 2616 xfree (filename_language_table[i].ext);
4fcf66da 2617 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2618 filename_language_table[i].lang = lang;
2619 }
2620}
2621
2622static void
fba45db2 2623info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2624{
2625 int i;
2626
a3f17187 2627 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2628 printf_filtered ("\n\n");
2629 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2630 printf_filtered ("\t%s\t- %s\n",
2631 filename_language_table[i].ext,
c906108c
SS
2632 language_str (filename_language_table[i].lang));
2633}
2634
2635static void
fba45db2 2636init_filename_language_table (void)
c906108c
SS
2637{
2638 if (fl_table_size == 0) /* protect against repetition */
2639 {
2640 fl_table_size = 20;
2641 fl_table_next = 0;
c5aa993b 2642 filename_language_table =
c906108c 2643 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2644 add_filename_language (".c", language_c);
2645 add_filename_language (".C", language_cplus);
2646 add_filename_language (".cc", language_cplus);
2647 add_filename_language (".cp", language_cplus);
2648 add_filename_language (".cpp", language_cplus);
2649 add_filename_language (".cxx", language_cplus);
2650 add_filename_language (".c++", language_cplus);
2651 add_filename_language (".java", language_java);
c906108c 2652 add_filename_language (".class", language_java);
da2cf7e0 2653 add_filename_language (".m", language_objc);
c5aa993b
JM
2654 add_filename_language (".f", language_fortran);
2655 add_filename_language (".F", language_fortran);
2656 add_filename_language (".s", language_asm);
aa707ed0 2657 add_filename_language (".sx", language_asm);
c5aa993b 2658 add_filename_language (".S", language_asm);
c6fd39cd
PM
2659 add_filename_language (".pas", language_pascal);
2660 add_filename_language (".p", language_pascal);
2661 add_filename_language (".pp", language_pascal);
963a6417
PH
2662 add_filename_language (".adb", language_ada);
2663 add_filename_language (".ads", language_ada);
2664 add_filename_language (".a", language_ada);
2665 add_filename_language (".ada", language_ada);
c906108c
SS
2666 }
2667}
2668
2669enum language
fba45db2 2670deduce_language_from_filename (char *filename)
c906108c
SS
2671{
2672 int i;
2673 char *cp;
2674
2675 if (filename != NULL)
2676 if ((cp = strrchr (filename, '.')) != NULL)
2677 for (i = 0; i < fl_table_next; i++)
2678 if (strcmp (cp, filename_language_table[i].ext) == 0)
2679 return filename_language_table[i].lang;
2680
2681 return language_unknown;
2682}
2683\f
2684/* allocate_symtab:
2685
2686 Allocate and partly initialize a new symbol table. Return a pointer
2687 to it. error() if no space.
2688
2689 Caller must set these fields:
c5aa993b
JM
2690 LINETABLE(symtab)
2691 symtab->blockvector
2692 symtab->dirname
2693 symtab->free_code
2694 symtab->free_ptr
2695 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2696 */
2697
2698struct symtab *
fba45db2 2699allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2700{
52f0bd74 2701 struct symtab *symtab;
c906108c
SS
2702
2703 symtab = (struct symtab *)
4a146b47 2704 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2705 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2706 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2707 &objfile->objfile_obstack);
c5aa993b
JM
2708 symtab->fullname = NULL;
2709 symtab->language = deduce_language_from_filename (filename);
2710 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2711 &objfile->objfile_obstack);
c906108c
SS
2712
2713 /* Hook it to the objfile it comes from */
2714
c5aa993b
JM
2715 symtab->objfile = objfile;
2716 symtab->next = objfile->symtabs;
2717 objfile->symtabs = symtab;
c906108c 2718
c906108c
SS
2719 return (symtab);
2720}
2721
2722struct partial_symtab *
fba45db2 2723allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2724{
2725 struct partial_symtab *psymtab;
2726
c5aa993b 2727 if (objfile->free_psymtabs)
c906108c 2728 {
c5aa993b
JM
2729 psymtab = objfile->free_psymtabs;
2730 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2731 }
2732 else
2733 psymtab = (struct partial_symtab *)
8b92e4d5 2734 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2735 sizeof (struct partial_symtab));
2736
2737 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2738 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2739 &objfile->objfile_obstack);
c5aa993b 2740 psymtab->symtab = NULL;
c906108c
SS
2741
2742 /* Prepend it to the psymtab list for the objfile it belongs to.
2743 Psymtabs are searched in most recent inserted -> least recent
2744 inserted order. */
2745
c5aa993b
JM
2746 psymtab->objfile = objfile;
2747 psymtab->next = objfile->psymtabs;
2748 objfile->psymtabs = psymtab;
c906108c
SS
2749#if 0
2750 {
2751 struct partial_symtab **prev_pst;
c5aa993b
JM
2752 psymtab->objfile = objfile;
2753 psymtab->next = NULL;
2754 prev_pst = &(objfile->psymtabs);
c906108c 2755 while ((*prev_pst) != NULL)
c5aa993b 2756 prev_pst = &((*prev_pst)->next);
c906108c 2757 (*prev_pst) = psymtab;
c5aa993b 2758 }
c906108c 2759#endif
c5aa993b 2760
c906108c
SS
2761 return (psymtab);
2762}
2763
2764void
fba45db2 2765discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2766{
2767 struct partial_symtab **prev_pst;
2768
2769 /* From dbxread.c:
2770 Empty psymtabs happen as a result of header files which don't
2771 have any symbols in them. There can be a lot of them. But this
2772 check is wrong, in that a psymtab with N_SLINE entries but
2773 nothing else is not empty, but we don't realize that. Fixing
2774 that without slowing things down might be tricky. */
2775
2776 /* First, snip it out of the psymtab chain */
2777
2778 prev_pst = &(pst->objfile->psymtabs);
2779 while ((*prev_pst) != pst)
2780 prev_pst = &((*prev_pst)->next);
2781 (*prev_pst) = pst->next;
2782
2783 /* Next, put it on a free list for recycling */
2784
2785 pst->next = pst->objfile->free_psymtabs;
2786 pst->objfile->free_psymtabs = pst;
2787}
c906108c 2788\f
c5aa993b 2789
c906108c
SS
2790/* Reset all data structures in gdb which may contain references to symbol
2791 table data. */
2792
2793void
fba45db2 2794clear_symtab_users (void)
c906108c
SS
2795{
2796 /* Someday, we should do better than this, by only blowing away
2797 the things that really need to be blown. */
c0501be5
DJ
2798
2799 /* Clear the "current" symtab first, because it is no longer valid.
2800 breakpoint_re_set may try to access the current symtab. */
2801 clear_current_source_symtab_and_line ();
2802
c906108c 2803 clear_displays ();
c906108c
SS
2804 breakpoint_re_set ();
2805 set_default_breakpoint (0, 0, 0, 0);
c906108c 2806 clear_pc_function_cache ();
06d3b283 2807 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2808
2809 /* Clear globals which might have pointed into a removed objfile.
2810 FIXME: It's not clear which of these are supposed to persist
2811 between expressions and which ought to be reset each time. */
2812 expression_context_block = NULL;
2813 innermost_block = NULL;
8756216b
DP
2814
2815 /* Varobj may refer to old symbols, perform a cleanup. */
2816 varobj_invalidate ();
2817
c906108c
SS
2818}
2819
74b7792f
AC
2820static void
2821clear_symtab_users_cleanup (void *ignore)
2822{
2823 clear_symtab_users ();
2824}
2825
c906108c
SS
2826/* clear_symtab_users_once:
2827
2828 This function is run after symbol reading, or from a cleanup.
2829 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2830 has been blown away, but the other GDB data structures that may
c906108c
SS
2831 reference it have not yet been cleared or re-directed. (The old
2832 symtab was zapped, and the cleanup queued, in free_named_symtab()
2833 below.)
2834
2835 This function can be queued N times as a cleanup, or called
2836 directly; it will do all the work the first time, and then will be a
2837 no-op until the next time it is queued. This works by bumping a
2838 counter at queueing time. Much later when the cleanup is run, or at
2839 the end of symbol processing (in case the cleanup is discarded), if
2840 the queued count is greater than the "done-count", we do the work
2841 and set the done-count to the queued count. If the queued count is
2842 less than or equal to the done-count, we just ignore the call. This
2843 is needed because reading a single .o file will often replace many
2844 symtabs (one per .h file, for example), and we don't want to reset
2845 the breakpoints N times in the user's face.
2846
2847 The reason we both queue a cleanup, and call it directly after symbol
2848 reading, is because the cleanup protects us in case of errors, but is
2849 discarded if symbol reading is successful. */
2850
2851#if 0
2852/* FIXME: As free_named_symtabs is currently a big noop this function
2853 is no longer needed. */
a14ed312 2854static void clear_symtab_users_once (void);
c906108c
SS
2855
2856static int clear_symtab_users_queued;
2857static int clear_symtab_users_done;
2858
2859static void
fba45db2 2860clear_symtab_users_once (void)
c906108c
SS
2861{
2862 /* Enforce once-per-`do_cleanups'-semantics */
2863 if (clear_symtab_users_queued <= clear_symtab_users_done)
2864 return;
2865 clear_symtab_users_done = clear_symtab_users_queued;
2866
2867 clear_symtab_users ();
2868}
2869#endif
2870
2871/* Delete the specified psymtab, and any others that reference it. */
2872
2873static void
fba45db2 2874cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2875{
2876 struct partial_symtab *ps, *pprev = NULL;
2877 int i;
2878
2879 /* Find its previous psymtab in the chain */
c5aa993b
JM
2880 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2881 {
2882 if (ps == pst)
2883 break;
2884 pprev = ps;
2885 }
c906108c 2886
c5aa993b
JM
2887 if (ps)
2888 {
2889 /* Unhook it from the chain. */
2890 if (ps == pst->objfile->psymtabs)
2891 pst->objfile->psymtabs = ps->next;
2892 else
2893 pprev->next = ps->next;
2894
2895 /* FIXME, we can't conveniently deallocate the entries in the
2896 partial_symbol lists (global_psymbols/static_psymbols) that
2897 this psymtab points to. These just take up space until all
2898 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2899 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2900
2901 /* We need to cashier any psymtab that has this one as a dependency... */
2902 again:
2903 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2904 {
2905 for (i = 0; i < ps->number_of_dependencies; i++)
2906 {
2907 if (ps->dependencies[i] == pst)
2908 {
2909 cashier_psymtab (ps);
2910 goto again; /* Must restart, chain has been munged. */
2911 }
2912 }
c906108c 2913 }
c906108c 2914 }
c906108c
SS
2915}
2916
2917/* If a symtab or psymtab for filename NAME is found, free it along
2918 with any dependent breakpoints, displays, etc.
2919 Used when loading new versions of object modules with the "add-file"
2920 command. This is only called on the top-level symtab or psymtab's name;
2921 it is not called for subsidiary files such as .h files.
2922
2923 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2924 FIXME. The return value appears to never be used.
c906108c
SS
2925
2926 FIXME. I think this is not the best way to do this. We should
2927 work on being gentler to the environment while still cleaning up
2928 all stray pointers into the freed symtab. */
2929
2930int
fba45db2 2931free_named_symtabs (char *name)
c906108c
SS
2932{
2933#if 0
2934 /* FIXME: With the new method of each objfile having it's own
2935 psymtab list, this function needs serious rethinking. In particular,
2936 why was it ever necessary to toss psymtabs with specific compilation
2937 unit filenames, as opposed to all psymtabs from a particular symbol
2938 file? -- fnf
2939 Well, the answer is that some systems permit reloading of particular
2940 compilation units. We want to blow away any old info about these
2941 compilation units, regardless of which objfiles they arrived in. --gnu. */
2942
52f0bd74
AC
2943 struct symtab *s;
2944 struct symtab *prev;
2945 struct partial_symtab *ps;
c906108c
SS
2946 struct blockvector *bv;
2947 int blewit = 0;
2948
2949 /* We only wack things if the symbol-reload switch is set. */
2950 if (!symbol_reloading)
2951 return 0;
2952
2953 /* Some symbol formats have trouble providing file names... */
2954 if (name == 0 || *name == '\0')
2955 return 0;
2956
2957 /* Look for a psymtab with the specified name. */
2958
2959again2:
c5aa993b
JM
2960 for (ps = partial_symtab_list; ps; ps = ps->next)
2961 {
6314a349 2962 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2963 {
2964 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2965 goto again2; /* Must restart, chain has been munged */
2966 }
c906108c 2967 }
c906108c
SS
2968
2969 /* Look for a symtab with the specified name. */
2970
2971 for (s = symtab_list; s; s = s->next)
2972 {
6314a349 2973 if (strcmp (name, s->filename) == 0)
c906108c
SS
2974 break;
2975 prev = s;
2976 }
2977
2978 if (s)
2979 {
2980 if (s == symtab_list)
2981 symtab_list = s->next;
2982 else
2983 prev->next = s->next;
2984
2985 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2986 or not they depend on the symtab being freed. This should be
2987 changed so that only those data structures affected are deleted. */
c906108c
SS
2988
2989 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2990 This test is necessary due to a bug in "dbxread.c" that
2991 causes empty symtabs to be created for N_SO symbols that
2992 contain the pathname of the object file. (This problem
2993 has been fixed in GDB 3.9x). */
c906108c
SS
2994
2995 bv = BLOCKVECTOR (s);
2996 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2997 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2998 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2999 {
e2e0b3e5 3000 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3001 name);
c906108c
SS
3002 clear_symtab_users_queued++;
3003 make_cleanup (clear_symtab_users_once, 0);
3004 blewit = 1;
c5aa993b
JM
3005 }
3006 else
e2e0b3e5
AC
3007 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3008 name);
c906108c
SS
3009
3010 free_symtab (s);
3011 }
3012 else
3013 {
3014 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3015 even though no symtab was found, since the file might have
3016 been compiled without debugging, and hence not be associated
3017 with a symtab. In order to handle this correctly, we would need
3018 to keep a list of text address ranges for undebuggable files.
3019 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3020 ;
3021 }
3022
3023 /* FIXME, what about the minimal symbol table? */
3024 return blewit;
3025#else
3026 return (0);
3027#endif
3028}
3029\f
3030/* Allocate and partially fill a partial symtab. It will be
3031 completely filled at the end of the symbol list.
3032
d4f3574e 3033 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3034
3035struct partial_symtab *
fba45db2
KB
3036start_psymtab_common (struct objfile *objfile,
3037 struct section_offsets *section_offsets, char *filename,
3038 CORE_ADDR textlow, struct partial_symbol **global_syms,
3039 struct partial_symbol **static_syms)
c906108c
SS
3040{
3041 struct partial_symtab *psymtab;
3042
3043 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3044 psymtab->section_offsets = section_offsets;
3045 psymtab->textlow = textlow;
3046 psymtab->texthigh = psymtab->textlow; /* default */
3047 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3048 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3049 return (psymtab);
3050}
3051\f
2e618c13
AR
3052/* Helper function, initialises partial symbol structure and stashes
3053 it into objfile's bcache. Note that our caching mechanism will
3054 use all fields of struct partial_symbol to determine hash value of the
3055 structure. In other words, having two symbols with the same name but
3056 different domain (or address) is possible and correct. */
3057
11d31d94 3058static const struct partial_symbol *
2e618c13
AR
3059add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3060 enum address_class class,
3061 long val, /* Value as a long */
3062 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3063 enum language language, struct objfile *objfile,
3064 int *added)
3065{
3066 char *buf = name;
3067 /* psymbol is static so that there will be no uninitialized gaps in the
3068 structure which might contain random data, causing cache misses in
3069 bcache. */
3070 static struct partial_symbol psymbol;
3071
3072 if (name[namelength] != '\0')
3073 {
3074 buf = alloca (namelength + 1);
3075 /* Create local copy of the partial symbol */
3076 memcpy (buf, name, namelength);
3077 buf[namelength] = '\0';
3078 }
3079 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3080 if (val != 0)
3081 {
3082 SYMBOL_VALUE (&psymbol) = val;
3083 }
3084 else
3085 {
3086 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3087 }
3088 SYMBOL_SECTION (&psymbol) = 0;
3089 SYMBOL_LANGUAGE (&psymbol) = language;
3090 PSYMBOL_DOMAIN (&psymbol) = domain;
3091 PSYMBOL_CLASS (&psymbol) = class;
3092
3093 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3094
3095 /* Stash the partial symbol away in the cache */
11d31d94
TT
3096 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3097 objfile->psymbol_cache, added);
2e618c13
AR
3098}
3099
3100/* Helper function, adds partial symbol to the given partial symbol
3101 list. */
3102
3103static void
3104append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3105 const struct partial_symbol *psym,
2e618c13
AR
3106 struct objfile *objfile)
3107{
3108 if (list->next >= list->list + list->size)
3109 extend_psymbol_list (list, objfile);
11d31d94 3110 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3111 OBJSTAT (objfile, n_psyms++);
3112}
3113
c906108c 3114/* Add a symbol with a long value to a psymtab.
5417f6dc 3115 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3116 Return the partial symbol that has been added. */
3117
3118/* NOTE: carlton/2003-09-11: The reason why we return the partial
3119 symbol is so that callers can get access to the symbol's demangled
3120 name, which they don't have any cheap way to determine otherwise.
3121 (Currenly, dwarf2read.c is the only file who uses that information,
3122 though it's possible that other readers might in the future.)
3123 Elena wasn't thrilled about that, and I don't blame her, but we
3124 couldn't come up with a better way to get that information. If
3125 it's needed in other situations, we could consider breaking up
3126 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3127 cache. */
3128
3129const struct partial_symbol *
176620f1 3130add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3131 enum address_class class,
2e618c13
AR
3132 struct psymbol_allocation_list *list,
3133 long val, /* Value as a long */
fba45db2
KB
3134 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3135 enum language language, struct objfile *objfile)
c906108c 3136{
11d31d94 3137 const struct partial_symbol *psym;
2de7ced7 3138
2e618c13 3139 int added;
c906108c
SS
3140
3141 /* Stash the partial symbol away in the cache */
2e618c13
AR
3142 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3143 val, coreaddr, language, objfile, &added);
c906108c 3144
2e618c13
AR
3145 /* Do not duplicate global partial symbols. */
3146 if (list == &objfile->global_psymbols
3147 && !added)
3148 return psym;
5c4e30ca 3149
2e618c13
AR
3150 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3151 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3152 return psym;
c906108c
SS
3153}
3154
c906108c
SS
3155/* Initialize storage for partial symbols. */
3156
3157void
fba45db2 3158init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3159{
3160 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3161
3162 if (objfile->global_psymbols.list)
c906108c 3163 {
2dc74dc1 3164 xfree (objfile->global_psymbols.list);
c906108c 3165 }
c5aa993b 3166 if (objfile->static_psymbols.list)
c906108c 3167 {
2dc74dc1 3168 xfree (objfile->static_psymbols.list);
c906108c 3169 }
c5aa993b 3170
c906108c
SS
3171 /* Current best guess is that approximately a twentieth
3172 of the total symbols (in a debugging file) are global or static
3173 oriented symbols */
c906108c 3174
c5aa993b
JM
3175 objfile->global_psymbols.size = total_symbols / 10;
3176 objfile->static_psymbols.size = total_symbols / 10;
3177
3178 if (objfile->global_psymbols.size > 0)
c906108c 3179 {
c5aa993b
JM
3180 objfile->global_psymbols.next =
3181 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3182 xmalloc ((objfile->global_psymbols.size
3183 * sizeof (struct partial_symbol *)));
c906108c 3184 }
c5aa993b 3185 if (objfile->static_psymbols.size > 0)
c906108c 3186 {
c5aa993b
JM
3187 objfile->static_psymbols.next =
3188 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3189 xmalloc ((objfile->static_psymbols.size
3190 * sizeof (struct partial_symbol *)));
c906108c
SS
3191 }
3192}
3193
3194/* OVERLAYS:
3195 The following code implements an abstraction for debugging overlay sections.
3196
3197 The target model is as follows:
3198 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3199 same VMA, each with its own unique LMA (or load address).
c906108c 3200 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3201 sections, one by one, from the load address into the VMA address.
5417f6dc 3202 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3203 sections should be considered to be mapped from the VMA to the LMA.
3204 This information is used for symbol lookup, and memory read/write.
5417f6dc 3205 For instance, if a section has been mapped then its contents
c5aa993b 3206 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3207
3208 Two levels of debugger support for overlays are available. One is
3209 "manual", in which the debugger relies on the user to tell it which
3210 overlays are currently mapped. This level of support is
3211 implemented entirely in the core debugger, and the information about
3212 whether a section is mapped is kept in the objfile->obj_section table.
3213
3214 The second level of support is "automatic", and is only available if
3215 the target-specific code provides functionality to read the target's
3216 overlay mapping table, and translate its contents for the debugger
3217 (by updating the mapped state information in the obj_section tables).
3218
3219 The interface is as follows:
c5aa993b
JM
3220 User commands:
3221 overlay map <name> -- tell gdb to consider this section mapped
3222 overlay unmap <name> -- tell gdb to consider this section unmapped
3223 overlay list -- list the sections that GDB thinks are mapped
3224 overlay read-target -- get the target's state of what's mapped
3225 overlay off/manual/auto -- set overlay debugging state
3226 Functional interface:
3227 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3228 section, return that section.
5417f6dc 3229 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3230 the pc, either in its VMA or its LMA
714835d5 3231 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3232 section_is_overlay(sect): true if section's VMA != LMA
3233 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3234 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3235 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3236 overlay_mapped_address(...): map an address from section's LMA to VMA
3237 overlay_unmapped_address(...): map an address from section's VMA to LMA
3238 symbol_overlayed_address(...): Return a "current" address for symbol:
3239 either in VMA or LMA depending on whether
3240 the symbol's section is currently mapped
c906108c
SS
3241 */
3242
3243/* Overlay debugging state: */
3244
d874f1e2 3245enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3246int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3247
c906108c 3248/* Function: section_is_overlay (SECTION)
5417f6dc 3249 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3250 SECTION is loaded at an address different from where it will "run". */
3251
3252int
714835d5 3253section_is_overlay (struct obj_section *section)
c906108c 3254{
714835d5
UW
3255 if (overlay_debugging && section)
3256 {
3257 bfd *abfd = section->objfile->obfd;
3258 asection *bfd_section = section->the_bfd_section;
3259
3260 if (bfd_section_lma (abfd, bfd_section) != 0
3261 && bfd_section_lma (abfd, bfd_section)
3262 != bfd_section_vma (abfd, bfd_section))
3263 return 1;
3264 }
c906108c
SS
3265
3266 return 0;
3267}
3268
3269/* Function: overlay_invalidate_all (void)
3270 Invalidate the mapped state of all overlay sections (mark it as stale). */
3271
3272static void
fba45db2 3273overlay_invalidate_all (void)
c906108c 3274{
c5aa993b 3275 struct objfile *objfile;
c906108c
SS
3276 struct obj_section *sect;
3277
3278 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3279 if (section_is_overlay (sect))
3280 sect->ovly_mapped = -1;
c906108c
SS
3281}
3282
714835d5 3283/* Function: section_is_mapped (SECTION)
5417f6dc 3284 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3285
3286 Access to the ovly_mapped flag is restricted to this function, so
3287 that we can do automatic update. If the global flag
3288 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3289 overlay_invalidate_all. If the mapped state of the particular
3290 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3291
714835d5
UW
3292int
3293section_is_mapped (struct obj_section *osect)
c906108c 3294{
9216df95
UW
3295 struct gdbarch *gdbarch;
3296
714835d5 3297 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3298 return 0;
3299
c5aa993b 3300 switch (overlay_debugging)
c906108c
SS
3301 {
3302 default:
d874f1e2 3303 case ovly_off:
c5aa993b 3304 return 0; /* overlay debugging off */
d874f1e2 3305 case ovly_auto: /* overlay debugging automatic */
1c772458 3306 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3307 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3308 gdbarch = get_objfile_arch (osect->objfile);
3309 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3310 {
3311 if (overlay_cache_invalid)
3312 {
3313 overlay_invalidate_all ();
3314 overlay_cache_invalid = 0;
3315 }
3316 if (osect->ovly_mapped == -1)
9216df95 3317 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3318 }
3319 /* fall thru to manual case */
d874f1e2 3320 case ovly_on: /* overlay debugging manual */
c906108c
SS
3321 return osect->ovly_mapped == 1;
3322 }
3323}
3324
c906108c
SS
3325/* Function: pc_in_unmapped_range
3326 If PC falls into the lma range of SECTION, return true, else false. */
3327
3328CORE_ADDR
714835d5 3329pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3330{
714835d5
UW
3331 if (section_is_overlay (section))
3332 {
3333 bfd *abfd = section->objfile->obfd;
3334 asection *bfd_section = section->the_bfd_section;
fbd35540 3335
714835d5
UW
3336 /* We assume the LMA is relocated by the same offset as the VMA. */
3337 bfd_vma size = bfd_get_section_size (bfd_section);
3338 CORE_ADDR offset = obj_section_offset (section);
3339
3340 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3341 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3342 return 1;
3343 }
c906108c 3344
c906108c
SS
3345 return 0;
3346}
3347
3348/* Function: pc_in_mapped_range
3349 If PC falls into the vma range of SECTION, return true, else false. */
3350
3351CORE_ADDR
714835d5 3352pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3353{
714835d5
UW
3354 if (section_is_overlay (section))
3355 {
3356 if (obj_section_addr (section) <= pc
3357 && pc < obj_section_endaddr (section))
3358 return 1;
3359 }
c906108c 3360
c906108c
SS
3361 return 0;
3362}
3363
9ec8e6a0
JB
3364
3365/* Return true if the mapped ranges of sections A and B overlap, false
3366 otherwise. */
b9362cc7 3367static int
714835d5 3368sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3369{
714835d5
UW
3370 CORE_ADDR a_start = obj_section_addr (a);
3371 CORE_ADDR a_end = obj_section_endaddr (a);
3372 CORE_ADDR b_start = obj_section_addr (b);
3373 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3374
3375 return (a_start < b_end && b_start < a_end);
3376}
3377
c906108c
SS
3378/* Function: overlay_unmapped_address (PC, SECTION)
3379 Returns the address corresponding to PC in the unmapped (load) range.
3380 May be the same as PC. */
3381
3382CORE_ADDR
714835d5 3383overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3384{
714835d5
UW
3385 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3386 {
3387 bfd *abfd = section->objfile->obfd;
3388 asection *bfd_section = section->the_bfd_section;
fbd35540 3389
714835d5
UW
3390 return pc + bfd_section_lma (abfd, bfd_section)
3391 - bfd_section_vma (abfd, bfd_section);
3392 }
c906108c
SS
3393
3394 return pc;
3395}
3396
3397/* Function: overlay_mapped_address (PC, SECTION)
3398 Returns the address corresponding to PC in the mapped (runtime) range.
3399 May be the same as PC. */
3400
3401CORE_ADDR
714835d5 3402overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3403{
714835d5
UW
3404 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3405 {
3406 bfd *abfd = section->objfile->obfd;
3407 asection *bfd_section = section->the_bfd_section;
fbd35540 3408
714835d5
UW
3409 return pc + bfd_section_vma (abfd, bfd_section)
3410 - bfd_section_lma (abfd, bfd_section);
3411 }
c906108c
SS
3412
3413 return pc;
3414}
3415
3416
5417f6dc 3417/* Function: symbol_overlayed_address
c906108c
SS
3418 Return one of two addresses (relative to the VMA or to the LMA),
3419 depending on whether the section is mapped or not. */
3420
c5aa993b 3421CORE_ADDR
714835d5 3422symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3423{
3424 if (overlay_debugging)
3425 {
3426 /* If the symbol has no section, just return its regular address. */
3427 if (section == 0)
3428 return address;
3429 /* If the symbol's section is not an overlay, just return its address */
3430 if (!section_is_overlay (section))
3431 return address;
3432 /* If the symbol's section is mapped, just return its address */
3433 if (section_is_mapped (section))
3434 return address;
3435 /*
3436 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3437 * then return its LOADED address rather than its vma address!!
3438 */
3439 return overlay_unmapped_address (address, section);
3440 }
3441 return address;
3442}
3443
5417f6dc 3444/* Function: find_pc_overlay (PC)
c906108c
SS
3445 Return the best-match overlay section for PC:
3446 If PC matches a mapped overlay section's VMA, return that section.
3447 Else if PC matches an unmapped section's VMA, return that section.
3448 Else if PC matches an unmapped section's LMA, return that section. */
3449
714835d5 3450struct obj_section *
fba45db2 3451find_pc_overlay (CORE_ADDR pc)
c906108c 3452{
c5aa993b 3453 struct objfile *objfile;
c906108c
SS
3454 struct obj_section *osect, *best_match = NULL;
3455
3456 if (overlay_debugging)
3457 ALL_OBJSECTIONS (objfile, osect)
714835d5 3458 if (section_is_overlay (osect))
c5aa993b 3459 {
714835d5 3460 if (pc_in_mapped_range (pc, osect))
c5aa993b 3461 {
714835d5
UW
3462 if (section_is_mapped (osect))
3463 return osect;
c5aa993b
JM
3464 else
3465 best_match = osect;
3466 }
714835d5 3467 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3468 best_match = osect;
3469 }
714835d5 3470 return best_match;
c906108c
SS
3471}
3472
3473/* Function: find_pc_mapped_section (PC)
5417f6dc 3474 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3475 currently marked as MAPPED, return that section. Else return NULL. */
3476
714835d5 3477struct obj_section *
fba45db2 3478find_pc_mapped_section (CORE_ADDR pc)
c906108c 3479{
c5aa993b 3480 struct objfile *objfile;
c906108c
SS
3481 struct obj_section *osect;
3482
3483 if (overlay_debugging)
3484 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3485 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3486 return osect;
c906108c
SS
3487
3488 return NULL;
3489}
3490
3491/* Function: list_overlays_command
3492 Print a list of mapped sections and their PC ranges */
3493
3494void
fba45db2 3495list_overlays_command (char *args, int from_tty)
c906108c 3496{
c5aa993b
JM
3497 int nmapped = 0;
3498 struct objfile *objfile;
c906108c
SS
3499 struct obj_section *osect;
3500
3501 if (overlay_debugging)
3502 ALL_OBJSECTIONS (objfile, osect)
714835d5 3503 if (section_is_mapped (osect))
c5aa993b
JM
3504 {
3505 const char *name;
3506 bfd_vma lma, vma;
3507 int size;
3508
3509 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3510 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3511 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3512 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3513
3514 printf_filtered ("Section %s, loaded at ", name);
ed49a04f 3515 fputs_filtered (paddress (lma), gdb_stdout);
c5aa993b 3516 puts_filtered (" - ");
ed49a04f 3517 fputs_filtered (paddress (lma + size), gdb_stdout);
c5aa993b 3518 printf_filtered (", mapped at ");
ed49a04f 3519 fputs_filtered (paddress (vma), gdb_stdout);
c5aa993b 3520 puts_filtered (" - ");
ed49a04f 3521 fputs_filtered (paddress (vma + size), gdb_stdout);
c5aa993b
JM
3522 puts_filtered ("\n");
3523
3524 nmapped++;
3525 }
c906108c 3526 if (nmapped == 0)
a3f17187 3527 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3528}
3529
3530/* Function: map_overlay_command
3531 Mark the named section as mapped (ie. residing at its VMA address). */
3532
3533void
fba45db2 3534map_overlay_command (char *args, int from_tty)
c906108c 3535{
c5aa993b
JM
3536 struct objfile *objfile, *objfile2;
3537 struct obj_section *sec, *sec2;
c906108c
SS
3538
3539 if (!overlay_debugging)
8a3fe4f8 3540 error (_("\
515ad16c 3541Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3542the 'overlay manual' command."));
c906108c
SS
3543
3544 if (args == 0 || *args == 0)
8a3fe4f8 3545 error (_("Argument required: name of an overlay section"));
c906108c
SS
3546
3547 /* First, find a section matching the user supplied argument */
3548 ALL_OBJSECTIONS (objfile, sec)
3549 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3550 {
3551 /* Now, check to see if the section is an overlay. */
714835d5 3552 if (!section_is_overlay (sec))
c5aa993b
JM
3553 continue; /* not an overlay section */
3554
3555 /* Mark the overlay as "mapped" */
3556 sec->ovly_mapped = 1;
3557
3558 /* Next, make a pass and unmap any sections that are
3559 overlapped by this new section: */
3560 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3561 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3562 {
3563 if (info_verbose)
a3f17187 3564 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3565 bfd_section_name (objfile->obfd,
3566 sec2->the_bfd_section));
3567 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3568 }
3569 return;
3570 }
8a3fe4f8 3571 error (_("No overlay section called %s"), args);
c906108c
SS
3572}
3573
3574/* Function: unmap_overlay_command
5417f6dc 3575 Mark the overlay section as unmapped
c906108c
SS
3576 (ie. resident in its LMA address range, rather than the VMA range). */
3577
3578void
fba45db2 3579unmap_overlay_command (char *args, int from_tty)
c906108c 3580{
c5aa993b 3581 struct objfile *objfile;
c906108c
SS
3582 struct obj_section *sec;
3583
3584 if (!overlay_debugging)
8a3fe4f8 3585 error (_("\
515ad16c 3586Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3587the 'overlay manual' command."));
c906108c
SS
3588
3589 if (args == 0 || *args == 0)
8a3fe4f8 3590 error (_("Argument required: name of an overlay section"));
c906108c
SS
3591
3592 /* First, find a section matching the user supplied argument */
3593 ALL_OBJSECTIONS (objfile, sec)
3594 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3595 {
3596 if (!sec->ovly_mapped)
8a3fe4f8 3597 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3598 sec->ovly_mapped = 0;
3599 return;
3600 }
8a3fe4f8 3601 error (_("No overlay section called %s"), args);
c906108c
SS
3602}
3603
3604/* Function: overlay_auto_command
3605 A utility command to turn on overlay debugging.
3606 Possibly this should be done via a set/show command. */
3607
3608static void
fba45db2 3609overlay_auto_command (char *args, int from_tty)
c906108c 3610{
d874f1e2 3611 overlay_debugging = ovly_auto;
1900040c 3612 enable_overlay_breakpoints ();
c906108c 3613 if (info_verbose)
a3f17187 3614 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3615}
3616
3617/* Function: overlay_manual_command
3618 A utility command to turn on overlay debugging.
3619 Possibly this should be done via a set/show command. */
3620
3621static void
fba45db2 3622overlay_manual_command (char *args, int from_tty)
c906108c 3623{
d874f1e2 3624 overlay_debugging = ovly_on;
1900040c 3625 disable_overlay_breakpoints ();
c906108c 3626 if (info_verbose)
a3f17187 3627 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3628}
3629
3630/* Function: overlay_off_command
3631 A utility command to turn on overlay debugging.
3632 Possibly this should be done via a set/show command. */
3633
3634static void
fba45db2 3635overlay_off_command (char *args, int from_tty)
c906108c 3636{
d874f1e2 3637 overlay_debugging = ovly_off;
1900040c 3638 disable_overlay_breakpoints ();
c906108c 3639 if (info_verbose)
a3f17187 3640 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3641}
3642
3643static void
fba45db2 3644overlay_load_command (char *args, int from_tty)
c906108c 3645{
1c772458
UW
3646 if (gdbarch_overlay_update_p (current_gdbarch))
3647 gdbarch_overlay_update (current_gdbarch, NULL);
c906108c 3648 else
8a3fe4f8 3649 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3650}
3651
3652/* Function: overlay_command
3653 A place-holder for a mis-typed command */
3654
3655/* Command list chain containing all defined "overlay" subcommands. */
3656struct cmd_list_element *overlaylist;
3657
3658static void
fba45db2 3659overlay_command (char *args, int from_tty)
c906108c 3660{
c5aa993b 3661 printf_unfiltered
c906108c
SS
3662 ("\"overlay\" must be followed by the name of an overlay command.\n");
3663 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3664}
3665
3666
3667/* Target Overlays for the "Simplest" overlay manager:
3668
5417f6dc
RM
3669 This is GDB's default target overlay layer. It works with the
3670 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3671 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3672 so targets that use a different runtime overlay manager can
c906108c
SS
3673 substitute their own overlay_update function and take over the
3674 function pointer.
3675
3676 The overlay_update function pokes around in the target's data structures
3677 to see what overlays are mapped, and updates GDB's overlay mapping with
3678 this information.
3679
3680 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3681 unsigned _novlys; /# number of overlay sections #/
3682 unsigned _ovly_table[_novlys][4] = {
3683 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3684 {..., ..., ..., ...},
3685 }
3686 unsigned _novly_regions; /# number of overlay regions #/
3687 unsigned _ovly_region_table[_novly_regions][3] = {
3688 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3689 {..., ..., ...},
3690 }
c906108c
SS
3691 These functions will attempt to update GDB's mappedness state in the
3692 symbol section table, based on the target's mappedness state.
3693
3694 To do this, we keep a cached copy of the target's _ovly_table, and
3695 attempt to detect when the cached copy is invalidated. The main
3696 entry point is "simple_overlay_update(SECT), which looks up SECT in
3697 the cached table and re-reads only the entry for that section from
3698 the target (whenever possible).
3699 */
3700
3701/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3702static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3703#if 0
c5aa993b 3704static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3705#endif
c5aa993b 3706static unsigned cache_novlys = 0;
c906108c 3707#if 0
c5aa993b 3708static unsigned cache_novly_regions = 0;
c906108c
SS
3709#endif
3710static CORE_ADDR cache_ovly_table_base = 0;
3711#if 0
3712static CORE_ADDR cache_ovly_region_table_base = 0;
3713#endif
c5aa993b
JM
3714enum ovly_index
3715 {
3716 VMA, SIZE, LMA, MAPPED
3717 };
c906108c
SS
3718
3719/* Throw away the cached copy of _ovly_table */
3720static void
fba45db2 3721simple_free_overlay_table (void)
c906108c
SS
3722{
3723 if (cache_ovly_table)
b8c9b27d 3724 xfree (cache_ovly_table);
c5aa993b 3725 cache_novlys = 0;
c906108c
SS
3726 cache_ovly_table = NULL;
3727 cache_ovly_table_base = 0;
3728}
3729
3730#if 0
3731/* Throw away the cached copy of _ovly_region_table */
3732static void
fba45db2 3733simple_free_overlay_region_table (void)
c906108c
SS
3734{
3735 if (cache_ovly_region_table)
b8c9b27d 3736 xfree (cache_ovly_region_table);
c5aa993b 3737 cache_novly_regions = 0;
c906108c
SS
3738 cache_ovly_region_table = NULL;
3739 cache_ovly_region_table_base = 0;
3740}
3741#endif
3742
9216df95 3743/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3744 Convert to host order. int LEN is number of ints */
3745static void
9216df95
UW
3746read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3747 int len, int size)
c906108c 3748{
34c0bd93 3749 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3750 gdb_byte *buf = alloca (len * size);
c5aa993b 3751 int i;
c906108c 3752
9216df95 3753 read_memory (memaddr, buf, len * size);
c906108c 3754 for (i = 0; i < len; i++)
9216df95 3755 myaddr[i] = extract_unsigned_integer (size * i + buf, size);
c906108c
SS
3756}
3757
3758/* Find and grab a copy of the target _ovly_table
3759 (and _novlys, which is needed for the table's size) */
c5aa993b 3760static int
fba45db2 3761simple_read_overlay_table (void)
c906108c 3762{
0d43edd1 3763 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3764 struct gdbarch *gdbarch;
3765 int word_size;
c906108c
SS
3766
3767 simple_free_overlay_table ();
9b27852e 3768 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3769 if (! novlys_msym)
c906108c 3770 {
8a3fe4f8 3771 error (_("Error reading inferior's overlay table: "
0d43edd1 3772 "couldn't find `_novlys' variable\n"
8a3fe4f8 3773 "in inferior. Use `overlay manual' mode."));
0d43edd1 3774 return 0;
c906108c 3775 }
0d43edd1 3776
9b27852e 3777 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3778 if (! ovly_table_msym)
3779 {
8a3fe4f8 3780 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3781 "`_ovly_table' array\n"
8a3fe4f8 3782 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3783 return 0;
3784 }
3785
9216df95
UW
3786 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3787 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3788
0d43edd1
JB
3789 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3790 cache_ovly_table
3791 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3792 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3793 read_target_long_array (cache_ovly_table_base,
777ea8f1 3794 (unsigned int *) cache_ovly_table,
9216df95 3795 cache_novlys * 4, word_size);
0d43edd1 3796
c5aa993b 3797 return 1; /* SUCCESS */
c906108c
SS
3798}
3799
3800#if 0
3801/* Find and grab a copy of the target _ovly_region_table
3802 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3803static int
fba45db2 3804simple_read_overlay_region_table (void)
c906108c
SS
3805{
3806 struct minimal_symbol *msym;
3807
3808 simple_free_overlay_region_table ();
9b27852e 3809 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3810 if (msym != NULL)
3811 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3812 else
3813 return 0; /* failure */
c906108c
SS
3814 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3815 if (cache_ovly_region_table != NULL)
3816 {
9b27852e 3817 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3818 if (msym != NULL)
3819 {
9216df95
UW
3820 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msym));
3821 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
c906108c 3822 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3823 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3824 (unsigned int *) cache_ovly_region_table,
9216df95 3825 cache_novly_regions * 3, word_size);
c906108c 3826 }
c5aa993b
JM
3827 else
3828 return 0; /* failure */
c906108c 3829 }
c5aa993b
JM
3830 else
3831 return 0; /* failure */
3832 return 1; /* SUCCESS */
c906108c
SS
3833}
3834#endif
3835
5417f6dc 3836/* Function: simple_overlay_update_1
c906108c
SS
3837 A helper function for simple_overlay_update. Assuming a cached copy
3838 of _ovly_table exists, look through it to find an entry whose vma,
3839 lma and size match those of OSECT. Re-read the entry and make sure
3840 it still matches OSECT (else the table may no longer be valid).
3841 Set OSECT's mapped state to match the entry. Return: 1 for
3842 success, 0 for failure. */
3843
3844static int
fba45db2 3845simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3846{
3847 int i, size;
fbd35540
MS
3848 bfd *obfd = osect->objfile->obfd;
3849 asection *bsect = osect->the_bfd_section;
9216df95
UW
3850 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3851 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
c906108c 3852
2c500098 3853 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3854 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3855 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3856 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3857 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3858 {
9216df95
UW
3859 read_target_long_array (cache_ovly_table_base + i * word_size,
3860 (unsigned int *) cache_ovly_table[i],
3861 4, word_size);
fbd35540
MS
3862 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3863 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3864 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3865 {
3866 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3867 return 1;
3868 }
fbd35540 3869 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3870 return 0;
3871 }
3872 return 0;
3873}
3874
3875/* Function: simple_overlay_update
5417f6dc
RM
3876 If OSECT is NULL, then update all sections' mapped state
3877 (after re-reading the entire target _ovly_table).
3878 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3879 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3880 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3881 re-read the entire cache, and go ahead and update all sections. */
3882
1c772458 3883void
fba45db2 3884simple_overlay_update (struct obj_section *osect)
c906108c 3885{
c5aa993b 3886 struct objfile *objfile;
c906108c
SS
3887
3888 /* Were we given an osect to look up? NULL means do all of them. */
3889 if (osect)
3890 /* Have we got a cached copy of the target's overlay table? */
3891 if (cache_ovly_table != NULL)
3892 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3893 if (cache_ovly_table_base ==
9b27852e 3894 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3895 /* Then go ahead and try to look up this single section in the cache */
3896 if (simple_overlay_update_1 (osect))
3897 /* Found it! We're done. */
3898 return;
3899
3900 /* Cached table no good: need to read the entire table anew.
3901 Or else we want all the sections, in which case it's actually
3902 more efficient to read the whole table in one block anyway. */
3903
0d43edd1
JB
3904 if (! simple_read_overlay_table ())
3905 return;
3906
c906108c
SS
3907 /* Now may as well update all sections, even if only one was requested. */
3908 ALL_OBJSECTIONS (objfile, osect)
714835d5 3909 if (section_is_overlay (osect))
c5aa993b
JM
3910 {
3911 int i, size;
fbd35540
MS
3912 bfd *obfd = osect->objfile->obfd;
3913 asection *bsect = osect->the_bfd_section;
c5aa993b 3914
2c500098 3915 size = bfd_get_section_size (bsect);
c5aa993b 3916 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3917 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3918 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3919 /* && cache_ovly_table[i][SIZE] == size */ )
3920 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3921 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3922 break; /* finished with inner for loop: break out */
3923 }
3924 }
c906108c
SS
3925}
3926
086df311
DJ
3927/* Set the output sections and output offsets for section SECTP in
3928 ABFD. The relocation code in BFD will read these offsets, so we
3929 need to be sure they're initialized. We map each section to itself,
3930 with no offset; this means that SECTP->vma will be honored. */
3931
3932static void
3933symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3934{
3935 sectp->output_section = sectp;
3936 sectp->output_offset = 0;
3937}
3938
3939/* Relocate the contents of a debug section SECTP in ABFD. The
3940 contents are stored in BUF if it is non-NULL, or returned in a
3941 malloc'd buffer otherwise.
3942
3943 For some platforms and debug info formats, shared libraries contain
3944 relocations against the debug sections (particularly for DWARF-2;
3945 one affected platform is PowerPC GNU/Linux, although it depends on
3946 the version of the linker in use). Also, ELF object files naturally
3947 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3948 the relocations in order to get the locations of symbols correct.
3949 Another example that may require relocation processing, is the
3950 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3951 debug section. */
086df311
DJ
3952
3953bfd_byte *
3954symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3955{
065a2c74 3956 /* We're only interested in sections with relocation
086df311
DJ
3957 information. */
3958 if ((sectp->flags & SEC_RELOC) == 0)
3959 return NULL;
086df311
DJ
3960
3961 /* We will handle section offsets properly elsewhere, so relocate as if
3962 all sections begin at 0. */
3963 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3964
97606a13 3965 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3966}
c906108c 3967
31d99776
DJ
3968struct symfile_segment_data *
3969get_symfile_segment_data (bfd *abfd)
3970{
3971 struct sym_fns *sf = find_sym_fns (abfd);
3972
3973 if (sf == NULL)
3974 return NULL;
3975
3976 return sf->sym_segments (abfd);
3977}
3978
3979void
3980free_symfile_segment_data (struct symfile_segment_data *data)
3981{
3982 xfree (data->segment_bases);
3983 xfree (data->segment_sizes);
3984 xfree (data->segment_info);
3985 xfree (data);
3986}
3987
28c32713
JB
3988
3989/* Given:
3990 - DATA, containing segment addresses from the object file ABFD, and
3991 the mapping from ABFD's sections onto the segments that own them,
3992 and
3993 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3994 segment addresses reported by the target,
3995 store the appropriate offsets for each section in OFFSETS.
3996
3997 If there are fewer entries in SEGMENT_BASES than there are segments
3998 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3999
8d385431
DJ
4000 If there are more entries, then ignore the extra. The target may
4001 not be able to distinguish between an empty data segment and a
4002 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4003int
4004symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4005 struct section_offsets *offsets,
4006 int num_segment_bases,
4007 const CORE_ADDR *segment_bases)
4008{
4009 int i;
4010 asection *sect;
4011
28c32713
JB
4012 /* It doesn't make sense to call this function unless you have some
4013 segment base addresses. */
4014 gdb_assert (segment_bases > 0);
4015
31d99776
DJ
4016 /* If we do not have segment mappings for the object file, we
4017 can not relocate it by segments. */
4018 gdb_assert (data != NULL);
4019 gdb_assert (data->num_segments > 0);
4020
31d99776
DJ
4021 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4022 {
31d99776
DJ
4023 int which = data->segment_info[i];
4024
28c32713
JB
4025 gdb_assert (0 <= which && which <= data->num_segments);
4026
4027 /* Don't bother computing offsets for sections that aren't
4028 loaded as part of any segment. */
4029 if (! which)
4030 continue;
4031
4032 /* Use the last SEGMENT_BASES entry as the address of any extra
4033 segments mentioned in DATA->segment_info. */
31d99776 4034 if (which > num_segment_bases)
28c32713 4035 which = num_segment_bases;
31d99776 4036
28c32713
JB
4037 offsets->offsets[i] = (segment_bases[which - 1]
4038 - data->segment_bases[which - 1]);
31d99776
DJ
4039 }
4040
4041 return 1;
4042}
4043
4044static void
4045symfile_find_segment_sections (struct objfile *objfile)
4046{
4047 bfd *abfd = objfile->obfd;
4048 int i;
4049 asection *sect;
4050 struct symfile_segment_data *data;
4051
4052 data = get_symfile_segment_data (objfile->obfd);
4053 if (data == NULL)
4054 return;
4055
4056 if (data->num_segments != 1 && data->num_segments != 2)
4057 {
4058 free_symfile_segment_data (data);
4059 return;
4060 }
4061
4062 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4063 {
4064 CORE_ADDR vma;
4065 int which = data->segment_info[i];
4066
4067 if (which == 1)
4068 {
4069 if (objfile->sect_index_text == -1)
4070 objfile->sect_index_text = sect->index;
4071
4072 if (objfile->sect_index_rodata == -1)
4073 objfile->sect_index_rodata = sect->index;
4074 }
4075 else if (which == 2)
4076 {
4077 if (objfile->sect_index_data == -1)
4078 objfile->sect_index_data = sect->index;
4079
4080 if (objfile->sect_index_bss == -1)
4081 objfile->sect_index_bss = sect->index;
4082 }
4083 }
4084
4085 free_symfile_segment_data (data);
4086}
4087
c906108c 4088void
fba45db2 4089_initialize_symfile (void)
c906108c
SS
4090{
4091 struct cmd_list_element *c;
c5aa993b 4092
1a966eab
AC
4093 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4094Load symbol table from executable file FILE.\n\
c906108c 4095The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4096to execute."), &cmdlist);
5ba2abeb 4097 set_cmd_completer (c, filename_completer);
c906108c 4098
1a966eab 4099 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4100Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4101Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4102ADDR is the starting address of the file's text.\n\
db162d44
EZ
4103The optional arguments are section-name section-address pairs and\n\
4104should be specified if the data and bss segments are not contiguous\n\
1a966eab 4105with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4106 &cmdlist);
5ba2abeb 4107 set_cmd_completer (c, filename_completer);
c906108c 4108
1a966eab
AC
4109 c = add_cmd ("load", class_files, load_command, _("\
4110Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4111for access from GDB.\n\
4112A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4113 set_cmd_completer (c, filename_completer);
c906108c 4114
5bf193a2
AC
4115 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4116 &symbol_reloading, _("\
4117Set dynamic symbol table reloading multiple times in one run."), _("\
4118Show dynamic symbol table reloading multiple times in one run."), NULL,
4119 NULL,
920d2a44 4120 show_symbol_reloading,
5bf193a2 4121 &setlist, &showlist);
c906108c 4122
c5aa993b 4123 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4124 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4125 "overlay ", 0, &cmdlist);
4126
4127 add_com_alias ("ovly", "overlay", class_alias, 1);
4128 add_com_alias ("ov", "overlay", class_alias, 1);
4129
c5aa993b 4130 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4131 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4132
c5aa993b 4133 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4134 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4135
c5aa993b 4136 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4137 _("List mappings of overlay sections."), &overlaylist);
c906108c 4138
c5aa993b 4139 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4140 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4141 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4142 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4143 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4144 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4145 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4146 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4147
4148 /* Filename extension to source language lookup table: */
4149 init_filename_language_table ();
26c41df3
AC
4150 add_setshow_string_noescape_cmd ("extension-language", class_files,
4151 &ext_args, _("\
4152Set mapping between filename extension and source language."), _("\
4153Show mapping between filename extension and source language."), _("\
4154Usage: set extension-language .foo bar"),
4155 set_ext_lang_command,
920d2a44 4156 show_ext_args,
26c41df3 4157 &setlist, &showlist);
c906108c 4158
c5aa993b 4159 add_info ("extensions", info_ext_lang_command,
1bedd215 4160 _("All filename extensions associated with a source language."));
917317f4 4161
525226b5
AC
4162 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4163 &debug_file_directory, _("\
4164Set the directory where separate debug symbols are searched for."), _("\
4165Show the directory where separate debug symbols are searched for."), _("\
4166Separate debug symbols are first searched for in the same\n\
4167directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4168and lastly at the path of the directory of the binary with\n\
4169the global debug-file directory prepended."),
4170 NULL,
920d2a44 4171 show_debug_file_directory,
525226b5 4172 &setlist, &showlist);
bf250677
DE
4173
4174 add_setshow_boolean_cmd ("symbol-loading", no_class,
4175 &print_symbol_loading, _("\
4176Set printing of symbol loading messages."), _("\
4177Show printing of symbol loading messages."), NULL,
4178 NULL,
4179 NULL,
4180 &setprintlist, &showprintlist);
c906108c 4181}
This page took 1.463039 seconds and 4 git commands to generate.